WorldWideScience

Sample records for calcium signalling pathways

  1. Modularized study of human calcium signalling pathway

    Indian Academy of Sciences (India)

    Losiana Nayak; Rajat K De

    2007-08-01

    Signalling pathways are complex biochemical networks responsible for reg ulation of numerous cellular functions. These networks function by serial and successive interactions among a large number of vital biomolecules and chemical compounds. For deciphering and analysing the underlying mechanism of such networks, a modularized study is quite helpful. Here we propose an algorithm for modularization of calcium signalling pathway of H. sapiens. The idea that ``a node whose function is dependant on maximum number of other nodes tends to be the center of a sub network” is used to divide a large signalling network into smaller sub networks. Inclusion of node(s) into sub networks(s) is dependant on the outdegree of the node(s). Here outdegree of a node refers to the number of re lations of the considered node lying outside the constructed sub network. Node(s) having more than c relations lying outside the expanding subnetwork have to be excluded from it. Here is a specified variable based on user preference, which is finally fixed during adjustments of created subnetworks, so that certain biological significance can be conferred on them.

  2. Calcium signaling and epilepsy.

    Science.gov (United States)

    Steinlein, Ortrud K

    2014-08-01

    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  3. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways

    Institute of Scientific and Technical Information of China (English)

    Mary; Louisa; Holton; Michael; Emerson; Ludwig; Neyses; Angel; L; Armesilla

    2010-01-01

    Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular freecalcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulindependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.

  4. Genome-wide association study knowledge-driven pathway analysis of alcohol dependence implicates the calcium signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Li Danni; Li Jinming; Guo Yanfang

    2014-01-01

    Background Alcohol dependence (AD) is a serious and common public health problem.The identification of genes that contribute to the AD variation will improve our understanding of the genetic mechanism underlying this complex disease.Previous genome-wide association studies (GWAS) and candidate gene genetic association studies identified individual genes as candidates for alcohol phenotypes,but efforts to generate an integrated view of accumulative genetic variants and pathways under alcohol drinking are lacking.Methods We applied enrichment gene set analysis to existing genetic association results to identify pertinent pathways to AD in this study.A total of 1 438 SNPs (P <1.0×10-3) associated to alcohol drinking related traits have been collected from 31 studies (10 candidate gene association studies,19 GWAS of SNPs,and 2 GWAS of copy number variants).Results Among all of the KEGG pathways,the calcium signaling pathway (hsa04020) showed the most significant enrichment of associations (21 genes) to alcohol consumption phenotypes (P=5.4×10-5).Furthermore,the calcium signaling pathway is the only pathway that turned out to be significant after multiple test adjustments,achieving Bonferroni P value of 0.8×10-3 and FDR value of 0.6×10-2,respectively.Interestingly,the calcium signaling pathway was previously found to be essential to regulate brain function,and genes in this pathway link to a depressive effect of alcohol consumption on the body.Conclusions Our findings,together with previous biological evidence,suggest the importance of gene polymorphisms of calcium signaling pathway to AD susceptibility.Still,further investigations are warranted to uncover the role of this pathway in AD and related traits.

  5. DMPD: Calcium signaling in lymphocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ):250-8. Pathway - PNG File (.png) SVG File (.svg) HTML File (.html) CSML File (.csml) Open... .csml file with CIOPlayer Open .csml file with CIOPlayer - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  6. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease.

    Science.gov (United States)

    Berridge, Michael J

    2016-10-01

    Many cellular functions are regulated by calcium (Ca(2+)) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca(2+)) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca(2+) that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca(2+) signal generated by the entry of Ca(2+) through voltage-operated channels that releases Ca(2+) from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca(2+) signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca(2+) signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca(2+) signaling are a contributory factor responsible for the onset of a large number human diseases. PMID:27512009

  7. Influence of zinc on calcium-dependent signal transduction pathways during aluminium-induced neurodegeneration.

    Science.gov (United States)

    Singla, Neha; Dhawan, D K

    2014-10-01

    Metals perform important functions in the normal physiological system, and alterations in their levels may lead to a number of diseases. Aluminium (Al) has been implicated as a major risk factor, which is linked to several neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. On the other hand, zinc (Zn) is considered as a neuromodulator and an essential dietary element that regulates a number of biological activities in our body. The aim of the present study was to investigate the effects of Zn supplementation, if any, in ameliorating the changes induced by Al on calcium signalling pathway. Male Sprague Dawley rats weighing 140-160 g were divided into four different groups viz.: normal control, aluminium treated (100 mg/kg b.wt./day via oral gavage), zinc treated (227 mg/l in drinking water) and combined aluminium and zinc treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment decreased the Ca(2+) ATPase activity whereas increased the levels of 3', 5'-cyclic adenosine monophosphate, intracellular calcium and total calcium content in both the cerebrum and cerebellum, which, however, were modulated upon Zn supplementation. Al treatment exhibited a significant elevation in the protein expressions of phospholipase C, inositol triphosphate and protein kinase A but decreased the expression of protein kinase C, which, however, was reversed upon Zn co-treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of calcium deposits, which were improved upon zinc co-administration. The present study, therefore, suggests that zinc regulates the intracellular calcium signalling pathway during aluminium-induced neurodegeneration.

  8. Model for external influences on cellular signal transduction pathways including cytosolic calcium oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Eichwald, C.; Kaiser, F. [Technical Univ. of Darmstadt (Germany)

    1995-06-01

    Experiments on the effects of extremely-low-frequency (ELF) electric and magnetic fields on cells of the immune system, T-lymphocytes in particular, suggest that the external field interacts with the cell at the level of intracellular signal transduction pathways. These are directly connected with changes in the calcium-signaling processes of the cell. Based on these findings, a theoretical model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal transduction pathway is presented. The authors discuss the possibility that the external field acts on the kinetics of the signal transduction between the activated receptors at the cell membrane and the G-proteins. It is shown that, depending on the specific combination of cell internal biochemical and external physical parameters, entirely different responses of the cell can occur. The authors compare the effects of a coherent (periodic) modulation and of incoherent perturbations (noise). The model and the calculations are based on the theory of self-sustained, nonlinear oscillators. It is argued that these systems form an ideal basis for information-encoding processes in biological systems.

  9. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling.

    Science.gov (United States)

    Wen, Ya; Alshikho, Mohamad J; Herbert, Martha R

    2016-01-01

    We used established databases in standard ways to systematically characterize gene ontologies, pathways and functional linkages in the large set of genes now associated with autism spectrum disorders (ASDs). These conditions are particularly challenging--they lack clear pathognomonic biological markers, they involve great heterogeneity across multiple levels (genes, systemic biological and brain characteristics, and nuances of behavioral manifestations)-and yet everyone with this diagnosis meets the same defining behavioral criteria. Using the human gene list from Simons Foundation Autism Research Initiative (SFARI) we performed gene set enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database, and then derived a pathway network from pathway-pathway functional interactions again in reference to KEGG. Through identifying the GO (Gene Ontology) groups in which SFARI genes were enriched, mapping the coherence between pathways and GO groups, and ranking the relative strengths of representation of pathway network components, we 1) identified 10 disease-associated and 30 function-associated pathways 2) revealed calcium signaling pathway and neuroactive ligand-receptor interaction as the most enriched, statistically significant pathways from the enrichment analysis, 3) showed calcium signaling pathways and MAPK signaling pathway to be interactive hubs with other pathways and also to be involved with pervasively present biological processes, 4) found convergent indications that the process "calcium-PRC (protein kinase C)-Ras-Raf-MAPK/ERK" is likely a major contributor to ASD pathophysiology, and 5) noted that perturbations associated with KEGG's category of environmental information processing were common. These findings support the idea that ASD-associated genes may contribute not only to core features of ASD themselves but also to vulnerability to other chronic and systemic problems potentially including cancer, metabolic conditions

  10. Oxethazaine inhibits hepatitis B virus capsid assembly by blocking the cytosolic calcium-signalling pathway.

    Science.gov (United States)

    Zhang, Lin; Liu, Chunlan; Xiao, Yu; Chen, Xulin

    2016-05-01

    Chronic hepatitis B virus (HBV) infection is a serious public health problem and may progress to liver fibrosis, cirrhosis and hepatocellular carcinoma. It is currently treated with PEGylated IFN-α2a and nucleoside/nucleotide analogues (NAs). However, PEGylated IFN treatment has problems of high cost, low efficiency and side effects. Long-term administration of NAs is necessary to avoid virus relapse, which can cause drug resistance and side effects. New efforts are now being directed to develop novel anti-HBV drugs targeting either additional viral targets other than viral DNA polymerase or host targets to improve the treatment of chronic hepatitis B. In this study, we discovered that oxethazaine, approved for clinic use in a few countries such as Japan, India, South Africa and Brazil, can dose-dependently reduce the levels of HBV envelope antigen, extracellular HBV DNA in supernatants and intracellular HBV total DNA. However, the levels of HBV cccDNA and HBV RNAs were not affected by oxethazaine treatment. Further study confirmed that oxethazaine acts on the virus assembly stage of the HBV life cycle. A study of the mechanisms of oxethazaine suggested that this drug inhibits HBV replication and capsid assembly by blocking the cytosolic calcium-signalling pathway. Moreover, oxethazaine could inhibit the replication of lamivudine/entecavir-dual-resistant and adefovir-resistant HBV mutants. In conclusion, our study suggests that oxethazaine may serve as a promising drug, or could be used as a starting point for anti-HBV drug discovery. PMID:26838678

  11. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP.

    Directory of Open Access Journals (Sweden)

    Fernando Siso-Nadal

    Full Text Available BACKGROUND: To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate 'bursting' oscillations of calcium and may enable better filtering of noise. CONCLUSION: We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.

  12. A history of stress alters drought calcium signalling pathways in Arabidopsis.

    Science.gov (United States)

    Knight, H; Brandt, S; Knight, M R

    1998-12-01

    Environmental stresses commonly encountered by plants lead to rapid transient elevations in cytosolic free calcium concentration ([Ca2+]cyt) (Bush, 1995; Knight et al., 1991). These cellular calcium (Ca2+) signals lead ultimately to the increased expression of stress-responsive genes, including those encoding proteins of protective function (Knight et al., 1996; Knight et al., 1997). The kinetics and magnitude of the Ca2+ signal, or 'calcium signature', differ between different stimuli and are thought to contribute to the specificity of the end response (Dolmetsch et al., 1997; McAinsh and Hetherington, 1998). We measured [Ca2+]cyt changes during treatment with mannitol (to mimic drought stress) in whole intact seedlings of Arabidopsis thaliana. The responses of plants which were previously exposed to osmotic and oxidative stresses were compared to those of control plants. We show here that osmotic stress-induced Ca2+ responses can be markedly altered by previous encounters with either osmotic or oxidative stress. The nature of the alterations in Ca2+ response depends on the identity and severity of the previous stress: oxidative stress pre-treatment reduced the mannitol-induced [Ca2+]cyt response whereas osmotic stress pretreatment increased the [Ca2+]cyt response. Therefore, our data show that different combinations of environmental stress can produce novel Ca2+ signal outputs. These alterations are accompanied by corresponding changes in the patterns of osmotic stress-induced gene expression and, in the case of osmotic stress pre-treatment, the acquisition of stress-tolerance. This suggests that altered Ca2+ responses encode a 'memory' of previous stress encounters and thus may perhaps be involved in acclimation to environmental stresses. PMID:10069075

  13. Calcium Signaling Pathway Genes RUNX2 and CACNA1C Are Associated With Calcific Aortic Valve Disease

    Science.gov (United States)

    Guauque-Olarte, Sandra; Messika-Zeitoun, David; Droit, Arnaud; Lamontagne, Maxime; Tremblay-Marchand, Joël; Lavoie-Charland, Emilie; Gaudreault, Nathalie; Arsenault, Benoit J.; Dubé, Marie-Pierre; Tardif, Jean-Claude; Body, Simon C.; Seidman, Jonathan G.; Boileau, Catherine; Mathieu, Patrick; Pibarot, Philippe; Bossé, Yohan

    2016-01-01

    Background Calcific aortic valve stenosis (AS) is a life-threatening disease with no medical therapy. The genetic architecture of AS remains elusive. This study combines genome-wide association studies, gene expression, and expression quantitative trait loci mapping in human valve tissues to identify susceptibility genes of AS. Methods and Results A meta-analysis was performed combining the results of 2 genome-wide association studies in 474 and 486 cases from Quebec City (Canada) and Paris (France), respectively. Corresponding controls consisted of 2988 and 1864 individuals with European ancestry from the database of genotypes and phenotypes. mRNA expression levels were evaluated in 9 calcified and 8 normal aortic valves by RNA sequencing. The results were integrated with valve expression quantitative trait loci data obtained from 22 AS patients. Twenty-five single-nucleotide polymorphisms had Pmeta-analysis. The calcium signaling pathway was the top gene set enriched for genes mapped to moderately AS-associated single-nucleotide polymorphisms. Genes in this pathway were found differentially expressed in valves with and without AS. Two single-nucleotide polymorphisms located in RUNX2 (runt-related transcription factor 2), encoding an osteogenic transcription factor, demonstrated some association with AS (genome-wide association studies P=5.33×10−5). The mRNA expression levels of RUNX2 were upregulated in calcified valves and associated with eQTL-SNPs. CACNA1C encoding a subunit of a voltage-dependent calcium channel was upregulated in calcified valves. The eQTL-SNP with the most significant association with AS located in CACNA1C was associated with higher expression of the gene. Conclusions This integrative genomic study confirmed the role of RUNX2 as a potential driver of AS and identified a new AS susceptibility gene, CACNA1C, belonging to the calcium signaling pathway. PMID:26553695

  14. Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jingjing Ye

    2016-01-01

    Full Text Available Porcine bone marrow mesenchymal stem cells (pBMSCs have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium (Ca2+o on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mM Ca2+o significantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly, Ca2+o stimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition, Ca2+o resulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR by its antagonist NPS2143 abolished the aforementioned effects of Ca2+o. Moreover, Ca2+o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response to Ca2+o was associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair.

  15. Ouabain rescues rat nephrogenesis during intrauterine growth restriction by regulating the complement and coagulation cascades and calcium signaling pathway.

    Science.gov (United States)

    Chen, L; Yue, J; Han, X; Li, J; Hu, Y

    2016-02-01

    Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.

  16. Store-operated calcium signaling in neutrophils.

    Science.gov (United States)

    Clemens, Regina A; Lowell, Clifford A

    2015-10-01

    Calcium signals in neutrophils are initiated by a variety of cell-surface receptors, including formyl peptide and other GPCRs, FcRs, and integrins. The predominant pathway by which calcium enters immune cells is termed SOCE, whereby plasma membrane CRAC channels allow influx of extracellular calcium into the cytoplasm when intracellular ER stores are depleted. The identification of 2 key families of SOCE regulators, STIM calcium "sensors" and ORAI calcium channels, has allowed for genetic manipulation of SOCE pathways and provided valuable insight into the molecular mechanism of calcium signaling in immune cells, including neutrophils. This review focuses on our current knowledge of the molecules involved in neutrophil SOCE and how study of these molecules has further informed our understanding of the role of calcium signaling in neutrophil activation.

  17. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways.

    Science.gov (United States)

    Ko, Michael L; Shi, Liheng; Grushin, Kirill; Nigussie, Fikru; Ko, Gladys Y-P

    2010-10-01

    Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages. The authors took advantage of using chick embryos that are independent of maternal influences to investigate whether embryonic hearts could be entrained under LD cycles in ovo. The authors found circadian regulation of L-type voltage-gated calcium channels (L-VGCCs), the ion channels responsible for the production of cardiac muscle contraction in embryonic chick hearts. The mRNA levels and protein expression of VGCCα1C and VGCCα1D are under circadian control, and the average L-VGCC current density is significantly larger when cardiomyocytes are recorded during the night than day. The phosphorylation states of several kinases involved in insulin signaling and cardiac metabolism, including extracellular signal-regulated kinase (Erk), stress-activated protein kinase (p38), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), are also under circadian control. Both Erk and p38 have been implicated in regulating cardiac contractility and in the development of various pathological states, such as cardiac hypertrophy and heart failure. Even though both Erk and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways participate in complex cellular processes regarding physiological or pathological states of cardiomyocytes, the circadian oscillators in the heart regulate these pathways independently, and both pathways contribute to the circadian regulation of L-VGCCs.

  18. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway

    International Nuclear Information System (INIS)

    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (p < 0.05) have been found in the calcium deposition in si-FGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation. - Highlights: • CS influences the behavior of hDPCs through fibroblast growth factor receptor. • CS increases ERK and p38 activity in hDPCs. • ERK/MAPK signaling is involved in the Si-induced odontogenic differentiation of hDPCs. • Ca staining shows that FGFR regulates hDPC differentiation on CS, but not on β-TCP

  19. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao-Hsin [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Hung, Chi-Jr; Huang, Tsui-Hsien [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Lin, Chi-Chang [Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan (China); Kao, Chia-Tze [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan (China)

    2014-10-01

    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (p < 0.05) have been found in the calcium deposition in si-FGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation. - Highlights: • CS influences the behavior of hDPCs through fibroblast growth factor receptor. • CS increases ERK and p38 activity in hDPCs. • ERK/MAPK signaling is involved in the Si-induced odontogenic differentiation of hDPCs. • Ca staining shows that FGFR regulates hDPC differentiation on CS, but not on β-TCP.

  20. VSNL1 Co-expression networks in aging include calcium signaling, synaptic plasticity, and Alzheimer’s disease pathways

    Directory of Open Access Journals (Sweden)

    C W Lin

    2015-03-01

    Full Text Available The Visinin-like 1 (VSNL1 gene encodes Visinin-like protein 1, a peripheral biomarker for Alzheimer disease (AD. Little is known, however, about normal VSNL1 expression in brain and the biologic networks in which it participates. Frontal cortex gray matter from 209 subjects without neurodegenerative or psychiatric illness, ranging in age from 16–91, were processed on Affymetrix GeneChip 1.1 ST and Human SNP Array 6.0. VSNL1 expression was unaffected by age and sex, and not significantly associated with SNPs in cis or trans. VSNL1 was significantly co-expressed with genes in pathways for Calcium Signaling, AD, Long Term Potentiation, Long Term Depression, and Trafficking of AMPA Receptors. The association with AD was driven, in part, by correlation with amyloid precursor protein (APP expression. These findings provide an unbiased link between VSNL1 and molecular mechanisms of AD, including pathways implicated in synaptic pathology in AD. Whether APP may drive increased VSNL1 expression, VSNL1 drives increased APP expression, or both are downstream of common pathogenic regulators will need to be evaluated in model systems.

  1. Npas4 Transcription Factor Expression Is Regulated by Calcium Signaling Pathways and Prevents Tacrolimus-induced Cytotoxicity in Pancreatic Beta Cells.

    Science.gov (United States)

    Speckmann, Thilo; Sabatini, Paul V; Nian, Cuilan; Smith, Riley G; Lynn, Francis C

    2016-02-01

    Cytosolic calcium influx activates signaling pathways known to support pancreatic beta cell function and survival by modulating gene expression. Impaired calcium signaling leads to decreased beta cell mass and diabetes. To appreciate the causes of these cytotoxic perturbations, a more detailed understanding of the relevant signaling pathways and their respective gene targets is required. In this study, we examined the calcium-induced expression of the cytoprotective beta cell transcription factor Npas4. Pharmacological inhibition implicated the calcineurin, Akt/protein kinase B, and Ca(2+)/calmodulin-dependent protein kinase signaling pathways in the regulation of Npas4 transcription and translation. Both Npas4 mRNA and protein had high turnover rates, and, at the protein level, degradation was mediated via the ubiquitin-proteasome pathway. Finally, beta cell cytotoxicity of the calcineurin inhibitor and immunosuppressant tacrolimus (FK-506) was prevented by Npas4 overexpression. These results delineate the pathways regulating Npas4 expression and stability and demonstrate its importance in clinical settings such as islet transplantation.

  2. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways.

    Science.gov (United States)

    Lee, Sang-Im; Lee, Eui-Suk; El-Fiqi, Ahmed; Lee, So-Youn; Eun-Cheol Kim; Kim, Hae-Won

    2016-05-01

    Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes. In comparison to pure CPCs, nanocomposite cements exhibit a significantly improved proliferation of HDPSCs, and the improvement is more significant as the BGN content increases. The nanocomposite cements substantially enhance the adhesion of cells, and significantly up-regulate odontogenic differentiation, including alkaline phosphatase (ALP) activity and the expressions of odontogenic genes (sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin). Furthermore, the use of nanocomposite cements result in stimulation of angiogenic gene expression (VEGF, FGF-2, VEGFRs, PECAM-1, and VE-cadherin) and protein production (VEGF, VEGFR-1). The angiogenic stimulation by the HDPSCs significantly affects the endothelial cell behaviors, that is, the endothelial cell migration and the tubular network formation are substantially improved when treated with HDPSC-conditioned medium, particularly with the help of nanocomposite cements. The integrin and VEGF signaling pathways are reasoned for the stimulation of the odontogenesis and angiogenesis of cells, where the nanocomposite cements up-regulate the integrin subsets α1, α2, α3, and β1, and activate the integrin downstream signal pathways, such as p-FAK, p-Akt, p-paxillin, JNK, EK, and NF-κB, as well as other nuclear transcriptional factors, including CREB, STAT-3, and ELK-1. The current results indicate that the new formulation of the nanocomposite self-setting cements might provide some

  3. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization

    Science.gov (United States)

    Arking, Dan E.; Pulit, Sara L.; Crotti, Lia; van der Harst, Pim; Munroe, Patricia B.; Koopmann, Tamara T.; Sotoodehnia, Nona; Rossin, Elizabeth J.; Morley, Michael; Wang, Xinchen; Johnson, Andrew D.; Lundby, Alicia; Gudbjartsson, Daníel F.; Noseworthy, Peter A.; Eijgelsheim, Mark; Bradford, Yuki; Tarasov, Kirill V.; Dörr, Marcus; Müller-Nurasyid, Martina; Lahtinen, Annukka M.; Nolte, Ilja M.; Smith, Albert Vernon; Bis, Joshua C.; Isaacs, Aaron; Newhouse, Stephen J.; Evans, Daniel S.; Post, Wendy S.; Waggott, Daryl; Lyytikäinen, Leo-Pekka; Hicks, Andrew A.; Eisele, Lewin; Ellinghaus, David; Hayward, Caroline; Navarro, Pau; Ulivi, Sheila; Tanaka, Toshiko; Tester, David J.; Chatel, Stéphanie; Gustafsson, Stefan; Kumari, Meena; Morris, Richard W.; Naluai, Åsa T.; Padmanabhan, Sandosh; Kluttig, Alexander; Strohmer, Bernhard; Panayiotou, Andrie G.; Torres, Maria; Knoflach, Michael; Hubacek, Jaroslav A.; Slowikowski, Kamil; Raychaudhuri, Soumya; Kumar, Runjun D.; Harris, Tamara B.; Launer, Lenore J.; Shuldiner, Alan R.; Alonso, Alvaro; Bader, Joel S.; Ehret, Georg; Huang, Hailiang; Kao, W.H. Linda; Strait, James B.; Macfarlane, Peter W.; Brown, Morris; Caulfield, Mark J.; Samani, Nilesh J.; Kronenberg, Florian; Willeit, Johann; Smith, J. Gustav; Greiser, Karin H.; zu Schwabedissen, Henriette Meyer; Werdan, Karl; Carella, Massimo; Zelante, Leopoldo; Heckbert, Susan R.; Psaty, Bruce M.; Rotter, Jerome I.; Kolcic, Ivana; Polašek, Ozren; Wright, Alan F.; Griffin, Maura; Daly, Mark J.; Arnar, David O.; Hólm, Hilma; Thorsteinsdottir, Unnur; Denny, Joshua C.; Roden, Dan M.; Zuvich, Rebecca L.; Emilsson, Valur; Plump, Andrew S.; Larson, Martin G.; O'Donnell, Christopher J.; Yin, Xiaoyan; Bobbo, Marco; D'Adamo, Adamo P.; Iorio, Annamaria; Sinagra, Gianfranco; Carracedo, Angel; Cummings, Steven R.; Nalls, Michael A.; Jula, Antti; Kontula, Kimmo K.; Marjamaa, Annukka; Oikarinen, Lasse; Perola, Markus; Porthan, Kimmo; Erbel, Raimund; Hoffmann, Per; Jöckel, Karl-Heinz; Kälsch, Hagen; Nöthen, Markus M.; consortium, HRGEN; den Hoed, Marcel; Loos, Ruth J.F.; Thelle, Dag S.; Gieger, Christian; Meitinger, Thomas; Perz, Siegfried; Peters, Annette; Prucha, Hanna; Sinner, Moritz F.; Waldenberger, Melanie; de Boer, Rudolf A.; Franke, Lude; van der Vleuten, Pieter A.; Beckmann, Britt Maria; Martens, Eimo; Bardai, Abdennasser; Hofman, Nynke; Wilde, Arthur A.M.; Behr, Elijah R.; Dalageorgou, Chrysoula; Giudicessi, John R.; Medeiros-Domingo, Argelia; Barc, Julien; Kyndt, Florence; Probst, Vincent; Ghidoni, Alice; Insolia, Roberto; Hamilton, Robert M.; Scherer, Stephen W.; Brandimarto, Jeffrey; Margulies, Kenneth; Moravec, Christine E.; Fabiola Del, Greco M.; Fuchsberger, Christian; O'Connell, Jeffrey R.; Lee, Wai K.; Watt, Graham C.M.; Campbell, Harry; Wild, Sarah H.; El Mokhtari, Nour E.; Frey, Norbert; Asselbergs, Folkert W.; Leach, Irene Mateo; Navis, Gerjan; van den Berg, Maarten P.; van Veldhuisen, Dirk J.; Kellis, Manolis; Krijthe, Bouwe P.; Franco, Oscar H.; Hofman, Albert; Kors, Jan A.; Uitterlinden, André G.; Witteman, Jacqueline C.M.; Kedenko, Lyudmyla; Lamina, Claudia; Oostra, Ben A.; Abecasis, Gonçalo R.; Lakatta, Edward G.; Mulas, Antonella; Orrú, Marco; Schlessinger, David; Uda, Manuela; Markus, Marcello R.P.; Völker, Uwe; Snieder, Harold; Spector, Timothy D.; Ärnlöv, Johan; Lind, Lars; Sundström, Johan; Syvänen, Ann-Christine; Kivimaki, Mika; Kähönen, Mika; Mononen, Nina; Raitakari, Olli T.; Viikari, Jorma S.; Adamkova, Vera; Kiechl, Stefan; Brion, Maria; Nicolaides, Andrew N.; Paulweber, Bernhard; Haerting, Johannes; Dominiczak, Anna F.; Nyberg, Fredrik; Whincup, Peter H.; Hingorani, Aroon; Schott, Jean-Jacques; Bezzina, Connie R.; Ingelsson, Erik; Ferrucci, Luigi; Gasparini, Paolo; Wilson, James F.; Rudan, Igor; Franke, Andre; Mühleisen, Thomas W.; Pramstaller, Peter P.; Lehtimäki, Terho J.; Paterson, Andrew D.; Parsa, Afshin; Liu, Yongmei; van Duijn, Cornelia; Siscovick, David S.; Gudnason, Vilmundur; Jamshidi, Yalda; Salomaa, Veikko; Felix, Stephan B.; Sanna, Serena; Ritchie, Marylyn D.; Stricker, Bruno H.; Stefansson, Kari; Boyer, Laurie A.; Cappola, Thomas P.; Olsen, Jesper V.; Lage, Kasper; Schwartz, Peter J.; Kääb, Stefan; Chakravarti, Aravinda; Ackerman, Michael J.; Pfeufer, Arne; de Bakker, Paul I.W.; Newton-Cheh, Christopher

    2014-01-01

    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD. PMID:24952745

  4. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Science.gov (United States)

    Arking, Dan E; Pulit, Sara L; Crotti, Lia; van der Harst, Pim; Munroe, Patricia B; Koopmann, Tamara T; Sotoodehnia, Nona; Rossin, Elizabeth J; Morley, Michael; Wang, Xinchen; Johnson, Andrew D; Lundby, Alicia; Gudbjartsson, Daníel F; Noseworthy, Peter A; Eijgelsheim, Mark; Bradford, Yuki; Tarasov, Kirill V; Dörr, Marcus; Müller-Nurasyid, Martina; Lahtinen, Annukka M; Nolte, Ilja M; Smith, Albert Vernon; Bis, Joshua C; Isaacs, Aaron; Newhouse, Stephen J; Evans, Daniel S; Post, Wendy S; Waggott, Daryl; Lyytikäinen, Leo-Pekka; Hicks, Andrew A; Eisele, Lewin; Ellinghaus, David; Hayward, Caroline; Navarro, Pau; Ulivi, Sheila; Tanaka, Toshiko; Tester, David J; Chatel, Stéphanie; Gustafsson, Stefan; Kumari, Meena; Morris, Richard W; Naluai, Åsa T; Padmanabhan, Sandosh; Kluttig, Alexander; Strohmer, Bernhard; Panayiotou, Andrie G; Torres, Maria; Knoflach, Michael; Hubacek, Jaroslav A; Slowikowski, Kamil; Raychaudhuri, Soumya; Kumar, Runjun D; Harris, Tamara B; Launer, Lenore J; Shuldiner, Alan R; Alonso, Alvaro; Bader, Joel S; Ehret, Georg; Huang, Hailiang; Kao, W H Linda; Strait, James B; Macfarlane, Peter W; Brown, Morris; Caulfield, Mark J; Samani, Nilesh J; Kronenberg, Florian; Willeit, Johann; Smith, J Gustav; Greiser, Karin H; Meyer Zu Schwabedissen, Henriette; Werdan, Karl; Carella, Massimo; Zelante, Leopoldo; Heckbert, Susan R; Psaty, Bruce M; Rotter, Jerome I; Kolcic, Ivana; Polašek, Ozren; Wright, Alan F; Griffin, Maura; Daly, Mark J; Arnar, David O; Hólm, Hilma; Thorsteinsdottir, Unnur; Denny, Joshua C; Roden, Dan M; Zuvich, Rebecca L; Emilsson, Valur; Plump, Andrew S; Larson, Martin G; O'Donnell, Christopher J; Yin, Xiaoyan; Bobbo, Marco; D'Adamo, Adamo P; Iorio, Annamaria; Sinagra, Gianfranco; Carracedo, Angel; Cummings, Steven R; Nalls, Michael A; Jula, Antti; Kontula, Kimmo K; Marjamaa, Annukka; Oikarinen, Lasse; Perola, Markus; Porthan, Kimmo; Erbel, Raimund; Hoffmann, Per; Jöckel, Karl-Heinz; Kälsch, Hagen; Nöthen, Markus M; den Hoed, Marcel; Loos, Ruth J F; Thelle, Dag S; Gieger, Christian; Meitinger, Thomas; Perz, Siegfried; Peters, Annette; Prucha, Hanna; Sinner, Moritz F; Waldenberger, Melanie; de Boer, Rudolf A; Franke, Lude; van der Vleuten, Pieter A; Beckmann, Britt Maria; Martens, Eimo; Bardai, Abdennasser; Hofman, Nynke; Wilde, Arthur A M; Behr, Elijah R; Dalageorgou, Chrysoula; Giudicessi, John R; Medeiros-Domingo, Argelia; Barc, Julien; Kyndt, Florence; Probst, Vincent; Ghidoni, Alice; Insolia, Roberto; Hamilton, Robert M; Scherer, Stephen W; Brandimarto, Jeffrey; Margulies, Kenneth; Moravec, Christine E; del Greco M, Fabiola; Fuchsberger, Christian; O'Connell, Jeffrey R; Lee, Wai K; Watt, Graham C M; Campbell, Harry; Wild, Sarah H; El Mokhtari, Nour E; Frey, Norbert; Asselbergs, Folkert W; Mateo Leach, Irene; Navis, Gerjan; van den Berg, Maarten P; van Veldhuisen, Dirk J; Kellis, Manolis; Krijthe, Bouwe P; Franco, Oscar H; Hofman, Albert; Kors, Jan A; Uitterlinden, André G; Witteman, Jacqueline C M; Kedenko, Lyudmyla; Lamina, Claudia; Oostra, Ben A; Abecasis, Gonçalo R; Lakatta, Edward G; Mulas, Antonella; Orrú, Marco; Schlessinger, David; Uda, Manuela; Markus, Marcello R P; Völker, Uwe; Snieder, Harold; Spector, Timothy D; Ärnlöv, Johan; Lind, Lars; Sundström, Johan; Syvänen, Ann-Christine; Kivimaki, Mika; Kähönen, Mika; Mononen, Nina; Raitakari, Olli T; Viikari, Jorma S; Adamkova, Vera; Kiechl, Stefan; Brion, Maria; Nicolaides, Andrew N; Paulweber, Bernhard; Haerting, Johannes; Dominiczak, Anna F; Nyberg, Fredrik; Whincup, Peter H; Hingorani, Aroon D; Schott, Jean-Jacques; Bezzina, Connie R; Ingelsson, Erik; Ferrucci, Luigi; Gasparini, Paolo; Wilson, James F; Rudan, Igor; Franke, Andre; Mühleisen, Thomas W; Pramstaller, Peter P; Lehtimäki, Terho J; Paterson, Andrew D; Parsa, Afshin; Liu, Yongmei; van Duijn, Cornelia M; Siscovick, David S; Gudnason, Vilmundur; Jamshidi, Yalda; Salomaa, Veikko; Felix, Stephan B; Sanna, Serena; Ritchie, Marylyn D; Stricker, Bruno H; Stefansson, Kari; Boyer, Laurie A; Cappola, Thomas P; Olsen, Jesper V; Lage, Kasper; Schwartz, Peter J; Kääb, Stefan; Chakravarti, Aravinda; Ackerman, Michael J; Pfeufer, Arne; de Bakker, Paul I W; Newton-Cheh, Christopher

    2014-08-01

    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD. PMID:24952745

  5. Calcium Signaling Is Required for Erythroid Enucleation.

    Science.gov (United States)

    Wölwer, Christina B; Pase, Luke B; Russell, Sarah M; Humbert, Patrick O

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.

  6. Calcium Signaling Is Required for Erythroid Enucleation.

    Directory of Open Access Journals (Sweden)

    Christina B Wölwer

    Full Text Available Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.

  7. Calcium Signaling Is Required for Erythroid Enucleation

    Science.gov (United States)

    Russell, Sarah M.; Humbert, Patrick O.

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation. PMID:26731108

  8. CCN3 and calcium signaling

    Directory of Open Access Journals (Sweden)

    Li Chang Long

    2003-08-01

    Full Text Available Abstract The CCN family of genes consists presently of six members in human (CCN1-6 also known as Cyr61 (Cystein rich 61, CTGF (Connective Tissue Growth Factor, NOV (Nephroblastoma Overexpressed gene, WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins. Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. CCN3 was reported to physically interact with fibulin-1C, integrins, Notch and S100A4. Considering that, the conformation and biological activity of these proteins are dependent upon calcium binding, we hypothesized that CCN3 might be involved in signaling pathways mediated by calcium ions. In this article, we review the data showing that CCN3 regulates the levels of intracellular calcium and discuss potential models that may account for the biological effects of CCN3.

  9. Altered calcium signaling following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    John Thomas Weber

    2012-04-01

    Full Text Available Cell death and dysfunction after traumatic brain injury (TBI is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.

  10. Calcium signaling in pluripotent stem cells.

    Science.gov (United States)

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  11. Calcium signaling in taste cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  12. Calcium signals and calcium channels in osteoblastic cells

    Science.gov (United States)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  13. Fast kinetics of calcium signaling and sensor design.

    Science.gov (United States)

    Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J

    2015-08-01

    Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change.

  14. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  15. Calcium signal network of GPCR and CaCC signal transduction pathways%GPCR和CaCC信号传导中的钙信号网络

    Institute of Scientific and Technical Information of China (English)

    冯莹柱; 王伯初

    2013-01-01

    G蛋白偶联受体(G protein-coupled receptor,GPCR)作为最大的一类人膜蛋白受体家族和最重要的药物靶标而倍受关注,其中钙离子在细胞内信号传导级联放大中起了关键的作用.阐述了GPCR和钙激活的氯离子通道蛋白(calcium-activated chloride channel,CaCC)中的钙信号网络与生理功能以及如何干扰阻断该网络,为药物设计和很多疾病的治疗提供了依据.%G protein-coupled receptors (GPCR) are the largest class of human membrane protein receptors and drug targets which attract much attention, and calciumion plays a key role in intracellular signaling cascades amplification. This review focuses on calcium signal network of GPCR and calcium-activated chloride channel (CaCC) and how to interfere and block the network. It will provide a reference for the research of drug design and therapy of many diseases.

  16. Calcium signaling as a mediator of cell energy demand and a trigger to cell death.

    Science.gov (United States)

    Bhosale, Gauri; Sharpe, Jenny A; Sundier, Stephanie Y; Duchen, Michael R

    2015-09-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury.

  17. Calcium-sensing receptor: a key target for extracellular calcium signaling in neurons

    Directory of Open Access Journals (Sweden)

    Brian L Jones

    2016-03-01

    Full Text Available Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations.

  18. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jin Ock Kim

    Full Text Available MicroRNA (miRNA is an endogenous non-coding RNA species that either inhibits RNA translation or promotes degradation of target mRNAs. miRNAs often regulate cellular signaling by targeting multiple genes within the pathways. In the present study, using Gene Set Analysis, a useful bioinformatics tool to identify miRNAs with multiple target genes in the same pathways, we identified miR-185 as a key candidate regulator of cardiac hypertrophy. Using a mouse model, we found that miR-185 was significantly down-regulated in myocardial cells during cardiac hypertrophy induced by transverse aortic constriction. To confirm that miR-185 is an anti-hypertrophic miRNA, genetic manipulation studies such as overexpression and knock-down of miR-185 in neonatal rat ventricular myocytes were conducted. The results showed that up-regulation of miR-185 led to anti-hypertrophic effects, while down-regulation led to pro-hypertrophic effects, suggesting that miR-185 has an anti-hypertrophic role in the heart. Our study further identified Camk2d, Ncx1, and Nfatc3 as direct targets of miR-185. The activity of Nuclear Factor of Activated T-cell (NFAT and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ was negatively regulated by miR-185 as assessed by NFAT-luciferase activity and western blotting. The expression of phospho-phospholamban (Thr-17, a marker of CaMKIIδ activity, was also significantly reduced by miR-185. In conclusion, miR-185 effectively blocked cardiac hypertrophy signaling through multiple targets, rendering it a potential drug target for diseases such as heart failure.

  19. Analysis of Intracellular Calcium Signaling in Human Embryonic Stem Cells.

    Science.gov (United States)

    Péntek, Adrienn; Pászty, Katalin; Apáti, Ágota

    2016-01-01

    Measurement of changes in intracellular calcium concentration is one of the most common and useful tools for studying signal transduction pathways or cellular responses in basic research and drug screening purposes as well. Increasing number of such applications using human pluripotent stem cells and their derivatives requires development of calcium signal measurements for this special cell type. Here we describe a modified protocol for analysis of calcium signaling events in human embryonic stem cells, which can be used for other pluripotent cell types (such as iPSC) or their differentiated offspring as well.

  20. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg

    Directory of Open Access Journals (Sweden)

    Alexander A. Tokmakov

    2014-10-01

    Full Text Available Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.

  1. Calcium signaling in neocortical development.

    Science.gov (United States)

    Uhlén, Per; Fritz, Nicolas; Smedler, Erik; Malmersjö, Seth; Kanatani, Shigeaki

    2015-04-01

    The calcium ion (Ca(2+) ) is an essential second messenger that plays a pivotal role in neurogenesis. In the ventricular zone (VZ) of the neocortex, neural stem cells linger to produce progenitor cells and subsequently neurons and glial cells, which together build up the entire adult brain. The radial glial cells, with their characteristic radial fibers that stretch from the inner ventricular wall to the outer cortex, are known to be the neural stem cells of the neocortex. Migrating neurons use these radial fibers to climb from the proliferative VZ in the inner part of the brain to the outer layers of the cortex, where differentiation processes continue. To establish the complex structures that constitute the adult cerebral cortex, proliferation, migration, and differentiation must be tightly controlled by various signaling events, including cytosolic Ca(2+) signaling. During development, cells regularly exhibit spontaneous Ca(2+) activity that stimulates downstream effectors, which can elicit these fundamental cell processes. Spontaneous Ca(2+) activity during early neocortical development depends heavily on gap junctions and voltage dependent Ca(2+) channels, whereas later in development neurotransmitters and synapses exert an influence. Here, we provide an overview of the literature on Ca(2+) signaling and its impact on cell proliferation, migration, and differentiation in the neocortex. We point out important historical studies and review recent progress in determining the role of Ca(2+) signaling in neocortical development.

  2. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  3. Dissection of the insulin signaling pathway via quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Krüger, Marcus; Kratchmarova, Irina; Blagoev, Blagoy;

    2008-01-01

    The insulin signaling pathway is of pivotal importance in metabolic diseases, such as diabetes, and in cellular processes, such as aging. Insulin activates a tyrosine phosphorylation cascade that branches to create a complex network affecting multiple biological processes. To understand the full ...... the calcium transporting ATPase SERCA2, supporting a connection to calcium signaling. The combination of quantitative phosphoproteomics with cell culture models provides a powerful strategy to dissect the insulin signaling pathways in intact cells....

  4. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  5. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    Science.gov (United States)

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  6. Presynaptic calcium signalling in cerebellar mossy fibres

    Directory of Open Access Journals (Sweden)

    Louiza B Thomsen

    2010-02-01

    Full Text Available Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A TTX-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none tetrodotoxin (TTX -sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than one second affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette.

  7. Calcium signaling in physiology and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    He-ping CHENG; Sheng WEI; Li-ping WEI; Alexei VERKHRATSKY

    2006-01-01

    Calcium ions are the most ubiquitous and pluripotent cellular signaling molecules that control a wide variety of cellular processes.The calcium signaling system is represented by a relatively limited number of highly conserved transporters and channels,which execute Ca2+ movements across biological membranes and by many thousands of Ca2+-sensitive effectors.Molecular cascades,responsible for the generation of calcium signals,are tightly controlled by Ca2+ ions themselves and by genetic factors,which tune the expression of different Ca2+-handling molecules according to adaptational requirements.Ca2+ ions determine normal physiological reactions and the development of many pathological processes.

  8. Do calcium-mediated cellular signalling pathways, prostaglandin E2 (PGE2), estrogen or progesterone receptor antagonists, or bacterial endotoxins affect bovine placental function in vitro?

    Science.gov (United States)

    Weems, Y S; Randel, R D; Carstens, G E; Welsh, T H; Weems, C W

    2004-04-01

    .05). Concentrations of PGE2 in media at 4 and 8 h were lower (P or = 0.05). PGF2alpha was increased (P < or = 0.05) by RU-486 at 8h and no other treatment affected PGF2alpha at 4 or 8 h (P < or = 0.05). In conclusion, modulators of cellular calcium signalling pathways given alone do not affect bovine placental progesterone secretion at the days studied and progesterone receptor-mediated events appear to suppress placental progesterone, PGF2alpha, and PGE2 secretion in cattle. In addition, PGE2 does not appear to regulate bovine placental progesterone secretion when the corpus luteum is functional and bacterial endotoxin does not appear to affect bovine placental secretion of PGF2alpha or PGE2. PMID:15287156

  9. Stochastic models of intracellular calcium signals

    International Nuclear Information System (INIS)

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed

  10. Stochastic models of intracellular calcium signals

    Energy Technology Data Exchange (ETDEWEB)

    Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de

    2014-01-10

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  11. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness. PMID:7488645

  12. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  13. Role of the phosphoinositide signal transduction pathway in the endometrium

    Institute of Scientific and Technical Information of China (English)

    Vincenza Rita Lo Vasco

    2012-01-01

    The regulation of calcium concentration triggers physiological events in all cell types. Unregulated elevation in calcium concentrations is often cytotoxic.In fact, uncontrolled calcium levels alter proteins’ function, apoptosis regulation, as well as proliferation, secretion and contraction.Calcium levels are tightly regulated.A great interest was paid to signal transduction pathways for their role in mammalian reproduction.The role of phosphoinositide(PI) signal transduction pathway and related phosphoinositide-specific phospholipaseC(PI-PLC) enzymes in the regulation of calcium levels was actively studied and characterized.However, the role of PI signaling andPI-PLC enzymes in the endometrium is far to be completely highlighted.In the present review the role ofPI, the expression of selectedPI-PLC enzymes and the crosstalk with further signaling systems in the endometrium will be discussed.

  14. Signal transduction pathway(s) in guard cells after prolonged exposure to low vapour pressure deficit

    NARCIS (Netherlands)

    Ali Niaei Fard, S.

    2014-01-01

    Keywords: Abscisic acid, Arabidopsis thaliana, calcium, CYP707As, desiccation, environmental factors, guard cells’ signalling pathway, hydrogen peroxide, natural variation, nitric oxide, photosystem II efficiency, RD29A, relative water content, secondary messengers, stomata, vapour pressure def

  15. Calcium signaling mediates cold sensing in insect tissues.

    Science.gov (United States)

    Teets, Nicholas M; Yi, Shu-Xia; Lee, Richard E; Denlinger, David L

    2013-05-28

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms.

  16. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique ro...

  17. Glial calcium signaling in physiology and pathophysioilogy

    Institute of Scientific and Technical Information of China (English)

    Alexei VERKHRASKY

    2006-01-01

    Neuronal-glial circuits underlie integrative processes in the nervous system.Function of glial syncytium is,to a very large extent,regulated by the intracellular calcium signaling system.Glial calcium signals are triggered by activation of multiple receptors,expressed in glial membrane,which regulate both Ca2+ entry and Ca2+ release from the endoplasmic reticulum.The endoplasmic reticulum also endows glial cells with intracellular excitable media,which is able to produce and maintain long-ranging signaling in a form of propagating Ca2+ waves.In pathological conditions,calcium signals regulate glial response to injury,which might have both protective and detrimental effects on the nervous tissue.

