WorldWideScience

Sample records for calcium signaling induces

  1. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    Science.gov (United States)

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members.

    Science.gov (United States)

    Zhao, Yue; Wu, Junnan; Zhang, Mingchao; Zhou, Minlin; Xu, Feng; Zhu, Xiaodong; Zhou, Xianguang; Lang, Yue; Yang, Fan; Yun, Shifeng; Shi, Shaolin; Liu, Zhihong

    2017-08-01

    Angiotensin II (AngII) is capable of inducing calcium/calcineurin signaling and podocyte injury; however, the precise underlying mechanism is not well understood. Because we have previously demonstrated that microRNA-30s (miR-30s) inhibit calcium/calcineurin signaling in podocytes, we hypothesize that AngII may induce podocyte injury by downregulating miR-30s and thereby activating calcium/calcineurin signaling. To test this hypothesis, we used an AngII-induced podocyte injury mouse model. The mice were treated with AngII via infusion for 28 days, which resulted in hypertension, albuminuria, and glomerular damage. AngII treatment also resulted in a significant reduction of miR-30s and upregulation of calcium/calcineurin signaling components, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, which are the known targets of miR-30s in podocytes. The delivery of miR-30a-expressing lentivirus to the podocytes on day 14 of the infusion ameliorated the AngII-induced podocyte and glomerular injury and attenuated the upregulation of the calcium/calcineurin signaling components. Similarly, treatment with losartan, which is an AngII receptor blocker, also prevented AngII-induced podocyte injury and calcium/calcineurin signaling activation. Notably, losartan was found to sustain miR-30 levels during AngII treatment both in vivo and in vitro. In conclusion, the effect of AngII on podocytes is in part mediated by miR-30s through calcium/calcineurin signaling, a novel mechanism underlying AngII-induced podocyte injury. • AngII infusion resulted in downregulation of miR-30s in podocytes. • Exogenous miR-30a delivery mitigated the glomerular and podocyte injuries induced by AngII. • Both miR-30a and losartan prevented AngII-induced activation of calcium-calcineurin signaling.

  3. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    Science.gov (United States)

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  4. Characterization of calcium signals in human induced pluripotent stem cell-derived dentate gyrus neuronal progenitors and mature neurons, stably expressing an advanced calcium indicator protein.

    Science.gov (United States)

    Vőfély, Gergő; Berecz, Tünde; Szabó, Eszter; Szebényi, Kornélia; Hathy, Edit; Orbán, Tamás I; Sarkadi, Balázs; Homolya, László; Marchetto, Maria C; Réthelyi, János M; Apáti, Ágota

    2018-04-01

    Pluripotent stem cell derived human neuronal progenitor cells (hPSC-NPCs) and their mature neuronal cell culture derivatives may efficiently be used for central nervous system (CNS) drug screening, including the investigation of ligand-induced calcium signalization. We have established hippocampal NPC cultures derived from human induced PSCs, which were previously generated by non-integrating Sendai virus reprogramming. Using established protocols these NPCs were differentiated into hippocampal dentate gyrus neurons. In order to study calcium signaling without the need of dye loading, we have stably expressed an advanced calcium indicator protein (GCaMP6fast) in the NPCs using the Sleeping Beauty transposon system. We observed no significant effects of the long-term GCaMP6 expression on NPC morphology, gene expression pattern or neural differentiation capacity. In order to compare the functional properties of GCaMP6-expressing neural cells and the corresponding parental cells loaded with calcium indicator dye Fluo-4, a detailed characterization of calcium signals was performed. We found that the calcium signals induced by ATP, glutamate, LPA, or proteases - were similar in these two systems. Moreover, the presence of the calcium indicator protein allowed for a sensitive, repeatable detection of changes in calcium signaling during the process of neurogenesis and neuronal maturation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Bruton's tyrosine kinase is essential for hydrogen peroxide-induced calcium signaling.

    Science.gov (United States)

    Qin, S; Chock, P B

    2001-07-10

    Using Btk-deficient DT40 cells and the transfectants expressing wild-type Btk or Btk mutants in either kinase (Arg(525) to Gln), Src homology 2 (SH2, Arg(307) to Ala), or pleckstrin homology (PH, Arg(28) to Cys) domains, we investigated the roles and structure-function relationships of Btk in hydrogen peroxide-induced calcium mobilization. Our genetic evidence showed that Btk deficiency resulted in a significant reduction in hydrogen peroxide-induced calcium response. This impaired calcium signaling is correlated with the complete elimination of IP3 production and the significantly reduced tyrosine phosphorylation of PLCgamma2 in Btk-deficient DT40 cells. All of these defects were fully restored by the expression of wild-type Btk in Btk-deficient DT40 cells. The data from the point mutation study revealed that a defect at any one of the three functional domains would prevent a full recovery of Btk-mediated hydrogen peroxide-induced intracellular calcium mobilization. However, mutation at either the SH2 or PH domain did not affect the hydrogen peroxide-induced activation of Btk. Mutation at the SH2 domain abrogates both IP3 generation and calcium release, while the mutant with the nonfunctional PH domain can partially activate PLCgamma2 and catalyze IP3 production but fails to produce significant calcium mobilization. Thus, these observations suggest that Btk-dependent tyrosine phosphorylation of PLCgamma2 is required but not sufficient for hydrogen peroxide-induced calcium mobilization. Furthermore, hydrogen peroxide stimulates a Syk-, but not Btk-, dependent tyrosine phosphorylation of B cell linker protein BLNK. The overall results, together with those reported earlier [Qin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 7118], are consistent with the notion that functional SH2 and PH domains are required for Btk to form a complex with PLCgamma2 through BLNK in order to position the Btk, PLCgamma2, and phosphatidylinositol 4,5-bisphosphate in close proximity for

  6. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells.

    Science.gov (United States)

    Li, Lan; Cao, Zhiheng; Jia, Pengfei; Wang, Ziren

    2010-04-01

    In order to investigate whether calcium signals participate in paraoxon (POX)-induced apoptosis in EL4 cells, real-time laser scanning confocal microscopy (LSCM) was used to detect Ca(2+) changes during the POX application. Apoptotic rates of EL4 cells and caspase-12 expression were also evaluated. POX (1-10nM) increased intracellular calcium concentration ([Ca(2+)]i) in EL4 cells in a dose-dependent manner at early stage (0-2h) of POX application, and apoptotic rates of EL4 cells after treatment with POX for 16h were also increased in a dose-dependent manner. Pre-treatment with EGTA, heparin or procaine attenuated POX-induced [Ca(2+)]i elevation and apoptosis. Additionally, POX up-regulated caspase-12 expression in a dose-dependent manner, and pre-treatment with EGTA, heparin or procaine significantly inhibited POX-induced increase of caspase-12 expression. Our results suggested that POX induced [Ca(2+)]i elevation in EL4 cells at the early stage of POX-induced apoptosis, which might involve Ca(2+) efflux from the endoplasmic reticulum (ER) and Ca(2+) influx from extracellular medium. Calcium signals and caspase-12 were important upstream messengers in POX-induced apoptosis in EL4 cells. The ER-associated pathway possibly operated in this apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Calcium signal communication in the central nervous system.

    Science.gov (United States)

    Braet, Katleen; Cabooter, Liesbet; Paemeleire, Koen; Leybaert, Luc

    2004-02-01

    The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.

  8. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  9. Smad signaling pathway in pathogenesis of kidney injury induced by calcium oxalate stone in rats

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-10-01

    Full Text Available Objective: To investigate the involvement of Smad signaling pathway in the pathogenesis of kidney injury induced by calcium oxalate stone in rats to provide a reference for clinical treatment. Methods: Clean SD rats were randomly divided into 3 group, namely the control group, model group and pirfenidone group. Ethylene glycol + αhydroxy vitamin D3 was used as a stone-inducing agent to replicate the renal calcium oxalate stone model. Rats in the pirfenidone group were treated with pirfenidone intragastric administration. The serum Cr, BUN and 24-hour oxalate and calcium in renal tissues were assayed. The expressions of Bax/ Bcl2 protein, Caspase3 protein, TGFβ, Smad1, Smad2 and Smad3 proteins were detected by the fluorescent quantitation PCR method. Results: Compared with the rats of the control group, the results showed that the levels of serum BUN, Cr and 24-hour oxalate in rats of the model group were increased greatly, Bax and Caspase3 mRNA also increased while the level of Bcl2 decreased significantly, and the expressions of TGFβ, Smad1, Smad2 and Smad3 proteins increased distinctly as well (P<0.01. These abnormal parameters could be normalized effectively by pirfenidone. Conclusions: Activated TGFβ/Smad signaling pathway is involved in the pathogenesis of kidney injury induced by calcium oxalate stone in rats.

  10. The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects.

    LENUS (Irish Health Repository)

    Lyng, F M

    2006-04-01

    Much evidence now exists regarding radiation-induced bystander effects, but the mechanisms involved in the transduction of the signal are still unclear. The mitogen-activated protein kinase (MAPK) pathways have been linked to growth factor-mediated regulation of cellular events such as proliferation, senescence, differentiation and apoptosis. Activation of multiple MAPK pathways such as the ERK, JNK and p38 pathways have been shown to occur after exposure of cells to radiation and a variety of other toxic stresses. Previous studies have shown oxidative stress and calcium signaling to be important in radiation-induced bystander effects. The aim of the present study was to investigate MAPK signaling pathways in bystander cells exposed to irradiated cell conditioned medium (ICCM) and the role of oxidative metabolism and calcium signaling in the induction of bystander responses. Human keratinocytes (HPV-G cell line) were irradiated (0.005-5 Gy) using a cobalt-60 teletherapy unit. The medium was harvested 1 h postirradiation and transferred to recipient HPV-G cells. Phosphorylated forms of p38, JNK and ERK were studied by immunofluorescence 30 min-24 h after exposure to ICCM. Inhibitors of the ERK pathway (PD98059 and U0126), the JNK pathway (SP600125), and the p38 pathway (SB203580) were used to investigate whether bystander-induced cell death could be blocked. Cells were also incubated with ICCM in the presence of superoxide dismutase, catalase, EGTA, verapamil, nifedipine and thapsigargin to investigate whether bystander effects could be inhibited because of the known effects on calcium homeostasis. Activated forms of JNK and ERK proteins were observed after exposure to ICCM. Inhibition of the ERK pathway appeared to increase bystander-induced apoptosis, while inhibition of the JNK pathway appeared to decrease apoptosis. In addition, reactive oxygen species, such as superoxide and hydrogen peroxide, and calcium signaling were found to be important modulators of

  11. Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway.

    Science.gov (United States)

    Chen, Shuang; Liu, Baoqin; Kong, Dehui; Li, Si; Li, Chao; Wang, Huaqin; Sun, Yingxian

    2015-01-01

    Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.

  12. Calcium Signaling in Taste Cells

    Science.gov (United States)

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  13. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility.

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2016-05-01

    Full Text Available A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling.

  14. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  15. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    Science.gov (United States)

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  16. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    Science.gov (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner. Published by Elsevier Ltd.

  17. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    Science.gov (United States)

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    Science.gov (United States)

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  19. The interplay between HIF-1 and calcium signalling in cancer.

    Science.gov (United States)

    Azimi, Iman

    2018-04-01

    The interplay between hypoxia-inducible factor-1 (HIF-1) and calcium in cancer has begun to be unravelled with recent findings demonstrating the relationships between the two in different cancer types. This is an area of significance considering the crucial roles of both HIF-1 and calcium signalling in cancer progression and metastasis. This review summarises the experimental evidence of the crosstalk between HIF-1 and specific calcium channels, pumps and regulators in the context of cancer. HIF-1 as a master regulator of hypoxic transcriptional responses, mediates transcription of several calcium modulators. On the other hand, specific calcium channels and pumps regulate HIF-1 activity through controlling its transcription, translation, stabilisation, or nuclear translocation. Identifying the interplay between HIF-1 and components of the calcium signal will give new insights into mechanisms underlying cellular responses to physiological and pathophysiological cues, and may provide novel and more efficient therapeutic strategies for the control of cancer progression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Calcium and Nuclear Signaling in Prostate Cancer

    OpenAIRE

    Ivan V. Maly; Wilma A. Hofmann

    2018-01-01

    Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the un...

  1. The Acid Test: Calcium Signaling in the Skeletogenic Layer of Reef-Building Coral

    Science.gov (United States)

    Florn, A. M.

    2016-02-01

    Since the Industrial Revolution, carbon dioxide (CO2) emissions have increased more than 40%. This increased atmospheric CO2 drives ocean acidification and has potentially serious consequences for all marine life, especially calcifying organisms. The specific goal of this study was to examine calcium homeostasis and signaling dynamics within the skeletogenic tissue layers (calicodermal cells) of two coral species (Pavona maldivensis and Porites rus) at three pH treatments corresponding to present-future ocean acidification levels. Confocal microscopy techniques were used to analyze in vivo calcium dynamics of the calicodermal cells in Pavona maldivensis and Porites rus. The results show biological variation between the two reef-building coral species and their response to ocean acidification. Pavona maldivensis showed a significant difference (p < 0.01) in the ionomycin-induced calcium response among the pH treatments, but not among the microcolonies. Porites rus did not show a significant difference (p < 0.01) in the ionomycin-induced calcium response among the pH treatments or the microcolonies. Upon comparing the calcium response curves, the ionomycin-induced calcium response exhibited by Pavona maldivensis is phenomenologically similar to a calcium response that is commonly found in vertebrates. This well-studied phenomenon in vertebrate biology is known as store-operated calcium entry (SOCE) and is closely associated with the endoplasmic reticulum (ER) and mitochondria-associated endoplasmic reticulum (MAM) calcium stores. This study provides insight into the preliminary steps needed to understand in vivo calcium signaling in the calicodermis of reef-building coral and the associated consequences of ocean acidification.

  2. Calcium signalling silencing in atrial fibrillation.

    Science.gov (United States)

    Greiser, Maura

    2017-06-15

    Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca 2+ signalling instability and Ca 2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca 2+ ] i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca 2+ sparks and arrhythmogenic Ca 2+ waves remains low. Less Ca 2+ release per [Ca 2+ ] i transient, increased fast Ca 2+ buffering strength, shortened action potentials and reduced L-type Ca 2+ current contribute to a substantial reduction of intracellular [Na + ]. These features of Ca 2+ signalling silencing are distinct and in contrast to the changes attributed to Ca 2+ -based arrhythmogenicity. Some features of Ca 2+ signalling silencing prevail in human AF suggesting that the Ca 2+ signalling 'phenotype' in AF is a sum of Ca 2+ stabilizing (Ca 2+ signalling silencing) and Ca 2+ destabilizing (arrhythmogenic unstable Ca 2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca 2+ -based arrhythmogenicity after the onset of AF. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  3. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    Science.gov (United States)

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Calcium as a signal integrator in developing epithelial tissues.

    Science.gov (United States)

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  5. Unilateral vestibular deafferentation-induced changes in calcium signaling-related molecules in the rat vestibular nuclear complex.

    Science.gov (United States)

    Masumura, Chisako; Horii, Arata; Mitani, Kenji; Kitahara, Tadashi; Uno, Atsuhiko; Kubo, Takeshi

    2007-03-23

    Inquiries into the neurochemical mechanisms of vestibular compensation, a model of lesion-induced neuronal plasticity, reveal the involvement of both voltage-gated Ca(2+) channels (VGCC) and intracellular Ca(2+) signaling. Indeed, our previous microarray analysis showed an up-regulation of some calcium signaling-related genes such as the alpha2 subunit of L-type calcium channels, calcineurin, and plasma membrane Ca(2+) ATPase 1 (PMCA1) in the ipsilateral vestibular nuclear complex (VNC) following unilateral vestibular deafferentation (UVD). To further elucidate the role of calcium signaling-related molecules in vestibular compensation, we used a quantitative real-time polymerase chain reaction (PCR) method to confirm the microarray results and investigated changes in expression of these molecules at various stages of compensation (6 h to 2 weeks after UVD). We also investigated the changes in gene expression during Bechterew's phenomenon and the effects of a calcineurin inhibitor on vestibular compensation. Real-time PCR showed that genes for the alpha2 subunit of VGCC, PMCA2, and calcineurin were transiently up-regulated 6 h after UVD in ipsilateral VNC. A subsequent UVD, which induced Bechterew's phenomenon, reproduced a complete mirror image of the changes in gene expressions of PMCA2 and calcineurin seen in the initial UVD, while the alpha2 subunit of VGCC gene had a trend to increase in VNC ipsilateral to the second lesion. Pre-treatment by FK506, a calcineurin inhibitor, decelerated the vestibular compensation in a dose-dependent manner. Although it is still uncertain whether these changes in gene expression are causally related to the molecular mechanisms of vestibular compensation, this observation suggests that after increasing the Ca(2+) influx into the ipsilateral VNC neurons via up-regulated VGCC, calcineurin may be involved in their synaptic plasticity. Conversely, an up-regulation of PMCA2, a brain-specific Ca(2+) pump, would increase an efflux of Ca

  6. Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa.

    Science.gov (United States)

    Gonçalves, A Pedro; Cordeiro, J Miguel; Monteiro, João; Lucchi, Chiara; Correia-de-Sá, Paulo; Videira, Arnaldo

    2015-10-01

    Staurosporine-induced cell death in Neurospora crassa includes a well defined sequence of alterations in cytosolic calcium levels, comprising extracellular Ca(2+) influx and mobilization of Ca(2+) from internal stores. Here, we show that cells undergoing respiratory stress due to the lack of certain components of the mitochondrial complex I (like the 51kDa and 14kDa subunits) or the Ca(2+)-binding alternative NADPH dehydrogenase NDE-1 are hypersensitive to staurosporine and incapable of setting up a proper intracellular Ca(2+) response. Cells expressing mutant forms of NUO51 that mimic human metabolic diseases also presented Ca(2+) signaling deficiencies. Accumulation of reactive oxygen species is increased in cells lacking NDE-1 and seems to be required for Ca(2+) oscillations in response to staurosporine. Measurement of the mitochondrial levels of Ca(2+) further supported the involvement of these organelles in staurosporine-induced Ca(2+) signaling. In summary, our data indicate that staurosporine-induced fungal cell death involves a sophisticated response linking Ca(2+) dynamics and bioenergetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX......)-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers....... Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon...

  8. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  9. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R

    2005-01-01

    The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated...... into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...

  10. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  11. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    Science.gov (United States)

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  12. Requirement for nuclear calcium signaling in Drosophila long-term memory.

    Science.gov (United States)

    Weislogel, Jan-Marek; Bengtson, C Peter; Müller, Michaela K; Hörtzsch, Jan N; Bujard, Martina; Schuster, Christoph M; Bading, Hilmar

    2013-05-07

    Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.

  13. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    Science.gov (United States)

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  14. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom.

    Science.gov (United States)

    Kashir, Junaid; Deguchi, Ryusaku; Jones, Celine; Coward, Kevin; Stricker, Stephen A

    2013-10-01

    Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals. © 2013 Wiley Periodicals, Inc.

  15. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...... different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...

  16. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting...... in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal...... of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx...

  17. Probabilistic encoding of stimulus strength in astrocyte global calcium signals.

    Science.gov (United States)

    Croft, Wayne; Reusch, Katharina; Tilunaite, Agne; Russell, Noah A; Thul, Rüdiger; Bellamy, Tomas C

    2016-04-01

    Astrocyte calcium signals can range in size from subcellular microdomains to waves that spread through the whole cell (and into connected cells). The differential roles of such local or global calcium signaling are under intense investigation, but the mechanisms by which local signals evolve into global signals in astrocytes are not well understood, nor are the computational rules by which physiological stimuli are transduced into a global signal. To investigate these questions, we transiently applied receptor agonists linked to calcium signaling to primary cultures of cerebellar astrocytes. Astrocytes repetitively tested with the same stimulus responded with global signals intermittently, indicating that each stimulus had a defined probability for triggering a response. The response probability varied between agonists, increased with agonist concentration, and could be positively and negatively modulated by crosstalk with other signaling pathways. To better understand the processes determining the evolution of a global signal, we recorded subcellular calcium "puffs" throughout the whole cell during stimulation. The key requirement for puffs to trigger a global calcium wave following receptor activation appeared to be the synchronous release of calcium from three or more sites, rather than an increasing calcium load accumulating in the cytosol due to increased puff size, amplitude, or frequency. These results suggest that the concentration of transient stimuli will be encoded into a probability of generating a global calcium response, determined by the likelihood of synchronous release from multiple subcellular sites. © 2015 Wiley Periodicals, Inc.

  18. Acrolein induces Hsp72 via both PKCdelta/JNK and calcium signaling pathways in human umbilical vein endothelial cells.

    Science.gov (United States)

    Misonou, Yoshiko; Takahashi, Motoko; Park, Yong Seek; Asahi, Michio; Miyamoto, Yasuhide; Sakiyama, Haruhiko; Cheng, Xinyao; Taniguchi, Naoyuki

    2005-05-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.

  19. Calcium and Nuclear Signaling in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Ivan V. Maly

    2018-04-01

    Full Text Available Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.

  20. CBL-CIPK network for calcium signaling in higher plants

    Science.gov (United States)

    Luan, Sheng

    Plants sense their environment by signaling mechanisms involving calcium. Calcium signals are encoded by a complex set of parameters and decoded by a large number of proteins including the more recently discovered CBL-CIPK network. The calcium-binding CBL proteins specifi-cally interact with a family of protein kinases CIPKs and regulate the activity and subcellular localization of these kinases, leading to the modification of kinase substrates. This represents a paradigm shift as compared to a calcium signaling mechanism from yeast and animals. One example of CBL-CIPK signaling pathways is the low-potassium response of Arabidopsis roots. When grown in low-K medium, plants develop stronger K-uptake capacity adapting to the low-K condition. Recent studies show that the increased K-uptake is caused by activation of a specific K-channel by the CBL-CIPK network. A working model for this regulatory pathway will be discussed in the context of calcium coding and decoding processes.

  1. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    Science.gov (United States)

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    Science.gov (United States)

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  3. One nuclear calcium transient induced by a single burst of action potentials represents the minimum signal strength in activity-dependent transcription in hippocampal neurons.

    Science.gov (United States)

    Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar

    2017-07-01

    Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Science.gov (United States)

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  5. A novel interaction between calcium-modulating cyclophilin ligand and Basigin regulates calcium signaling and matrix metalloproteinase activities in human melanoma cells.

    Science.gov (United States)

    Long, Tingting; Su, Juan; Tang, Wen; Luo, Zhongling; Liu, Shuang; Liu, Zhaoqian; Zhou, Honghao; Qi, Min; Zeng, Weiqi; Zhang, Jianglin; Chen, Xiang

    2013-10-01

    Intracellular free calcium is a ubiquitous second messenger regulating a multitude of normal and pathogenic cellular responses, including the development of melanoma. Upstream signaling pathways regulating the intracellular free calcium concentration ([Ca2+]i) may therefore have a significant impact on melanoma growth and metastasis. In this study, we demonstrate that the endoplasmic reticulum (ER)-associated protein calcium-modulating cyclophilin ligand (CAML) is bound to Basigin, a widely expressed integral plasma membrane glycoprotein and extracellular matrix metalloproteinase inducer (EMMPRIN, or CD147) implicated in melanoma proliferation, invasiveness, and metastasis. This interaction between CAML and Basigin was first identified using yeast two-hybrid screening and further confirmed by co-immunoprecipitation. In human A375 melanoma cells, CAML and Basigin were co-localized to the ER. Knockdown of Basigin in melanoma cells by siRNA significantly decreased resting [Ca2+]i and the [Ca2+]i increase induced by the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG), indicating that the interaction between CAML and Basigin regulates ER-dependent [Ca2+]i signaling. Meanwhile upregulating the [Ca2+]i either by TG or phorbol myristate acetate (PMA) could stimulate the production of MMP-9 in A375 cells with the expression of Basigin. Our study has revealed a previously uncharacterized [Ca2+]i signaling pathway that may control melanoma invasion, and metastasis. Disruption of this pathway may be a novel therapeutic strategy for melanoma treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    Science.gov (United States)

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  7. Calcium efflux systems in stress signalling and adaptation in plants

    Directory of Open Access Journals (Sweden)

    Jayakumar eBose

    2011-12-01

    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  8. Induced effect of Ca2+ on dalesconols A and B biosynthesis in the culture of Daldinia eschscholzii via calcium/calmodulin signaling.

    Science.gov (United States)

    Lu, Yanhua; Pan, Zhenghua; Tao, Jun; An, Faliang

    2018-02-01

    Dalesconols (dalesconols A and B) were isolated from Daldinia eschscholzii and have remarkable immunosuppressive activity. In this study, the response of fungal growth, intra- and extracellular Ca 2+ , and dalesconols production after CaCl 2 addition were reported for the first time. After supplementation with 5 mM Ca 2+ at 24 h, dalesconols production reached 84.33 mg/L, which resulted in a 1.57-fold enhancement compared to the control. The key role of calcium/calmodulin signaling in dalesconols biosynthesis was confirmed by treatment with Ca 2+ channel and calmodulin inhibitors. The transcriptional levels of dalesconols biosynthetic genes were up-regulated after CaCl 2 addition and down-regulated after inhibitors were added. The results demonstrated that Ca 2+ addition induces dalesconols biosynthesis through up-regulation of dalesconols biosynthesis genes via regulation of calcium/calmodulin signaling. This study provided an efficient strategy for improving dalesconols production and would facilitate further research on the biosynthesis and regulation of dalesconols. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...... in astrocytic-neuronal networks. We reproduce local and global dynamical patterns observed experimentally....

  10. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways.

    Science.gov (United States)

    Conigrave, Arthur D; Ward, Donald T

    2013-06-01

    In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), Modulates Purinoceptor-Coupled Calcium Signaling and Murine Nociceptive Behavior.

    Science.gov (United States)

    Liu, Pei-Shan; Chueh, Sheau-Huei; Chen, Chin-Chu; Lee, Li-Ya; Shiu, Li-Yen

    2017-01-01

    Hericium erinaceus is well known for the neurotrophic effect it confers by promoting nerve growth factor biosynthesis. We discovered a novel bioactivity of H. erinaceus in its ability to suppress adenosine triphosphate (ATP)-induced calcium signaling in neuronal PC12 cells. ATP, known primarily as a neurotransmitter, also acts on purinoceptors (P2 purinergic receptor [P2R]) to generate the cellular calcium signaling and secretion that mediate P2R physiological manifestations, including pain. Chronic pain reduces quality of life. However, constant analgesic administration can cause liver and kidney injury, as well as loss of the analgesic effect because of desensitization. In this study we investigated the analgesic potential of H. erinaceus through measurements of ATP-induced Ca2+ signaling in cell lines and observation of pain behaviors in mice. In P2R-coupled Ca2+ signaling measurements, extracts of H. erinaceus mycelia (HEEs) blocked ATP-induced Ca2+ signaling in both rat PC12 cells and human HOS cells. HEEs completely blocked ATP-induced Ca2+ signaling in human HOS cells, suggesting that this effect of HEEs is exerted through the P2R subtypes present in HOS cells, which include the P2X4, P2X7, P2Y2, and P2Y4 subtypes. In observations of animal behavior during pain, HEEs significantly reduced heat-induced pain, including postponing both the tail-flick response to heat stimulation and the paw-lifting response to a hot plate. This study demonstrates novel characteristics of H. erinaceus in reducing nociceptive behavior and blocking the functional activity of P2R. Further studies are required to verify this linkage and its molecular mechanisms.

  12. A study on MR signal intensity of calcifications according to calcium concentration and compound

    International Nuclear Information System (INIS)

    Chang, Sun Ae; Kim, Jae Hyoung; Chung, Sung Hoon

    1996-01-01

    The signal of intracranial calcification on magnetic resonance (MR) imaging has been known to be variable. The purpose of this study was to evaluate the MR signal of calcifications according to calcium concentration and compound. T1-weighted, proton density and T2-weighted images were obtained in phantoms with various conposition of calcium carbonate and calcium phosphate. The signal intensities and T1/T2 relaxation times were measured and analyzed according to calcium concentration and compound. The configurations of calcium particles were evaluated by scanning electron microscopy. The signal intensity of calcium carbonate on T1-weighted images gradually decreased as the concentration increased, while that of calcium phosphate showed a biphasic curve with a peak intensity at 0.2g/ml. The signal intensity of both calcium phosphate decreased up to 0.2g/ml and then remained constant. The T2 relaxation time of both calcium compounds decreased in a similar fashion with increasing concentration, Calcium phosphate showed larger surface area on scanning electron microscope. Calcifications show variable MR signal due to difference of T1 and T2 relaxation times according to calcium concentration and compound. Large surface area of calcium particle might cause shortening of T1 relaxation time leading to high signal on T1-weighted image. Understanding of these findings will help interpretation of MR images more precisely

  13. Calcium regulation of EGF-induced ERK5 activation: role of Lad1-MEKK2 interaction.

    Directory of Open Access Journals (Sweden)

    Zhong Yao

    Full Text Available The ERK5 cascade is a MAPK pathway that transmits both mitogenic and stress signals, yet its mechanism of activation is not fully understood. Using intracellular calcium modifiers, we found that ERK5 activation by EGF is inhibited both by the depletion and elevation of intracellular calcium levels. This calcium effect was found to occur upstream of MEKK2, which is the MAP3K of the ERK5 cascade. Co-immunoprecipitation revealed that EGF increases MEKK2 binding to the adaptor protein Lad1, and this interaction was reduced by the intracellular calcium modifiers, indicating that a proper calcium concentration is required for the interactions and transmission of EGF signals to ERK5. In vitro binding assays revealed that the proper calcium concentration is required for a direct binding of MEKK2 to Lad1. The binding of these proteins is not affected by c-Src-mediated phosphorylation on Lad1, but slightly affects the Tyr phosphorylation of MEKK2, suggesting that the interaction with Lad1 is necessary for full Tyr phosphorylation of MEKK2. In addition, we found that changes in calcium levels affect the EGF-induced nuclear translocation of MEKK2 and thereby its effect on the nuclear ERK5 activity. Taken together, these findings suggest that calcium is required for EGF-induced ERK5 activation, and this effect is probably mediated by securing proper interaction of MEKK2 with the upstream adaptor protein Lad1.

  14. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling.

    Science.gov (United States)

    Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil

    2013-05-01

    Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5'-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.

  16. Mechanically induced intracellular calcium waves in osteoblasts demonstrate calcium fingerprints in bone cell mechanotransduction.

    Science.gov (United States)

    Godin, Lindsay M; Suzuki, Sakiko; Jacobs, Christopher R; Donahue, Henry J; Donahue, Seth W

    2007-11-01

    An early response to mechanical stimulation of bone cells in vitro is an increase in intracellular calcium concentration ([Ca (2+)](i)). This study analyzed the [Ca (2+)](i) wave area, magnitude, duration, rise time, fall time, and time to onset in individual osteoblasts for two identical bouts of mechanical stimulation separated by a 30-min rest period. The area under the [Ca (2+)](i) wave increased in the second loading bout compared to the first. This suggests that rest periods may potentiate mechanically induced intracellular calcium signals. Furthermore, many of the [Ca (2+)](i) wave parameters were strongly, positively correlated between the two bouts of mechanical stimulation. For example, in individual primary osteoblasts, if a cell had a large [Ca (2+)](i) wave area in the first bout it was likely to have a large [Ca (2+)](i) wave area in the second bout (r (2) = 0.933). These findings support the idea that individual bone cells have "calcium fingerprints" (i.e., a unique [Ca (2+)](i) wave profile that is reproducible for repeated exposure to a given stimulus).

  17. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Rafiei, Shahrzad; Komarova, Svetlana V

    2013-01-01

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  18. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    Science.gov (United States)

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  19. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

    Science.gov (United States)

    Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid

    2002-11-01

    Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

  20. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  1. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chubinskiy-Nadezhdin, Vladislav I.; Vasileva, Valeria Y.; Pugovkina, Natalia A.; Vassilieva, Irina O.; Morachevskaya, Elena A.; Nikolsky, Nikolay N.; Negulyaev, Yuri A.

    2017-01-01

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca 2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca 2+ -sensitive BK and SK channels was shown. • Local Ca 2+ influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca 2+ ] i . • Functional clustering of SACs and BK channels in stem cell membrane is proposed.

  2. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    Science.gov (United States)

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  3. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts.

    Science.gov (United States)

    Albert, Markus; Kaiser, Bettina; van der Krol, Sander; Kaldenhoff, Ralf

    2010-09-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which leads to a tolerance of the infection or, in the case of some incompatible host plants, to resistance. Calcium (Ca(2+)) release is the major second messenger during signal transduction. Therefore, we have studied Ca(2+) spiking in tomato and tobacco during infection with C. reflexa. In our recently published study Ca(2+) signals were monitored as bioluminescence in aequorin-expressing tomato plants after the onset of C. reflexa infestation. Signals at the attachment sites were observed from 30 to 48 h after infection. In an assay with leaf disks of aequorin-expressing tomato which were treated with different C. reflexa plant extracts it turned out that the substance that induced Ca(2+) release in the host plant was closely linked to the parasite's haustoria.

  4. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Audrey E. McCalley

    2014-06-01

    Full Text Available Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol’s mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol’s actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  5. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...... to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts...

  6. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria

    International Nuclear Information System (INIS)

    Grondin, Melanie; Marion, Michel; Denizeau, Francine; Averill-Bates, Diana A.

    2007-01-01

    Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad from the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl - /HCO 3 - exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes

  7. Calcium signaling in liver.

    Science.gov (United States)

    Gaspers, Lawrence D; Thomas, Andrew P

    2005-01-01

    In hepatocytes, hormones linked to the formation of the second messenger inositol 1,4,5-trisphosphate (InsP3) evoke transient increases or spikes in cytosolic free calcium ([Ca2+]i), that increase in frequency with the agonist concentration. These oscillatory Ca2+ signals are thought to transmit the information encoded in the extracellular stimulus to down-stream Ca2+-sensitive metabolic processes. We have utilized both confocal and wide field fluorescence microscopy techniques to study the InsP3-dependent signaling pathway at the cellular and subcellular levels in the intact perfused liver. Typically InsP3-dependent [Ca2+]i spikes manifest as Ca2+ waves that propagate throughout the entire cytoplasm and nucleus, and in the intact liver these [Ca2+]i increases are conveyed through gap junctions to encompass entire lobular units. The translobular movement of Ca2+ provides a means to coordinate the function of metabolic zones of the lobule and thus, liver function. In this article, we describe the characteristics of agonist-evoked [Ca2+]i signals in the liver and discuss possible mechanisms to explain the propagation of intercellular Ca2+ waves in the intact organ.