  18. Jasmonate Signal Pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yi Shan; Zhi-Long Wang; Daoxin Xie

    2007-01-01

    Jasmonates (JAs), which include jasmonic acid and its cyclopentane derivatives are synthesized from the octadecanoid pathway and widely distributed throughout the plant kingdom. JAs modulate the expression of numerous genes and mediate responses to stress, wounding, insect attack, pathogen infection, and UV damage. They also affect a variety of processes in many plant developmental processes. The JA signal pathway involves two important events: the biosynthesis of JA and the transduction of JA signal. Several important Arabidopsis mutants in jasmonate signal pathway were described in this review.

  19. Calcium-Sensing Receptor in Human Peripheral Blood T Lymphocytes Is Involved in the AMI Onset and Progression through the NF-κB Signaling Pathway.

    Science.gov (United States)

    Zeng, Jing-Ya; Du, Jing-Jing; Pan, Ying; Wu, Jian; Bi, Hai-Liang; Cui, Bao-Hong; Zhai, Tai-Yu; Sun, Yong; Sun, Yi-Hua

    2016-01-01

    Acute myocardial infarction (AMI) is a condition triggered by an inflammatory process that seriously affects human health. Calcium-sensing receptor (CaSR) in T lymphocytes is involved during the inflammation reaction. However, the relationship between them is not very clear. In this study, we collected human peripheral blood T lymphocytes from patients with AMI and in different stages of percutaneous coronary intervention (PCI) (at the onset of AMI, the first day after PCI (PCI-1), PCI-3, and PCI-5) to study the CaSR and NF-κB pathway protein expression, cytokine release and T cell apoptosis. The results showed that the expressions of CaSR, P-p65, Caspase-12, and the secretions of Th-1 and Th-2 type cytokines were increased at the onset of AMI, especially on the PCI-1. Meanwhile, the apoptosis rate of CD(3+), CD(4+) and CD(8+) T lymphocytes also increased. However, from PCI-3, all the indicators began to decline. In addition, we also found that positive CaSR small interfering RNA (siRNA) transfection in T lymphocytes and NF-κB pathway blocker Bay-11-7082 reversed the increased expressions of CaSR, P-p65, Caspase-12, reduced the secretions of Th-1 and Th-2 type cytokines, and decreased T lymphocytes apoptosis rate not only in the AMI patients but also in the normal controls. All of these results indicated that CaSR in the human peripheral blood T lymphocytes were involved in the AMI onset and progression, which probably was related to the NF-κB pathway. Our study demonstrated the relationship between AMI and CaSR, and will provide new effective prevention theory and new targets for drug treatment. PMID:27563892

  20. Wnt/Ca2+ signaling pathway: a brief overview

    Institute of Scientific and Technical Information of China (English)

    Antara De

    2011-01-01

    The non-canonical Wnt/Ca2+ signaling cascade is less characterized than their canonical counterpart,the Wnt/β-catenin pathway.The non-canonical Wnt signaling pathways are diverse,defined as planer cell polarity pathway,Wnt-RAP1 signaling pathway,Wnt-Ror2 signaling pathway,Wnt-PKA pathway,Wnt-GSK3MT pathway,Wnt-aPKC pathway,Wnt-RYK pathway,Wnt-mTOR pathway,and Wnt/calcium signaling pathway.All these pathways exhibit a considerable degree of overlap between them.The Wnt/Ca2+ signaling pathway was deciphered as a crucial mediator in development.However,now there is substantial evidence that the signaling cascade is involved in many other molecular phenomena.Many aspects of Wnt/Ca2+ pathway are yet enigmatic.This review will give a brief overview of the fundamental and evolving concepts of the Wnt/Ca2+ signaling pathway.

  1. Network regulation of calcium signal in stomatal development

    Institute of Scientific and Technical Information of China (English)

    Zhu-xia SHEN; Gen-xuan WANG; Zhi-qiang LIU; Hao ZHANG; Mu-qing QIU; Xing-zheng ZHAO; Yi GAN

    2006-01-01

    Aim: Each cell is the production of multiple signal transduction programs involving the expression of thousands of genes. This study aims to gain insights into the gene regulation mechanisms of stomatal development and will investigate the relationships among some signaling transduction pathways. Methods: Nail enamel printing was conducted to observe the stomatal indices of wild type and 10 mutants (plant hormone mutants, Pi-starvation induced CaM mutants and Pi-starvation-response mutant) in Arabidopsis, and their stomatal indices were analyzed by ANOVA. We analyzed the stomatal indices of 10 Arabidopsis mutants were analyzed by a model PRGE (potential relative effect of genes) to research relations among these genes. Results: In wild type and 10 mutants, the stomatal index didn't differ with respect to location on the lower epidermis. Compared with wild type, the stomatal indices of 10 mutants all decreased significantly. Moreover, significant changes and interactions might exist between some mutant genes. Conclusion: It was the stomatal intensity in Arabidopsis might be highly sensitive to most mutations in genome. While the effect of many gene mutations on the stomatal index might be negative, we also could assume the stomatal development was regulated by a signal network in which one signal transduction change might influence the stomatal development more or less, and the architecture might be reticulate. Furthermore, we could speculate that calcium was a hub in stomatal development signal regulation network, and other signal transduction pathways regulated stomtal development by influencing or being influenced by calcium signal transduction pathways.

  2. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  3. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  4. Calcium Signaling Pathway Is Associated with the Long-Term Clinical Response to Selective Serotonin Reuptake Inhibitors (SSRI) and SSRI with Antipsychotics in Patients with Obsessive-Compulsive Disorder

    Science.gov (United States)

    Umehara, Hidehiro; Numata, Shusuke; Tajima, Atsushi; Nishi, Akira; Nakataki, Masahito; Imoto, Issei; Sumitani, Satsuki; Ohmori, Tetsuro

    2016-01-01

    Background Selective serotonin reuptake inhibitors (SSRI) are established first-line pharmacological treatments for obsessive-compulsive disorder (OCD), while antipsychotics are used as an augmentation strategy for SSRI in OCD patients who have either no response or a partial response to SSRI treatment. The goal of the present study was to identify genetic variants and pathways that are associated with the long-term clinical response of OCD patients to SSRI or SSRI with antipsychotics. Methods We first performed a genome-wide association study of 96 OCD patients to examine genetic variants contributing to the response to SSRI or SSRI with antipsychotics. Subsequently, we conducted pathway-based analyses by using Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) to examine the combined effects of genetic variants on the clinical response in OCD. Results While we failed to detect specific genetic variants associated with clinical responses to SSRI or to SSRI with an atypical antipsychotic at genome-wide levels of significance, we identified 8 enriched pathways for the SSRI treatment response and 5 enriched pathways for the treatment response to SSRI with an antipsychotic medication. Notably, the calcium signaling pathway was identified in both treatment responses. Conclusions Our results provide novel insight into the molecular mechanisms underlying the variability in clinical response to SSRI and SSRI with antipsychotics in OCD patients. PMID:27281126

  5. Signaling Pathways in Melanogenesis

    Directory of Open Access Journals (Sweden)

    Stacey A. N. D’Mello

    2016-07-01

    Full Text Available Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis.

  6. Signaling Pathways in Melanogenesis.

    Science.gov (United States)

    D'Mello, Stacey A N; Finlay, Graeme J; Baguley, Bruce C; Askarian-Amiri, Marjan E

    2016-01-01

    Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis. PMID:27428965

  7. Calcium signaling in lacrimal glands.

    Science.gov (United States)

    Putney, James W; Bird, Gary S

    2014-06-01

    Lacrimal glands provide the important function of lubricating and protecting the ocular surface. Failure of proper lacrimal gland function results in a number of debilitating dry eye diseases. Lacrimal glands secrete lipids, mucins, proteins, salts and water and these secretions are at least partially regulated by neurotransmitter-mediated cell signaling. The predominant signaling mechanism for lacrimal secretion involves activation of phospholipase C, generation of the Ca(2+)-mobilizing messenger, IP3, and release of Ca(2+) stored in the endoplasmic reticulum. The loss of Ca(2+) from the endoplasmic reticulum then triggers a process known as store-operated Ca(2+) entry, involving a Ca(2+) sensor in the endoplasmic reticulum, STIM1, which activates plasma membrane store-operated channels comprised of Orai subunits. Recent studies with deletions of the channel subunit, Orai1, confirm the important role of SOCE in both fluid and protein secretion in lacrimal glands, both in vivo and in vitro.

  8. Calcium Signals from the Vacuole

    Directory of Open Access Journals (Sweden)

    Gerald Schönknecht

    2013-10-01

    Full Text Available The vacuole is by far the largest intracellular Ca2+ store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca2+ release and Ca2+ uptake is summarized, and how different vacuolar Ca2+ channels and Ca2+ pumps may contribute to Ca2+ signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca2+ transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca2+ channels that could elicit cytosolic [Ca2+] transients. Typical second messengers, such as InsP3 and cADPR, seem to trigger vacuolar Ca2+ release, but the molecular mechanism of this Ca2+ release still awaits elucidation. Some vacuolar Ca2+ channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca2+ signaling still has to be demonstrated. Ca2+ pumps in addition to establishing long-term Ca2+ homeostasis can shape cytosolic [Ca2+] transients by limiting their amplitude and duration, and may thus affect Ca2+ signaling.

  9. Calcium Signalling and Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Isabelle Garcin

    2012-01-01

    Full Text Available After partial hepatectomy (PH the initial mass of the organ is restored through a complex network of cellular interactions that orchestrate both proliferative and hepatoprotective signalling cascades. Among agonists involved in this network many of them drive Ca2+ movements. During liver regeneration in the rat, hepatocyte cytosolic Ca2+ signalling has been shown on the one hand to be deeply remodelled and on the other hand to enhance progression of hepatocytes through the cell cycle. Mechanisms through which cytosolic Ca2+ signals impact on hepatocyte cell cycle early after PH are not completely understood, but at least they include regulation of immediate early gene transcription and ERK and CREB phosphorylation. In addition to cytosolic Ca2+, there is also evidence that mitochondrial Ca2+ and also nuclear Ca2+ may be critical for the regulation of liver regeneration. Finally, Ca2+ movements in hepatocytes, and possibly in other liver cells, not only impact hepatocyte progression in the cell cycle but more generally may regulate cellular homeostasis after PH.

  10. Polymorphisms of Vitamin D Signaling Pathway Genes and Calcium-Sensing Receptor Gene in respect to Survival of Hemodialysis Patients: A Prospective Observational Study.

    Science.gov (United States)

    Grzegorzewska, Alicja E; Świderska, Monika K; Mostowska, Adrianna; Warchoł, Wojciech; Jagodziński, Paweł P

    2016-01-01

    We evaluated in the 7-year prospective study whether variants in vitamin D pathway genes and calcium-sensing receptor gene (CASR) are determinants of mortality in hemodialysis (HD) patients (n = 532). HRM analysis was used for GC rs2298849, GC rs1155563, RXRA rs10776909, RXRA rs10881578, and CASR rs7652589 genotyping. GC rs7041, RXRA rs749759, VDR rs2228570, and VDR rs1544410 were genotyped using PCR-RFLP analysis. The minor allele in GC rs2298849 was associated with all-cause mortality in univariate analysis (HR 1.330, 95% CI 1.046-1.692, P = 0.020). Bearers of the minor allele in GC rs2298849 demonstrated higher infection/neoplasm mortality than major allele homozygotes also in multivariate analysis (HR 2.116, 95% CI 1.096-4.087, P = 0.026). Cardiovascular mortality was associated with major homozygosity (CC) in VDR rs2228570 (HR 1.896, 95% CI 1.163-3.091, P = 0.010). CC genotype patients were more often dyslipidemic than TT genotype subjects (46.1% versus 31.9%, P = 0.047). Dyslipidemics showed higher frequency of rs1544410_rs2228570 haplotype AC than nondyslipidemics (26 versus 18%, P corr = 0.005), whereas TT genotype patients were at lower risk of dyslipidemia compared with CC/CT genotype patients (HR 0.59, 95% CI 0.37-0.96, P = 0.04). In conclusion, GC rs2298849 and VDR rs2228570 SNPs are associated with survival on HD. VDR-related cardiovascular mortality may occur due to connections of rs2228570 with dyslipidemia. PMID:27642296

  11. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs).

    Science.gov (United States)

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina

    2014-10-01

    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response.

  12. Signaling pathways in diabetic nephropathy.

    Science.gov (United States)

    Kawanami, Daiji; Matoba, Keiichiro; Utsunomiya, Kazunori

    2016-10-01

    Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD), however, specific treatment for DN has not yet been elucidated. Therefore, it is critically important to understand the molecular mechanism underlying DN to develop cause-related therapeutic strategy. To date, various factors such as hemodynamic changes and metabolic pathways have been shown to be involved in the pathogenesis of DN. Excessive glucose influx activates cellular signaling pathways, including the diacylglycerol (DAG)-protein kinase C (PKC) pathway, advanced glycation end-products (AGE), polyol pathway, hexosamine pathway and oxidative stress. These factors interact with one another, thereby facilitating inflammatory processes, leading to the development of glomerulosclerosis under diabetic conditions. In addition to metabolic pathways, Rho-kinase, an effector of small-GTPase binding protein Rho, has been implicated as an important factor in the pathogenesis of DN. A number of studies have demonstrated that Rho-kinase plays key roles in the development of DN by inducing endothelial dysfunction, mesangial excessive extracellular matrix (ECM) production, podocyte abnormality, and tubulointerstitial fibrosis. In this review article, we describe our current understanding of the signaling pathways in DN. PMID:27094540

  13. Calcium signaling and T-type calcium channels in cancer cell cycling

    Institute of Scientific and Technical Information of China (English)

    James T Taylor; Xiang-Bin Zeng; Jonathan E Pottle; Kevin Lee; Alun R Wang; Stephenie G Yi; Jennifer A S Scruggs; Suresh S Sikka; Ming Li

    2008-01-01

    Regulation of intracellular calcium is an important signaling mechanism for cell proliferation in both normal and cancerous cells. In normal epithelial cells,free calcium concentration is essential for cells to enter and accomplish the S phase and the M phase of the cell cycle. In contrast, cancerous cells can pass these phases of the cell cycle with much lower cytoplasmic free calcium concentrations, indicating an alternative mechanism has developed for fulfilling the intracellular calcium requirement for an increased rate of DNA synthesis and mitosis of fast replicating cancerous cells. The detailed mechanism underlying the altered calcium loading pathway remains unclear;however, there is a growing body of evidence that suggests the T-type Ca2+ channel is abnormally expressed in cancerous cells and that blockade of these channels may reduce cell proliferation in addition to inducing apoptosis. Recent studies also show that the expression of T-type Ca2+ channels in breast cancer cells is proliferation state dependent, i.e. the channels are expressed at higher levels during the fast-replication period, and once the cells are in a non-proliferation state, expression of this channel isminimal. Therefore, selectively blocking calcium entry into cancerous cells may be a valuable approach for preventing tumor growth. Since T-type Ca2+ channels are not expressed in epithelial cells, selective T-type Ca2+ channel blockers may be useful in the treatment of certain types of cancers.

  14. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    Science.gov (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.

  15. Signaling Pathways Involved in Cardiac Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Tao Zewei; Li Longgui

    2006-01-01

    Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress.Traditionally, it has been considered a beneficial mechanism; however, sustained hypertrophy has been associated with a significant increase in the risk of cardiovascular disease and mortality. Delineating intracellular signaling pathways involved in the different aspects of cardiac hypertrophy will permit future improvements in potential targets for therapeutic intervention. Generally, there are two types of cardiac hypertrophies, adaptive hypertrophy, including eutrophy (normal growth) and physiological hypertrophy (growth induced by physical conditioning), and maladaptive hypertrophy, including pathologic or reactive hypertrophy (growth induced by pathologic stimuli) and hypertrophic growth caused by genetic mutations affecting sarcomeric or cytoskeletal proteins. Accumulating observations from animal models and human patients have identified a number of intracellular signaling pathways that characterized as important transducers of the hypertrophic response,including calcineurin/nuclear factor of activated Tcells, phosphoinositide 3-kinases/Akt (PI3Ks/Akt),G protein-coupled receptors, small G proteins,MAPK, PKCs, Gp130/STAT'3, Na+/H+ exchanger,peroxisome proliferator-activated receptors, myocyte enhancer factor 2/histone deacetylases, and many others. Furthermore, recent evidence suggests that adaptive cardiac hypertrophy is regulated in large part by the growth hormone/insulin-like growth factors axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive hypertrophy is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phosphorlipase C pathway, leading to an increase in cytosolic calcium and activation of PKC.

  16. Calcium binding proteins and calcium signaling in prokaryotes.

    Science.gov (United States)

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  17. Signaling pathways in a Citrus EST database

    Directory of Open Access Journals (Sweden)

    Angela Mehta

    2007-01-01

    Full Text Available Citrus spp. are economically important crops, which in Brazil are grown mainly in the State of São Paulo. Citrus cultures are attacked by several pathogens, causing severe yield losses. In order to better understand this culture, the Millenium Project (IAC Cordeirópolis was launched in order to sequence Citrus ESTs (expressed sequence tags from different tissues, including leaf, bark, fruit, root and flower. Plants were submitted to biotic and abiotic stresses and investigated under different development stages (adult vs. juvenile. Several cDNA libraries were constructed and the sequences obtained formed the Citrus ESTs database with almost 200,000 sequences. Searches were performed in the Citrus database to investigate the presence of different signaling pathway components. Several of the genes involved in the signaling of sugar, calcium, cytokinin, plant hormones, inositol phosphate, MAPKinase and COP9 were found in the citrus genome and are discussed in this paper. The results obtained may indicate that similar mechanisms described in other plants, such as Arabidopsis, occur in citrus. Further experimental studies must be conducted in order to understand the different signaling pathways present.

  18. Store-operated calcium channels and pro-inflammatory signals

    Institute of Scientific and Technical Information of China (English)

    Wei-chiao CHANG

    2006-01-01

    In non-excitable cells such as T lymphocytes,hepatocytes,mast cells,endothelia and epithelia,the major pathway for calcium(Ca2+)entry is through store-operated Ca2+ channels in the plasma membrane.These channels are activated by the emptying of intracellular Ca2+ stores,however,neither the gating mechanism nor the downstream targets of these channels has been clear established.Here,I review some of the proposed gating mechanisms of store-operated Ca2+ channels and the functional implications in regulating pro-inflammatory signals.

  19. Collective Calcium Signaling of Defective Multicellular Networks

    Science.gov (United States)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  20. Coupling Effect of Ion Channel Clusters on Calcium Signalling

    International Nuclear Information System (INIS)

    Based on a modified intracellular Ca2+ model involving diffusive coupling of two calcium ion channel clusters, the effects of coupling on calcium signalling are numerically investigated. The simulation results indicate that the diffusive coupling of clusters together with internal noise determine the calcium dynamics of single cluster, and for either homogeneous or heterogeneous coupled clusters, the synchronization of clusters, which is important to calcium signalling, is enhanced by the coupling effect

  1. Coupling Effect of Ion Channel Clusters on Calcium Signalling

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; JIA Ya; YI Ming; MA Jun; YU Guang

    2008-01-01

    @@ Based on a modified intracellular Ca2+ model involving diffusive coupling of two calcium ion channel clusters,the effects of coupling on calcium signalling are numerically investigated.The simulation results indicate that the diffusive coupling of clusters together with internal noise determine the calcium dynamics of single cluster,and for either homogeneous or heterogeneous coupled clusters,the synchronization of clusters,which is important to calcium signalling,is enhanced by the coupling effect.

  2. Calcium-Mediated Abiotic Stress Signaling in Roots.

    Science.gov (United States)

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  3. The effect of compressive loading magnitude on in situ chondrocyte calcium signaling.

    Science.gov (United States)

    Madden, Ryan M J; Han, Sang-Kuy; Herzog, Walter

    2015-01-01

    Chondrocyte metabolism is stimulated by deformation and is associated with structural changes in the cartilage extracellular matrix (ECM), suggesting that these cells are involved in maintaining tissue health and integrity. Calcium signaling is an initial step in chondrocyte mechanotransduction that has been linked to many cellular processes. Previous studies using isolated chondrocytes proposed loading magnitude as an important factor regulating this response. However, calcium signaling in the intact cartilage differs compared to isolated cells. The purpose of this study was to investigate the effect of loading magnitude on chondrocyte calcium signaling in intact cartilage. We hypothesized that the percentage of cells exhibiting at least one calcium signal increases with increasing load. Fully intact rabbit femoral condyle and patellar bone/cartilage samples were incubated in calcium-sensitive dyes and imaged continuously under compressive loads of 10-40 % strain. Calcium signaling was primarily associated with the dynamic loading phase and greatly increased beyond a threshold deformation of about 10 % nominal tissue strain. There was a trend toward more cells exhibiting calcium signaling as loading magnitude increased (p = 0.133). These results provide novel information toward identifying mechanisms underlying calcium-dependent signaling pathways related to cartilage homeostasis and possibly the onset and progression of osteoarthritis.

  4. DMPD: Signal integration between IFNgamma and TLR signalling pathways in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16920490 Signal integration between IFNgamma and TLR signalling pathways in macroph...tml) (.csml) Show Signal integration between IFNgamma and TLR signalling pathways in macrophages. PubmedID 1...6920490 Title Signal integration between IFNgamma and TLR signalling pathways in

  5. Calcium and signal transduction in plants

    Science.gov (United States)

    Poovaiah, B. W.; Reddy, A. S.

    1993-01-01

    Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.

  6. Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling.

    Science.gov (United States)

    Efthymiou, Anastasia G; Steiner, Joe; Pavan, William J; Wincovitch, Stephen; Larson, Denise M; Porter, Forbes D; Rao, Mahendra S; Malik, Nasir

    2015-03-01

    Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1.

  7. Arbuscular Mycorrhiza–Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway[W

    Science.gov (United States)

    Gutjahr, Caroline; Banba, Mari; Croset, Vincent; An, Kyungsook; Miyao, Akio; An, Gynheung; Hirochika, Hirohiko; Imaizumi-Anraku, Haruko; Paszkowski, Uta

    2008-01-01

    Knowledge about signaling in arbuscular mycorrhizal (AM) symbioses is currently restricted to the common symbiosis (SYM) signaling pathway discovered in legumes. This pathway includes calcium as a second messenger and regulates both AM and rhizobial symbioses. Both monocotyledons and dicotyledons form symbiotic associations with AM fungi, and although they differ markedly in the organization of their root systems, the morphology of colonization is similar. To identify and dissect AM-specific signaling in rice (Oryza sativa), we developed molecular phenotyping tools based on gene expression patterns that monitor various steps of AM colonization. These tools were used to distinguish common SYM-dependent and -independent signaling by examining rice mutants of selected putative legume signaling orthologs predicted to be perturbed both upstream (CASTOR and POLLUX) and downstream (CCAMK and CYCLOPS) of the central, calcium-spiking signal. All four mutants displayed impaired AM interactions and altered AM-specific gene expression patterns, therefore demonstrating functional conservation of SYM signaling between distant plant species. In addition, differential gene expression patterns in the mutants provided evidence for AM-specific but SYM-independent signaling in rice and furthermore for unexpected deviations from the SYM pathway downstream of calcium spiking. PMID:19033527

  8. Phosphoinositide pathway and the signal transduction network in neural development

    Institute of Scientific and Technical Information of China (English)

    Vincenza Rita Lo Vasco

    2012-01-01

    The development of the nervous system is under the strict control of a number of signal transduction pathways,often interconnected.Among them,the phosphoinositide (PI) pathway and the related phospholipase C (PI-PLC) family of enzymes have been attracting much attention.Besides their well-known role in the regulation of intracellular calcium levels,PI-PLC enzymes interact with a number of molecules belonging to further signal transduction pathways,contributing to a specific and complex network in the developing nervous system.In this review,the connections of PI signalling with further transduction pathways acting during neural development are discussed,with special regard to the role of the PI-PLC family of enzymes.

  9. Calcium Sensing Receptor:Signaling Pathways and Physiological Functions%钙敏感受体介导的信号传导通路及生理功能

    Institute of Scientific and Technical Information of China (English)

    赵秀英; 杭苏琴; 朱伟云

    2015-01-01

    Calcium-sensing receptor ( CaSR) is a member of the G protein-coupled receptors ( GPCRs) C fam-ily, and wildly expressed in nervous system, cardiovascular system, gastrointestinal tract, kidney and bone tis-sue. After combined with its agonists and allosteric modulators, the downstream signaling pathways are activa-ted, which play very important roles in the regulation of calcium homeostasis, cell proliferation and differentia-tion, immune function and endocrine hormone releasing. However, recent researches mostly focus on cattle, human and mice. The studies on livestock and other animals are limited, and undergoing mechanisms of physi-ological functions of CaSR mediation are not clear enough. Therefore, this paper summarized the discovery, the structure, mediated signaling events and physiological effects of the CaSR, in order to lay a theoretical foundation for further study on livestock and other animals.%钙敏感受体( CaSR)是G蛋白偶联受体( GPCRs) C家族的成员,其在神经系统、心血管系统、胃肠道、肾脏及骨组织中有广泛的分布,当与激动剂及变构调节剂结合后,激活下游相关信号通路,对于机体钙稳态的维持、细胞的增殖分化、免疫及多种内分泌激素的释放具有重要调节作用。目前的研究报告主要来自于牛、人、鼠等,对家畜和其他动物的研究还较少,对机体各项生命活动的调控作用也不明确。为此,本文从CaSR的发现、结构、介导的信号活动及生理作用等方面作一综述,以期为研究 CaSR 调节动物生理活动的机制及发挥的生理功能奠定理论基础。

  10. Calcium influx pathways in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Hug, M J; Pahl, C; Novak, I

    1996-01-01

    A number of agonists increase intracellular Ca2+ activity, [Ca2+]i, in pancreatic ducts, but the influx/efflux pathways and intracellular Ca2+ stores in this epithelium are unknown. The aim of the present study was to characterise the Ca2+ influx pathways, especially their pH sensitivity, in nati...

  11. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    Science.gov (United States)

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  12. Mapping Complex Networks: Exploring Boolean Modeling of Signal Transduction Pathways

    OpenAIRE

    Bhardwaj, Gaurav; Wells, Christine P.; Albert, Reka; van Rossum, Damian B.; Patterson, Randen L

    2009-01-01

    In this study, we explored the utility of a descriptive and predictive bionetwork model for phospholipase C-coupled calcium signaling pathways, built with non-kinetic experimental information. Boolean models generated from these data yield oscillatory activity patterns for both the endoplasmic reticulum resident inositol-1,4,5-trisphosphate receptor (IP3R) and the plasma-membrane resident canonical transient receptor potential channel 3 (TRPC3). These results are specific as randomization of ...

  13. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  14. Calcium signaling is gated by a mechanical threshold in three-dimensional environments

    Science.gov (United States)

    Ruder, Warren C.; Pratt, Erica D.; Brandy, Nailah Z. D.; Lavan, David A.; Leduc, Philip R.; Antaki, James F.

    2012-08-01

    Cells interpret their mechanical environment using diverse signaling pathways that affect complex phenotypes. These pathways often interact with ubiquitous 2nd-messengers such as calcium. Understanding mechanically-induced calcium signaling is especially important in fibroblasts, cells that exist in three-dimensional fibrous matrices, sense their mechanical environment, and remodel tissue morphology. Here, we examined calcium signaling in fibroblasts using a minimal-profile, three-dimensional (MP3D) mechanical assay system, and compared responses to those elicited by conventional, two-dimensional magnetic tensile cytometry and substratum stretching. Using the MP3D system, we observed robust mechanically-induced calcium responses that could not be recreated using either two-dimensional technique. Furthermore, we used the MP3D system to identify a critical displacement threshold governing an all-or-nothing mechanically-induced calcium response. We believe these findings significantly increase our understanding of the critical role of calcium signaling in cells in three-dimensional environments with broad implications in development and disease.

  15. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons.

    Directory of Open Access Journals (Sweden)

    Allison Sargoy

    Full Text Available Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.

  16. Calcium signaling during reproduction and biotrophic fungal interactions in plants.

    Science.gov (United States)

    Chen, Junyi; Gutjahr, Caroline; Bleckmann, Andrea; Dresselhaus, Thomas

    2015-04-01

    Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed.

  17. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...... to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts...... in response to mechanical stimulation. Thus, intercellular calcium signaling can be a mechanism by which mechanical stimuli on bone are translated into biological signals in bone cells, and propagated through the network of cells in bone. Further, the observations offer new pharmacological targets...

  18. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    Science.gov (United States)

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2.

  19. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    Science.gov (United States)

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  20. Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans.

    Science.gov (United States)

    Liu, Zhiyu; Wang, Bin; He, Ruijun; Zhao, Yanmei; Miao, Long

    2014-02-01

    In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.

  1. Clinical implications of hedgehog signaling pathway inhibitors

    Institute of Scientific and Technical Information of China (English)

    Hailan Liu; Dongsheng Gu; Jingwu Xie

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nusslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation,proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hhmediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.

  2. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation.

    Directory of Open Access Journals (Sweden)

    Stefanie Ryglewski

    2007-04-01

    Full Text Available Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.

  3. Relating a calcium indicator signal to the unperturbed calcium concentration time-course

    Directory of Open Access Journals (Sweden)

    Abarbanel Henry DI

    2007-02-01

    Full Text Available Abstract Background Optical indicators of cytosolic calcium levels have become important experimental tools in systems and cellular neuroscience. Indicators are known to interfere with intracellular calcium levels by acting as additional buffers, and this may strongly alter the time-course of various dynamical variables to be measured. Results By investigating the underlying reaction kinetics, we show that in some ranges of kinetic parameters one can explicitly link the time dependent indicator signal to the time-course of the calcium influx, and thus, to the unperturbed calcium level had there been no indicator in the cell.

  4. Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer's disease.

    Science.gov (United States)

    Egorova, Polina; Popugaeva, Elena; Bezprozvanny, Ilya

    2015-04-01

    Neurodegenerative disorders, such as spinocerebellar ataxias (SCAs) and Alzheimer's disease (AD) represent a huge scientific and medical question, but the molecular mechanisms of these diseases are still not clear. There is increasing evidence that neuronal calcium signaling is abnormal in many neurodegenerative disorders. Abnormal neuronal calcium release from the endoplasmic reticulum may result in disturbances of cell homeostasis, synaptic dysfunction, and eventual cell death. Neuronal loss is observed in most cases of neurodegenerative diseases. Recent experimental evidence supporting the role of neuronal calcium signaling in the pathogenesis of SCAs and AD is discussed in this review.

  5. Homer regulates calcium signalling in growth cone turning

    Directory of Open Access Journals (Sweden)

    Thompson Michael JW

    2009-08-01

    component of the calcium signalling repertoire within motile growth cones, regulating guidance-cue-induced calcium release and maintaining basal cytosolic calcium.

  6. Enhanced Synchronization of Intercellular Calcium Oscillations by Noise Contaminated Signals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-Qian; CHEN Han-Shuang; WANG Mao-Sheng

    2008-01-01

    We consider the dynamics of locally coupled calcium oscillation systems, each cell is subjected to extracel-lular contaminated signal, which contains common sub-threshold signal and independent Gaussian noise. It is found that intermediate noise can enhance synchronized oscillations of calcium ions, where the frequency of noise-induced oscilla-tions is matched with the one of sub-threshold external signal. We show that synchronization is enhanced as a result of the entrainment of external signal Furthermore, the effect of coupling strength is considered. We find above-mentioned phenomenon exists only when coupling strength is very small Our findings may exhibit that noise can enhance the detection of feeble external signal through the mechanism of synchronization of intercellular calcium ions.

  7. Multilevel complexity of calcium signaling:Modeling angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Luca; Munaron; Marco; Scianna

    2012-01-01

    Intracellular calcium signaling is a universal,evolutionary conserved and versatile regulator of cell biochemistry.The complexity of calcium signaling and related cell machinery can be investigated by the use of experimental strategies,as well as by computational approaches.Vascular endothelium is a fascinating model to study the specific properties and roles of calcium signals at multiple biological levels.During the past 20 years,live cell imaging,patch clamp and other techniques have allowed us to detect and interfere with calcium signaling in endothelial cells(ECs),providing a huge amount of information on the regulation of vascularization(angiogenesis) in normal and tumoral tissues.These data range from the spatiotemporal dynamics of calcium within different cell microcompartments to those in entire multicellular and organized EC networks.Beside experimental strategies,in silico endothelial models,specifically designed for simulating calcium signaling,are contributing to our knowledge of vascular physiol-ogy and pathology.They help to investigate and predict the quantitative features of proangiogenic events moving through subcellular,cellular and supracellular levels.This review focuses on some recent developments of computational approaches for proangiogenic endothelial calcium signaling.In particular,we discuss the creation of hybrid simulation environments,which combine and integrate discrete Cellular Potts Models.They are able to capture the phenomenological mechanisms of cell morphological reorganization,migration,and intercellular adhesion,with single-cell spatiotemporal models,based on reaction-diffusion equations that describe the agonist-induced intracellular calcium events.

  8. Premetazoan Origin of the Hippo Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Arnau Sebé-Pedrós

    2012-01-01

    Full Text Available Nonaggregative multicellularity requires strict control of cell number. The Hippo signaling pathway coordinates cell proliferation and apoptosis and is a central regulator of organ size in animals. Recent studies have shown the presence of key members of the Hippo pathway in nonbilaterian animals, but failed to identify this pathway outside Metazoa. Through comparative analyses of recently sequenced holozoan genomes, we show that Hippo pathway components, such as the kinases Hippo and Warts, the coactivator Yorkie, and the transcription factor Scalloped, were already present in the unicellular ancestors of animals. Remarkably, functional analysis of Hippo components of the amoeboid holozoan Capsaspora owczarzaki, performed in Drosophila melanogaster, demonstrate that the growth-regulatory activity of the Hippo pathway is conserved in this unicellular lineage. Our findings show that the Hippo pathway evolved well before the origin of Metazoa and highlight the importance of Hippo signaling as a key developmental mechanism predating the origin of Metazoa.

  9. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    )-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers...

  10. Integration of gene expression and GWAS results supports involvement of calcium signaling in Schizophrenia.

    Science.gov (United States)

    Hertzberg, L; Katsel, P; Roussos, P; Haroutunian, V; Domany, E

    2015-05-01

    The number of Genome Wide Association Studies (GWAS) of schizophrenia is rapidly growing. However, the small effect of individual genes limits the number of reliably implicated genes, which are too few and too diverse to perform reliable pathway analysis; hence the biological roles of the genes implicated in schizophrenia are unclear. To overcome these limitations we combine GWAS with genome-wide expression data from human post-mortem brain samples of schizophrenia patients and controls, taking these steps: 1) Identify 36 GWAS-based genes which are expressed in our dataset. 2) Find a cluster of 19 genes with highly correlated expression. We show that this correlation pattern is robust and statistically significant. 3) GO-enrichment analysis of these 19 genes reveals significant enrichment of ion channels and calcium-related processes. This finding (based on analyzing a small number of coherently expressed genes) is validated and enhanced in two ways: First, the emergence of calcium channels and calcium signaling is corroborated by identifying proteins that interact with those encoded by the cluster of 19. Second, extend the 19 cluster genes into 1028 genes, whose expression is highly correlated with the cluster's average profile. When GO-enrichment analysis is performed on this extended set, many schizophrenia related pathways appear, with calcium-related processes enriched with high statistical significance. Our results give further, expression-based validation to GWAS results, support a central role of calcium-signaling in the pathogenesis of schizophrenia, and point to additional pathways potentially related to the disease.

  11. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    Science.gov (United States)

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  12. Effect of dendroaspis natriuretic peptide (DNP) on L-type calcium channel current and its pathway.

    Science.gov (United States)

    Zhang, Shu-Ying; Cai, Zheng-Xu; Li, Ping; Cai, Chun-Yu; Qu, Cheng-Long; Guo, Hui-Shu

    2010-09-24

    Dendroaspis natriuretic peptide (DNP), a newly-described natriuretic peptide, relaxes gastrointestinal smooth muscle. L-type calcium channel currents play an important role in regulating smooth muscle contraction. The effect of DNP on L-type calcium channel currents in gastrointestinal tract is still unclear. This study was designed to investigate the effect of DNP on barium current (I(Ba)) through the L-type calcium channel in gastric antral myocytes of guinea pigs and cGMP-pathway mechanism. The whole-cell patch-clamp technique was used to record L-type calcium channel currents. The content of cGMP in guinea pig gastric antral smooth muscle and perfusion solution was measured using radioimmunoassay. DNP markedly enhanced cGMP levels in gastric antral smooth muscle tissue and in perfusion medium. DNP concentration-dependently inhibited I(Ba) in freshly isolated guinea pig gastric antral circular smooth muscle cells (SMCs) of guinea pigs. DNP-induced inhibition of I(Ba) was partially blocked by LY83583, an inhibitor of guanylate cyclase. KT5823, a cGMP-dependent protein kinase (PKG) inhibitor, almost completely blocked DNP-induced inhibition of I(Ba). However, DNP-induced inhibition of I(Ba) was potentiated by zaprinast, an inhibitor of cGMP-sensitive phosphodiesterase. Taken together, DNP inhibits L-type calcium channel currents via pGC-cGMP-PKG-dependent signal pathway in gastric antral myocytes of guinea pigs. PMID:20594955

  13. Logical modelling of Drosophila signalling pathways.

    Science.gov (United States)

    Mbodj, Abibatou; Junion, Guillaume; Brun, Christine; Furlong, Eileen E M; Thieffry, Denis

    2013-09-01

    A limited number of signalling pathways are involved in the specification of cell fate during the development of all animals. Several of these pathways were originally identified in Drosophila. To clarify their roles, and possible cross-talk, we have built a logical model for the nine key signalling pathways recurrently used in metazoan development. In each case, we considered the associated ligands, receptors, signal transducers, modulators, and transcription factors reported in the literature. Implemented using the logical modelling software GINsim, the resulting models qualitatively recapitulate the main characteristics of each pathway, in wild type as well as in various mutant situations (e.g. loss-of-function or gain-of-function). These models constitute pluggable modules that can be used to assemble comprehensive models of complex developmental processes. Moreover, these models of Drosophila pathways could serve as scaffolds for more complicated models of orthologous mammalian pathways. Comprehensive model annotations and GINsim files are provided for each of the nine considered pathways.

  14. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells

    OpenAIRE

    Yeo Cho Yoon; Sung-Hee Kim; Min Jung Kim; Hye Jeong Yang; Mee-Ra Rhyu; Jae-Ho Park

    2015-01-01

    Limonin, one of the major components in dictamni radicis cortex (DRC), has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST) has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST p...

  15. Calcium signaling in UV-induced damage

    Science.gov (United States)

    Sun, Dan; Zhang, Su-juan; Li, Yuan-yuan; Qu, Ying; Ren, Zhao-Yu

    2007-05-01

    Hepa1-6 cells were irradiated with UV and incubated for varying periods of time. [Ca 2+] i (intracellular calcium concentration) of UV-irradiated cell was measured by ratio fluorescence imaging system. The comet assay was used to determine DNA damage. During the UVB-irradiation, [Ca 2+] i had an ascending tendency from 0.88 J/m2 to 92.4J/m2. Comet assay instant test indicated that when the irradiation dosage was above 0.88J/m2, DNA damage was observed. Even after approximate 2 h of incubation, DNA damage was still not detected by 0.88J/m2 of UVB irradiation. During UVA-irradiation, the elevation of [Ca 2+] i was not dose-dependent in a range of 1200 J/m2-6000J/m2 and DNA damage was not observed by comet assay. These results suggested that several intracellular UV receptors might induce [Ca 2+] i rising by absorption of the UV energy. Just [Ca 2+] i rising can't induce DNA damage certainly, it is very likely that the breakdown of calcium steady state induces DNA damage.u

  16. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  17. The symphony of autophagy and calcium signaling.

    Science.gov (United States)

    Yao, Zhiyuan; Klionsky, Daniel J

    2015-01-01

    Posttranslational regulation of macroautophagy (hereafter autophagy), including phosphorylating and dephosphorylating components of the autophagy-related (Atg) core machinery and the corresponding upstream transcriptional factors, is important for the precise modulation of autophagy levels. Several kinases that are involved in phosphorylating autophagy-related proteins have been identified in both yeast and mammalian cells. However, there has been much less research published with regard to the identification of the complementary phosphatases that function in autophagy. A recent study identified PPP3/calcineurin, a calcium-dependent phosphatase, as a regulator of autophagy, and demonstrated that one of the key targets of PPP3/calcineurin is TFEB, a master transcriptional factor that controls autophagy and lysosomal function in mammalian cells.

  18. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...csml) Show Signalling pathways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways media

  19. Cellular Signaling Pathways and Their Clinical Reflections

    Directory of Open Access Journals (Sweden)

    N. Ceren Sumer-Turanligil

    2010-06-01

    Full Text Available Cellular signaling pathways have important roles in cellular growth, differentiation, inflammatory response and apoptosis and in regulation of cellular responses under various chemical stimulators. Different proteins which belong to these pathways may be exposed to loss-of-function or gain-of-function mutations; this may lead to many clinical phenotypes including primarily cancer. In this review information about basic working principles of these pathways and diseases related to them are included. [Archives Medical Review Journal 2010; 19(3.000: 180-191

  20. Role of calcium signaling in down-regulation of aggrecan induced by cyclic tensile strain in annulus fibrosus cells

    Institute of Scientific and Technical Information of China (English)

    GUO Zhi-liang; ZHOU Yue; LI Hua-zhuang; CAO Guo-yong; TENG Hai-jun

    2006-01-01

    Objective:To study the role of intracellular calcium signal pathway in the down-regulation of aggrecan induced by cyclic tensile strain in the annulus fibrosus cells. Methods :The expression of aggrecan mRNA and core protein were respectively detected with RT-PCR and western blot after the channels transmitting calcium ions were blocked with EGTA, gadolinium and verapamil. Results:EGTA, gadolinium and verapamil partially prevented the effects of cyclic tensile strain on the expression of aggrecan in annulus fibrosus cells. Conclusion:The calcium signaling is involved in the down-regulation of proteoglycan resulting from cyclic tensile strain in the annulus fibrosus cells.

  1. Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer

    Science.gov (United States)

    Bikle, Daniel D.; Jiang, Yan; Nguyen, Thai; Oda, Yuko; Tu, Chia-ling

    2016-01-01

    1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis (epidVdr−∕− and epidCasr−∕−). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β–catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr−∕− mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the epidVdr−∕− or epidCasr−∕−. But in mice with epidermal specific deletion of both Vdr and Casr (epidVdr−∕−/epidCasr−∕− [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β–catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed. PMID:27462278

  2. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures.

    Science.gov (United States)

    Leclerc, Catherine; Haeich, Jacques; Aulestia, Francisco J; Kilhoffer, Marie-Claude; Miller, Andrew L; Néant, Isabelle; Webb, Sarah E; Schaeffer, Etienne; Junier, Marie-Pierre; Chneiweiss, Hervé; Moreau, Marc

    2016-06-01

    While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  3. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures.

    Science.gov (United States)

    Leclerc, Catherine; Haeich, Jacques; Aulestia, Francisco J; Kilhoffer, Marie-Claude; Miller, Andrew L; Néant, Isabelle; Webb, Sarah E; Schaeffer, Etienne; Junier, Marie-Pierre; Chneiweiss, Hervé; Moreau, Marc

    2016-06-01

    While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. PMID:26826650

  4. Reciprocal regulation of metabolic and signaling pathways

    Directory of Open Access Journals (Sweden)

    Barth Andreas S

    2010-03-01

    Full Text Available Abstract Background By studying genome-wide expression patterns in healthy and diseased tissues across a wide range of pathophysiological conditions, DNA microarrays have revealed unique insights into complex diseases. However, the high-dimensionality of microarray data makes interpretation of heterogeneous gene expression studies inherently difficult. Results Using a large-scale analysis of more than 40 microarray studies encompassing ~2400 mammalian tissue samples, we identified a common theme across heterogeneous microarray studies evident by a robust genome-wide inverse regulation of metabolic and cell signaling pathways: We found that upregulation of cell signaling pathways was invariably accompanied by downregulation of cell metabolic transcriptional activity (and vice versa. Several findings suggest that this characteristic gene expression pattern represents a new principle of mammalian transcriptional regulation. First, this coordinated transcriptional pattern occurred in a wide variety of physiological and pathophysiological conditions and was identified across all 20 human and animal tissue types examined. Second, the differences in metabolic gene expression predicted the magnitude of differences for signaling and all other pathways, i.e. tissue samples with similar expression levels of metabolic transcripts did not show any differences in gene expression for all other pathways. Third, this transcriptional pattern predicted a profound effect on the proteome, evident by differences in structure, stability and post-translational modifications of proteins belonging to signaling and metabolic pathways, respectively. Conclusions Our data suggest that in a wide range of physiological and pathophysiological conditions, gene expression changes exhibit a recurring pattern along a transcriptional axis, characterized by an inverse regulation of major metabolic and cell signaling pathways. Given its widespread occurrence and its predicted effects

  5. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells.

    Science.gov (United States)

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-12-10

    Limonin, one of the major components in dictamni radicis cortex (DRC), has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST) has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca(2+) and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca(2+) and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca(2+) and cAMP levels and phosphorylation of CREB.

  6. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yeo Cho Yoon

    2015-12-01

    Full Text Available Limonin, one of the major components in dictamni radicis cortex (DRC, has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca2+ and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca2+ and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca2+ and cAMP levels and phosphorylation of CREB.