  8. Herpes simplex virus triggers activation of calcium-signaling pathways

    Science.gov (United States)

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  9. Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis.

    Science.gov (United States)

    Waadt, Rainer; Krebs, Melanie; Kudla, Jörg; Schumacher, Karin

    2017-10-01

    Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.

    Science.gov (United States)

    Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T

    2014-05-01

    Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.

  11. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity.

    Science.gov (United States)

    Ozcan, Lale; Wong, Catherine C L; Li, Gang; Xu, Tao; Pajvani, Utpal; Park, Sung Kyu Robin; Wronska, Anetta; Chen, Bi-Xing; Marks, Andrew R; Fukamizu, Akiyoshi; Backs, Johannes; Singer, Harold A; Yates, John R; Accili, Domenico; Tabas, Ira

    2012-05-02

    Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The use of flow cytometry to examine calcium signalling by TRPV1 in mixed cell populations.

    Science.gov (United States)

    Assas, Bakri M; Abdulaal, Wesam H; Wakid, Majed H; Zakai, Haytham A; Miyan, J; Pennock, J L

    2017-06-15

    Flow cytometric analysis of calcium mobilisation has been in use for many years in the study of specific receptor engagement or isolated cell:cell communication. However, calcium mobilisation/signaling is key to many cell functions including apoptosis, mobility and immune responses. Here we combine multiplex surface staining of whole spleen with Indo-1 AM to visualise calcium mobilisation and examine calcium signaling in a mixed immune cell culture over time. We demonstrate responses to a TRPV1 agonist in distinct cell subtypes without the need for cell separation. Multi parameter staining alongside Indo-1 AM to demonstrate calcium mobilization allows the study of real time calcium signaling in a complex environment. Copyright © 2017. Published by Elsevier Inc.

  13. [Role of melatonin in calcium overload-induced heart injury].

    Science.gov (United States)

    Kong, Lingheng; Wei, Ming; Sun, Na; Zhu, Juanxia; Su, Xingli

    2017-06-28

    To investigate the role of melatonin in calcium overload-induced heart injury.
 Methods: Thirty-two rats were divided into 4 groups: a control group (Control), a melatonin control group (Mel), a calcium overload group (CaP), and a calcium overload plus melatonin group (Mel+CaP). Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Triphenyltetrazolium chloride staining was used to measure the infarct size of myocardium. Lactate dehydrogenase (LDH) activity in the coronary flow was determined. The expressions of caspase-3 and cytochrome c were determined by Western blot. The pathological morphological changes in myocardial fiber were analyzed by HE staining.
 Results: Compared with the control group, calcium overload significantly induced an enlarged infarct size (Poverload-induced heart injury.

  14. Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane.

    Science.gov (United States)

    Savino, John A; Evans, Jodi F; Rabinowitz, Dorianne; Auborn, Karen J; Carter, Timothy H

    2006-03-01

    Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, causes growth arrest and apoptosis of cancer cells in vitro. DIM also induces endoplasmic reticulum (ER) stress, and thapsigargin, a specific inhibitor of the sarcoplasmic reticulum/ER calcium-dependent ATPase, enhances this effect. We asked whether elevated cytosolic free calcium [Ca2+]i is required for cytotoxicity of DIM and thapsigargin in two cancer cells lines (C33A, from cervix, and DU145, from prostate). [Ca2+]i was measured in real-time by FURA-2 fluorescence. We tested whether DIM, thapsigargin, and DIM + thapsigargin cause apoptosis, measured by nucleosome release, under conditions that prevented elevation of [Ca2+]i, using both cell-permeable and cell-impermeable forms of the specific calcium chelator BAPTA. DIM, like thapsigargin, rapidly mobilized ER calcium. C33A and DU145 responded differently to perturbations in Ca2+ homeostasis, suggesting that DIM induces apoptosis by different mechanisms in these two cell lines and/or that calcium mobilization also activates different survival pathways in C33A and DU145. Apoptosis in C33A was independent of increased [Ca2+]i, suggesting that depletion of ER Ca2+ stores may be sufficient for cell killing, whereas apoptosis in DU145 required elevated [Ca2+]i for full response. Inhibitor studies using cyclosporin A and KN93 showed that Ca2+ signaling is important for cell survival but the characteristics of this response also differed in the two cell lines. Our results underscore the complex and variable nature of cellular responses to disrupted Ca2+ homeostasis and suggest that alteration Ca2+ homeostasis in the ER can induce cellular apoptosis by both calcium-dependent and calcium-independent mechanisms.

  15. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes.

    Science.gov (United States)

    Samigullin, Dmitry; Fatikhov, Nijaz; Khaziev, Eduard; Skorinkin, Andrey; Nikolsky, Eugeny; Bukharaeva, Ellya

    2014-01-01

    At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers-which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal-has hitherto been technically impossible. With the aim of quantifying both Ca(2+) currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 pA and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 μM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  16. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    Science.gov (United States)

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize. © 2014 John Wiley & Sons Ltd.

  17. Acute Treatment with T-Type Calcium Channel Enhancer SAK3 Reduces Cognitive Impairments Caused by Methimazole-Induced Hypothyroidism Via Activation of Cholinergic Signaling.

    Science.gov (United States)

    Husain, Noreen; Yabuki, Yasushi; Shinoda, Yasuharu; Fukunaga, Kohji

    2018-01-01

    Hypothyroidism is a common disorder that is associated with psychological disturbances such as dementia, depression, and psychomotor disorders. We recently found that chronic treatment with the T-type calcium channel enhancer SAK3 prevents the cholinergic neurodegeneration induced by a single intraperitoneal (i.p.) injection of methimazole (MMI; 75 mg/kg), thereby improving cognition. Here, we evaluated the acute effect of SAK3 on cognitive impairments and its mechanism of action following the induction of hypothyroidism. Hypothyroidism was induced by 2 injections of MMI (75 mg/kg, i.p.) administered once per week. Four weeks after the final MMI treatment, MMI-treated mice showed reduced serum thyroxine (T4) levels and cognitive impairments without depression-like behaviors. Although acute SAK3 (1.0 mg/kg, p.o.) administration failed to ameliorate the decreased T4 levels and histochemical destruction of the glomerular structure, acute SAK3 (1.0 mg/kg, p.o.) administration significantly reduced cognitive impairments in MMI-treated mice. Importantly, the α7 nicotinic acetylcholine receptor (nAChR)-selective inhibitor methyllycaconitine (MLA; 12 mg/kg, i.p.) and T-type calcium channel-specific blocker NNC 55-0396 (25 mg/kg, i.p.) antagonized the acute effect of SAK3 on memory deficits in MMI-treated mice. We also confirmed that acute SAK3 administration does not rescue reduced olfactory marker protein or choline acetyltransferase immunoreactivity levels in the olfactory bulb or medial septum. Taken together, these results suggest that SAK3 has the ability to improve the cognitive decline caused by hypothyroidism directly through activation of nAChR signaling and T-type calcium channels. © 2018 S. Karger AG, Basel.

  18. A role for CaV1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation.

    Science.gov (United States)

    Hannon, Eilis; Chand, Annisa N; Evans, Mark D; Wong, Chloe C Y; Grubb, Matthew S; Mill, Jonathan

    2015-07-01

    Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm), although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506) to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type Ca V 1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.

  19. A role for CaV1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation

    Directory of Open Access Journals (Sweden)

    Eilis Hannon

    2015-07-01

    Full Text Available Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm, although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506 to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type CaV1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.

  20. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata – Tropiduridae strengthen classification in lizard evolution

    Directory of Open Access Journals (Sweden)

    Garcia Célia RS

    2007-08-01

    Full Text Available Abstract Background We have previously reported that a Teiid lizard red blood cells (RBCs such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs, for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.

  1. Calcium as a cardiovascular toxin in CKD-MBD.

    Science.gov (United States)

    Moe, Sharon M

    2017-07-01

    Disordered calcium balance and homeostasis are common in patients with chronic kidney disease. Such alterations are commonly associated with abnormal bone remodeling, directly and indirectly. Similarly, positive calcium balance may also be a factor in the pathogenesis of extra skeletal soft tissue and arterial calcification. Calcium may directly affect cardiac structure and function through direct effects to alter cell signaling due to abnormal intracellular calcium homeostasis 2) extra-skeletal deposition of calcium and phosphate in the myocardium and small cardiac arterioles, 3) inducing cardiomyocyte hypertrophy through calcium and hormone activation of NFAT signaling mechanisms, and 4) increased aorta calcification resulting in chronic increased afterload leading to hypertrophy. Similarly, calcium may alter vascular smooth muscle cell function and affect cell signaling which may predispose to a proliferative phenotype important in arteriosclerosis and arterial calcification. Thus, disorders of calcium balance and homeostasis due to CKD-MBD may play a role in the high cardiovascular burden observed in patients with CKD. Published by Elsevier Inc.

  2. Intercellular calcium signaling is regulated by morphogens during Drosophila wing development

    OpenAIRE

    Chen, Danny; Levis, Megan; Arredondo-Walsh, Ninfamaria; Zartman, Jeremiah; Brodskiy, Pavel; Wu, Qinfeng; Huizar, Francisco; Soundarrajan, Dharsan; Narciso, Cody; Chen, Jianxu; Liang, Peixian

    2017-01-01

    Organ development is driven by a set of patterned inductive signals. However, how these signals are integrated to coordinate tissue patterning is still poorly understood. Calcium ions (Ca2+) are critical signaling components involved in signal integration and are regulated by a core Ca2+ signaling toolkit. Ca2+ signaling encodes a significant fraction of information in cells through both amplitude and frequency-dependent regulation of transcription factors and key regulatory enzymes. A range ...

  3. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    Science.gov (United States)

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  4. Calcium Overload Accelerates Phosphate-Induced Vascular Calcification Via Pit-1, but not the Calcium-Sensing Receptor.

    Science.gov (United States)

    Masumoto, Asuka; Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Nakashima, Yuri; Okuda, Kouji; Iwashita, Yuko; Mima, Toru; Negi, Shigeo; Shigematsu, Takashi

    2017-07-01

    Vascular calcification (VC) is a risk factor of cardiovascular and all-cause mortality in patients with chronic kidney disease (CKD). CKD-mineral and bone metabolism disorder is an important problem in patients with renal failure. Abnormal levels of serum phosphate and calcium affect CKD-mineral and bone metabolism disorder and contribute to bone disease, VC, and cardiovascular disease. Hypercalcemia is a contributing factor in progression of VC in patients with CKD. However, the mechanisms of how calcium promotes intracellular calcification are still unclear. This study aimed to examine the mechanisms underlying calcium-induced calcification in a rat aortic tissue culture model. Aortic segments from 7-week-old male Sprague-Dawley rats were cultured in serum-supplemented medium for 10 days. We added high calcium (HiCa; calcium 3.0 mM) to high phosphate (HPi; phosphate 3.8 mM) medium to accelerate phosphate and calcium-induced VC. We used phosphonoformic acid and the calcimimetic R-568 to determine whether the mechanism of calcification involves Pit-1 or the calcium-sensing receptor. Medial VC was significantly augmented by HPi+HiCa medium compared with HPi alone (300%, p<0.05), and was associated with upregulation of Pit-1 protein. Pit-1 protein concentrations in HPi+HiCa medium were greater than those in HPi medium. Phosphonoformic acid completely negated the augmentation of medial VC induced by HPi+HiCa. R-568 had no additive direct effect on medial VC. These results indicated that exposure to HPi+HiCa accelerates medial VC, and this is mediated through Pit-1, not the calcium-sensing receptor.

  5. Calcium plays a key role in paraoxon-induced apoptosis in EL4 cells by regulating both endoplasmic reticulum- and mitochondria-associated pathways.

    Science.gov (United States)

    Li, Lan; Du, Yi; Ju, Furong; Ma, Shunxiang; Zhang, Shengxiang

    2016-01-01

    Paraoxon (POX) is one of the most toxic organophosphorus pesticides, but its toxic mechanisms associated with apoptosis remain unclear. The aim of this study was to investigate calcium-associated mechanisms in POX-induced apoptosis in EL4 cells. EL4 cells were exposed to POX for 0-16 h. EGTA was used to chelate Ca(2+ ) in extracellular medium, and heparin and procaine were used to inhibit Ca(2+ )efflux from the endoplasmic reticulum (ER). Z-ATAD-FMK was used to inhibit caspase-12 activity. The apoptotic rate assay, western blotting and immunocytochemistry (ICC) were used to reveal the mechanisms of POX-induced apoptosis. POX significantly increased the expression and activation of caspase-12 and caspase-3, enhanced expression of calpain 1 and calpain 2, and induced the release of cyt c, but did not change the expression of Grp 78. Inhibiting caspase-12 activity alleviated POX-induced upregulation of calpain 1 and caspase-3, promoted POX-induced upregulation of calpain 2, and reduced POX-induced cyt c release, suggesting that there was a cross-talk between the ER-associated pathway and mitochondria-associated apoptotic signals. Attenuating intracellular calcium concentration with EGTA, heparin or procaine decreased POX-induced upregulation of calpain 1, calpain 2, caspase-12 and caspase-3, and reduced POX-induced cyt c release. After pretreatment with EGTA or procaine, POX significantly promoted expression of Grp 78. Calcium played a key role in POX-induced apoptosis in EL4 cells by regulating both ER- and mitochondria-associated pathways. The cross-talk of ER- and mitochondria-associated pathways was accomplished through calcium signal.

  6. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin

    2015-01-01

    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  7. Composite mathematical modeling of calcium signaling behind neuronal cell death in Alzheimer's disease.

    Science.gov (United States)

    Ranjan, Bobby; Chong, Ket Hing; Zheng, Jie

    2018-04-11

    Alzheimer's disease (AD) is a progressive neurological disorder, recognized as the most common cause of dementia affecting people aged 65 and above. AD is characterized by an increase in amyloid metabolism, and by the misfolding and deposition of β-amyloid oligomers in and around neurons in the brain. These processes remodel the calcium signaling mechanism in neurons, leading to cell death via apoptosis. Despite accumulating knowledge about the biological processes underlying AD, mathematical models to date are restricted to depicting only a small portion of the pathology. Here, we integrated multiple mathematical models to analyze and understand the relationship among amyloid depositions, calcium signaling and mitochondrial permeability transition pore (PTP) related cell apoptosis in AD. The model was used to simulate calcium dynamics in the absence and presence of AD. In the absence of AD, i.e. without β-amyloid deposition, mitochondrial and cytosolic calcium level remains in the low resting concentration. However, our in silico simulation of the presence of AD with the β-amyloid deposition, shows an increase in the entry of calcium ions into the cell and dysregulation of Ca 2+ channel receptors on the Endoplasmic Reticulum. This composite model enabled us to make simulation that is not possible to measure experimentally. Our mathematical model depicting the mechanisms affecting calcium signaling in neurons can help understand AD at the systems level and has potential for diagnostic and therapeutic applications.

  8. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    Science.gov (United States)

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  9. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling

    Directory of Open Access Journals (Sweden)

    Bendik C. Brinchmann

    2018-05-01

    Full Text Available Exposure to diesel exhaust particles (DEPs affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM, dichloromethane (DCM-EOM, methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1 using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE. By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE. Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction

  10. Multiple signaling pathways mediated by dopamine and calcium ionophore A23187 in human platelets

    International Nuclear Information System (INIS)

    Saeed, S.A.; Waqar, M.A.

    2009-01-01

    This study was undertaken to investigate the mechanism(s) of platelet aggregation induced by the synergistic action of dopamine (DA) and a Ca/sup +2/-ionophore, A23187. DA showed non significant effect on platelet aggregation over a wide range of concentrations (up to 500 micro M), but did potentiate the aggregation response of A23187. Aggregation induced by A23187 was inhibited by calcium channel blockers (diltiazem and verpamil), receptor blockers (chlorpromazine and haloperidol) and a cyclo-oxygenase inhibitor (indomethacin). However, the inhibitory effect of these blockers was more pronounced (with a selectivity ratio of 1.5-28) in the aggregation induced by synergistic effect of A23187 and DA. A phosphatidylinositol 3-kinase (P1 3-Kinase) inhibitor, wortmanin (1C/sub 50/. 25-30 nM), inhibited aggregation induced by either A23187 or DA and act synergistically. This synergistic effect on platelet aggregation is mediated through multiple signaling pathways. (author)

  11. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    Directory of Open Access Journals (Sweden)

    János Brunner

    2014-03-01

    Full Text Available Backpropagating action potentials (bAPs and local calcium signals that they trigger are fundamental for dendritic functions. Here we addressed the question what extent the changes of local dendritic membrane properties can contribute to the shaping of the coupling between dendritic action potentials and the local calcium responses. Using a combination of in vitro electrophysiological and confocal imaging techniques we found that activation of dendritic GIRK channels via mGlu2 or GABAB receptors enhanced the bAP¬-triggered calcium signals in the dendrites of dentate gyrus granule cells (GCs. The enhancement of calcium signals was significant only in those dendritic regions, where these receptors are predominantly expressed. Similarly to GIRK channel activation, somatic hyperpolarization by DC current injection (from -64 mV to -77 mV, significantly increased bAP-associated calcium signals in the proximal dendrites. The hyperpolarization was associated with a decrease in the input resistance due to the rectification of the membrane potential of GCs. The effect of hyperpolarization on the calcium signals was maintained when T-type calcium currents were blocked but it decreased when GIRK channels were inhibited. Simultaneous dual somato-dendritic recordings from GCs showed that somatic hyperpolarization accelerated the repolarization phase of dendritic bAP in the proximal region whereas the rising phase and peak amplitude was not affected. We hypothesize that the larger driving force for calcium ions during the faster repolarization can contribute to the increasing in calcium signals. Employment of previously recorded dendritic bAP waveforms from hyperpolarized membrane potential as voltage command evoked larger calcium currents in nucleated patches compared to bAP waveform from the same recording at depolarized membrane potential. Furthermore, addition of native, high-voltage activated, inactivating potassium conductance by somatic dynamic clamp

  12. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  13. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    Science.gov (United States)

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Mean field strategies induce unrealistic nonlinearities in calcium puffs

    Directory of Open Access Journals (Sweden)

    Guillermo eSolovey

    2011-08-01

    Full Text Available Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs. To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic nonlinear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.

  15. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jorgensen, N R; Geist, S T; Civitelli, R

    1997-01-01

    mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein......Many cells coordinate their activities by transmitting rises in intracellular calcium from cell to cell. In nonexcitable cells, there are currently two models for intercellular calcium wave propagation, both of which involve release of inositol trisphosphate (IP3)- sensitive intracellular calcium...... stores. In one model, IP3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P2 purinergic receptors. We studied...

  16. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes

    Directory of Open Access Journals (Sweden)

    Tatiana P. Morais

    2018-01-01

    Full Text Available In central nervous system, glycine receptor (GlyR is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM, a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM, as well as by nocodazole (1 μM, known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication.

  17. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    Science.gov (United States)

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  18. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  19. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  20. Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Pancreatic Beta Cells

    Science.gov (United States)

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-01-01

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722

  1. Inflammation and insulin resistance induced by trans-10, cis-12 conjugated linoleic acid depend on intracellular calcium levels in primary cultures of human adipocytes

    DEFF Research Database (Denmark)

    Kennedy, Arion; Martinez, Kristina; Chung, Soonkyu

    2010-01-01

    We previously demonstrated that trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) induced inflammation and insulin resistance in primary human adipocytes by activating nuclear factor kappaB (NFkappaB) and extracellular signal-related kinase (ERK) signaling. In this study, we demonstrated...... that the initial increase in intracellular calcium ([Ca2+]i) mediated by 10,12 CLA was attenuated by TMB-8, an inhibitor of calcium release from the endoplasmic reticulum (ER), by BAPTA, an intracellular calcium chelator, and by D609, a phospholipase C (PLC) inhibitor. Moreover, BAPTA, TMB-8, and D609 attenuated......, and suppression of peroxisome proliferator activated receptor gamma protein levels and insulin-stimulated glucose uptake. These data suggest that 10,12 CLA increases inflammation and insulin resistance in human adipocytes, in part by increasing [Ca2+]i levels, particularly calcium from the ER....

  2. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    International Nuclear Information System (INIS)

    Wendling, W.W.; Harakal, C.

    1987-01-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium ( 45 Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased 45 Ca uptake into cerebral artery strips during 5 minutes of 45 Ca loading; for potassium 45 Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal 45 Ca uptake but significantly blocked the increase in 45 Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of 45 Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated 45 Ca efflux. The results demonstrate that verapamil and nifedipine block 45 Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries

  3. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Hsieh

    Full Text Available The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON and AWC(OFF, by inhibiting a calcium-mediated signaling pathway in the future AWC(ON cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON, in which mir-71 is expressed at a higher level than in AWC(OFF. In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.

  4. Calcium homeostasis and signaling in fungi and their relevance for pathogenicity of yeasts and filamentous fungi

    Directory of Open Access Journals (Sweden)

    Renata Tisi

    2016-09-01

    Full Text Available Though fungi show peculiarities in the purposes and specific traits of calcium signaling pathways, the general scheme and the most important players are well conserved if compared to higher eukaryotes. This provides a powerful opportunity either to investigate shared features using yeast as a model or to exploit fungal specificities as potential targets for antifungal therapies. The sequenced genomes from yeast Saccharomyces cerevisiae, Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa were already published more than ten years ago. More recently the genome sequences of filamentous fungi of Aspergillus genus, some of which threatening pathogens, and dimorphic fungi Ustilago maydis were published, giving the chance to identify several proteins involved in calcium signaling based on their homology to yeast or mammalian counterparts. Nonetheless, unidentified calcium transporters are still present in these organisms which await to be molecularly characterized. Despite the relative simplicity in yeast calcium machinery and the availability of sophisticated molecular tools, in the last years, a number of new actors have been identified, albeit not yet fully characterized. This review will try to describe the state of the art in calcium channels and calcium signaling knowledge in yeast, with particular attention to the relevance of this knowledge with respect to pathological fungi.

  5. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  6. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    Science.gov (United States)

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  7. Different NaCl-Induced Calcium Signatures in the Arabidopsis thaliana Ecotypes Col-0 and C24

    KAUST Repository

    Schmöckel, Sandra M.

    2015-02-27

    A common feature of stress signalling pathways are alterations in the concentration of cytosolic free calcium ([Ca2+]cyt), which allow the specific and rapid transmission of stress signals through a plant after exposure to a stress, such as salinity. Here, we used an aequorin based bioluminescence assay to compare the NaCl-induced changes in [Ca2+]cyt of the Arabidopsis ecotypes Col-0 and C24. We show that C24 lacks the NaCl specific component of the [Ca2+]cyt signature compared to Col-0. This phenotypic variation could be exploited as a screening methodology for the identification of yet unknown components in the early stages of the salt signalling pathway.

  8. Different NaCl-Induced Calcium Signatures in the Arabidopsis thaliana Ecotypes Col-0 and C24

    KAUST Repository

    Schmö ckel, Sandra M.; Garcia, Alexandre F.; Berger, Bettina; Tester, Mark A.; Webb, Alex A. R.; Roy, Stuart J.

    2015-01-01

    A common feature of stress signalling pathways are alterations in the concentration of cytosolic free calcium ([Ca2+]cyt), which allow the specific and rapid transmission of stress signals through a plant after exposure to a stress, such as salinity. Here, we used an aequorin based bioluminescence assay to compare the NaCl-induced changes in [Ca2+]cyt of the Arabidopsis ecotypes Col-0 and C24. We show that C24 lacks the NaCl specific component of the [Ca2+]cyt signature compared to Col-0. This phenotypic variation could be exploited as a screening methodology for the identification of yet unknown components in the early stages of the salt signalling pathway.

  9. Crosslink between calcium and sodium signalling.

    Science.gov (United States)

    Verkhratsky, Alexei; Trebak, Mohamed; Perocchi, Fabiana; Khananshvili, Daniel; Sekler, Israel

    2018-02-01

    What is the topic of this review? This paper overviews the links between Ca 2+ and Na + signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na + and Ca 2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na + -Ca 2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca 2+ and Na + signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca 2+ and Na + is tightly linked through several molecular pathways that generate Ca 2+ and Na + fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca 2+ release with generation of Na + and Ca 2+ currents. The plasmalemmal Na + -Ca 2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na + -Ca 2+ exchanger (NCLX) mediate Ca 2+ entry into and release from this organelle and couple cytosolic Ca 2+ and Na + fluctuations with cellular energetics. Cellular Ca 2+ and Na + signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  10. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK)

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Splettstoesser, Frank; Buesselberg, Dietrich

    2007-01-01

    Arsenic trioxide (As 2 O 3 ) has anticancer properties; however, its use also leads to neuro-, hepato- or nephro-toxicity, and therefore, it is important to understand the mechanism of As 2 O 3 toxicity. We studied As 2 O 3 influence on intracellular calcium ([Ca 2+ ] i ) homeostasis of human neuroblastoma SY-5Y and embryonic kidney cells (HEK 293).We also relate the As 2 O 3 induced [Ca 2+ ] i modifications with cytotoxicity. We used Ca 2+ sensitive dyes (fluo-4 and rhod-2) combined with laser scanning microscopy or fluorescence activated cell sorting to measure Ca 2+ changes during the application of As 2 O 3 and we approach evaluation of cytotoxicity. As 2 O 3 (1 μM) increased [Ca 2+ ] i in SY-5Y and HEK 293 cells. Three forms of [Ca 2+ ] i -elevations were found: (1) steady-state increases (2) transient [Ca 2+ ] i -elevations and (3) Ca 2+ -spikes. [Ca 2+ ] i modifications were independent from extracellular Ca 2+ but dependent on internal calcium stores. The effect was not reversible. Inositol triphosphate (IP 3 ) and ryanodine (Ry) receptors are involved in regulation of signals induced by As 2 O 3 . 2-APB and dantrolene significantly reduced the [Ca 2+ ] i -rise (p 2+ ] i -elevation or spiking. This indicates that other Ca 2+ regulating mechanisms are involved. In cytotoxicity tests As 2 O 3 significantly reduced cell viability in both cell types. Staining with Hoechst 33342 showed occurrence of apoptosis and DNA damage. Our data suggest that [Ca 2+ ] i is an important messenger in As 2 O 3 induced cell death

  11. Calcium Nutrition and Extracellular Calcium Sensing: Relevance for the Pathogenesis of Osteoporosis, Cancer and Cardiovascular Diseases

    Science.gov (United States)

    Peterlik, Meinrad; Kállay, Enikoe; Cross, Heide S.

    2013-01-01

    Through a systematic search in Pubmed for literature, on links between calcium malnutrition and risk of chronic diseases, we found the highest degree of evidence for osteoporosis, colorectal and breast cancer, as well as for hypertension, as the only major cardiovascular risk factor. Low calcium intake apparently has some impact also on cardiovascular events and disease outcome. Calcium malnutrition can causally be related to low activity of the extracellular calcium-sensing receptor (CaSR). This member of the family of 7-TM G-protein coupled receptors allows extracellular Ca2+ to function as a “first messenger” for various intracellular signaling cascades. Evidence demonstrates that Ca2+/CaSR signaling in functional linkage with vitamin D receptor (VDR)-activated pathways (i) promotes osteoblast differentiation and formation of mineralized bone; (ii) targets downstream effectors of the canonical and non-canonical Wnt pathway to inhibit proliferation and induce differentiation of colorectal cancer cells; (iii) evokes Ca2+ influx into breast cancer cells, thereby activating pro-apoptotic intracellular signaling. Furthermore, Ca2+/CaSR signaling opens Ca2+-sensitive K+ conductance channels in vascular endothelial cells, and also participates in IP3-dependent regulation of cytoplasmic Ca2+, the key intermediate of cardiomyocyte functions. Consequently, impairment of Ca2+/CaSR signaling may contribute to inadequate bone formation, tumor progression, hypertension, vascular calcification and, probably, cardiovascular disease. PMID:23340319

  12. The impact of mitochondrial endosymbiosis on the evolution of calcium signaling.

    Science.gov (United States)

    Blackstone, Neil W

    2015-03-01

    At high concentrations, calcium has detrimental effects on biological systems. Life likely arose in a low calcium environment, and the first cells evolved mechanisms to maintain this environment internally. Bursts of calcium influx followed by efflux or sequestration thus developed in a functional context. For example, in proto-cells with exterior energy-converting membranes, such bursts could be used to depolarize the membrane. In this way, proto-cells could maintain maximal phosphorylation (metabolic state 3) and moderate levels of reactive oxygen species (ROS), while avoiding the resting state (metabolic state 4) and high levels of ROS. This trait is likely a shared primitive characteristic of prokaryotes. When eukaryotes evolved, the α-proteobacteria that gave rise to proto-mitochondria inhabited a novel environment, the interior of the proto-eukaryote that had a low calcium concentration. In this environment, metabolic homeostasis was difficult to maintain, and there were inherent risks from ROS, yet depolarizing the proto-mitochondrial membrane by calcium influx was challenging. To maintain metabolic state 3, proto-mitochondria were required to congregate near calcium influx points in the proto-eukaryotic membrane. This behavior, resulting in embryonic forms of calcium signaling, may have occurred immediately after the initiation of the endosymbiosis. Along with ROS, calcium may have served as one of the key forms of crosstalk among the community of prokaryotes that led to the eukaryotic cell. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  14. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    International Nuclear Information System (INIS)

    Sirvent, P.; Fabre, O.; Bordenave, S.; Hillaire-Buys, D.; Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J.

    2012-01-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  15. Mucin 4 Gene Silencing Reduces Oxidative Stress and Calcium Oxalate Crystal Formation in Renal Tubular Epithelial Cells Through the Extracellular Signal-Regulated Kinase Signaling Pathway in Nephrolithiasis Rat Model

    Directory of Open Access Journals (Sweden)

    Ling Sun

    2018-05-01

    Full Text Available Background/Aims: Nephrolithiasis plagues a great number of patients all over the world. Increasing evidence shows that the extracellular signal-regulated kinase (ERK signaling pathway and renal tubular epithelial cell (RTEC dysfunction and attrition are central to the pathogenesis of kidney diseases. Mucin 4 (MUC4 is reported as an activator of ERK signaling pathway in epithelial cells. In this study, using rat models of calcium oxalate (CaOx nephrolithiasis, the present study aims to define the roles of MUC4 and ERK signaling pathway as contributors to oxidative stress and CaOx crystal formation in RTEC. Methods: Data sets of nephrolithiasis were searched using GEO database and a heat flow map was drawn. Then MUC4 function was predicted. Wistar rats were prepared for the purpose of model establishment of ethylene glycol and ammonium chloride induced CaOx nephrolithiasis. In order to assess the detailed regulatory mechanism of MUC4 silencing on the ERK signaling pathway and RTEC, we used recombinant plasmid to downregulate MUC4 expression in Wistar rat-based models. Samples from rat urine, serum and kidney tissues were reviewed to identify oxalic acid and calcium contents, BUN, Cr, Ca2+ and P3+ levels, calcium crystal formation in renal tubules and MUC4 positive expression rate. Finally, RT-qPCR, Western blot analysis, and ELISA were employed to access oxidative stress state and CaOx crystal formation in RTEC. Results: Initially, MUC4 was found to have an influence on the process of nephrolithiasis. MUC4 was upregulated in the CaOx nephrolithiasis model rats. We proved that the silencing of MUC4 triggered the inactivation of ERK signaling pathway. Following the silencing of MUC4 or the inhibition of ERK signaling pathway, the oxalic acid and calcium contents in rat urine, BUN, Cr, Ca2+ and P3+ levels in rat serum, p-ERK1/2, MCP-1 and OPN expressions in RTEC and H2O2 and MDA levels in the cultured supernatant were downregulated, but the GSH

  16. Calcium mobilization in HeLa cells induced by nitric oxide.

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  17. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor.

    Directory of Open Access Journals (Sweden)

    Nasser B Alsaleh

    Full Text Available Engineered nanomaterial (ENM-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1 in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line. Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.

  18. Radiation-induced radical ions in calcium sulfite

    Science.gov (United States)

    Bogushevich, S. E.

    2006-07-01

    We have used EPR to study the effect of γ radiation on calcium sulfite. We have observed and identified the radiation-induced radical ions SO 2 - (iso) with g = 2.0055 and SO 2 - (orth-1) with g1 = 2.0093, g2 = 2.0051, g3 = 2.0020, identical to the initial and thermally induced SO 2 - respectively, SO 3 - (iso) with g = 2.0031 and SO 3 - (axial) with g⊥ = 2.0040, g∥ = 2.0023, identical to mechanically induced SO 3 - . We have established the participation of radiation-induced radical ions SO 3 - in formation of post-radiation SO 2 - .

  19. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that APα-induced

  20. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    Science.gov (United States)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  1. Spermine selectively inhibits high-conductance, but not low-conductance calcium-induced permeability transition pore.

    Science.gov (United States)

    Elustondo, Pia A; Negoda, Alexander; Kane, Constance L; Kane, Daniel A; Pavlov, Evgeny V

    2015-02-01

    The permeability transition pore (PTP) is a large channel of the mitochondrial inner membrane, the opening of which is the central event in many types of stress-induced cell death. PTP opening is induced by elevated concentrations of mitochondrial calcium. It has been demonstrated that spermine and other polyamines can delay calcium-induced swelling of isolated mitochondria, suggesting their role as inhibitors of the mitochondrial PTP. Here we further investigated the mechanism by which spermine inhibits the calcium-induced, cyclosporine A (CSA) -sensitive PTP by using three indicators: 1) calcium release from the mitochondria detected with calcium green, 2) mitochondrial membrane depolarization using TMRM, and 3) mitochondrial swelling by measuring light absorbance. We found that despite calcium release and membrane depolarization, indicative of PTP activation, mitochondria underwent only partial swelling in the presence of spermine. This was in striking contrast to the high-amplitude swelling detected in control mitochondria and in mitochondria treated with the PTP inhibitor CSA. We conclude that spermine selectively prevents opening of the high-conductance state, while allowing activation of the lower conductance state of the PTP. We propose that the existence of lower conductance, stress-induced PTP might play an important physiological role, as it is expected to allow the release of toxic levels of calcium, while keeping important molecules (e.g., NAD) within the mitochondrial matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca 2+ ] i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in

  3. Calcium: the molecular basis of calcium action in biology and medicine

    National Research Council Canada - National Science Library

    Pochet, Roland; Donato, Rosario

    2000-01-01

    ... of Calcium Calcium Signalling in Excitable Cells Ca2+ Release in Muscle Cells by N. Macrez and J. Mironneau Calcium Signalling in Neurons Exemplified by Rat Sympathetic Ganglion Cells by S.J. M...