  7. Enhanced airway smooth muscle cell thromboxane receptor signaling via activation of JNK MAPK and extracellular calcium influx

    DEFF Research Database (Denmark)

    Lei, Ying; Cao, Yongxiao; Zhang, Yaping;

    2011-01-01

    airway smooth muscle cells by using an organ culture model and a set of selective pharmacological inhibitors for mitogen-activated protein kinase (MAPK) and calcium signal pathways. Western-blot, immunohistochemistry, myograph and a selective TP receptor agonist U46619 were used for examining TP receptor...... signal proteins and function. Organ culture of rat bronchial segments for up to 48 h induces a time-dependently increased airway contractile response to U46619. This indicates that organ culture increases TP receptor signaling in the airway smooth muscle cells. The enhanced bronchial contraction was...... attenuated by the inhibition of c-Jun N-terminal kinase (JNK) MAPK activity, chelation of extracellular calcium and calcium channel blocker nifedipine, suggesting that JNK MAPK activity and elevated intracellular calcium level are required for the TP receptor signaling. In conclusion, airway smooth muscle...

  8. Role of calcium signaling in epithelial bicarbonate secretion.

    Science.gov (United States)

    Jung, Jinsei; Lee, Min Goo

    2014-06-01

    Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis.

  9. GA signalling and cross-talk with other signalling pathways.

    Science.gov (United States)

    Lor, Vai S; Olszewski, Neil E

    2015-01-01

    Gibberellins (GAs) are phytohormones that regulate growth and development. DELLA proteins repress GA responses. GA binding to its receptor triggers a series of events that culminate in the destruction of DELLA proteins by the 26S proteasome, which removes the repression of GA signalling. DELLA proteins are transcription co-activators that induce the expression of genes which encode products that inhibit GA responses. In addition to repressing GA responses, DELLA proteins influence the activity of other signalling pathways and serve as a central hub from which other pathways influence GA signalling. In this role, DELLA proteins bind to and inhibit proteins, including transcription factors that act in the signalling pathways of other hormones and light. The binding of these proteins to DELLA proteins also inhibits DELLA activity. GA signalling is subject to homoeostatic regulation through GA-induced repression of GA biosynthesis gene expression, and increased production of the GA receptor and enzymes that catabolize bioactive GAs. This review also discusses the nature of mutant DELLA alleles that are used to produce high-yielding 'Green Revolution' cereal varieties, and highlights important gaps in our knowledge of GA signalling. PMID:26374886

  10. Label-Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells.

    Science.gov (United States)

    Lu, Jin; Li, Jinghong

    2015-11-01

    Cell signaling consists of diverse events that occur at various temporal and spatial scales, ranging from milliseconds to hours and from single biomolecules to cell populations. The pathway complexities require the development of new techniques that detect the overall signaling activities and are not limited to quantifying a single event. A plasmonic-based electrochemical impedance microscope (P-EIM) that can provide such data with excellent temporal and spatial resolution and does not require the addition of any labels for detection has now been developed. The highly dynamic and transient calcium signaling activities at the early stage of G-protein-coupled receptor (GPCR) stimulation were thus studied. It could be shown that a subpopulation of cells is more responsive towards agonist stimulation, and the heterogeneity of the local distributions and the transient activities of the ion channels during agonist-activated calcium flux in single HeLa cells were investigated.

  11. Apoptosis signaling pathways and lymphocyte homeostasis

    Institute of Scientific and Technical Information of China (English)

    Guangwu Xu; Yufang Shi

    2007-01-01

    It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis is an essential life process for metazoan animals and is critical for the formation and function of tissues and organs. In the adult mammalian body, apoptosis is especially important for proper functioning of the immune system. In recent years, along with the rapid advancement of molecular and cellular biology, great progress has been made in understanding the mechanisms leading to apoptosis. It is generally accepted that there are two major pathways of apoptotic cell death induction: extrinsic signaling through death receptors that leads to the formation of the death-inducing signaling complex (DISC), and intrinsic signaling mainly through mitochondria which leads to the formation of the apoptosome. Formation of the DISC or apoptosome, respectively, activates initiator and common effector caspases that execute the apoptosis process. In the immune system, both pathways operate; however, it is not known whether they are sufficient to maintain lymphocyte homeostasis. Recently, new apoptotic mechanisms including caspase-independent pathways and granzyme-initiated pathways have been shown to exist in lymphocytes. This review will summarize our understanding of the mechanisms that control the homeostasis of various lymphocyte populations.

  12. Wnt signalling pathway parameters for mammalian cells.

    Directory of Open Access Journals (Sweden)

    Chin Wee Tan

    Full Text Available Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated

  13. Control of insulin secretion by cytochrome C and calcium signaling in islets with impaired metabolism.

    Science.gov (United States)

    Rountree, Austin M; Neal, Adam S; Lisowski, Mark; Rizzo, Norma; Radtke, Jared; White, Sarah; Luciani, Dan S; Kim, Francis; Hampe, Christiane S; Sweet, Ian R

    2014-07-01

    The aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate. Unexpectedly, glucose-stimulated calcium influx was only slightly reduced in low glucose-cultured islets and was not responsible for the impairment in glucose-stimulated ISR. A glucokinase activator acutely restored cytochrome c reduction and translocation and ISR, independent of effects on calcium influx. Islets from fasted rats had reduced ISR and cytochrome c reduction in response to both glucose and α-ketoisocaproate despite normal responses of calcium. Our data are consistent with the scenario where cytochrome c reduction and translocation are essential signals in the stimulation of ISR, the loss of which can result in impaired ISR even when calcium response is normal.

  14. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway*

    Science.gov (United States)

    Yao, Jin-jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-01-01

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca2+/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca2+ and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4−/− mice but not in Nfatc2−/− mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4−/− mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  15. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway.

    Science.gov (United States)

    Yao, Jin-Jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-08-12

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca(2+) and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4(-/-) mice but not in Nfatc2(-/-) mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4(-/-) mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  16. The ethylene signal transduction pathway in Arabidopsis

    Science.gov (United States)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  17. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli.

    Science.gov (United States)

    Jin, Xingjian; Mohieldin, Ashraf M; Muntean, Brian S; Green, Jill A; Shah, Jagesh V; Mykytyn, Kirk; Nauli, Surya M

    2014-06-01

    Primary cilia with a diameter of ~200 nm have been implicated in development and disease. Calcium signaling within a primary cilium has never been directly visualized and has therefore remained a speculation. Fluid-shear stress and dopamine receptor type-5 (DR5) agonist are among the few stimuli that require cilia for intracellular calcium signal transduction. However, it is not known if these stimuli initiate calcium signaling within the cilium or if the calcium signal originates in the cytoplasm. Using an integrated single-cell imaging technique, we demonstrate for the first time that calcium signaling triggered by fluid-shear stress initiates in the primary cilium and can be distinguished from the subsequent cytosolic calcium response through the ryanodine receptor. Importantly, this flow-induced calcium signaling depends on the ciliary polycystin-2 calcium channel. While DR5-specific agonist induces calcium signaling mainly in the cilioplasm via ciliary CaV1.2, thrombin specifically induces cytosolic calcium signaling through the IP3 receptor. Furthermore, a non-specific calcium ionophore triggers both ciliary and cytosolic calcium responses. We suggest that cilia not only act as sensory organelles but also function as calcium signaling compartments. Cilium-dependent signaling can spread to the cytoplasm or be contained within the cilioplasm. Our study thus provides the first model to understand signaling within the cilioplasm of a living cell.

  18. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    Science.gov (United States)

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  19. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Nivedita Roy

    Full Text Available Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA and Sarco/endoplasmic reticulum calcium ATPase (SERCA which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis.

  20. Obesity-Induced Hypertension: Brain Signaling Pathways.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E P; Hall, John E

    2016-07-01

    Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review highlights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997

  1. Lung carcinoma signaling pathways activated by smoking

    Institute of Scientific and Technical Information of China (English)

    Jing Wen; Jian-Hua Fu; Wei Zhang; Ming Guo

    2011-01-01

    Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the smoking-activated signaling pathways involved in lung cancer.

  2. The role of calcium in hypoxia-induced signal transduction and gene expression.

    Science.gov (United States)

    Seta, Karen A; Yuan, Yong; Spicer, Zachary; Lu, Gang; Bedard, James; Ferguson, Tsuneo K; Pathrose, Peterson; Cole-Strauss, Allyson; Kaufhold, Alexa; Millhorn, David E

    2004-01-01

    Mammalian cells require a constant supply of oxygen in order to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. Sophisticated mechanisms have therefore evolved which allow cells to respond and adapt to hypoxia. Specialized oxygen-sensing cells have the ability to detect changes in oxygen tension and transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in a wide variety of different organisms. An increase in intracellular calcium levels is a primary response of many cell types to hypoxia/ischemia. The response to hypoxia is complex and involves the regulation of multiple signaling pathways and coordinated expression of perhaps hundreds of genes. This review discusses the role of calcium in hypoxia-induced regulation of signal transduction pathways and gene expression. An understanding of the molecular events initiated by changes in intracellular calcium will lead to the development of therapeutic approaches toward the treatment of hypoxic/ischemic diseases and tumors. PMID:15261489

  3. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  4. Calcium efflux systems in stress signalling and adaptation in plants

    Directory of Open Access Journals (Sweden)

    Jayakumar eBose

    2011-12-01

    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  5. Resveratrol and calcium signaling: molecular mechanisms and clinical relevance.

    Science.gov (United States)

    McCalley, Audrey E; Kaja, Simon; Payne, Andrew J; Koulen, Peter

    2014-06-05

    Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol's mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol's actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  6. Can calcium signaling be harnessed for cancer immunotherapy?

    Science.gov (United States)

    Rooke, Ronald

    2014-10-01

    Experimental evidence shows the importance of the immune system in controlling tumor appearance and growth. Immunotherapy is defined as the treatment of a disease by inducing, enhancing or suppressing an immune response. In the context of cancer treatment, it involves breaking tolerance to a cancer-specific self-antigen and/or enhancing the existing anti-tumor immune response, be it specific or not. Part of the complexity in developing such treatment is that cancers are selected to escape adaptive or innate immune responses. These escape mechanisms are numerous and they may cumulate in one cancer. Moreover, different cancers of a same type may present different combinations of escape mechanisms. The limited success of immunotherapeutics in the clinic as stand-alone products may in part be explained by the fact that most of them only activate one facet of the immune response. It is important to identify novel methods to broaden the efficacy of immunotherapeutics. Calcium signaling is central to numerous cellular processes, leading to immune responses, cancer growth and apoptosis induced by cancer treatments. Calcium signaling in cancer therapy and control will be integrated to current cancer immunotherapy approaches. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.

  7. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Audrey E. McCalley

    2014-06-01

    Full Text Available Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol’s mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol’s actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  8. Insulin signaling pathways in lepidopteran steroidogenesis

    Directory of Open Access Journals (Sweden)

    Wendy eSmith

    2014-02-01

    Full Text Available Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori, the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx , the neuropeptide prothoracicotropic hormone (PTTH appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K, LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the effects of nutritionally-sensitive hormones such as insulin on ecdysone secretion and molting.

  9. Subpathway Analysis based on Signaling-Pathway Impact Analysis of Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Xianbin Li

    Full Text Available Pathway analysis is a common approach to gain insight from biological experiments. Signaling-pathway impact analysis (SPIA is one such method and combines both the classical enrichment analysis and the actual perturbation on a given pathway. Because this method focuses on a single pathway, its resolution generally is not very high because the differentially expressed genes may be enriched in a local region of the pathway. In the present work, to identify cancer-related pathways, we incorporated a recent subpathway analysis method into the SPIA method to form the "sub-SPIA method." The original subpathway analysis uses the k-clique structure to define a subpathway. However, it is not sufficiently flexible to capture subpathways with complex structure and usually results in many overlapping subpathways. We therefore propose using the minimal-spanning-tree structure to find a subpathway. We apply this approach to colorectal cancer and lung cancer datasets, and our results show that sub-SPIA can identify many significant pathways associated with each specific cancer that other methods miss. Based on the entire pathway network in the Kyoto Encyclopedia of Genes and Genomes, we find that the pathways identified by sub-SPIA not only have the largest average degree, but also are more closely connected than those identified by other methods. This result suggests that the abnormality signal propagating through them might be responsible for the specific cancer or disease.

  10. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi.

    Science.gov (United States)

    Rispail, Nicolas; Soanes, Darren M; Ant, Cemile; Czajkowski, Robert; Grünler, Anke; Huguet, Romain; Perez-Nadales, Elena; Poli, Anna; Sartorel, Elodie; Valiante, Vito; Yang, Meng; Beffa, Roland; Brakhage, Axel A; Gow, Neil A R; Kahmann, Regine; Lebrun, Marc-Henri; Lenasi, Helena; Perez-Martin, José; Talbot, Nicholas J; Wendland, Jürgen; Di Pietro, Antonio

    2009-04-01

    Mitogen-activated protein kinase (MAPK) cascades and the calcium-calcineurin pathway control fundamental aspects of fungal growth, development and reproduction. Core elements of these signalling pathways are required for virulence in a wide array of fungal pathogens of plants and mammals. In this review, we have used the available genome databases to explore the structural conservation of three MAPK cascades and the calcium-calcineurin pathway in ten different fungal species, including model organisms, plant pathogens and human pathogens. While most known pathway components from the model yeast Saccharomyces cerevisiae appear to be widely conserved among taxonomically and biologically diverse fungi, some of them were found to be restricted to the Saccharomycotina. The presence of multiple paralogues in certain species such as the zygomycete Rhizopus oryzae and the incorporation of new functional domains that are lacking in S. cerevisiae signalling proteins, most likely reflect functional diversification or adaptation as filamentous fungi have evolved to occupy distinct ecological niches. PMID:19570501

  11. Emanuel Strehler’s work on calcium pumps and calcium signaling

    Institute of Scientific and Technical Information of China (English)

    Emanuel; E; Strehler

    2011-01-01

    Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders including heart disease, Alzheimer’s disease and stroke. Ca 2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular "toolkit" needed to ensure proper Ca 2+ homeostasis in the cell, as well as on the mechanisms of localized Ca 2+ signaling. A longterm focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca 2+ levels, but also to local Ca 2+ signaling and vectorial Ca 2+ transport. A second major research arearevolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.

  12. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  13. The immune signaling pathways of Manduca sexta.

    Science.gov (United States)

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Wang, Yang; Chen, Yun-Ru; Bryant, Bart; Clem, Rollie J; Schwartz, Lawrence M; Blissard, Gary; Jiang, Haobo

    2015-07-01

    Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect. PMID:25858029

  14. Interleukin 4 signals through two related pathways.

    Science.gov (United States)

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-08-15

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

  15. Role of calcium in polycystic kidney disease: From signaling to pathology.

    Science.gov (United States)

    Mangolini, Alessandra; de Stephanis, Lucia; Aguiari, Gianluca

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited monogenic kidney disease. Characterized by the development and growth of cysts that cause progressive kidney enlargement, it ultimately leads to end-stage renal disease. Approximately 85% of ADPKD cases are caused by mutations in the PKD1 gene, while mutations in the PKD2 gene account for the remaining 15% of cases. The PKD1 gene encodes for polycystin-1 (PC1), a large multi-functional membrane receptor protein able to regulate ion channel complexes, whereas polycystin-2 (PC2), encoded by the PKD2 gene, is an integral membrane protein that functions as a calcium-permeable cation channel, located mainly in the endoplasmic reticulum (ER). In the primary cilia of the epithelial cells, PC1 interacts with PC2 to form a polycystin complex that acts as a mechanosensor, regulating signaling pathways involved in the differentiation of kidney tubular epithelial cells. Despite progress in understanding the function of these proteins, the molecular mechanisms associated with the pathogenesis of ADPKD remain unclear. In this review we discuss how an imbalance between functional PC1 and PC2 proteins may disrupt calcium channel activities in the cilium, plasma membrane and ER, thereby altering intracellular calcium signaling and leading to the aberrant cell proliferation and apoptosis associated with the development and growth of renal cysts. Research in this field could lead to the discovery of new molecules able to rebalance intracellular calcium, thereby normalizing cell proliferation and reducing kidney cyst progression. PMID:26788466

  16. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks.

    Science.gov (United States)

    Niggli, E

    1999-01-01

    Subcellularly localized Ca2+ signals in cardiac and skeletal muscle have recently been identified as elementary Ca2+ signaling events. The signals, termed Ca2+ sparks and Ca2+ quarks, represent openings of Ca2+ release channels located in the membrane of the sarcoplasmic reticulum (SR). In cardiac muscle, the revolutionary discovery of Ca2+ sparks has allowed the development of a fundamentally different concept for the amplification of Ca2+ signals by Ca(2+)-induced Ca2+ release. In such a system, a graded amplification of the triggering Ca2+ signal entering the myocyte via L-type Ca2+ channels is accomplished by a recruitment process whereby individual SR Ca2+ release units are locally controlled by L-type Ca2+ channels. In skeletal muscle, the initial SR Ca2+ release is governed by voltage-sensors but subsequently activates additional Ca2+ sparks by Ca(2+)-induced Ca2+ release from the SR. Results from studies on elementary Ca2+ release events will improve our knowledge of muscle Ca2+ signaling at all levels of complexity, from the molecule to normal cellular function, and from the regulation of cardiac and skeletal muscle force to the pathophysiology of excitation-contraction coupling.

  17. Integrative analysis of cancer related signaling pathways

    Directory of Open Access Journals (Sweden)

    Thomas eKessler

    2013-06-01

    Full Text Available Identification and classification of cancer types and subtypes is a major issue in current cancer research. Whole genome expression profiling of cancer tissues is often the basis for such subtype classifications of tumors and different signatures for individual cancer types have been described. However, the search for best performing discriminatory gene expression signatures covering more than one cancer type remains a relevant topic in cancer research as such a signature would help understanding the common changes in signaling networks in these disease types. In this work, we explore the idea of a top down approach for sample stratification based on a module-based network of cancer relevant signaling pathways. For assembly of this network, we consider several of the most established cancer pathways. We evaluate our sample stratification approach using expression data of human breast and ovarian cancer signatures. We show that our approach performs equally well to previously reported methods besides providing the advantage to classify different cancer types. Furthermore, it allows to identify common changes in network module activity of those cancer samples.

  18. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Brot, C;

    2000-01-01

    Effective bone remodeling requires the coordination of bone matrix deposition by osteoblastic cells, which may occur via soluble mediators or via direct intercellular communication. We have previously identified two mechanisms by which rat osteoblastic cell lines coordinate calcium signaling among...... intercellular calcium signaling, and if so, by which mechanisms. Upon mechanical stimulation, human osteoblasts propagated fast intercellular calcium waves, which required activation of P2 receptors and release of intracellular calcium stores but did not require calcium influx or gap junctional communication....... After the fast intercellular calcium waves were blocked, we observed slower calcium waves that were dependent on gap junctional communication and influx of extracellular calcium. These results show that human osteoblastic cells can propagate calcium signals from cell to cell by two markedly different...

  19. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg...likereceptor signal transduction. O'Neill LA. Immunity. 2008 Jul 18;29(1):12-20. (.png) (.svg) (.html) (.csm...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd

  20. Cross-talk between calcium and reactive oxygen species signaling

    Institute of Scientific and Technical Information of China (English)

    Yuan YAN; Chao-liang WEI; Wan-rui ZHANG; He-ping CHENG; Jie LIU

    2006-01-01

    Calcium(Ca2+) and reactive oxygen species(ROS)constitute the most important intracellular signaling molecules participating in the regulation and integration of diverse cellular functions.Here we briefly review cross-talk between the two prominent signaling systems that finely tune the homeostasis and integrate functionality of Ca2+ and ROS in different types of cells.Ca2+ modulates ROS homeostasis by regulating ROS generation and annihilation mechanisms in both the mitochondria and the cytosol.Reciprocal redox regulation of Ca2+ homeostasis occurs in different physiological and pathological processes,by modulating components of the Ca2+ signaling toolkit and altering characteristics of local and global Ca2+ signals.Functionally,interactions between Ca2+ and ROS signaling systems can be both stimulatory and inhibitory,depending on the type of target proteins,the ROS species,the dose,duration of exposure,and the cell contexts.Such extensive and complex cross-talk might enhance signaling coordination and integration,whereas abnormalities in either system might propagate into the other system and undermine the stability of both systems.

  1. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    Science.gov (United States)

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.

  2. Hedgehog signaling pathway and ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    Qi Chen; Guolan Gao; Shiwen Luo

    2013-01-01

    Epithelial ovarian carcinoma (EOC) is the most common form of ovarian malignancies and the most lethal gynecologic malignancy in the United States.To date,in spite of treatment to it with the extensive surgical debulking and chemotherapy,the prognosis of EOC remains dismal.Recently,it has become increasingly clear that in many instances,the signaling and molecular players that control development are the same,and when inappropriately regulated,drive tumorigenesis and cancer development.Here,we discuss the possible involvement of Hedgehog (Hh) pathway in the cellular regulation and development of cancer in the ovaries.Using the in vitro and in vivo assays developed has facilitated the dissection of the mechanisms behind Hh-driven ovarian cancers formation and growth.Based on recent studies,we propose that the inhibition of Hh signaling may interfere with spheroid-like structures in ovarian cancers.The components of the Hh signaling may provide novel drug targets,which could be explored as crucial combinatorial strategies for the treatment of ovarian cancers.

  3. Effects of microgravity environment on intracellular signal transduction pathways

    Directory of Open Access Journals (Sweden)

    De CHANG

    2012-09-01

    Full Text Available Microgravity environment is a stress and extracellular signal that affects cellular morphology and function through signal transduction system, thus leading to certain biological effect. At present, many signaling pathways have been reported to be involved in the regulation of cell function under microgravity environment, such as NF-κB signaling pathway, Notch signaling pathway, MAPK signaling pathway, HSP signaling pathway and so on, and these reports have laid a foundation for the molecular studies of cytolergy under outer space environment. The recent progress in the researches on intracellular signaling pathways affected by microgravity is herewith reviewed in present paper in the hope of providing references for understanding the cell activity in space environment, and to find the ways to alleviate the harmful effects caused by the microgravity environment.

  4. Involvement of aberrant calcium signalling in herpetic neuralgia.

    Science.gov (United States)

    Warwick, Rebekah A; Hanani, Menachem

    2016-03-01

    Alpha-herpesviruses, herpes simplex viruses (HSV) and varicella zoster virus (VZV), are pathogens of the peripheral nervous system. After primary infection, these viruses establish latency within sensory ganglia, while retaining the ability to reactivate. Reactivation of VZV results in herpes zoster, a condition characterized by skin lesions that leads to post-herpetic neuralgia. Recurrent reactivations of HSV, which cause mucocutaneous lesions, may also result in neuralgia. During reactivation of alpha-herpesviruses, satellite glial cells (SGCs), which surround neurons in sensory ganglia, become infected with the replicating virus. SGCs are known to contribute to neuropathic pain in a variety of animal pain models. Here we investigated how infection of short-term cultures of mouse trigeminal ganglia with HSV-1 affects communication between SGCs and neurons, and how this altered communication may increase neuronal excitability, thus contributing to herpetic neuralgia. Mechanical stimulation of single neurons or SGCs resulted in intercellular calcium waves, which were larger in cultures infected with HSV-1. Two differences were observed between control and HSV-1 infected cultures that could account for this augmentation. Firstly, HSV-1 infection induced cell fusion among SGCs and neurons, which would facilitate the spread of calcium signals over farther distances. Secondly, using calcium imaging and intracellular electrical recordings, we found that neurons in the HSV-1 infected cultures exhibited augmented influx of calcium upon depolarization. These virally induced changes may not only cause more neurons in the sensory ganglia to fire action potentials, but may also increase neurotransmitter release at the presynaptic terminals in the spinal cord. They are therefore likely to be contributing factors to herpetic neuralgia. PMID:26684187

  5. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathwa...ys activated by microorganisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  6. DMPD: LPS/TLR4 signal transduction pathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18304834 LPS/TLR4 signal transduction pathway. Lu YC, Yeh WC, Ohashi PS. Cytokine. ...2008 May;42(2):145-51. Epub 2008 Mar 4. (.png) (.svg) (.html) (.csml) Show LPS/TLR4 signal transduction path...way. PubmedID 18304834 Title LPS/TLR4 signal transduction pathway. Authors Lu YC, Yeh WC, Ohashi PS. Publica

  7. DMPD: Afferent pathways of pyrogen signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9917870 Afferent pathways of pyrogen signaling. Blatteis CM, Sehic E, Li S. Ann N Y... Acad Sci. 1998 Sep 29;856:95-107. (.png) (.svg) (.html) (.csml) Show Afferent pathways of pyrogen signaling.... PubmedID 9917870 Title Afferent pathways of pyrogen signaling. Authors Blatteis CM, Sehic E, Li S. Publica

  8. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral signaling path...ways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  9. Novel frontiers in calcium signaling: A possible target for chemotherapy.

    Science.gov (United States)

    Bonora, Massimo; Giorgi, Carlotta; Pinton, Paolo

    2015-09-01

    Intracellular calcium (Ca(2+)) is largely known as a second messenger that is able to drive effects ranging from vesicle formation to muscle contraction, energy production and much more. In spite of its physiological regulation, Ca(2+) is a strategic tool for regulating apoptosis, especially during transmission between the endoplasmic reticulum and the mitochondria. Contact sites between these organelles are well-defined as signaling platforms where oncogenes and oncosuppressors can exert anti/pro-apoptotic activities. Recent advances from in vivo investigations into these regions highlight the role of the master oncosuppressor p53 in regulating Ca(2+) transmission and apoptosis, and we propose that Ca(2+) signals are relevant targets when developing new therapeutic approaches.

  10. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    Directory of Open Access Journals (Sweden)

    Shangfu Li

    2016-10-01

    Full Text Available Osteoporosis and Alzheimer’s disease (AD are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ, one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75. However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs, Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis.

  11. A Study of the PDGF Signaling Pathway with PRISM

    OpenAIRE

    Qixia Yuan; Jun Pang; Sjouke Mauw; Panuwat Trairatphisan; Monique Wiesinger; Thomas Sauter

    2011-01-01

    In this paper, we apply the probabilistic model checker PRISM to the analysis of a biological system -- the Platelet-Derived Growth Factor (PDGF) signaling pathway, demonstrating in detail how this pathway can be analyzed in PRISM. We show that quantitative verification can yield a better understanding of the PDGF signaling pathway.

  12. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, Courtney [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States); Padmanabhan, Jaya [Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL 33612 (United States); Chellappan, Srikumar, E-mail: Srikumar.Chellappan@moffitt.org [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States)

    2015-07-31

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.

  13. Shuffling the cards in signal transduction: Calcium, arachidonic acid and mechanosensitivity

    Institute of Scientific and Technical Information of China (English)

    Luca; Munaron

    2011-01-01

    Cell signaling is a very complex network of biochemical reactions triggered by a huge number of stimuli coming from the external medium. The function of any single signaling component depends not only on its own structure but also on its connections with other biomolecules. During prokaryotic-eukaryotic transition, the rearrangement of cell organization in terms of diffusional compartmentalization exerts a deep change in cell signaling functional potentiality. In this review I briefly introduce an intriguing ancient relationship between pathways involved in cell responses to chemical agonists (growth factors, nutrients, hormones) as well as to mechanical forces (stretch, osmotic changes). Some biomolecules (ion channels and enzymes) act as "hubs", thanks to their ability to be directly or indirectly chemically/mechanically co-regulated. In particular calcium signaling machinery and arachidonic acid metabolism are very ancient networks, already present before eukaryotic appearance. A number of molecular "hubs", including phospholipase A2 and some calcium channels, appear tightly interconnected in a cross regulation leading to the cellular response to chemical and mechanical stimulations.

  14. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias.

    Science.gov (United States)

    Kasumu, Adebimpe; Bezprozvanny, Ilya

    2012-09-01

    Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 30 autosomal-dominant genetic and neurodegenerative disorders. SCAs are generally characterized by progressive ataxia and cerebellar atrophy. Although all SCA patients present with the phenotypic overlap of cerebellar atrophy and ataxia, 17 different gene loci have so far been implicated as culprits in these SCAs. It is not currently understood how mutations in these 17 proteins lead to the cerebellar atrophy and ataxia. Several pathogenic mechanisms have been studied in SCAs but there is yet to be a promising target for successful treatment of SCAs. Emerging research suggests that a fundamental cellular signaling pathway is disrupted by a majority of these mutated genes, which could explain the characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. We propose that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells either as a result of an excitotoxic increase or a compensatory suppression of calcium signaling. We argue that disruptions in Purkinje cell calcium signaling lead to initial cerebellar dysfunction and ataxic sympoms and eventually proceed to Purkinje cell death. Here, we discuss a calcium hypothesis of Purkinje cell neurodegeneration in SCAs by primarily focusing on an example of spinocerebellar ataxia 2 (SCA2). We will also present evidence linking deranged calcium signaling to the pathogenesis of other SCAs (SCA1, 3, 5, 6, 14, 15/16) that lead to significant Purkinje cell dysfunction and loss in patients.

  15. BowTieBuilder: modeling signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Schröder Adrian

    2009-06-01

    Full Text Available Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs. This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins to target proteins (e.g., TFs is important, yet for many processes the signaling pathways remain unknown. Results Here, we present BowTieBuilder for inferring signal transduction pathways from multiple source and target proteins. Given protein-protein interaction (PPI data signaling pathways are assembled without knowledge of the intermediate signaling proteins while maximizing the overall probability of the pathway. To assess the inference quality, BowTieBuilder and three alternative heuristics are applied to several pathways, and the resulting pathways are compared to reference pathways taken from KEGG. In addition, BowTieBuilder is used to infer a signaling pathway of the innate immune response in humans and a signaling pathway that potentially regulates an underlying gene regulatory network. Conclusion We show that BowTieBuilder, given multiple source and/or target proteins, infers pathways with satisfactory recall and precision rates and detects the core proteins of each pathway.

  16. The Smad pathway in transforming growth factor-β signaling

    Institute of Scientific and Technical Information of China (English)

    林海燕; 王红梅; 祝诚

    2003-01-01

    The Smad pathway is involved in transforming growth factor-β (TGF-β) signal transduction. The Smad complex binds with the promoter of target gene to modulate gene transcription. Various transcriptional coactivators and corepressors associate directly with Smads for appropriate binding of Smads to target promoters and regulation of Smads transcriptional activities. The ultimate degradation of Smads mediated by the ubiquitin-proteasome pathway (UPP) has been established as a mechanism to shut off the Smad pathway. In addition to the Smad pathway, TGF-β can also activate other signaling pathway such as the MAPK pathway. The cross-talk of the Smad pathway with other signaling pathways constitutes an important mechanism for the regulatory network of TGF-β Signaling.

  17. AlzPathway, an Updated Map of Curated Signaling Pathways: Towards Deciphering Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Ogishima, Soichi; Mizuno, Satoshi; Kikuchi, Masataka; Miyashita, Akinori; Kuwano, Ryozo; Tanaka, Hiroshi; Nakaya, Jun

    2016-01-01

    Alzheimer's disease (AD) is a complex neurodegenerative disorder in which loss of neurons and synaptic function causes dementia in the elderly. To clarify AD pathogenesis and develop drugs for AD, thousands of studies have elucidated signaling pathways involved. However, knowledge of AD signaling pathways has not been compiled as a pathway map. In this chapter, we introduce the manual construction of a pathway map in AD which we call "AlzPathway", that comprehensively catalogs signaling pathways in the field of AD. We have collected and manually curated over 100 review articles related to AD, and have built the AD pathway map. AlzPathway is currently composed of thousands of molecules and reactions in neurons, brain blood barrier, presynaptic, postsynaptic, astrocyte, and microglial cells, with their cellular localizations. AlzPathway provides a systems-biology platform of comprehensive AD signaling and related pathways which is expected to contribute to clarification of AD pathogenesis and AD drug development.

  18. Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy.

    Science.gov (United States)

    Ito, Naoki; Ruegg, Urs T; Kudo, Akira; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2013-01-01

    Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.

  19. Signaling pathways relevant to cognition-enhancing drug targets.

    Science.gov (United States)

    Ménard, Caroline; Gaudreau, Pierrette; Quirion, Rémi

    2015-01-01

    Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents. PMID:25977080

  20. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    DEFF Research Database (Denmark)

    Sirvent, P; Fabre, Odile Martine Julie; Bordenave, S;

    2012-01-01

    and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients...

  1. Calcium and cell death signaling in neurodegeneration and aging.

    Science.gov (United States)

    Smaili, Soraya; Hirata, Hanako; Ureshino, Rodrigo; Monteforte, Priscila T; Morales, Ana P; Muler, Mari L; Terashima, Juliana; Oseki, Karen; Rosenstock, Tatiana R; Lopes, Guiomar S; Bincoletto, Claudia

    2009-09-01

    Transient increase in cytosolic (Cac2+) and mitochondrial Ca2+ (Ca m2+) are essential elements in the control of many physiological processes. However, sustained increases in Ca c2+ and Ca m2+ may contribute to oxidative stress and cell death. Several events are related to the increase in Ca m2+, including regulation and activation of a number of Ca2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER) play pivotal roles in the maintenance of intracellular Ca2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes may lead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.

  2. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields.

    Science.gov (United States)

    Golbach, Lieke A; Philippi, John G M; Cuppen, Jan J M; Savelkoul, Huub F J; Verburg-van Kemenade, B M Lidy

    2015-09-01

    We are increasingly exposed to low-frequency electromagnetic fields (LF EMFs) by electrical devices and power lines, but if and how these fields interact with living cells remains a matter of debate. This study aimed to investigate the potential effect of LF EMF exposure on calcium signalling in neutrophils. In neutrophilic granulocytes, activation of G-protein coupled receptors leads to efflux of calcium from calcium stores and influx of extracellular calcium via specialised calcium channels. The cytoplasmic rise of calcium induces cytoskeleton rearrangements, modified gene expression patterns, and cell migration. If LF EMF modulates intracellular calcium signalling, this will influence cellular behaviour and may eventually lead to health problems. We found that calcium mobilisation upon chemotactic stimulation was not altered after a short 30 min or long-term LF EMF exposure in human neutrophil-like cell lines HL-60 or PLB-985. Neither of the two investigated wave forms (Immunent and 50 Hz sine wave) at three magnetic flux densities (5 μT, 300 μT, and 500 μT) altered calcium signalling in vitro. Gene-expression patterns of calcium-signalling related genes also did not show any significant changes after exposure. Furthermore, analysis of the phenotypical appearance of microvilli by scanning electron microscopy revealed no alterations induced by LF EMF exposure. The findings above indicate that exposure to 50 Hz sinusoidal or Immunent LF EMF will not affect calcium signalling in neutrophils in vitro.

  3. Neuronal calcium signaling, mitochondrial dysfunction and Alzheimer’s disease

    Science.gov (United States)

    Supnet, Charlene; Bezprozvanny, Ilya

    2016-01-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder that affects millions of ageing people worldwide. AD is characterized by extensive synaptic and neuronal loss which lead to impaired memory and cognitive decline. The cause of pathology in AD is not completely understood and no effective therapy so far has been developed. The accumulation of toxic amyloid-beta 42 (Aβ42) peptide oligomers and aggregates in AD brain has been proposed to be primarily responsible for the pathology of the disease, an idea dubbed ‘amyloid hypothesis’ of AD etiology. In addition to increase in Aβ42 levels, disturbances in neuronal calcium (Ca2+) signaling and alterations in expression levels of Ca2+ signaling proteins have been observed in animal models of familial AD and in studies of postmortem brain samples from sporadic AD patients. Based on these evidence ‘Ca2+ hypothesis of AD’ has been proposed. In particular, familal AD has been linked with enhanced Ca2+ release from the endoplasmic reticulum (ER) and elevated cytosolic Ca2+ levels. The augmented cytosolic Ca2+ levels can trigger signaling cascades that affect synaptic stability and function and can be detrimental to neuronal health, such as Ca2+-dependent phosphatase calcineurin and Ca2+-dependent proteases calpains. Here we review the latest results supporting ‘Ca2+ hypothesis’ of AD pathogenesis. We further argue that over long period of time supranormal cytosolic Ca2+ signaling can impaire mitochondrial function in AD neurons. We conclude that inhibitors and stablizers of neuronal Ca2+ signaling and mitochondrial function may have a therapeutic potential for treatment of AD. We discuss latest and planned AD therapeutic trials of agents targeting Ca2+ channels and mitochodria. PMID:20413848

  4. M3R介导的cAMP-PKA信号途径对L-型钙通道的调控作用研究%Effects of M3 Receptor on L-type Calcium Channels by cAMP-PKA Signal Pathway

    Institute of Scientific and Technical Information of China (English)

    栾海蓉; 董琦; 王得利; 李海林; 吴红

    2012-01-01

    Objective To investigate the effects of M3 receptor agonist choline on L-type calcium channels by cAMP-PKA signal pathway. Methods Whole cell patch clamp technique was used to record L-type calcium current. Laser scanning confocal microscope( LSCM )was employed to measure the concentration of intracellular free calcium. Results The application of choline reduced the density of peak Ica-L from( 9.07 ±0. 68)pA/pf to(5.58 ±0.62 )pA/pP( n =4,vs control,P <0.01 ),H89 with choline reduced the density of peak Ica-L to( 7.68 ±0.75 )pA/pF,whose amplitude was higher than that of choline group( n =4,vs choline, P< 0.01 ). LSCM recorded that KC1 induced determined by used[ Ca2 + ]I increasing could be depressed by choline, and also depressed by H89 with choline, whose amplitude is higher than that of choline group( n=30,vs choline,P<0.05 ). Conclusion Choline reduces[ Ca2 + ]I via inhibition of cAMP-PKA signal pathway of L-type calcium channel, which is possibly involved in the mechanism of its protective effects on myocardial injury.%目的 研究M3受体激动剂通过cAMP-PKA信号途径对L-型钙通道的影响.方法 应用全细胞膜片钳技术记录M3受体激动剂胆碱对大鼠单个心室肌细胞L-型钙通道电流(ICa-L)的影响;采用激光扫描共聚焦技术观察细胞内钙离子的变化.结果 胆碱使大鼠心室肌细胞ICa-L密度从(9.07±0.68)pA/pF减少至(5.58 ±0.62)pA/pF(n=4,与对照组相比,P<0.01),H89加胆碱组使ICa-L电流密度减少至(7.68±0.75),幅度明显高于胆碱组(n=4,与胆碱组相比,P<0.01).胆碱抑制KCl除极诱导的心肌细胞[Ca2+]i的升高,从(2.83±0.08)降至(1.17±0.09)FI/FI0(n=30,与KCl组相比,P<0.01),胆碱与H89组可使[Ca2+]i降至(1.65±0.17)FI/FI0,幅度高于胆碱组(n=30,与胆碱组相比,P<0.05).结论 M3受体激动剂胆碱通过抑制PKA活性调控L-型钙通道,使外钙内流减少,降低细胞[Ca2+]i,从而发挥抗心肌保护作用.

  5. Modelling and Analysis of Biochemical Signalling Pathway Cross-talk

    CERN Document Server

    Donaldson, Robin; 10.4204/EPTCS.19.3

    2010-01-01

    Signalling pathways are abstractions that help life scientists structure the coordination of cellular activity. Cross-talk between pathways accounts for many of the complex behaviours exhibited by signalling pathways and is often critical in producing the correct signal-response relationship. Formal models of signalling pathways and cross-talk in particular can aid understanding and drive experimentation. We define an approach to modelling based on the concept that a pathway is the (synchronising) parallel composition of instances of generic modules (with internal and external labels). Pathways are then composed by (synchronising) parallel composition and renaming; different types of cross-talk result from different combinations of synchronisation and renaming. We define a number of generic modules in PRISM and five types of cross-talk: signal flow, substrate availability, receptor function, gene expression and intracellular communication. We show that Continuous Stochastic Logic properties can both detect an...

  6. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    Science.gov (United States)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  7. Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle: A STUDY USING GENETICALLY ENCODED CALCIUM INDICATORS.

    Science.gov (United States)

    Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A; Moore, Christina A; Vella, Stephen A; Hortua Triana, Miryam A; Liu, Jing; Garcia, Celia R S; Pace, Douglas A; Moreno, Silvia N J

    2015-11-01

    Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca(2+) oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca(2+) enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca(2+) changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca(2+) oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca(2+) influx. This is the first study showing, in real time, Ca(2+) signals preceding egress and their direct link with motility, an essential virulence trait.

  8. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  9. Phase-locked signals elucidate circuit architecture of an oscillatory pathway.

    Science.gov (United States)

    Jovic, Andreja; Howell, Bryan; Cote, Michelle; Wade, Susan M; Mehta, Khamir; Miyawaki, Atsushi; Neubig, Richard R; Linderman, Jennifer J; Takayama, Shuichi

    2010-12-23

    This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways.

  10. Requirement for nuclear calcium signaling in Drosophila long-term memory.

    Science.gov (United States)

    Weislogel, Jan-Marek; Bengtson, C Peter; Müller, Michaela K; Hörtzsch, Jan N; Bujard, Martina; Schuster, Christoph M; Bading, Hilmar

    2013-05-07

    Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.

  11. Calcium signaling and amyloid toxicity in Alzheimer disease.

    Science.gov (United States)

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  12. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica.

    Science.gov (United States)

    Fang, Huihui; Jing, Tao; Liu, Zhiqiang; Zhang, Liping; Jin, Zhuping; Pei, Yanxi

    2014-12-01

    The oscillation of intracellular calcium (Ca(2+)) concentration is a primary event in numerous biological processes in plants, including stress response. Hydrogen sulfide (H2S), an emerging gasotransmitter, was found to have positive effects in plants responding to chromium (Cr(6+)) stress through interacting with Ca(2+) signaling. While Ca(2+) resemblances H2S in mediating biotic and abiotic stresses, crosstalk between the two pathways remains unclear. In this study, Ca(2+) signaling interacted with H2S to produce a complex physiological response, which enhanced the Cr(6+) tolerance in foxtail millet (Setaria italica). Results indicate that Cr(6+) stress activated endogenous H2S synthesis as well as Ca(2+) signaling. Moreover, toxic symptoms caused by Cr(6+) stress were strongly moderated by 50μM H2S and 20mM Ca(2+). Conversely, treatments with H2S synthesis inhibitor and Ca(2+) chelators prior to Cr(6+)-exposure aggravated these toxic symptoms. Interestingly, Ca(2+) upregulated expression of two important factors in metal metabolism, MT3A and PCS, which participated in the biosynthesis of heavy metal chelators, in a H2S-dependent manner to cope with Cr(6+) stress. These findings also suggest that the H2S dependent pathway is a component of the Ca(2+) activating antioxidant system and H2S partially contributes Ca(2+)-activating antioxidant system.

  13. Singapore signalling: the 2012 hedgehog pathway cocktail

    OpenAIRE

    Briscoe, James; Rohatgi, Rajat

    2012-01-01

    The ‘Hedgehog Signalling in Development Evolution and Disease' conference took place in Singapore in March 2012. It brought leading researchers together to discuss the latest findings, and exchange ideas, on every aspect of Hedgehog signalling.

  14. Characterization of calcium signals provoked by lysophosphatidylinositol in human microvascular endothelial cells.

    Science.gov (United States)

    Al Suleimani, Y M; Hiley, C R

    2016-01-01

    The lipid molecule, lysophosphatidylinositol (LPI), is hypothesised to form part of a novel lipid signalling system that involves the G protein-coupled receptor GPR55 and distinct intracellular signalling cascades in endothelial cells. This work aimed to study the possible mechanisms involved in LPI-evoked cytosolic Ca(2+) mobilization in human brain microvascular endothelial cells. Changes in intracellular Ca(2+) concentrations were measured using cell population Ca(2+) assay. LPI evoked biphasic elevation of intracellular calcium concentration, a rapid phase and a sustained phase. The rapid phase was attenuated by the inhibitor of PLC (U 73122), inhibitor of IP(3) receptors, 2-APB and the depletor of endoplasmic reticulum Ca(2+) store, thapsigargin. The sustained phase, on the other hand, was enhanced by U 73122 and abolished by the RhoA kinase inhibitor, Y-27632. In conclusion, the Ca(2+) signal evoked by LPI is characterised by a rapid phase of Ca(2+) release from the endoplasmic reticulum, and requires activation of the PLC-IP(3) signalling pathway. The sustained phase mainly depends on RhoA kinase activation. LPI acts as novel lipid signalling molecule in endothelial cells, and elevation of cytosolic Ca(2+) triggered by it may present an important intracellular message required in gene expression and controlling of vascular tone. PMID:26596318

  15. The mutant Moonwalker TRPC3 channel links calcium signaling to lipid metabolism in the developing cerebellum.

    Science.gov (United States)

    Dulneva, Anna; Lee, Sheena; Oliver, Peter L; Di Gleria, Katalin; Kessler, Benedikt M; Davies, Kay E; Becker, Esther B E

    2015-07-15

    The Moonwalker (Mwk) mouse is a model of dominantly inherited cerebellar ataxia caused by a gain-of-function mutation in the transient receptor potential (TRP) channel TRPC3. Here, we report impairments in dendritic growth and synapse formation early on during Purkinje cell development in the Mwk cerebellum that are accompanied by alterations in calcium signaling. To elucidate the molecular effector pathways that regulate Purkinje cell dendritic arborization downstream of mutant TRPC3, we employed transcriptomic analysis of developing Purkinje cells isolated by laser-capture microdissection. We identified significant gene and protein expression changes in molecules involved in lipid metabolism. Consistently, lipid homeostasis in the Mwk cerebellum was found to be disturbed, and treatment of organotypic cerebellar slices with ceramide significantly improved dendritic outgrowth of Mwk Purkinje cells. These findings provide the first mechanistic insights into the TRPC3-dependent mechanisms, by which activated calcium signaling is coupled to lipid metabolism and the regulation of Purkinje cell development in the Mwk cerebellum.

  16. Temporal and Evolutionary Dynamics of Two-Component Signaling Pathways

    OpenAIRE

    Salazar, Michael E.; Laub, Michael T.

    2015-01-01

    Bacteria sense and respond to numerous environmental signals through two-component signaling pathways. Typically, a given stimulus will activate a sensor histidine kinase to autophosphorylate and then phosphotransfer to a cognate response regulator, which can mount an appropriate response. Although these signaling pathways often appear to be simple switches, they can also orchestrate surprisingly sophisticated and complex responses. These temporal dynamics arise from several key regulatory fe...

  17. Death and dessert: Nutrient signalling pathways and ageing

    OpenAIRE

    Alic, Nazif; Partridge, Linda

    2011-01-01

    Reduction in nutrient intake without malnutrition can delay ageing and extend healthy life in diverse organisms from yeast to primates. This effect can be recapitulated by genetic or pharmacological dampening of the signal through nutrient signalling pathways, making them a promising target for intervention into human ageing and age-related diseases. Here we review the current knowledge of the interactions between nutrient signalling pathways and ageing, focusing on the findings emerged in th...

  18. Calcium-dependent and calcium-sensitizing pathways in the mature and immature ductus arteriosus.

    Science.gov (United States)

    Clyman, Ronald I; Waleh, Nahid; Kajino, Hiroki; Roman, Christine; Mauray, Francoise

    2007-10-01

    Studies performed in sheep and baboons have shown that after birth, the normoxic muscle media of ductus arteriosus (DA) becomes profoundly hypoxic as it constricts and undergoes anatomic remodeling. We used isolated fetal lamb DA (pretreated with inhibitors of prostaglandin and nitric oxide production) to determine why the immature DA fails to remain tightly constricted during the hypoxic phase of remodeling. Under normoxic conditions, mature DA constricts to 70% of its maximal active tension (MAT). Half of its normoxic tension is due to Ca(2+) entry through calcium L-channels and store-operated calcium (SOC) channels. The other half is independent of extracellular Ca(2+) and is unaffected by inhibitors of sarcoplasmic reticulum (SR) Ca(2+) release (ryanodine) or reuptake [cyclopiazonic acid (CPA)]. The mature DA relaxes slightly during hypoxia (to 60% MAT) due to decreases in calcium L-channel-mediated Ca(2+) entry. Inhibitors of Rho kinase and tyrosine kinase inhibit both Ca(2+)-dependent and Ca(2+)-independent DA tension. Although Rho kinase activity may increase during gestation, immature DA develop lower tensions than mature DA, primarily because of differences in the way they process Ca(2+). Calcium L-channel expression increases with advancing gestation. Under normoxic conditions, differences in calcium L-channel-mediated Ca(2+) entry account for differences in tension between immature (60% MAT) and mature (70% MAT) DA. Under hypoxic conditions, differences in both calcium L-channel-dependent and calcium L-channel-independent Ca(2+) entry, account for differences in tension between immature (33% MAT) and mature (60% MAT) DA. Stimulation of Ca(2+) entry through reverse-mode Na(+)/Ca(2+) exchange or CPA-induced SOC channel activity constrict the DA and eliminate differences between immature and mature DA during both hypoxia and normoxia.

  19. Neural differentiation from embryonic stem cells in vitro :An overview of the signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jen-Hua Chuang; Li-Chu Tung; Yenshou Lin

    2015-01-01

    Neurons derived from embryonic stem cells (ESCs)have gained great merit in both basic research andregenerative medicine. Here we review and summarizethe signaling pathways that have been reported tobe involved in the neuronal differentiation of ESCs,particularly those associated with in vitro differentiation.The inducers and pathways explored include retinoicacid, Wnt/b-catenin, transforming growth factor/bonemorphogenetic protein, Notch, fibroblast growthfactor, cytokine, Hedgehog, c-Jun N-terminal kinase/mitogen-activated protein kinase and others. Someother miscellaneous molecular factors that have beenreported in the literature are also summarized anddiscussed. These include calcium, calcium receptor,calcineurin, estrogen receptor, Hox protein, ceramide,glycosaminioglycan, ginsenoside Rg1, opioids, two porechannel 2, nitric oxide, chemically defined medium, cellcellinteractions, and physical stimuli. The interaction orcrosstalk between these signaling pathways and factorswill be explored. Elucidating these signals in detail shouldmake a significant contribution to future progress in stemcell biology and allow, for example, better comparisonsto be made between differentiation in vivo and in vitro .Of equal importance, a comprehensive understandingof the pathways that are involved in the developmentof neurons from ESCs in vitro will also accelerate theirapplication as part of translational medicine.

  20. Signalling pathways induced in cells exposed to medium from irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, F.M.; Maguire, P. (Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin (Ireland)); McClean, B.; Seymour, C.; Mothersill, C. (St Luke' s Hospital, Dublin (Ireland))

    2008-12-15

    In recent years, radiation induced bystander effects have been reported in cells which were not themselves irradiated but were either in the vicinity of irradiated cells or exposed to medium from irradiated cells. The effects have been clearly shown to occur both in vivo and in vitro. This work has led to a paradigm shift in radiobiology over the last 5 - 10 years. The target theory of radiation induced effects is now being challenged because of an increasing number of studies which demonstrate non(DNA)-targeted effects. These effects appear to be particularly important at low doses. Considerable evidence now exists relating to radiation-induced bystander effects but the mechanisms involved in the transduction of the signal are still unclear. Cell - cell communication through gap junctions and / or secretion of a cytotoxic factor into the medium are thought to be involved in the transduction of the bystander signal. Oxidative metabolism has been shown to be important in both mechanisms. Signalling pathways leading to apoptosis, such as calcium, MAP kinase, mitochondrial and reactive oxygen species (ROS) signalling are discussed. The importance of oxidative metabolism and calcium signalling in bystander responses are demonstrated. Further investigations of these signalling pathways may aid in the identification of novel therapeutic targets. (orig.)

  1. Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores.

    Science.gov (United States)

    Gobin, V; De Bock, M; Broeckx, B J G; Kiselinova, M; De Spiegelaere, W; Vandekerckhove, L; Van Steendam, K; Leybaert, L; Deforce, D

    2015-09-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have recently been shown to exert anti-inflammatory and immunosuppressive effects. Although the effects on cytokine secretion, proliferation and viability of T lymphocytes have been extensively characterized, little is known about the mechanism behind these effects. It is well known that Ca(2+) signaling is an important step in the signaling transduction pathway following T cell receptor activation. Therefore, we investigated if fluoxetine interferes with Ca(2+) signaling in Jurkat T lymphocytes. Fluoxetine was found to suppress Ca(2+) signaling in response to T cell receptor activation. Moreover, fluoxetine was found to deplete intracellular Ca(2+) stores, thereby leaving less Ca(2+) available for release upon IP3- and ryanodine-receptor activation. The Ca(2+)-modifying effects of fluoxetine are not related to its capability to block the serotonin transporter, as even a large excess of 5HT did not abolish the effects. In conclusion, these data show that fluoxetine decreases IP3- and ryanodine-receptor mediated Ca(2+) release in Jurkat T lymphocytes, an effect likely to be at the basis of the observed immunosuppression.

  2. Astroglial calcium signaling displays short-term plasticity and adjusts synaptic efficacy

    Directory of Open Access Journals (Sweden)

    Jeremie eSibille

    2015-05-01

    Full Text Available Astrocytes are dynamic signaling brain elements able to sense neuronal inputs and to respond by complex calcium signals, which are thought to represent their excitability. Such signaling has been proposed to modulate, or not, neuronal activities ranging from basal synaptic transmission to epileptiform discharges. However, whether calcium signaling in astrocytes exhibits activity-dependent changes and acutely modulates short-term synaptic plasticity is currently unclear. We here show, using dual recordings of astroglial calcium signals and synaptic transmission, that calcium signaling in astrocytes displays, concomitantly to excitatory synapses, short-term plasticity in response to prolonged repetitive and tetanic stimulations of Schaffer collaterals. We also found that acute inhibition of calcium signaling in astrocytes by intracellular calcium chelation rapidly potentiates excitatory synaptic transmission and short-term plasticity of Shaffer collateral CA1 synapses, i.e. paired-pulse facilitation and responses to tetanic and prolonged repetitive stimulation. These data reveal that calcium signaling of astrocytes is plastic and down-regulates basal transmission and short-term plasticity of hippocampal CA1 glutamatergic synapses.

  3. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Jian-xin SHEN; Jerrel L YAKEL

    2009-01-01

    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  4. Evolutionary conservation of plant gibberellin signalling pathway components

    Directory of Open Access Journals (Sweden)

    Reski Ralf

    2007-11-01

    Full Text Available Abstract Background: Gibberellins (GA are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.

  5. Modeling of [Formula: see text]-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP.

    Science.gov (United States)

    Li, Long-Fei; Xiang, Cheng; Qin, Kai-Rong

    2015-10-01

    The calcium signaling plays a vital role in flow-dependent vascular endothelial cell (VEC) physiology. Variations in fluid shear stress and ATP concentration in blood vessels can activate dynamic responses of cytosolic-free [Formula: see text] through various calcium channels on the plasma membrane. In this paper, a novel dynamic model has been proposed for transient receptor potential vanilloid 4 [Formula: see text]-mediated intracellular calcium dynamics in VECs induced by fluid shear stress and ATP. Our model includes [Formula: see text] signaling pathways through P2Y receptors and [Formula: see text] channels (indirect mechanism) and captures the roles of the [Formula: see text] compound channels in VEC [Formula: see text] signaling in response to fluid shear stress (direct mechanism). In particular, it takes into account that the [Formula: see text] compound channels are regulated by intracellular [Formula: see text] and [Formula: see text] concentrations. The simulation studies have demonstrated that the dynamic responses of calcium concentration produced by the proposed model correlate well with the existing experimental observations. We also conclude from the simulation studies that endogenously released ATP may play an insignificant role in the process of intracellular [Formula: see text] response to shear stress.

  6. Elevating calcium in Th2 cells activates multiple pathways to induce IL-4 transcription and mRNA stabilization

    OpenAIRE

    Guo, Liying; Joseph F. Urban; Zhu, Jinfang; Paul, William E.

    2008-01-01

    PMA and ionomycin cause T cell cytokine production. We report that ionomycin alone induces IL-4 and IFNγ, but not IL-2, from in vivo and in vitro generated murine Th2 and Th1 cells. Ionomycin-induced cytokine production requires nuclear factor of activated T cells (NFAT), p38; and calmodulin-dependent kinase IV (CaMKIV). Ionomycin induces p38 phosphorylation through a calcium-dependent, cyclosporine A-inhibitable pathway. “Knocking-down” apoptosis signal-regulating kinase 1 (ASK1) inhibits io...

  7. Calcium and cell death signaling in neurodegeneration and aging

    Directory of Open Access Journals (Sweden)

    Soraya Smaili

    2009-09-01

    Full Text Available Transient increase in cytosolic (Cac2+ and mitochondrial Ca2+ (Ca m2+ are essential elements in the control of many physiological processes. However, sustained increases in Ca c2+ and Ca m2+ may contribute to oxidative stress and cell death. Several events are related to the increase in Ca m2+, including regulation and activation of a number of Ca2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER play pivotal roles in the maintenance of intracellular Ca2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes maylead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.Aumentos transientes no cálcio citosólico (Ca c2+ e mitocondrial (Ca m2+ são elementos essenciais no controle de muitos processos fisiológicos. No entanto, aumentos sustentados do Ca c2+ e do Ca m2+ podem contribuir para o estresse oxidativo ea morte celular. Muitos eventos estão relacionados ao aumentono Ca c2+, incluindo a regulação e ativação de várias enzimas dependentes de Ca2+ como as fosfolipases, proteases e nucleases. A mitocôndria e o retículo endoplasmático têm um papel central na manutenção da homeostase intracellular de Ca c2+ e na regulação da morte celular. Várias evidências mostraram que, na presença de certos estímulos apoptóticos, a ativação dos processos mitocondriais pode promover a liberação de citocromo c, seguida da ativação de caspases, fragmentação nuclear e morte celular por apoptose. O objetivo desta revisão é mostrar como aumentos na sinalização de

  8. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum.

    Science.gov (United States)

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2012-01-10

    Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.

  9. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India); Patra, Samir Kumar, E-mail: samirp@nitrkl.ac.in [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  10. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    International Nuclear Information System (INIS)

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  11. Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction.

    Science.gov (United States)

    Macia, Javier; Regot, Sergi; Peeters, Tom; Conde, Núria; Solé, Ricard; Posas, Francesc

    2009-01-01

    Appropriate regulation of the Hog1 mitogen-activated protein kinase (MAPK) pathway is essential for cells to survive osmotic stress. Here, we show that the two sensing mechanisms upstream of Hog1 display different signaling properties. The Sho1 branch is an inducible nonbasal system, whereas the Sln1 branch shows high basal signaling that is restricted by a MAPK-mediated feedback mechanism. A two-dimensional mathematical model of the Snl1 branch, including high basal signaling and a Hog1-regulated negative feedback, shows that a system with basal signaling exhibits higher efficiency, with faster response times and higher sensitivity to variations in external signals, than would systems without basal signaling. Analysis of two other yeast MAPK pathways, the Fus3 and Kss1 signaling pathways, indicates that high intrinsic basal signaling may be a general property of MAPK pathways allowing rapid and sensitive responses to environmental changes. PMID:19318625

  12. Calcium Messenger Heterogeneity: A Possible Signal for Spike-Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Stefan Mihalas

    2011-01-01

    Full Text Available Calcium concentrations as well as time courses have been used to model the signaling cascades leading to changes in the strength of synaptic connections. Previous models consider the dendritic spines as uniform compartments regarding calcium signaling. However calcium concentrations can vary drastically on distances much smaller than typical spine sizes, and often downstream targets of calcium signals are often found exactly in these calcium nanodomains. Even though most downstream targets are activated by calcium via calmodulin, which is a diffusive molecule, the capacity of calmodulin to bind to its targets even when it is not fully loaded with calcium, allows its downstream cascade to be highly local. In this study, a model is proposed which uses the heterogeneity of calcium concentrations as a signal for spike-timing-dependent plasticity. The model is minimalistic and includes three sources of calcium in spines: NMDA receptors (NMDARs and voltage gated calcium channels (VGCCs and IP3 receptors (IP3Rs. It is based on the biochemical cascades and assumption of spatial locations of four calcium-dependent enzymes: calcium/calmodulin-dependent protein kinase II (CaMKII located near NMDARs, calcineurin (CaN located near VGCCs, cyclic nucleotide phosphodiesterase (PDE located near IP3Rs or NMDARs and adenylyl cyclase (AC, located between VDCCs and NMDARs. To quantify the changes in synaptic weights the model also includes a simple description of AMPA receptors insertion in the membrane and docking to the postsynaptic density (PSD. Two parameters of the model are tuned such that weight changes produced by either pre or postsynaptic firing alone are minimal. The model reproduces the typical shape of spike timing dependent plasticity (STDP for spike doublets. If PDE is located near IP3Rs, the behavior for spike triplets is consistent with that observed in hippocampal cell culture; if near NMDAR, the behavior is similar to that observed in cortical L2

  13. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne;

    2003-01-01

    in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal...

  14. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response calmodulin-binding transcription factor AtSR1/CAMTA3

    Science.gov (United States)

    Calcium/calmodulin (Ca2+/CaM) has long been considered a crucial component in wound signaling pathway. However, no functional significance of Ca2+/CaM-binding proteins has been identified in plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca2+/CaM-bindi...

  15. The signal transduction pathway in the proliferation of airway smooth muscle cells induced by urotensin Ⅱ

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 姚婉贞; 庞永政; 唐朝枢

    2004-01-01

    Background Human urotensin Ⅱ (UⅡ) is the most potent mammalian vasoconstrictor identified so far. Our previous study showed that UⅡ is a potent mitogen of airway smooth muscle cells (ASMC) inducing ASMC proliferation in a dose-dependent manner. The signal transduction pathway of UⅡ mitogenic effect remains to be clarified. This study was conducted to investigate the signal transduction pathway in the proliferation of ASMC induced by UⅡ.Methods In primary cultures of rat ASMCs, activities of protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and calcineurin (CaN) induced by UⅡ were measured. The effect of CaN on PKC and MAPK was studied by adding cyclosporin A (CsA), a specific inhibitor of CaN. Using H7 and PD98059, inhibitors of PKC and MAPK, respectively, to study the effect of PKC and MAPK on CaN. The cytosolic free calcium concentration induced by UⅡ was measured using Fura-2/AM. Results UⅡ 10-7 mol/L stimulated ASMC PKC and MAPK activities by 44% and 24% (P0.05). CsA 10-6 mol/L inhibited UⅡ-stimulated PKC activity by 14% (P0.05).Conclusions UⅡ increases cytosolic free calcium concentration and activates PKC, MAPK and CaN. The signal transduction pathway between PKC and CaN has cross-talk.

  16. Signaling transduction pathways involved in basophil adhesion and histamine release

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles of β1 andβ2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK)1/2 in basophil adhesion and histamine release (HR). Methods Basophils (purity of 10%-50%) were preincubated with anti-CD29 or anti-CD18 blocking antibodies before used for adhesion study. Basophils were preincubated with the pharmacological inhibitors wortmannin, PP1, PD98059 before used for adhesion and HR study. Cell adherence to bovine serum albumin (BSA) or fibronectin (Fn) was monitored using cell associated histamine as a basophil marker and the histamine was measured by the glass fiber assay.Results Basophil spontaneous adhesion to Fn was inhibited by anti-CD29. Interleukin (IL)-3, granulocyte/macrophage colony stimulating factor (GM-CSF) induced adhesion to BSA was inhibited by anti-CD18. Wortmannin at 1 μmol/L and PP1 at 20 μmol/L strongly interfered with, whereas PD98059 at 50 μmol/L weakly inhibited basophil spontaneous adhesion to Fn. One μmol/L wortmannin strongly inhibited IL-3, IL-5, GM-CSF and anti-IgE induced adhesion to BSA. PP1 at 20 μmol/L partly inhibited anti-IgE induced adhesion. Fifty μmol/L PD98059 marginally inhibited IL-5, weakly inhibited anti-IgE, partly inhibited GM-CSF induced adhesion. Wortmannin, PP1 and PD98059 inhibited anti-IgE (1:100 or 1:1000) induced basophil HR in a dose dependent manner. They inhibited calcium ionophore A23187 (10 μmol/L, 5 μmol/L) induced basophil HR in a dose dependent manner, but to different extend with PP1 being the most efficient.Conclusions Basophil spontaneous adhesion to Fn is mediated by β1-integrins whereas cytokine induced adhesion

  17. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    Science.gov (United States)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  18. Modelling and Analysis of Biochemical Signalling Pathway Cross-talk

    Directory of Open Access Journals (Sweden)

    Robin Donaldson

    2010-02-01

    Full Text Available Signalling pathways are abstractions that help life scientists structure the coordination of cellular activity. Cross-talk between pathways accounts for many of the complex behaviours exhibited by signalling pathways and is often critical in producing the correct signal-response relationship. Formal models of signalling pathways and cross-talk in particular can aid understanding and drive experimentation. We define an approach to modelling based on the concept that a pathway is the (synchronising parallel composition of instances of generic modules (with internal and external labels. Pathways are then composed by (synchronising parallel composition and renaming; different types of cross-talk result from different combinations of synchronisation and renaming. We define a number of generic modules in PRISM and five types of cross-talk: signal flow, substrate availability, receptor function, gene expression and intracellular communication. We show that Continuous Stochastic Logic properties can both detect and distinguish the types of cross-talk. The approach is illustrated with small examples and an analysis of the cross-talk between the TGF-b/BMP, WNT and MAPK pathways.

  19. Temporal and evolutionary dynamics of two-component signaling pathways.

    Science.gov (United States)

    Salazar, Michael E; Laub, Michael T

    2015-04-01

    Bacteria sense and respond to numerous environmental signals through two-component signaling pathways. Typically, a given stimulus will activate a sensor histidine kinase to autophosphorylate and then phosphotransfer to a cognate response regulator, which can mount an appropriate response. Although these signaling pathways often appear to be simple switches, they can also orchestrate surprisingly sophisticated and complex responses. These temporal dynamics arise from several key regulatory features, including the bifunctionality of histidine kinases as well as positive and negative feedback loops. Two-component signaling pathways are also dynamic on evolutionary time-scales, expanding dramatically in many species through gene duplication and divergence. Here, we review recent work probing the temporal and evolutionary dynamics of two-component signaling systems. PMID:25589045

  20. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors.

    Science.gov (United States)

    Hamby, Mary E; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H; Khakh, Baljit S; Sofroniew, Michael V

    2012-10-17

    Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2ry1, Gnao1, Gng7), but some up (for example, P2ry14, P2ry6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs.

  1. Actin filaments as the fast pathways for calcium ions involved in auditory processes

    Indian Academy of Sciences (India)

    Miljko V Sataric; Dalibor L Sekulic; Bogdan M Sataric

    2015-09-01

    We investigated the polyelectrolyte properties of actin filaments which are in interaction with myosin motors, basic participants in mechano-electrical transduction in the stereocilia of the inner ear. Here, we elaborated a model in which actin filaments play the role of guides or pathways for localized flow of calcium ions. It is well recognized that calcium ions are implicated in tuning of actin-myosin cross-bridge interaction, which controls the mechanical property of hair bundle. Actin filaments enable much more efficient delivery of calcium ions and faster mechanism for their distribution within the stereocilia. With this model we were able to semiquantitatively explain experimental evidences regarding the way of how calcium ions tune the mechanosensitivity of hair cells.

  2. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  3. Retinoic acid suppresses the canonical Wnt signaling pathway in embryonic stem cells and activates the noncanonical Wnt signaling pathway

    Science.gov (United States)

    Osei-Sarfo, Kwame; Gudas, Lorraine J.

    2014-01-01

    Embryonic stem cells (ESCs) have both the ability to self-renew and to differentiate into various cell lineages. Retinoic acid (RA), a metabolite of Vitamin A, has a critical function in initiating lineage differentiation of ESCs through binding to the retinoic acid receptors (RARs). Additionally, the Wnt signaling pathway plays a role in pluripotency and differentiation, depending on the activation status of the canonical and noncanonical pathways. The activation of the canonical Wnt signaling pathway, which requires the nuclear accumulation of β-catenin and its interaction with Tcf1/Lef at Wnt response elements, is involved in ESC stemness maintenance. The noncanonical Wnt signaling pathway, through actions of Tcf3, can antagonize the canonical pathway. We show that RA activates the noncanonical Wnt signaling pathway, while concomitantly inhibiting the canonical pathway. RA increases the expression of ligands and receptors of the noncanonical Wnt pathway (Wnt 5a, 7a, Fzd2 and Fzd6), downstream signaling, and Tcf3 expression. RA reduces the phosphorylated β-catenin level by 4-fold, though total β-catenin levels don't change. We show that RA signaling increases the dissociation of Tcf1 and the association of Tcf3 at promoters of genes that regulate stemness (e.g. NR5A2,Lrh-1) or differentiation (eg. Cyr61, Zic5). Knockdown of Tcf3 increases Lrh-1 transcript levels in mESCs and prevents the RA-associated, ∼4-fold increase in Zic5, indicating that RA requires Tcf3 to effect changes in Zic5 levels. We demonstrate a novel role for RA in altering the activation of these two Wnt signaling pathways and show that Tcf3 mediates some actions of RA during differentiation. PMID:24648413

  4. Signaling pathway networks mined from human pituitary adenoma proteomics data

    Directory of Open Access Journals (Sweden)

    Zhan Xianquan

    2010-04-01

    Full Text Available Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins, comparative proteomic data (56 differentially expressed proteins, and nitroproteomic data (17 nitroproteins. There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a

  5. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  6. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  7. Cyclic adenosine monophosphate signal pathway in targeted therapy of lymphoma

    Institute of Scientific and Technical Information of China (English)

    DOU Ai-xia; WANG Xin

    2010-01-01

    Objective To review the role of cyclic adenosine monophosphate (cAMP) signal pathway in the pathogenesis oflymphoma and explore a potential lymphoma therapy targeted on this signaling pathway.Data sources The data cited in this review were mainly obtained from the articles listed in Medline and PubMed,published from January 1995 to June 2009. The search terms were "cAMP" and "lymphoma".Study selection Articles regarding the role of the cAMP pathway in apoptosis of lymphoma and associated cells and itspotential role in targeted therapy of lymphoma.Results In the transformation of lymphocytic malignancies, several signal pathways are involved. Among of them, thecAMP pathway has attracted increasing attention because of its apoptosis-inducing role in several lymphoma cells. cAMPpathway impairment is found to influence the prognosis of lymphoma. Targeted therapy to the cAMP pathway seems tobe a new direction for lymphoma treatment, aiming at restoring the cAMP function.Conclusions cAMP signal pathway has different effects on various lymphoma cells. cAMP analogues andphosphodiesterase 4B (PDE4B) inhibitors have potential clinical significance. However, many challenges remain inunderstanding the various roles of such agents.

  8. Microenvironment Dependent Photobiomodulation on Function-Specific Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Timon Cheng-Yi Liu

    2014-01-01

    Full Text Available Cellular photobiomodulation on a cellular function has been shown to be homeostatic. Its function-specific pathway mechanism would be further discussed in this paper. The signal transduction pathways maintaining a normal function in its function-specific homeostasis (FSH, resisting the activation of many other irrelative signal transduction pathways, are so sparse that it can be supposed that there may be normal function-specific signal transduction pathways (NSPs. A low level laser irradiation or monochromatic light may promote the activation of partially activated NSP and/or its redundant NSP so that it may induce the second-order phase transition of a function from its dysfunctional one far from its FSH to its normal one in a function-specific microenvironment and may also induce the first-order functional phase transition of the normal function from low level to high level.

  9. Targeting Signaling Pathways in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Johannes Haybaeck

    2013-05-01

    Full Text Available Ovarian carcinoma (OC is the most lethal gynecological malignancy. Response to platinum-based chemotherapy is poor in some patients and, thus, current research is focusing on new therapy options. The various histological types of OC are characterized by distinctive molecular genetic alterations that are relevant for ovarian tumorigenesis. The understanding of these molecular pathways is essential for the development of novel therapeutic strategies. Purpose: We want to give an overview on the molecular genetic changes of the histopathological types of OC and their role as putative therapeutic targets. In Depth Review of Existing Data: In 2012, the vascular endothelial growth factor (VEGF inhibitor, bevacizumab, was approved for OC treatment. Bevacizumab has shown promising results as single agent and in combination with conventional chemotherapy, but its target is not distinctive when analyzed before treatment. At present, mammalian target of rapamycin (mTOR inhibitors, poly-ADP-ribose polymerase (PARP inhibitors and components of the EGFR pathway are in the focus of clinical research. Interestingly, some phytochemical substances show good synergistic effects when used in combination with chemotherapy. Conclusion: Ongoing studies of targeted agents in conjunction with chemotherapy will show whether there are alternative options to bevacizumab available for OC patients. Novel targets which can be assessed before therapy to predict efficacy are needed. The assessment of therapeutic targets is continuously improved by molecular pathological analyses on tumor tissue. A careful selection of patients for personalized treatment will help to reduce putative side effects and toxicity.

  10. Role of Calcium Signaling in the Transcriptional Regulation of the Apicoplast Genome of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Sabna Cheemadan

    2014-01-01

    Full Text Available Calcium is a universal second messenger that plays an important role in regulatory processes in eukaryotic cells. To understand calcium-dependent signaling in malaria parasites, we analyzed transcriptional responses of Plasmodium falciparum to two calcium ionophores (A23187 and ionomycin that cause redistribution of intracellular calcium within the cytoplasm. While ionomycin induced a specific transcriptional response defined by up- or downregulation of a narrow set of genes, A23187 caused a developmental arrest in the schizont stage. In addition, we observed a dramatic decrease of mRNA levels of the transcripts encoded by the apicoplast genome during the exposure of P. falciparum to both calcium ionophores. Neither of the ionophores caused any disruptions to the DNA replication or the overall apicoplast morphology. This suggests that the mRNA downregulation reflects direct inhibition of the apicoplast gene transcription. Next, we identify a nuclear encoded protein with a calcium binding domain (EF-hand that is localized to the apicoplast. Overexpression of this protein (termed PfACBP1 in P. falciparum cells mediates an increased resistance to the ionophores which suggests its role in calcium-dependent signaling within the apicoplast. Our data indicate that the P. falciparum apicoplast requires calcium-dependent signaling that involves a novel protein PfACBP1.

  11. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling.

    Science.gov (United States)

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T S Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W; van Bodegom, Diederik; Weinstock, David M; Ziegler, Steven F; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24. PMID:24573880

  12. A Bioinformatics Resource for TWEAK-Fn14 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Mitali Bhattacharjee

    2012-01-01

    Full Text Available TNF-related weak inducer of apoptosis (TWEAK is a new member of the TNF superfamily. It signals through TNFRSF12A, commonly known as Fn14. The TWEAK-Fn14 interaction regulates cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, tissue remodeling and inflammation. Although TWEAK has been reported to be associated with autoimmune diseases, cancers, stroke, and kidney-related disorders, the downstream molecular events of TWEAK-Fn14 signaling are yet not available in any signaling pathway repository. In this paper, we manually compiled from the literature, in particular those reported in human systems, the downstream reactions stimulated by TWEAK-Fn14 interactions. Our manual amassment of the TWEAK-Fn14 pathway has resulted in cataloging of 46 proteins involved in various biochemical reactions and TWEAK-Fn14 induced expression of 28 genes. We have enabled the availability of data in various standard exchange formats from NetPath, a repository for signaling pathways. We believe that this composite molecular interaction pathway will enable identification of new signaling components in TWEAK signaling pathway. This in turn may lead to the identification of potential therapeutic targets in TWEAK-associated disorders.

  13. Signal transduction pathway profiling of individual tumor samples

    Directory of Open Access Journals (Sweden)

    Peterson Carsten

    2005-06-01

    Full Text Available Abstract Background Signal transduction pathways convey information from the outside of the cell to transcription factors, which in turn regulate gene expression. Our objective is to analyze tumor gene expression data from microarrays in the context of such pathways. Results We use pathways compiled from the TRANSPATH/TRANSFAC databases and the literature, and three publicly available cancer microarray data sets. Variation in pathway activity, across the samples, is gauged by the degree of correlation between downstream targets of a pathway. Two correlation scores are applied; one considers all pairs of downstream targets, and the other considers only pairs without common transcription factors. Several pathways are found to be differentially active in the data sets using these scores. Moreover, we devise a score for pathway activity in individual samples, based on the average expression value of the downstream targets. Statistical significance is assigned to the scores using permutation of genes as null model. Hence, for individual samples, the status of a pathway is given as a sign, + or -, and a p-value. This approach defines a projection of high-dimensional gene expression data onto low-dimensional pathway activity scores. For each dataset and many pathways we find a much larger number of significant samples than expected by chance. Finally, we find that several sample-wise pathway activities are significantly associated with clinical classifications of the samples. Conclusion This study shows that it is feasible to infer signal transduction pathway activity, in individual samples, from gene expression data. Furthermore, these pathway activities are biologically relevant in the three cancer data sets.

  14. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    Science.gov (United States)

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  15. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  16. Structural Biology of Wnt Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Wnt signals are involved in different processes in development such as segmentation, cell proliferation, and cell morphology. It is well known that dishevelled (DSH/DVL) proteins mediate Wnt signaling by regulating the level of-catenin, which binds to transcription factor such as T-cell factor and regulate transcription. DSH has three well defined domains. The N-terminal domain is referred to as DIX, a central domain called PDZ, and a domain called DEP located in the C-terminal of DSH. The DEP domain is conserved among a set of proteins that share the common ability to regulate various GTPases.Nuclear magnetic resonance spectroscopy revealed that the DEP domain of mouse DVL1 comprises a three-helix bundle, a β-hairpin “arm,” and two short β-strands at the C-terminal region. On the basis of our findings, we conclude that DEP interacts with regulators upstream of DVL via the strong electrostatic dipolarity on the molecule's surface created by Lys 434, Asp 445, and Asp 448; the electrostatic dipole and the putative membrane-binding site are at two different locations.

  17. Autophagy and the nutritional signaling pathway

    Directory of Open Access Journals (Sweden)

    Long HE,Shabnam ESLAMFAM,Xi MA,Defa LI

    2016-09-01

    Full Text Available During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1 and VPS34 (which encodes a class III phosphatidylinositol (PtdIns 3-kinase complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs. Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin and AMP-activated protein kinase (AMPK. AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.

  18. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish.

    Science.gov (United States)

    Yoo, Sa Kan; Freisinger, Christina M; LeBert, Danny C; Huttenlocher, Anna

    2012-10-15

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H(2)O(2) at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H(2)O(2). A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate "wound signals" that integrate early wound responses and late epimorphic regeneration.

  19. Using Proteomics To Elucidate Critical Signaling Pathways

    KAUST Repository

    Ahmed, Heba

    2012-11-01

    Despite important advances in the therapy of acute myeloid leukemia (AML) the majority of patients will die from their disease (Appelbaum, Rowe, Radich, & Dick, 2001). Characterization of the aberrant molecular pathways responsible for this malignancy provides a platform to discover alternative treatments to help alter the fate of patients. AML is characterized by a blockage in the differentiation of myeloid cells resulting in the accumulation of highly proliferating immature hematopoietic cells. Since treatments such as chemotherapy rarely destroy the leukemic cells entirely, differentiation induction therapy has become a very attractive treatment option. Interestingly, previous experiments have shown that ligation of CD44, a cell surface glycoprotein strongly expressed on all AML cells, with anti-CD44 monoclonal antibodies (mAbs) could reverse this block in differentiation of leukemic blasts regardless of the AML subtype. To expand the understanding of the cellular regulation and circuitry involved, we aim to apply quantitative phosphoproteomics to monitor dynamic changes in phosphorylation state in response to anti-CD44 treatment. Protein phosphorylation and dephosphorylation is a highly controlled biochemical process that responds to various intracellular and extracellular stimuli. As phosphorylation is a dynamic process, quantification of these phosphorylation events would be vastly insightful. The main objective of this project is to determine the differentiation-dependent phosphoproteome of AML cells upon treatment of cells with the anti-CD44 mAb.In these experiments, optimization of protein extraction, phosphopeptide enrichment and data processing and analysis has been achieved. The primary results show successful phosphoproteome extraction complemented with efficient phosphopeptide enrichment and informative data processing. Further quantification with stable isotope labeling techniques is anticipated to provide candidates for targeted therapy.

  20. Ca2+ signals induced from calcium stores in pancreatic islet β cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In single rat pancreatic β cells,using fura-2 microfluorometry to measure [Ca2+]i response upon different stimuli,the ways of calcium regulation have been studied.When the extracellular calcium concentration was 2.5 mmol/L,either 60 mmol/L KCl,20 mmol/L D-glucose or 0.1 mmol/L tolbutamide induced increase in [Ca2+]i.Such increase in [Ca2+]i was absent when the same stimuli were applied under zero extracellular calcium.These results indicate that the increase of [Ca2+]i is induced by the activation of voltage-dependent calcium channels in β cells.The manifold forms of [Ca2+]i change induced by glucose imply that the effects of glucose are complex.5 mmol/L caffeine or 5 mmol/L MCh increase the [Ca2+]i ,which is independent of the external calcium,suggesting that [Ca2+]i can be regulated by Ca2+ release from not only the IP3-sensitive but also the ryanodine sensitive calcium stores in β cells.The latency of Ca responses for IP3 pathway (5 s) is faster than that for ryanodine pathway (30 s).It is concluded that there are multiple calcium stores in rat pancreatic β cells.

  1. Hypertensive stretch regulates endothelial exocytosis of Weibel-Palade bodies through VEGF receptor 2 signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Zhenqian Hu; Xiaofan Han; Beibei Jiang; Rongli Zhang; Xiaoyu Zhang; Yao Lu

    2013-01-01

    Regulated endothelial exocytosis of Weibel-Palade bodies (WPBs),the first stage in leukocyte trafficking,plays a pivotal role in inflammation and injury.Acute mechanical stretch has been closely associated with vascular inflammation,although the precise mechanism is unknown.Here,we show that hypertensive stretch regulates the exocytosis of WPBs of endothelial ceils (ECs) through VEGF receptor 2 (VEGFR2) signaling pathways.Stretch triggers a rapid release (within minutes) of von Willebrand factor and interleukin-8 from WPBs in cultured human ECs,promoting the interaction between leukocytes and ECs through the translocation of P-selectin to the cell membrane.We further show that hypertensive stretch significantly induces P-selectin translocation of intact ECs and enhances leukocyte adhesion both ex vivo and in vivo.Stretch-induced endothelial exocytosis is mediated via a VEGFR2/PLCy1/calcium pathway.Interestingly,stretch also induces a negative feedback via a VEGFR2/Akt/nitric oxide pathway.Such dual effects are confirmed using pharmacological and genetic approaches in carotid artery segments,as well as in acute hypertensive mouse models.These studies reveal mechanical stretch as a potent agonist for endothelial exocytosis,which is modulated by VEGFR2 signaling.Thus,VEGFR2 signaling pathways may represent novel therapeutic targets in limiting hypertensive stretch-related inflammation.

  2. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata – Tropiduridae strengthen classification in lizard evolution

    Directory of Open Access Journals (Sweden)

    Garcia Célia RS

    2007-08-01

    Full Text Available Abstract Background We have previously reported that a Teiid lizard red blood cells (RBCs such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs, for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.

  3. PHLPP phosphatase:a key mediator integrating multiple signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Hui ZHONG

    2010-01-01

    @@ Cellular responses to bacterial or viral infections and to stress require rapid and accurate transmission of signals from cell-surface receptors to the nucleus (Karin and Hunter, 1995).These signaling pathways, relying on extensive protein phosphorylation events, lead to the activation of specific transcription factors that induce the expression of appropriate target genes.Among the activated transcription factors, nuclear factor KB (NF-KB)is essential for inflammation, immunity, cell proliferation and apoptosis.NF-KB requires a signaling pathway for activation.Such NF-KB-activating pathways can be triggered by a variety of extracellular stimuli, which lead to the phosphorylation and subsequent proteasomemediated degradation of inhibitory molecules, the inhibitor of NF-KB (hcB) proteins (Karin and Ben-Neriah, 2000).Activated NF-KB migrates into the nucleus to regulate the expression of multiple target genes.

  4. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels.

    Science.gov (United States)

    Zemkova, Hana; Tomić, Melanija; Kucka, Marek; Aguilera, Greti; Stojilkovic, Stanko S

    2016-04-01

    Transgenic mice expressing the tdimer2(12) form of Discosoma red fluorescent protein under control of the proopiomelanocortin gene's regulatory elements are a useful model for studying corticotrophs. Using these mice, we studied the ion channels and mechanisms controlling corticotroph excitability. Corticotrophs were either quiescent or electrically active, with a 22-mV difference in the resting membrane potential (RMP) between the 2 groups. In quiescent cells, CRH depolarized the membrane, leading to initial single spiking and sustained bursting; in active cells, CRH further facilitated or inhibited electrical activity and calcium spiking, depending on the initial activity pattern and CRH concentration. The stimulatory but not inhibitory action of CRH on electrical activity was mimicked by cAMP independently of the presence or absence of arachidonic acid. Removal of bath sodium silenced spiking and hyperpolarized the majority of cells; in contrast, the removal of bath calcium did not affect RMP but reduced CRH-induced depolarization, which abolished bursting electrical activity and decreased the spiking frequency but not the amplitude of single spikes. Corticotrophs with inhibited voltage-gated sodium channels fired calcium-dependent action potentials, whereas cells with inhibited L-type calcium channels fired sodium-dependent spikes; blockade of both channels abolished spiking without affecting the RMP. These results indicate that the background voltage-insensitive sodium conductance influences RMP, the CRH-depolarization current is driven by a cationic conductance, and the interplay between voltage-gated sodium and calcium channels plays a critical role in determining the status and pattern of electrical activity and calcium signaling.

  5. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  6. Zyxin links fat signaling to the hippo pathway.

    Directory of Open Access Journals (Sweden)

    Cordelia Rauskolb

    2011-06-01

    Full Text Available The Hippo signaling pathway has a conserved role in growth control and is of fundamental importance during both normal development and oncogenesis. Despite rapid progress in recent years, key steps in the pathway remain poorly understood, in part due to the incomplete identification of components. Through a genetic screen, we identified the Drosophila Zyxin family gene, Zyx102 (Zyx, as a component of the Hippo pathway. Zyx positively regulates the Hippo pathway transcriptional co-activator Yorkie, as its loss reduces Yorkie activity and organ growth. Through epistasis tests, we position the requirement for Zyx within the Fat branch of Hippo signaling, downstream of Fat and Dco, and upstream of the Yorkie kinase Warts, and we find that Zyx is required for the influence of Fat on Warts protein levels. Zyx localizes to the sub-apical membrane, with distinctive peaks of accumulation at intercellular vertices. This partially overlaps the membrane localization of the myosin Dachs, which has similar effects on Fat-Hippo signaling. Co-immunoprecipitation experiments show that Zyx can bind to Dachs and that Dachs stimulates binding of Zyx to Warts. We also extend characterization of the Ajuba LIM protein Jub and determine that although Jub and Zyx share C-terminal LIM domains, they regulate Hippo signaling in distinct ways. Our results identify a role for Zyx in the Hippo pathway and suggest a mechanism for the role of Dachs: because Fat regulates the localization of Dachs to the membrane, where it can overlap with Zyx, we propose that the regulated localization of Dachs influences downstream signaling by modulating Zyx-Warts binding. Mammalian Zyxin proteins have been implicated in linking effects of mechanical strain to cell behavior. Our identification of Zyx as a regulator of Hippo signaling thus also raises the possibility that mechanical strain could be linked to the regulation of gene expression and growth through Hippo signaling.

  7. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  8. A network map of Interleukin-10 signaling pathway.

    Science.gov (United States)

    Verma, Renu; Balakrishnan, Lavanya; Sharma, Kusum; Khan, Aafaque Ahmad; Advani, Jayshree; Gowda, Harsha; Tripathy, Srikanth Prasad; Suar, Mrutyunjay; Pandey, Akhilesh; Gandotra, Sheetal; Prasad, T S Keshava; Shankar, Subramanian

    2016-03-01

    Interleukin-10 (IL-10) is an anti-inflammatory cytokine with important immunoregulatory functions. It is primarily secreted by antigen-presenting cells such as activated T-cells, monocytes, B-cells and macrophages. In biologically functional form, it exists as a homodimer that binds to tetrameric heterodimer IL-10 receptor and induces downstream signaling. IL-10 is associated with survival, proliferation and anti-apoptotic activities of various cancers such as Burkitt lymphoma, non-Hodgkins lymphoma and non-small scell lung cancer. In addition, it plays a central role in survival and persistence of intracellular pathogens such as Leishmania donovani, Mycobacterium tuberculosis and Trypanosoma cruzi inside the host. The signaling mechanisms of IL-10 cytokine are not well explored and a well annotated pathway map has been lacking. To this end, we developed a pathway resource by manually annotating the IL-10 induced signaling molecules derived from literature. The reactions were categorized under molecular associations, activation/inhibition, catalysis, transport and gene regulation. In all, 37 molecules and 76 reactions were annotated. The IL-10 signaling pathway can be freely accessed through NetPath, a resource of signal transduction pathways previously developed by our group. PMID:26253919

  9. Sonic Hedgehog signaling pathway in primary liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    Lian-Yi Guo; Pei Liu; Ying Wen; Wei Cui; Ying Zhou

    2014-01-01

    Objective:To investigate clinical significance ofSonicHedgehog(SHH) signaling pathway molecularShh,Smo andGli2 in primary hepatocellular carcinoma(HCC) tissue.Methods:A total of30HCC tissue samples were collected.Protein expression ofSHH signaling pathway moleculesShh,Smo andGli2 inHCC tissues and para - carcinoma tissue were detected by using immunohistochemical method.Cirrhosis and normal liver tissue specimens were observed as control to analyze the expression ofSHH signaling pathway molecularShh,Smo andGli2 mRNA inHCC tissues and corresponding para-carcinoma tissues and its relationship with the onset of HCC.Results:There was no expression ofShh,Smo andGli2 protein in normal liver tissue, while their positive rates were63.3%,76.7% and66.7% inHCC tissues, respectively, with asignificantly higher expression level than that in the para - carcinoma tissue(P0.05);Shh andSmo protein was detected in part of cirrhosis with positive expression, butGli2 protein was not observable in cirrhosis tissues.Conclusions:InHCC tissues, the high expression level ofSHH signaling pathway molecules signal peptide(Shh), membrane protein receiptor(Smo) and nuclear transcription molecular(Gli2) can be indicators of the onset of liver cancer.

  10. Measurement and analysis of calcium signaling in heterogeneous cell cultures.

    Science.gov (United States)

    Richards, Gillian R; Jack, Andrew D; Platts, Amy; Simpson, Peter B

    2006-01-01

    High-content imaging platforms capable of studying kinetic responses at a single-cell level have elevated kinetic recording techniques from labor-intensive low-throughput experiments to potential high-throughput screening assays. We have applied this technology to the investigation of heterogeneous cell cultures derived from primary neural tissue. The neuronal cultures mature into a coupled network and display spontaneous oscillations in intracellular calcium, which can be modified by the addition of pharmacological agents. We have developed algorithms to perform Fourier analysis and quantify both the degree of synchronization and the effects of modulators on the oscillations. Functional and phenotypic experiments can be combined using this approach. We have used post-hoc immunolabeling to identify subpopulations of cells in cocultures and to dissect the calcium responses of these cells from the population response. The combination of these techniques represents a powerful tool for drug discovery.