  4. Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes

    Science.gov (United States)

    Mandal, Amritlal; Delamere, Nicholas A.

    2010-01-01

    Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675

  5. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  6. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor.

    Science.gov (United States)

    Joeckel, Elke; Haber, Tobias; Prawitt, Dirk; Junker, Kerstin; Hampel, Christian; Thüroff, Joachim W; Roos, Frederik C; Brenner, Walburgis

    2014-02-28

    The prognosis for renal cell carcinoma (RCC) is related to a high rate of metastasis, including 30% of bone metastasis. Characteristic for bone tissue is a high concentration of calcium ions. In this study, we show a promoting effect of an enhanced extracellular calcium concentration on mechanisms of bone metastasis via the calcium-sensing receptor (CaSR) and its downstream signaling molecules. Our analyses were performed using 33 (11/category) matched specimens of normal and tumor tissue and 9 (3/category) primary cells derived from RCC patients of the 3 categories: non-metastasized, metastasized into the lung and metastasized into bones during a five-year period after nephrectomy. Expression of CaSR was determined by RT-PCR, Western blot analyses and flow cytometry, respectively. Cells were treated by calcium and the CaSR inhibitor NPS 2143. Cell migration was measured in a Boyden chamber with calcium (10 μM) as chemotaxin and proliferation by BrdU incorporation. The activity of intracellular signaling mediators was quantified by a phospho-kinase array and Western blot. The expression of CaSR was highest in specimens and cells of patients with bone metastases. Calcium treatment induced an increased migration (19-fold) and proliferation (2.3-fold) exclusively in RCC cells from patients with bone metastases. The CaSR inhibitor NPS 2143 elucidated the role of CaSR on the calcium-dependent effects. After treatment with calcium, the activity of AKT, PLCγ-1, p38α and JNK was clearly enhanced and PTEN expression was almost completely abolished in bone metastasizing RCC cells. Our results indicate a promoting effect of extracellular calcium on cell migration and proliferation of bone metastasizing RCC cells via highly expressed CaSR and its downstream signaling pathways. Consequently, CaSR may be regarded as a new prognostic marker predicting RCC bone metastasis.

  7. Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy

    Science.gov (United States)

    Ren, Min-Qin; Ong, Wei-Yi; Makjanic, Jagoda; Watt, Frank

    1999-10-01

    Epilepsy is a recurrent disorder of cerebral function characterised by sudden brief attacks of altered consciousness, motor activity or sensory phenomena, and affects approximately 1% of the population. Kainic acid injection induces neuronal degeneration in rats, is associated with glial hypertrophy and proliferation in the CA3-CA4 fields of hippocampal complex, and is a model for temporal lobe epilepsy. In this study we have applied Nuclear Microscopy to the investigation of the elemental changes within the hippocampus and the cortex areas of the rat brain following kainate injection. Analyses of unstained freeze dried tissue sections taken at 1 day and 1, 2, 3 and 4 weeks following injection were carried out using the Nuclear Microscopy facility at the Research Centre for Nuclear Microscopy, National University of Singapore. Quantitative analysis and elemental mapping indicates that there are significant changes in the calcium levels and distributions in the hippocampus as early as 1 day following injection. Preliminary results indicate a rapid increase in cellular calcium. High levels of calcium can activate calcium dependent proteins and phospholipases. Activation of phospholipase A 2 can be harmful to surrounding neurons through free radical damage. In addition to observed increases in calcium, there was evidence of increases in iron levels. This is consistent with measurements in other degenerative brain disorders, and may signal a late surge in free radical production.

  8. Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy

    International Nuclear Information System (INIS)

    Ren, M.-Q.; Ong, W.-Y.; Makjanic, Jagoda; Watt, Frank

    1999-01-01

    Epilepsy is a recurrent disorder of cerebral function characterised by sudden brief attacks of altered consciousness, motor activity or sensory phenomena, and affects approximately 1% of the population. Kainic acid injection induces neuronal degeneration in rats, is associated with glial hypertrophy and proliferation in the CA3-CA4 fields of hippocampal complex, and is a model for temporal lobe epilepsy. In this study we have applied Nuclear Microscopy to the investigation of the elemental changes within the hippocampus and the cortex areas of the rat brain following kainate injection. Analyses of unstained freeze dried tissue sections taken at 1 day and 1, 2, 3 and 4 weeks following injection were carried out using the Nuclear Microscopy facility at the Research Centre for Nuclear Microscopy, National University of Singapore. Quantitative analysis and elemental mapping indicates that there are significant changes in the calcium levels and distributions in the hippocampus as early as 1 day following injection. Preliminary results indicate a rapid increase in cellular calcium. High levels of calcium can activate calcium dependent proteins and phospholipases. Activation of phospholipase A 2 can be harmful to surrounding neurons through free radical damage. In addition to observed increases in calcium, there was evidence of increases in iron levels. This is consistent with measurements in other degenerative brain disorders, and may signal a late surge in free radical production

  9. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    Science.gov (United States)

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus.

    Science.gov (United States)

    Tadesse, Tizeta; Derby, Charles D; Schmidt, Manfred

    2014-01-01

    We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.

  11. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway

    International Nuclear Information System (INIS)

    Liu, Chao-Hsin; Hung, Chi-Jr; Huang, Tsui-Hsien; Lin, Chi-Chang; Kao, Chia-Tze; Shie, Ming-You

    2014-01-01

    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (p < 0.05) have been found in the calcium deposition in si-FGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation. - Highlights: • CS influences the behavior of hDPCs through fibroblast growth factor receptor. • CS increases ERK and p38 activity in hDPCs. • ERK/MAPK signaling is involved in the Si-induced odontogenic differentiation of hDPCs. • Ca staining shows that FGFR regulates hDPC differentiation on CS, but not on β-TCP

  12. Calcium Signalling in Plant Biotic Interactions

    Directory of Open Access Journals (Sweden)

    Didier Aldon

    2018-02-01

    Full Text Available Calcium (Ca2+ is a universal second messenger involved in various cellular processes, leading to plant development and to biotic and abiotic stress responses. Intracellular variation in free Ca2+ concentration is among the earliest events following the plant perception of environmental change. These Ca2+ variations differ in their spatio-temporal properties according to the nature, strength and duration of the stimulus. However, their conversion into biological responses requires Ca2+ sensors for decoding and relaying. The occurrence in plants of calmodulin (CaM but also of other sets of plant-specific Ca2+ sensors such as calmodulin-like proteins (CMLs, Ca2+-dependent protein kinases (CDPKs and calcineurin B-like proteins (CBLs indicate that plants possess specific tools and machineries to convert Ca2+ signals into appropriate responses. Here, we focus on recent progress made in monitoring the generation of Ca2+ signals at the whole plant or cell level and their long distance propagation during biotic interactions. The contribution of CaM/CMLs and CDPKs in plant immune responses mounted against bacteria, fungi, viruses and insects are also presented.

  13. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R; Henriksen, Zanne; Sørensen, Ole

    2002-01-01

    that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium signaling...

  14. Differential effects of the steaming time and frequency for manufactured red Liriope platyphylla on nerve growth factor secretion ability, nerve growth factor receptor signaling pathway and regulation of calcium concentration.

    Science.gov (United States)

    Choi, Sun Il; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Hye Ryun; Lee, Young Ju; Son, Hong Joo; Lee, Hee Seob; Lee, Jong Sup; Kim, Hak Jin; Hwang, Dae Youn

    2012-11-01

    The herb Liriope platyphylla (LP) has been considered to have curative properties for diabetes, asthma and neurodegenerative disorders. To examine the effects of steaming time and frequency of manufactured red LP (RLP) on the nerve growth factor (NGF) secretion ability and NGF receptor signaling pathway, the NGF concentration, cell differentiation, NGF signaling pathway and calcium concentration were analyzed in neuronal cells treated with several types of LPs manufactured under different conditions. The maximum NGF secretion was observed in B35 cells treated with 50 µg/ml LP extract steamed for 9 h (9-SLP) and with two repeated steps (3 h steaming and 24 h air-dried) carried out 7 times (7-SALP). No significant changes in viability were detected in any of the cells treated with the various LPs, with the exception of 0-SLP and 0-SALP. In addition, PC12 cell differentiation was induced by treatment with the NGF-containing conditional medium (CM) collected from the RLP-treated cells. The levels of TrkA and extracellular signal-regulated kinase (ERK) phosphorylation in the high affinity NGF receptor signaling pathway were significantly higher in the cells treated with 3-SLP or 1-SALP/3-SALP CM compared with those treated with the vehicle CM. In the low affinity NGF receptor pathway, the expression levels of most components were higher in the 9-, 15- and 24-SALP CM-treated cells compared with the vehicle CM-treated cells. However, this level was significantly altered in cells treated with 3-SALP CM. Furthermore, an examination of the RLP function on calcium regulation revealed that only the LP- or RLP-treated cells exhibited changes in intracellular and extracellular calcium levels. RLP induced a significant decrease in the intracellular calcium levels and an increase in the extracellular calcium levels. These results suggest the possibility that steaming-processed LP may aid in the relief of neurodegenerative diseases through the NGF secretion ability and NGF

  15. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  16. A model of propagating calcium-induced calcium release mediated by calcium diffusion

    NARCIS (Netherlands)

    Backx, P. H.; de Tombe, P. P.; van Deen, J. H.; Mulder, B. J.; ter Keurs, H. E.

    1989-01-01

    The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium

  17. Intracellular sphingosine releases calcium from lysosomes.

    Science.gov (United States)

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  18. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  19. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Yajin Liao

    2017-02-01

    Full Text Available The mitochondrial calcium uniporter (MCU—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP; however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.

  20. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP.

    Directory of Open Access Journals (Sweden)

    Fernando Siso-Nadal

    Full Text Available BACKGROUND: To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate 'bursting' oscillations of calcium and may enable better filtering of noise. CONCLUSION: We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.

  1. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    Science.gov (United States)

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  2. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    Science.gov (United States)

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  3. Usefulness of cardiotoxicity assessment using calcium transient in human induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Watanabe, Hitoshi; Honda, Yayoi; Deguchi, Jiro; Yamada, Toru; Bando, Kiyoko

    2017-01-01

    Monitoring dramatic changes in intracellular calcium ion levels during cardiac contraction and relaxation, known as calcium transient, in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be an attractive strategy for assessing compounds on cardiac contractility. In addition, as arrhythmogenic compounds are known to induce characteristic waveform changes in hiPSC-CMs, it is expected that calcium transient would allow evaluation of not only compound-induced effects on cardiac contractility, but also compound arrhythmogenic potential. Using a combination of calcium transient in hiPSC-CMs and a fast kinetic fluorescence imaging detection system, we examined in this study changes in calcium transient waveforms induced by a series of 17 compounds that include positive/negative inotropic agents as well as cardiac ion channel activators/inhibitors. We found that all positive inotropic compounds induced an increase in peak frequency and/or peak amplitude. The effects of a negative inotropic compound could clearly be detected in the presence of a β-adrenergic receptor agonist. Furthermore, most arrhythmogenic compounds raised the ratio of peak decay time to peak rise time (D/R ratio) in calcium transient waveforms. Compound concentrations at which these parameters exceeded cutoff values correlated well with systemic exposure levels at which arrhythmias were reported to be evoked. In conclusion, we believe that peak analysis of calcium transient and determination of D/R ratio are reliable methods for assessing compounds' cardiac contractility and arrhythmogenic potential, respectively. Using these approaches would allow selection of compounds with low cardiotoxic potential at the early stage of drug discovery.

  4. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Hara, Takamitsu; Kobayashi, Yasuhiko; Matsumoto, Hideki

    2007-01-01

    A rapidly growing body of experimental evidence indicates that ionizing radiation induces biological effects in non-irradiated bystander cells that have received signals from adjacent or distant irradiated cells. This phenomenon, which has been termed the ionizing radiation-induced bystander effect, challenges the long-standing paradigm that radiation traversal through the nucleus of a cell is a prerequisite to elicit genetic damage or a biological response. Bystander effects have been observed in a number of experimental systems, and cells whose nucleus or cytoplasm is irradiated exert bystander responses. Bystander cells manifest a multitude of biological consequences, such as genetic and epigenetic changes, alterations in gene expression, activation of signal transduction pathways, and delayed effects in their progeny. Several mediating mechanisms have been proposed. These involve gap junction-mediated intercellular communication, secreted soluble factors, oxidative metabolism, plasma membrane-bound lipid rafts, and calcium fluxes. This paper reviews briefly the current knowledge of the bystander effect with a focus on proposed mechanisms. The potential benefit of bystander effects to cancer radiotherapy will also be discussed. (author)

  5. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Wuwu Xu

    2017-11-01

    Full Text Available Calcium-dependent protein kinases (CPKs/CDPKs are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.

  6. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  7. Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.

    Science.gov (United States)

    Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei

    2017-11-01

    Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.

  8. Calcium regulation and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Deepthi Rapaka

    2014-09-01

    Full Text Available Activation of the neuron induces transient fluctuations in [Ca2+]i. This transient rise in [Ca2+]i is dependent on calcium entry via calcium channels and release of calcium from intracellular stores, finally resulting in increase in calcium levels, which activates calcium regulatory proteins to restore the resting calcium levels by binding to the calcium-binding proteins, sequestration into the endoplasmic reticulum and the mitochondria, and finally extrusion of calcium spike potential from the cell by adenosine triphosphate-driven Ca2+ pumps and the Na+/Ca2+ exchanger. Improper regulation of calcium signaling, sequentially, likely contributes to synaptic dysfunction and excitotoxic and/or apoptotic death of the vulnerable neuronal populations. The cognitive decline associated with normal aging is not only due to neuronal loss, but is fairly the result of synaptic connectivity. Many evidences support that Ca2+ dyshomeostasis is implicated in normal brain aging. Thus the chief factor associated with Alzheimer’s disease was found to be increase in the levels of free intracellular calcium, demonstrating that the excessive levels might lead to cell death, which provides a key target for the calcium channel blockers might be used as the neuroprotective agents in Alzheimer’s disease.

  9. Cytoplasmic organelles determine complexity and specificity of calcium signalling in adrenal chromaffin cells

    Czech Academy of Sciences Publication Activity Database

    Garsia-Sancho, J.; Verkhratsky, Alexei

    2008-01-01

    Roč. 192, č. 2 (2008), s. 263-271 ISSN 1748-1708 Institutional research plan: CEZ:AV0Z50390512 Keywords : Ca2+ signalling * calcium microdomains * chromaffin cells Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.455, year: 2008

  10. Ammonium-induced calcium mobilization in 1321N1 astrocytoma cells

    International Nuclear Information System (INIS)

    Hillmann, Petra; Koese, Meryem; Soehl, Kristina; Mueller, Christa E.

    2008-01-01

    High blood levels of ammonium/ammonia (NH 4 + /NH 3 ) are associated with severe neurotoxicity as observed in hepatic encephalopathy (HE). Astrocytes are the main targets of ammonium toxicity, while neuronal cells are less vulnerable. In the present study, an astrocytoma cell line 1321N1 and a neuroblastoma glioma hybrid cell line NG108-15 were used as model systems for astrocytes and neuronal cells, respectively. Ammonium salts evoked a transient increase in intracellular calcium concentrations ([Ca 2+ ] i ) in astrocytoma (EC 50 = 6.38 mM), but not in NG108-15 cells. The ammonium-induced increase in [Ca 2+ ] i was due to an intracellular effect of NH 4 + /NH 3 and was independent of extracellular calcium. Acetate completely inhibited the ammonium effect. Ammonium potently reduced calcium signaling by G q protein-coupled receptors (H 1 and M3) expressed on the cells. Ammonium (5 mM) also significantly inhibited the proliferation of 1321N1 astrocytoma cells. While mRNA for the mammalian ammonium transporters RhBG and RhCG could not be detected in 1321N1 astrocytoma cells, both transporters were expressed in NG108-15 cells. RhBG and RhBC in brain may promote the excretion of NH 3 /NH 4 + from neuronal cells. Cellular uptake of NH 4 + /NH 3 was mainly by passive diffusion of NH 3 . Human 1321N1 astrocytoma cells appear to be an excellent, easily accessible human model for studying HE, which can substitute animal studies, while NG108-15 cells may be useful for investigating the role of the recently discovered Rhesus family type ammonium transporters in neuronal cells. Our findings may contribute to the understanding of pathologic ammonium effects in different brain cells, and to the treatment of hyperammonemia

  11. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    Science.gov (United States)

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    Science.gov (United States)

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  13. In vivo immunotoxicity of perfluorooctane sulfonate in BALB/c mice: Identification of T-cell receptor and calcium-mediated signaling pathway disruption through gene expression profiling of the spleen.

    Science.gov (United States)

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Yang, Yu; Ren, Xiao-Min; Zhang, Hui

    2015-10-05

    Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that is used worldwide and is continuously being detected in biota and the environment, thus presenting potential threats to the ecosystem and human health. Although PFOS is highly immunotoxic, its underlying molecular mechanisms remain largely unknown. The present study examined PFOS-induced immunotoxicity in the mouse spleen and explored its underlying mechanisms by gene expression profiling. Oral exposure of male BALB/c mice for three weeks followed by one-week recovery showed that a 10 mg/kg/day PFOS exposure damaged the splenic architecture, inhibited T-cell proliferation in response to mitogen, and increased the percentages of T helper (CD3(+)CD4(+)) and cytotoxic T (CD3(+)CD8(+)) cells, despite the decrease in the absolute number of these cells. A delayed type of PFOS immunotoxicity was observed, which mainly occurred during the recovery period. Global gene expression profiling of mouse spleens and QRT-PCR analyses suggest that PFOS inhibited the expression of genes involved in cell cycle regulation and NRF2-mediated oxidative stress response, and upregulated those in TCR signaling, calcium signaling, and p38/MAPK signaling pathways. Western blot analysis confirmed that the expressions of CAMK4, THEMIS, and CD3G, which were involved in the upregulated pathways, were induced upon PFOS exposure. Acute PFOS exposure modulated calcium homoeostasis in splenocytes. These results indicate that PFOS exposure can activate TCR signaling and calcium ion influx, which provides a clue for the potential mechanism of PFOS immunotoxicity. The altered signaling pathways by PFOS treatment as revealed in the present study might facilitate in better understanding PFOS immunotoxicity and explain the association between immune disease and PFOS exposure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  15. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, Courtney [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States); Padmanabhan, Jaya [Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL 33612 (United States); Chellappan, Srikumar, E-mail: Srikumar.Chellappan@moffitt.org [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States)

    2015-07-31

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.

  16. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    International Nuclear Information System (INIS)

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer

  17. The Effect of Cell Immobilization by Calcium Alginate on Bacterially Induced Calcium Carbonate Precipitation

    Directory of Open Access Journals (Sweden)

    Mostafa Seifan

    2017-10-01

    Full Text Available Microbially induced mineral precipitation is recognized as a widespread phenomenon in nature. A diverse range of minerals including carbonate, sulphides, silicates, and phosphates can be produced through biomineralization. Calcium carbonate (CaCO3 is one of the most common substances used in various industries and is mostly extracted by mining. In recent years, production of CaCO3 by bacteria has drawn much attention because it is an environmentally- and health-friendly pathway. Although CaCO3 can be produced by some genera of bacteria through autotrophic and heterotrophic pathways, the possibility of producing CaCO3 in different environmental conditions has remained a challenge to determine. In this study, calcium alginate was proposed as a protective carrier to increase the bacterial tolerance to extreme environmental conditions. The model showed that the highest concentration of CaCO3 is achieved when the bacterial cells are immobilized in the calcium alginate beads fabricated using 1.38% w/v Na-alginate and 0.13 M CaCl2.

  18. Protein-induced satiation and the calcium-sensing receptor

    Directory of Open Access Journals (Sweden)

    Ojha U

    2018-03-01

    Full Text Available Utkarsh Ojha Faculty of Medicine, Imperial College School of Medicine, Imperial College London, London, UK Abstract: Obesity is a major global health issue. High-protein diets have been shown to be associated with weight loss and satiety. The precise mechanism by which protein-rich diets promote weight loss remains unclear. Evidence suggests amino acids, formed as a consequence of protein digestion, are sensed by specific receptors on L-cells in the gastrointestinal (GI tract. These L-cells respond by secreting gut hormones that subsequently induce satiety. In recent years, the calcium-sensing receptor has been identified in several cells of the GI tract, including L-cells, and suggested to sense specific amino acids. This review evaluates the evidence for protein-rich diets in inducing weight loss and how the calcium-sensing receptor may be implicated in this phenomenon. Commandeering the mechanisms by which elements of a protein-rich diet suppress appetite may provide another successful avenue for developing anti-obesity drugs. Keywords: amino acids, energy regulation, obesity therapy, glucagon-like-peptide-1, peptide YY

  19. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    OpenAIRE

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and met...

  20. Image-based Modeling of Biofilm-induced Calcium Carbonate Precipitation

    Science.gov (United States)

    Connolly, J. M.; Rothman, A.; Jackson, B.; Klapper, I.; Cunningham, A. B.; Gerlach, R.

    2013-12-01

    Pore scale biological processes in the subsurface environment are important to understand in relation to many engineering applications including environmental contaminant remediation, geologic carbon sequestration, and petroleum production. Specifically, biofilm induced calcium carbonate precipitation has been identified as an attractive option to reduce permeability in a lasting way in the subsurface. This technology may be able to replace typical cement-based grouting in some circumstances; however, pore-scale processes must be better understood for it to be applied in a controlled manor. The work presented will focus on efforts to observe biofilm growth and ureolysis-induced mineral precipitation in micro-fabricated flow cells combined with finite element modelling as a tool to predict local chemical gradients of interest (see figure). We have been able to observe this phenomenon over time using a novel model organism that is able to hydrolyse urea and express a fluorescent protein allowing for non-invasive observation over time with confocal microscopy. The results of this study show the likely existence of a wide range of local saturation indices even in a small (1 cm length scale) experimental system. Interestingly, the locations of high predicted index do not correspond to the locations of higher precipitation density, highlighting the need for further understanding. Figure 1 - A micro-fabricated flow cell containing biofilm-induced calcium carbonate precipitation. (A) Experimental results: Active biofilm is in green and dark circles are calcium carbonate crystals. Note the channeling behavior in the top of the image, leaving a large hydraulically inactive area in the biofilm mass. (B) Finite element model: The prediction of relative saturation of calcium carbonate (as calcite). Fluid enters the system at a low saturation state (blue) but areas of high supersaturation (red) are predicted within the hydraulically inactive area in the biofilm. If only effluent

  1. Activation of TRPV1-dependent calcium oscillation exacerbates seawater inhalation-induced acute lung injury.

    Science.gov (United States)

    Li, Congcong; Bo, Liyan; Liu, Qingqing; Liu, Wei; Chen, Xiangjun; Xu, Dunquan; Jin, Faguang

    2016-03-01

    Calcium is an important second messenger and it is widely recognized that acute lung injury (ALI) is often caused by oscillations of cytosolic free Ca2+. Previous studies have indicated that the activation of transient receptor potential‑vanilloid (TRPV) channels and subsequent Ca2+ entry initiates an acute calcium‑dependent permeability increase during ALI. However, whether seawater exposure induces such an effect through the activation of TRPV channels remains unknown. In the current study, the effect of calcium, a component of seawater, on the inflammatory reactions that occur during seawater drowning‑induced ALI, was examined. The results demonstrated that a high concentration of calcium ions in seawater increased lung tissue myeloperoxidase activity and the secretion of inflammatory mediators, such as tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑1β and IL‑6. Further study demonstrated that the seawater challenge elevated cytosolic Ca2+ concentration, indicated by [Ca2+]c, by inducing calcium influx from the extracellular medium via TRPV1 channels. The elevated [Ca2+c] may have resulted in the increased release of TNF‑α and IL‑1β via increased phosphorylation of nuclear factor‑κB (NF‑κB). It was concluded that a high concentration of calcium in seawater exacerbated lung injury, and TRPV1 channels were notable mediators of the calcium increase initiated by the seawater challenge. Calcium influx through TRPV1 may have led to greater phosphorylation of NF‑κB and increased release of TNF‑α and IL‑1β.

  2. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  3. Calcium-induced conformational changes of Thrombospondin-1 signature domain: implications for vascular disease.

    Science.gov (United States)

    Gupta, Akanksha; Agarwal, Rahul; Singh, Ashutosh; Bhatnagar, Sonika

    2017-06-01

    Thrombospondin1 (TSP1) participates in numerous signaling pathways critical for vascular physiology and disease. The conserved signature domain of thrombospondin 1 (TSP1-Sig1) comprises three epidermal growth factor (EGF), 13 calcium-binding type 3 thrombospondin (T3) repeats, and one lectin-like module arranged in a stalk-wire-globe topology. TSP1 is known to be present in both calcium-replete (Holo-) and calcium-depleted (Apo-) state, each with distinct downstream signaling effects. To prepare a homology model of TSP1-Sig1 and investigate the effect of calcium on its dynamic structure and interactions. A homology model of Holo-TSP1-Sig1 was prepared with TSP2 as template in Swissmodel workspace. The Apo-form of the model was obtained by omitting the bound calcium ions from the homology model. Molecular dynamics (MD) simulation studies (100 ns) were performed on the Holo- and Apo- forms of TSP1 using Gromacs4.6.5. After simulation, Holo-TSP1-Sig1 showed significant reorientation at the interface of the EGF1-2 and EGF2-3 modules. The T3 wire is predicted to show the maximum mobility and deviation from the initial model. In Apo-TSP1-Sig1 model, the T3 repeats unfolded and formed coils with predicted increase in flexibility. Apo-TSP1-Sig1model also predicted the exposure of the binding sites for neutrophil elastase, integrin and fibroblast growth factor 2. We present a structural model and hypothesis for the role of TSP1-Sig1 interactions in the development of vascular disorders. The simulated model of the fully calcium-loaded and calcium-depleted TSP1-Sig1 may enable the development of its interactions as a novel therapeutic target for the treatment of vascular diseases.

  4. Mathematical modeling of calcium waves induced by mechanical stimulation in keratinocytes.

    Directory of Open Access Journals (Sweden)

    Yasuaki Kobayashi

    Full Text Available Recent studies have shown that the behavior of calcium in the epidermis is closely related to the conditions of the skin, especially the differentiation of the epidermal keratinocytes and the permeability barrier function, and therefore a correct understanding of the calcium dynamics is important in explaining epidermal homeostasis. Here we report on experimental observations of in vitro calcium waves in keratinocytes induced by mechanical stimulation, and present a mathematical model that can describe the experimentally observed wave behavior that includes finite-range wave propagation and a ring-shaped pattern. A mechanism of the ring formation hypothesized by our model may be related to similar calcium propagation patterns observed during the wound healing process in the epidermis. We discuss a possible extension of our model that may serve as a tool for investigating the mechanisms of various skin diseases.

  5. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  6. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Directory of Open Access Journals (Sweden)

    S.C.F. Olinto

    2012-11-01

    Full Text Available The amino acid arginine (Arg is a recognized secretagogue of growth hormone (GH, and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO, which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (~250 g were removed, divided into two halves, pooled (three hemi-pituitaries and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM, the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM and a cyclic guanosine monophosphate (cGMP analogue (8-Br-cGMP, 1 mM increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM blunted the effect of SNP, and the combined treatment with Arg and L-NAME (a NO synthase (NOS inhibitor, 55 mM abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  7. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Energy Technology Data Exchange (ETDEWEB)

    Olinto, S.C.F. [Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG (Brazil); Adrião, M.G. [Departamento de Morfologia e Fisiologia, Universidade Federal Rural de Pernambuco, Recife, PE (Brazil); Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  8. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    International Nuclear Information System (INIS)

    Olinto, S.C.F.; Adrião, M.G.; Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T.

    2012-01-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression

  9. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    Directory of Open Access Journals (Sweden)

    Rocio Rebollido-Rios

    2014-07-01

    Full Text Available Sonic Hedgehog (Shh is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog, of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1 a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2 a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  10. Movement of calcium signals and calcium-binding proteins: firewalls, traps and tunnels.

    Science.gov (United States)

    Barrow, S L; Sherwood, M W; Dolman, N J; Gerasimenko, O V; Voronina, S G; Tepikin, A V

    2006-06-01

    In the board game 'Snakes and Ladders', placed on the image of a pancreatic acinar cell, calcium ions have to move from release sites in the secretory region to the nucleus. There is another important contraflow - from calcium entry channels in the basal part of the cell to ER (endoplasmic reticulum) terminals in the secretory granule region. Both transport routes are perilous as the messenger can disappear in any place on the game board. It can be grabbed by calcium ATPases of the ER (masquerading as a snake but functioning like a ladder) and tunnelled through its low buffering environment, it can be lured into the whirlpools of mitochondria uniporters and forced to regulate the tricarboxylic acid cycle, and it can be permanently placed inside the matrix of secretory granules and released only outside the cell. The organelles could trade calcium (e.g. from the ER to mitochondria and vice versa) almost depriving this ion the light of the cytosol and noble company of cytosolic calcium buffers. Altogether it is a rich and colourful story.

  11. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion.

    Science.gov (United States)

    Kolarow, Richard; Kuhlmann, Christoph R W; Munsch, Thomas; Zehendner, Christoph; Brigadski, Tanja; Luhmann, Heiko J; Lessmann, Volkmar

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling.

  12. Role of oxidative stress, mitochondrial membrane potential, and calcium homeostasis in human lymphocyte death induced by nickel carbonate hydroxide in vitro

    Energy Technology Data Exchange (ETDEWEB)

    M' Bemba-Meka, Prosper [Faculty of Medicine, Universite de Montreal, QC (Canada); University of Louisville, Department of Pharmacology and Toxicology, Center for Genetics and Molecular Medicine, Louisville, KY (United States); Lemieux, Nicole [Universite de Montreal, Department of Pathology and Cellular Biology, Main Station, P.O. Box 6128, Montreal, QC (Canada); Chakrabarti, Saroj K. [Faculty of Medicine, Universite de Montreal, QC (Canada)

    2006-07-15

    When isolated human lymphocytes were treated in vitro with various concentrations of soluble form of nickel carbonate hydroxide (NiCH) (0-1 mM), at 37 C for 4 h, both concentration- and time-dependent effects of NiCH on lymphocyte death were observed. Increased generation of hydrogen peroxide (H{sub 2}O{sub 2}), superoxide anion (O{sub 2} {sup -}), depletion of both no protein (NP-) and protein (P-) sulfhydryl (SH) contents and lipid peroxidation (LPO) were induced by NiCH. Pretreatment of lymphocytes with either catalase (H{sub 2}O{sub 2} scavenger), or deferoxamine (DFO) (iron chelator), or excess glutathione (GSH) (an antioxidant) not only significantly reduced the NiCH-induced generation of H{sub 2}O{sub 2} and LPO, but also increased the NP-SH and P-SH contents initially reduced by NiCH. NiCH-induced generation of excess O{sub 2} {sup -} but not excess LPO was significantly reduced by pretreatment with superoxide dismutase (SOD). NiCH-induced lymphocyte death was significantly prevented by pre-treatment with either catalase, or dimethylthiourea/mannitol (hydroxyl radical scavengers), or DFO, or excess GSH/N-acetylcysteine. NiCH-induced lymphocyte death was also significantly prevented by pretreatment with excess SOD. Thus, various types of oxidative stresses play an important role in NiCH-induced lymphocyte death. Cotreatment with cyclosporin A, a specific inhibitor of alteration in mitochondrial membrane potential ({delta}{psi}{sub m}), not only inhibited NiCH-induced alteration in {delta}{psi}{sub m}, but also significantly prevented Ni-compound-induced lymphocyte death. Furthermore, NiCH-induced destabilization of cellular calcium homeostasis. As such, NiCH-induced lymphocyte death was significantly prevented by modulating intracellular calcium fluxes such as Ca{sup 2+} channel blockers and intracellular Ca{sup 2+} antagonist. Thus, the mechanism of NiCH (soluble form)-induced activation of lymphocyte death signalling pathways involves not only the excess

  13. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  14. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-09-01

    Full Text Available Ca2+-sensing receptors (CaSRs play a central role in regulating extracellular calcium concentration ([Ca2+]o homeostasis and many (pathophysiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR’s cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.

  15. Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells.

    Science.gov (United States)

    Lecourieux, David; Lamotte, Olivier; Bourque, Stéphane; Wendehenne, David; Mazars, Christian; Ranjeva, Raoul; Pugin, Alain

    2005-12-01

    We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two types of elicitors are compared: proteins leading to necrosis including four elicitins and harpin, and non-necrotic elicitors including flagellin (flg22) and two oligosaccharidic elicitors, namely the oligogalacturonides (OGs) and the beta-1,3-glucan laminarin. Our data indicate that the proteinaceous elicitors induced a pronounced and sustainable [Ca2+](nuc) elevation, relative to the small effects of oligosaccharidic elicitors. This [Ca2+](nuc) elevation, which seems insufficient to induce cell death, is unlikely to result directly from the diffusion of calcium from the cytosol. The [Ca2+](nuc) rise depends on free cytosolic calcium, IP3, and active oxygen species (AOS) but is independent of nitric oxide.

  16. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    Science.gov (United States)

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels,. PMID:21471358

  17. Effects of diphosphonate on kidney calcium content and duodenal absorption of 45calcium

    International Nuclear Information System (INIS)

    Goulding, A.; Cameron, V.

    1978-01-01

    In rats the relationships between EHDP-induced changes in serum calcium concentration, kidney calcium content and duodenal transport of 45 calcium were studied. Body weights and kidney weights were similar in all groups. EHDP administration was associated with an increase in serum calcium concentration and kidney calcium content, and a decrease in duodenal 45 calcium transport. In the EHDP-treated rats, there was a significant negative correlation between kidney calcium concentration and duodenal 45 calcium transport but no correlation between either kidney calcium content and serum calcium concentration (r = 0.116) or between serum calcium concentration and duodenal 45 calcium transport (r = 0.02). Further experiments will be needed to determine whether the demonstrated increase in kidney calcium content induced by EHDP administration was the cause of, or was secondary to, inhibition of 1, 25(OH) 2 D 3 synthesis. (orig./AJ) [de

  18. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano

    2010-02-01

    Full Text Available Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD, the combination with dopamine switches LTD to long-term potentiation (LTP, which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32, as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA, protein phosphatase 2A (PP2A, and the phosphorylation site at threonine 75 of DARPP-32 (Thr75 served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B-CK1 (casein kinase 1-Cdk5 (cyclin-dependent kinase 5-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP. The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The

  19. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.