  11. Clinical Implications of Hedgehog Pathway Signaling in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Daniel L. Suzman

    2015-09-01

    Full Text Available Activity in the Hedgehog pathway, which regulates GLI-mediated transcription, is important in organogenesis and stem cell regulation in self-renewing organs, but is pathologically elevated in many human malignancies. Mutations leading to constitutive activation of the pathway have been implicated in medulloblastoma and basal cell carcinoma, and inhibition of the pathway has demonstrated clinical responses leading to the approval of the Smoothened inhibitor, vismodegib, for the treatment of advanced basal cell carcinoma. Aberrant Hedgehog pathway signaling has also been noted in prostate cancer with evidence suggesting that it may render prostate epithelial cells tumorigenic, drive the epithelial-to-mesenchymal transition, and contribute towards the development of castration-resistance through autocrine and paracrine signaling within the tumor microenvironment and cross-talk with the androgen pathway. In addition, there are emerging clinical data suggesting that inhibition of the Hedgehog pathway may be effective in the treatment of recurrent and metastatic prostate cancer. Here we will review these data and highlight areas of active clinical research as they relate to Hedgehog pathway inhibition in prostate cancer.

  12. Redefining Signaling Pathways with an Expanding Single-Cell Toolbox.

    Science.gov (United States)

    Gaudet, Suzanne; Miller-Jensen, Kathryn

    2016-06-01

    Genetically identical cells respond heterogeneously to uniform environmental stimuli. Consequently, investigating the signaling networks that control these cell responses using 'average' bulk cell measurements can obscure underlying mechanisms and misses information emerging from cell-to-cell variability. Here we review recent technological advances including live-cell fluorescence imaging-based approaches and microfluidic devices that enable measurements of signaling networks, dynamics, and responses in single cells. We discuss how these single-cell tools have uncovered novel mechanistic insights for canonical signaling pathways that control cell proliferation (ERK), DNA-damage responses (p53), and innate immune and stress responses (NF-κB). Future improvements in throughput and multiplexing, analytical pipelines, and in vivo applicability will all significantly expand the biological information gained from single-cell measurements of signaling pathways. PMID:26968612

  13. Redefining Signaling Pathways with an Expanding Single-Cell Toolbox.

    Science.gov (United States)

    Gaudet, Suzanne; Miller-Jensen, Kathryn

    2016-06-01

    Genetically identical cells respond heterogeneously to uniform environmental stimuli. Consequently, investigating the signaling networks that control these cell responses using 'average' bulk cell measurements can obscure underlying mechanisms and misses information emerging from cell-to-cell variability. Here we review recent technological advances including live-cell fluorescence imaging-based approaches and microfluidic devices that enable measurements of signaling networks, dynamics, and responses in single cells. We discuss how these single-cell tools have uncovered novel mechanistic insights for canonical signaling pathways that control cell proliferation (ERK), DNA-damage responses (p53), and innate immune and stress responses (NF-κB). Future improvements in throughput and multiplexing, analytical pipelines, and in vivo applicability will all significantly expand the biological information gained from single-cell measurements of signaling pathways.

  14. Calcium as a branching signal in Neurospora crassa.

    OpenAIRE

    Reissig, J L; Kinney, S G

    1983-01-01

    The divalent cation ionophore A23187 was found to induce apical branching in Neurospora crassa. Optimal effects were obtained by treatment with 0.1 mM ionophore for 30 min. Branching first became manifest during or shortly after treatment; successive rounds of branching could be observed at later times. Calcium starvation of the mycelium markedly reduced its subsequent response to the ionophore, whereas starvation for other divalent cations had no detectable effect. The branching response was...

  15. Band-pass processing in a GPCR signaling pathway selects for NFAT transcription factor activation.

    Science.gov (United States)

    Sumit, M; Neubig, R R; Takayama, S; Linderman, J J

    2015-11-01

    Many biological processes are rhythmic and proper timing is increasingly appreciated as being critical for development and maintenance of physiological functions. To understand how temporal modulation of an input signal influences downstream responses, we employ microfluidic pulsatile stimulation of a G-protein coupled receptor, the muscarinic M3 receptor, in single cells with simultaneous real-time imaging of both intracellular calcium and NFAT nuclear localization. Interestingly, we find that reduced stimulation with pulses of ligand can give more efficient transcription factor activation, if stimuli are timed appropriately. Our experiments and computational analyses show that M3 receptor-induced calcium oscillations form a low pass filter while calcium-induced NFAT translocation forms a high pass filter. The combination acts as a band-pass filter optimized for intermediate frequencies of stimulation. We demonstrate that receptor desensitization and NFAT translocation rates determine critical features of the band-pass filter and that the band-pass may be shifted for different receptors or NFAT dynamics. As an example, we show that the two NFAT isoforms (NFAT4 and NFAT1) have shifted band-pass windows for the same receptor. While we focus specifically on the M3 muscarinic receptor and NFAT translocation, band-pass processing is expected to be a general theme that applies to multiple signaling pathways. PMID:26374065

  16. Phylogenetic diversity of stress signalling pathways in fungi

    Directory of Open Access Journals (Sweden)

    Stansfield Ian

    2009-02-01

    Full Text Available Abstract Background Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. Results The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol, oxidative (H2O2 and menadione and cell wall stresses (Calcofluor White and Congo Red. There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. Conclusion Our

  17. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  18. Copper as a key regulator of cell signalling pathways.

    Science.gov (United States)

    Grubman, Alexandra; White, Anthony R

    2014-05-22

    Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.

  19. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei, E-mail: twwang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah, E-mail: jyyu@ym.edu.tw [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  20. Modulation of the Ca(2+) signaling pathway by celangulin I in the central neurons of Spodoptera exigua.

    Science.gov (United States)

    Li, Yuxin; Lian, Xihong; Wan, Yinging; Wang, Duoyi; Chen, Wei; Di, Fengjuan; Wu, Wenjun; Li, Zhengming

    2016-02-01

    Celangulin I is an insecticidal component isolated from Chinese bittersweet Celastrus angulatus. The present study explored the possible effects of celangulin I on the calcium signaling pathway, especially on the L-type Ca(2+) channel and the calcium channels in the endoplasmic reticulum in the central neurons isolated from the third instar larvae of Spodoptera exigua using whole-cell patch-clamp and calcium imaging technique. The results showed that celangulin I could activate the high voltage-gated calcium channel at the concentration of 150μM. The peak currents were increased by 17% of the initial value at the end of the 10-min recording after treated with celangulin I. The rises of intracellular calcium ion concentration ([Ca(2+)]i) in neurons treated by celangulin I showed that the effects of celangulin I were concentration-dependent. Activation of the RyRs by ryanodine decreased the calcium release induced by celangulin I, indicating that celangulin I exerts effect on insect RyRs. Furthermore, we also provided evidence for the first time that celangulin I activates inositol 1,4,5-trisphosphate (IP3) sensitive intracellular calcium release channels in the endoplasmic reticulum third instar larvae neurons of S. exigua. Plausibly, these experimental results can explain the characteristic symptoms of anesthesia and paralysis in celangulin I treated insects. PMID:26821661

  1. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regula...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of

  2. DMPD: Toll-like receptors. II. Distribution and pathways involved in TLR signalling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16419614 Toll-like receptors. II. Distribution and pathways involved in TLR signall...ceptors. II. Distribution and pathways involved in TLR signalling. PubmedID 16419614 Title Toll-like recepto...rs. II. Distribution and pathways involved in TLR signalling. Authors Sandor F, B

  3. DMPD: Dual role of oxidized LDL on the NF-kappaB signaling pathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15346645 Dual role of oxidized LDL on the NF-kappaB signaling pathway. Robbesyn F, ... role of oxidized LDL on the NF-kappaB signaling pathway. PubmedID 15346645 Title Dual role of oxidized LDL ...on the NF-kappaB signaling pathway. Authors Robbesyn F, Salvayre R, Negre-Salvayr

  4. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  5. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    Energy Technology Data Exchange (ETDEWEB)

    Magno, Aaron L. [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ingley, Evan [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Brown, Suzanne J. [Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Conigrave, Arthur D. [School of Molecular Bioscience, University of Sydney, New South Wales 2000 (Australia); Ratajczak, Thomas [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ward, Bryan K., E-mail: bryanw@cyllene.uwa.edu.au [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia)

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  6. Hedgehog signaling pathway in small bovine ovarian follicles

    Science.gov (United States)

    The hedgehog signaling pathway is involved in the regulation of cell proliferation, differentiation, and turnover in a variety of mammalian embryonic and adult tissues including bovine ovarian granulosa and theca cells. Binding of hedgehog to the patch receptor derepresses smoothened resulting in t...

  7. Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways.

    Science.gov (United States)

    An, Songzhu Michael; Ding, Qiang; Zhang, Jie; Xie, JingYi; Li, LingSong

    2014-06-01

    Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions. In stem cells, a small number of pathways, notably those of TGF-β/BMP, Hedgehog, Notch, and Wnt, are responsible for the regulation of pluripotency and differentiation. During embryonic development, these pathways govern cell fate specifications as well as the formation of tissues and organs. In adulthood, their normal functions are important for tissue homeostasis and regeneration, whereas aberrations result in diseases, such as cancer and degenerative disorders. In complex biological systems, stem cell signaling pathways work in concert as a network and exhibit crosstalk, such as the negative crosstalk between Wnt and Notch. Over the past decade, genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways. Indeed, discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry. Remarkable progress has been made and several promising drug candidates have entered into clinical trials. This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.

  8. Cellular metabolic and autophagic pathways: traffic control by redox signaling.

    Science.gov (United States)

    Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua

    2013-10-01

    It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.

  9. New insights into Reelin-mediated signaling pathways

    Directory of Open Access Journals (Sweden)

    Gum Hwa eLee

    2016-05-01

    Full Text Available Reelin, a multifunctional extracellular protein that is important for mammalian brain development and function, is secreted by different cell types in the prenatal or postnatal brain. The spatiotemporal regulation of Reelin expression and distribution during development relates to its multifaceted function in the brain. Prenatally Reelin controls neuronal radial migration and proper positioning in cortical layers, whereas postnatally Reelin promotes neuronal maturation, synaptic formation and plasticity. The molecular mechanisms underlying the distinct biological functions of Reelin during and after brain development involve unique and overlapping signaling pathways that are activated following Reelin binding to its cell surface receptors. Distinct Reelin ligand isoforms, such as the full-length protein or fragments generated by proteolytic cleavage differentially affect the activity of downstream signaling pathways. In this review, we discuss recent advances in our understanding of the signaling transduction pathways activated by Reelin that regulate different aspects of brain development and function. A core signaling machinery, including ApoER2/VLDLR receptors, Src/Fyn kinases, and the adaptor protein Dab1, participates in all known aspects of Reelin biology. However, distinct downstream mechanisms, such as the Crk/Rap1 pathway and cell adhesion molecules, play crucial roles in the control of neuronal migration, whereas the PI3K/Akt/mTOR pathway appears to be more important for dendrite and spine development. Finally, the NMDAR and an unidentified receptor contribute to the activation of the MEK/Erk1/2 pathway leading to the upregulation of genes involved in synaptic plasticity and learning. This knowledge may provide new insight into neurodevelopmental or neurodegenerative disorders that are associated with Reelin dysfunction.

  10. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    Science.gov (United States)

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation. PMID:26378473

  11. Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow

    CERN Document Server

    Buibas, Marius; Nizar, Krystal; Silva, Gabriel A

    2009-01-01

    An optical flow gradient algorithm was applied to spontaneously forming networks of neurons and glia in culture imaged by fluorescence optical microscopy in order to map functional calcium signaling with single pixel resolution. Optical flow estimates the direction and speed of motion of objects in an image between subsequent frames in a recorded digital sequence of images (i.e. a movie). Computed vector field outputs by the algorithm were able to track the spatiotemporal dynamics of calcium signaling patterns. We begin by briefly reviewing the mathematics of the optical flow algorithm, describe how to solve for the displacement vectors, and how to measure their reliability. We then compare computed flow vectors with manually estimated vectors for the progression of a calcium signal recorded from representative astrocyte cultures. Finally, we applied the algorithm to preparations of primary astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in order to illustrate the capability of the ...

  12. The role of phosphatidylinositol signaling pathway in regulating serotonin-induced oocyte maturation in Mercenaria mercenaria

    Institute of Scientific and Technical Information of China (English)

    WANG Qing; ZHANG Tao

    2011-01-01

    Serotonin (5-HT) has been found to stimulate meiotic maturation of oocytes in many molluscs. During maturation, several signaling pathways are involved, especially the phosphatidylinositol and cAMP pathways. In order to examine the possible role of the phosphatidylinositol signaling pathway in regulating oocyte maturation in Mercenaria mercenaria, the effects of the activator/inhibitor of phospholipase (PLC) and protein kinase C (PKC) on serotonin-induced maturation were studied. Results show that high-concentrations of neomycin (inhibitor of PLC) blocked oocyte maturation, while 9, 10-dimethyl- 1, 2-benzanthracene (DMBA, activator of PLC) promoted oocyte maturation in the presence of serotonin. It was also found that in the presence of serotonin, phorbol 12-myristate 13-acetate (PMA,activator of PKC) inhibited oocyte maturation, while sphingosine (inhibitor of PKC) stimulated oocyte maturation. These results indicate that serotonin-induced oocyte maturation requires the activation of the phosphatidylinositol pathway. Decrease of PLC inhibited serotonin-induced oocyte maturation, whereas a decrease of PKC stimulated the maturation. Thus, our study indicates that serotonin promotes maturation of M. mercenaria oocytes through PLC stimulated increase in calcium ion concentration via inositol-1,4, 5-trisphosphate (IP3) but not PKC.

  13. Calcium homeostasis and cone signaling are regulated by interactions between calcium stores and plasma membrane ion channels.

    Directory of Open Access Journals (Sweden)

    Tamas Szikra

    Full Text Available Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca(2+ entry (SOCE to Ca(2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn(2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca(2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca(2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca(2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca(2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca(2+ channels. Exposure to MRS 1845 resulted in approximately 40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca(2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca(2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.

  14. Key cancer cell signal transduction pathways as therapeutic targets.

    Science.gov (United States)

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  15. Current perspectives of the signaling pathways directing neural crest induction.

    Science.gov (United States)

    Stuhlmiller, Timothy J; García-Castro, Martín I

    2012-11-01

    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse. PMID:22547091

  16. Current perspectives of the signaling pathways directing neural crest induction.

    Science.gov (United States)

    Stuhlmiller, Timothy J; García-Castro, Martín I

    2012-11-01

    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.

  17. Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.

    Science.gov (United States)

    Li, Hui; Hua, Juan; Guo, Chun-Xia; Wang, Wei-Xian; Wang, Bao-Ju; Yang, Dong-Liang; Wei, Ping; Lu, Yin-Ping

    2016-06-01

    Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway. PMID:27376806

  18. Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli.

    Science.gov (United States)

    Liu, Fei-fei; Pu, Li; Zheng, Qing-qing; Zhang, Yuan-wei; Gao, Rong-sui; Xu, Xu-shi; Zhang, Shi-zhu; Lu, Ling

    2015-08-01

    Azoles are widely applied and largely effective as antifungals; however, the increasing prevalence of clinically resistant isolates has yet to be matched by approaches to improve the efficacy of antimicrobial therapy. In this study, using the model fungus Aspergillus nidulans and one of the most common human pathogen Aspergillus fumigatus as research materials, we present the evidence that calcium signaling is involved in the azole-antifungals-induced stress-response reactions. In normal media, antifungal-itraconazole (ITZ) is able to induce the [Ca(2+)]c increased sharply but the addition of calcium chelator-EGTA or BAPTA almost blocks the calcium influx responses, resulted in the dramatically decreasing of [Ca(2+)]c transient. Real-time PCR analysis verified that six-tested Ca(2+)-inducible genes-two calcium channels (cchA/midA), a calmodulin-dependent phosphatase-calcineurin (cnaA), a transcription factor-crzA, and two calcium transporters (pmrA/pmcA)-could be transiently up-regulated by adding ITZ, indicating these components are involved in the azole stress-response reaction. Defect of cnaA or crzA caused more susceptibility to azole antifungals than did single mutants or double deletions of midA and cchA. Notably, EGTA may influence Rh123 accumulation as an azole-mimicking substrate through the process of the drug absorption. In vivo studies of a Galleria mellonella model identified that the calcium chelator works as an adjunct antifungal agent with azoles for invasive aspergillosis. Most importantly, combination of ITZ and EGTA or ITZ with calcium signaling inhibitor-FK506 greatly enhances the ITZ efficacy. Thus, our study provides potential clues that specific inhibitors of calcium signaling could be clinically useful adjuncts to conventional azole antifungals in the Aspergilli.

  19. Calcium Signalling Triggered by NAADP in T Cells Determines Cell Shape and Motility During Immune Synapse Formation

    Science.gov (United States)

    Nebel, Merle; Zhang, Bo; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) has been implicated as an initial Ca2+ trigger in T cell Ca2+ signalling, but its role in formation of the immune synapse in CD4+ effector T cells has not been analysed. CD4+ T cells are activated by the interaction with peptide-MHCII complexes on the surface of antigen-presenting cells. Establishing a two-cell system including primary rat CD4+ T cells specific for myelin basic protein and rat astrocytes enabled us to mirror this activation process in vitro and to analyse Ca2+ signalling, cell shape changes and motility in T cells during formation and maintenance of the immune synapse. After immune synapse formation, T cells showed strong, antigen-dependent increases in free cytosolic calcium concentration ([Ca2+]i). Analysis of cell shape and motility revealed rounding and immobilization of T cells depending on the amplitude of the Ca2+ signal. NAADP-antagonist BZ194 effectively blocked Ca2+ signals in T cells evoked by the interaction with antigen-presenting astrocytes. BZ194 reduced the percentage of T cells showing high Ca2+ signals thereby supporting the proposed trigger function of NAADP for global Ca2+ signalling. Taken together, the NAADP signalling pathway is further confirmed as a promising target for specific pharmacological intervention to modulate T cell activation. PMID:27747143

  20. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct

    DEFF Research Database (Denmark)

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells...... by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption....

  1. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways

    Science.gov (United States)

    Jin, Yue; Liu, Huan; Luo, Dexian; Yu, Nan; Dong, Wentao; Wang, Chao; Zhang, Xiaowei; Dai, Huiling; Yang, Jun; Wang, Ertao

    2016-01-01

    Legumes form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. Formation of these two symbioses is regulated by a common set of signalling components that act downstream of recognition of rhizobia or mycorrhizae by host plants. Central to these pathways is the calcium and calmodulin-dependent protein kinase (CCaMK)–IPD3 complex which initiates nodule organogenesis following calcium oscillations in the host nucleus. However, downstream signalling events are not fully understood. Here we show that Medicago truncatula DELLA proteins, which are the central regulators of gibberellic acid signalling, positively regulate rhizobial symbiosis. Rhizobia colonization is impaired in della mutants and we provide evidence that DELLAs can promote CCaMK–IPD3 complex formation and increase the phosphorylation state of IPD3. DELLAs can also interact with NSP2–NSP1 and enhance the expression of Nod-factor-inducible genes in protoplasts. We show that DELLA is able to bridge a protein complex containing IPD3 and NSP2. Our results suggest a transcriptional framework for regulation of root nodule symbiosis. PMID:27514472

  2. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways.

    Science.gov (United States)

    Jin, Yue; Liu, Huan; Luo, Dexian; Yu, Nan; Dong, Wentao; Wang, Chao; Zhang, Xiaowei; Dai, Huiling; Yang, Jun; Wang, Ertao

    2016-01-01

    Legumes form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. Formation of these two symbioses is regulated by a common set of signalling components that act downstream of recognition of rhizobia or mycorrhizae by host plants. Central to these pathways is the calcium and calmodulin-dependent protein kinase (CCaMK)-IPD3 complex which initiates nodule organogenesis following calcium oscillations in the host nucleus. However, downstream signalling events are not fully understood. Here we show that Medicago truncatula DELLA proteins, which are the central regulators of gibberellic acid signalling, positively regulate rhizobial symbiosis. Rhizobia colonization is impaired in della mutants and we provide evidence that DELLAs can promote CCaMK-IPD3 complex formation and increase the phosphorylation state of IPD3. DELLAs can also interact with NSP2-NSP1 and enhance the expression of Nod-factor-inducible genes in protoplasts. We show that DELLA is able to bridge a protein complex containing IPD3 and NSP2. Our results suggest a transcriptional framework for regulation of root nodule symbiosis. PMID:27514472

  3. Wolbachia as an infectious extrinsic factor manipulating host signalling pathways

    Directory of Open Access Journals (Sweden)

    Ilaria eNegri

    2012-01-01

    Full Text Available Wolbachia pipientis is a widespread endosymbiont of filarial nematodes and arthropods. While in worms the symbiosis is obligate, in arthropods Wolbachia induces several reproductive manipulations (i.e. cytoplasmic incompatibility, parthenogenesis, feminization of genetic males and male-killing in order to increase the number of infected females. These various phenotypic effects may be linked to differences in host physiology, and in particular to endocrine-related processes governing growth, development and reproduction. Indeed, a number of evidences links Wolbachia symbiosis to insulin and ecdysteroid signalling, two multilayered pathways known to work antagonistically, jointly or even independently for the regulation of different molecular networks. At present it is not clear whether Wolbachia manipulates one pathway, thus affecting other related metabolic networks, or if it targets both pathways, even interacting at several points in each of them. Interestingly, in view of the interplay between hormone signalling and epigenetic machinery, a direct influence of the infection on hormonal signalling involving ecdysteroids might be achievable through the manipulation of the host’s epigenetic pathways.

  4. Inflammation-and stress-related signaling pathways in hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Hayato Nakagawa; Shin Maeda

    2012-01-01

    It has been established that cancer can be promoted and exacerbated by inflammation.Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide,and its long-term prognosis remains poor.Although HCC is a complex and heterogeneous tumor with several genomic mutations,it usually develops in the context of chronic liver damage and inflammation,suggesting that understanding the mechanism(s) of inflammation-mediated hepatocarcinogenesis is essential for the treatment and prevention of HCC.Chronic liver damage induces a persistent cycle of necroinflammation and hepatocyte regeneration,resulting in genetic mutations in hepatocytes and expansion of initiated cells,eventually leading to HCC development.Recently,several inflammation-and stress-related signaling pathways have been identified as key players in these processes,which include the nuclear factorκB,signal transducer and activator of transcription,and stress-activated mitogen-activated protein kinase pathways.Although these pathways may suggest potential therapeutic targets,they have a wide range of functions and complex crosstalk occurs among them.This review focuses on recent advances in our understanding of the roles of these signaling pathways in hepatocarcinogenesis.

  5. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    Science.gov (United States)

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs. PMID:25556853

  6. The mTOR Signalling Pathway in Human Cancer

    Directory of Open Access Journals (Sweden)

    Paula Soares

    2012-02-01

    Full Text Available The conserved serine/threonine kinase mTOR (the mammalian target of rapamycin, a downstream effector of the PI3K/AKT pathway, forms two distinct multiprotein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to rapamycin, activates S6K1 and 4EBP1, which are involved in mRNA translation. It is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals, and essential signalling pathways, such as PI3K, MAPK and AMPK, in order to control cell growth, proliferation and survival. mTORC2 is considered resistant to rapamycin and is generally insensitive to nutrients and energy signals. It activates PKC-α and AKT and regulates the actin cytoskeleton. Deregulation of multiple elements of the mTOR pathway (PI3K amplification/mutation, PTEN loss of function, AKT overexpression, and S6K1, 4EBP1 and eIF4E overexpression has been reported in many types of cancers, particularly in melanoma, where alterations in major components of the mTOR pathway were reported to have significant effects on tumour progression. Therefore, mTOR is an appealing therapeutic target and mTOR inhibitors, including the rapamycin analogues deforolimus, everolimus and temsirolimus, are submitted to clinical trials for treating multiple cancers, alone or in combination with inhibitors of other pathways. Importantly, temsirolimus and everolimus were recently approved by the FDA for the treatment of renal cell carcinoma, PNET and giant cell astrocytoma. Small molecules that inhibit mTOR kinase activity and dual PI3K-mTOR inhibitors are also being developed. In this review, we aim to survey relevant research, the molecular mechanisms of signalling, including upstream activation and downstream effectors, and the role of mTOR in cancer, mainly in melanoma.

  7. Cytosolic organelles shape calcium signals and exo-endocytotic responses of chromaffin cells.

    Science.gov (United States)

    García, Antonio G; Padín, Fernando; Fernández-Morales, José C; Maroto, Marcos; García-Sancho, Javier

    2012-01-01

    The concept of stimulus-secretion coupling was born from experiments performed in chromaffin cells 50 years ago. Stimulation of these cells with acetylcholine enhances calcium (Ca(2+)) entry and this generates a transient elevation of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers the exocytotic release of catecholamines. The control of the [Ca(2+)](c) signal is complex and depends on various classes of plasmalemmal calcium channels, cytosolic calcium buffers, the uptake and release of Ca(2+) from cytoplasmic organelles, such as the endoplasmic reticulum, mitochondria, chromaffin vesicles and the nucleus, and Ca(2+) extrusion mechanisms, such as the plasma membrane Ca(2+)-stimulated ATPase, and the Na(+)/Ca(2+) exchanger. Computation of the rates of Ca(2+) fluxes between the different cell compartments support the proposal that the chromaffin cell has developed functional calcium tetrads formed by calcium channels, cytosolic calcium buffers, the endoplasmic reticulum, and mitochondria nearby the exocytotic plasmalemmal sites. These tetrads shape the Ca(2+) transients occurring during cell activation to regulate early and late steps of exocytosis, and the ensuing endocytotic responses. The different patterns of catecholamine secretion in response to stress may thus depend on such local [Ca(2+)](c) transients occurring at different cell compartments, and generated by redistribution and release of Ca(2+) by cytoplasmic organelles. In this manner, the calcium tetrads serve to couple the variable energy demands due to exo-endocytotic activities with energy production and protein synthesis. PMID:22209033

  8. Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jaques; Waisberg; Gabriela; Tognini; Saba

    2015-01-01

    The molecular basis of the carcinogenesis of hepatocellular carcinoma(HCC) has not been adequately clarified, which negatively impacts the development of targeted therapy protocols for this overwhelming neoplasia. The aberrant activation of signaling in the HCC is primarily due to the deregulated expression of the components of the Wnt-/-β-catenin. This leads to the activation of β-catenin/T-cell factor-dependent target genes that control cell proliferation, cell cycle, apoptosis, and cell motility. The deregulation of the Wnt pathway is an early event in hepatocarcinogenesis. An aggressive phenotype was associated with HCC, since this pathway is implicated in the proliferation, migration, and invasiveness of cancer cells, regarding the cell’s own survival. The disruption of the signaling cascade Wnt-/-β-catenin has shown anticancer properties in HCC’s clinical evaluations of therapeutic molecules targeted for blocking the Wnt signaling pathway for the treatment of HCC, and it represents a promising perspective. The key to bringing this strategy in to clinical practice is to identify new molecules that would be effective only in tumor cells with aberrant signaling β-catenin.

  9. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  10. Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Seema Gollamudi

    Full Text Available Parkinson's disease (PD is a neurodegenerative disease in which the etiology of 90 percent of the patients is unknown. Pesticide exposure is a major risk factor for PD, and paraquat (PQ, pyridaben (PY and maneb (MN are amongst the most widely used pesticides. We studied mRNA expression using transcriptome sequencing (RNA-Seq in the ventral midbrain (VMB and striatum (STR of PQ, PY and paraquat+maneb (MNPQ treated mice, followed by pathway analysis. We found concordance of signaling pathways between the three pesticide models in both the VMB and STR as well as concordance in these two brain areas. The concordant signaling pathways with relevance to PD pathogenesis were e.g. axonal guidance signaling, Wnt/β-catenin signaling, as well as pathways not previously linked to PD, e.g. basal cell carcinoma, human embryonic stem cell pluripotency and role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Human PD pathways previously identified by expression analysis, concordant with VMB pathways identified in our study were axonal guidance signaling, Wnt/β-catenin signaling, IL-6 signaling, ephrin receptor signaling, TGF-β signaling, PPAR signaling and G-protein coupled receptor signaling. Human PD pathways concordant with the STR pathways in our study were Wnt/β-catenin signaling, axonal guidance signaling and G-protein coupled receptor signaling. Peroxisome proliferator activated receptor delta (Ppard and G-Protein Coupled Receptors (GPCRs were common genes in VMB and STR identified by network analysis. In conclusion, the pesticides PQ, PY and MNPQ elicit common signaling pathways in the VMB and STR in mice, which are concordant with known signaling pathways identified in human PD, suggesting that these pathways contribute to the pathogenesis of idiopathic PD. The analysis of these networks and pathways may therefore lead to improved understanding of disease pathogenesis, and potential novel therapeutic targets.

  11. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis

    Science.gov (United States)

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-01-01

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF. PMID:27550469

  12. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis.

    Science.gov (United States)

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-08-23

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF.

  13. Expression pattern of the Hedgehog signaling pathway in pituitary adenomas.

    Science.gov (United States)

    Yavropoulou, Maria P; Maladaki, Anna; Topouridou, Konstantina; Kotoula, Vasiliki; Poulios, Chris; Daskalaki, Emily; Foroglou, Nikolaos; Karkavelas, George; Yovos, John G

    2016-01-12

    Several studies have demonstrated the role of Wnt and Notch signaling in the pathogenesis of pituitary adenomas, but data are scarce regarding the role of Hedgehog signaling. In this study we investigated the differential expression of gene targets of the Hedgehog signaling pathway. Formalin-fixed, paraffin-embedded specimens from adult patients who underwent transphenoidal resection and normal human pituitary tissues that were obtained from autopsies were used. Clinical information and data from pre-operative MRI scan (extracellular tumor extension, tumor size, displacement of the optic chiasm) were retrieved from the Hospital's database. We used a customized RT(2) Profiler PCR Array, to investigate the expression of genes related to Notch and Hedgehog signaling pathways (PTCH1, PTCH2, GLI1, GLI3, NOTCH3, JAG1, HES1, and HIP). A total of 52 pituitary adenomas (32 non-functioning adenomas, 15 somatotropinomas and 5 prolactinomas) were used in the final analysis. In non-functioning pituitary adenomas there was a significant decrease (approximately 75%) in expression of all Hedgehog related genes that were tested, while Notch3 and Jagged-1 expression was found significantly increased, compared with normal pituitary tissue controls. In contrast, somatotropinomas demonstrated a significant increase in expression of all Hedgehog related genes and a decrease in the expression of Notch3 and Jagged-1. There was no significant difference in the expression of Hedgehog and Notch related genes between prolactinomas and healthy pituitary tissues. Hedgehog signalling appears to be activated in somatotropinomas but not in non-functioning pituitary adenomas in contrast to the expression pattern of Notch signalling pathway. PMID:26620835

  14. Parameter sensitivity analysis of IL-6 signalling pathways.

    Science.gov (United States)

    Chu, Y; Jayaraman, A; Hahn, J

    2007-11-01

    Signal transduction pathways generally consist of a large number of individual components and have an even greater number of parameters describing their reaction kinetics. Although the structure of some signalling pathways can be found in the literature, many of the parameters are not well known and they would need to be re-estimated from experimental data for each specific case. However it is not feasible to estimate hundreds of parameters because of the cost of the experiments associated with generating data. Parameter sensitivity analysis can address this situation as it investigates how the system behaviour is changed by variations of parameters and the analysis identifies which parameters play a key role in signal transduction. Only these important parameters need then be re-estimated using data from further experiments. This article presents a detailed parameter sensitivity analysis of the JAK/STAT and MAPK signal transduction pathway that is used for signalling by the cytokine IL-6. As no parameter sensitivity analysis technique is known to work best for all situations, a comparison of the results returned by four techniques is presented: differential analysis, the Morris method, a sampling-based approach and the Fourier amplitude sensitivity test. The recruitment of the transcription factor STAT3 to the dimer of the phosphorylated receptor complex is determined as the most important step by the sensitivity analysis. Additionally, the desphosphorylation of the nuclear STAT3 dimer by PP2 as well as feedback inhibition by SOCS3 are found to play an important role for signal transduction. PMID:18203580

  15. The cytotoxic and proapoptotic activities of hypnophilin are associated with calcium signaling in UACC-62 cells.

    Science.gov (United States)

    Pinto, Mauro C X; Cota, Betania B; Rodrigues, Michele A; Leite, Maria F; de Souza-Fagundes, Elaine M

    2013-11-01

    Hypnophilin (HNP) is a sesquiterpene that is isolated from Lentinus cf. strigosus and has cytotoxic activities. Here, we studied the calcium signaling and cytotoxic effects of HNP in UACC-62 cells, a human skin melanoma cell line. HNP was able to increase the intracellular calcium concentration in UACC-62 cells, which was blocked in cells stimulated in Ca(2+) -free media. HNP treatment with BAPTA-AM, an intracellular Ca(2+) chelator, caused an increase in calcium signals. HNP showed cytotoxicity against UACC-62 cells in which it induced DNA fragmentation and morphological alterations, including changes in the nuclear chromatin profile and increased cytoplasmatic vacuolization, but it had no effect on the plasma membrane integrity. These data suggest that cytotoxicity in UACC-62 cells, after treatment with HNP, is associated with Ca(2+) influx. Together, these findings suggest that HNP is a relevant tool for the further investigation of new anticancer approaches.

  16. Preface: cardiac control pathways: signaling and transport phenomena.

    Science.gov (United States)

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  17. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens;

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles ...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  18. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi.

    Science.gov (United States)

    Martín, Juan F

    2014-01-01

    Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of

  19. Shared signaling pathways in normal and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Gautam K Malhotra

    2011-01-01

    Full Text Available Recent advances in our understanding of breast cancer biology have led to the identification of a subpopulation of cells within tumors that appear to be responsible for initiating and propagating the cancer. These tumor initiating cells are not only unique in their ability to generate tumors, but also share many similarities with elements of normal adult tissue stem cells, and have therefore been termed cancer stem cells (CSCs. These CSCs often inappropriately use many of the same signaling pathways utilized by their normal stem cell counterparts which may present a challenge to the development of CSC specific therapies. Here, we discuss three major stem cell signaling pathways (Notch, Wnt, and Hedgehog; with a focus on their function in normal mammary gland development and their misuse in breast cancer stem cell fate determination.

  20. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway

    DEFF Research Database (Denmark)

    Gruhler, Albrecht; Olsen, Jesper Velgaard; Mohammed, Shabaz;

    2005-01-01

    . Phosphopeptide fractions were analyzed by LC-MS using a linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer. MS/MS and neutral loss-directed MS/MS/MS analysis allowed detection and sequencing of phosphopeptides with exceptional accuracy and specificity. Of more than 700 identified....../MS/MS) for identification. This integrated phosphoproteomic technology identified and quantified phosphorylation in key regulator and effector proteins of a prototypical G-protein-coupled receptor signaling pathway, the yeast pheromone response. SILAC encoding of yeast proteomes was achieved by incorporation of [(13)C(6...... phosphopeptides, 139 were differentially regulated at least 2-fold in response to mating pheromone. Among these regulated proteins were components belonging to the mitogen-activated protein kinase signaling pathway and to downstream processes including transcriptional regulation, the establishment of polarized...

  1. SNIP1: a new activator of HSE signaling pathway.

    Science.gov (United States)

    Li, Qiang; An, Jian; Liu, Xianghua; Zhang, Mingjun; Ling, Yichen; Wang, Chenji; Zhao, Jing; Yu, Long

    2012-03-01

    In the last 10 years, more and more attention has been focused on SNIP1 (Smad nuclear interacting protein 1), which functions as a transcriptional coactivator. We report here that through quantitative real-time PCR analysis in 18 different human tissues, SNIP1 was found to be expressed ubiquitously. When overexpressed in HeLa cells, SNIP1-EGFP fused protein exhibited a nuclear localization with a characteristic subnuclear distribution in speckles or formed larger discrete nuclear bodies in some cells. Reporter gene assay showed that overexpression of SNIP1 in HEK 293 cells or H1299 cells strongly activated the HSE signaling pathway. Moreover, SNIP1 could selectively regulate the transcription of HSP70A1A and HSP27. Taken together, our findings suggest that SNIP1 might also be a positive regulator of HSE signaling pathway.

  2. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis.

    Directory of Open Access Journals (Sweden)

    Federica Viti

    Full Text Available The culture of progenitor mesenchymal stem cells (MSC onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds, together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone

  3. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis.

    Science.gov (United States)

    Viti, Federica; Landini, Martina; Mezzelani, Alessandra; Petecchia, Loredana; Milanesi, Luciano; Scaglione, Silvia

    2016-01-01

    The culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds), together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone formation in vivo

  4. PI3K/Akt signalling pathway and cancer.

    Science.gov (United States)

    Fresno Vara, Juan Angel; Casado, Enrique; de Castro, Javier; Cejas, Paloma; Belda-Iniesta, Cristóbal; González-Barón, Manuel

    2004-04-01

    Phosphatidylinositol-3 kinases, PI3Ks, constitute a lipid kinase family characterized by their ability to phosphorylate inositol ring 3'-OH group in inositol phospholipids to generate the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P(3)). RPTK activation results in PI(3,4,5)P(3) and PI(3,4)P(2) production by PI3K at the inner side of the plasma membrane. Akt interacts with these phospholipids, causing its translocation to the inner membrane, where it is phosphorylated and activated by PDK1 and PDK2. Activated Akt modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. In recent years, it has been shown that PI3K/Akt signalling pathway components are frequently altered in human cancers. Cancer treatment by chemotherapy and gamma-irradiation kills target cells primarily by the induction of apoptosis. However, the development of resistance to therapy is an important clinical problem. Failure to activate the apoptotic programme represents an important mode of drug resistance in tumor cells. Survival signals induced by several receptors are mediated mainly by PI3K/Akt, hence this pathway may decisively contribute to the resistant phenotype. Many of the signalling pathways involved in cellular transformation have been elucidated and efforts are underway to develop treatment strategies that target these specific signalling molecules or their downstream effectors. The PI3K/Akt pathway is involved in many of the mechanisms targeted by these new drugs, thus a better understanding of this crossroad can help to fully exploit the potential benefits of these new agents. PMID:15023437

  5. Regulation of mRNA Translation by Signaling Pathways

    OpenAIRE

    Roux, Philippe P.; Topisirovic, Ivan

    2012-01-01

    mRNA translation is the most energy consuming process in the cell. In addition, it plays a pivotal role in the control of gene expression and is therefore tightly regulated. In response to various extracellular stimuli and intracellular cues, signaling pathways induce quantitative and qualitative changes in mRNA translation by modulating the phosphorylation status and thus the activity of components of the translational machinery. In this work we focus on the phosphoinositide 3-kinase (PI3K)/...

  6. Current perspectives of the signaling pathways directing neural crest induction

    OpenAIRE

    Stuhlmiller, Timothy J.; García-Castro, Martín I.

    2012-01-01

    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the ...

  7. Intrinsic and extrinsic pathway signaling during neuronal apoptosis

    OpenAIRE

    Putcha, Girish V.; Harris, Charles A; Moulder, Krista L.; Easton, Rachael M.; Thompson, Craig B.; Johnson, Eugene M.

    2002-01-01

    Trophic factor deprivation (TFD)-induced apoptosis in sympathetic neurons requires macromolecular synthesis–dependent BAX translocation, cytochrome c (cyt c) release, and caspase activation. Here, we report the contributions of other intrinsic and extrinsic pathway signals to these processes. Sympathetic neurons expressed all antiapoptotic BCL-2 proteins examined, yet expressed only certain BH3-only and multidomain proapoptotic BCL-2 family members. All coexpressed proapoptotic proteins did n...

  8. Leptin signaling: A key pathway in immune responses

    OpenAIRE

    Procaccini, Claudio; Lourenco, Elaine V.; Matarese, Giuseppe; La Cava, Antonio

    2009-01-01

    Leptin is a hormone whose central role is to regulate endocrine functions and to control energy expenditure. After the discovery that leptin can also have pro-inflammatory effects, several studies have tried to address - at the molecular level - the pathways involved in leptin-induced modulation of the immune functions in normal and pathologic conditions. The signaling events influenced by leptin after its binding to the leptin receptor have been under scrutiny in the past few years, and cons...

  9. Therapeutic Targeting of Signaling Pathways in Muscular Dystrophy

    OpenAIRE

    Bhatnagar, Shephali; Kumar, Ashok

    2009-01-01

    Muscular dystrophy refers to a group of genetic diseases that cause severe muscle weakness and loss of skeletal muscle mass. Although research has helped understanding the molecular basis of muscular dystrophy, there is still no cure for this devastating disorder. Numerous lines of investigation suggest that the primary deficiency of specific proteins causes aberrant activation of several cell signaling pathways in skeletal and cardiac muscle leading to the pathogenesis of muscular dystrophy....

  10. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes.

    Science.gov (United States)

    Fang, Jing; Liu, Xiaona; Bolanos, Lyndsey; Barker, Brenden; Rigolino, Carmela; Cortelezzi, Agostino; Oliva, Esther N; Cuzzola, Maria; Grimes, H Leighton; Fontanillo, Celia; Komurov, Kakajan; MacBeth, Kyle; Starczynowski, Daniel T

    2016-07-01

    Despite the high response rates of individuals with myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)) to treatment with lenalidomide (LEN) and the recent identification of cereblon (CRBN) as the molecular target of LEN, the cellular mechanism by which LEN eliminates MDS clones remains elusive. Here we performed an RNA interference screen to delineate gene regulatory networks that mediate LEN responsiveness in an MDS cell line, MDSL. We identified GPR68, which encodes a G-protein-coupled receptor that has been implicated in calcium metabolism, as the top candidate gene for modulating sensitivity to LEN. LEN induced GPR68 expression via IKAROS family zinc finger 1 (IKZF1), resulting in increased cytosolic calcium levels and activation of a calcium-dependent calpain, CAPN1, which were requisite steps for induction of apoptosis in MDS cells and in acute myeloid leukemia (AML) cells. In contrast, deletion of GPR68 or inhibition of calcium and calpain activation suppressed LEN-induced cytotoxicity. Moreover, expression of calpastatin (CAST), an endogenous CAPN1 inhibitor that is encoded by a gene (CAST) deleted in del(5q) MDS, correlated with LEN responsiveness in patients with del(5q) MDS. Depletion of CAST restored responsiveness of LEN-resistant non-del(5q) MDS cells and AML cells, providing an explanation for the superior responses of patients with del(5q) MDS to LEN treatment. Our study describes a cellular mechanism by which LEN, acting through CRBN and IKZF1, has cytotoxic effects in MDS and AML that depend on a calcium- and calpain-dependent pathway.

  11. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway.

    Science.gov (United States)

    Chaveroux, Cédric; Sarcinelli, Carmen; Barbet, Virginie; Belfeki, Sofiane; Barthelaix, Audrey; Ferraro-Peyret, Carole; Lebecque, Serge; Renno, Toufic; Bruhat, Alain; Fafournoux, Pierre; Manié, Serge N

    2016-06-03

    The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked β-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling.

  12. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.;

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...

  13. Calcium signaling in the cochlea – Molecular mechanisms and physiopathological implications

    Directory of Open Access Journals (Sweden)

    Ceriani Federico

    2012-07-01

    Full Text Available Abstract Calcium ions (Ca2+ regulate numerous and diverse aspects of cochlear and vestibular physiology. This review focuses on the Ca2+ control of mechanotransduction and synaptic transmission in sensory hair cells, as well as on Ca2+ signalling in non-sensory cells of the developing cochlea.

  14. Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks

    OpenAIRE

    Postnov, D. E.; Koreshkov, R. N.; Brazhe, N. A.; Brazhe, A. R.; Sosnovtseva, O. V.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in astrocytic–neuronal networks. We reproduce local and global dynamical patterns observed experimentally.

  15. Spatiotemporal Properties of Intracellular Calcium Signaling in Osteocytic and Osteoblastic Cell Networks under Fluid Flow

    OpenAIRE

    Jing, Da; Lu, X. Lucas; Luo, Erping; Sajda, Paul; Leong, Pui L.; Guo, X. Edward

    2013-01-01

    Mechanical stimuli can trigger intracellular calcium (Ca2+) responses in osteocytes and osteoblasts. Successful construction of bone cell networks necessitates more elaborate and systematic analysis for the spatiotemporal properties of Ca2+ signaling in the networks. In the present study, an unsupervised algorithm based on independent component analysis (ICA) was employed to extract the Ca2+ signals of bone cells in the network. We demonstrated that the ICA-based technology could yield higher...

  16. UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes.

    Science.gov (United States)

    Kringelbach, Tina M; Aslan, Derya; Novak, Ivana; Schwarz, Peter; Jørgensen, Niklas R

    2014-01-01

    Osteocytes reside as a cellular network throughout the mineralised matrix of bone and are considered the primary mechanosensors of this tissue. They sense mechanical stimulation such as fluid flow and are able to regulate osteoblast and osteoclast functions on the bone surface. Previously, we found that ATP is released load-dependently from osteocytes from the onset of mechanical stimulation. Therefore, the aim of the present study was to investigate whether and how ATP release can be evoked in osteocytes via purinergic receptor activation. ATP release was quantified by real-time determination using the luciferin-luciferase assay and the release pathway was investigated using pharmacological inhibition. The P2Y receptor profile was analysed using gene expression analysis by reverse transcription polymerase chain reaction, while functional testing was performed using measurements of intracellular calcium responses to P2 receptor agonists. These investigations demonstrated that MLO-Y4 osteocytes express functional P2Y(2), P2Y(4), P2Y(12) and P2Y(13) receptors in addition to the previously reported P2X receptors. Further, we found that osteocytes respond to nucleotides such as ATP, UTP and ADP by increasing the intracellular calcium concentration and that they release ATP dose-dependently upon stimulation with 1-10 μM UTP. In addition to this, osteocytes release large amounts of ATP upon cell rupture, which might also be a source for other nucleotides, such as UTP. These findings indicate that mechanically induced ATP signals may be propagated by P2 receptor activation and further ATP release in the osteocyte network and implicate purinergic signalling as a central signalling pathway in osteocyte mechanotransduction. PMID:24374572

  17. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    Science.gov (United States)

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate/calcium

  18. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Guo-yong Yu

    2016-01-01

    Full Text Available Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling, the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1, adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway.

  19. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway.

    Science.gov (United States)

    Yu, Guo-Yong; Zheng, Gui-Zhou; Chang, Bo; Hu, Qin-Xiao; Lin, Fei-Xiang; Liu, De-Zhong; Wu, Chu-Cheng; Du, Shi-Xin; Li, Xue-Dong

    2016-01-01

    Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs) were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling), the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1), adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL) increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway. PMID:27069482

  20. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  1. SLOB, a SLOWPOKE channel binding protein, regulates insulin pathway signaling and metabolism in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amanda L Sheldon

    Full Text Available There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO undergoes modulation via its binding partner SLO-binding protein (SLOB. Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs in the pars intercerebralis (PI region of the brain; these cells also express and secrete Drosophila insulin like peptides (dILPs. Previously, we found that flies lacking SLOB exhibit increased resistance to starvation, and we reasoned that SLOB may regulate aspects of insulin signaling and metabolism. Here we investigate the role of SLOB in metabolism and find that slob null flies exhibit changes in energy storage and insulin pathway signaling. In addition, slob null flies have decreased levels of dilp3 and increased levels of takeout, a gene known to be involved in feeding and metabolism. Targeted expression of SLOB to mNSCs rescues these alterations in gene expression, as well as the metabolic phenotypes. Analysis of fly lines mutant for both slob and slo indicate that the effect of SLOB on metabolism and gene expression is via SLO. We propose that modulation of SLO by SLOB regulates neurotransmission in mNSCs, influencing downstream insulin pathway signaling and metabolism.

  2. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R; Henriksen, Zanne; Sørensen, Ole;

    2002-01-01

    Signaling between osteoblasts and osteoclasts is important in bone homeostasis. We previously showed that human osteoblasts propagate intercellular calcium signals via two mechanisms: autocrine activation of P2Y receptors, and gap junctional communication. In the current work we identified...... mechanically induced intercellular calcium signaling between osteoblasts and osteoclasts and among osteoclasts. Intercellular calcium responses in osteoclasts required P2 receptor activation but not gap junctional communication. Pharmacological studies and reverse transcriptase-PCR amplification demonstrated...... that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium signaling...

  3. [Sonic Hedgehog signaling pathway and regulation of inner ear development].

    Science.gov (United States)

    Chen, Zhi-Qiang; Han, Xin-Huan; Cao, Xin

    2013-09-01

    During inner ear development, Sonic Hedgehog (Shh) signaling pathway is involved in the ventral otic identity, cell fate determination of statoacoustic ganglion neurons and hair cell development. Shh protein, secreted from floor plate, antagonizes Wnt protein from roof plate, which refines and maintains dorsoventral axial patterning in the ear. Shh, served as a mitogen during neurogenesis, directly promotes the development of spiral ganglion neuron. After Shh signaling pathway is activated, Ngn1 is freed from Tbx1 repression. As a result, Shh indirectly upregulates the expression of Ngn1, thus regulating neurogenic patterning of inner ear. In addition, Shh regulates the differentiation of hair cells by influencing cell cycle of the progenitor cells located in the cochlea. The basal-to-apical wave of Shh decline ensures the normal devel- opment pattern of hair cells. It is confirmed by a quantity of researches conducted in both animals and patients with hereditary hearing impairment that abnormal Shh signaling results in aberrant transcription of target genes, disturbance of the proper development of inner ear, and human hearing impairment. In humans, diseases accompanied by hearing disorders caused by abnormal Shh signaling include Greig cephalopolysyndactyly syndrome (GCPS), Pallister-Hall syndrome (PHS), Waardenburg syndrome (WS) and medulloblastoma, etc. This review would provide a theoretical basis for further study of molecular mechanisms and clinical use of inner ear development. PMID:24400478

  4. Dissecting Nck/Dock Signaling Pathways in Drosophila Visual System

    Directory of Open Access Journals (Sweden)

    2005-04-01

    Full Text Available The establishment of neuronal connections during embryonic development requires the precise guidance and targeting of the neuronal growth cone, an expanded cellular structure at the leading tip of a growing axon. The growth cone contains sophisticated signaling systems that allow the rapid communication between guidance receptors and the actin cytoskeleton in generating directed motility. Previous studies demonstrated a specific role for the Nck/Dock SH2/SH3 adapter protein in photoreceptor (R cell axon guidance and target recognition in the Drosophila visual system, suggesting strongly that Nck/Dock is one of the long-sought missing links between cell surface receptors and the actin cytoskeleton. In this review, I discuss the recent progress on dissecting the Nck/Dock signaling pathways in R-cell growth cones. These studies have identified additional key components of the Nck/Dock signaling pathways for linking the receptor signaling to the remodeling of the actin cytoskeleton in controlling growth-cone motility.

  5. Multiple Signaling Pathways Control Tbx6 Expression during Xenopus Myogenesis

    Institute of Scientific and Technical Information of China (English)

    Pan-Feng FANG; Rui-Ying HU; Xing-Yue HE; Xiao-Yan DING

    2004-01-01

    Tbx6 is critical for somite specification and myogenesis initiation.It has been shown that Activin/Nodal,VegT/Nodal,FGF,and BMP signaling pathways are involved early in specifying mesoderm or later in patterning mesoderm,and Xnot plays roles in setting up the boundary between notochord and paraxial mesoderm.In this study,we introduce the dominant negative form of above genes into embryos to evaluate if they are responsible for regulating Tbx6 expression.The results show that: (1)Activin/Nodal and VegT/Nodal signals are necessary for both initiation and maintenance of Tbx6 expression,and Nodal is sufficient to induce ectopic Tbx6 expression;(2) FGF signal is necessary for the initiation and maintenance of Tbx6,but it is not sufficient to induce Tbx6 expression;(3) BMP is also necessary for the expression of Tbx6,and the induction of Tbx6 expression by BMP is dose dependent;(4) Xnot has no effect on the expression of Tbx6.Our results suggest that several signaling pathways are involved in regulating Tbx6expression,and pave the route to reveal the molecular mechanism of initiating myogenesis.

  6. Mechanisms of disease: signaling pathways and immunobiology of inflammatory myopathies.

    Science.gov (United States)

    Dalakas, Marinos C

    2006-04-01

    The signaling pathways involved in the immunobiology of polymyositis, dermatomyositis, and inclusion-body myositis are outlined in this Review, which is based on research performed during the past 10 years. In dermatomyositis, the complement cascade is activated and the expression of cytokines and chemokines is upregulated. In polymyositis and inclusion-body myositis, autoinvasive CD8+ T cells are clonally expanded. This T-cell subset possesses conserved amino-acid sequences in complementarity-determining region 3 of the T-cell receptor and, via the perforin pathway, exerts a myotoxic effect on muscle fibers that express major histocompatibility complex (MHC) class I molecules. In all inflammatory myopathies, molecules associated with T-cell transmigration and cytokine signaling, as well as chemokines and their receptors, are strongly expressed by endothelial and inflammatory cells. Early in the pathogenesis of polymyositis and inclusion-body myositis, expression of MHC class I molecules on muscle fibers is upregulated, even in the absence of autoinvasive CD8+ T cells. Emerging data indicate that such continuous upregulation of the expression of MHC class I molecules on muscle fibers leads to an endoplasmic reticulum stress response, intracellular accumulation of misfolded glycoproteins, and activation of nuclear factor kappaB pathways, which can further stimulate formation of MHC class I-CD8 complexes, resulting in a self-sustaining inflammatory response. Advances in our understanding of the signaling pathways involved in the pathogenesis of these inflammatory myopathies are expected to result in the identification of novel therapeutic targets for these diseases.

  7. Pathway-selective suppression of chemokine receptor signaling in B cells by LPS through downregulation of PLC-β2.

    Science.gov (United States)

    Shirakawa, Aiko-Konno; Liao, Fang; Zhang, Hongwei H; Hedrick, Michael N; Singh, Satya P; Wu, Dianqing; Farber, Joshua M

    2010-11-01

    Lymphocyte activation leads to changes in chemokine receptor expression. There are limited data, however, on how lymphocyte activators can alter chemokine signaling by affecting downstream pathways. We hypothesized that B cell-activating agents might alter chemokine responses by affecting downstream signal transducers, and that such effects might differ depending on the activator. We found that activating mouse B cells using either anti-IgM or lipopolysaccharide (LPS) increased the surface expression of CCR6 and CCR7 with large increases in chemotaxis to their cognate ligands. By contrast, while anti-IgM also led to enhanced calcium responses, LPS-treated cells showed only small changes in calcium signaling as compared with cells that were freshly isolated. Of particular interest, we found that LPS caused a reduction in the level of B-cell phospholipase C (PLC)-β2 mRNA and protein. Data obtained using PLC-β2(-/-) mice showed that the β2 isoform mediates close to one-half the chemokine-induced calcium signal in resting and anti-IgM-activated B cells, and we found that calcium signals in the LPS-treated cells were boosted by increasing the level of PLC-β2 using transfection, consistent with a functional effect of downregulating PLC-β2. Together, our results show activator-specific effects on responses through B-cell chemokine receptors that are mediated by quantitative changes in a downstream signal-transducing protein, revealing an activity for LPS as a downregulator of PLC-β2, and a novel mechanism for controlling chemokine-induced signals in lymphocytes.

  8. Differential effects of arsenic on calcium signaling in primary keratinocytes and malignant (HSC-1) cells.

    Science.gov (United States)

    Hsu, W L; Tsai, M H; Lin, M W; Chiu, Y C; Lu, J H; Chang, C H; Yu, H S; Yoshioka, T

    2012-08-01

    Arsenic is highly toxic to living cells, especially skin, and skin cancer is induced by drinking water containing arsenic. The molecular mechanisms of arsenic-induced cancer, however, are not well understood. To examine the initial processes in the development of arsenic-induced cancer, we analyzed calcium signaling at an early stage of arsenic treatment of human primary cells and compared the effects with those observed with arsenic treatment in carcinoma-derived cells. We found that arsenic inhibited inositol trisphosphate receptor (IP3R) function in the endoplasmic reticulum by inducing phosphorylation, which led to decreased intracellular calcium levels. Blockade of IP3R phosphorylation by the serine/threonine protein kinase Akt inhibitor wortmannin rescued calcium signaling. In contrast, arsenic treatment of cells derived from a carcinoma (human squamous carcinoma; HSC-1) for 1h had no obvious effect. Taken together, these results suggest that arsenic-induced reduction in calcium signaling is one of the initial mechanisms underlying the malignant transformation in the development of skin cancer.

  9. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. PMID:26233656

  10. Characterization of NAADP-mediated calcium signaling in human spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Tusie, A.A. [Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos (Mexico); Vasudevan, S.R.; Churchill, G.C. [Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England (United Kingdom); Nishigaki, T. [Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos (Mexico); Treviño, C.L., E-mail: ctrevino@ibt.unam.mx [Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos (Mexico)

    2014-01-10

    Highlights: •Human sperm cells synthesize NAADP. •NAADP-AM mediates [Ca{sup 2+}]{sub i} increases in human sperm in the absence of [Ca{sup 2+}]{sub o}. •Human sperm have two acidic compartments located in the head and midpiece. -- Abstract: Ca{sup 2+} signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca{sup 2+}-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possible role of NAADP in sperm Ca{sup 2+} signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca{sup 2+} and pH. Ca{sup 2+} fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca{sup 2+}] increases in human sperm even in the absence of extracellular Ca{sup 2+}. Using LysoTracker®, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-L-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker®, suggesting that these stores are the targets of NAADP action.

  11. Characterization of NAADP-mediated calcium signaling in human spermatozoa

    International Nuclear Information System (INIS)

    Highlights: •Human sperm cells synthesize NAADP. •NAADP-AM mediates [Ca2+]i increases in human sperm in the absence of [Ca2+]o. •Human sperm have two acidic compartments located in the head and midpiece. -- Abstract: Ca2+ signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possible role of NAADP in sperm Ca2+ signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca2+ and pH. Ca2+ fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca2+] increases in human sperm even in the absence of extracellular Ca2+. Using LysoTracker®, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-L-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker®, suggesting that these stores are the targets of NAADP action

  12. Connecting proline metabolism and signaling pathways in plant senescence

    Directory of Open Access Journals (Sweden)

    Lu eZhang

    2015-07-01

    Full Text Available The amino acid proline has a unique biological role in stress adaptation. Proline metabolism is manipulated under stress by multiple and complex regulatory pathways and can profoundly influence cell death and survival in microorganisms, plants, and animals. Though the effects of proline are mediated by diverse signaling pathways, a common theme appears to be the generation of reactive oxygen species (ROS due to proline oxidation being coupled to the respiratory electron transport chain. Considerable research has been devoted to understand how plants exploit proline metabolism in response to abiotic and biotic stress. Here, we review potential mechanisms by which proline metabolism influences plant senescence, namely in the petal and leaf. Recent studies of petal senescence suggest proline content is manipulated to meet energy demands of senescing cells. In the flower and leaf, proline metabolism may influence ROS signaling pathways that delay senescence progression. Future studies focusing on the mechanisms by which proline metabolic shifts occur during senescence may lead to novel methods to rescue crops under stress and to preserve post-harvest agricultural products.

  13. Muscle redox signalling pathways in exercise. Role of antioxidants.

    Science.gov (United States)

    Mason, Shaun A; Morrison, Dale; McConell, Glenn K; Wadley, Glenn D

    2016-09-01

    Recent research highlights the importance of redox signalling pathway activation by contraction-induced reactive oxygen species (ROS) and nitric oxide (NO) in normal exercise-related cellular and molecular adaptations in skeletal muscle. In this review, we discuss some potentially important redox signalling pathways in skeletal muscle that are involved in acute and chronic responses to contraction and exercise. Specifically, we discuss redox signalling implicated in skeletal muscle contraction force, mitochondrial biogenesis and antioxidant enzyme induction, glucose uptake and muscle hypertrophy. Furthermore, we review evidence investigating the impact of major exogenous antioxidants on these acute and chronic responses to exercise. Redox signalling pathways involved in adaptive responses in skeletal muscle to exercise are not clearly elucidated at present, and further research is required to better define important signalling pathways involved. Evidence of beneficial or detrimental effects of specific antioxidant compounds on exercise adaptations in muscle is similarly limited, particularly in human subjects. Future research is required to not only investigate effects of specific antioxidant compounds on skeletal muscle exercise adaptations, but also to better establish mechanisms of action of specific antioxidants in vivo. Although we feel it remains somewhat premature to make clear recommendations in relation to application of specific antioxidant compounds in different exercise settings, a bulk of evidence suggests that N-acetylcysteine (NAC) is ergogenic through its effects on maintenance of muscle force production during sustained fatiguing events. Nevertheless, a current lack of evidence from studies using performance tests representative of athletic competition and a potential for adverse effects with high doses (>70mg/kg body mass) warrants caution in its use for performance enhancement. In addition, evidence implicates high dose vitamin C (1g/day) and E

  14. Effect of TGFβ on calcium signaling in megakaryocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing [Department of Physiology I, University of Tübingen, Tübingen (Germany); Schmid, Evi [Department of Physiology I, University of Tübingen, Tübingen (Germany); Department of Pediatric Surgery and Pediatric Urology, University Children' s Hospital Tübingen, Tübingen (Germany); Almilaji, Ahmad; Shumilina, Ekaterina [Department of Physiology I, University of Tübingen, Tübingen (Germany); Borst, Oliver [Department of Physiology I, University of Tübingen, Tübingen (Germany); Department of Cardiology & Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Laufer, Stefan [Department of Pharmacy, University of Tübingen, Tübingen (Germany); Gawaz, Meinrad [Department of Cardiology & Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology I, University of Tübingen, Tübingen (Germany)

    2015-05-22

    TGFβ is a powerful regulator of megakaryocyte maturation and platelet formation. As previously shown for other cell types, TGFβ may up-regulate the expression of the serum & glucocorticoid inducible kinase SGK1, an effect requiring p38 kinase. SGK1 has in turn recently been shown to participate in the regulation of cytosolic Ca{sup 2+} activity ([Ca{sup 2+}]{sub i}) in megakaryocytes and platelets. SGK1 phosphorylates the IκB kinase (IKKα/β), which in turn phosphorylates the inhibitor protein IκBα resulting in nuclear translocation of nuclear factor NFκB. Genes up-regulated by NFκB include Orai1, the pore forming ion channel subunit accomplishing store operated Ca{sup 2+} entry (SOCE). The present study explored whether TGFβ influences Ca{sup 2+} signaling in megakaryocytes. [Ca{sup 2+}]{sub i} was determined by Fura-2 fluorescence and SOCE from the increase of [Ca{sup 2+}]{sub i} following re-addition of extracellular Ca{sup 2+} after store depletion by removal of extracellular Ca{sup 2+} and inhibition of the sarcoendoplasmatic Ca{sup 2+} ATPase (SERCA) with thapsigargin (1 μM). As a result, TGFβ (60 ng, 24 h) increased SOCE, an effect significantly blunted by p38 kinase inhibitor Skepinone-L (1 μM), SGK1 inhibitor EMD638683 (50 μM) and NFκB inhibitor wogonin (100 μM). In conclusion, TGFβ is a powerful regulator of store operated Ca{sup 2+} entry into megakaryocytes, an effect mediated by a signaling cascade involving p38 kinase, SGK1 and NFκB. - Highlights: • TGFβ up-regulates store operated Ca{sup 2+} entry (SOCE) in megakaryocytes. • The effect of TGFβ on SOCE is blunted by p38 kinase inhibitor Skepinone-L. • The effect of TGFβ on SOCE is virtually abrogated by SGK1 inhibitor EMD638683. • The effect of TGFβ on SOCE is almost abolished by NFκB inhibitor wogonin. • The effect of TGFβ is expected to enhance sensitivity of platelets to activation.

  15. Wnt signaling pathway in non-small cell lung cancer.

    Science.gov (United States)

    Stewart, David J

    2014-01-01

    Wnt/β-catenin alterations are prominent in human malignancies. In non-small cell lung cancer (NSCLC), β-catenin and APC mutations are uncommon, but Wnt signaling is important in NSCLC cell lines, and Wnt inhibition reduces proliferation. Overexpression of Wnt-1, -2, -3, and -5a and of Wnt-pathway components Frizzled-8, Dishevelled, Porcupine, and TCF-4 is common in resected NSCLC and is associated with poor prognosis. Conversely, noncanonical Wnt-7a suppresses NSCLC development and is often downregulated. Although β-catenin is often expressed in NSCLCs, it was paradoxically associated with improved prognosis in some series, possibly because of E-cadherin interactions. Downregulation of Wnt inhibitors (eg, by hypermethylation) is common in NSCLC tumor cell lines and resected samples; may be associated with high stage, dedifferentiation, and poor prognosis; and has been reported for AXIN, sFRPs 1-5, WIF-1, Dkk-1, Dkk-3, HDPR1, RUNX3, APC, CDX2, DACT2, TMEM88, Chibby, NKD1, EMX2, ING4, and miR-487b. AXIN is also destabilized by tankyrases, and GSK3β may be inactivated through phosphorylation by EGFR. Preclinically, restoration of Wnt inhibitor function is associated with reduced Wnt signaling, decreased cell proliferation, and increased apoptosis. Wnt signaling may also augment resistance to cisplatin, docetaxel, and radiotherapy, and Wnt inhibitors may restore sensitivity. Overall, available data indicate that Wnt signaling substantially impacts NSCLC tumorigenesis, prognosis, and resistance to therapy, with loss of Wnt signaling inhibitors by promoter hypermethylation or other mechanisms appearing to be particularly important. Wnt pathway antagonists warrant exploration clinically in NSCLC. Agents blocking selected specific β-catenin interactions and approaches to increase expression of downregulated Wnt inhibitors may be of particular interest. PMID:24309006

  16. Integrative analyses reveal signaling pathways underlying familial breast cancer susceptibility.

    Science.gov (United States)

    Piccolo, Stephen R; Hoffman, Laura M; Conner, Thomas; Shrestha, Gajendra; Cohen, Adam L; Marks, Jeffrey R; Neumayer, Leigh A; Agarwal, Cori A; Beckerle, Mary C; Andrulis, Irene L; Spira, Avrum E; Moos, Philip J; Buys, Saundra S; Johnson, William Evan; Bild, Andrea H

    2016-03-01

    The signaling events that drive familial breast cancer (FBC) risk remain poorly understood. While the majority of genomic studies have focused on genetic risk variants, known risk variants account for at most 30% of FBC cases. Considering that multiple genes may influence FBC risk, we hypothesized that a pathway-based strategy examining different data types from multiple tissues could elucidate the biological basis for FBC. In this study, we performed integrated analyses of gene expression and exome-sequencing data from peripheral blood mononuclear cells and showed that cell adhesion pathways are significantly and consistently dysregulated in women who develop FBC. The dysregulation of cell adhesion pathways in high-risk women was also identified by pathway-based profiling applied to normal breast tissue data from two independent cohorts. The results of our genomic analyses were validated in normal primary mammary epithelial cells from high-risk and control women, using cell-based functional assays, drug-response assays, fluorescence microscopy, and Western blotting assays. Both genomic and cell-based experiments indicate that cell-cell and cell-extracellular matrix adhesion processes seem to be disrupted in non-malignant cells of women at high risk for FBC and suggest a potential role for these processes in FBC development. PMID:26969729

  17. Parallel quorum sensing signaling pathways in Vibrio cholerae.

    Science.gov (United States)

    Jung, Sarah A; Hawver, Lisa A; Ng, Wai-Leung

    2016-05-01

    Quorum sensing (QS) is a microbial signaling process for monitoring population density and complexity. Communication among bacterial cells via QS relies on the production, secretion, and detection of small molecules called autoinducers. Many bacteria have evolved their QS systems with different network architectures to incorporate information from multiple signals. In the human pathogen Vibrio cholerae, at least four parallel signaling pathways converge to control the activity of a single regulator to modulate its QS response. By integrating multiple signal inputs, it is believed that Vibrio species can survey intra-species, intra-genus, and inter-species populations and program their gene expression accordingly. Our recent studies suggest that this "many-to-one" circuitry is also important for maintaining the integrity of the input-output relationship of the system and minimizes premature commitment to QS due to signal perturbation. Here we discuss the implications of this specific parallel network setup for V. cholerae intercellular communication and how this system arrangement affects our approach to manipulate the QS response of this clinically important pathogen. PMID:26545759

  18. Distinct purinergic signaling pathways in prepubescent mouse spermatogonia.

    Science.gov (United States)

    Fleck, David; Mundt, Nadine; Bruentgens, Felicitas; Geilenkirchen, Petra; Machado, Patricia A; Veitinger, Thomas; Veitinger, Sophie; Lipartowski, Susanne M; Engelhardt, Corinna H; Oldiges, Marco; Spehr, Jennifer; Spehr, Marc

    2016-09-01

    Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP-a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts-activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca(2+)-activated large-conductance K(+) channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis. PMID:27574293

  19. Signal transduction pathways in liver and the influence of hepatitis C virus infection on their activities

    Institute of Scientific and Technical Information of China (English)

    Magdalena M Dabrowska; Anatol Panasiuk; Robert Flisiak

    2009-01-01

    In liver, the most intensively studied transmembrane and intracellular signal transduction pathways are the Janus kinase signal transduction pathway, the mitogen-activated protein kinases signal transduction pathway, the transforming growth factor b signal transduction pathway, the tumor necrosis factor a signal transduction pathway and the recently discovered sphingolipid signal transduction pathway. All of them are activated by many different cytokines and growth factors. They regulate specific cell mechanisms such as hepatocytes proliferation, growth, differentiation, adhesion, apoptosis, and synthesis and degradation of the extracellular matrix. The replication cycle of hepatitis C virus (HCV) is intracellular and requires signal transduction to the nucleus to regulate transcription of its genes. Moreover, HCV itself, by its structural and nonstructural proteins, could influence the activity of the second signal messengers. Thus, the inhibition of the transmembrane and intracellular signal transduction pathways could be a new therapeutic target in chronic hepatitis C treatment.

  20. The Lophotrochozoan TGF-β signalling cassette - diversification and conservation in a key signalling pathway.

    Science.gov (United States)

    Kenny, Nathan J; Namigai, Erica K O; Dearden, Peter K; Hui, Jerome H L; Grande, Cristina; Shimeld, Sebastian M

    2014-01-01

    TGF-β signalling plays a key role in the patterning of metazoan body plans and growth. It is widely regarded as a 'module' capable of co-option into novel functions. The TGF-β pathway arose in the Metazoan lineage, and while it is generally regarded as well conserved across evolutionary time, its components have been largely studied in the Ecdysozoa and Deuterostomia. The recent discovery of the Nodal molecule in molluscs has underlined the necessity of untangling this signalling network in lophotrochozoans in order to truly comprehend the evolution, conservation and diversification of this key pathway. Three novel genome resources, the mollusc Patella vulgata, annelid Pomatoceros lamarcki and rotifer Brachionus plicatilis, along with other publicly available data, were searched for the presence of TGF-β pathway genes. Bayesian and Maximum Likelihood analyses, along with some consideration of conserved domain structure, was used to confirm gene identity. Analysis revealed conservation of key components within the canonical pathway, allied with extensive diversification of TGF-β ligands and partial loss of genes encoding pathway inhibitors in some lophotrochozoan lineages. We fully describe the TGF-β signalling cassette of a range of lophotrochozoans, allowing firm inference to be drawn as to the ancestral state of this pathway in this Superphylum. The TGF-β signalling cascade's reputation as being highly conserved across the Metazoa is reinforced. Diversification within the activin-like complement, as well as potential wide loss of regulatory steps in some Phyla, hint at specific evolutionary implications for aspects of this cascade's functionality in this Superphylum. PMID:25690968

  1. Cell volume homeostatic mechanisms: effectors and signalling pathways

    DEFF Research Database (Denmark)

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    the historical context of studies of cell volume regulation, focusing on the lineage started by Krogh, Bodil Schmidt-Nielsen, Hans-Henrik Ussing, and their students. The early work was focused on understanding the functional behaviour, kinetics and thermodynamics of the volume-regulatory ion transport......Cell volume homeostasis and its fine-tuning to the specific physiological context at any given moment are processes fundamental to normal cell function. The understanding of cell volume regulation owes much to August Krogh, yet has advanced greatly over the last decades. In this review, we outline...... mechanisms. Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  2. Crosstalk between pathways enhances the controllability of signalling networks.

    Science.gov (United States)

    Wang, Dingjie; Jin, Suoqin; Zou, Xiufen

    2016-02-01

    The control of complex networks is one of the most challenging problems in the fields of biology and engineering. In this study, the authors explored the controllability and control energy of several signalling networks, which consisted of many interconnected pathways, including networks with a bow-tie architecture. On the basis of the theory of structure controllability, they revealed that biological mechanisms, such as cross-pathway interactions, compartmentalisation and so on make the networks easier to fully control. Furthermore, using numerical simulations for two realistic examples, they demonstrated that the control energy of normal networks with crosstalk is lower than in networks without crosstalk. These results indicate that the biological networks are optimally designed to achieve their normal functions from the viewpoint of the control theory. The authors' work provides a comprehensive understanding of the impact of network structures and properties on controllability. PMID:26816393

  3. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals.

    Science.gov (United States)

    Qiu, Jing; Tan, Yan-Wei; Hagenston, Anna M; Martel, Marc-Andre; Kneisel, Niclas; Skehel, Paul A; Wyllie, David J A; Bading, Hilmar; Hardingham, Giles E

    2013-01-01

    The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders.

  4. Effect of nicotine on exocytotic pancreatic secretory response: role of calcium signaling

    Directory of Open Access Journals (Sweden)

    Chowdhury Parimal

    2013-01-01

    Full Text Available Abstract Background Nicotine is a risk factor for pancreatitis resulting in loss of pancreatic enzyme secretion. The aim of this study was to evaluate the mechanisms of nicotine-induced secretory response measured in primary pancreatic acinar cells isolated from Male Sprague Dawley rats. The study examines the role of calcium signaling in the mechanism of the enhanced secretory response observed with nicotine exposure. Methods Isolated and purified pancreatic acinar cells were subjected to a nicotine exposure at a dose of 100 μM for 6 minutes and then stimulated with cholecystokinin (CCK for 30 min. The cell’s secretory response was measured by the percent of amylase released from the cells in the incubation medium Calcium receptor antagonists, inositol trisphosphate (IP3 receptor blockers, mitogen activated protein kinase inhibitors and specific nicotinic receptor antagonists were used to confirm the involvement of calcium in this process. Results Nicotine exposure induced enhanced secretory response in primary cells. These responses remained unaffected by mitogen activated protein kinases (MAPK’s inhibitors. The effects, however, have been completely abolished by nicotinic receptor antagonist, calcium channel receptor antagonists and inositol trisphosphate (IP3 receptor blockers. Conclusions The data suggest that calcium activated events regulating the exocytotic secretion are affected by nicotine as shown by enhanced functional response which is inhibited by specific antagonists… The results implicate the role of nicotine in the mobilization of both intra- and extracellular calcium in the regulation of stimulus-secretory response of enzyme secretion in this cell system. We conclude that nicotine plays an important role in promoting enhanced calcium levels inside the acinar cell.

  5. A model of calcium signaling and degranulation dynamics induced by laser irradiation in mast cells

    Institute of Scientific and Technical Information of China (English)

    SHI XiaoMin; ZHENG YuFan; LIU ZengRong; YANG WenZhong

    2008-01-01

    Recent experiments show that calcium signaling and degranulation dynamics induced by low power laser irradiation in mast cells must rely on extracellular Ca2+ influx. An analytical expression of Ca2+ flux through TRPV4 cation channel in response to interaction of laser photon energy and extracellular Ca2+ is deduced, and a model characterizing dynamics of calcium signaling and degranulation activated by laser irradiation in mast cells is established. The model indicates that the characteristics of calcium signaling and degranulation dynamics are determined by interaction between laser photon energy and Ca2+ influx. Extracellular Ca2+ concentration is so high that even small photon energy can activate mast cells, thus avoiding the possible injury caused by laser irradiation with shorter wavelengths. The model predicts that there exists a narrow parameter domain of photon energy and extracellular Ca2+ concentration of which results in cytosolic Ca2+ limit cycle oscillations, and shows that PKC activity is in direct proportion to the frequency of Ca2+ oscillations. With the model it is found that sustained and stable maximum plateau of cytosolic Ca2+ concentration can get optimal degranulation rate. Furthermore, the idea of introducing the realistic physical energy into model is applicable to modeling other physical signal transduction systems.

  6. Understanding Resolvin Signaling Pathways to Improve Oral Health

    Directory of Open Access Journals (Sweden)

    Laura De Oleo

    2013-03-01

    Full Text Available The discovery of resolvins has been a major breakthrough for understanding the processes involved in resolution of inflammation. Resolvins belong to a family of novel lipid mediators that possess dual anti-inflammatory and pro-resolution actions. Specifically, they protect healthy tissue during immune-inflammatory responses to infection or injury, thereby aiding inflammation resolution and promoting tissue healing. One of the major concerns in modern medicine is the management and treatment of oral diseases, as they are related to systemic outcomes impacting the quality of life of many patients. This review summarizes known signaling pathways utilized by resolvins to regulate inflammatory responses associated with the oral cavity.

  7. Intracellular calcium during signal transduction in the lymphocyte is altered by ELF magnetic and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Liburdy, R.P. (Lawrence Berkeley Lab., CA (United States))

    1992-02-26

    Research has shown that ELF magnetic and electric fields alter calcium transport in rat thymic T-lymphocytes during signal transduction initiated by mitogen. Interestingly activated T-lymphocytes display a nonlinear dose-response for this basic field interaction which scales with the induced electric field in contrast to the applied magnetic field. Specialized multiring annular well cell culture plates based on Faraday's Law of Current Induction were used to demonstrate that the electric field associated with the magnetic field is the exposure metric of biological interest. The first real-time measurements of (Ca{sup 2+}){sub i} were recently presented and (Ca{sup 2+}){sub i} was shown to be altered by sinusoidal 60 Hz electric fields; magnetic fields that induced comparable electric fields yielded similar alterations in (Ca{sup 2+}){sub i}. The author now presents evidence that both parameters, (Ca{sup 2+}){sub i} and calcium transport, are altered by ELF fields during calcium signaling in thymocytes and scale with the induced electric field. In addition, (Ca{sup 2+}){sub i} studies have been conducted that provide evidence supporting the hypothesis that the mitogen-gated calcium channel present in the plasma cell membrane represents a specific site of interaction for ELF fields.

  8. The new sideway of CNTF signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The action of ciliary neurotrophic factor (CNTF) on intercellular free Ca2+ concentrations [Ca2+]I induced by glutamate (Glu) in primary cultured hippocampal neurons were detected with Fura2/AM,a Ca2+-sensitive fluorophore,and the morphological influence of G-protein on it was ob- jected. Glu could induce rapid increase of [Ca2+]I in hippo- campal neurons. CNTF had no significant action on [Ca2+]I in resting hippocampal neurons. However,after incubation of CNTF for 5 min,the increase of [Ca2+]I in hippocampal neurons rapidly induced by Glu was inhibited. Pretussis toxin (PTX)-sensitive G protein could block the action. These results indicate that a new non-genomic rapid sideway might exist in the upper stream of CNTF signal transduction pathway,which was related to Ca2+ signal transduction.

  9. Roles of MAP kinase signaling pathway in oocyte meiosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases expressed widely in eukaryotic cells. MAPK is activated by a cascade of protein kinase phosphorylation and plays pivotal roles in regulating meiosis process in oocytes. As an important physical substrate of MAPK, p90rsk mediates numerous MAPK functions. MAPK was activated at G2/M transition during meiosis. Its activity reached the peak at MⅠ stage and maintained at this level until the time before the pronuclear formation after fertilization. There is complex interplay between MAPK and MPF in the meiosis regulation. Furthermore, other intracellular signal transducers, such as cAMP, protein kinase C and protein phosphotase, ect., also regulated the activity of MAPK at different stages during meiosis in oocytes. In the present article, the roles of MAPK signaling pathway in oocyte meiosis are reviewed and discussed.

  10. Activation and signaling of the p38 MAP kinase pathway

    Institute of Scientific and Technical Information of China (English)

    Tyler ZARUBIN; Jiahuai HAN

    2005-01-01

    The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.

  11. Different Na+/K+-ATPase signal pathways was involved in the increase of [Ca2+]i induced by strophanthidin in normal and failing isolated guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Ya-juan QI; Su-wen SU; Jun-xia LI; Ji-he LI; Fang GUO; Yong-li WANG

    2008-01-01

    Aim: To determine whether different Na+/K+-ATPase signal transduction pathways have positive inotropic effects on normal ventricular myocytes (NC) and failing ventricular myocytes (FC), and are involved in an increase of [Ca2+]i induced by strophanthidin (Str). Methods: A guinea pig model of congestive heart failure was made by constricting descending aorta. The left ventricular myocytes were enzymatically isolated. The effects of 25 μmol/L Str with different signal-transducing inhibitors on contractility and the calcium transient of NC or FC from guinea pigs were simultaneously assessed and compared with those in the 25 μmol/L Str-only group by a video-based, motion-edge detection system. Results: Str at 1, 10, and 25 μmol/L in NC and Str at 0.1, 1, 10, and 25 μmol/L) in FC elevated the calcium transient amplitude and increased the positive inotropic effects in a concentration-dependent manner, respectively. At the same concentration, the effects of Str were more potent in FC than in NC. In FC, both the mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS) signal transduction pathway of Na+/K+-ATPase were involved in the increase of the calcium transient induced by Str, but only activation of the MAPK pathway increased the calcium transient in NC. However, only the ROS pathway was involved in positive inotropic effects both in NC and FC. Conclusion: The present study suggests that Na+/K+-ATPase signaling pathways involved in the inotropic effects of Str in NC and FC are consistent, and Na+/K+-ATPase signaling pathways involved in the increase of [Ca2+]i by Str in NC and FC are different.

  12. Quantitative impedimetric NPY-receptor activation monitoring and signal pathway profiling in living cells.

    Science.gov (United States)

    te Kamp, Verena; Lindner, Ricco; Jahnke, Heinz-Georg; Krinke, Dana; Kostelnik, Katja B; Beck-Sickinger, Annette G; Robitzki, Andrea A

    2015-05-15

    Label-free and non-invasive monitoring of receptor activation and identification of the involved signal pathways in living cells is an ongoing analytic challenge and a great opportunity for biosensoric systems. In this context, we developed an impedance spectroscopy-based system for the activation monitoring of NPY-receptors in living cells. Using an optimized interdigital electrode array for sensitive detection of cellular alterations, we were able for the first time to quantitatively detect the NPY-receptor activation directly without a secondary or enhancer reaction like cAMP-stimulation by forskolin. More strikingly, we could show that the impedimetric based NPY-receptor activation monitoring is not restricted to the Y1-receptor but also possible for the Y2- and Y5-receptor. Furthermore, we could monitor the NPY-receptor activation in different cell lines that natively express NPY-receptors and proof the specificity of the observed impedimetric effect by agonist/antagonist studies in recombinant NPY-receptor expressing cell lines. To clarify the nature of the observed impedimetric effect we performed an equivalent circuit analysis as well as analyzed the role of cell morphology and receptor internalization. Finally, an antagonist based extensive molecular signal pathway analysis revealed small alterations of the actin cytoskeleton as well as the inhibition of at least L-type calcium channels as major reasons for the observed NPY-induced impedance increase. Taken together, our novel impedance spectroscopy based NPY-receptor activation monitoring system offers the opportunity to identify signal pathways as well as for novel versatile agonist/antagonist screening systems for identification of novel therapeutics in the field of obesity and cancer.

  13. Redox Modulation of Cellular Signaling and Metabolism Through Reversible Oxidation of Methionine Sensors in Calcium Regulatory Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Diana J.; Squier, Thomas C.

    2005-01-17

    response to {beta}-adrenergic signaling in the heart. The important role of the Ca-ATPase in determining the properties of the intracellular calcium transient in muscle highlights the potential role of phospholamban oxidation in cellular stress response. We suggest that under acute conditions, such as inflammation or ischemia, these types of mechanisms ensure minimal nonspecific cellular damage, allowing for rapid restoration of cellular function through repair of oxidized methionines by methionine sulfoxide reductase and degradation pathways after restoration of normal cellular redox conditions.

  14. Spontaneous calcium signals induced by gap junctions in a network model of astrocytes

    Science.gov (United States)

    Kazantsev, V. B.

    2009-01-01

    The dynamics of a network model of astrocytes coupled by gap junctions is investigated. Calcium dynamics of the single cell is described by the biophysical model comprising the set of three nonlinear differential equations. Intercellular dynamics is provided by the diffusion of inositol 1,4,5-trisphosphate (IP3) through gap junctions between neighboring astrocytes. It is found that the diffusion induces the appearance of spontaneous activity patterns in the network. Stability of the network steady state is analyzed. It is proved that the increase of the diffusion coefficient above a certain critical value yields the generation of low-amplitude subthreshold oscillatory signals in a certain frequency range. It is shown that such spontaneous oscillations can facilitate calcium pulse generation and provide a certain time scale in astrocyte signaling.

  15. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  16. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  17. Puerarin Suppress Apoptosis of Human Osteoblasts via ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ling-juan Liu

    2013-01-01

    Full Text Available Puerarin, the main isoflavone glycoside extracted from Radix Puerariae, is an isoflavone traditional Chinese herb. Previous studies have demonstrated that puerarin could regulate osteoblast proliferation and differentiation to promote bone formation. However, the effect of puerarin on the process of human osteoblasts (hOBs apoptosis is still unclear. In this study, we detected the function of puerarin on serum-free-induced cell apoptosis using ELISA and TUNEL arrays and then found that the mortality of hOBs was significantly decreased after exposure to 10−10–10−6 M puerarin and reached the maximal antiapoptotic effect at the concentration of 10−8 M. In addition, compared with the control group, puerarin notably increased the Bcl-2 protein levels while it decreased the Bax protein levels in the hOBs in a dose-dependent way. 10−7 M puerarin decreased the Bax/Bcl-2 ratio with a maximal decrease to 0.08. Moreover, puerarin activated ERK signaling pathways in hOBs, and the antiapoptotic effect induced by puerarin was abolished by incubation of ERK inhibitor PD98059. Similarly, the estrogen receptor antagonist ICI182780 also suppressed the inhibitory effect of puerarin on hOBs apoptosis. In conclusion, puerarin could prevent hOBs apoptosis via ERK signaling pathway, which might be effective in providing protection against bone loss and bone remolding associated with osteoporosis.

  18. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  19. MicroRNA-gene signaling pathways in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Alexandra Drakaki

    2013-10-01

    Full Text Available Pancreatic cancer is the fourth most frequent cause of cancer-related deaths and is characterized by early metastasis and pronounced resistance to chemotherapy and radiation therapy. Despite extensive esearch efforts, there is not any substantial progress regarding the identification of novel drugs against pancreatic cancer. Although the introduction of the chemotherapeutic agent gemcitabine improved clinical response, the prognosis of these patients remained extremely poor with a 5-year survival rate of 3-5%. Thus, the identification of the novel molecular pathways involved in pancreatic oncogenesis and the development of new and potent therapeutic options are highly desirable. Here, we describe how microRNAs control signaling pathways that are frequently deregulated during pancreatic oncogenesis. In addition, we provide evidence that microRNAs could be potentially used as novel pancreatic cancer therapeutics through reversal of chemotherapy and radiotherapy resistance or regulation of essential molecular pathways. Further studies should integrate the deregulated genes and microRNAs into molecular networks in order to identify the central regulators of pancreatic oncogenesis. Targeting these central regulators could lead to the development of novel targeted therapeutic approaches for pancreatic cancer patients.

  20. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Devkanya Dutta

    2000-12-01

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.

  1. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    Science.gov (United States)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  2. Signaling Pathways and Molecular Mechanisms of Oxidative Stress in Skeletal Muscle

    Institute of Scientific and Technical Information of China (English)

    Haibing HU; Wenjing LI; Zhi FANG; Bo XUE; Longzhou LIU; Ye YANG

    2015-01-01

    Oxidative stress is a major factor affecting animal health and production performance. This paper briefly introduced the signaling pathways(i.e. NF-κB signal-ing pathway, MAPK, AP-1 and PGC-1α) of oxidative stress and the main genes regulating the signals of oxidative stress in skeletal muscle, providing a theoretical basis for reducing oxidative stress damage.

  3. Localized Calcium Signals along the Cleavage Furrow of the Xenopus Egg Are Not Involved in Cytokinesis

    OpenAIRE

    Noguchi, Tatsuhiko; Mabuchi, Issei

    2002-01-01

    It has been proposed that a localized calcium (Ca) signal at the growing end of the cleavage furrow triggers cleavage furrow formation in large eggs. We have examined the possible role of a Ca signal in cleavage furrow formation in the Xenopus laevis egg during the first cleavage. We were able to detect two kinds of Ca waves along the cleavage furrow. However, the Ca waves appeared after cleavage furrow formation in late stages of the first cleavage. In addition, cleavage was not affected by ...

  4. Phytochrome and retrograde signalling pathways coverage to antogonistically regulate a light-induced transcription network

    Science.gov (United States)

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde and photosensory-receptor signaling has remained undefined. Here, we show that the phytochrome (phy) and retrograde signaling pathways converge a...

  5. The APP670/671 mutation alters calcium signaling and response to hyperosmotic stress in rat primary hippocampal neurons

    DEFF Research Database (Denmark)

    Kloskowska, Ewa; Bruton, Joseph D; Winblad, Bengt;

    2008-01-01

    Altered calcium homeostasis is implicated in the pathogenesis of Alzheimer's disease and much effort has been put into understanding the association between the autosomal dominant gene mutations causative of this devastating disease and perturbed calcium signaling. We have focused our attention...

  6. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction

    Science.gov (United States)

    Latimer, Heather R.; Veal, Elizabeth A.

    2016-01-01

    Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin. PMID:26813660

  7. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction.

    Science.gov (United States)

    Latimer, Heather R; Veal, Elizabeth A

    2016-01-01

    Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin. PMID:26813660

  8. Hormone Signaling Pathways in Plants: The Role of Jasmonic Acid in Plant Cell Signaling

    OpenAIRE

    TİRYAKİ, İskender

    2004-01-01

    Plant growth and metabolism are affected by various biotic and abiotic stimuli including microorganisms and insects attack as well as light and environmental stresses. Such a diverse plant response requires a communication system that uses a group of chemical messengers called hormones. Hormones promote, inhibit, or qualitatively modify plant growth and development. This complex process requires a signal transduction that defines a specific information pathway within a cell that translat...

  9. Effects of calcium signaling on coagulation factor VIIa-induced proliferation and migration of the SW620 colon cancer cell line.

    Science.gov (United States)

    Wu, Ying; Wang, Jing; Zhou, Hong; Yu, Xiaoyan; Hu, Lichao; Meng, Fanlu; Jiang, Shuanghong

    2014-12-01

    Tissue factor (TF)/VIIa/protease‑activated receptor 2 (PAR2) has been shown to trigger the ERK1/2 signaling pathway. This was shown to be closely associated with the proliferation and migration of SW620 colon cancer cells; however, the detailed mechanisms remain unclear. The aim of the present study was to elucidate the effects of calcium signaling on the proliferation and migration of SW620 cells induced by coagulation factor VIIa. The results demonstrated that VIIa and PAR2 agonist PAR2‑AP increased [Ca2+]i in SW620 cells. In addition, VIIa‑and PAR2‑AP‑induced ERK1/2 activation was inhibited by thapsigargin (TG)‑induced depletion of intracellular Ca2+ stores and EGTA‑mediated removal of extracellular Ca2+. It was also identified that VIIa and PAR2‑AP‑induced proliferation and migration of SW620 cells was modulated by EGTA and TG. Taken together, the present results indicate that VIIa triggers calcium signaling in SW620 cells, in a TF‑dependent manner, which is critical for VIIa‑induced ERK1/2 activation in SW620 cells. These results suggested that calcium signaling had a vital role in the proliferation and migration of SW620 cells.