    Science.gov (United States)

    Jayakumar, Siddharth; Hasan, Gaiti

    2018-01-01

    All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.

  20. Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.

    Science.gov (United States)

    Vogel, David; Nicolis, Stamatios C; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J T; Dussutour, Audrey

    2015-11-22

    Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: 'slow-regular-social', 'fast-regular-social' and 'fast-irregular-asocial'. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. © 2015 The Author(s).

  1. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-01-01

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  2. Up-regulation of Ca2+/CaMKII/CREB signaling in salicylate-induced tinnitus in rats.

    Science.gov (United States)

    Zhao, Jiuhan; Wang, Biao; Wang, Xiaohong; Shang, Xiuli

    2018-02-09

    The purpose of the study was to investigate the changes of Ca 2+ /calmodulin-dependent protein kinases II (CaMKII)/cAMP response element-binding protein (CREB) signaling pathway in a rat tinnitus model. Eighteen Wistar rats were randomly divided into three groups: normal control (NC), normal saline (NS), and tinnitus model (TM) groups. Tinnitus model was induced by intraperitoneal injection of salicylate. The concentration of intracellular calcium level in auditory cortex cells was determined using Fura-2 acetoxymethyl ester (Fura-2 AM) method with fluorospectrophotometer. Expressions of calmodulin (CaM), N-methyl-D-aspartate receptor 2B subunit (NR2B), calcium-calmodulin kinase II (CaMKII), and cAMP response element-binding protein (CREB) were detected with Western blot. Tinnitus model was successfully established by the intraperitoneal administration of salicylate in rats. Compared with rats in NC and NS groups, salicylate administration significantly elevated CaM, NR2B, phospho-CaMKII and phospho-CREB expression in auditory cortex from tinnitus model group (p salicylate administration causes tinnitus symptoms and elevates Ca 2+ /CaMKII/CREB signaling pathway in auditory cortex cells. Our study likely provides a new understanding of the development of tinnitus.

  3. Memantine Can Reduce Ethanol-Induced Caspase-3 Activity and Apoptosis in H4 Cells by Decreasing Intracellular Calcium.

    Science.gov (United States)

    Wang, Xiaolong; Chen, Jiajun; Wang, Hongbo; Yu, Hao; Wang, Changliang; You, Jiabin; Wang, Pengfei; Feng, Chunmei; Xu, Guohui; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2017-08-01

    Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.

  4. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium

    International Nuclear Information System (INIS)

    Zhu Xuhui; Yao Honghong; Peng Fuwang; Callen, Shannon; Buch, Shilpa

    2009-01-01

    The human immunodeficiency virus (HIV-1) protein Tat has been implicated in mediating neuronal apoptosis, one of the hallmark features of HIV-associated dementia (HAD). Mitigation of the toxic effects of Tat could thus be a potential mechanism for reducing HIV toxicity in the brain. In this study we demonstrated that Tat-induced neurotoxicity was abolished by NMDA antagonist-MK801, suggesting the role of glutamate in this process. Furthermore, we also found that pretreatment of SH-SY5Y cells with PDGF exerted protection against Tat toxicity by decreasing extracellular glutamate levels. We also demonstrated that extracellular calcium chelator EGTA was able to abolish PDGF-mediated neuroprotection, thereby underscoring the role of calcium signaling in PDGF-mediated neuroprotection. We also showed that Erk signaling pathway was critical for PDGF-mediated protection of cells. Additionally, blocking calcium entry with EGTA resulted in suppression of PDGF-induced Erk activation. These findings thus underscore the role of PDGF-mediated calcium signaling and Erk phosphorylation in the protection of cells against HIV Tat toxicity.

  5. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    Science.gov (United States)

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  6. Induced disease resistance signaling in plants

    NARCIS (Netherlands)

    Verhagen, B.W.M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    To protect themselves from disease, plants have evolved sophisticated inducible defense mechanisms in which the signal molecules salicylic acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signaling pathways controlling induced disease resistance is a major objective in

  7. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation.

    Science.gov (United States)

    Oriowo, Mabayoje A; Oommen, Elsie; Khan, Islam

    2011-11-01

    Experimentally-induced hyperthyroidism in rodents is associated with signs and symptoms of pulmonary hypertension. The main objective of the present study was to investigate the effect of thyroxine-induced pulmonary hypertension on the contractile response of the pulmonary artery to 5-HT and the possible underlying signaling pathway. 5-HT concentration-dependently contracted artery segments from control and thyroxine-treated rats with pD(2) values of 5.04 ± 0.19 and 5.34 ± 0.14, respectively. The maximum response was significantly greater in artery segments from thyroxine-treated rats. Neither BW 723C86 (5-HT(2B)-receptor agonist) nor CP 93129 (5-HT(1B)-receptor agonist) contracted ring segments of the pulmonary artery from control and thyroxine-treated rats at concentrations up to 10(-4)M. There was no significant difference in the level of expression of 5-HT(2A)-receptor protein between the two groups. Ketanserin (3 × 10(-8)M) produced a rightward shift of the concentration-response curve to 5-HT in both groups with equal potency (-logK(B) values were 8.1 ± 0.2 and 7.9 ± 0.1 in control and thyroxine-treated rats, respectively). Nifedipine (10(-6)M) inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. The calcium-activated chloride channel blocker, niflumic acid (10(-4)M) also inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. It was concluded that hyperthyroidism enhanced 5-HT-induced contractions of the rat pulmonary artery by a mechanism involving increased activity of calcium-activated chloride channels. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Maitotoxin-induced liver cell death involving loss of cell ATP following influx of calcium

    International Nuclear Information System (INIS)

    Kutty, R.K.; Singh, Y.; Santostasi, G.; Krishna, G.

    1989-01-01

    Maitotoxin, one of the most potent marine toxins known, produced cell death in cultures of rat hepatocytes with a TD50 of 80 pM at 24 hr. The cell death, as indicated by a dose- and time-dependent leakage of lactate dehydrogenase (LDH), was also associated with the leakage of [14C]adenine nucleotides from hepatocytes prelabeled with [14C]-adenine. The toxic effect of maitotoxin was completely abolished by the omission of calcium from the culture medium. The cell death induced by maitotoxin increased with increasing concentrations of calcium in the medium. Treatment of hepatocytes with low concentrations of the toxin (less than 0.5 ng/ml) resulted in increases in 45Ca influx into the cells. At higher concentrations of maitotoxin (greater than 1ng/ml), the initial increase in 45Ca influx was followed by the release of the 45Ca from the cells into the medium. Since the 45Ca release paralleled the LDH leakage, the release of calcium was due to cell death. The 45Ca influx, [14C]adenine nucleotide leakage, and LDH leakage were effectively inhibited by verapamil, a calcium channel blocker. Maitotoxin also induced a time- and dose-dependent loss of ATP from hepatocytes, which preceded the [14C]adenine nucleotide and LDH leakage. Thus, it appears that the cell death resulting from maitotoxin treatment is caused by the elevated intracellular calcium, which in turn inhibits mitochondrial oxidative phosphorylation causing depletion of cell ATP. Loss of cell ATP may be the causative event in the maitotoxin-induced cell death

  9. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Tomič, M.; Kučka, M.; Aguilera, G.; Stojilkovic, S. S.

    2016-01-01

    Roč. 157, č. 4 (2016), s. 1576-1589 ISSN 0013-7227 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : action potential * background sodium conductance * bursting activity * cation -conducting channels * cytosolic calcium concentration * resting membrane potential Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.286, year: 2016

  10. Calcium signals in planetary embryos

    Science.gov (United States)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  11. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  12. Fenspiride and membrane transduction signals in rat alveolar macrophages.

    Science.gov (United States)

    Féray, J C; Mohammadi, K; Taouil, K; Brunet, J; Garay, R P; Hannaert, P

    1997-07-15

    Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.

  13. Neurotoxicity Induced by Bupivacaine via T-Type Calcium Channels in SH-SY5Y Cells

    Science.gov (United States)

    Wen, Xianjie; Xu, Shiyuan; Liu, Hongzhen; Zhang, Quinguo; Liang, Hua; Yang, Chenxiang; Wang, Hanbing

    2013-01-01

    There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca2+ ([Ca2+]i), cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation. PMID:23658789

  14. Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Xianjie Wen

    Full Text Available There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca(2+ ([Ca2+]i, cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation.

  15. Calpain 3 and CaMKIIβ signaling are required to induce HSP70 necessary for adaptive muscle growth after atrophy

    Science.gov (United States)

    Kramerova, Irina; Torres, Jorge A; Eskin, Ascia; Nelson, Stanley F; Spencer, Melissa J

    2018-01-01

    Abstract Mutations in CAPN3 cause autosomal recessive limb girdle muscular dystrophy 2A. Calpain 3 (CAPN3) is a calcium dependent protease residing in the myofibrillar, cytosolic and triad fractions of skeletal muscle. At the triad, it colocalizes with calcium calmodulin kinase IIβ (CaMKIIβ). CAPN3 knock out mice (C3KO) show reduced triad integrity and blunted CaMKIIβ signaling, which correlates with impaired transcriptional activation of myofibrillar and oxidative metabolism genes in response to running exercise. These data suggest a role for CAPN3 and CaMKIIβ in gene regulation that takes place during adaptation to endurance exercise. To assess whether CAPN3- CaMKIIβ signaling influences skeletal muscle remodeling in other contexts, we subjected C3KO and wild type mice to hindlimb unloading and reloading and assessed CaMKIIβ signaling and gene expression by RNA-sequencing. After induced atrophy followed by 4 days of reloading, both CaMKIIβ activation and expression of inflammatory and cellular stress genes were increased. C3KO muscles failed to activate CaMKIIβ signaling, did not activate the same pattern of gene expression and demonstrated impaired growth at 4 days of reloading. Moreover, C3KO muscles failed to activate inducible HSP70, which was previously shown to be indispensible for the inflammatory response needed to promote muscle recovery. Likewise, C3KO showed diminished immune cell infiltration and decreased expression of pro-myogenic genes. These data support a role for CaMKIIβ signaling in induction of HSP70 and promotion of the inflammatory response during muscle growth and remodeling that occurs after atrophy, suggesting that CaMKIIβ regulates remodeling in multiple contexts: endurance exercise and growth after atrophy. PMID:29528394

  16. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  17. Odorant receptors directly activate phospholipase C/inositol-1,4,5-trisphosphate coupled to calcium influx in Odora cells.

    Science.gov (United States)

    Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R

    2006-03-01

    Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.

  18. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Matthew Prideaux

    Full Text Available Parathyroid Hormone (PTH can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R, which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1 promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA, exchange proteins activated by cAMP (Epac, protein kinase C (PKC or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these

  19. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    Science.gov (United States)

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Impact of calcium-sensitive dyes on the beating properties and pharmacological responses of human iPS-derived cardiomyocytes using the calcium transient assay.

    Science.gov (United States)

    Kopljar, Ivan; Hermans, An N; Teisman, Ard; Gallacher, David J; Lu, Hua Rong

    Calcium-based screening of hiPS-CMs is a useful preclinical safety evaluation platform with the ability to generate robust signals that facilitates high-throughput screening and data analysis. However, due to the potential inherent toxicities, it is important to understand potential effects of different calcium-sensitive dyes on the hiPS-CMs model. We compared three calcium-sensitive fluorescence dyes (Cal520, ACTOne and Calcium 5) for their impact on the variability, the beating properties and the pharmacological responses of hiPS-CMs using the Hamamatsu FDSS/μCell imaging platform. Direct effects of three dyes on the electrophysiological properties of hiPS-CMs were evaluated with the multi-electrode array (MEA) Axion Maestro platform. We propose a specific experimental protocol for each dye which gives the most optimal assay conditions to minimize variability and possible adverse effects. We showed that Cal520 had the smallest effect on hiPS-CMs together with the longest-lasting stable amplitude signal (up to 4 h). Although all dyes had a (minor) acute effect on hiPS-CMs, in the form of reduced beat rate and prolonged field potential duration, the selection of the dye did not influence the pharmacological response of four cardioactive drugs (dofetilide, moxifloxacin, nimodipine and isoprenaline). In conclusion, we have documented that different calcium sensitive dyes have only minor direct (acute) effects on hiPS-CMs with Cal520 showing the least effects and the longest lasting signal amplitude. Importantly, drug-induced pharmacological responses in hiPS-CMs were comparable between the three dyes. These findings should help further improve the robustness of the hiPS-CMs-based calcium transient assay as a predictive, preclinical cardiac safety evaluation tool. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  2. Calcium signaling during reproduction and biotrophic fungal interactions in plants.

    Science.gov (United States)

    Chen, Junyi; Gutjahr, Caroline; Bleckmann, Andrea; Dresselhaus, Thomas

    2015-04-01

    Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  3. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology

    OpenAIRE

    Gryshchenko, Oleksiy; Gerasimenko, Julia V.; Peng, Shuang; Gerasimenko, Oleg V.; Petersen, Ole Holger

    2018-01-01

    Physiological Ca2+ signals in pancreatic acinar cells control fluid and\\ud enzyme secretion, whereas excessive Ca2+ signals induced by pathological agents\\ud induce destructive processes leading to acute pancreatitis. Ca2+ signals in the periacinar\\ud stellate cells may also play a role in the development of acute pancreatitis. In\\ud this study, we have explored Ca2+ signalling in the different cell types to be found in\\ud the acinar environment of the pancreatic tissue. We have, for the firs...

  4. Intracellular calcium signals display an avalanche-like behavior over multiple lengthscales.

    Directory of Open Access Journals (Sweden)

    Lucía eLopez

    2012-09-01

    Full Text Available Many natural phenomena display "self-organized criticality'' (SOC. This refers to spatially extended systems for which patterns of activity characterized by different lengthscales can occur with a probability density that follows a power law with pattern size. Differently from power laws at phase transitions, systems displaying SOC do not need the tuning of an external parameter. Here we analyze intracellular calcium Ca2+ signals, a key component of the signaling toolkit of almost any cell type. Ca2+ signals can either be spatially restricted (local or propagate throughout the cell (global. Different models have suggested that the transition from local to global signals is similar to that of directed percolation. Directed percolation has been associated, in turn, to the appearance of self-organized criticality. In this paper we discuss these issues within the framework of simple models of Ca2+ signal propagation. We also analyze the size distribution of local signals ("puffs'' observed in immature Xenopus Laevis oocytes. The puff amplitude distribution obtained from observed local signals is not Gaussian with a noticeable fraction of large size events. The experimental distribution of puff areas in the spatio-temporal record of the image has a long tail that is approximately log-normal. The distribution can also be fitted with a power law relationship albeit with a smaller goodness of fit. The power law behavior is encountered within a simple model that includes some coupling among individual signals for a wide range of parameter values. An analysis of the model shows that a global elevation of the Ca2+ concentration plays a major role in determining whether the puff size distribution is long-tailed or not. This suggests that Ca2+-clearing from the cytosol is key to determine whether IP3-mediated Ca2+ signals can display a SOC-like behavior or not.

  5. Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling.

    Science.gov (United States)

    Toivanen, Pyry I; Nieminen, Tiina; Laakkonen, Johanna P; Heikura, Tommi; Kaikkonen, Minna U; Ylä-Herttuala, Seppo

    2017-07-17

    Vascular Endothelial Growth Factors (VEGFs) are promising molecules for the treatment of ischemic diseases by pro-angiogenic therapy. Snake venom VEGFs are a novel subgroup with unique receptor binding profiles and as such are potential new therapeutic agents. We determined the ligand-receptor interactions, gene regulation and angiogenic properties of Vipera ammodytes venom VEGF, Vammin, and compared it to the canonical angiogenic factor VEGF-A to evaluate the use of Vammin for therapeutic angiogenesis. Vammin efficiently induced VEGFR-2 mediated proliferation and expression of genes associated with proliferation, migration and angiogenesis. VEGF-A 165 and especially VEGF-A 109 induced less pronounced effects. Vammin regulates a number of signaling pathways by inducing the expression of NR4A family nuclear receptors and regulators of calcium signaling and MAP kinase pathways. Interestingly, MARC1, which encodes an enzyme discovered to catalyze reduction of nitrate to NO, was identified as a novel VEGFR-2 regulated gene. In rabbit skeletal muscle adenoviral delivery of Vammin induced prominent angiogenic responses. Both the vector dose and the co-receptor binding of the ligand were critical parameters controlling the type of angiogenic response from sprouting angiogenesis to vessel enlargement. Vammin induced VEGFR-2/NRP-1 mediated signaling more effectively than VEGF-A, consequently it is a promising candidate for development of pro-angiogenic therapies.

  6. Rapid insight into heating-induced phase transformations in the solid state of the calcium salt of atorvastatin using multivariate data analysis

    DEFF Research Database (Denmark)

    Christensen, Niels Peter Aae; Van Eerdenbrugh, Bernard; Kwok, Kaho

    2013-01-01

    To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin.......To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin....

  7. Assessment of fluoride-induced changes on physicochemical and structural properties of bone and the impact of calcium on its control in rabbits.

    Science.gov (United States)

    Gopalakrishnan, Subarayan Bothi; Viswanathan, Gopalan

    2012-03-01

    Bone deformities caused by the chronic intake of large quantities of fluoride and the beneficial effect of calcium on its control have been studied for many years, but only limited data are available on the quantitative effect of fluoride intake and the beneficial impact of calcium on fluoride-induced changes in bone at the molecular level. It is necessary to determine the degree of fluoride-induced changes in bone at different levels of fluoride intake to evaluate the optimum safe intake level of fluoride for maintaining bone health and quality. The ameliorative effect of calcium at different dose levels on minimizing fluoride-induced changes in bone is important to quantify the amount of calcium intake necessary for reducing fluoride toxicity. Thirty rabbits, 2 months old, were divided into five groups. Group I animals received 1 mg/l fluoride and 0.11% calcium diet; groups II and III received 10 mg/l fluoride and diet with 0.11% or 2.11% calcium, respectively; and groups IV and V received 150 mg/l fluoride and diet with 2.11% or 0.11% calcium, respectively. Analysis of bone density, ash content, fluoride, calcium, phosphorus, and Ca:P molar ratio levels after 6 months of treatment indicated that animals that received high fluoride with low-calcium diet showed significant detrimental changes in physicochemical properties of bone. Animals that received fluoride with high calcium intake showed notable amelioration of the impact of calcium on fluoride-induced changes in bone. The degree of fluoride-induced characteristic changes in structural properties such as crystalline size, crystallinity, and crystallographic "c"-axis length of bone apatite cells was also assessed by X-ray diffraction and Fourier transform infrared studies. X-ray images showed bone deformity changes such as transverse stress growth lines, soft tissue ossification, and calcification in different parts of bones as a result of high fluoride accumulation and the beneficial role of calcium

  8. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    Science.gov (United States)

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  9. Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK

    Directory of Open Access Journals (Sweden)

    Mark L. Westbroek

    2017-12-01

    Full Text Available Clustering of the B cell antigen receptor (BCR by polyvalent antigens is transmitted through the SYK tyrosine kinase to the activation of multiple intracellular pathways that determine the physiological consequences of receptor engagement. To explore factors that modulate the quantity and quality of signals sent by the crosslinked BCR, we developed a novel chemical mediator of dimerization to induce clustering of receptor-associated SYK. To accomplish this, we fused SYK with E. coli dihydrofolate reductase (eDHFR, which binds the small molecule trimethoprim (TMP with high affinity and selectivity and synthesized a dimer of TMP with a flexible linker. The TMP dimer is able to induce the aggregation of eDHFR-linked SYK in live cells. The induced dimerization of SYK bound to the BCR differentially regulates the activation of downstream transcription factors, promoting the activation of Nuclear Factor of Activated T cells (NFAT without affecting the activation of NFκB. The dimerization of SYK enhances the duration but not the amplitude of calcium mobilization by enhancing the extent and duration of its interaction with the crosslinked BCR at the plasma membrane.

  10. Association of CD147 and Calcium Exporter PMCA4 Uncouples IL-2 Expression from Early TCR Signaling.

    Science.gov (United States)

    Supper, Verena; Schiller, Herbert B; Paster, Wolfgang; Forster, Florian; Boulègue, Cyril; Mitulovic, Goran; Leksa, Vladimir; Ohradanova-Repic, Anna; Machacek, Christian; Schatzlmaier, Philipp; Zlabinger, Gerhard J; Stockinger, Hannes

    2016-02-01

    The Ig superfamily member CD147 is upregulated following T cell activation and was shown to serve as a negative regulator of T cell proliferation. Thus, Abs targeting CD147 are being tested as new treatment strategies for cancer and autoimmune diseases. How CD147 mediates immunosuppression and whether association with other coreceptor complexes is needed have remained unknown. In the current study, we show that silencing of CD147 in human T cells increases IL-2 production without affecting the TCR proximal signaling components. We mapped the immunosuppressive moieties of CD147 to its transmembrane domain and Ig-like domain II. Using affinity purification combined with mass spectrometry, we determined the domain specificity of CD147 interaction partners and identified the calcium exporter plasma membrane calcium ATPase isoform 4 (PMCA4) as the interaction partner of the immunosuppressive moieties of CD147. CD147 does not control the proper membrane localization of PMCA4, but PMCA4 is essential for the CD147-dependent inhibition of IL-2 expression via a calcium-independent mechanism. In summary, our data show that CD147 interacts via its immunomodulatory domains with PMCA4 to bypass TCR proximal signaling and inhibit IL-2 expression. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Regulation of cardiomyocyte autophagy by calcium.

    Science.gov (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.

  12. Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells.

    Science.gov (United States)

    Cheshenko, Natalia; Trepanier, Janie B; González, Pablo A; Eugenin, Eliseo A; Jacobs, William R; Herold, Betsy C

    2014-09-01

    Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These

  13. Ginkgolide B Exerts Cardioprotective Properties against Doxorubicin-Induced Cardiotoxicity by Regulating Reactive Oxygen Species, Akt and Calcium Signaling Pathways In Vitro and In Vivo.

    Science.gov (United States)

    Gao, Junqing; Chen, Tao; Zhao, Deqiang; Zheng, Jianpu; Liu, Zongjun

    2016-01-01

    The aim of this study was to evaluate the effect of Ginkgolide B (GB) on doxorubicin (DOX) induced cardiotoxicity in vitro and in vivo. Rat cardiomyocyte cell line H9c2 was pretreated with GB and subsequently subjected to doxorubicin treatment. Cell viability and cell apoptosis were assessed by MTT assay and Hoechst staining, respectively. Reactive oxygen species (ROS), Akt phosphorylation and intracellular calcium were equally determined in order to explore the underlying molecular mechanism. To verify the in vivo therapeutic effect of GB, we established a mouse model of cardiotoxicity and determined left ventricle ejection fraction (LVEF) and left ventricular mass (LVM). The in vitro experimental results indicated that pretreatment with GB significantly decreases the viability and apoptosis of H9c2 cells by decreasing ROS and intracellular calcium levels and activating Akt phosphorylation. In the in vivo study, we recorded an improved LVEF and a decreased LVM in the group of cardiotoxic rats treated with GB. Altogether, our findings anticipate that GB exerts a cardioprotective effect through possible regulation of the ROS, Akt and calcium pathways. The findings suggest that combination of GB with DOX in chemotherapy could help avoid the cardiotoxic side effects of GB.

  14. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    Science.gov (United States)

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  15. Effect of HeNe laser on calcium signals in sperm cells

    Science.gov (United States)

    Lubart, Rachel; Friedmann, Harry; Cohen, Natalie; Brietbart, Haim

    1998-12-01

    Irradiation of mouse spermatozoa by 630 nm HeNe laser was found to enhance calcium transport in these cells. The change in Ca transport was investigated through two approaches, the first employing the fluorescent Ca indicator, Fluo-3 AM and a fluorescence microscopic system, and the second the radiolabeled Ca uptake. In both approaches the effect of light on Ca transport was abrogated in the absence of Ca during the irradiation time, indicating that the effect of light is Ca-dependent. The stimulatory effect of light on Ca uptake was inhibited by treatment with catalase, suggesting H2O2 to be involved in light stimulated Ca2+ uptake. The stimulatory effect of light on Ca uptake was abolished in the presence of a voltage-dependent Ca-channel inhibitor, nifedipine, indicating the involvement of a plasma membrane, voltage- dependent Ca-channel. In contrast, addition of nifedipine prior to the HeNe laser irradiation did not affect the light-induced rise in intracellular Ca levels, as measured with Fluo-3 loaded sperm cells. Therefore, it can be concluded that this Ca influx occurs via a voltage- insensitive Ca-channel. The stimulatory effect of light on Ca uptake was almost completely abolished by the mitochondrial uncoupler FCCP. These data imply that light affects the mitochondrial Ca transport mechanisms. It is well known that Ca influx from an extracellular environment is an essential component of a signaling cascade leading to fertilization.

  16. L-Type Calcium Channels Modulation by Estradiol.

    Science.gov (United States)

    Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2017-09-01

    Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.

  17. The transition between monostable and bistable states induced by time delay in intracellular calcium oscillation

    International Nuclear Information System (INIS)

    Duan, Wei-Long

    2013-01-01

    The revised role of the time delay of active processes with colored noises of transmission of intracellular Ca 2+ in intracellular calcium oscillation (ICO) is investigated by means of a first-order algorithm based on stochastic simulation. The simulation results indicate that time delay induces a double critical phenomenon and a transition between the monostable and bistable states of the ICO system. In addition, as the time delay increases, for a cytosolic Ca 2+ concentration with weak colored noises there appears a calcium burst, and the Ca 2+ concentration of the calcium store shows nonmonotonic variation. (paper)

  18. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling.

    Directory of Open Access Journals (Sweden)

    Philip M Tan

    2017-11-01

    Full Text Available Mechanical strain is a potent stimulus for growth and remodeling in cells. Although many pathways have been implicated in stretch-induced remodeling, the control structures by which signals from distinct mechano-sensors are integrated to modulate hypertrophy and gene expression in cardiomyocytes remain unclear. Here, we constructed and validated a predictive computational model of the cardiac mechano-signaling network in order to elucidate the mechanisms underlying signal integration. The model identifies calcium, actin, Ras, Raf1, PI3K, and JAK as key regulators of cardiac mechano-signaling and characterizes crosstalk logic imparting differential control of transcription by AT1R, integrins, and calcium channels. We find that while these regulators maintain mostly independent control over distinct groups of transcription factors, synergy between multiple pathways is necessary to activate all the transcription factors necessary for gene transcription and hypertrophy. We also identify a PKG-dependent mechanism by which valsartan/sacubitril, a combination drug recently approved for treating heart failure, inhibits stretch-induced hypertrophy, and predict further efficacious pairs of drug targets in the network through a network-wide combinatorial search.

  19. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations

    Science.gov (United States)

    Weinberg, Seth H.; Smith, Gregory D.

    2012-01-01

    Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597

  20. Calcium supplementation decreases BCP-induced inflammatory processes in blood cells through the NLRP3 inflammasome down-regulation.

    Science.gov (United States)

    Lagadec, Patricia; Balaguer, Thierry; Boukhechba, Florian; Michel, Grégory; Bouvet-Gerbettaz, Sébastien; Bouler, Jean-Michel; Scimeca, Jean-Claude; Rochet, Nathalie

    2017-07-15

    Interaction of host blood with biomaterials is the first event occurring after implantation in a bone defect. This study aimed at investigating the cellular and molecular consequences arising at the interface between whole blood and biphasic calcium phosphate (BCP) particles. We observed that, due to calcium capture, BCP inhibited blood coagulation, and that this inhibition was reversed by calcium supplementation. Therefore, we studied the impact of calcium supplementation on BCP effects on blood cells. Comparative analysis of BCP and calcium supplemented-BCP (BCP/Ca) effects on blood cells showed that BCP as well as BCP/Ca induced monocyte proliferation, as well as a weak but significant hemolysis. Our data showed for the first time that calcium supplementation of BCP microparticles had anti-inflammatory properties compared to BCP alone that induced an inflammatory response in blood cells. Our results strongly suggest that the anti-inflammatory property of calcium supplemented-BCP results from its down-modulating effect on P2X7R gene expression and its capacity to inhibit ATP/P2X7R interactions, decreasing the NLRP3 inflammasome activation. Considering that monocytes have a vast regenerative potential, and since the excessive inflammation often observed after bone substitutes implantation limits their performance, our results might have great implications in terms of understanding the mechanisms leading to an efficient bone reconstruction. Although scaffolds and biomaterials unavoidably come into direct contact with blood during bone defect filling, whole blood-biomaterials interactions have been poorly explored. By studying in 3D the interactions between biphasic calcium phosphate (BCP) in microparticulate form and blood, we showed for the first time that calcium supplementation of BCP microparticles (BCP/Ca) has anti-inflammatory properties compared to BCP-induced inflammation in whole blood cells and provided information related to the molecular mechanisms

  1. Calcium and ROS: A mutual interplay

    Science.gov (United States)

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga

    2015-01-01

    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  2. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  3. Mapping the follicle-stimulating hormone-induced signalling networks

    Directory of Open Access Journals (Sweden)

    Pauline eGloaguen

    2011-10-01

    Full Text Available Follicle-stimulating hormone (FSH is a central regulator of male and female reproductive function. Over the last decade, there has been a growing perception of the complexity associated with FSH-induced cellular signalling. It is now clear that the canonical Gs/cAMP/PKA pathway is not the sole mechanism that must be considered in FSH biological actions. In parallel, consistent with the emerging concept of biased agonism, several examples of ligand-mediated selective signalling pathway activation by gonadotropin receptors have been reported. In this context, it is important to gain an integrative view of the signalling pathways induced by FSH and how they interconnect to form a network. In this review, we propose a first attempt at building topological maps of various pathways known to be involved in the FSH-induced signalling network. We discuss the multiple facets of FSH-induced signalling and how they converge to the hormone integrated biological response. Despite of their incompleteness, these maps of the FSH-induced signalling network represent a first step towards gaining a system-level comprehension of this hormone’s actions, which may ultimately facilitate the discovery of novel regulatory processes and therapeutic strategies for infertilities and non-steroidal contraception.

  4. A sensor for calcium uptake

    Science.gov (United States)

    Collins, Sean; Meyer, Tobias

    2011-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified. PMID:20844529

  5. An integrated platform for simultaneous multi-well field potential recording and Fura-2-based calcium transient ratiometry in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes.

    Science.gov (United States)

    Rast, Georg; Weber, Jürgen; Disch, Christoph; Schuck, Elmar; Ittrich, Carina; Guth, Brian D

    2015-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes are available from various sources and they are being evaluated for safety testing. Several platforms are available offering different assay principles and read-out parameters: patch-clamp and field potential recording, imaging or photometry, impedance measurement, and recording of contractile force. Routine use will establish which assay principle and which parameters best serve the intended purpose. We introduce a combination of field potential recording and calcium ratiometry from spontaneously beating cardiomyocytes as a novel assay providing a complementary read-out parameter set. Field potential recording is performed using a commercial multi-well multi-electrode array platform. Calcium ratiometry is performed using a fiber optic illumination and silicon avalanche photodetectors. Data condensation and statistical analysis are designed to enable statistical inference of differences and equivalence with regard to a solvent control. Simultaneous recording of field potentials and calcium transients from spontaneously beating monolayers was done in a nine-well format. Calcium channel blockers (e.g. nifedipine) and a blocker of calcium store release (ryanodine) can be recognized and discriminated based on the calcium transient signal. An agonist of L-type calcium channels, FPL 64176, increased and prolonged the calcium transient, whereas BAY K 8644, another L-type calcium channel agonist, had no effect. Both FPL 64176 and various calcium channel antagonists have chronotropic effects, which can be discriminated from typical "chronotropic" compounds, like (±)isoprenaline (positive) and arecaidine propargyl ester (negative), based on their effects on the calcium transient. Despite technical limitations in temporal resolution and exact matching of composite calcium transient with the field potential of a subset of cells, the combined recording platform enables a refined interpretation of the field potential

  6. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    Directory of Open Access Journals (Sweden)

    Zhou eLi

    2015-10-01

    Full Text Available Endogenous polyamine (PA may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put, spermidine (Spd, and spermine (Spm. Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2 were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling.

  7. PeakCaller: an automated graphical interface for the quantification of intracellular calcium obtained by high-content screening.

    Science.gov (United States)

    Artimovich, Elena; Jackson, Russell K; Kilander, Michaela B C; Lin, Yu-Chih; Nestor, Michael W

    2017-10-16

    Intracellular calcium is an important ion involved in the regulation and modulation of many neuronal functions. From regulating cell cycle and proliferation to initiating signaling cascades and regulating presynaptic neurotransmitter release, the concentration and timing of calcium activity governs the function and fate of neurons. Changes in calcium transients can be used in high-throughput screening applications as a basic measure of neuronal maturity, especially in developing or immature neuronal cultures derived from stem cells. Using human induced pluripotent stem cell derived neurons and dissociated mouse cortical neurons combined with the calcium indicator Fluo-4, we demonstrate that PeakCaller reduces type I and type II error in automated peak calling when compared to the oft-used PeakFinder algorithm under both basal and pharmacologically induced conditions. Here we describe PeakCaller, a novel MATLAB script and graphical user interface for the quantification of intracellular calcium transients in neuronal cultures. PeakCaller allows the user to set peak parameters and smoothing algorithms to best fit their data set. This new analysis script will allow for automation of calcium measurements and is a powerful software tool for researchers interested in high-throughput measurements of intracellular calcium.

  8. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.

    2009-12-01

    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  9. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit.

    Science.gov (United States)

    Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Jurick, Wayne M

    2013-07-01

    Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage. © 2013 Scandinavian Plant Physiology Society.

  10. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales.

    Science.gov (United States)

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A; Marks, Natalie C; Sheehan, Alice S; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N; Yoo, Jennie C; Judge, Luke M; Spencer, C Ian; Chukka, Anand C; Russell, Caitlin R; So, Po-Lin; Conklin, Bruce R; Healy, Kevin E

    2015-05-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.

  11. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  12. Properties of light induced EPR signals in enamel and their possible interference with gamma-induced signals

    International Nuclear Information System (INIS)

    Sholom, S.V.; Chumak, V.V.; Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1998-01-01

    Exposure of tooth enamel to natural and artificial UV light results in stable EPR signals with g-factors of 1.9985, 2.0018, 2.0045, 2.0052 and 2.0110. The first three signals correspond to the parallel and perpendicular components of the radiation induced or dosimetric signal and the native signal reported in dosimetry and dating studies. The latter two signals were found to be sensitive to both gamma-ray and sunlight exposure, however, their responses to light differed from that to radiation, giving rise to the possibility of using them as indicators of the dose-equivalent resulting from light exposure

  13. Role of calcium in gonadotropin releasing hormone-induced luteinizing hormone secretion from the bovine pituitary

    International Nuclear Information System (INIS)

    Kile, J.P.