  10. Wnt signaling stimulates transcriptional outcome of the hedgehog pathway by stabilizing GLI1 mRNA

    OpenAIRE

    Noubissi, Felicite K.; Goswami, Srikanta; Sanek, Nicholas A.; Kawakami, Kazuyuki; Minamoto, Toshinari; Moser, Amy; Grinblat, Yevgenya; Spiegelman, Vladimir S.

    2009-01-01

    Wnt and Hedgehog signaling pathways play central roles in embryogenesis, stem cell maintenance, and tumorigenesis. However, the mechanisms by which these two pathways interact are not well understood. Here, we identified a novel mechanism by which Wnt signaling pathway stimulates the transcriptional output of Hedgehog signaling. Wnt/β-catenin signaling induces expression of an RNA-binding protein, CRD-BP, which in turn binds and stabilizes GLI1 mRNA, causing an elevation of GLI1 expression an...

  11. Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA

    OpenAIRE

    Noubissi, Felicite K.; Goswami, Srikanta; Sanek, Nicholas A.; Kawakami, Kazuyuki; Minamoto, Toshinari; Moser, Amy; Grinblat, Yevgenya; Spiegelman, Vladimir S.

    2009-01-01

    Wnt and Hedgehog signaling pathways play central roles in embryogenesis, stem cell maintenance, and tumorigenesis. However, mechanisms by which these two pathways interact are not well-understood. Here, we identified a novel mechanism by which Wnt signaling pathway stimulates the transcriptional output of Hedgehog signaling. Wnt/β-catenin signaling induces expression of an RNA-binding protein, CRD-BP, which, in turn, binds and stabilizes GLI1 mRNA, causing an elevation of GLI1 expression and ...

  12. In vitro reconstitution of an abscisic acid signalling pathway

    KAUST Repository

    Fujii, Hiroaki

    2009-11-18

    The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway. © 2009 Macmillan Publishers Limited. All rights reserved.

  13. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    Directory of Open Access Journals (Sweden)

    János Brunner

    2014-03-01

    Full Text Available Backpropagating action potentials (bAPs and local calcium signals that they trigger are fundamental for dendritic functions. Here we addressed the question what extent the changes of local dendritic membrane properties can contribute to the shaping of the coupling between dendritic action potentials and the local calcium responses. Using a combination of in vitro electrophysiological and confocal imaging techniques we found that activation of dendritic GIRK channels via mGlu2 or GABAB receptors enhanced the bAP¬-triggered calcium signals in the dendrites of dentate gyrus granule cells (GCs. The enhancement of calcium signals was significant only in those dendritic regions, where these receptors are predominantly expressed. Similarly to GIRK channel activation, somatic hyperpolarization by DC current injection (from -64 mV to -77 mV, significantly increased bAP-associated calcium signals in the proximal dendrites. The hyperpolarization was associated with a decrease in the input resistance due to the rectification of the membrane potential of GCs. The effect of hyperpolarization on the calcium signals was maintained when T-type calcium currents were blocked but it decreased when GIRK channels were inhibited. Simultaneous dual somato-dendritic recordings from GCs showed that somatic hyperpolarization accelerated the repolarization phase of dendritic bAP in the proximal region whereas the rising phase and peak amplitude was not affected. We hypothesize that the larger driving force for calcium ions during the faster repolarization can contribute to the increasing in calcium signals. Employment of previously recorded dendritic bAP waveforms from hyperpolarized membrane potential as voltage command evoked larger calcium currents in nucleated patches compared to bAP waveform from the same recording at depolarized membrane potential. Furthermore, addition of native, high-voltage activated, inactivating potassium conductance by somatic dynamic clamp

  14. Signaling pathways in the epithelial origins of pulmonary fibrosis.

    Science.gov (United States)

    Hardie, William D; Hagood, James S; Dave, Vrushank; Perl, Anne-Karina T; Whitsett, Jeffrey A; Korfhagen, Thomas R; Glasser, Stephan

    2010-07-15

    Pulmonary fibrosis complicates a number of disease processes and leads to substantial morbidity and mortality. Idiopathic pulmonary fibrosis (IPF) is perhaps the most pernicious and enigmatic form of the greater problem of lung fibrogenesis with a median survival of three years from diagnosis in affected patients. In this review, we will focus on the pathology of IPF as a model of pulmonary fibrotic processes, review possible cellular mechanisms, review current treatment approaches and review two transgenic mouse models of lung fibrosis to provide insight into processes that cause lung fibrosis. We will also summarize the potential utility of signaling pathway inhibitors as a future treatment in pulmonary fibrosis. Finally, we will present data demonstrating a minimal contribution of epithelial-mesenchymal transition in the development of fibrotic lesions in the transforming growth factor-alpha transgenic model of lung fibrosis. PMID:20676040

  15. Current Views of Toll-Like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  16. Hedgehog signaling pathway mediates invasion and metastasis of hepatocellular carcinoma via ERK pathway

    Institute of Scientific and Technical Information of China (English)

    Jing-tao LU; Wen-di ZHAO; Wei HE; Wei WEI

    2012-01-01

    To investigate the role of Hedgehog (Hh) signaling pathway in the invasion and metastasis of human hepatocellular carcinoma (HCC).Methods:Eighty six HCC tissues samples and HCC cell line Bel-7402 were examined.The protein expression of sonic hedgehog (Shh),nuclear glioma-associated oncogene-1 (Gli1),MMP-9 and p-ERK1/2 in HCC was analyzed using immunohistochemistry and Western blot analysis.Boyden chamber assay and wound-healing assay were used to quantify the invasion and metastasis of Bel-7402 cells.Results:In 86 HCC tissue samples,the positive ratio of Shh and nucleus Gli1 was 67.44% (58/86) and 60.47% (52/86),respectively;the expression of nucleus Gli1 was correlated with the tumor pathological grade (P=0.034),and with the ability of the tumor to invade and metastasize (P=0.001); the expression of nucleus Gli1 was also correlated with p-ERK1/2 (P=0.031) and with MMP-9 (P=0.034).Neither Shh,nor nucleus Gli1 was observed in normal liver tissue.KAAD-cyclopamine (KAAD-cyc),a specific inhibitor of the Hh pathway,at the concentrations of 1 and 4 μmol/L inhibited the invasion and migration of Bel-7402 cells and decreased the expression of Gli1 in nucleus and MMP-9,p-ERK1/2 proteins in Bel-7402 cells,On the other hand,Shh,a ligand of the Hh pathway,at the concentration of 0.5 μg/mL produced opposite effects.The MAPK pathway inhibitors U0126 and PD98059 at the concentrations of 5 and 10μmol/L inhibited invasion and metastasis of Bel-7402 cells induced by Shh,and decreased the expression of p-ERK1/2 and MMP-9.However,U0126 and PD98059 had no effect on the expression of Gii1.Conclusion:Hh signaling pathway mediates invasion and metastasis of human HCC by up-regulating the protein expression of MMP-9via ERK pathway.

  17. Detergent resistant membrane fractions are involved in calcium signaling in Müller glial cells of retina.

    Science.gov (United States)

    Krishnan, Gopinath; Chatterjee, Nivedita

    2013-08-01

    Compartmentalization of the plasma membrane into lipid microdomains promotes efficient cellular processes by increasing local molecular concentrations. Calcium signaling, either as transients or propagating waves require integration of complex macromolecular machinery. Calcium waves represent a form of intercellular signaling in the central nervous system and the retina. We hypothesized that the mechanism for calcium waves would require effector proteins to aggregate at the plasma membrane in lipid microdomains. The current study shows that in Müller glia of the retina, proteins involved in calcium signaling aggregate in detergent resistant membranes identifying rafts and respond by redistributing on stimulation. We have investigated Purinoreceptor-1 (P2Y1), Ryanodine receptor (RyR), and Phospholipase C (PLC-β1). P2Y1, RyR and PLC-β1, redistribute from caveolin-1 and flotillin-1 positive fractions on stimulation with the agonists, ATP, 2MeS-ATP and Thapsigargin, an inhibitor of sarcoplasmic-endoplasmic reticulum Ca-ATPase (SERCA). Redistribution is absent on treatment with cyclopiazonic acid, another SERCA inhibitor. Disruption of rafts by removing cholesterol cause proteins involved in this machinery to redistribute and change agonist-induced calcium signaling. Cholesterol depletion from raft lead to increase in time to peak of calcium levels in agonist-evoked calcium signals in all instances, as seen by live imaging. This study emphasizes the necessity of a sub-population of proteins to cluster in specialized lipid domains. The requirement for such an organization at the raft-like microdomains may have implications on intercellular communication in the retina. Such concerted interaction at the rafts can regulate calcium dynamics and could add another layer of complexity to calcium signaling in cells.

  18. Cell signalling pathways underlying induced pluripotent stem cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Kate; Hawkins; Shona; Joy; Tristan; Mc; Kay

    2014-01-01

    Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.

  19. Kavain Involvement in LPS-Induced Signaling Pathways.

    Science.gov (United States)

    Tang, Xiaoren; Amar, Salomon

    2016-10-01

    Kavain, a compound extracted from the Kava plant, Piper methysticum, is found to be involved in TNF-α expression in human and mouse cells via regulation of transcriptional factors such as NF-kB and LITAF. LITAF is known to activate the transcription of more than 20 cytokines that are involved in a variety of cellular processes and is associated with many inflammatory diseases, including angiogenesis, cancer, arthritis, and more. The modulation of LITAF is expected to positively affect cytokine-mediated diseases. Thus, intensive efforts have been deployed in search of LITAF inhibitors. In this work, we found that, in vitro, Kavain reduced LPS- induced TNF-α secretion in mouse macrophages, mouse bone marrow macrophages (BMM), and human peripheral blood mononuclear cells (HPBMC). We also found that Kavain treatment in RAW264.7 cells deactivated MyD88 and Akt, inhibited LITAF, and reduced the production of TNF-α, IL-27, and MIG in response to LPS. Similarly, it had a significant in vivo anti-inflammatory effect on wild-type (WT) mice that developed Collagen Antibody Induced Arthritis (CAIA). Overall, MyD88 was found to be an important mediator of the LPS-induced inflammatory response that can be distinguished from the NF-κB pathway. We also found that MyD88 is involved in the pathway linking LPS/LITAF to TNF-α. Therefore, given that Kavain modulates LPS-induced signaling pathways leading to cytokine expression, therapeutic interventions involving Kavain in inflammatory diseases are warranted. J. Cell. Biochem. 117: 2272-2280, 2016. © 2016 Wiley Periodicals, Inc. PMID:26917453

  20. mTOR signaling pathway genes in focal epilepsies.

    Science.gov (United States)

    Baulac, S

    2016-01-01

    Focal epilepsies, where seizures initiate in spatially limited networks, are the most frequent epilepsy type, accounting for two-thirds of patients. Focal epilepsies have long been thought to be acquired disorders; several focal epilepsy syndromes are now proven to be (genetically heterogeneous) monogenic disorders. While earlier genetic studies have demonstrated a strong contribution of ion channel and neurotransmitter receptor genes, or synaptic secreted protein genes, later work has revealed a new class of genes encoding components of the mechanistic target of rapamycin (mTOR) signal transduction pathway. The mTOR pathway controls a myriad of biological processes among which cell growth and protein synthesis in response to several extracellular and intracellular. Recently, germline mutations have been found in genes encoding the components of the GATOR1 complex (DEPDC5, NPRL2, NPRL3), a repressor of mTORC1. These mutations are increasingly recognized as causing a wide and yet evolving spectrum of focal epilepsy syndromes, with and without cortical structural abnormalities (usually focal cortical dysplasia). Brain somatic mutations in the gene encoding mTOR (MTOR) have recently been linked to focal cortical dysplasia and other associated brain pathologies including hemimegalencephaly. This chapter reviews the genetics and neurobiology of DEPDC5, NPRL2, and NPRL3, and summarizes the clinical and molecular spectrum of GATOR1-related epilepsies. PMID:27323939

  1. CREB pathway links PGE2 signaling with macrophage polarization.

    Science.gov (United States)

    Luan, Bing; Yoon, Young-Sil; Le Lay, John; Kaestner, Klaus H; Hedrick, Susan; Montminy, Marc

    2015-12-22

    Obesity is thought to promote insulin resistance in part via activation of the innate immune system. Increases in proinflammatory cytokine production by M1 macrophages inhibit insulin signaling in white adipose tissue. In contrast, M2 macrophages have been found to enhance insulin sensitivity in part by reducing adipose tissue inflammation. The paracrine hormone prostaglandin E2 (PGE2) enhances M2 polarization in part through activation of the cAMP pathway, although the underlying mechanism is unclear. Here we show that PGE2 stimulates M2 polarization via the cyclic AMP-responsive element binding (CREB)-mediated induction of Krupple-like factor 4 (KLF4). Targeted disruption of CREB or the cAMP-regulated transcriptional coactivators 2 and 3 (CRTC2/3) in macrophages down-regulated M2 marker gene expression and promoted insulin resistance in the context of high-fat diet feeding. As re-expression of KLF4 rescued M2 marker gene expression in CREB-depleted cells, our results demonstrate the importance of the CREB/CRTC pathway in maintaining insulin sensitivity in white adipose tissue via its effects on the innate immune system.

  2. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.

    Science.gov (United States)

    Hsieh, Yi-Wen; Chang, Chieh; Chuang, Chiou-Fen

    2012-01-01

    The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON) and AWC(OFF), by inhibiting a calcium-mediated signaling pathway in the future AWC(ON) cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON) fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON) cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON) identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON) neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON), in which mir-71 is expressed at a higher level than in AWC(OFF). In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON) identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.

  3. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Hsieh

    Full Text Available The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON and AWC(OFF, by inhibiting a calcium-mediated signaling pathway in the future AWC(ON cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON, in which mir-71 is expressed at a higher level than in AWC(OFF. In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.

  4. Degradation kinetics and pathways of three calcium channel blockers under UV irradiation.

    Science.gov (United States)

    Zhu, Bing; Zonja, Bozo; Gonzalez, Oscar; Sans, Carme; Pérez, Sandra; Barceló, Damia; Esplugas, Santiago; Xu, Ke; Qiang, Zhimin

    2015-12-01

    Calcium channel blockers (CCBs) are a group of pharmaceuticals widely prescribed to lower blood pressure and treat heart diseases. They have been frequently detected in wastewater treatment plant (WWTP) effluents and downstream river waters, thus inducing a potential risk to aquatic ecosystems. However, little is known about the behavior and fate of CCBs under UV irradiation, which has been adopted as a primary disinfection method for WWTP effluents. This study investigated the degradation kinetics and pathways of three commonly-used CCBs, including amlodipine (AML), diltiazem (DIL), and verapamil (VER), under UV (254 nm) irradiation. The chemical structures of transformation byproducts (TBPs) were first identified to assess the potential ecological hazards. On that basis, a generic solid-phase extraction method, which simultaneously used four different cartridges, was adopted to extract and enrich the TBPs. Thereafter, the photo-degradation of target CCBs was performed under UV fluences typical for WWTP effluent disinfection. The degradation of all three CCBs conformed to the pseudo-first-order kinetics, with rate constants of 0.031, 0.044 and 0.011 min(-1) for AML, DIL and VER, respectively. By comparing the MS(2) fragments and the evolution (i.e., formation or decay) trends of identified TBPs, the degradation pathways were proposed. In the WWTP effluent, although the target CCBs could be degraded, several TBPs still contained the functional pharmacophores and reached peak concentrations under UV fluences of 40-100 mJ cm(-2).

  5. Signal processing by T-type calcium channel interactions in the cerebellum

    Directory of Open Access Journals (Sweden)

    Jordan D.T. Engbers

    2013-11-01

    Full Text Available T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs. In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT and hyperpolarization-activated cation current (IH are activated during trains of IPSPs. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT, and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect effects on

  6. Signal processing by T-type calcium channel interactions in the cerebellum.

    Science.gov (United States)

    Engbers, Jordan D T; Anderson, Dustin; Zamponi, Gerald W; Turner, Ray W

    2013-11-27

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (I T) and hyperpolarization-activated cation current (I H) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with I T generating a rebound burst and I H controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing I H to increase the efficacy of I T and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  7. Signal processing by T-type calcium channel interactions in the cerebellum

    Science.gov (United States)

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  8. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling

    OpenAIRE

    Kornélia Szebényi; András Füredi; Orsolya Kolacsek; Enikő Pergel; Zsuzsanna Bősze; Balázs Bender; Péter Vajdovich; József Tóvári; László Homolya; Gergely Szakács; László Héja; Ágnes Enyedi; Balázs Sarkadi; Ágota Apáti; Orbán, Tamás I.

    2015-01-01

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, an...

  9. Early pre- and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice

    Science.gov (United States)

    Chakroborty, Shreaya; Kim, Joyce; Schneider, Corinne; Jacobson, Christopher; Molgó, Jordi; Stutzmann, Grace E.

    2012-01-01

    Alzheimer’s disease (AD)-linked presenilin mutations result in pronounced endoplasmic reticulum (ER) calcium disruptions that occur prior to detectable histopathology and cognitive deficits. More subtly, these early AD-linked calcium alterations also reset neurophysiological homeostasis, such that calcium-dependent pre- and postsynaptic signaling appear functionally normal yet are actually operating under aberrant calcium signaling systems. In these 3xTg-AD mouse brains, upregulated RyR activity is associated with a shift towards synaptic depression, likely through a reduction in presynaptic vesicle stores and increased postsynaptic outward currents through SK2 channels. The deviant RyR-calcium involvement in the 3xTg-AD mice also compensates for an intrinsic predisposition for hippocampal LTD and reduced LTP. In this study we detail the impact of disrupted ryanodine receptor (RyR)-mediated calcium stores on synaptic transmission properties, long term depression (LTD) and calcium-activated membrane channels of hippocampal CA1 pyramidal neurons in presymptomatic 3xTg-AD mice. Using electrophysiological recordings in young 3xTg-AD and NonTg hippocampal slices, we show that increased RyR-evoked calcium release in 3xTg-AD mice ‘normalizes’ an altered synaptic transmission system operating under a shifted homeostatic state that is not present in NonTg mice. In the process, we uncover compensatory signaling mechanisms recruited early in the disease process which counterbalance the disrupted RyR-calcium dynamics, namely increases in presynaptic spontaneous vesicle release, altered probability of vesicle release, and upregulated postsynaptic SK channel activity. As AD is increasingly recognized as a ‘synaptic disease’, calcium-mediated signaling alterations may serve as a proximal trigger for the synaptic degradation driving the cognitive loss in AD. PMID:22699914

  10. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana.

    Science.gov (United States)

    Romero, Luis C; Aroca, M Ángeles; Laureano-Marín, Ana M; Moreno, Inmaculada; García, Irene; Gotor, Cecilia

    2014-02-01

    Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.

  11. Macroscopic consequences of calcium signaling in microdomains: A first passage time approach

    CERN Document Server

    Rovetti, Robert; Garfinkel, Alan; Shiferaw, Yohannes

    2007-01-01

    Calcium (Ca) plays an important role in regulating various cellular processes. In a variety of cell types, Ca signaling occurs within microdomains where channels deliver localized pulses of Ca which activate a nearby collection of Ca-sensitive receptors. The small number of channels involved ensures that the signaling process is stochastic. The aggregate response of several thousand of these microdomains yields a whole-cell response which dictates the cell behavior. Here, we study analytically the statistical properties of a population of these microdomains in response to a trigger signal. We apply these results to understand the relationship between Ca influx and Ca release in cardiac cells. In this context, we use a first passage time approach to show analytically how Ca release in the whole cell depends on the single channel kinetics of Ca channels and the properties of microdomains. Using these results, we explain the underlying mechanism for the graded relationship between Ca influx and Ca release in car...

  12. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.

    2009-12-01

    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  13. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Wenjie; Wei; Richard; Graeff; Jianbo; Yue

    2014-01-01

    Mobilization of intracellular Ca2+ stores is involved inmany diverse cell functions, including: cell proliferation;differentiation; fertilization; muscle contraction; secre-tion of neurotransmitters, hormones and enzymes;and lymphocyte activation and proliferation. Cyclic ad-enosine diphosphate ribose(cADPR) is an endogenousCa2+ mobilizing nucleotide present in many cell typesand species, from plants to animals. cADPR is formedby ADP-ribosyl cyclases from nicotinamide adenine di-nucleotide. The main ADP-ribosyl cyclase in mammalsis CD38, a multi-functional enzyme and a type Ⅱ mem-brane protein. It has been shown that many extracel-lular stimuli can induce cADPR production that leadsto calcium release or influx, establishing cADPR as asecond messenger. cADPR has been linked to a widevariety of cellular processes, but the molecular mecha-nisms regarding cADPR signaling remain elusive. Theaim of this review is to summarize the CD38/cADPR/Ca2+ signaling pathway, focusing on the recent advanc-es involving the mechanism and physiological functionsof cADPR-mediated Ca2+ mobilization.

  14. Signalling pathway impact analysis based on the strength of interaction between genes.

    Science.gov (United States)

    Bao, Zhenshen; Li, Xianbin; Zan, Xiangzhen; Shen, Liangzhong; Ma, Runnian; Liu, Wenbin

    2016-08-01

    Signalling pathway analysis is a popular approach that is used to identify significant cancer-related pathways based on differentially expressed genes (DEGs) from biological experiments. The main advantage of signalling pathway analysis lies in the fact that it assesses both the number of DEGs and the propagation of signal perturbation in signalling pathways. However, this method simplifies the interactions between genes by categorising them only as activation (+1) and suppression (-1), which does not encompass the range of interactions in real pathways, where interaction strength between genes may vary. In this study, the authors used newly developed signalling pathway impact analysis (SPIA) methods, SPIA based on Pearson correlation coefficient (PSPIA), and mutual information (MSPIA), to measure the interaction strength between pairs of genes. In analyses of a colorectal cancer dataset, a lung cancer dataset, and a pancreatic cancer dataset, PSPIA and MSPIA identified more candidate cancer-related pathways than were identified by SPIA. Generally, MSPIA performed better than PSPIA. PMID:27444024

  15. Role of endoplasmic reticulum calcium signaling in the pathogenesis of Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Elena ePopugaeva

    2013-09-01

    Full Text Available Alzheimer disease (AD is a major threat of XXI century that is responsible for the majority of dementia in the elderly. Development of effective AD-preventing therapies are the top priority tasks for neuroscience research. Amyloid hypothesis of AD is a dominant idea in the field, but so far all amyloid-targeting therapies have failed in clinical trials. In addition to amyloid accumulation, there are consistent reports of abnormal calcium signaling in AD neurons. AD neurons exhibit enhanced intracellular calcium (Ca2+ liberation from the endoplasmic reticulum (ER and reduced store-operated Ca2+ entry (SOC. These changes occur primarily as a result of ER Ca2+ overload. We argue that normalization of intracellular Ca2+ homeostasis could be a strategy for development of effective disease-modifying therapies. The current review summarizes recent data about changes in ER Ca2+ signaling in AD. Ca2+ channels that are discussed in the current review include: inositol trisphosphate receptors (InsP3R, ryanodine receptors (RyanR, presenilins as ER Ca2+ leak channels and neuronal SOC channels. We discuss how function of these channels is altered in AD and how important are resulting Ca2+ signaling changes for AD pathogenesis.

  16. Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation

    Science.gov (United States)

    2016-01-01

    The mammalian diffuse stellate cell system comprises retinoid-storing cells capable of remarkable transformations from a quiescent to an activated myofibroblast-like phenotype. Activated pancreatic stellate cells (PSCs) attract attention owing to the pivotal role they play in development of tissue fibrosis in chronic pancreatitis and pancreatic cancer. However, little is known about the actual role of PSCs in the normal pancreas. These enigmatic cells have recently been shown to respond to physiological stimuli in a manner that is markedly different from their neighbouring pancreatic acinar cells (PACs). Here, we demonstrate the capacity of PSCs to generate nitric oxide (NO), a free radical messenger mediating, for example, inflammation and vasodilatation. We show that production of cytosolic NO in PSCs is unambiguously related to cytosolic Ca2+ signals. Only stimuli that evoke Ca2+ signals in the PSCs elicit consequent NO generation. We provide fresh evidence for the striking difference between signalling pathways in PSCs and adjacent PACs, because PSCs, in contrast to PACs, generate substantial Ca2+-mediated and NOS-dependent NO signals. We also show that inhibition of NO generation protects both PSCs and PACs from necrosis. Our results highlight the interplay between Ca2+ and NO signalling pathways in cell–cell communication, and also identify a potential therapeutic target for anti-inflammatory therapies. PMID:27488376

  17. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling

    Directory of Open Access Journals (Sweden)

    Ishihama Nobuaki

    2010-05-01

    Full Text Available Abstract Background Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. Results To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1 in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a promotes PDF1.2 transcriptional activation in the defense response. Conclusions These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13 in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses.

  18. The merged basins of signal transduction pathways in spatiotemporal cell biology.

    Science.gov (United States)

    Hou, Yingchun; Hou, Yang; He, Siyu; Ma, Caixia; Sun, Mengyao; He, Huimin; Gao, Ning

    2014-03-01

    Numerous evidences have indicated that a signal system is composed by signal pathways, each pathway is composed by sub-pathways, and the sub-pathway is composed by the original signal terminals initiated with a protein/gene. We infer the terminal signals merged signal transduction system as "signal basin". In this article, we discussed the composition and regulation of signal basins, and the relationship between the signal basin control and triple W of spatiotemporal cell biology. Finally, we evaluated the importance of the systemic regulation to gene expression by signal basins under triple W. We hope our discussion will be the beginning to cause the attention for this area from the scientists of life science.

  19. Fruit Calcium: Transport and Physiology

    Directory of Open Access Journals (Sweden)

    Bradleigh eHocking

    2016-04-01

    knowledge of the calcium-regulated signaling pathways that control ripening would assist in addressing calcium deficiency disorders and improving fruit pathogen resistance.

  20. CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice.

    Science.gov (United States)

    Poissonnier, Amanda; Sanséau, Doriane; Le Gallo, Matthieu; Malleter, Marine; Levoin, Nicolas; Viel, Roselyne; Morere, Lucie; Penna, Aubin; Blanco, Patrick; Dupuy, Alain; Poizeau, Florence; Fautrel, Alain; Seneschal, Julien; Jouan, Florence; Ritz, Jerome; Forcade, Edouard; Rioux, Nathalie; Contin-Bordes, Cécile; Ducret, Thomas; Vacher, Anne-Marie; Barrow, Paul A; Flynn, Robin J; Vacher, Pierre; Legembre, Patrick

    2016-07-19

    CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment. PMID:27438772

  1. Sunlight UV-induced skin cancer relies upon activation of the p38α signaling pathway

    OpenAIRE

    LIU, KANGDONG; Yu, Donghoon; Cho, Yong-Yeon; Ann M Bode; Ma, Weiya; Yao, Ke; Li, Shengqing; Li, Jixia; Bowden, G. Tim; Dong, Ziming; Dong, Zigang

    2013-01-01

    The activation of cellular signal transduction pathways by solar ultraviolet (SUV) irradiation plays a vital role in skin tumorigenesis. Although many pathways have been studied using pure ultraviolet A (UVA) or ultraviolet B (UVB) irradiation, the signaling pathways induced by SUV (i.e., sunlight) are not understood well enough to permit improvements for prevention, prognosis and treatment. Here we report parallel protein kinase array studies aimed at determining the dominant signaling pathw...

  2. Micro-RNA Feedback Loops Modulating the Calcineurin/NFAT Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shichina Kannambath

    2016-05-01

    Full Text Available Nuclear factor of activated T cells (NFAT is a family of transcription factors important for innate and adaptive immune responses. NFAT activation is tightly regulated through the calcineurin/NFAT signaling pathway. There is increasing evidence on non-coding RNAs such as miRNAs playing a crucial role in regulating transcription factors and signaling pathways. However, not much is known about microRNAs (miRNAs targeting the calcineurin/NFAT signaling pathway involved in immune response in human. In this study, a comprehensive pathway level analysis has been carried out to identify miRNAs regulating the calcineurin/NFAT signaling pathway. Firstly, by incorporating experimental data and computational predictions, 191 unique miRNAs were identified to be targeting the calcineurin/NFAT signaling pathway in humans. Secondly, combining miRNA expression data from activated T cells and computational predictions, 32 miRNAs were observed to be induced by NFAT transcription factors. Finally, 11 miRNAs were identified to be involved in a feedback loop to modulate the calcineurin/NFAT signaling pathway activity. This data demonstrate the potential role of miRNAs as regulators of the calcineurin/NFAT signaling pathway. The present study thus emphasizes the importance of pathway level analysis to identify miRNAs and understands their role in modulating signaling pathways and transcription factor activity.

  3. Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets

    Indian Academy of Sciences (India)

    Chen Li; Qi-Wei Ge; Mitsuru Nakata; Hiroshi Matsuno; Satoru Miyano

    2007-01-01

    This paper first presents basic Petri net components representing molecular interactions and mechanisms of signalling pathways, and introduces a method to construct a Petri net model of a signalling pathway with these components. Then a simulation method of determining the delay time of transitions, by using timed Petri nets – i.e. the time taken in firing of each transition – is proposed based on some simple principles that the number of tokens flowed into a place is equivalent to the number of tokens flowed out. Finally, the availability of proposed method is confirmed by observing signalling transductions in biological pathways through simulation experiments of the apoptosis signalling pathways as an example.

  4. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  5. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    Science.gov (United States)

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  6. Progesterone in pregnancy; receptor-ligand interaction and signaling pathways.

    Science.gov (United States)

    Szekeres-Bartho, Julia; Halasz, Melinda; Palkovics, Tamas

    2009-12-01

    Progesterone is indispensable in creating a suitable endometrial environment for implantation, and also for the maintenance of pregnancy. Successful pregnancy depends on an appropriate maternal immune response to the fetus. Along with its endocrine effects, progesterone also acts as an "immunosteroid", by contributing to the establishment of a pregnancy protective immune milieu. Progesterone plays a role in uterine homing of NK cells and upregulates HLA-G gene expression, the ligand for NK inhibitory and activating receptors. At high concentrations, progesterone is a potent inducer of Th2-type cytokines as well as of LIF and M-CSF production by T cells. A protein called progesterone-induced blocking factor (PIBF), by inducing a Th2-dominant cytokine production mediates the immunological effects of progesterone. PIBF binds to a novel type of the IL-4 receptor and signals via the Jak/STAT pathway, to induce a number of genes, that not only affect the immune response, but might also play a role in trophoblast invasiveness. PMID:19880194

  7. Oxymatrine reduces neuroinflammation in rat brain A signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Jiahui Mao; Yae Hu; Ailing Zhou; Bing Zheng; Yi Liu; Yueming Du; Jia Li; Jinyang Lu; Pengcheng Zhou

    2012-01-01

    Cerebral neuroinflammation models were established by injecting 10 μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats.The rats were treated with an intraperitoneal injection of 120,90,or 60 mg/kg oxymatrine daily for three days prior to the lipopolysaccharide injection.Twenty-four hours after model induction,the hippocampus was analyzed by real-time quantitative PCR,and the cerebral cortex was analyzed by enzyme-linked immunosorbent assay and western blot assay.The results of the enzyme-linked immunosorbent assay and the real-time quantitative PCR showed that the secretion and mRNA expression of the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α were significantly decreased in the hippocampus and cerebral cortex of model rats treated with oxymatrine.Western blot assay and real-time quantitative PCR analysis indicated that toll-like receptor 4 mRNA and protein expression were significantly decreased in the groups receiving different doses of oxymatrine.Additionally,120 and 90 mg/kg oxymatrine were shown to reduce protein levels of nuclear factor-kB p65 in the nucleus and of phosphorylated IkBα in the cytoplasm of brain cells,as detected by western blot assay.Experimental findings indicate that oxymatrine may inhibit neuroinflammation in rat brain via downregulating the expression of molecules in the toll-like receptor 4/nuclear factor-kB signaling pathway.

  8. The VEGF signaling pathway in cancer: the road ahead

    Institute of Scientific and Technical Information of China (English)

    Steven A.Stacker; Marc G.Achen

    2013-01-01

    The vascular endothelial growth factor (VEGF) family of soluble protein growth factors consists of key mediators of angiogenesis and lymphangiogenesis in the context of tumor biology.The members of the family,VEGF-A (also known as VEGF),VEGF-B,VEGF-C,VEGF-D,and placenta growth factor (PIGF),play important roles in vascular biology in both normal physiology and pathology.The generation of a humanized neutralizing antibody to VEGF-A (bevacizumab,also known as Avastin) and the demonstration of its benefit in numerous human cancers have confirmed the merit of an anti-angiogenesis approach to cancer treatment and have validated the VEGF-A signaling pathway as a therapeutic target.Other members of the VEGF family are now being targeted,and their relevance to human cancer and the development of resistance to anti-VEGF-A treatment are being evaluated in the clinic.Here,we discuss the potential of targeting VEGF family members in the diagnosis and treatment of cancer.

  9. Functional comparison of innate immune signaling pathways in primates.

    Directory of Open Access Journals (Sweden)

    Luis B Barreiro

    2010-12-01

    Full Text Available Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host-virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV-interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases.

  10. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway.

    Directory of Open Access Journals (Sweden)

    Tertia D Purves-Tyson

    Full Text Available Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase, breakdown (catechol-O-methyl transferase; monoamine oxygenase, transport [vesicular monoamine transporter (VMAT, dopamine transporter (DAT] and receptors (DRD1-D5] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen

  11. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks

    Science.gov (United States)

    Zhang, Jingyu; Tian, Xiao-Jun; Xing, Jianhua

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β), Sonic Hedgehog (SHH), and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1) to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery. PMID:27043642

  12. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-03-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β, Sonic Hedgehog (SHH, and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1 to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery.

  13. Extracellular matrix stiffness modulates VEGF calcium signaling in endothelial cells: individual cell and population analysis.

    Science.gov (United States)

    Derricks, Kelsey E; Trinkaus-Randall, Vickery; Nugent, Matthew A

    2015-09-01

    Vascular disease and its associated complications are the number one cause of death in the Western world. Both extracellular matrix stiffening and dysfunctional endothelial cells contribute to vascular disease. We examined endothelial cell calcium signaling in response to VEGF as a function of extracellular matrix stiffness. We developed a new analytical tool to analyze both population based and individual cell responses. Endothelial cells on soft substrates, 4 kPa, were the most responsive to VEGF, whereas cells on the 125 kPa substrates exhibited an attenuated response. Magnitude of activation, not the quantity of cells responding or the number of local maximums each cell experienced distinguished the responses. Individual cell analysis, across all treatments, identified two unique cell clusters. One cluster, containing most of the cells, exhibited minimal or slow calcium release. The remaining cell cluster had a rapid, high magnitude VEGF activation that ultimately defined the population based average calcium response. Interestingly, at low doses of VEGF, the high responding cell cluster contained smaller cells on average, suggesting that cell shape and size may be indicative of VEGF-sensitive endothelial cells. This study provides a new analytical tool to quantitatively analyze individual cell signaling response kinetics, that we have used to help uncover outcomes that are hidden within the average. The ability to selectively identify highly VEGF responsive cells within a population may lead to a better understanding of the specific phenotypic characteristics that define cell responsiveness, which could provide new insight for the development of targeted anti- and pro-angiogenic therapies.

  14. Chronic exposure to paclitaxel diminishes phosphoinositide signaling by calpain-mediated neuronal calcium sensor-1 degradation.

    Science.gov (United States)

    Boehmerle, Wolfgang; Zhang, Kun; Sivula, Michael; Heidrich, Felix M; Lee, Yashang; Jordt, Sven-Eric; Ehrlich, Barbara E

    2007-06-26

    Paclitaxel (Taxol) is a well established chemotherapeutic agent for the treatment of solid tumors, but it is limited in its usefulness by the frequent induction of peripheral neuropathy. We found that prolonged exposure of a neuroblastoma cell line and primary rat dorsal root ganglia with therapeutic concentrations of Taxol leads to a reduction in inositol trisphosphate (InsP(3))-mediated Ca(2+) signaling. We also observed a Taxol-specific reduction in neuronal calcium sensor 1 (NCS-1) protein levels, a known modulator of InsP(3) receptor (InsP(3)R) activity. This reduction was also found in peripheral neuronal tissue from Taxol treated animals. We further observed that short hairpin RNA-mediated NCS-1 knockdown had a similar effect on phosphoinositide-mediated Ca(2+) signaling. When NCS-1 protein levels recovered, so did InsP(3)-mediated Ca(2+) signaling. Inhibition of the Ca(2+)-activated protease mu-calpain prevented alterations in phosphoinositide-mediated Ca(2+) signaling and NCS-1 protein levels. We also found that NCS-1 is readily degraded by mu-calpain in vitro and that mu-calpain activity is increased in Taxol but not vehicle-treated cells. From these results, we conclude that prolonged exposure to Taxol activates mu-calpain, which leads to the degradation of NCS-1, which, in turn, attenuates InsP(3)mediated Ca(2+) signaling. These findings provide a previously undescribed approach to understanding and treating Taxol-induced peripheral neuropathy. PMID:17581879

  15. The role of Ca(2+) mediated signaling pathways on the effect of taurine against Streptococcus uberis infection.

    Science.gov (United States)

    Dai, Bin; Zhang, Jinqiu; Liu, Ming; Lu, Jinye; Zhang, Yuanshu; Xu, Yuanyuan; Miao, Jinfeng; Yin, Yulong

    2016-08-30

    To provide insight into the mechanisms of taurine attenuation of pro-inflammatory response in mouse mammary epithelial cell line (EpH4-Ev, purchased by ATCC, USA) after Streptococcus uberis (S. uberis, 0140J) challenge, we infected MECs with S. uberis (2.5×10(7)cfumL(-1), MOI=10) for 3h and quantified changes in TLR-2 and calcium (Ca(2+)) mediated signaling pathways. The results indicate that S. uberis infection significantly increases the expression of TLR-2, intracellular Ca(2+) levels, PLC-γ1 and PKC-α, the activities of transcription factors NF-κB and NFAT, and related cytokines (TNF-α, IL-1β, IL-6, G-CSF, IL-2, KC, IL-15, FasL, MCP-1, and LIX) in culture supernatants. Taurine administration downregulated all these indices, the activities of NF-κB and NFAT. Cytokine secretions were similar using special PKC inhibitor Go 6983 and NFAT inhibitor VIVIT. Our data indicate that S. uberis infection induces pro-inflammatory response of MECs through a TLR-2 mediated signaling pathway. In addition, taurine can prevent MEC damage by affecting both PLC-γ1-Ca(2+)-PKC-α-NF-κB and PLC-γ1-Ca(2+)-NFATs signaling pathways. This is the first report to demonstrate the mechanisms of taurine attenuated pro-inflammatory response in MECs after S. uberis challenge. PMID:27527761

  16. DMPD: TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275323 TLR signaling. Kawai T, Akira S. Semin Immunol. 2007 Feb;19(1):24-32. Epub... 2007 Feb 1. (.png) (.svg) (.html) (.csml) Show TLR signaling. PubmedID 17275323 Title TLR signaling. Author

  17. Differences in the signaling pathways of α(1A- and α(1B-adrenoceptors are related to different endosomal targeting.

    Directory of Open Access Journals (Sweden)

    Vanessa Segura

    Full Text Available AIMS: To compare the constitutive and agonist-dependent endosomal trafficking of α(1A- and α(1B-adrenoceptors (ARs and to establish if the internalization pattern determines the signaling pathways of each subtype. METHODS: Using CypHer5 technology and VSV-G epitope tagged α(1A- and α(1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence, or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot. RESULTS AND CONCLUSIONS: Constitutive as well as agonist-induced trafficking of α(1A and α(1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α(1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to β-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α(1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-β-cyclodextrin.

  18. Role of signaling pathways and miRNAs in chronic lymphocytic leukemia

    Institute of Scientific and Technical Information of China (English)

    LI Pei-pei; WANG Xin

    2013-01-01

    Objective To summarize the recent findings of dysregulation of signaling pathways and miRNAs in chronic lymphocytic leukemia (CLL).Data sources We searched PubMed database with the keywords "chronic lymphocytic leukemia","signal pathway",or "miRNA" for relevant articles in recent years.Study selection Research articles and reviews about signaling pathways and miRNAs in CLL were chosen for review.Results Dysregulation of signaling pathways,such as B cell receptor,toll-like receptor,PI3K,nuclear factor KB,notch signaling pathway,Wnt/Fzd signaling pathway,and Hedgehog and Janus kinases/signal transducers and activators of transcription signaling pathway,as the terminal events of the aberrant gene expression and the pro-survival effects of microenvironment,plays a crucial role in the process of CLL.miRNAs,a novel found noncoding RNA,which regulate gene expression at transcription or post-transcription level and correlate with pathogenesis of CLL provide us new avenues to better evaluating prognosis and therapy of it.Conclusion Further investigation of the dysregulation of signaling pathways and miRNAs and their relationship may provide us a new prospective to understand the pathogenesis of CLL and may provide us new strategies to resolve the clinical nodi in treatment of CLL.

  19. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion

    OpenAIRE

    Wagner Shin Nishitani; Adriano Mesquita Alencar; Yingxiao Wang

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium i...

  20. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora;

    2012-01-01

    Activation of the NLRP3 inflammasome enables monocytes and macrophages to release high levels of interleukin-1ß during inflammatory responses. Concentrations of extracellular calcium can increase at sites of infection, inflammation or cell activation. Here we show that increased extracellular cal......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  1. Stroma cell-derived factor-1α signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Ielham Hadad

    Full Text Available Stroma cell-derived factor-1α (SDF-1α is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency.Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R blocker, but not with a ryanodine receptor (RyR antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax.These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect.

  2. The role of the sphingosine-1-phosphate signaling pathway in osteocyte mechanotransduction.

    Science.gov (United States)

    Zhang, Jia-Ning; Zhao, Yan; Liu, Chao; Han, Elizabeth S; Yu, Xue; Lidington, Darcy; Bolz, Steffen-Sebastian; You, Lidan

    2015-10-01

    Osteocytes are proposed to be the mechanosensory cells that translate mechanical loading into biochemical signals during the process of bone adaptation. The lipid mediator sphingosine-1-phosphate (S1P) has been reported to play a role in the mechanotransduction process of blood vessels and also in the dynamic control of bone mineral homeostasis. Nevertheless, the potential role of S1P in bone mechanotransduction has yet to be elucidated. In this study, we hypothesized that a S1P cascade is involved in the activation of osteocytes in response to loading-induced oscillatory fluid flow (OFF) in bone. MLO-Y4 osteocyte-like cells express the necessary components of a functional S1P cascade. To examine the involvement of S1P signaling in osteocyte mechanotransduction, we applied OFF (1 Pa, 1 Hz) to osteocyte-like MLO-Y4 cells under conditions where the S1P signaling pathway was modulated. We found that decreased endogenous S1P levels significantly suppressed the OFF-induced intracellular calcium response. Addition of extracellular S1P to MLO-Y4 cells enhanced the synthesis and release of prostaglandin E2 (PGE2) under static cells and amplified OFF-induced PGE2 release. The stimulatory effect of OFF on the gene expression levels of osteoprotegerin (OPG) and receptor activator for nuclear factor κB ligand (RANKL) was S1P dependent. Furthermore, the S1P2 receptor subtype was shown to be involved in OFF-induced PGE2 synthesis and release, as well as down-regulation of RANKL/OPG gene expression ratio. In summary, our data suggest that S1P cascade is involved in OFF-induced mechanotransduction in MLO-Y4 cells and that extracellular S1P exerts its effect partly through S1P2 receptors. PMID:25988659

  3. Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation

    Directory of Open Access Journals (Sweden)

    Lu Fang-hao

    2010-06-01

    Full Text Available Abstract Communication between the SR (sarcoplasmic reticulum, SR and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM. Although it has been demonstrated that CaR (calcium sensing receptor activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re, the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.

  4. An interplay between 2 signaling pathways: Melatonin-cAMP and IP{sub 3}–Ca{sup 2+} signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Wakako [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Enomoto, Masahiro [Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario (Canada); Mossaad, Ehab [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Kawai, Satoru [Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi 321-0293 (Japan); Mikoshiba, Katsuhiko [Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198 (Japan); Kawazu, Shin-ichiro, E-mail: skawazu@obihiro.ac.jp [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)

    2014-03-28

    Highlights: • A melatonin receptor antagonist blocked Ca{sup 2+} oscillation in P. falciparum and inhibited parasite growth. • P. falciparum development is controlled by Ca{sup 2+}- and cAMP-signaling pathways. • The cAMP-signaling pathway at ring form and late trophozoite stages governs parasite growth of P. falciparum. - Abstract: Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca{sup 2+}) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca{sup 2+} imaging showed that LZ treatment completely abolished Ca{sup 2+} oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP{sub 3}–Ca{sup 2+} and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.