    1986-01-01

    The hypothesis was tested that GnRH acts to release LH by increasing calcium uptake by gonadotroph which in turn stimulates calcium-calmodulin activity and results in LH release from bovine pituitary cells as it does in the rat. Pituitary glands of calves (4-10 months of age) were enzymatically dispersed (0.2% collagenase) and grown for 5 days to confluency in multiwell plates (3 x 10 5 /well). Cells treated with GnRH Ca ++ ionophore A23187, and ouabain all produced significant releases of LH release in a pronounced all or none fashion, while thorough washing of the cells with 0.5 mM EGTA in Ca ++ -free media prevented the action of GnRH. GnRH caused a rapid efflux of 45 Ca ++ . Both GnRH-stimulated 45 Ca efflux and LH release could be partially blocked by verapamil GnRH-induced LH release could also be blocked by nifedipine and tetrodotoxin, although these agents did not affect 45 Ca efflux. The calmodulin antagonists calmidazolium and W7 were found to block GnRH induced LH release, as well as LH release induced by theophylline, KC PGE 2 and estradiol. These data indicated that: (1) calcium is required for GnRH action, but extracellular Ca ++ does not regulate LH release; (2) GnRH elevates intracellular Ca ++ by opening both voltage sensitive and receptor mediated Ca ++ channels; (3) activation of calmodulin is one mechanism involved in GnRH-induced LH release

  14. Neutrophils and the calcium-binding protein MRP-14 mediate carrageenan-induced antinociception in mice

    Directory of Open Access Journals (Sweden)

    Rosana L. Pagano

    2002-01-01

    Full Text Available Background: We have previously shown that the calcium-binding protein MRP-14 secreted by neutrophils mediates the antinociceptive response in an acute inflammatory model induced by the intraperitoneal injection of glycogen in mice.

  15. Baroreflex deficiency induces additional impairment of vagal tone, diastolic function and calcium handling proteins after myocardial infarction

    Science.gov (United States)

    Mostarda, Cristiano; Rodrigues, Bruno; Medeiros, Alessandra; Moreira, Edson D; Moraes-Silva, Ivana C; Brum, Patricia C; Angelis, Katia De; Irigoyen, Maria-Cláudia

    2014-01-01

    Baroreflex dysfunction has been considered an important mortality predictor after myocardial infarction (MI). However, the impact of baroreflex deficiency prior to MI on tonic autonomic control and cardiac function, and on the profile of proteins associated with intracellular calcium handling has not yet been studied. The aim of the present study was to analyze how the impairment of baroreflex induced by sinoaortic denervation (SAD) prior to MI in rats affects the tonic autonomic control, ventricular function and cardiomyocyte calcium handling proteins. After 15 days of following or SAD surgery, rats underwent MI. Echocardiographic, hemodynamic, autonomic and molecular evaluations were performed 90 days after MI. Baroreflex impairment led to additional damage on: left ventricular remodeling, diastolic function, vagal tonus and intrinsic heart rate after MI. The loss of vagal component of the arterial baroreflex and vagal tonus were correlated with changes in the cardiac proteins involved in intracellular calcium homeostasis. Furthermore, additional increase in sodium calcium exchanger expression levels was associated with impaired diastolic function in experimental animals. Our findings strongly suggest that previous arterial baroreflex deficiency may induce additional impairment of vagal tonus, which was associated with calcium handling proteins abnormalities, probably triggering ventricular diastolic dysfunction after MI in rats. PMID:24936224

  16. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the ...

  17. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone.

    Science.gov (United States)

    Daskalakis, M I; Magoulas, A; Kotoulas, G; Catsikis, I; Bakolas, A; Karageorgis, A P; Mavridou, A; Doulia, D; Rigas, F

    2013-08-01

    Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Micro-organisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3 . Micro-organisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bioconsolidation of ornamental stone protection. Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for biorestoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates. © 2013 The Society for Applied Microbiology.

  18. Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons.

    Science.gov (United States)

    Suyama, Shigetomo; Ralevski, Alexandra; Liu, Zhong-Wu; Dietrich, Marcelo O; Yada, Toshihiko; Simonds, Stephanie E; Cowley, Michael A; Gao, Xiao-Bing; Diano, Sabrina; Horvath, Tamas L

    2017-08-01

    POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.

  19. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology.

    Science.gov (United States)

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H

    2018-02-09

    Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol

  20. Why Calcium? How Calcium Became the Best Communicator*

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077

  1. Alcohol enhances oxysterol-induced apoptosis in human endothelial cells by a calcium-dependent mechanism.

    Science.gov (United States)

    Spyridopoulos, I; Wischhusen, J; Rabenstein, B; Mayer, P; Axel, D I; Fröhlich, K U; Karsch, K R

    2001-03-01

    Controversy exists about the net effect of alcohol on atherogenesis. A protective effect is assumed, especially from the tannins and phenolic compounds in red wine, owing to their inhibition of low density lipoprotein (LDL) oxidation. However, increased atherogenesis occurs in subjects with moderate to heavy drinking habits. The purpose of this study was to investigate the influence of alcohol in combination with oxysterols on the endothelium. Cultured human arterial endothelial cells (HAECs) served as an in vitro model to test the cellular effects of various oxysterols. Oxysterols (7beta-hydroxycholesterol, 7-ketocholesterol, and cholesterol-5,6-epoxides), which are assumed to be the most toxic constituents of oxidized LDL, induced apoptosis in HAECs through calcium mobilization followed by activation of caspase-3. Ethanol, methanol, isopropanol, tert-butanol, and red wine all potentiated oxysterol-induced cell death up to 5-fold, paralleled by further induction of caspase-3. The alcohol effect occurred in a dose-dependent manner and reached a plateau at 0.05% concentration. Alcohol itself did not affect endothelial cell viability, nor did other solvents such as dimethyl sulfoxide mimic the alcohol effect. So far as the physiologically occurring oxysterols are concerned, this effect was apparent only for oxysterols oxidized at the steran ring. The possibility of alcohol facilitating the uptake of oxysterols into the cell was not supported by the data from an uptake study with radiolabeled compounds. Finally, alcohol in combination with oxysterols did cause a dramatic increase in cytosolic calcium influx. Blockage of calcium influx by the calcium channel blocker aurintricarboxylic acid or the calcium chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid abrogated the alcohol-mediated enhancement of oxysterol toxicity. We describe for the first time a mechanistic concept explaining possible adverse effects of alcohol in conjunction with

  2. Distinct steps of neural induction revealed by Asterix, Obelix and TrkC, genes induced by different signals from the organizer.

    Directory of Open Access Journals (Sweden)

    Sonia Pinho

    2011-04-01

    Full Text Available The amniote organizer (Hensen's node can induce a complete nervous system when grafted into a peripheral region of a host embryo. Although BMP inhibition has been implicated in neural induction, non-neural cells cannot respond to BMP antagonists unless previously exposed to a node graft for at least 5 hours before BMP inhibitors. To define signals and responses during the first 5 hours of node signals, a differential screen was conducted. Here we describe three early response genes: two of them, Asterix and Obelix, encode previously undescribed proteins of unknown function but Obelix appears to be a nuclear RNA-binding protein. The third is TrkC, a neurotrophin receptor. All three genes are induced by a node graft within 4-5 hours but they differ in the extent to which they are inducible by FGF: FGF is both necessary and sufficient to induce Asterix, sufficient but not necessary to induce Obelix and neither sufficient nor necessary for induction of TrkC. These genes are also not induced by retinoic acid, Noggin, Chordin, Dkk1, Cerberus, HGF/SF, Somatostatin or ionomycin-mediated Calcium entry. Comparison of the expression and regulation of these genes with other early neural markers reveals three distinct "epochs", or temporal waves, of gene expression accompanying neural induction by a grafted organizer, which are mirrored by specific stages of normal neural plate development. The results are consistent with neural induction being a cascade of responses elicited by different signals, culminating in the formation of a patterned nervous system.

  3. Calcium regulates caveolin-1 expression at the transcriptional level

    International Nuclear Information System (INIS)

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming; Li, Yan; Liu, Dan; Zhang, Xue-Cheng; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2012-01-01

    Highlights: ► Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. ► An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. ► Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. ► Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca 2+ /calcineurin/NFAT.

  4. Potassium-induced contraction in the lamb proximal urethra: Involvement of norepinephrine and different calcium entry pathways

    International Nuclear Information System (INIS)

    Garcia-Pascual, A.; Costa, G.; Isla, M.; Jimenez, E.; Garcia-Sacristan, A.

    1991-01-01

    The purpose of this work was to investigate the mechanisms involved in the peculiar biphasic response of the lamb urethral smooth muscle to high K+ solutions. The relative amplitude of the phasic and tonic components of the contraction and its reproducibility were dependent on the concentration of K+ used. Only concentrations higher than 80 mM (i.e., 120 mM) showed a tonic component greater in amplitude than the phasic one and manifested a tachyphylactic effect. Phentolamine (10(-6) M), prazosin (10(-6) M) and chemical denervation with 6-hydroxydopamine significantly inhibited the tonic component of the K+ (120 mM)-induced contraction, modifying its morphology. Reproducible contractions to K+ (120 mM) could be obtained in the presence of prazosin (10(-6) M) or cocaine (10(-6) M). The preparations were also shown to accumulate [3H]noradrenaline and release it upon depolarization with K+ (60 and 120 mM). Calcium removal inhibited the K+ (120 mM)-induced contraction. After addition of calcium (0.5-5 mM) the contractile activity was restored. Nifedipine (10(-6) M) and verapamil (10(-6) M) but not sodium nitroprusside (10(-6) M) significantly blocked the contractile response for calcium as well as the phasic component of the K+ contraction in calcium-containing medium. In preparations treated with prazosin (10(-6) M) the tonic component of the K+ (120 mM) contraction was more sensitive to nifedipine and removal of extracellular calcium than the phasic one

  5. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMs and CDPKs leading to copper entry and membrane depolarization in Ulva compressa

    Directory of Open Access Journals (Sweden)

    Melissa eGómez

    2015-03-01

    Full Text Available In order to identify channels involved in membrane depolarization, Ulva compressa was incubated with agonists of TRP channels C5, A1 and V1 and the level of intracellular calcium was detected. Agonists of TRPC5, A1 and V1 induced increases in intracellular calcium at 4, 9 and 12 min of exposure, respectively, and antagonists of TRPC5, A1 and V1 corresponding to SKF-96365 (SKF, HC-030031 (HC and capsazepin (CPZ, respectively, inhibited calcium increases indicating that functional TRPs exist in U. compressa. In addition, copper excess induced increases in intracellular calcium at 4, 9 and 12 min which were inhibited by SKF, HC and CPZ, respectively, indicating that copper activate TRPC5, A1 and V1 channels. Moreover, copper-induced calcium increases were inhibited by EGTA, a non-permeable calcium chelating agent, but not by thapsigargin, an inhibitor of endoplasmic reticulum (ER calcium ATPase, indicating that activation of TRPs leads to extracellular calcium entry. Furthermore, copper-induced calcium increases were not inhibited by W-7, an inhibitor of CaMs, and staurosporine, an inhibitor of CDPKs, indicating that extracellular calcium entry did not require CaMs and CDPKs activation. In addition, copper induced membrane depolarization events at 4, 8 and 11 min and these events were inhibited by SKF, HC, CPZ and bathocuproine, a specific copper chelating agent, indicating copper entry through TRP channels leading to membrane depolarization. Moreover, membrane depolarization events were inhibited by W-7 and staurosporine, indicating that CaMs and CDPKs are required in order to activate TRPs to allow copper entry. Thus, light-dependent copper-induced activation TRPC5, A1 and V1 promotes extracellular calcium entry leading to activation of CaMs and CDPKs which, in turn, promotes copper entry through these TRP channels leading to membrane depolarization.

  6. [Changes induced by hypertonic solutions in the transportation of calcium by the cardiac reticular sarcoplasma].

    Science.gov (United States)

    Sierra, M; Holguín, J A

    1979-01-01

    In the sarcoplasmic reticulum of the myocardium, celular organell which function is to regulate the cytoplasmic concentration of calcium in contraction and relaxation, we have studied the effect of hypertonic solutions of sucrose between 1 and 6.96 times the normal tonicity in order to observe the behavior of the internal linked or free calcium of this structure, as well as to prove the hypothesis that hypertonic solutions encourage the calcium exit of the sarcoplasmatic reticulum with the resulting signs of contractures. The following results were obtained: 1. The ATP hydrolisis and calcium transport rate are 14% and 90% respectively of the maximum speeds of 10(-5) M in calcium, while for concentrations of 10(-7) M or ess of the said cation, the transport rates and the ATPase do not reach 5% of the maximum values. 2. Between 1 and 2.54 times of the normal tonicity the calcium uptake remains between 400 and 500 nmoles of calcium/mg protein/min, the transported amount of calcium varies between 14 and 16 nmoles/mg protein and the rate of the ATP hydrolysis increases a 37% to 0.4 M in sucrose. 3. Between 0.4 and 1.2 M in sucrose of 2.54 to 6.96 times the isotonicity, the calcium transport rate velocity as well as the ATP hydrolisis are strongly inhibited. The vesicles volume minimizes and the amount of linked calcium remains within the control values, proving that the capacity of linking this cathion is independent from sarcoplasmic reticulum volume. These results show that the sarcoplasmic reticulum is involved in the contractures induced by hypertonic solutions in intact cells, since the osmolarity increase produces changes of volume which results in a decrease of the calcium transportation velocity or in an increase of the exit of said cathion.

  7. Calcium Imaging of Nerve-Mast Cell Signaling in the Human Intestine

    Directory of Open Access Journals (Sweden)

    Sabine Buhner

    2017-11-01

    Full Text Available Introduction: It is suggested that an altered microenvironment in the gut wall alters communication along a mast cell nerve axis. We aimed to record for the first time signaling between mast cells and neurons in intact human submucous preparations.Methods: We used the Ca2+ sensitive dye Fluo-4 AM to simultaneously image changes in intracellular calcium [Ca+2]i (%ΔF/F in neurons and mast cells. Data are presented as median with interquartile ranges (25/75%.Results: We recorded nerve responses in 29 samples upon selective activation of 223 mast cells by IgE receptor cross linking with the antibody mAb22E7. Mast cells responded to mAb22E7 with a median [Ca+2]i increase of 20% (11/39 peaking 90 s (64/144 after the application. Only very few neurons responded and the median percentage of responding neuronal area was 0% (0/5.9. Mast cell activation remained in the presence of the fast sodium channel blocker tetrodotoxin. Specific neuronal activation by transmural electrical field stimulation (EFS in 34 samples evoked instantaneously [Ca+2]i signals in submucous neurons. This was followed by a [Ca+2]i peak response of 8%ΔF/F (4/15 in 33% of 168 mast cells in the field of view. The mast cell response was abolished by the nerve blocker tetrododoxin, reduced by the Calcitonin Gene-Related Peptide receptor 1 antagonist BIBN-4096 and the Vasoactive Intestinal Peptide receptor antagonist PG97-269, but not by blockade of the neurokinin receptors 1–3.Conclusion: The findings revealed bidirectional signaling between mast cells and submucous neurons in human gut. In our macroscopically normal preparations a nerve to mast cell signaling was very prominent whereas a mast cell to nerve signaling was rather rare.

  8. Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)

    Science.gov (United States)

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-01-01

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703

  9. Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).

    Science.gov (United States)

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-05-07

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca(2+) indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca(2+) indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca(2+) indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca(2+) indicator and a hydrophilic fluorescent dye/Ca(2+) complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.

  10. Membrane Estrogen Receptor-α Interacts with Metabotropic Glutamate Receptor Type 1a to Mobilize Intracellular Calcium in Hypothalamic Astrocytes

    Science.gov (United States)

    Kuo, John; Hariri, Omid R.; Bondar, Galyna; Ogi, Julie; Micevych, Paul

    2009-01-01

    Estradiol, acting on a membrane-associated estrogen receptor-α (mERα), induces an increase in free cytoplasmic calcium concentration ([Ca2+]i) needed for progesterone synthesis in hypothalamic astrocytes. To determine whether rapid estradiol signaling involves an interaction of mERα with metabotropic glutamate receptor type 1a (mGluR1a), changes in [Ca2+]i were monitored with the calcium indicator, Fluo-4 AM, in primary cultures of female postpubertal hypothalamic astrocytes. 17β-Estradiol over a range of 1 nm to 100 nm induced a maximal increase in [Ca2+]i flux measured as a change in relative fluorescence [ΔF Ca2+ = 615 ± 36 to 641 ± 47 relative fluorescent units (RFU)], whereas 0.1 nm of estradiol stimulated a moderate [Ca2+]i increase (275 ± 16 RFU). The rapid estradiol-induced [Ca2+]i flux was blocked with 1 μm of the estrogen receptor antagonist ICI 182,780 (635 ± 24 vs. 102 ± 11 RFU, P estradiol-induced membrane signaling in astrocytes. PMID:18948402

  11. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  12. [Effect of 2,3-butanedione monoxime on calcium paradox-induced heart injury in rats].

    Science.gov (United States)

    Kong, Ling-Heng; Gu, Xiao-Ming; Su, Xing-Li; Sun, Na; Wei, Ming; Zhu, Juan-Xia; Chang, Pan; Zhou, Jing-Jun

    2016-05-01

    To investigate the Effect of 2,3-butanedione monoxime (BDM) on calcium paradox-induced heart injury and its underlying mechanisms. Thirty-two adult male SD rats were randomized into 4 groups, namely the control group, BDM treatment control group, calcium paradox group, and BDM treatment group. Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion and the left ventricular pressure (LVP) and left ventricular end-diastolic pressure (LVEDP) were monitored. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Lactate dehydrogenase (LDH) content in the coronary flow was determined. Triphenyltetrazolium chloride staining was used to measure the infarct size, and myocardial cell apoptosis was tested with TUNEL method. Western blotting was used to determine the expression of cleaved caspase-3 and cytochrome c. Compared with the control group, BDM at 20 mmol/L had no effect on cardiac performance, cell death, apoptotic index or the content of LDH, cleaved caspase-3 and cytochrome c at the end of perfusion under control conditions (P>0.05). Calcium paradox treatment significantly decreased the cardiac function and the level of LVDP and induced a larger infarct size (Pparadox, and markedly down-regulated the levels of LVEDP and LDH (Pparadox, suggesting the value of BDM as an potential drug for myocardial ischemia reperfusion injur.

  13. Calcium signaling and amyloid toxicity in Alzheimer disease.

    Science.gov (United States)

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  14. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation.

    Science.gov (United States)

    Zhang, Xinxin; Tang, Xuexi; Wang, Ming; Zhang, Wei; Zhou, Bin; Wang, You

    2017-08-01

    UV-B ray has been addressed to trigger common metabolic responses on marine microalgae, however, the upstream events responsible for these changes in marine microalgae are poorly understood. In the present study, a species of marine green microalgae Dunaliella salina was exposed to a series of enhanced UV-B radiation ranging from 0.25 to 1.00 KJ·m -2 per day. The role of ROS and calcium signaling in the D. salina responses to UV-B was discussed. Results showed that enhanced UV-B radiation markedly decreased the cell density in a dose-dependent manner, but the contents of protein and glycerol that were essential for cell growth increased. It suggested that it was cell division instead of cell growth that UV-B exerted negative effects on. The subcellular damages on nuclei and plasmalemma further evidenced the hypothesis. The nutrient absorption was affected with UV-B exposure, and the inhibition on PO 4 3- uptake was more serious compared to NO 3 - uptake. UV-B radiation promoted reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) contents, decreased the redox status and altered the antioxidant enzyme activities. The addition of the ROS scavenger and the glutathione biosynthesis precursor N-acetyl-l-cysteine (NAC) alleviated the stress degree, implying ROS-mediated pathway was involved in the stress response to UV-B radiation. Transient increase in Ca 2+ -ATPase was triggered simultaneously with UV-B exposure. Meanwhile, the addition of an intracellular free calcium chelator aggravated the damage of cell division, but exogenous calcium and ion channel blocker applications did not, inferring that endogenously initiated calcium signaling played roles in response to UV-B. Cross-talk analysis showed a relatively clear relationship between ROS inhibition and Ca 2+ -ATPase suppression, and a relation between Ca 2+ inhibition and GPx activity change was also observed. It was thus presumed that ROS-coupled calcium signaling via the

  15. Calcium channel blockers and Alzheimer's disease★

    Science.gov (United States)

    Tan, Yi; Deng, Yulin; Qing, Hong

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofibrillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers involved in Alzheimer's disease therapy. PMID:25767489

  16. Calcium channel blocker prevents stress-induced activation of renin and aldosterone in conscious pig

    International Nuclear Information System (INIS)

    Ceremuzynski, L.K.; Klos, J.; Barcikowski, B.; Herbaczynska-Cedro, K.

    1991-01-01

    A considerable amount of data suggest the involvement of calcium-mediated processes in the activation of the renin-angiotensin-aldosterone (RAA) cascade. To investigate the effect of calcium-channel inhibition on the RAA system, the authors studied 21 conscious pigs. Blood renin and aldosterone levels increased by subjecting animals to 24 hours of immobilization stress. Renin and aldosterone levels were repeatedly measured by radioimmunoassay in blood samples taken periodically over 24 hours from a chronically implanted arterial cannula. Pretreatment of the animals (N = 11) with nisoldipine, 2 x 20 mg p.o. daily for 2 days before and on the day of immobilization, transiently attenuated the stress-induced increase of plasma renin activity and completely prevented the rise of aldosterone, as compared to nontreated controls (N = 10). The finding that nisoldipine suppresses RAA activation induced by a nonpharmacologic stimulus in the conscious intact animal may have clinical implications

  17. Non-radiation induced signals in TL dosimetry

    International Nuclear Information System (INIS)

    German, U.; Weinstein, M.

    2002-01-01

    One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originate in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curve and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals. (author)

  18. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice.

    Science.gov (United States)

    Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian

    2017-12-02

    The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca 2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Intracellular signal modulation by nanomaterials.

    Science.gov (United States)

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  20. Importance of large conductance calcium-activated potassium channels (BKCa) in interleukin-1b-induced adhesion of monocytes to endothelial cells.

    Science.gov (United States)

    Burgazli, K M; Venker, C J; Mericliler, M; Atmaca, N; Parahuleva, M; Erdogan, A

    2014-01-01

    The present study investigated the role of the large conductance calcium-activated potassium channels (BKCa) in interleukin-1b (IL-1b) induced inflammation. Human umbilical vein endothelial cells (HUVECs) were isolated and cultured. Endothelial cell membrane potential measurements were accomplished using the fluorescent dye DiBAC4(3). The role of BKCa was assessed using iberiotoxin, a highly selective BKCa inhibitor. Changes in the calcium intracellular calcium were investigated using Fura-2-AM imaging. Fluorescent dyes DCF-AM and DAF-AM were further used in order to measure the formation of reactive oxygen species (ROS) and nitric oxide (NO) synthesis, respectively. Endothelial cell adhesion tests were conducted with BCECF-AM adhesion assay and tritium thymidine uptake using human monocytic cells (U937). Expression of cellular adhesion molecules (ICAM-1, VCAM-1) was determined by flow cytometer. Interleukin-1b induced a BKCa dependent hyperpolarization of HUVECs. This was followed by an increase in the intracellular calcium concentration. Furthermore, IL-1b significantly increased the synthesis of NO and ROS. The increase of intracellular calcium, radicals and NO resulted in a BKCa dependent adhesion of monocytes to HUVECs. Endothelial cells treated with IL-1b expressed both ICAM-1 and VCAM-1 in significantly higher amounts as when compared to controls. It was further shown that the cellular adhesion molecules ICAM-1 and VCAM-1 were responsible for the BKCa-dependent increase in cellular adhesion. Additionally, inhibition of the NADPH oxidase with DPI led to a significant downregulation of IL-1b-induced expression of ICAM and VCAM, as well as inhibition of eNOS by L-NMMA, and intracellular calcium by BAPTA. Activation of the endothelial BKCa plays an important role in the IL-1b-induced monocyte adhesion to endothelial cells.

  1. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    Science.gov (United States)

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  2. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN

    Directory of Open Access Journals (Sweden)

    Annalisa Canta

    2015-06-01

    Full Text Available The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN. This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy.

  3. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

    Science.gov (United States)

    Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda

    2015-01-01

    The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658

  4. Why Calcium? How Calcium Became the Best Communicator.

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-09-30

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  6. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    Energy Technology Data Exchange (ETDEWEB)

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  7. Calcium waves.

    Science.gov (United States)

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  8. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons.

    Science.gov (United States)

    Qu, Liang; Wang, Yuan; Zhang, Hai-Tao; Li, Nan; Wang, Qiang; Yang, Qian; Gao, Guo-Dong; Wang, Xue-Lian

    2014-07-11

    Voltage gated calcium channels (VGCC) are sensitive to oxidative stress, and their activation or inactivation can impact cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remain controversial. In this study, we assessed 6-hydroxydopamine (6-OHDA) induced transformation of firing pattern and functional changes of calcium channels in SNc dopaminergic neurons. Application of 6-OHDA (0.5-2mM) evoked a dose-dependent, desensitizing inward current and intracellular free calcium concentration ([Ca(2+)]i) rise. In voltage clamp, ω-conotoxin-sensitive Ca(2+) current modulation mediated by 6-OHDA reflected an altered sensitivity. Furthermore, we found that 6-OHDA modulated Ca(2+) currents through PKA pathway. These results provided evidence for the potential role of VGCCs and PKA involved in oxidative stress in degeneration of SNc neurons in Parkinson's disease (PD). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Phagocytosis-induced /sup 45/calcium efflux in polymorphonuclear leucocytes

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, A; Schell-Frederick, E [Brussels Univ. (Belgium). Institut de Recherche Interdisciplinaire; Paridaens, R [Brussels Univ. (Belgium). Faculte de Medicine

    1977-10-15

    The role of calcium ions in regulating the structure and function of non-muscle cells is a subject of intense study. Several lines of evidence that calcium may be essential in the function of polymorphonuclear leuocytes (PMNL) and an important control element in the process of phagocytosis. Direct studies of calcium distribution and fluxes have only recently been undertaken. To our knowledge, no report of calcium movements during normal phagocytosis has been published. In the context of an overall study of calcium dynamics in the PMNL, we report here initial studies on /sup 45/Ca efflux in prelabelled guinea pig PMNL. The results demonstrate the energy-dependence of resting calcium efflux and an increased efflux upon addition of phagocytic particles which is not dependent on particle internalization.

  10. Circular patterns of calcium oxalate monohydrate induced by defective Langmuir-Blodgett film on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    He Jieyu [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Ouyang Jianming [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)], E-mail: toyjm@jnu.edu.cn

    2009-01-01

    The defective Langmuir-Blodgett (LB) film of dipalmitoylphosphatidylcholine (DPPC) on quartz injured by potassium oxalate (K{sub 2}C{sub 2}O{sub 4}) was used as a model system to induce growth of calcium oxalate crystals. Atomic force microscopy (AFM) indicated that circular defective domains with a diameter of 1-200 {mu}m existed in the LB film. Scanning electron microscopy (SEM) showed circular patterns of aggregated calcium oxalate monohydrate (COM) crystallites were induced by these defective domains. It was ascribed to that the interaction between the negatively-charged oxalate ions and the phosphatidyl groups in DPPC headgroups makes the phospholipid molecules rearranged and exist in an out-of-order state in the LB film, especially at the boundaries of liquid-condensed (LC)/liquid-expanded (LE) phases, which provide much more nucleating sites for COM crystals.

  11. Signaling induced by hop/STI-1 depends on endocytosis

    International Nuclear Information System (INIS)

    Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael

    2007-01-01

    The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP C ), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP C and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling induced by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP C by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases

  12. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    Science.gov (United States)

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  13. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc

    Directory of Open Access Journals (Sweden)

    MP Grant

    2016-07-01

    Full Text Available The cartilaginous endplates (CEPs are thin layers of hyaline cartilage found adjacent to intervertebral discs (IVDs. In addition to providing structural support, CEPs regulate nutrient and metabolic exchange in the disc. In IVD pathogenesis, CEP undergoes degeneration and calcification, compromising nutrient availability and disc cell metabolism. The mechanism(s underlying the biochemical changes of CEP in disc degeneration are currently unknown. Since calcification is often observed in later stages of IVD degeneration, we hypothesised that elevations in free calcium (Ca2+ impair CEP homeostasis. Indeed, our results demonstrated that the Ca2+ content was consistently higher in human CEP tissue with grade of disc degeneration. Increasing the levels of Ca2+ resulted in decreases in the secretion and accumulation of collagens type I, II and proteoglycan in cultured human CEP cells. Ca2+ exerted its effects on CEP matrix protein synthesis through activation of the extracellular calcium-sensing receptor (CaSR; however, aggrecan content was also affected independent of CaSR activation as increases in Ca2+ directly enhanced the activity of aggrecanases. Finally, supplementing Ca2+ in our IVD organ cultures was sufficient to induce degeneration and increase the mineralisation of CEP, and decrease the diffusion of glucose into the disc. Thus, any attempt to induce anabolic repair of the disc without addressing Ca2+ may be impaired, as the increased metabolic demand of IVD cells would be compromised by decreases in the permeability of the CEP.

  14. Efficacy and Safety of Photon Induced Photoacoustic Streaming for Removal of Calcium Hydroxide in Endodontic Treatment

    Directory of Open Access Journals (Sweden)

    Markus Laky

    2018-01-01

    Full Text Available Calcium hydroxide removal from the root canal by photon induced photoacoustic streaming (PIPS compared to needle irrigation and irrigation using sonic activation was investigated. Additionally, safety issues regarding apical extrusion were addressed. In endodontic treatment temporary intracanal medication like calcium hydroxide should be completely removed for long term success. For analysis, 60 artificial teeth were prepared, filled with calcium hydroxide, and divided into four groups. The teeth were assigned to needle irrigation, irrigation using a sonic device, PIPS with a lower energy setting (10 mJ, 15 Hz, or PIPS with a higher energy setting (25 mJ/40 Hz. For comparison the weight of each tooth was measured before and after calcium hydroxide incorporation, as well as after removing calcium hydroxide using the four different methods. Regarding safety issues another 24 samples were filled with stained calcium hydroxide and embedded in 0.4% agarose gel. Color changes in the agarose gel due to apical extrusion were digitally analysed using Photoshop. No significant differences were found for calcium hydroxide removal between the two laser groups. Sonic assisted removal and needle irrigation resulted in significant less calcium hydroxide removal than both laser groups, with significantly more calcium hydroxide removal in the ultrasonic group than in the needle irrigation group. For apical extrusion the higher laser (25 mJ/40 Hz group resulted in significant higher color changes of the periapical gel than all other groups. PIPS with the setting of 10 mJ/15 Hz achieved almost complete removal of calcium hydroxide without increasing apical extrusion of the irrigation solution.

  15. MicroRNAs regulate B-cell receptor signaling-induced apoptosis

    NARCIS (Netherlands)

    Kluiver, J. L.; Chen, C-Z

    Apoptosis induced by B-cell receptor (BCR) signaling is critical for antigen-driven selection, a process critical to tolerance and immunity. Here, we examined the roles of microRNAs (miRNAs) in BCR signaling-induced apoptosis using the widely applied WEHI-231 model. Comparison of miRNA levels in

  16. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    DEFF Research Database (Denmark)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida

    2016-01-01

    respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections...... reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular...

  17. Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

    Science.gov (United States)

    Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas

    2012-01-01

    NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589

  18. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  19. Evaluation of cellular influences caused by calcium carbonate nanoparticles.

    Science.gov (United States)

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-05

    The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. A stress surveillance system based on calcium and nitric oxide in marine diatoms.

    Directory of Open Access Journals (Sweden)

    Assaf Vardi

    2006-03-01

    Full Text Available Diatoms are an important group of eukaryotic phytoplankton, responsible for about 20% of global primary productivity. Study of the functional role of chemical signaling within phytoplankton assemblages is still in its infancy although recent reports in diatoms suggest the existence of chemical-based defense strategies. Here, we demonstrate how the accurate perception of diatom-derived reactive aldehydes can determine cell fate in diatoms. In particular, the aldehyde (2E,4E/Z-decadienal (DD can trigger intracellular calcium transients and the generation of nitric oxide (NO by a calcium-dependent NO synthase-like activity, which results in cell death. However, pretreatment of cells with sublethal doses of aldehyde can induce resistance to subsequent lethal doses, which is reflected in an altered calcium signature and kinetics of NO production. We also present evidence for a DD-derived NO-based intercellular signaling system for the perception of stressed bystander cells. Based on these findings, we propose the existence of a sophisticated stress surveillance system in diatoms, which has important implications for understanding the cellular mechanisms responsible for acclimation versus death during phytoplankton bloom successions.

  1. Effects of Human Mesenchymal Stem Cells Coculture on Calcium-Induced Differentiation of Normal Human Keratinocytes.

    Science.gov (United States)

    Sah, Shyam Kishor; Kim, Hae Young; Lee, Ji Hae; Lee, Seong-Wook; Kim, Hyung-Sik; Kim, Yeon-Soo; Kang, Kyung-Sun; Kim, Tae-Yoon

    2017-06-01

    The influence of mesenchymal stem cells (MSCs) on keratinocytes in altered microenvironments is poorly understood. Here, we cocultured umbilical cord blood-derived MSCs with normal human epidermal keratinocytes to evaluate their paracrine effect in the presence of high extracellular calcium (Ca 2+ ) concentration. High Ca 2+ environment to keratinocytes can disrupt normal skin barrier function due to abnormal/premature differentiation of keratinocytes. Surprisingly, we found that MSCs suppress both proliferation and differentiation of keratinocytes under a high Ca 2+ environment in transforming growth factors β1 (TGFβ1)-dependent manner. Furthermore, we determined that MSCs can regulate the mitogen-activated protein kinases, phosphatidylinositol 3-kinase/protein kinase B, and protein kinase C pathways in Ca 2+ -induced differentiated keratinocytes. Knockdown of TGFβ1 from MSCs results in decreased suppression of differentiation with significantly increased proliferation of keratinocytes compared with control MSCs. MSCs-derived TGFβ1 further induced growth inhibition of keratinocyte in high extracellular Ca 2+ environment as analyzed by a decrease in DNA synthesis, accumulation of phosphorylated retinoblastoma protein, cdc2, and increased mRNA level of p21, and independent of TGFβ1/SMAD pathway. Taken together, we found that MSCs-derived TGFβ1 is a critical regulator of keratinocyte function, and involves multiple proximal signaling cascades. Stem Cells 2017;35:1592-1602. © 2017 AlphaMed Press.

  2. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium

  3. Oxidative defence reactions in sunflower roots induced by methyl-jasmonate and methyl-salicylate and their relation with calcium signalling.

    Science.gov (United States)

    Garrido, Inmaculada; Espinosa, Francisco; Alvarez-Tinaut, M Carmen

    2009-10-01

    Ca(2+) plays a critical role as second messenger in the signal-response coupling of plant defence responses, and methyl-jasmonate and methyl-salicylate are important components of signal transduction cascades activating plant defences. When intact axenic non-induced seedling roots of sunflower were treated with different Ca(2+) concentrations up to 1 mM, there was no significant increase in O(2)(*-) generation or DMAB-MBTH peroxidase (extracellular, ECPOX) activities in the apoplast, probably because these roots had enough Ca(2+) in their exo- and endocellular reservoirs. Both activities were strongly inhibited by the RBOH-NADPH oxidase inhibitor DPI and by the Ca(2+) surrogate antagonist La(3+), but the voltage-dependent Ca(2+) channel blocker verapamil was only inhibitory at concentrations higher than those active on animal L-type Ca(2+) channels. Concentrations >5 mM EGTA (chelating Ca(2+) in the apoplast) and Li(+) (inhibiting PI cycle dependent endogenous Ca(2+) fluxes) also inhibited both activities. W7, inhibitor of binding of Ca-CaM to its target protein, enhanced both activities, but the inactive analogue W5 showed a similar effect. Our data suggest that Ca(2+) from exocellular and, to a lesser extent, from endocellular stores is involved in oxidative activities, and that RBOH-NADPH oxidase is the main system supporting them. Ca(2+) activation of the PM cytosolic side of RBOH-NADPH oxidase is probably the key to Ca(2+) involvement in these processes. Roots induced by MeJA or MeSA showed significant enhancement of both oxidative activities, as corresponding to the oxidative burst evoked by the two phytohormones in the root apoplast. But while ECPOX activity showed a response to the effectors similar to that described above for non-induced roots, O(2)(*-) generation activity in the apoplast of induced roots was insensitive to EGTA, verapamil and Li(+), the inhibitors of exogenous and endogenous Ca(2+) fluxes; only DPI and La(3+) were inhibitory. As

  4. Automorphosis-like growth in etiolated pea seedlings is induced by the application of chemicals affecting perception of gravistimulation and its signal transduction

    Science.gov (United States)

    Miyamoto, Kensuke; Hoshino, Tomoki; Hitotsubashi, Reiko; Yamashita, Masamichi; Ueda, Junichi

    Both microgravity conditions in space and simulated microgravity using a 3-dimensional clinostat resulted in: (1) automorphosis of etiolated pea seedlings, (2) epicotyls bending ca. 45° from the vertical line to the direction away from cotyledons, (3) inhibition of hook formation and (4) alternation of growth direction of roots. These facts indicate that the growth and development of etiolated pea seedlings on earth is under the influence of gravistimulation. Lanthanum and gadolinium ions, blockers of stretch-activated mechanosensitive ion channels, induced automorphosis-like epicotyl bending. Cantharidin, an inhibitor of protein phosphatase, also phenocopied automorphosis-like growth. On the other hand, cytochalasin B, cytochalasin D and brefeldin A did not induce automorphological epicotyl bending and inhibition of hook formation, although these compounds strikingly inhibited elongation of etiolated pea epicotyls. These results strongly suggest that stretch-activated mechanosensitive ion channels are involved in the perception of signals of gravistimuli in plants, and they are transduced by protein phosphorylation and dephosphorylation cascades by changing levels of calcium ions. Possible mechanisms to induce automorphosis-like growth in relation to gravity signals in etiolated pea seedlings are discussed.

  5. Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells.

    Science.gov (United States)

    Baio, Jonathan; Martinez, Aida F; Bailey, Leonard; Hasaniya, Nahidh; Pecaut, Michael J; Kearns-Jonker, Mary

    2018-02-12

    Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth

  6. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  7. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    International Nuclear Information System (INIS)

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-01-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression

  8. Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, University of Maryland, Baltimore, MD (United States); Kang, Ah-Young [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, Program of Immunology, Graduate School, Seoul National University, Seoul (Korea, Republic of); Ko, Ah-ra [Clinical Research Center, Samsung Biomedical Research Institute, Seoul (Korea, Republic of); Park, Hayne Cho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); So, Insuk [Department of Physiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Cheong, Hae Il [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Pediatrics, Seoul National University Children’s Hospital, Seoul (Korea, Republic of); Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Hwang, Young-Hwan [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Internal Medicine, Eulji General Hospital, Eulji University College of Medicine, Seoul (Korea, Republic of); and others

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for μ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpression of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independently regulated by calpain-mediated PC1 degradation. They suggest that the PC1 function on JAK2 and ERK signaling pathways might be regulated by calpains in response to the changes in intracellular calcium concentration. - Highlights: • Polycystin-1 is a target of ubiquitin-independent degradation by calpains. • The PEST domain is required for calpain-mediated degradation of polycystin-1. • Polycystin-1 may independently regulate JAK2 and ERK signaling pathways.

  9. Signal percolation through plants and the shape of the calcium signature.

    Science.gov (United States)

    Plieth, Christoph

    2010-04-01

    Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration ([Ca(2+)](c)). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the '[Ca(2+)](c) signature' in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the 'receptor cells' to the 'effector cells'. Here, a novel aspect is highlighted to explain the variety of [Ca(2+)] kinetics seen by integrating methods of [Ca(2+)](c) recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of [Ca(2+)](c)-increases percolate through the organism and thereby deliver a broad variety of 'signatures'. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular '[Ca(2+)](c) signatures' recorded by optical techniques which integrate over a big number of cells or even whole plants.

  10. Amino alcohol- (NPS-2143 and quinazolinone-derived calcilytics (ATF936 and AXT914 differentially mitigate excessive signalling of calcium-sensing receptor mutants causing Bartter syndrome Type 5 and autosomal dominant hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Saskia Letz

    Full Text Available Activating calcium sensing receptor (CaSR mutations cause autosomal dominant hypocalcemia (ADH characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics on activating CaSR mutants.All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o. To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914.All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants.The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations.

  11. Ketamine alleviates bradykinin-induced disruption of the mouse cerebrovascular endothelial cell-constructed tight junction barrier via a calcium-mediated redistribution of occludin polymerization

    International Nuclear Information System (INIS)

    Chen, Jui-Tai; Lin, Yi-Ling; Chen, Ta-Liang; Tai, Yu-Ting; Chen, Cheng-Yu; Chen, Ruei-Ming

    2016-01-01

    Highlights: • Ketamine could suppress bradykinin-induced intracellular calcium mobilization. • Ketamine induced B1R protein and mRNA expressions but did not change B2R protein levels. • Ketamine attenuated bradykinin-induced redistribution of occludin tight junctions. • Ketamine prevented bradykinin-induced breakage of the MCEC-constructed tight junction barrier. - Abstract: Following brain injury, a sequence of mechanisms leads to disruption of the blood-brain barrier (BBB) and subsequent cerebral edema, which is thought to begin with activation of bradykinin. Our previous studies showed that ketamine, a widely used intravenous anesthetic agent, can suppress bradykinin-induced cell dysfunction. This study further aimed to evaluate the protective effects of ketamine against bradykinin-induced disruption of the mouse cerebrovascular endothelial cell (MCEC)-constructed tight junction barrier and the possible mechanisms. Exposure of MCECs to bradykinin increased intracellular calcium (Ca 2+ ) concentrations in a time-dependent manner. However, pretreatment of MCECs with ketamine time- and concentration-dependently lowered the bradykinin-induced calcium influx. As to the mechanisms, although exposure of MCECs to ketamine induced bradykinin R1 receptor protein and mRNA expression, this anesthetic did not change levels of the bradykinin R2 receptor, a major receptor that responds to bradykinin stimulation. Bradykinin increased amounts of soluble occludin in MCECs, but pretreatment with ketamine alleviated this disturbance in occludin polymerization. Consequently, exposure to bradykinin decreased the transendothelial electronic resistance in the MCEC-constructed tight junction barrier. However, pretreatment with ketamine attenuated the bradykinin-induced disruption of the tight junction barrier. Taken together, this study shows that ketamine at a therapeutic concentration can protect against bradykinin-induced breakage of the BBB via suppressing calcium

  12. RSK2-induced stress tolerance enhances cell survival signals mediated by inhibition of GSK3β activity

    International Nuclear Information System (INIS)

    Lee, Cheol-Jung; Lee, Mee-Hyun; Lee, Ji-Young; Song, Ji Hong; Lee, Hye Suk; Cho, Yong-Yeon

    2013-01-01

    Highlights: •We demonstrated a novel function of RSK2 in stress tolerance. •RSK2 deficiency enhanced apoptosis by calcium stress. •RSK2-mediated GSK3β phosphorylation at serine 9 increased calcium-induced stress tolerance. •Calcium stress-induced apoptosis inhibited by adding back of RSK2 into RSK2 −/− MEFs. -- Abstract: Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2 −/− MEFs compared with RSK2 +/+ MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2 +/+ MEFs. In contrast, GSK3β −/− MEFs induced the cell proliferation compared with GSK3β +/+ MEFs. Importantly, RSK2 −/− MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2 +/+ MEFs. The sub-G1 induction in RSK2 −/− MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2 +/+ MEFs. Notably, return back of RSK2 into RSK2 −/− MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2 −/− /mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development

  13. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    Science.gov (United States)

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  14. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    Science.gov (United States)

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  15. Possible role of calcium dependent protein phosphorylation in the modulation of wound induced HRGP gene activation in potatoes after gamma irradiation

    International Nuclear Information System (INIS)

    Ussuf, K.K.; Laxmi, N.H.; Nair, P.M.

    1996-01-01

    Hydroxyproline rich glycoprotein (HRGP) gene is induced in both control and gamma irradiated potato tubers after wounding. The enhanced RNA synthesis in response to wounding correlated well with the accumulation of both HRGP gene transcripts and protein. Initially, the level of HRGP gene expression in gamma irradiated potatoes in response to wounding was 30% more than the corresponding controls. After post irradiation storage of 3-5 weeks, HRGP gene expression in response to wounding was significantly lower than the unirradiated samples. This low level of HRGP gene expression in irradiated potatoes was partially retrieved by 5 mM Ca 2+ treatment. Prior treatment with trifluoperazine, a calcium channel blocker resulted in 35% reduction in wound induced HRGP gene expression in control potatoes, further providing evidence for the involvement of Ca 2+ dependency for HRGP gene activation. A comparative study on in vivo protein phosphorylation induced by wounding in control and irradiated potatoes exhibited significant differences. A good correlation was observed in the modulation of phosphorylation and HRGP gene expression by Ca 2+ in irradiated potatoes. Wound induced signal transduction system and subsequent Ca 2+ dependent protein phosphorylation for the activation of HRGP gene is affected in potatoes after gamma irradiation, thus impairing the wound healing process adversely. (author). 25 refs., 5 figs

  16. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages.

    Science.gov (United States)

    Datta, Debika; Khatri, Preeti; Banerjee, Chaitali; Singh, Ambika; Meena, Ramavatar; Saha, Dhira Rani; Raman, Rajagopal; Rajamani, Paulraj; Mitra, Abhijit; Mazumder, Shibnath

    2016-01-01

    Mycobacterium fortuitum causes 'mycobacteriosis' in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.

  17. Altered Elementary Calcium Release Events and Enhanced Calcium Release by Thymol in Rat Skeletal Muscle

    OpenAIRE

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-01-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine bind...

  18. Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits.

    Science.gov (United States)

    Mattson, M P; Chan, S L

    2001-10-01

    Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer's disease (AD). Associations between the pathological hallmarks ofAD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the beta-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid beta-peptide (Abeta) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Abeta may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic

  19. The effect of organolead and -tin compounds on signal transduction in vitro: Investigations on the cytosolic free calcium concentration; Der Einfluss von organischen Blei- und Zinnverbindungen auf die Signaltransduktion in vitro: Untersuchungen zur Veraenderung der zytosolischen freien Calciumkonzentration

    Energy Technology Data Exchange (ETDEWEB)

    Ade, T.

    1996-03-01

    The cellular effects of organolead and -tin compounds are not yet precisely understood. However, on the basis of their immuno- and neurotoxicity it is most likely that these substances interfere with cellular signal transduction. For this reason the effect on cytosolic free calcium concentration was investigated in this study. The organometals used induce a persistent increase in cytosolic free calcium concentration in human leukaemia HL-60 cells as well as in neuroblastoma NG-108-15 cells. Studies of the mechanism of the organometal effect with EGTA and calcium channel blockers revealed that an influx of calcium from the extracellular space is responsible for the organometal-induced calcium elevation in HL-60 cells. The effect of the investigated lead compounds and tributyltin is due to calcium channel opening in the plasma membrane. The same is true for the NG108-15 cells. Activation of distinct receptor-mediated signal transduction is not the reason for channel opening. The regulation of cytosolic free calcium concentration was affected by inhibition of plasmamembrane Ca{sup 2+}-ATPases as well as by disturbance of other ion gradients. A consequence of the organometal effect on the cytosolic calcium concentration is the activation of a cPLA{sub 2} and perhaps the induction of apoptosis. These results contribute towards the understanding of biochemical mechanisms causing the injury of vells by organometals. (orig.) [Deutsch] Die zellulaeren Wirkungsmechanismen organischer Blei- und Zinnverbindungen sind zum grossen Teil nicht verstanden. Die immuno- und neurotoxischen Effekte dieser Xenobiotika lassen jedoch die Beeinflussung der Signalwege in den Zellen vermuten. Daher lag der Schwerpunkt dieser Arbeit in der Untersuchung der Signaluebertragungswege und der damit verbundenen Regulation des Calciums. Sowohl in immunkompetenten Zellen (HL-60) wie auch in neuronalen Zellen (NG108-15) induzierten die untersuchten Organometalle eine persistente Erhoehung der

  20. Effects of low-dose ionising radiation on pituitary adenoma: is there a role for L-type calcium channel?

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marcella Araugio; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia]. E-mail: santosr@cdtn.br

    2005-10-15

    Pituitary adenomas constitute about 6-18% of brain tumours in adults. Activation of voltage gated calcium currents can account for growth hormone over secretion in some GH-secreting pituitary adenomas that produce an acromegaly appearance and increase mortality. Ca{sup 2+} ions, as mediators of intracellular signalling, are crucial for the development of apoptosis. However, the role of [Ca{sup 2+}] in the development of apoptosis is ambiguous. In this study, the effects of low-dose ionising gamma radiation ({sup 60} Co) on rat pituitary adenoma cells survival and proliferation and the role of calcium channels on the apoptosis radio-induced were evaluated. Doses as low as 3 Gy were found to inhibit GH3 cell proliferation. Even though there was a significant number of live cells,168 hours following irradiation, they were not able to proliferate. The results indicate that the blockade of extracellular calcium influx through these channels does not interfere in the radiation-induced apoptosis in GH3 cells. (author)

  1. Calcium hydroxide induced apexification with apical root development: a clinical case report.

    Science.gov (United States)

    Soares, J; Santos, S; César, C; Silva, P; Sá, M; Silveira, F; Nunes, E

    2008-08-01

    To report the induction of apical root development by calcium hydroxide in teeth with pulp necrosis and periapical radiolucency. A 10-year-old male patient was admitted to the clinic complaining of an intense pain and oedema on the anterior facial region, compatible with an acute dentoalveolar abscess. There was a previous history of dental trauma; only tooth 11 was negative to pulp sensitivity tests. Radiographically, tooth 11 exhibited incomplete root formation, characterized by a wide root canal, thin and fragile dentinal walls, and an extensive, divergent foraminal opening associated with an apical radiolucency. The first appointment focused on urgent local and systemic treatment. Apexification treatment commenced at the second session after 7 days, by means of chemo-mechanical debridement throughout the entire root canal, using K-files and irrigation with a 2.5% sodium hypochlorite solution. Subsequently, a calcium hydroxide paste was applied and changed four times over 8 months, when radiographic examination revealed complete closure of the foraminal opening, resulting in resolution of the periapical radiolucency and associated with 5 mm of additional root development. The root canal was filled by thermomechanical compaction of gutta-percha and sealer. A 3-year follow-up revealed normal periapical tissues and the absence of symptoms. * In young patients, dental trauma may cause pulp necrosis and arrest of root formation. * Under certain circumstances, chemo-mechanical debridement, including the use of a calcium hydroxide paste, is a valid alternative to mineral trioxide aggregate and or surgery for root-end closure. * In teeth with incompletely formed roots associated with periapical lesions, calcium hydroxide can induce periapical repair through the closure of the foramen and apical root development.

  2. Therapeutic role of calcium and vitamin K3 in chemically induced hepatocarcinogenesis - new tools for cancer treatment.

    Science.gov (United States)

    Anwar, Firoz; Khan, Ruqaiyah; Sachan, Richa; Kazmi, Imran; Rawat, Alisha; Sabih, Abdullah; Singh, Rajbala; Afzal, Muhammad; Ahmad, Aftab; Al-Orab, Abdulaziz S; Al-Abbasi, F A; Bhatt, Prakash Chandra; Kumar, Vikas

    2018-04-17

    HCC has been reported to be immensely occurring carcinoma worldwide. Recent days the mortality occurred due to liver cancer has also been found to be increased at an alarming speed affecting mostly the young patients. The aim of the current study was to decipher the role of calcium and vitamin K3 in the treatment of chemically induced hepatocarcinogenesis in the male Wistar rats. Liver cancer was induced via a subnecrogenic dose of 160 mg/kg body weight, diethylnitrosamine (DENA) when associated with fasting/refeeding in male Wistar rats. It elevated the serum glutamate oxaloacetate (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), bilirubin, total cholesterol (CH), triglycerides (TG), alfa-fetoprotein (AFP) and reduced high-density lipoprotein (HDL). Histopathological examination of liver tissue showed marked carcinogenicity of the chemical carcinogen. Food, water intake and animal weights were also assessed, respectively. The animals exposed to DENA showed a significant decrease in the body weight. The elevated levels of serum SGOT, SGPT, ALP, AFP, TC and TG were restored by administration of calcium and Vit K (ad libitum) combination at higher dose than the normal dietary requirement (3 mg/kg) daily for 12 weeks p.o. Physiological and biochemical analysis showed the beneficial effects of calcium and vitamin K3 combination in the animals exposed to DENA. The results deciphered the beneficial effects of calcium and vitamin K3 in combination.

  3. Two Dimensional Finite Element Model to Study Calcium Distribution in Oocytes

    Science.gov (United States)

    Naik, Parvaiz Ahmad; Pardasani, Kamal Raj

    2015-06-01

    Cytosolic free calcium concentration is a key regulatory factor and perhaps the most widely used means of controlling cellular function. Calcium can enter cells through different pathways which are activated by specific stimuli including membrane depolarization, chemical signals and calcium depletion of intracellular stores. One of the important components of oocyte maturation is differentiation of the Ca2+ signaling machinery which is essential for egg activation after fertilization. Eggs acquire the ability to produce the fertilization-specific calcium signal during oocyte maturation. The calcium concentration patterns required during different stages of oocyte maturation are still not completely known. Also the mechanisms involved in calcium dynamics in oocyte cell are still not well understood. In view of above a two dimensional FEM model has been proposed to study calcium distribution in an oocyte cell. The parameters such as buffers, ryanodine receptor, SERCA pump and voltage gated calcium channel are incorporated in the model. Based on the biophysical conditions the initial and boundary conditions have been framed. The model is transformed into variational form and Ritz finite element method has been employed to obtain the solution. A program has been developed in MATLAB 7.10 for the entire problem and executed to obtain numerical results. The numerical results have been used to study the effect of buffers, RyR, SERCA pump and VGCC on calcium distribution in an oocyte cell.

  4. Moringa oleifera-rich diet and T cell calcium signaling in spontaneously hypertensive rats.

    Science.gov (United States)

    Attakpa, E S; Bertin, G A; Chabi, N W; Ategbo, J-M; Seri, B; Khan, N A

    2017-11-24

    Moringa oleifera is a plant whose fruits, roots and leaves have been advocated for traditional medicinal uses. The physicochemical analysis shows that Moringa oleifera contains more dietary polyunsaturated fatty acids (PUFA) than saturated fatty acids (SFA). The consumption of an experimental diet enriched with Moringa oleifera extracts lowered blood pressure in spontaneously hypertensive rats (SHR), but not in normotensive Wistar-Kyoto (WKY) rats as compared to rats fed an unsupplemented control diet. Anti-CD3-stimulated T cell proliferation was diminished in both strains of rats fed the Moringa oleifera. The experimental diet lowered secretion of interleukin-2 in SHR, but not in WKY rats compared with rats fed the control diet. Studies of platelets from patients with primary hypertension and from SHR support the notion that the concentration of intracellular free calcium [Ca(2+)](i) is modified in both clinical and experimental hypertension. We observed that the basal, [Ca(2+)](i) was lower in T cells of SHR than in those of WKY rats fed the control diet. Feeding the diet with Moringa oleifera extracts to WKY rats did not alter basal [Ca(2+)](i) in T cells but increased basal [Ca(2+)](i) in SHR. Our study clearly demonstrated that Moringa oleifera exerts antihypertensive effects by inhibiting the secretion of IL-2 and modulates T cell calcium signaling in hypertensive rats.

  5. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers

    International Nuclear Information System (INIS)

    Galtier, F.; Mura, T.; Raynaud de Mauverger, E.; Chevassus, H.; Farret, A.; Gagnol, J.-P.; Costa, F.; Dupuy, A.

    2012-01-01

    Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca 2+ homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca 2+ spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to their median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38 ± 5.68 vs − 1.15 ± 4.32 UI/L, P 2+ sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca 2+ spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca 2+ spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r = 0.71, P = 0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication. -- Highlights: ► Statin use may be limited by side effects, particularly myopathy. ► Statins might impair mitochondrial function and muscle Ca2+ signaling in muscle. ► This was tested among healthy volunteers receiving simvastatin 80 mg daily for 8 weeks. ► CK increase was associated with alterations in Ca2+ sparks and mitochondrial function.

  6. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-01-01

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212

  7. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    Science.gov (United States)

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  8. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Le Geng

    2018-06-01

    Full Text Available Background/Aims: Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Methods: Rapid electrical stimulation (RES at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz were set as no electrical stimulation (NES control or low-frequency electrical stimulation (LES control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Results: Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. Conclusion: RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and

  9. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals

    Science.gov (United States)

    Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin

    2018-01-01

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515

  10. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.

    Science.gov (United States)

    Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin

    2018-03-12

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.

  11. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation.

    Science.gov (United States)

    Stobart, Jillian L; Ferrari, Kim David; Barrett, Matthew J P; Stobart, Michael J; Looser, Zoe J; Saab, Aiman S; Weber, Bruno

    2018-01-01

    Localized, heterogeneous calcium transients occur throughout astrocytes, but the characteristics and long-term stability of these signals, particularly in response to sensory stimulation, remain unknown. Here, we used a genetically encoded calcium indicator and an activity-based image analysis scheme to monitor astrocyte calcium activity in vivo. We found that different subcellular compartments (processes, somata, and endfeet) displayed distinct signaling characteristics. Closer examination of individual signals showed that sensory stimulation elevated the number of specific types of calcium peaks within astrocyte processes and somata, in a cortical layer-dependent manner, and that the signals became more synchronous upon sensory stimulation. Although mice genetically lacking astrocytic IP3R-dependent calcium signaling (Ip3r2-/-) had fewer signal peaks, the response to sensory stimulation was sustained, suggesting other calcium pathways are also involved. Long-term imaging of astrocyte populations revealed that all compartments reliably responded to stimulation over several months, but that the location of the response within processes may vary. These previously unknown characteristics of subcellular astrocyte calcium signals provide new insights into how astrocytes may encode local neuronal circuit activity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. The functions of store-operated calcium channels.

    Science.gov (United States)

    Putney, James W; Steinckwich-Besançon, Natacha; Numaga-Tomita, Takuro; Davis, Felicity M; Desai, Pooja N; D'Agostin, Diane M; Wu, Shilan; Bird, Gary S

    2017-06-01

    Store-operated calcium channels provide calcium signals to the cytoplasm of a wide variety of cell types. The basic components of this signaling mechanism include a mechanism for discharging Ca 2+ stores (commonly but not exclusively phospholipase C and inositol 1,4,5-trisphosphate), a sensor in the endoplasmic reticulum that also serves as an activator of the plasma membrane channel (STIM1 and STIM2), and the store-operated channel (Orai1, 2 or 3). The advent of mice genetically altered to reduce store-operated calcium entry globally or in specific cell types has provided important tools to understand the functions of these widely encountered channels in specific and clinically important physiological systems. This review briefly discusses the history and cellular properties of store-operated calcium channels, and summarizes selected studies of their physiological functions in specific physiological or pathological contexts. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Published by Elsevier B.V.

  13. Inhibition of T-Type Voltage Sensitive Calcium Channel Reduces Load-Induced OA in Mice and Suppresses the Catabolic Effect of Bone Mechanical Stress on Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Padma P Srinivasan

    Full Text Available Voltage-sensitive calcium channels (VSCC regulate cellular calcium influx, one of the earliest responses to mechanical stimulation in osteoblasts. Here, we postulate that T-type VSCCs play an essential role in bone mechanical response to load and participate in events leading to the pathology of load-induced OA. Repetitive mechanical insult was used to induce OA in Cav3.2 T-VSCC null and wild-type control mouse knees. Osteoblasts (MC3T3-E1 and chondrocytes were treated with a selective T-VSCC inhibitor and subjected to fluid shear stress to determine how blocking of T-VSCCs alters the expression profile of each cell type upon mechanical stimulation. Conditioned-media (CM obtained from static and sheared MC3T3-E1 was used to assess the effect of osteoblast-derived factors on the chondrocyte phenotype. T-VSCC null knees exhibited significantly lower focal articular cartilage damage than age-matched controls. In vitro inhibition of T-VSCC significantly reduced the expression of both early and late mechanoresponsive genes in osteoblasts but had no effect on gene expression in chondrocytes. Furthermore, treatment of chondrocytes with CM obtained from sheared osteoblasts induced expression of markers of hypertrophy in chondrocytes and this was nearly abolished when osteoblasts were pre-treated with the T-VSCC-specific inhibitor. These results indicate that T-VSCC plays a role in signaling events associated with induction of OA and is essential to the release of osteoblast-derived factors that promote an early OA phenotype in chondrocytes. Further, these findings suggest that local inhibition of T-VSCC may serve as a therapy for blocking load-induced bone formation that results in cartilage degeneration.

  14. NMDA Receptor Signaling Is Important for Neural Tube Formation and for Preventing Antiepileptic Drug-Induced Neural Tube Defects.

    Science.gov (United States)

    Sequerra, Eduardo B; Goyal, Raman; Castro, Patricio A; Levin, Jacqueline B; Borodinsky, Laura N

    2018-05-16

    Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation. SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy. Copyright © 2018 the authors 0270-6474/18/384762-12$15.00/0.

  15. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    Science.gov (United States)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  16. Distinct Calcium Signaling Pathways Regulate Calmodulin Gene Expression in Tobacco1

    Science.gov (United States)

    van der Luit, Arnold H.; Olivari, Claudio; Haley, Ann; Knight, Marc R.; Trewavas, Anthony J.

    1999-01-01

    Cold shock and wind stimuli initiate Ca2+ transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca2+ pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca2+ transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca2+ signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca2+ dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca2+ signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm. PMID:10557218

  17. Detection and quantification of coronary calcium from dual energy chest x-rays: Phantom feasibility study.

    Science.gov (United States)

    Zhou, Bo; Wen, Di; Nye, Katelyn; Gilkeson, Robert C; Eck, Brendan; Jordan, David; Wilson, David L

    2017-10-01

    We have demonstrated the ability to identify coronary calcium, a reliable biomarker of coronary artery disease, using nongated, 2-shot, dual energy (DE) chest x-ray imaging. Here we will use digital simulations, backed up by measurements, to characterize DE calcium signals and the role of potential confounds such as beam hardening, x-ray scatter, cardiac motion, and pulmonary artery pulsation. For the DE calcium signal, we will consider quantification, as compared to CT calcium score, and visualization. We created stylized and anatomical digital 3D phantoms including heart, lung, coronary calcium, spine, ribs, pulmonary artery, and adipose. We simulated high and low kVp x-ray acquisitions with x-ray spectra, energy dependent attenuation, scatter, ideal detector, and automatic exposure control (AEC). Phantoms allowed us to vary adipose thickness, cardiac motion, etc. We used specialized dual energy coronary calcium (DECC) processing that includes corrections for scatter and beam hardening. Beam hardening over a wide range of adipose thickness (0-30 cm) reduced the change in intensity of a coronary artery calcification (ΔI CAC ) by calcium signal (ΔI CAC ) in DECC images ±9%. If a simulated pulmonary artery fills with blood between exposures, it can give rise to a residual signal in DECC images, explaining pulmonary artery visibility in some clinical images. Residual misregistration can be mostly compensated by integrating signals in an enlarged region encompassing registration artifacts. DECC calcium score compared favorably to CT mass and volume scores over a number of phantom perturbations. Simulations indicate that proper DECC processing can faithfully recover coronary calcium signals. Beam hardening, errors in scatter estimation, cardiac motion, calcium residual misregistration etc., are all manageable. Simulations are valuable as we continue to optimize DE coronary calcium image processing and quantitative analysis. © 2017 American Association of Physicists

  18. Experimental study of MRI signal changes of calcification

    International Nuclear Information System (INIS)

    Gong Xiangyang; Li Senhua; Li Rongfen; Hong Xiang; Gong Xiaoya; Xu Fengfeng

    1999-01-01

    Objective: To evaluate MRI signal changes according to different calcium compound, concentration and proportion, and try to give an reasonable explanation. Methods: Sixty samples composed of different calcium powders, various concentration and proportion of calcium were examined with CT and MRI. Five different calcium particles were evaluated with scanning electron microscopy. Results: (1) CT value of calcium gradually increased as the concentration increased; (2) CaSO 4 ·H 2 O was similar to CaCO 3 in terms of MRI T 1 WI signal intensity (P > 0.05); (3) Ca 3 (PO 4 ) 2 and Ca(OH) 2 showed hyperintensity in T 1 WI and was higher than other calcium salts (P 1 WI signal intensity of Ca 3 (PO 4 ) 2 / and Ca(OH) 2 showed biphasic curves with their peaks at 0.3 g/ml; (5) T 2 WI signal intensity of all series of calcium decreased as the concentration increased; (6) Signal intensity of mixed Ca 3 (PO 4 ) 2 /CaCO 3 was higher than CaHPO 4 ·2H 2 O/CaCO 3 on T 1 WI and lower on T 2 WI (P 3 , CaHPO 4 ·2H 2 O and CaSO 4 ·2H 2 O showed regular crystal shapes and smooth surface under scanning electron microscopy, but Ca 3 (PO 4 ) 2 and Ca(OH) 2 displayed their irregular figures and rough surface. Conclusions: Calcifications show variable MR signal due to difference of calcium compounds, various concentration and proportion of calcium. Understanding of these finding will help interpretation of MR images more precisely

  19. Exclusive photorelease of signalling lipids at the plasma membrane.

    Science.gov (United States)

    Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-12-21

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.

  20. Dissecting the calcium-induced differentiation of human primary keratinocytes stem cells by integrative and structural network analyses.

    Directory of Open Access Journals (Sweden)

    Kiana Toufighi

    2015-05-01

    Full Text Available The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55% are composed of non-dynamic and dynamic gene products ('di-chromatic', 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation.

  1. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn

    2010-05-04

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  2. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn; Bö hmer, Maik; Hu, Honghong; Nishimura, Noriyuki; Schroeder, Julian I.

    2010-01-01

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  3. Radiation-induced electron paramagnetic resonance signal and soybean isoflavones content

    International Nuclear Information System (INIS)

    Oliveira, Marcos R.R. de; Mandarino, José M.G.; Mastro, Nelida L. del

    2012-01-01

    Electron Paramagnetic Resonance (EPR) is a well-known spectroscopic technique that detects paramagnetic centers and can detect free radicals with high sensitivity. In food, free radicals can be generated by several commonly used industrial processes, such as radiosterilization or heat treatment. EPR spectroscopy is used to detect radioinduced free radicals in food. In this work the relation between EPR signal induced by gamma irradiation treatment and soybean isoflavones content was investigated. Present results did not show correlation between total isoflavones content and the EPR signal. Nevertheless, some isoflavone contents had a negative correlation with the radiation-induced EPR signal. - Highlights: ► Electron Paramagnetic Resonance (EPR) detects free radicals. ► Ionizing radiation as free radicals inducer. ► Total soybean isoflvones do not correlate with radiation-induced EPR intensity but a soybean glucosyl glucoside isoflavone does.

  4. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-09-18

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Naoxintong Protects Primary Neurons from Oxygen-Glucose Deprivation/Reoxygenation Induced Injury through PI3K-Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2016-01-01

    Full Text Available Naoxintong capsule (NXT, developed from Buyang Huanwu Decoction, has shown the neuroprotective effects in cerebrovascular diseases, but the neuroprotection mechanisms of NXT on ischemia/reperfusion injured neurons have not yet been well known. In this study, we established the oxygen-glucose deprivation/reoxygenation (OGD/R induced neurons injury model and treat the neurons with cerebrospinal fluid containing NXT (BNC to investigate the effects of NXT on OGD/R induced neurons injury and potential mechanisms. BNC improved neuron viability and decreased apoptotic rate induced by OGD/R. BNC attenuated OGD/R induced cytosolic and mitochondrial Ca2+ overload, ROS generation, intracellular NO levels and nNOS mRNA increase, and cytochrome-c release when compared with OGD/R group. BNC significantly inhibited both mPTP opening and ΔΨm depolarization. BNC increased Bcl-2 expression and decreased Bax expression, upregulated the Bcl-2/Bax ratio, downregulated caspase-3 mRNA and caspase-9 mRNA expression, and decreased cleaved caspase-3 expression and caspase-3 activity. BNC increased phosphorylation of Akt following OGD/R, while LY294002 attenuated BNC induced increase of phosphorylated Akt expression. Our study demonstrated that NXT protected primary neurons from OGD/R induced injury by inhibiting calcium overload and ROS generation, protecting mitochondria, and inhibiting mitochondrial apoptotic pathway which was mediated partially by PI3K-Akt signaling pathway activation.