  5. Possible Molecular Targets of Cinnamon in the Insulin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Sana Eijaz

    2014-01-01

    Full Text Available Cinnamon (CN is known for its anti-diabetic activities in traditional medicine. CN extracts are reported to have beneficial effects on normal and impaired glucose tolerance, insulin resistance and type-2 diabetes. However, molecular characterization of cinnamon effects is limited. The aim of this study is to observe the effect of CN extract on certain diabetogenes involved in insulin signaling. Streptozotocin (STZ induced type-2 diabetic rats were given CN extract for one month and its effect was observed on blood glucose levels, body weights and gene expression levels of protein tyrosine phosphatase-1B (PTP-1B, insulin receptor (INSR, insulin receptor substrate-1 (IRS-1, phosphoinositide 3-kinase (PI3K, protein kinase B (PKB, protein kinase C-theta (PKCθ and phosphoinositide-dependent protein kinase-1 (PDK1 in skeletal muscle and adipose tissue. Statistically significant difference was found in the glucose levels and body weights (p = <0.001; 0.002 respectively of test and diabetic control groups. In muscle, statistically significant difference was observed in gene expression levels of PTP-1B, IRS-1, PKB, PDK1, PI3K and PKCθ (p = 0.03; <0.001; 0.02; 0.001; 0.01; <0.001 respectively between test and diabetic control groups and PTP-1B, IRS-1, PKB, PDK1 and PKCθ (p = 0.01; 0.01; 0.03; 0.01; <0.001 respectively between normal and diabetic control groups. In adipose tissue, statistically significant difference was found in gene expression levels of PTP-1B, PKCθ, IRS-1 (p = <0.001; 0.04; 0.01 respectively between test and diabetic control groups and PTP-1B, PDK1, PI3K, PKCθ and IRS-1 (p = 0.002; 0.02; 0.02; 0.002; <0.001 respectively between normal and diabetic control groups. These results suggest that cinnamon normalizes blood glucose level and body weight and affect certain molecular targets in the insulin signaling pathway and therefore, possess strong anti-diabetogenic and hypoglycemic action in HFD and STZ-induced type-2 diabetic rat model

  6. Transcriptomic Analysis Of Purified Embryonic Neural Stem Cells From Zebrafish Embryos Reveals Signalling Pathways Involved In Glycine-dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Eric eSAMARUT

    2016-03-01

    Full Text Available How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signalling that promotes calcium transients in neural stem cells (NSCs and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting (FACS from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signalling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signalling pathways (signalling by calcium, TGF-beta, sonic hedgehog, Wnt and p53-related apoptosis that are likely to mediate the promotion of neurogenesis by glycine.

  7. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis.

    Science.gov (United States)

    Rzepka, Zuzanna; Buszman, Ewa; Beberok, Artur; Wrześniok, Dorota

    2016-01-01

    Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI) or 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones). Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells. PMID:27356601

  8. Comparative Detection of Calcium Fluctuations in Single Female Sex Cells of Tobacco to Distinguish Calcium Signals Triggered by in vitro Fertilization

    Institute of Scientific and Technical Information of China (English)

    Xiong-Bo Peng; Meng-Xiang Sun; Hong-Yuan Yang

    2009-01-01

    Double fertilization is a key process of sexual reproduction in higher plants. The role of calcium In the activation of female sex cells through fertilization has recently received a great deal of attention. The establishment of a Ca-imaging technique for living, single, female sex cells is a difficult but necessary prerequisite for evaluating the role of Ca in the transduction of external stimuli, including the fusion with the sperm cell, to internal cellular processes. The present study describes the use of Fluo-3 for reporting the Ca signal in isolated, single, female sex cells, egg cells and central cells, of tobacco plants. A suitable loading protocol was optimized by loading the cells at pH 5.6 with 2 μM Fluo-3 for 30 min at 30℃. Under theseconditions, several key factors related to in vitro fertilization were also investigated in order to test their possible effects onthe [Ca] of the female sex cells. The results indicated that the bovine serum albumin-fusion system was superior to the polyethlene glycol.fusion system for detecting calcium fluctuations in female sex cells during fertilization. The central cell was fertilized with the sperm cell in bovine serum albumin; however, no evident calcium dynamic was detected, implying that a transient calcium rise might be a specific signal for egg cell fertilization.

  9. Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells

    OpenAIRE

    Subedi, Krishna P; Paudel, Omkar; Sham, James S.K.

    2013-01-01

    Intracellular calcium (Ca2+) plays pivotal roles in distinct cellular functions through global and local signaling in various subcellular compartments, and subcellular Ca2+ signal is the key factor for independent regulation of different cellular functions. In vascular smooth muscle cells, subsarcolemmal Ca2+ is an important regulator of excitation-contraction coupling, and nucleoplasmic Ca2+ is crucial for excitation-transcription coupling. However, information on Ca2+ signals in these subce...

  10. Calcium signaling of pancreatic acinar cells in the pathogenesis of pancreatitis.

    Science.gov (United States)

    Li, Jun; Zhou, Rui; Zhang, Jian; Li, Zong-Fang

    2014-11-21

    Pancreatitis is an increasingly common and sometimes severe disease that lacks a specific therapy. The pathogenesis of pancreatitis is still not well understood. Calcium (Ca(2+)) is a versatile carrier of signals regulating many aspects of cellular activity and plays a central role in controlling digestive enzyme secretion in pancreatic acinar cells. Ca(2+) overload is a key early event and is crucial in the pathogenesis of many diseases. In pancreatic acinar cells, pathological Ca(2+) signaling (stimulated by bile, alcohol metabolites and other causes) is a key contributor to the initiation of cell injury due to prolonged and global Ca(2+) elevation that results in trypsin activation, vacuolization and necrosis, all of which are crucial in the development of pancreatitis. Increased release of Ca(2+) from stores in the intracellular endoplasmic reticulum and/or increased Ca(2+) entry through the plasma membrane are causes of such cell damage. Failed mitochondrial adenosine triphosphate (ATP) production reduces re-uptake and extrusion of Ca(2+) by the sarco/endoplasmic reticulum Ca(2+)-activated ATPase and plasma membrane Ca(2+)-ATPase pumps, which contribute to Ca(2+) overload. Current findings have provided further insight into the roles and mechanisms of abnormal pancreatic acinar Ca(2+) signals in pancreatitis. The lack of available specific treatments is therefore an objective of ongoing research. Research is currently underway to establish the mechanisms and interactions of Ca(2+) signals in the pathogenesis of pancreatitis.

  11. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  12. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway.

    Science.gov (United States)

    Lee, Eunkyung; Choi, So-Young; Yang, Jae-Ho; Lee, Youn Ju

    2016-07-01

    Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway. PMID:27382356

  13. Quantitative Single-Cell Analysis of Signaling Pathways Activated Immediately Downstream of Histamine Receptor Subtypes.

    Science.gov (United States)

    van Unen, Jakobus; Rashidfarrokhi, Ali; Hoogendoorn, Eelco; Postma, Marten; Gadella, Theodorus W J; Goedhart, Joachim

    2016-09-01

    Genetically encoded biosensors based on Förster resonance energy transfer (FRET) can visualize responses of individual cells in real time. Here, we evaluated whether FRET-based biosensors provide sufficient contrast and specificity to measure activity of G-protein-coupled receptors. The four histamine receptor subtypes (H1R, H2R, H3R, and H4R) respond to the ligand histamine by activating three canonical heterotrimeric G-protein-mediated signaling pathways with a reported high degree of specificity. Using FRET-based biosensors, we demonstrate that H1R activates Gαq. We also observed that H1R activates Gαi, albeit at a 10-fold lower potency. In addition to increasing cAMP levels, most likely via Gαs, we found that the H2R induces Gαq-mediated calcium release. The H3R and H4R activated Gαi with high specificity and a high potency. We demonstrate that a number of FRET sensors provide sufficient contrast to: 1) analyze the specificity of the histamine receptor subtypes for different heterotrimeric G-protein families with single-cell resolution, 2) probe for antagonist specificity, and 3) allow the measurement of single-cell concentration-response curves. PMID:27358232

  14. An Efficient Method to Identify Conditionally Activated Transcription Factors and their Corresponding Signal Transduction Pathway Segments

    Directory of Open Access Journals (Sweden)

    Haiyan Hu

    2009-11-01

    Full Text Available A signal transduction pathway (STP is a cascade composed of a series of signal transferring steps, which often activate one or more transcription factors (TFs to control the transcription of target genes. Understanding signaling pathways is important to our understanding of the molecular mechanisms of disease. Many condition-annotated pathways have been deposited in public databases. However, condition-annotated pathways are far from complete, considering the large number of possible conditions. Computational methods to assist in the identification of conditionally activated pathways are greatly needed. In this paper, we propose an efficient method to identify conditionally activated pathway segments starting from the identification of conditionally activated TFs, by incorporating protein-DNA binding data, gene expression data and protein interaction data. Applying our methods on several microarray datasets, we have discovered many significantly activated TFs and their corresponding pathway segments, which are supported by evidence in the literature.

  15. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  16. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways.

    Directory of Open Access Journals (Sweden)

    Lina Ding

    Full Text Available Fusarium species cause serious diseases in cereal staple food crops such as wheat and maize. Currently, the mechanisms underlying resistance to Fusarium-caused diseases are still largely unknown. In the present study, we employed a combined proteomic and transcriptomic approach to investigate wheat genes responding to F. graminearum infection that causes Fusarium head blight (FHB. We found a total of 163 genes and 37 proteins that were induced by infection. These genes and proteins were associated with signaling pathways mediated by salicylic acid (SA, jasmonic acid (JA, ethylene (ET, calcium ions, phosphatidic acid (PA, as well as with reactive oxygen species (ROS production and scavenging, antimicrobial compound synthesis, detoxification, and cell wall fortification. We compared the time-course expression profiles between FHB-resistant Wangshuibai plants and susceptible Meh0106 mutant plants of a selected set of genes that are critical to the plants' resistance and defense reactions. A biphasic phenomenon was observed during the first 24 h after inoculation (hai in the resistant plants. The SA and Ca(2+ signaling pathways were activated within 6 hai followed by the JA mediated defense signaling activated around 12 hai. ET signaling was activated between these two phases. Genes for PA and ROS synthesis were induced during the SA and JA phases, respectively. The delayed activation of the SA defense pathway in the mutant was associated with its susceptibility. After F. graminearum infection, the endogenous contents of SA and JA in Wangshuibai and the mutant changed in a manner similar to the investigated genes corresponding to the individual pathways. A few genes for resistance-related cell modification and phytoalexin production were also identified. This study provided important clues for designing strategies to curb diseases caused by Fusarium.

  17. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  18. The secretory pathway calcium ATPase PMR-1/SPCA1 has essential roles in cell migration during Caenorhabditis elegans embryonic development.

    Directory of Open Access Journals (Sweden)

    Vida Praitis

    2013-05-01

    Full Text Available Maintaining levels of calcium in the cytosol is important for many cellular events, including cell migration, where localized regions of high calcium are required to regulate cytoskeletal dynamics, contractility, and adhesion. Studies show inositol-trisphosphate receptors (IP3R and ryanodine receptors (RyR, which release calcium into the cytosol, are important regulators of cell migration. Similarly, proteins that return calcium to secretory stores are likely to be important for cell migration. The secretory protein calcium ATPase (SPCA is a Golgi-localized protein that transports calcium from the cytosol into secretory stores. SPCA has established roles in protein processing, metal homeostasis, and inositol-trisphosphate signaling. Defects in the human SPCA1/ATP2C1 gene cause Hailey-Hailey disease (MIM# 169600, a genodermatosis characterized by cutaneous blisters and fissures as well as keratinocyte cell adhesion defects. We have determined that PMR-1, the Caenorhabditis elegans ortholog of SPCA1, plays an essential role in embryogenesis. Pmr-1 strains isolated from genetic screens show terminal phenotypes, such as ventral and anterior enclosure failures, body morphogenesis defects, and an unattached pharynx, which are caused by earlier defects during gastrulation. In Pmr-1 embryos, migration rates are significantly reduced for cells moving along the embryo surface, such as ventral neuroblasts, C-derived, and anterior-most blastomeres. Gene interaction experiments show changing the activity of itr-1/IP3R and unc-68/RyR modulates levels of embryonic lethality in Pmr-1 strains, indicating pmr-1 acts with these calcium channels to regulate cell migration. This analysis reveals novel genes involved in C. elegans cell migration, as well as a new role in cell migration for the highly conserved SPCA gene family.

  19. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin

    DEFF Research Database (Denmark)

    Perrier, J F; Mejia-Gervacio, S; Hounsgaard, J

    2000-01-01

    1. The involvement of intracellular calcium and calmodulin in the modulation of plateau potentials in motoneurones was investigated using intracellular recordings from a spinal cord slice preparation. 2. Chelation of intracellular calcium with BAPTA-AM or inactivation of calmodulin with W-7 or tr...

  20. Calcium signaling triggered by ouabain protects the embryonic kidney from adverse developmental programming.

    Science.gov (United States)

    Khodus, Georgiy R; Kruusmägi, Markus; Li, Juan; Liu, Xiao-Li; Aperia, Anita

    2011-09-01

    The kidney is extraordinarily sensitive to adverse fetal programming. Malnutrition, the most common form of developmental challenge, retards formation of the kidney's functional units, the nephrons. The resulting low nephron endowment increases susceptibility to renal injury and disease. Using explanted rat embryonic kidneys, we found that the sodium-potassium-adenosine triphosphatase (Na, K-ATPase) ligand ouabain triggers, via the Na, K-ATPase/ inositol 1,4,5-trisphosphate receptor signalosome, a calcium-nuclear factor-kappa B (NF-κB) signal that protects kidney development from adverse effects of malnutrition. Serum deprivation resulted in severe retardation of nephron formation and robust increase in apoptotic rate, but in ouabain-exposed kidneys, no adverse effects of serum deprivation were observed. Depletion of intracellular calcium stores and inhibition of NF-κB activity abolished the rescuing effect of ouabain. Proof of principle that ouabain rescues development of embryonic kidneys exposed to malnutrition was obtained from studies on pregnant rats given low-protein diets and treated with ouabain or vehicle throughout pregnancy. PMID:21424905

  1. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    Science.gov (United States)

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner. PMID:27065801

  2. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  3. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    Science.gov (United States)

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  4. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome.

    Science.gov (United States)

    Horng, Tiffany

    2014-06-01

    The NLRP3 inflammasome is a cytosolic complex that activates Caspase-1, leading to maturation of interleukin-1β (IL-1β) and IL-18 and induction of proinflammatory cell death in sentinel cells of the innate immune system. Diverse stimuli have been shown to activate the NLRP3 inflammasome during infection and metabolic diseases, implicating the pathway in triggering both adaptive and maladaptive inflammation in various clinically important settings. Here I discuss the emerging model that signals associated with mitochondrial destabilization may critically activate the NLRP3 inflammasome. Together with studies indicating an important role for Ca2+ signaling, these findings suggest that many stimuli engage Ca2+ signaling as an intermediate step to trigger mitochondrial destabilization, generating the mitochondrion-associated ligands that activate the NLRP3 inflammasome.

  5. INOH: ontology-based highly structured database of signal transduction pathways

    OpenAIRE

    Yamamoto, Satoko; Sakai, Noriko; Nakamura, Hiromi; Fukagawa, Hiroshi; Fukuda, Ken; Takagi, Toshihisa

    2011-01-01

    The Integrating Network Objects with Hierarchies (INOH) database is a highly structured, manually curated database of signal transduction pathways including Mammalia, Xenopus laevis, Drosophila melanogaster, Caenorhabditis elegans and canonical. Since most pathway knowledge resides in scientific articles, the database focuses on curating and encoding textual knowledge into a machine-processable form. We use a hierarchical pathway representation model with a compound graph, and every pathway c...

  6. Interactions among oscillatory pathways in NF-kappa B signaling

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2011-02-01

    Full Text Available Abstract Background Sustained stimulation with tumour necrosis factor alpha (TNF-alpha induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. Results First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. Conclusions Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently

  7. Lung cancer, intracellular signaling pathways, and preclinical models

    International Nuclear Information System (INIS)

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Activation of phosphatidylinositol-3-kinase (PI3K)-AKT and Kirsten rat sarcoma viral oncogene homologue (KRAS) can induce cellular immortalization, proliferation, and resistance to anticancer therapeutics such as epidermal growth factor receptor inhibitors or chemotherapy. This study assessed the consequences of inhibiting these two pathways in tumor cells with activation of KRAS, PI3K-AKT, or both. We investigated whether the combination of a novel RAF/vascular endothelial growth factor receptor inhibitor, RAF265, with a mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), could lead to enhanced anti-tumoral effects in vitro and in vivo. To address this question, we used cell lines with different status regarding KRAS, PIK3CA, and BRAF mutations, using immunoblotting to evaluate the inhibitors, and MTT and clonogenic assays for effects on cell viability and proliferation. Subcutaneous xenografts were used to assess the activity of the combination in vivo. RAD001 inhibited mTOR downstream signaling in all cell lines, whereas RAF265 inhibited RAF downstream signaling only in BRAF mutant cells. In vitro, addition of RAF265 to RAD001 led to decreased AKT, S6, and Eukaryotic translation initiation factor 4E binding protein 1 phosphorylation in HCT116 cells. In vitro and in vivo, RAD001 addition enhanced the anti-tumoral effect of RAF265 in HCT116 and H460 cells (both KRAS mut, PIK3CA mut); in contrast, the combination of RAF265 and RAD001 yielded no additional activity in A549 and MDAMB231 cells. The combination of RAF and mTOR inhibitors is effective for enhancing anti-tumoral effects in cells with deregulation of both RAS-RAF and PI3K, possibly through the cross-inhibition of 4E binding protein 1 and S6 protein. We then focus on animal models. Preclinical models of NSCLC require better clinical relevance to study disease mechanisms and innovative

  8. Signaling in muscle contraction.

    Science.gov (United States)

    Kuo, Ivana Y; Ehrlich, Barbara E

    2015-02-02

    Signaling pathways regulate contraction of striated (skeletal and cardiac) and smooth muscle. Although these are similar, there are striking differences in the pathways that can be attributed to the distinct functional roles of the different muscle types. Muscles contract in response to depolarization, activation of G-protein-coupled receptors and other stimuli. The actomyosin fibers responsible for contraction require an increase in the cytosolic levels of calcium, which signaling pathways induce by promoting influx from extracellular sources or release from intracellular stores. Rises in cytosolic calcium stimulate numerous downstream calcium-dependent signaling pathways, which can also regulate contraction. Alterations to the signaling pathways that initiate and sustain contraction and relaxation occur as a consequence of exercise and pathophysiological conditions.

  9. Aromatic amino acid activation of signaling pathways in bone marrow mesenchymal stem cells depends on oxygen tension.

    Directory of Open Access Journals (Sweden)

    Mona El Refaey

    Full Text Available The physiologic oxygen pressures inside the bone marrow environment are much lower than what is present in the peripheral circulation, ranging from 1-7%, compared to values as high as 10-13% in the arteries, lungs and liver. Thus, experiments done with bone marrow mesenchymal stem cells (BMMSCs using standard culture conditions may not accurately reflect the true hypoxic bone marrow microenvironment. However, since aging is associated with an increased generation of reactive oxygen species, experiments done under 21%O2 conditions may actually more closely resemble that of the aging bone marrow environment. Aromatic amino acids are known to be natural anti-oxidants. We have previously reported that aromatic amino acids are potent agonists for stimulating increases in intracellular calcium and phospho-c-Raf and in promoting BMMSC differentiation down the osteogenic pathway. Our previous experiments were performed under normoxic conditions. Thus, we next decided to compare a normoxic (21% O2 vs. a hypoxic environment (3% O2 alone or after treatment with aromatic amino acids. Reverse-phase protein arrays showed that 3% O2 itself up-regulated proliferative pathways. Aromatic amino acids had no additional effect on signaling pathways under these conditions. However, under 21%O2 conditions, aromatic amino acids could now significantly increase these proliferative pathways over this "normoxic" baseline. Pharmacologic studies are consistent with the aromatic amino acids activating the extracellular calcium-sensing receptor. The effects of aromatic amino acids on BMMSC function in the 21% O2 environment is consistent with a potential role for these amino acids in an aging environment as functional anti oxidants.

  10. Defense-Related Calcium Signaling Mutants Uncovered via a Quantitative High-Throughput Screen in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Stefanie Ranf; Julia Grimmer; Yvonne P(o)schl; Pascal Pecher; Delphine Chinchilla; Dierk Scheel; Justin Lee

    2012-01-01

    Calcium acts as a second messenger for signaling to a variety of stimuli including MAMPs (Microbe-Associated Molecular Patterns),such as flg22 and elf18 that are derived from bacterial flagellin and elongation factor Tu,respectively.Here,Arabidopsis thaliana mutants with changed calcium elevation (cce) in response to fig22 treatment were isolated and characterized.Besides novel mutant alleles of the flg22 receptor,FLS2 (Flagellin-Sensitive 2),and the receptor-associated kinase,BAK1 (Brassinosteroid receptor 1-Associated Kinase 1),the new cce mutants can be categorized into two main groups—those with a reduced or an enhanced calcium elevation.Moreover,cce mutants from both groups show differential phenotypes to different sets of MAMPs.Thus,these mutants will facilitate the discovery of novel components in early MAMP signaling and bridge the gaps in current knowledge of calcium signaling during plant-microbe interactions.Last but not least,the screening method is optimized for speed (covering 384 plants in 3 or 10 h) and can be adapted to genetically dissect any other stimuli that induce a change in calcium levels.

  11. Robustness Analysis of the IFN-γ Induced JAK-STAT Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ke Zi; Zhi-Rong Sun

    2005-01-01

    Here, the issue of robustness analysis of cell JAK-STAT signal transduction networks is addressed. This is investigated upon a mathematical model of IFN-γ induced JAK-STAT signaling pathway by applying robustness analysis which is based on a broad range of simultaneous and systematical parameters variation. The effects of the variations of the initial signal proteins' concentrations on the output of this system are also studied. The study demonstrates that the JAK-STAT signaling pathway is robust with respect to its "signal time" and "signal duration", but sensitive with respect to its "signal amplitude". These analysis results can point to experimental designs that can further test how the pathway activity can be perturbed.

  12. Spatiotemporal properties of intracellular calcium signaling in osteocytic and osteoblastic cell networks under fluid flow.

    Science.gov (United States)

    Jing, Da; Lu, X Lucas; Luo, Erping; Sajda, Paul; Leong, Pui L; Guo, X Edward

    2013-04-01

    Mechanical stimuli can trigger intracellular calcium (Ca(2+)) responses in osteocytes and osteoblasts. Successful construction of bone cell networks necessitates more elaborate and systematic analysis for the spatiotemporal properties of Ca(2+) signaling in the networks. In the present study, an unsupervised algorithm based on independent component analysis (ICA) was employed to extract the Ca(2+) signals of bone cells in the network. We demonstrated that the ICA-based technology could yield higher signal fidelity than the manual region of interest (ROI) method. Second, the spatiotemporal properties of Ca(2+) signaling in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cell networks under laminar and steady fluid flow stimulation were systematically analyzed and compared. MLO-Y4 cells exhibited much more active Ca(2+) transients than MC3T3-E1 cells, evidenced by more Ca(2+) peaks, less time to the 1st peak and less time between the 1st and 2nd peaks. With respect to temporal properties, MLO-Y4 cells demonstrated higher spike rate and Ca(2+) oscillating frequency. The spatial intercellular synchronous activities of Ca(2+) signaling in MLO-Y4 cell networks were higher than those in MC3T3-E1 cell networks and also negatively correlated with the intercellular distance, revealing faster Ca(2+) wave propagation in MLO-Y4 cell networks. Our findings show that the unsupervised ICA-based technique results in more sensitive and quantitative signal extraction than traditional ROI analysis, with the potential to be widely employed in Ca(2+) signaling extraction in the cell networks. The present study also revealed a dramatic spatiotemporal difference in Ca(2+) signaling for osteocytic and osteoblastic cell networks in processing the mechanical stimulus. The higher intracellular Ca(2+) oscillatory behaviors and intercellular coordination of MLO-Y4 cells provided further evidences that osteocytes may behave as the major mechanical sensor in bone modeling and remodeling

  13. Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines

    International Nuclear Information System (INIS)

    The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation

  14. Hypertrophy signaling pathways in experimental chronic aortic regurgitation

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Dimaano, Veronica L; Fritz-Hansen, Thomas;

    2013-01-01

    The development of left ventricular hypertrophy and dysfunction in aortic regurgitation (AR) has only been sparsely studied experimentally. In a new model of chronic AR in rats, we examined activation of molecular pathways involved in myocardial hypertrophy. Chronic AR was produced by damaging on...... of activation of intracellular pathways different from that seen with pathological hypertrophy in pressure overload, and more similar to that associated with benign physiological hypertrophy....

  15. Comprehensive dissection of PDGF-PDGFR signaling pathways in PDGFR genetically defined cells.

    Directory of Open Access Journals (Sweden)

    Erxi Wu

    Full Text Available Despite the growing understanding of pdgf signaling, studies of pdgf function have encountered two major obstacles: the functional redundancy of PDGFRalpha and PDGFRbeta in vitro and their distinct roles in vivo. Here we used wild-type mouse embryonic fibroblasts (MEF, MEF null for either PDGFRalpha, beta, or both to dissect PDGF-PDGFR signaling pathways. These four PDGFR genetically defined cells provided us a platform to study the relative contributions of the pathways triggered by the two PDGF receptors. They were treated with PDGF-BB and analyzed for differential gene expression, in vitro proliferation and differential response to pharmacological effects. No genes were differentially expressed in the double null cells, suggesting minimal receptor-independent signaling. Protean differentiation and proliferation pathways are commonly regulated by PDGFRalpha, PDGFRbeta and PDGFRalpha/beta while each receptor is also responsible for regulating unique signaling pathways. Furthermore, some signaling is solely modulated through heterodimeric PDGFRalpha/beta.

  16. Liposomal Lipopolysaccharide Initiates TRIF-Dependent Signaling Pathway Independent of CD14

    OpenAIRE

    Sachiko Watanabe; Yoshio Kumazawa; Joe Inoue

    2013-01-01

    Lipopolysaccharide (LPS) is recognized by CD14 with Toll-like receptor 4 (TLR4), and initiates 2 major pathways of TLR4 signaling, the MyD88-dependent and TRIF-dependent signaling pathways. The MyD88-dependent pathway induces inflammatory responses such as the production of TNF-α, IL-6, and IL-12 via the activation of NFκB and MAPK. The TRIF-dependent pathway induces the production of type-I IFN, and RANTES via the activation of IRF-3 and NFκB, and is also important for the induction of adapt...

  17. Effects of differentiation on purinergic and neurotensin-mediated calcium signaling in human HT-29 colon cancer cells.

    Science.gov (United States)

    Chowdhury, Mohammad A; Peters, Amelia A; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2013-09-13

    Calcium signaling is a key regulator of processes important in differentiation. In colon cancer cells differentiation is associated with altered expression of specific isoforms of calcium pumps of the endoplasmic reticulum and the plasma membrane, suggesting that differentiation of colon cancer cells is associated with a major remodeling of calcium homeostasis. Purinergic and neurotensin receptor activation are known regulators of cytosolic free Ca(2+) levels in colon cancer cells. This study aimed to assess changes in cytosolic free Ca(2+) levels in response to ATP and neurotensin with differentiation induced by sodium butyrate or culturing post-confluence. Parameters assessed included peak cytosolic free Ca(2+) level after activation; time to reach peak cytosolic free Ca(2+) and the EC50 of dose response curves. Our results demonstrate that differentiation of HT-29 colon cancer cells is associated with a remodeling of both ATP and neurotensin mediated Ca(2+) signaling. Neurotensin-mediated calcium signaling appeared more sensitive to differentiation than ATP-mediated Ca(2+) signaling.

  18. Differential modulation of ATP-induced calcium signalling by A1 and A2 adenosine receptors in cultured cortical astrocytes

    OpenAIRE

    Alloisio, Susanna; Cugnoli, Carlo; Ferroni, Stefano; Nobile, Mario

    2004-01-01

    Despite the accumulating evidence that under various pathological conditions the extracellular elevation of adenine-based nucleotides and nucleosides plays a key role in the control of astroglial reactivity, how these signalling molecules interact in the regulation of astrocyte function is still largely elusive.The action of the nucleoside adenosine in the modulation of the intracellular calcium signalling ([Ca2+]i) elicited by adenosine 5′-triphosphate (ATP)-induced activation of P2 purinoce...

  19. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    connect ion conformationally rearranged, thus passing the signal through the chain of intermediaries. The most important function of calcium is its participation in many cell signaling pathways. Channels, pumps, gene expression, synthesis of alkaloids, protective molecules, NO etc. respond to changes in [Ca2+]cyt, while transductors are represented by a number of proteins. The universality of calcium is evident in the study in connection with other signaling systems, such as NO, which is involved in the immune response and is able to control the feedback activity of protein activators channels, producing nitric oxide. Simulation of calcium responses can determine the impact of key level and their regulation, and also depends on the type of stimulus and the effector protein that specifically causes certain changes. Using spatiotemporal modeling, scientists showed that the key components for the formation of Ca2+ bursts are the internal and external surfaces of the nucleus membrane. The research was aimed at understanding of the mechanisms of influence of Ca2+-binding components on Ca2+ oscillations. The simulation suggests the existence of a calcium depot EPR with conjugated lumen of the nucleus which releases its contents to nucleoplasm. With these assumptions, the mathematical model was created and confirmed experimentally. It describes the oscillation of nuclear calcium in root hairs of Medicago truncatula at symbiotic relationship of plants and fungi (rhizobia. Calcium oscillations are present in symbiotic relationships of the cortical layer of plant root cells. Before penetration of bacteria into the cells, slow oscillations of Ca2+ are observed, but with their penetration into the cells the oscillation frequency increases. These processes take place by changing buffer characteristics of the cytoplasm caused by signals from microbes, such as Nod-factor available after penetration of bacteria through the cell wall. Thus, the basic known molecular mechanisms for

  20. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway.

    Science.gov (United States)

    Yang, Hui; Sun, Wanqing; Quan, Nanhu; Wang, Lin; Chu, Dongyang; Cates, Courtney; Liu, Quan; Zheng, Yang; Li, Ji

    2016-05-15

    AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear. We hypothesize that Notch1 as an adaptive signaling pathway protects the heart from ischemic injury via modulating the cardioprotective AMPK signaling pathway. C57BL/6J mice were subjected to an in vivo ligation of left anterior descending coronary artery and the hearts from C57BL/6J mice were subjected to an ex vivo globe ischemia and reperfusion in the Langendorff perfusion system. The Notch1 signaling was activated during myocardial ischemia. A Notch1 γ-secretase inhibitor, dibenzazepine (DBZ), was intraperitoneally injected into mice to inhibit Notch1 signaling pathway by ischemia. The inhibition of Notch1 signaling by DBZ significantly augmented cardiac dysfunctions caused by myocardial infarction. Intriguingly, DBZ treatment also significantly blunted the activation of AMPK signaling pathway. The immunoprecipitation experiments demonstrated that an interaction between Notch1 and liver kinase beta1 (LKB1) modulated AMPK activation during myocardial ischemia. Furthermore, a ligand of Notch1 Jagged1 can significantly reduce cardiac damage caused by ischemia via activation of AMPK signaling pathway and modulation of glucose oxidation and fatty acid oxidation during ischemia and reperfusion. But Jagged1 did not have any cardioprotections on AMPK kinase dead transgenic hearts. Taken together, the results indicate that the cardioprotective effect of Notch1 against ischemic damage is mediated by AMPK signaling via an interaction with upstream LKB1.

  1. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jorgensen, N R; Geist, S T; Civitelli, R;

    1997-01-01

    Many cells coordinate their activities by transmitting rises in intracellular calcium from cell to cell. In nonexcitable cells, there are currently two models for intercellular calcium wave propagation, both of which involve release of inositol trisphosphate (IP3)- sensitive intracellular calcium...

  2. Neuro-protective effects of CNTF on hippocampal neurons via an unknown signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In our previous study, we proposed that there may be an unknown pathway in the upper stream of the known signal transduction pathway of Ciliary neurotrophic factor (CNTF) that mediates the neuro-protective function of CNTF. In the present experiment, we observed that the neuro-protective function of the non-classic signal transduction pathway in a L-NMDA (a glutamic acid ion type receptor atagonist) induced hippocampal neuron injury model, using primary culture rat hippocampal neurons, continuous photography and gp130 immunohistochemical assay. The results showed that L-NMDA induced injurious reaction of hippocampal neurons, and CNTF was able to inhibit the toxic action of L-NMDA on hippocampal neurons. Additionally, when JAK/STATs in the known classic signal transduction pathway of CNTF were blocked by PTPi-2, the protective effect of CNTF against L-NMDA injury still existed. L-NMDA caused a rapid increase in the concentration of hippocampal intracellular free [Ca2+]i. CNTF was able to attenuate L-NMDA-induced elevation of [Ca2+]i, and blocking JAK/STATs in the known classic signal trans- duction pathway of CNTF did not affect L-NMDA- induced elevation of [Ca2+]i, indicating that, apart from the known classic signal transduction pathway, there may be some other transduction pathways for CNTF to exert the protective effect on hippocampal neurons, and this pathway is related to [Ca2+].

  3. A computational approach for ordering signal transduction pathway components from genomics and proteomics Data

    Directory of Open Access Journals (Sweden)

    Zhao Hongyu

    2004-10-01

    Full Text Available Abstract Background Signal transduction is one of the most important biological processes by which cells convert an external signal into a response. Novel computational approaches to mapping proteins onto signaling pathways are needed to fully take advantage of the rapid accumulation of genomic and proteomics information. However, despite their importance, research on signaling pathways reconstruction utilizing large-scale genomics and proteomics information has been limited. Results We have developed an approach for predicting the order of signaling pathway components, assuming all the components on the pathways are known. Our method is built on a score function that integrates protein-protein interaction data and microarray gene expression data. Compared to the individual datasets, either protein interactions or gene transcript abundance measurements, the integrated approach leads to better identification of the order of the pathway components. Conclusions As demonstrated in our study on the yeast MAPK signaling pathways, the integration analysis of high-throughput genomics and proteomics data can be a powerful means to infer the order of pathway components, enabling the transformation from molecular data into knowledge of cellular mechanisms.

  4. A conditional form of Bruton's tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC Gamma 2 in B cells

    Directory of Open Access Journals (Sweden)

    Witte Owen N

    2001-06-01

    Full Text Available Abstract Background Bruton's tyrosine kinase (Btk is essential for B cell development and function. Mutations of Btk elicit X-linked agammaglobulinemia in humans and X-linked immunodeficiency in the mouse. Btk has been proposed to participate in B cell antigen receptor-induced signaling events leading to activation of phospholipase C-γ2 (PLCγ2 and calcium mobilization. However it is unclear whether Btk activation is alone sufficient for these signaling events, and whether Btk can activate additional pathways that do not involve PLCγ2. To address such issues we have generated Btk:ER, a conditionally active form of the kinase, and expressed it in the PLCγ2-deficient DT40 B cell line. Results Activation of Btk:ER was sufficient to induce multiple B cell signaling pathways in PLCγ2-sufficient DT40 cells. These included tyrosine phosphorylation of PLCγ2, mobilization of intracellular calcium, activation of extracellular signal-regulated kinase (ERK and c-Jun NH2-terminal kinase (JNK mitogen-activated protein kinase (MAPK pathways, and apoptosis. In DT40 B cells deficient for PLCγ2, Btk:ER activation failed to induce the signaling events described above with the consequence that the cells failed to undergo apoptosis. Conclusions These data suggest that Btk:ER regulates downstream signaling pathways primarily via PLCγ2 in B cells. While it is not known whether activated Btk:ER precisely mimics activated Btk, this conditional system will likely facilitate the dissection of the role of Btk and its family members in a variety of biological processes in many different cell types.

  5. N-glycosylation at Asn residues 554 and 566 of E-cadherin affects cell cycle progression through extracellular signal-regulated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Hongbo Zhao; Xiliang Zha; Lidong Sun; Liying Wang; Zhibin Xu; Feng Zhou; Jianmin Su; Jiawei Jin; Yong Yang; Yali Hu

    2008-01-01

    E-cadherin, which has a widely acknowledged role in mediating calcium-dependent cell-cell adhesion between epithelial cells, also functions as a tumor suppressor. The ectodomain of human E-cadherin contains four potential N-glycosylation sites at Asn residues 554, 566, 618, and 633.We investigated the role of E-cadherin N-glycosylation in cell cycle progression by site-directed mutagenesis. We showed previously that all four potential N-glycosylation sites of E-cadherin were N-glycosylated in human breast carcinoma MDA-MB-435 cells. Removal of N-glycan at Asn633 dramatically affected E-cadherin stability. In this study we showed that E-cadherin mutant missing N-glycans at Asn554, Asn566 and Asn618 failed to induce cell cycle arrest in G1 phase and to suppress cell proliferation in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn554 and Asn566, but not at Asn618, seemed to be indispensable for E-cadherin-mediated suppression of cell cycle progression.Removal of N-glycans at either Asn554 or Asn566 of E-cadherin was accompanied with the activation of the extracellular signal-regulated protein kinase signaling pathway. After treatment with PD98059, an inhibitor of the extraceilular signal-regulated protein kinase signaling pathway, wild-type E-cadherin transfected MDA-MB-435 and E-cadherin N-glycosylation-deficient mutant transfected MDA-MB-435 cells had equivalent numbers of cells in G1 phase. These findings implied that N-glycosylation might be crucial for E-cadherin-mediated suppression of cell cycle progression.

  6. P12 - PTHC1: A Continuing Cell Line Expressing PTH and Genes Involved in Calcium Homeostasis

    OpenAIRE

    Fabbri, S.; Mazzotta, C.; Ciuffi, S.; Mavilia, C.; Galli, G.; Zonefrati, R; Strigoli, D.; Cavalli, L.; Cavalli, T.; Brandi, M.L.

    2010-01-01

    The main organs regulating serum levels of ionised calcium (Ca2+) are the parathyroids, which are composed of two different cell types: chief cells and oxyphil cells. Chief cells, through the calcium sensing receptor (CaSR), are affected by changes in calcium concentration, modifying PTH secretion in proportion to calcium levels. Current understanding of calcium regulation mechanisms connected to PTH and of the signalling pathways involved derive from in vitro studies carried out on primary c...

  7. CLE peptides and their signaling pathways in plant development.

    Science.gov (United States)

    Yamaguchi, Yasuka L; Ishida, Takashi; Sawa, Shinichiro

    2016-08-01

    Cell-to-cell communication is crucial for the coherent functioning of multicellular organisms, and they have evolved intricate molecular mechanisms to achieve such communication. Small, secreted peptide hormones participate in cell-to-cell communication to regulate various physiological processes. One such family of plant peptide hormones is the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-related (CLE) family, whose members play crucial roles in the differentiation of shoot and root meristems. Recent biochemical and genetic studies have characterized various CLE signaling modules, which include CLE peptides, transmembrane receptors, and downstream intracellular signaling components. CLE signaling systems are conserved across the plant kingdom but have divergent modes of action in various developmental processes in different species. Moreover, several CLE peptides play roles in symbiosis, parasitism, and responses to abiotic cues. Here we review recent studies that have provided new insights into the mechanisms of CLE signaling. PMID:27229733

  8. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  9. No-dependent signaling pathways in unloaded skeletal muscle

    OpenAIRE

    Shenkman, Boris S.; Nemirovskaya, Tatiana L.; Lomonosova, Yulia N.

    2015-01-01

    The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation...

  10. BowTieBuilder: modeling signal transduction pathways

    OpenAIRE

    Schröder Adrian; Dräger Andreas; Planatscher Hannes; Spangenberg Lucía; Supper Jochen; Zell Andreas

    2009-01-01

    Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs). This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins) to target proteins (e.g...

  11. Redox and zinc signalling pathways converging on protein tyrosine phosphatases.

    Science.gov (United States)

    Bellomo, Elisa; Hogstrand, Christer; Maret, Wolfgang

    2014-10-01

    Zinc ions, though redox-inert, have either pro-antioxidant or pro-oxidant functions at critical junctures in redox metabolism and redox signalling. They are released from cells and in cells, e.g. from metallothionein, a protein that transduces redox signals into zinc signals (1). The released zinc ions inhibit enzymes such as protein tyrosine phosphatases (PTPs), key regulatory enzymes of cellular phosphorylation signalling. The Ki(Zn) value for inhibition of receptor PTPB is 21pM (2). The binding is about as tight as the binding of zinc to zinc metalloenzymes and suggests tonic zinc inhibition. PTP1-B (PTPN1), an enzyme regulating the insulin and leptin receptors and involved in cancer and diabetes pathobiochemistry, has a Ki(Zn) value of about 5nM (3). Zinc ions bind to the enzyme in the closed conformation when additional metal-binding ligands are brought into the vicinity of the active site. In contrast, redox reactions target cysteines in the active sites of PTPs in the open conformation. This work provides a molecular basis how hydrogen peroxide and free zinc ions generated by growth factor signalling stimulate phosphorylation signalling differentially. (Supported by the Biotechnology and Biological Sciences Research Council UK, grant BB/K001442/1.). PMID:26461422

  12. MicroRNAs Regulating Signaling Pathways:Potential Biomarkers in Systemic Sclerosis

    Institute of Scientific and Technical Information of China (English)

    Yisha Li; Jing Huang; Muyao Guo; Xiaoxia Zuo

    2015-01-01

    Systemic sclerosis (SSc) is a multisystem fibrotic and autoimmune disease. Both genetic and epigenetic elements mediate SSc pathophysiology. This review summarizes the role of one epigenetic element, known as microRNAs (miRNAs), involved in different signaling pathways of SSc pathogenesis. The expression of key components in transforming growth factor-b (TGF-b) signaling pathway has been found to be regulated by miRNAs both upstream and downstream of TGF-b. We are specifically interested in the pathway components upstream of TGF-b, while miRNAs in other signaling pathways have not been extensively studied. The emerging role of miRNAs in vasculopathy of SSc suggests a promising new direction for future investigation. Elu-cidation of the regulatory role of miRNAs in the expression of signaling factors may facilitate the discovery of novel biomarkers in SSc and improve the understanding and treatment of this disease.

  13. MicroRNAs Regulating Signaling Pathways: Potential Biomarkers in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Yisha Li

    2015-08-01

    Full Text Available Systemic sclerosis (SSc is a multisystem fibrotic and autoimmune disease. Both genetic and epigenetic elements mediate SSc pathophysiology. This review summarizes the role of one epigenetic element, known as microRNAs (miRNAs, involved in different signaling pathways of SSc pathogenesis. The expression of key components in transforming growth factor-β (TGF-β signaling pathway has been found to be regulated by miRNAs both upstream and downstream of TGF-β. We are specifically interested in the pathway components upstream of TGF-β, while miRNAs in other signaling pathways have not been extensively studied. The emerging role of miRNAs in vasculopathy of SSc suggests a promising new direction for future investigation. Elucidation of the regulatory role of miRNAs in the expression of signaling factors may facilitate the discovery of novel biomarkers in SSc and improve the understanding and treatment of this disease.

  14. Role of the Neuregulin Signaling Pathway in Nicotine Dependence and Co-morbid Disorders

    Science.gov (United States)

    Fisher, Miranda L.; Loukola, Anu; Kaprio, Jaakko; Turner, Jill R.

    2016-01-01

    Smoking is currently the leading cause of preventable death in the United States and is responsible for over four million deaths annually worldwide. Therefore, there is a vast clinical unmet need with regards to therapeutics targeting smoking cessation. This is even more apparent when examining smokers co-morbid with psychiatric illness, as rates of smoking in this population are ~4× higher than in the general population. Examining common genetic and molecular signaling pathways impinging upon both smoking behavior and psychiatric illness will lead to a better understanding of co-morbid disorders and potential development of novel therapeutics. Studies have implicated the Neuregulin Signaling Pathway in the pathophysiology of a number of psychiatric illnesses. Additionally, recent studies have also shown an association between the Neuregulin Signaling Pathway and smoking behaviors. This review outlines basic mechanisms of the Neuregulin Signaling Pathway and how it may be exploited for precision medicine approaches in treating nicotine dependence and mental illness. PMID:26472527

  15. Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation

    Science.gov (United States)

    Zimmer, Christoph

    2016-01-01

    Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802

  16. FM dyes enter via a store-operated calcium channel and modify calcium signaling of cultured astrocytes

    OpenAIRE

    Li, Dongdong; Hérault, Karine; Oheim, Martin; Ropert, Nicole

    2009-01-01

    The amphiphilic fluorescent styryl pyridinium dyes FM1-43 and FM4-64 are used to probe activity-dependent synaptic vesicle cycling in neurons. Cultured astrocytes can internalize FM1-43 and FM4-64 inside vesicles but their uptake is insensitive to the elevation of cytosolic calcium (Ca2+) concentration and the underlying mechanism remains unclear. Here we used total internal reflection fluorescence microscopy and pharmacological tools to study the mechanisms of FM4-64 uptake into cultured ast...

  17. Microwave Exposure Impairs Synaptic Plasticity in the Rat Hippocampus and PC12 Cells through Over-activation of the NMDA Receptor Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    XIONG Lu; DONG Ji; YAO Bin Wei; ZHAO Li; PENG Rui Yun; SUN Cheng Feng; ZHANG Jing; GAO Ya Bing; WANG Li Feng; ZUO Hong Yan; WANG Shui Ming; ZHOU Hong Mei; XU Xin Ping

    2015-01-01

    Objective The aim of this study is to investigate whether microwave exposure would affect the N-methyl-D-aspartate receptor (NMDAR) signaling pathway to establish whether this plays a role in synaptic plasticity impairment. Methods 48 male Wistar rats were exposed to 30 mW/cm² microwave for 10 min every other day for three times. Hippocampal structure was observed through H&E staining and transmission electron microscope. PC12 cells were exposed to 30 mW/cm² microwave for 5 min and the synapse morphology was visualized with scanning electron microscope and atomic force microscope. The release of amino acid neurotransmitters and calcium influx were detected. The expressions of several key NMDAR signaling molecules were evaluated. Results Microwave exposure caused injury in rat hippocampal structure and PC12 cells, especially the structure and quantity of synapses. The ratio of glutamic acid and gamma-aminobutyric acid neurotransmitters was increased and the intracellular calcium level was elevated in PC12 cells. A significant change in NMDAR subunits (NR1, NR2A, and NR2B) and related signaling molecules (Ca2+/calmodulin-dependent kinase II gamma and phosphorylated cAMP-response element binding protein) were examined. Conclusion 30 mW/cm² microwave exposure resulted in alterations of synaptic structure, amino acid neurotransmitter release and calcium influx. NMDAR signaling molecules were closely associated with impaired synaptic plasticity.

  18. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    OpenAIRE

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progres