  6. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  7. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-01-01

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  8. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress.

    Science.gov (United States)

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca 2+ ) on the process of adventitious rooting in cucumber ( Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca 2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca 2+ . The application of Ca 2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca 2+ /CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca 2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na 2 WO 4 ) and sodium azide (NaN 3 ) . This gives an indication that Ca 2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca 2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca 2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca 2+ /CaM may act as a downstream signaling molecule in NO-induced development of adventitious root

  9. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... most important voltage dependent calcium channel in all parts of the neuron. After treatment with thapsigargin the increase in cytosolic calcium was halved, indicating that calcium release from thapsigargin sensitive intracellular calcium stores is an important component of the potassium induced rise...

  10. A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model.

    Science.gov (United States)

    Trbakovic, Amela; Hedenqvist, Patricia; Mellgren, Torbjörn; Ley, Cecilia; Hilborn, Jöns; Ossipov, Dmitri; Ekman, Stina; Johansson, Carina B; Jensen-Waern, Marianne; Thor, Andreas

    2018-03-01

    The aim of this study was to investigate if a synthetic granular calcium phosphate compound (CPC) and a composite bisphosphonate-linked hyaluronic acid-calcium phosphate hydrogel (HABP·CaP) induced similar or more amount of bone as bovine mineral in a modified sinus lift rabbit model. Eighteen adult male New Zeeland White rabbits, received randomly one of the two test materials on a random side of the face, and bovine mineral as control on the contralateral side. In a sinus lift, the sinus mucosa was elevated and a titanium mini-implant was placed in the alveolar bone. Augmentation material (CPC, HABP·CaP or bovine bone) was applied in the space around the implant. The rabbits were euthanized three months after surgery and qualitative and histomorphometric evaluation were conducted. Histomorphometric evaluation included three different regions of interest (ROIs) and the bone to implant contact on each installed implant. Qualitative assessment (p = <.05), histomorphometric evaluations (p = < .01), and implant incorporation (p = <.05) showed that CPC and bovine mineral induced similar amount of bone and more than the HABP·CaP hydrogel. CPC induced similar amount of bone as bovine mineral and both materials induced more bone than HABP·CaP hydrogel. The CPC is suggested as a synthetic alternative for augmentations in the maxillofacial area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  12. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  13. Comparison of respiratory-induced variations in photoplethysmographic signals

    International Nuclear Information System (INIS)

    Li, Jin; Jin, Jie; Chen, Xiang; Sun, Weixin; Guo, Ping

    2010-01-01

    Photoplethysmography (PPG) is an optical method for detecting blood volume changes in tissue. Respiratory-induced intensity, frequency and amplitude variations are contained in the PPG signal; thus, an understanding of the relationships between all of these variations and respiration is essential to advancing respiration monitoring based on PPG. This study investigated correlations between respiratory-induced variations extracted from PPG and simultaneous respiratory signals. PPG signals were recorded from 28 healthy subjects under eight different conditions. Six respiratory-induced variations, i.e. the period of the systole, diastole and pulse, the amplitude of the systole and diastole, and the intensity variation, were determined from the PPG signal. The results indicate that, compared with the period of the pulse, the period of the systole and diastole correlates weakly with respiration; the amplitude of the diastole has a stronger correlation with respiration than the amplitude of the systole. For men, when the respiratory rate is less than 10 breaths min −1 , the period of the pulse has the strongest correlation with respiration, whereas up to or above 15 breaths min −1 , the intensity variation becomes strongest in the sitting posture, while the amplitude of the diastole is strongest in the supine posture. For women, compared with the other variations, the period of the pulse has nearly the strongest correlation with respiration, independent of respiratory rate or posture

  14. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress.

    Science.gov (United States)

    Aslam, Roohi; Williams, Lorraine E; Bhatti, Muhammad Faraz; Virk, Nasar

    2017-10-27

    P 2 - type calcium ATPases (ACAs-auto inhibited calcium ATPases and ECAs-endoplasmic reticulum calcium ATPases) belong to the P- type ATPase family of active membrane transporters and are significantly involved in maintaining accurate levels of Ca 2+ , Mn 2+ and Zn 2+ in the cytosol as well as playing a very important role in stress signaling, stomatal opening and closing and pollen tube growth. Here we report the identification and possible role of some of these ATPases from wheat. In this study, ACA and ECA sequences of six species (belonging to Poaceae) were retrieved from different databases and a phylogenetic tree was constructed. A high degree of evolutionary relatedness was observed among P 2 sequences characterized in this study. Members of the respective groups from different plant species were observed to fall under the same clade. This pattern highlights the common ancestry of P 2- type calcium ATPases. Furthermore, qRT-PCR was used to analyse the expression of selected ACAs and ECAs from Triticum aestivum (wheat) under calcium toxicity and calcium deficiency. The data indicated that expression of ECAs is enhanced under calcium stress, suggesting possible roles of these ATPases in calcium homeostasis in wheat. Similarly, the expression of ACAs was significantly different in plants grown under calcium stress as compared to plants grown under control conditions. This gives clues to the role of ACAs in signal transduction during calcium stress in wheat. Here we concluded that wheat genome consists of nine P 2B and three P 2A -type calcium ATPases. Moreover, gene loss events in wheat ancestors lead to the loss of a particular homoeolog of a gene in wheat. To elaborate the role of these wheat ATPases, qRT-PCR was performed. The results indicated that when plants are exposed to calcium stress, both P 2A and P 2B gene expression get enhanced. This further gives clues about the possible role of these ATPases in wheat in calcium management. These findings can be

  15. Mechanism and function of Vav1 localisation in TCR signalling.

    Science.gov (United States)

    Ksionda, Olga; Saveliev, Alexander; Köchl, Robert; Rapley, Jonathan; Faroudi, Mustapha; Smith-Garvin, Jennifer E; Wülfing, Christoph; Rittinger, Katrin; Carter, Tom; Tybulewicz, Victor L J

    2012-11-15

    The antigen-specific binding of T cells to antigen presenting cells results in recruitment of signalling proteins to microclusters at the cell-cell interface known as the immunological synapse (IS). The Vav1 guanine nucleotide exchange factor plays a critical role in T cell antigen receptor (TCR) signalling, leading to the activation of multiple pathways. We now show that it is recruited to microclusters and to the IS in primary CD4(+) and CD8(+) T cells. Furthermore, we show that this recruitment depends on the SH2 and C-terminal SH3 (SH3(B)) domains of Vav1, and on phosphotyrosines 112 and 128 of the SLP76 adaptor protein. Biophysical measurements show that Vav1 binds directly to these residues on SLP76 and that efficient binding depends on the SH2 and SH3(B) domains of Vav1. Finally, we show that the same two domains are critical for the phosphorylation of Vav1 and its signalling function in TCR-induced calcium flux. We propose that Vav1 is recruited to the IS by binding to SLP76 and that this interaction is critical for the transduction of signals leading to calcium flux.

  16. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Camargo R, C.; Uribe, R. M.; Gomez V, V.; Kobayashi, K.

    2014-08-01

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  17. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  18. ERK/CANP rapid signaling mediates 17β-estradiol-induced proliferation of human breast cancer cell line MCF-7 cells.

    Science.gov (United States)

    Wang, Guo-Sheng; Huang, Yan-Gang; Li, Huan; Bi, Shi-Jie; Zhao, Jin-Long

    2014-01-01

    17β-estradiol (E2) exerts its functions through both genomic and non-genomic signaling pathways. Because E2 is important in breast cancer development, we investigated whether its actions in promoting breast cancer cell proliferation occur through the non-genomic signaling pathway via extracellular signal-regulated kinase 1/2 (ERK1/2)/calcium-activated neutral protease (CANP). MCF-7 breast cancer cells were treated with ERKl/2 inhibitor (PD98059) or CANP inhibitor (calpeptin) before exposure to 1×10(-8) M E2. MTT colorimetry and flow cytometry were used to analyze effects on cell proliferation and cell cycle progression, respectively. Expression of phosphorylated-ERK (p-ERK), total ERK, and Capn4 proteins were assessed by Western blotting. Cell proliferation increased in cells treated with E2 for 24 h (P<0.05), and the proportion of cells in G0/G1 was decreased, accompanied by accelerated G1/S. Calpeptin pre-treatment significantly inhibited the E2-induced proliferation of MCF-7 cells (P<0.05), while also ameliorating the effects of E2 on cell cycle progression. Further, expression of p-ERK was rapidly up-regulated (after 10 min) by E2 (P<0.05), an effect that persisted 16 h after E2 exposure but which was significantly inhibited by PD98059 (P<0.05). Finally, expression of Capn4 protein was rapidly up-regulated in E2-exposed cells (P<0.05), but this change was significantly inhibited by PD98059 or calpeptin (P<0.05) pre-treatment. Thus, the rapid, non-genomic ERK/CANP signaling pathway mediates E2-induced proliferation of human breast cancer cells.

  19. Superantigen and HLA-DR ligation induce phospholipase-C gamma 1 activation in class II+ T cells

    DEFF Research Database (Denmark)

    Kanner, S B; Odum, Niels; Grosmaire, L

    1992-01-01

    Bacterial enterotoxin superantigens bind directly to HLA class II molecules (HLA-DR) expressed on both APC and activated human T cells, and simultaneously bind to certain V beta chains of the TCR. In this report, we compared early T cell signaling events in human alloantigen-stimulated T cells when...... activated by HLA-DR ligation through antibody cross-linking or by direct enterotoxin superantigen binding. Both types of stimuli induced tyrosine phosphorylation of phosphatidylinositol-specific phospholipase C gamma 1 (PLC gamma 1) and an increase in intracellular calcium concentration; however......, superantigen-induced signaling was stronger than class II ligation alone. Antibody-mediated ligation of HLA-DR with CD3 resulted in augmented PLC gamma 1 activation and increased calcium mobilization, consistent with a mechanism of superantigen activity through a combination of class II and CD3/Ti signals...

  20. Red meat and colon cancer : dietary haem-induced colonic cytotoxicity and epithelial hyperproliferation are inhibited by calcium

    NARCIS (Netherlands)

    Sesink, ALA; Termont, DSML; Kleibeuker, JH; Van der Meer, R

    2001-01-01

    High intake of red meat is associated with increased colon cancer risk. We have shown earlier that this may be due to the high haem content of red meat, because dietary haem increased cytolytic activity of faecal water and colonic epithelial proliferation. Dietary calcium inhibits diet-induced

  1. Effect of Topical Calcium Channel Blockers on Intraocular Pressure in Steroid-induced Glaucoma.

    Science.gov (United States)

    Ganekal, Sunil; Dorairaj, Syril; Jhanji, Vishal; Kudlu, Krishnaprasad

    2014-01-01

    To evaluate the effect of 0.125% verapamil and 0.5% diltiazem eye drops on intraocular pressure (IOP) in steroid-induced glaucoma in rabbit eyes. A total of 18 rabbits with steroid-induced glaucoma were divided into three groups (A, B and C; n = 6 each). Right eyes in groups A, B and C received 0.5% diltiazem, 0.125% verapamil and 0.5% timolol eye drops twice daily for 12 days, respectively; whereas, left eyes received distilled water. IOP was measured with Tono-pen XL at baseline, day 4, day 8, and day 12 of treatment. Both 0.5% diltiazem and 0.125% verapamil eye drops significantly reduced IOP compared to control eyes (p cite this article: Ganekal S, Dorairaj S, Jhanji V, Kudlu K. Effect of Topical Calcium Channel Blockers on Intraocular Pressure in Steroid-induced Glaucoma. J Current Glau Prac 2014;8(1):15-19.

  2. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    Science.gov (United States)

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  3. Plasma Calcium, Inorganic Phosphate and Magnesium During Hypocalcaemia Induced by a Standardized EDTA Infusion in Cows

    Directory of Open Access Journals (Sweden)

    Enemark JMD

    2001-06-01

    Full Text Available The intravenous Na2EDTA infusion technique allows effective specific chelation of circulating Ca2+ leading to a progressive hypocalcaemia. Methods previously used were not described in detail and results obtained by monitoring total and free ionic calcium were not comparable due to differences in sampling and analysis. This paper describes a standardized EDTA infusion technique that allowed comparison of the response of calcium, phosphorus and magnesium between 2 groups of experimental cows. The concentration of the Na2EDTA solution was 0.134 mol/l and the flow rate was standardized at 1.2 ml/kg per hour. Involuntary recumbency occurred when ionised calcium dropped to 0.39 – 0.52 mmol/l due to chelation. An initial fast drop of ionized calcium was observed during the first 20 min of infusion followed by a fluctuation leading to a further drop until recumbency. Pre-infusion [Ca2+] between tests does not correlate with the amount of EDTA required to induce involuntary recumbence. Total calcium concentration measured by atomic absorption remained almost constant during the first 100 min of infusion but declined gradually when the infusion was prolonged. The concentration of inorganic phosphate declined gradually in a fluctuating manner until recumbency. Magnesium concentration remained constant during infusion. Such electrolyte responses during infusion were comparable to those in spontaneous milk fever. The standardized infusion technique might be useful in future experimental studies.

  4. Calcium/Calmodulin-Dependent Protein Kinase IV Mediates IFN-γ-Induced Immune Behaviors in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    RuiCai Gu

    2018-03-01

    Full Text Available Background/Aims: Whether calcium/calmodulin-dependent protein kinase IV (CaMKIV plays a role in regulating immunologic features of muscle cells in inflammatory environment, as it does for immune cells, remains mostly unknown. In this study, we investigated the influence of endogenous CaMKIV on the immunological characteristics of myoblasts and myotubes received IFN-γ stimulation. Methods: C2C12 and murine myogenic precursor cells (MPCs were cultured and differentiated in vitro, in the presence of pro-inflammatory IFN-γ. CaMKIV shRNA lentivirus transfection was performed to knockdown CaMKIV gene in C2C12 cells. pEGFP-N1-CaMKIV plasmid was delivered into knockout cells for recovering intracellular CaMKIV gene level. CREB1 antagonist KG-501 was used to block CREB signal. qPCR, immunoblot analysis, or immunofluorescence was used to detect mRNA and protein levels of CaMKIV, immuno-molecules, or pro-inflammatory cytokines and chemokines. Co-stimulatory molecules expression was assessed by FACS analysis. Results: IFN-γ induces the expression or up-regulation of MHC-I/II and TLR3, and the up-regulation of CaMKIV level in muscle cells. In contrast, CaMKIV knockdown in myoblasts and myotubes leads to expression inhibition of the above immuno-molecules. As well, CaMKIV knockdown selectively inhibits pro-inflammatory cytokines/chemokines, and co-stimulatory molecules expression in IFN-γ treated myoblasts and myotubes. Finally, CaMKIV knockdown abolishes IFN-γ induced CREB pathway molecules accumulation in differentiated myotubes. Conclusions: CaMKIV can be induced to up-regulate in muscle cells under inflammatory condition, and positively mediates intrinsic immune behaviors of muscle cells triggered by IFN-γ.

  5. A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition.

    Science.gov (United States)

    Stewart, Teneale A; Azimi, Iman; Thompson, Erik W; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2015-03-13

    Epithelial-mesenchymal transition (EMT), a process implicated in cancer metastasis, is associated with the transcriptional regulation of members of the ATP-binding cassette superfamily of efflux pumps, and drug resistance in breast cancer cells. Epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells is calcium signal dependent. In this study induction of EMT was shown to result in the transcriptional up-regulation of ATP-binding cassette, subfamily C, member 3 (ABCC3), a member of the ABC transporter superfamily, which has a recognized role in multidrug resistance. Buffering of cytosolic free calcium inhibited EGF-mediated ABCC3 increases, indicating a calcium-dependent mode of regulation. Silencing of TRPM7 (an ion channel involved in EMT associated vimentin induction) did not inhibit ABCC3 up-regulation. Silencing of the store operated calcium entry (SOCE) pathway components ORAI1 and STIM1 also did not alter ABCC3 induction by EGF. However, the calcium permeable ion channel transient receptor potential cation channel, subfamily C, member 1 (TRPC1) appears to contribute to the regulation of both basal and EGF-induced ABCC3 mRNA. Improved understanding of the relationship between calcium signaling, EMT and the regulation of genes important in therapeutic resistance may help identify novel therapeutic targets for breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells.

    Science.gov (United States)

    Safina, Dina R; Surin, Alexander M; Pinelis, Vsevolod G; Kostrov, Sergey V

    2015-12-01

    Neurotrophin-3 (NT-3) belongs to the family of highly conserved dimeric growth factors that controls the differentiation and activity of various neuronal populations. Mammals contain both the mature (NT-3) and the precursor (pro-NT-3) forms of neurotrophin. Members of the neurotrophin family are involved in the regulation of calcium homeostasis in neurons; however, the role of NT-3 and pro-NT-3 in this process remains unclear. The current study explores the effects of NT-3 and pro-NT-3 on disturbed calcium homeostasis and decline of mitochondrial potential induced by a neurotoxic concentration of glutamate (Glu; 100 µM) in the primary culture of rat cerebellar granule cells. In this Glu excitotoxicity model, mature NT-3 had no effect on the induced changes in Ca²⁺ homeostasis. In contrast, pro-NT-3 decreased the period of delayed calcium deregulation (DCD) and concurrent strong mitochondrial depolarization. According to the amplitude of the increase in the intracellular free Ca²⁺ concentration ([Ca²⁺]i ) and Fura-2 fluorescence quenching by Mn²⁺ within the first 20 sec of exposure to Glu, pro-NT-3 had no effect on the initial rate of Ca²⁺ entry into neurons. During the lag period preceding DCD, the mean amplitude of [Ca²⁺]i rise was 1.2-fold greater in the presence of pro-NT-3 than in the presence of Glu alone (1.67 ±  0.07 and 1.39 ± 0.04, respectively, P < 0.05). The Glu-induced changes in Са²⁺ homeostasis in the presence of pro-NT-3 likely are due to the decreased rate of Са²⁺ removal from the cytosol during the DCD latency period. © 2015 Wiley Periodicals, Inc.

  7. [Studies on the calcium distribution in developing synergids of lettuce (Lactuca sativa L.)].

    Science.gov (United States)

    Qiu, Yi Lan; Liu, Ru Shi; Tian, Hui Qiao

    2007-08-01

    Potassium antimonite was used to locate calcium in the synergids of lettuce (Lactuca sativa L) during their development. The two synergids on 3d before anthesis formed evident polarity with most cytoplasm located in the micropylar end and nucleus in the middle and a big vacuole in the chalazal end. At this time, calcium precipitates were a few in both cells. Calcium precipitates in the two synergids began to increase on 2d before anthesis. Synergid wall in the micropylar end thickened on 1d before anthesis, in which many calcium precipitates located. Near anthesis, synergids formed filiform apparatus in which abundant calcium precipitates accumulated to prepare for attracting pollen tubes entering. At anthesis, the distribution of calcium precipitates between two synergids was the same. At 1h after pollination, calcium precipitates evidently increased in one synergid that seemed to degenerate, the other one was persistent and the distribution of calcium granules did not change. Two synergids kept intact at 1d after emasculated, and the distribution of calcium precipitates did not display difference, suggesting that the degeneration of one synergid was caused by approaching pollen tubes which might give some signal to induce calcium increase of the synergid. Before fusion of sperm cell with egg cell, the cytoplasm of degenerated synergid embraced the egg and formed a thin layer between the egg and the central cell. Calcium precipitates in the different parts of degenerated synergid were closely connected with the fertilization: calcium precipitates accumulated in the near chalazal end of degenerated synergid at 1h after pollination. At 2.5h after pollination, the calcium precipitates increased at the chalazal end, especially abundant in the thin layer between the egg and the central cell. However, at 4h after pollination, the fertilization had finished at this time, the distribution of calcium precipitates in degenerated synergid changed again: the precipitates

  8. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The control of calcium signaling in the heart

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    130 years later one can still admire the mind that, having discovered that the previous year's result was not reproducible, realized that the problem was due to a contaminant and then correctly identified calcium as the culprit. Several other things are worth noting in this anecdote. (1) Ringer's exhaustive work provided the.

  10. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    Science.gov (United States)

    Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946

  11. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  12. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  13. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    International Nuclear Information System (INIS)

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors

  14. [The anti-tumour effect of Wuxing soup and its mechanism in inducing apoptosis of tumour cells mediated by calcium].

    Science.gov (United States)

    Mo, Fei; Hu, Jing-Ying; Gan, Yu; Zhao, Yang-Xing; Zhao, Xin-Tai

    2008-09-01

    To confirm the anti-cancer effect and mechanism of Wuxing soup. Inhibition of cellular growth under Wuxing soup treatment was observed by MTT; Apoptosis was detected by gel electrophoresis, transmission electron microscopy and FACS; The concentration of calcium was measured by fluorescence probe. After SGC-7901 cell being treated by Wuxing soup, it showed that: 1) Wuxing soup could specifically inhibit cancer cells proliferation in a time and dose dependent manner; 2) Typical apoptotic morphological changes and DNA ladder of SGC-7901 cells were observed; 3) calcium inhibitor Bapta AM could reduce the apoptotic rate and protect SGC-7901 cells in a dose dependent manner. Wuxing soup has an effective inhibition on cancer cells, and can induce SGC-7901 cells to apoptosis by calcium.

  15. Calcium movements and the cellular basis of gravitropism

    Science.gov (United States)

    Roux, S. J.; Biro, R. L.; Hale, C. C.

    An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.

  16. The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors.

    Science.gov (United States)

    Mendez, Aida G; Juncal, Andrea Boente; Silva, Siguara B L; Thomas, Olivier P; Martín Vázquez, Víctor; Alfonso, Amparo; Vieytes, Mercedes R; Vale, Carmen; Botana, Luís M

    2017-07-19

    Crambescidin 816 is a guanidine alkaloid produced by the sponge Crambe crambe with known antitumoral activity. While the information describing the effects of this alkaloid in central neurons is scarce, Cramb816 is known to block voltage dependent calcium channels being selective for L-type channels. Moreover, Cramb816 reduced neuronal viability through an unknown mechanism. Here, we aimed to describe the toxic activity of Cramb816 in cortical neurons. Since calcium influx is considered the main mechanism responsible for neuronal cell death, the effects of Cramb816 in the cytosolic calcium concentration of cortical neurons were studied. The alkaloid decreased neuronal viability and induced a dose-dependent increase in cytosolic calcium that was also related to the presence of calcium in the extracellular media. The increase in calcium influx was age dependent, being higher in younger neurons. Moreover, this effect was prevented by glutamate receptor antagonists, which did not fully block the cytotoxic effect of Cramb816 after 24 h of treatment but completely prevented Cramb816 cytotoxicity after 10 min exposure. Therefore, the findings presented herein provide new insights into the cytotoxic effect of Cramb816 in cortical neurons.

  17. The effect of calcium on auxin depletion-induced tomato ...

    African Journals Online (AJOL)

    Indole-3-acetic acid (IAA) and calcium are the most important factors that instigate plant organ abscission. This study aimed to elucidate the mechanisms that underlie the effects of IAA and calcium on delayed abscission in tomato. The results showed a clear trend towards reduced abscission rates with increased ...

  18. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  19. Participation of intracellular signal transduction in the radio-adaptive response induced by low-dose X-irradiation in human embryonic cells

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu; Watanabe, Masami.

    1996-01-01

    To elucidate the induction mechanism of radio-adaptive response in normal cells, we searched the literatures of the intracellular signal transduction. Furthermore, we examined the induction of radio-adaptive response with or without inhibitors of several kinds of protein kinase. The major results obtained were as follows; (1) According to the literature survey it is revealed that there are 4 intracellular signal transduction pathways which are possibly involved in the induction of radio-adaptive response: pathways depending on cAMP, calcium, cGMP, or protein-tyrosine kinase. (2) Addition of either inhibitor of protein-tyrosine kinase or protein kinase C to the cell culture medium during the low-dose X-irradiation inhibited the induction of radio-adaptive response. However, the addition of inhibitor of cAMP-dependent protein kinase, cGMP-dependent protein kinase, or Ca 2+ -calmodulin kinase II failed to inhibit the induction of radio-adaptive response. (3) These results suggest that the signal induced in cells by low-dose X-irradiation was transduced from protein-tyrosine kinase to protein kinase C via either pathway of phosphatidylinositol 3-kinase or splitting of profilin binding phosphatidylinositol 4,5-bisphosphate. (author)

  20. Effect of calcium intake on urinary oxalate excretion in calcium stone-forming patients

    Directory of Open Access Journals (Sweden)

    Nishiura J.L.

    2002-01-01

    Full Text Available Dietary calcium lowers the risk of nephrolithiasis due to a decreased absorption of dietary oxalate that is bound by intestinal calcium. The aim of the present study was to evaluate oxaluria in normocalciuric and hypercalciuric lithiasic patients under different calcium intake. Fifty patients (26 females and 24 males, 41 ± 10 years old, whose 4-day dietary records revealed a regular low calcium intake (<=500 mg/day, received an oral calcium load (1 g/day for 7 days. A 24-h urine was obtained before and after load and according to the calciuria under both diets, patients were considered as normocalciuric (NC, N = 15, diet-dependent hypercalciuric (DDHC, N = 9 or diet-independent hypercalciuric (DIHC, N = 26. On regular diet, mean oxaluria was 30 ± 14 mg/24 h for all patients. The 7-day calcium load induced a significant decrease in mean oxaluria compared to the regular diet in NC and DIHC (20 ± 12 vs 26 ± 7 and 27 ± 18 vs 32 ± 15 mg/24 h, respectively, P<0.05 but not in DDHC patients (22 ± 10 vs 23 ± 5 mg/24 h. The lack of an oxalate decrease among DDHC patients after the calcium load might have been due to higher calcium absorption under higher calcium supply, with a consequent lower amount of calcium left in the intestine to bind with oxalate. These data suggest that a long-lasting regular calcium consumption <500 mg was not associated with high oxaluria and that a subpopulation of hypercalciuric patients who presented a higher intestinal calcium absorption (DDHC tended to hyperabsorb oxalate as well, so that oxaluria did not change under different calcium intake.

  1. Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways.

    Science.gov (United States)

    Contreras, Laura; Satrústegui, Jorgina

    2009-03-13

    Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter and activation of mitochondrial matrix dehydrogenases. However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-glutamate carriers, extramitochondrial Ca2+ activation of the NADH malate-aspartate shuttle (MAS). Both pathways are linked through the shared substrate alpha-ketoglutarate (alphaKG). Here we have studied the interplay between the two pathways under conditions of Ca2+ activation. We show that alphaKG becomes limiting when Ca2+ enters in brain or heart mitochondria, but not liver mitochondria, resulting in a drop in alphaKG efflux through the oxoglutarate carrier and in a drop in MAS activity. Inhibition of alphaKG efflux and MAS activity by matrix Ca2+ in brain mitochondria was fully reversible upon Ca2+ efflux. Because of their differences in cytosolic calcium concentration requirements, the MAS and Ca2+ uniporter-mitochondrial dehydrogenase pathways are probably sequentially activated during a Ca2+ transient, and the inhibition of MAS at the center of the transient may provide an explanation for part of the increase in lactate observed in the stimulated brain in vivo.

  2. Membrane mechanisms and intracellular signalling in cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Dunham, Philip B.

    1995-01-01

    Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation.......Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation....

  3. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Galtier, F., E-mail: f-galtier@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); CPID, Faculté de Pharmacie, 15 Av. Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, Montpellier (France); Mura, T., E-mail: t-mura@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Raynaud de Mauverger, E., E-mail: eric.raynaud-de-mauverger@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); Université Montpellier 1, 5 bd Henri IV CS 19044, 34967 Montpellier Cedex 2 (France); Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); INSERM, U1046, 371 Avenue du Doyen G. Giraud, CHU Arnaud de Villeneuve, Bâtiment INSERM Crastes de Paulet, 34295 Montpellier Cedex 5 (France); Chevassus, H., E-mail: h-chevassus@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Farret, A., E-mail: a-farret@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Gagnol, J.-P., E-mail: jp-gagnol@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Costa, F., E-mail: francoisecosta@sfr.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Dupuy, A., E-mail: am-dupuy@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); and others

    2012-09-15

    Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca{sup 2+} homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca{sup 2+} spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to their median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38 ± 5.68 vs − 1.15 ± 4.32 UI/L, P < 0.001) and CK (− 24.3 ± 99.1 ± 189.3vs 48.3 UI/L, P = 0.01) and a trend to an elevation of isoprostanes (193 ± 408 vs12 ± 53 pmol/mmol creatinine, P = 0.09) with no global change in mitochondrial respiration, lactate/pyruvate ratio or Ca{sup 2+} sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca{sup 2+} spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca{sup 2+} spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r = 0.71, P = 0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication. -- Highlights: ► Statin use may be limited by side effects, particularly myopathy. ► Statins might impair mitochondrial function and muscle Ca2+ signaling in muscle. ► This was tested among healthy volunteers receiving simvastatin 80 mg daily for 8 weeks. ► CK

  4. Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters

    Directory of Open Access Journals (Sweden)

    Rami Shinnawi

    2015-10-01

    Full Text Available The advent of the human-induced pluripotent stem cell (hiPSC technology has transformed biomedical research, providing new tools for human disease modeling, drug development, and regenerative medicine. To fulfill its unique potential in the cardiovascular field, efficient methods should be developed for high-resolution, large-scale, long-term, and serial functional cellular phenotyping of hiPSC-derived cardiomyocytes (hiPSC-CMs. To achieve this goal, we combined the hiPSC technology with genetically encoded voltage (ArcLight and calcium (GCaMP5G fluorescent indicators. Expression of ArcLight and GCaMP5G in hiPSC-CMs permitted to reliably follow changes in transmembrane potential and intracellular calcium levels, respectively. This allowed monitoring short- and long-term changes in action-potential and calcium-handling properties and the development of arrhythmias in response to several pharmaceutical agents and in hiPSC-CMs derived from patients with different inherited arrhythmogenic syndromes. Combining genetically encoded fluorescent reporters with hiPSC-CMs may bring a unique value to the study of inherited disorders, developmental biology, and drug development and testing.

  5. Depth of origin of ocean-circulation-induced magnetic signals

    Science.gov (United States)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik

    2018-01-01

    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  6. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk

    2011-06-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies. © 2011 Elsevier Ltd. All rights reserved.

  7. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica.

    Science.gov (United States)

    Fang, Huihui; Jing, Tao; Liu, Zhiqiang; Zhang, Liping; Jin, Zhuping; Pei, Yanxi

    2014-12-01

    The oscillation of intracellular calcium (Ca(2+)) concentration is a primary event in numerous biological processes in plants, including stress response. Hydrogen sulfide (H2S), an emerging gasotransmitter, was found to have positive effects in plants responding to chromium (Cr(6+)) stress through interacting with Ca(2+) signaling. While Ca(2+) resemblances H2S in mediating biotic and abiotic stresses, crosstalk between the two pathways remains unclear. In this study, Ca(2+) signaling interacted with H2S to produce a complex physiological response, which enhanced the Cr(6+) tolerance in foxtail millet (Setaria italica). Results indicate that Cr(6+) stress activated endogenous H2S synthesis as well as Ca(2+) signaling. Moreover, toxic symptoms caused by Cr(6+) stress were strongly moderated by 50μM H2S and 20mM Ca(2+). Conversely, treatments with H2S synthesis inhibitor and Ca(2+) chelators prior to Cr(6+)-exposure aggravated these toxic symptoms. Interestingly, Ca(2+) upregulated expression of two important factors in metal metabolism, MT3A and PCS, which participated in the biosynthesis of heavy metal chelators, in a H2S-dependent manner to cope with Cr(6+) stress. These findings also suggest that the H2S dependent pathway is a component of the Ca(2+) activating antioxidant system and H2S partially contributes Ca(2+)-activating antioxidant system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    Science.gov (United States)

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  9. Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds.

    Science.gov (United States)

    Rustom, Laurence E; Boudou, Thomas; Lou, Siyu; Pignot-Paintrand, Isabelle; Nemke, Brett W; Lu, Yan; Markel, Mark D; Picart, Catherine; Wagoner Johnson, Amy J

    2016-10-15

    The increasing demand for bone repair solutions calls for the development of efficacious bone scaffolds. Biphasic calcium phosphate (BCP) scaffolds with both macropores and micropores (MP) have improved healing compared to those with macropores and no micropores (NMP), but the role of micropores is unclear. Here, we evaluate capillarity induced by micropores as a mechanism that can affect bone growth in vivo. Three groups of cylindrical scaffolds were implanted in pig mandibles for three weeks: MP were implanted either dry (MP-Dry), or after submersion in phosphate buffered saline, which fills pores with fluid and therefore suppresses micropore-induced capillarity (MP-Wet); NMP were implanted dry. The amount and distribution of bone in the scaffolds were quantified using micro-computed tomography. MP-Dry had a more homogeneous bone distribution than MP-Wet, although the average bone volume fraction, BVF‾, was not significantly different for these two groups (0.45±0.03 and 0.37±0.03, respectively). There was no significant difference in the radial bone distribution of NMP and MP-Wet, but the BVF‾, of NMP was significantly lower among the three groups (0.25±0.02). These results suggest that micropore-induced capillarity enhances bone regeneration by improving the homogeneity of bone distribution in BCP scaffolds. The explicit design and use of capillarity in bone scaffolds may lead to more effective treatments of large and complex bone defects. The increasing demand for bone repair calls for more efficacious bone scaffolds and calcium phosphate-based materials are considered suitable for this application. Macropores (>100μm) are necessary for bone ingrowth and vascularization. However, studies have shown that microporosity (micropore-induced capillarity had the potential to enhance bone growth in vivo. This work illustrates the positive effects of capillarity on bone regeneration in vivo; it demonstrates that micropore-induced capillarity significantly

  10. Bcl-2 overexpression: effects on transmembrane calcium movement

    International Nuclear Information System (INIS)

    Rangaswami, Arun A.; Premack, Brett; Walleczek, Jan; Killoran, Pamela; Gardner, Phyllis; Knox, Susan J.

    1996-01-01

    Purpose/Objective: High levels of expression of the proto-oncogene bcl-2 and its 26 kD protein product Bcl-2 have been correlated with the inhibition of apoptosis and the increased resistance of tumor cells to cytotoxic drugs and ionizing radiation. Unfortunately, the specific mechanism of action of Bcl-2 remains poorly understood. In the studies described here, the role of intracellular calcium fluxes and plasma membrane calcium cycling in the induction of apoptosis, and the effect of Bcl-2 expression on the modulation of transmembrane calcium fluxes following treatment of cells with cytotoxic agents were studied. The relationship between intracellular calcium release, capacitive calcium entry, and the plasma membrane potential were also investigated. Materials and Methods: Human B-cell lymphoma (PW) and human promyelocytic leukemia (HL60) cell lines were transfected with Bcl-2 and a control vector. The Bcl-2 transfectants over expressed the Bcl-2 onco-protein and were more resistant to irradiation than the control cells. Cells were loaded with fluorescent indicators indo-1 and fura-2 AM to quantify the cytosolic calcium concentration and subsequent calcium responses to a variety of cytotoxic stimuli, including the microsomal ATPase inhibitor, thapsigargin, using fluorometric measurements. Comparisons of resting and stimulated cytosolic calcium concentrations were made between the parental, neomycin control, and bcl-2 transfected cells. In order to determine the actual calcium influx rate, cells were loaded with either indo-1 or fura-2 and then exposed to 0.1 mM extracellular manganese, which enters the cells through calcium influx channels and quenches the fluorescent signal in proportion to the calcium influx rate. In order to determine the role of the membrane potential in driving calcium influx, cells were treated with either 0.1 μM Valinomycin or isotonic potassium chloride to either hyper polarize or depolarize the resting membrane potential, and the

  11. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.

    Science.gov (United States)

    Zolnik, Timothy A; Sha, Fern; Johenning, Friedrich W; Schreiter, Eric R; Looger, Loren L; Larkum, Matthew E; Sachdev, Robert N S

    2017-03-01

    The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light. Synaptic activity and action potentials can independently initiate significant CaMPARI conversion. The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength. When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all-optical method to map synaptic connectivity. The calcium-modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed Ca

  12. Parallel Stochastic discrete event simulation of calcium dynamics in neuron.

    Science.gov (United States)

    Ishlam Patoary, Mohammad Nazrul; Tropper, Carl; McDougal, Robert A; Zhongwei, Lin; Lytton, William W

    2017-09-26

    The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in its concentration (percentage-wise). These rare events can affect dynamics discretely in such way that they cannot be evaluated by a deterministic simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a serial deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic IP3R structure.

  13. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.

    Science.gov (United States)

    Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.

  14. Calcium Signals from the Vacuole

    Directory of Open Access Journals (Sweden)

    Gerald Schönknecht

    2013-10-01

    Full Text Available The vacuole is by far the largest intracellular Ca2+ store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca2+ release and Ca2+ uptake is summarized, and how different vacuolar Ca2+ channels and Ca2+ pumps may contribute to Ca2+ signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca2+ transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca2+ channels that could elicit cytosolic [Ca2+] transients. Typical second messengers, such as InsP3 and cADPR, seem to trigger vacuolar Ca2+ release, but the molecular mechanism of this Ca2+ release still awaits elucidation. Some vacuolar Ca2+ channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca2+ signaling still has to be demonstrated. Ca2+ pumps in addition to establishing long-term Ca2+ homeostasis can shape cytosolic [Ca2+] transients by limiting their amplitude and duration, and may thus affect Ca2+ signaling.

  15. Analysis of calcium-induced conformational changes in calcium-binding allergens and quantitative determination of their IgE binding properties.

    Science.gov (United States)

    Parody, Nuria; Fuertes, Miguel Angel; Alonso, Carlos; Pico de Coaña, Yago

    2013-01-01

    The polcalcin family is one of the most epidemiologically relevant families of calcium-binding allergens. Polcalcins are potent plant allergens that contain one or several EF-hand motifs and their allergenicity is primarily associated with the Ca(2+)-bound form of the protein. Conformation, stability, as well as IgE recognition of calcium-binding allergens greatly depend on the presence of protein-bound calcium ions. We describe a protocol that uses three techniques (SDS-PAGE, circular dichroism spectroscopy, and ELISA) to describe the effects that calcium has on the structural changes in an allergen and its IgE binding properties.

  16. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...

  17. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  18. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    International Nuclear Information System (INIS)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-01-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals

  19. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium

    Directory of Open Access Journals (Sweden)

    Adela Banciu

    2018-05-01

    Full Text Available Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1, estrogen receptors (ESR1, ESR2, GPR30, and nuclear receptor coactivator 3 (NCOA3. Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM antagonized the effect of BAY K8644 (2.5 or 5 µM in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant

  20. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium.

    Science.gov (United States)

    Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela

    2018-05-09

    Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine

  1. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    Science.gov (United States)

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.

  2. Ouabain rescues rat nephrogenesis during intrauterine growth restriction by regulating the complement and coagulation cascades and calcium signaling pathway.

    Science.gov (United States)

    Chen, L; Yue, J; Han, X; Li, J; Hu, Y

    2016-02-01

    Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.

  3. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    Science.gov (United States)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  4. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  5. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    Science.gov (United States)

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Calcium measurements in living filamentous fungi expressing codon-optimized aequorin

    NARCIS (Netherlands)

    Nelson, G.; Kozlova-Zwinderman, O.; Collis, A.J.; Knight, M.R.; Fincham, J.R.S.; Stanger, C.P.; Renwick, A.; Hessing, J.G.M.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Read, N.D.

    2004-01-01

    Calcium signalling is little understood in filamentous fungi largely because easy and routine methods for calcium measurement in living hyphae have previously been unavailable. We have developed the recombinant aequorin method for this purpose. High levels of aequorin expression were obtained in

  7. Cuscuta reflexa invasion induces Ca2+ release in its host

    NARCIS (Netherlands)

    Albert, M.; Krol, van der A.R.; Kaldenhoff, R.

    2010-01-01

    Cuscuta reflexa induces a variety of reaction in its hosts. Some of these are visual reactions, and it is clear that these morphological changes are preceded by events at the molecular level, where signal transduction is one of the early processes. Calcium (Ca(2+)) release is the major second

  8. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy.

    Directory of Open Access Journals (Sweden)

    Evonne eChin-Smith

    2014-05-01

    Full Text Available Store-operated calcium (Ca2+ entry (SOCE can be mediated by two novel proteins, STIM/Orai. We have previously demonstrated that members of the TRPC family, putative basal and store operated calcium entry channels, are present in human myometrium and regulated by labor associated stimuli IL-1β and mechanical stretch. Although STIM and Orai isoforms (1-3 have been reported in other smooth muscle cell types, there is little known about the expression or gestational regulation of STIM and Orai expression in human myometrium. Total RNA was isolated from lower segment human myometrial biopsies obtained at caesarean section from women at the time of preterm no labor (PTNL, preterm labor (PTL, term non-labor (TNL and term with labor (TL; primary cultured human uterine smooth muscle cells, and a human myometrial cell line (hTERT-HM. STIM1-2, and Orai1-3 mRNA expression was assessed by quantitative real-time PCR. All five genes were expressed in myometrial tissue and cultured cells. Orai2 was the most abundant Orai isoform in human myometrium. Expression of STIM1-2/Orai1-3 did not alter with the onset of labor. Orai1 mRNA expression in cultured cells was enhanced by IL-1β treatment. This novel report of STIM1-2 and Orai1-3 mRNA expression in pregnant human myometrium and Orai1 regulation by IL-1β indicates a potential role for these proteins in calcium signaling in human myometrium during pregnancy.

  9. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium.

    Science.gov (United States)

    Wang, Hongbo; Wang, Xiaolong; Li, Yan; Yu, Hao; Wang, Changliang; Feng, Chunmei; Xu, Guohui; Chen, Jiajun; You, Jiabin; Wang, Pengfei; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2018-04-01

    It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.

  10. Can atorvastatin calcium cause asymptomatic hypercalcemia?

    Science.gov (United States)

    Ipekçi, Süleyman Hilmi; Baldane, Süleyman; Sözen, Mehmet; Kebapçılar, Levent

    2014-10-01

    The use of statins may have unnatural effects. A 54-year-old woman was admitted to the hospital with an incidental finding of hypercalcemia (10.8 mg/dL). There was no disease other than hyperlipidemia, and the patient had been on a course of atorvastatin calcium 10 mg for 1.5 years. A workup investigation to diagnose the cause of hypercalcemia was completed. The investigation did not reveal any pathological diseases that may have caused the hypercalcemia. The hypercalcemia resolved after atorvastatin-calcium was stopped, and the patient developed hypercalcemia shortly after the initiation of the atorvastatin calcium. Here, we report a clinical case of recurrent hypercalcemia possibly induced by atorvastatin calcium administration.

  11. Regulation of intracellular calcium in resting and stimulated rat basophilic leukemia cells

    International Nuclear Information System (INIS)

    Mohr, F.C.

    1988-01-01

    Intracellular calcium regulation was studied in a cell line of mast cells, the rat basophilic leukemia (RBL) cells with the purpose of determining (1) The properties of the plasma membrane calcium permeability pathway and (2) The role of intracellular calcium stores. The first set of experiments showed that depolarization did not induce calcium entry or secretion in resting cells and did inhibit antigen-stimulated calcium uptake and secretion. In the second set of experiments the ionic basis of antigen-induced depolarization was studied using the fluorescent potential-sensitive probe bis-oxonol. The properties of the calcium entry pathway were more consistent with a calcium channel than a calcium transport mechanism such as Na:Ca exchange. The third set of experiments examined the effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) on RBL cells. CCCP inhibited antigen-stimulated 45 Ca uptake and secretion by depolarizing the plasma membrane

  12. GADS is required for TCR-mediated calcium influx and cytokine release, but not cellular adhesion, in human T cells.

    Science.gov (United States)

    Bilal, Mahmood Y; Zhang, Elizabeth Y; Dinkel, Brittney; Hardy, Daimon; Yankee, Thomas M; Houtman, Jon C D

    2015-04-01

    GRB2 related adaptor protein downstream of Shc (GADS) is a member of the GRB2 family of adaptors and is critical for TCR-induced signaling. The current model is that GADS recruits SLP-76 to the LAT complex, which facilitates the phosphorylation of SLP-76, the activation of PLC-γ1, T cell adhesion and cytokine production. However, this model is largely based on studies of disruption of the GADS/SLP-76 interaction and murine T cell differentiation in GADS deficient mice. The role of GADS in mediating TCR-induced signals in human CD4+ T cells has not been thoroughly investigated. In this study, we have suppressed the expression of GADS in human CD4+ HuT78 T cells. GADS deficient HuT78 T cells displayed similar levels of TCR-induced SLP-76 and PLC-γ1 phosphorylation but exhibited substantial decrease in TCR-induced IL-2 and IFN-γ release. The defect in cytokine production occurred because of impaired calcium mobilization due to reduced recruitment of SLP-76 and PLC-γ1 to the LAT complex. Surprisingly, both GADS deficient HuT78 and GADS deficient primary murine CD8+ T cells had similar TCR-induced adhesion when compared to control T cells. Overall, our results show that GADS is required for calcium influx and cytokine production, but not cellular adhesion, in human CD4+ T cells, suggesting that the current model for T cell regulation by GADS is incomplete. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx

    International Nuclear Information System (INIS)

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  14. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts

    NARCIS (Netherlands)

    Albert, M.; Kaiser, B.; Krol, van der A.R.; Kaldenhoff, R.

    2010-01-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which

  15. Cuscuta reflexa invasion induces Ca release in its host.

    Science.gov (United States)

    Albert, M; van der Krol, S; Kaldenhoff, R

    2010-05-01

    Cuscuta reflexa induces a variety of reaction in its hosts. Some of these are visual reactions, and it is clear that these morphological changes are preceded by events at the molecular level, where signal transduction is one of the early processes. Calcium (Ca(2+)) release is the major second messenger during signal transduction, and we therefore studied Ca(2+) spiking in tomato during infection with C. reflexa. Bioluminescence in aequorin-expressing tomato was monitored for 48 h after the onset of Cuscuta infestation. Signals at the attachment sites were observed from 30 to 48 h. Treatment of aequorin-expressing tomato leaf disks with Cuscuta plant extracts suggested that the substance that induced Ca(2+) release from the host was closely linked to parasite haustoria.

  16. Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.

    Science.gov (United States)

    Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich

    2003-03-01

    Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an

  17. Diagram of Calcium Movement in the Human Body

    Science.gov (United States)

    2002-01-01

    This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  18. Calcium induces long-term legacy effects in a subalpine ecosystem.

    Directory of Open Access Journals (Sweden)

    Urs Schaffner

    Full Text Available Human activities have transformed a significant proportion of the world's land surface, with profound effects on ecosystem processes. Soil applications of macronutrients such as nitrate, phosphorus, potassium or calcium are routinely used in the management of croplands, grasslands and forests to improve plant health or increase productivity. However, while the effects of continuous fertilization and liming on terrestrial ecosystems are well documented, remarkably little is known about the legacy effect of historical fertilization and liming events in terrestrial ecosystems and of the mechanisms involved. Here, we show that more than 70 years after the last application of lime on a subalpine grassland, all major soil and plant calcium pools were still significantly larger in limed than in unlimed plots, and that the resulting shift in the soil calcium/aluminium ratio continues to affect ecosystem services such as primary production. The difference in the calcium content of the vegetation and the topmost 10 cm of the soil in limed vs. unlimed plots amounts to approximately 19.5 g m(-2, equivalent to 16.3% of the amount that was added to the plots some 70 years ago. In contrast, plots that were treated with nitrogen-phosphorus-potassium fertilizer in the 1930s did not differ from unfertilized plots in any of the soil and vegetation characteristics measured. Our findings suggest that the long-term legacy effect of historical liming is due to long-term storage of added calcium in stable soil pools, rather than a general increase in nutrient availability. Our results demonstrate that single applications of calcium in its carbonated form can profoundly and persistently alter ecosystem processes and services in mountain ecosystems.

  19. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    Science.gov (United States)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  20. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    Science.gov (United States)

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Finite element model to study calcium distribution in oocytes ...

    African Journals Online (AJOL)

    Calcium is one of the most important signalling ions in cell biology performing numerous functions with high specificity. A calcium wave triggers life at fertilization but also can cause cell death. The means by which this single ion can be both highly specific and universal is believed to lie in its spatiotemporal dynamics ...

  2. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  3. Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides - relevance to biomineralization

    NARCIS (Netherlands)

    Schenk, A.S.; Zope, H.; Kim, Y.; Kros, A.; Sommerdijk, N.A.J.M.; Meldrum, F.C.

    2012-01-01

    Polymer-induced liquid precursor (PILP) phases of calcium carbonate have attracted significant interest due to possible applications in materials synthesis, and their resemblance to intermediates seen in biogenic mineralisation processes. Further, these PILP phases have been formed in vitro using

  4. Tetany: quantitative interrelationships between calcium and alkalosis.

    Science.gov (United States)

    Edmondson, J W; Brashear, R E; Li, T K

    1975-04-01

    Tetany occurs with hypocalcemia and alkalosis or both. The interrelationship of calcium and acid-base balance necessary for inducing tetany, the role of the central nervous system, and the rate of development of hypocalcemia have been investigated. Tetany occurred in less than 50 percent of one group of dogs made alkalotic by hyperventilation or made hypocalcemic by infusion of ethylene glycol-bis(beta-amino ethyl ether) N, N'-tetraacetate. In contrast, hypocalcemia combined with hypocapnic alkalosis always produced tetany. Slowly evolving hypocalcemia was achieved inanother group of dogs by thyroparathyroidectomy, and tetany was induced postoperatively by hypocapnic alkalosis. An identical relationship between serum calcium ion concentration and arterial pH or CO2 tension was found in both groups. Tetany could not be related to the cerebrospinal fluid (CSF) calcium ion content in either group. Hypocalcemia and alkalosis are therefore coparticipants in the development of tetany and are independent of the rate of development of hypocalcemia and of CSF calcium ion concentration. The importance of alkalosis in tetany with hypoparathyroidism is emphasized.

  5. Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways.

    Science.gov (United States)

    Guan, S-M; Fu, S-M; He, J-J; Zhang, M

    2011-01-01

    Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways.

  6. Changes in root gravitropism, ultrastructure, and calcium balance of pea root statocytes induced by A23187

    Science.gov (United States)

    Belyavskaya, N.

    The role for calcium in the regulation of a wide variety of cellular events in plants is well known. Calcium signaling has been implicated in plant gravitropism. A carboxylic acid antibiotic A23187 (calcimycin) has been widely used in biological studies since it can translocate calcium across membranes. Seedlings of Pisum sativum L. cv. Uladovsky germinated in a vertically oriented cylinder of moist filter paper soaked in water during 4.5 day had been treated with 10-5 M A23187 for 12 hr. Tips of primary roots of control and A23187-treated pea seedlings were fixed for electron microscopy and electron cytochemistry. Experiments with Pisum sativum 5- day seedlings placed horizontally for 4 h after treatment with 10 μM A23187 during 12 h found that the graviresponsiveness of their primary roots was lost completely (91 % of roots) or inhibited (24 +/- 6° in comparison with 88 +/- 8° in control). At ultrastructural level, there were observed distribution of amyloplasts around the nucleus, remarkable lengthening of statocytes, advanced vacuolization, changes in dictyosome structure, ER fragmentation, cell wall thinning in A23187-treated statocytes. Cytochemical study has indicated that statocytes exposed to calcimycin have contained a number of Ca-pyroantimonate granules detected Ca 2 + ions in organelles and hyaloplasm (unlike the control ones). The deposits were mainly associated with the plasma membrane. Among organelles, mitochondria were notable for their ability to accumulate Ca 2 +. In amyloplasts, a fine precipitate was predominately located in their stroma and envelope lumens. In cell walls, deposits of the reaction product were observed along the periphery and in the median zone. Localization of electron-dense granules of lead phosphate, which indicated Ca 2 +- ATPase activities in pea statocytes exposed to A23187, was generally consistent with that in untreated roots. Apart from plasma membrane, chromatin, and nucleolus components, the cytochemical reaction

  7. Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling.

    Science.gov (United States)

    Poloz, Yekaterina; O'Day, Danton H

    2012-04-01

    Previous work, verified here, showed that colchicine affects Dictyostelium pattern formation, disrupts morphogenesis, inhibits spore differentiation and induces terminal stalk cell differentiation. Here we show that colchicine specifically induces ecmB expression and enhances accumulation of ecmB-expressing cells at the posterior end of multicellular structures. Colchicine did not induce a nuclear translocation of DimB, a DIF-1 responsive transcription factor in vitro. It also induced terminal stalk cell differentiation in a mutant strain that does not produce DIF-1 (dmtA-) and after the treatment of cells with DIF-1 synthesis inhibitor cerulenin (100 μM). This suggests that colchicine induces the differentiation of ecmB-expressing cells independent of DIF-1 production and likely through a signaling pathway that is distinct from the one that is utilized by DIF-1. Depending on concentration, colchicine enhanced random cell motility, but not chemotaxis, by 3-5 fold (10-50 mM colchicine, respectively) through a Ca(2+)-mediated signaling pathway involving phospholipase C, calmodulin and heterotrimeric G proteins. Colchicine's effects were not due to microtubule depolymerization as other microtubule-depolymerizing agents did not have these effects. Finally normal morphogenesis and stalk and spore cell differentiation of cells treated with 10 mM colchicine were rescued through chelation of Ca2+ by BAPTA-AM and EDTA and calmodulin antagonism by W-7 but not PLC inhibition by U-73122. Morphogenesis or spore cell differentiation of cells treated with 50 mM colchicine could not be rescued by the above treatments but terminal stalk cell differentiation was inhibited by BAPTA-AM, EDTA and W-7, but not U-73122. Thus colchicine disrupts morphogenesis and induces stalk cell differentiation through a Ca(2+)-mediated signaling pathway involving specific changes in gene expression and cell motility. Copyright © 2011 International Society of Differentiation. Published by Elsevier B

  8. NSAIDs, Mitochondria and Calcium Signaling: Special Focus on Aspirin/Salicylates

    Directory of Open Access Journals (Sweden)

    Yoshihiro Suzuki

    2010-05-01

    Full Text Available Aspirin (acetylsalicylic acid is a well-known nonsteroidal anti-inflammatory drug (NSAID that has long been used as an anti-pyretic and analgesic drug. Recently, much attention has been paid to the chemopreventive and apoptosis-inducing effects of NSAIDs in cancer cells. These effects have been thought to be primarily attributed to the inhibition of cyclooxygenase activity and prostaglandin synthesis. However, recent studies have demonstrated unequivocally that certain NSAIDs, including aspirin and its metabolite salicylic acid, exert their anti-inflammatory and chemopreventive effects independently of cyclooxygenase activity and prostaglandin synthesis inhibition. It is becoming increasingly evident that two potential common targets of NSAIDs are mitochondria and the Ca2+ signaling pathway. In this review, we provide an overview of the current knowledge regarding the roles of mitochondria and Ca2+ in the apoptosis-inducing effects as well as some side effects of aspirin, salicylates and other NSAIDs, and introducing the emerging role of L-type Ca2+ channels, a new Ca2+ entry pathway in non-excitable cells that is up-regulated in human cancer cells.

  9. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  10. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  11. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Directory of Open Access Journals (Sweden)

    José Joaquín Merino

    Full Text Available The discovery that nitric oxide (NO functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated.The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated.Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  12. Oral Exposure to Atrazine Induces Oxidative Stress and Calcium Homeostasis Disruption in Spleen of Mice

    Directory of Open Access Journals (Sweden)

    Shuying Gao

    2016-01-01

    Full Text Available The widely used herbicide atrazine (ATR can cause many adverse effects including immunotoxicity, but the underlying mechanisms are not fully understood. The current study investigated the role of oxidative stress and calcium homeostasis in ATR-induced immunotoxicity in mice. ATR at doses of 0, 100, 200, or 400 mg/kg body weight was administered to Balb/c mice daily for 21 days by oral gavage. The studies performed 24 hr after the final exposure showed that ATR could induce the generation of reactive oxygen species in the spleen of the mice, increase the level of advanced oxidation protein product (AOPP in the host serum, and cause the depletion of reduced glutathione in the serum, each in a dose-related manner. In addition, DNA damage was observed in isolated splenocytes as evidenced by increase in DNA comet tail formation. ATR exposure also caused increases in intracellular Ca2+ within splenocytes. Moreover, ATR treatment led to increased expression of genes for some antioxidant enzymes, such as HO-1 and Gpx1, as well as increased expression of NF-κB and Ref-1 proteins in the spleen. In conclusion, it appears that oxidative stress and disruptions in calcium homeostasis might play an important role in the induction of immunotoxicity in mice by ATR.

  13. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    Science.gov (United States)

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-01-01

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca 2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch ( 2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  15. Analysis of calcium-induced effects on the conformation of fengycin.

    Science.gov (United States)

    Nasir, Mehmet Nail; Laurent, Pascal; Flore, Christelle; Lins, Laurence; Ongena, Marc; Deleu, Magali

    2013-06-01

    Fengycin is a natural lipopeptide with antifungal and eliciting properties and able to inhibit the activity of phospholipase A2. A combination of CD, FT-IR, NMR and fluorescence spectroscopic techniques was applied to elucidate its conformation in a membrane-mimicking environment and to investigate the effect of calcium ions on it. We mainly observed that fengycin adopts a turn conformation. Our results showed that calcium ions are bound by the two charged glutamates. The calcium binding has an influence on the fengycin conformation and more particularly, on the environment of the tyrosine residues. The modulation of the fengycin conformation by the environmental conditions may influence its biological properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A signal processing analysis of Purkinje cells in vitro

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2010-05-01

    Full Text Available Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM. We find that the three characteristic frequencies - Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.

  17. The calcium-sensing receptor changes cell shape via a beta-arrestin-1 ARNO ARF6 ELMO protein network.

    Science.gov (United States)

    Bouschet, Tristan; Martin, Stéphane; Kanamarlapudi, Venkateswarlu; Mundell, Stuart; Henley, Jeremy M

    2007-08-01

    G-protein-coupled receptors (GPCRs) transduce the binding of extracellular stimuli into intracellular signalling cascades that can lead to morphological changes. Here, we demonstrate that stimulation of the calcium-sensing receptor (CaSR), a GPCR that promotes chemotaxis by detecting increases in extracellular calcium, triggers plasma membrane (PM) ruffling via a pathway that involves beta-arrestin 1, Arf nucleotide binding site opener (ARNO), ADP-ribosylating factor 6 (ARF6) and engulfment and cell motility protein (ELMO). Expression of dominant negative beta-arrestin 1 or its knockdown with siRNA impaired the CaSR-induced PM ruffling response. Expression of a catalytically inactive ARNO also reduced CaSR-induced PM ruffling. Furthermore, beta-arrestin 1 co-immunoprecipitated with the CaSR and ARNO under resting conditions. Agonist treatment did not markedly alter beta-arrestin 1 binding to the CaSR or to ARNO but it did elicit the translocation and colocalisation of the CaSR, beta-arrestin 1 and ARNO to membrane protrusions. Furthermore, ARF6 and ELMO, two proteins known to couple ARNO to the cytoskeleton, were required for CaSR-dependent morphological changes and translocated to the PM ruffles. These data suggest that cells ruffle upon CaSR stimulation via a mechanism that involves translocation of beta-arrestin 1 pre-assembled with the CaSR or ARNO, and that ELMO plays an essential role in this CaSR-signalling-induced cytoskeletal reorganisation.

  18. Thermal induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Fattibene, P.; Aragno, D.; Onori, S.; Pressello, M.C.

    2000-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to detect the effects of temperature on powdered human tooth enamel, not irradiated in the laboratory. Samples were heated at temperature between 350 and 450, at 600 and at 1000 deg. C, for different heating times, between 6 min and 39 h. Changes in the EPR spectra were detected, with the formation of new signals. Possible correlation between the changes in EPR spectra and modifications in the enamel and in the mineral phase of bone detected with other techniques is discussed. The implications for dosimetric applications of signals induced by overheating due to mechanical friction during sample preparation are underlined

  19. Beam induced transit time signals at SPEAR

    International Nuclear Information System (INIS)

    McConnell, R.A.

    1975-01-01

    Beam induced signals at frequencies related to inter-cavity transit times have been detected at SPEAR. Whether this effect enters significantly into beam instabilities has not yet been determined. Preliminary experiments suggest that under certain conditions at low energy (1.5 GeV) , when μ/sub s/, passes through one of the transit time resonances, some current is lost. Care must be taken, however, not to confuse this effect, if it exists, with synchrobetatron resonances and with an as yet unexplained vertical instability in SPEAR. At high energy (3.7 GeV), no effect has been shown to exist, though detectable signals are present. 2 refs., 2 tabs

  20. Polymerization of calcium caseinates solutions induced by gamma irradiation

    International Nuclear Information System (INIS)

    Lacroix, M.; Jobin, M.; Mezgheni, E.; Srour, M.; Boileau, S.

    1998-01-01

    Solutions of calcium caseinate (5%) combined with propylene glycol (PG) or triethylene glycol(TEG) (0, 2.5% and 5%) and used for the development of edible films and coatings, were irradiated at doses between 0 to 128 kGy. Solutions were chromatographed through toyopearl HW 55F resin to observe the effect of irradiation on cross-link reactions. In unirradiated calcium caseinate solutions, two peaks could be observed (fractions 30 and 37) while samples irradiated at 64 kGy and 128 kGy showed one shifted peak at fraction 32 and 29 respectively. No effect of the plasticizers was observed. According to proteins standards of knowed molecular weights, the molecular weight of calcium caseinate increased approximately 10 times when irradiated at 128 kGy and 5 times when irradiated at 64 kGy. The physico-chemical properties of bio-films prepared with the irradiated solutions, demonstrated that tensile strength at break increased with increase of irradiation dose. A maximum dose was obtained at 16 kGy

  1. Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle.

    Science.gov (United States)

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-03-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine binding to heavy sarcoplasmic reticulum vesicles, with a half-activating concentration of 144 micro M and a Hill coefficient of 1.89, and the open probability of the isolated and reconstituted ryanodine receptors, from 0.09 +/- 0.03 to 0.22 +/- 0.04 at 30 micro M. At higher concentrations the drug induced long-lasting open events on a full conducting state. Elementary calcium release events imaged using laser scanning confocal microscopy in the line-scan mode were reduced in size, 0.92 +/- 0.01 vs. 0.70 +/- 0.01, but increased in duration, 56 +/- 1 vs. 79 +/- 1 ms, by 30 micro M thymol, with an increase in the relative proportion of lone embers. Higher concentrations favored long events, resembling embers in control, with duration often exceeding 500 ms. These findings provide direct experimental evidence that the opening of a single release channel will generate an ember, rather than a spark, in mammalian skeletal muscle.

  2. Space flight calcium: implications for astronaut health, spacecraft operations, and Earth.

    Science.gov (United States)

    Smith, Scott M; McCoy, Torin; Gazda, Daniel; Morgan, Jennifer L L; Heer, Martina; Zwart, Sara R

    2012-12-18

    The space flight environment is known to induce bone loss and, subsequently, calcium loss. The longer the mission, generally the more bone and calcium are lost. This review provides a history of bone and calcium studies related to space flight and highlights issues related to calcium excretion that the space program must consider so that urine can be recycled. It also discusses a novel technique using natural stable isotopes of calcium that will be helpful in the future to determine calcium and bone balance during space flight.

  3. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism.

    Science.gov (United States)

    Campion, Katherine L; McCormick, Wanda D; Warwicker, Jim; Khayat, Mohd Ezuan Bin; Atkinson-Dell, Rebecca; Steward, Martin C; Delbridge, Leigh W; Mun, Hee-Chang; Conigrave, Arthur D; Ward, Donald T

    2015-09-01

    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo. Copyright © 2015 by the American Society of

  4. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin.

    Science.gov (United States)

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-10-03

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.

  5. Inhibition of 4NQO-Induced Oral Carcinogenesis by Dietary Oyster Shell Calcium.

    Science.gov (United States)

    Chen, Ying; Jiang, Yi; Liao, Liyan; Zhu, Xiaoxin; Tang, Shengan; Yang, Qing; Sun, Lihua; Li, Yujie; Gao, Shuangrong; Xie, Zhongjian

    2016-03-01

    Oyster has gained much attention recently for its anticancer activity but it is unclear whether calcium, the major antitumor ingredient in oyster shell, is responsible for the anticarcinogenic role of the oyster. To address this issue, C57BL/6 mice were fed with the carcinogen 4-nitroquinoline-1-oxide (4NQO, 50 µg/mL) and normal diet or a diet containing oyster powder, oyster calcium, or calcium depleted oyster powder. The tongue tissue specimens isolated from these mice were histologically evaluated for hyperplasia, dysplasia, and papillary lesions, and then analyzed for proliferation and differentiation markers by immunohistochemistry. The results showed that mice on the diet containing oyster calcium significantly reduced rates of tumors in the tongue and proliferation and enhanced differentiation in the oral epithelium compared with the diet containing calcium depleted oyster powder. These results suggest that calcium in oyster plays a critical role in suppressing formation of oral squamous cell carcinoma and proliferation and promoting differentiation of the oral epithelium. © The Author(s) 2015.

  6. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    Science.gov (United States)

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  7. Allergen-Induced Dermatitis Causes Alterations in Cutaneous Retinoid-Mediated Signaling in Mice

    Science.gov (United States)

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Dubrac, Sandrine; Rühl, Ralph

    2013-01-01

    Nuclear receptor-mediated signaling via RARs and PPARδ is involved in the regulation of skin homeostasis. Moreover, activation of both RAR and PPARδ was shown to alter skin inflammation. Endogenous all-trans retinoic acid (ATRA) can activate both receptors depending on specific transport proteins: Fabp5 initiates PPARδ signaling whereas Crabp2 promotes RAR signaling. Repetitive topical applications of ovalbumin (OVA) in combination with intraperitoneal injections of OVA or only intraperitoneal OVA applications were used to induce allergic dermatitis. In our mouse model, expression of IL-4, and Hbegf increased whereas expression of involucrin, Abca12 and Spink5 decreased in inflamed skin, demonstrating altered immune response and epidermal barrier homeostasis. Comprehensive gene expression analysis showed alterations of the cutaneous retinoid metabolism and retinoid-mediated signaling in allergic skin immune response. Notably, ATRA synthesis was increased as indicated by the elevated expression of retinaldehyde dehydrogenases and increased levels of ATRA. Consequently, the expression pattern of genes downstream to RAR was altered. Furthermore, the increased ratio of Fabp5 vs. Crabp2 may indicate an up-regulation of the PPARδ pathway in allergen-induced dermatitis in addition to the altered RAR signaling. Thus, our findings suggest that ATRA levels, RAR-mediated signaling and signaling involved in PPARδ pathways are mainly increased in allergen-induced dermatitis and may contribute to the development and/or maintenance of allergic skin diseases. PMID:23977003

  8. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    OpenAIRE

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induce...

  9. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2012-01-01

    in vivo. Calcium electroporation elicited dramatic antitumor responses in which 89% of treated tumors were eliminated. Histologic analyses indicated complete tumor necrosis. Mechanistically, calcium electroporation caused acute ATP depletion likely due to a combination of increased cellular use of ATP......, decreased production of ATP due to effects on the mitochondria, as well as loss of ATP through the permeabilized cell membrane. Taken together, our findings offer a preclinical proof of concept for the use of electroporation to load cancer cells with calcium as an efficient anticancer treatment...

  10. Calcium and Egg Activation in Drosophila

    Science.gov (United States)

    Sartain, Caroline V.; Wolfner, Mariana F.

    2012-01-01

    Summary In many animals, a rise in intracellular calcium levels is the trigger for egg activation, the process by which an arrested mature oocyte transitions to prepare for embryogenesis. In nearly all animals studied to date, this calcium rise, and thus egg activation, is triggered by the fertilizing sperm. However in the insects that have been examined, fertilization is not necessary to activate their oocytes. Rather, these insects’ eggs activate as they transit through the female’s reproductive tract, regardless of male contribution. Recent studies in Drosophila have shown that egg activation nevertheless requires calcium and that the downstream events and molecules of egg activation are also conserved, despite the difference in initial trigger. Genetic studies have uncovered essential roles for the calcium-dependent enzyme calcineurin and its regulator calcipressin, and have hinted at roles for calmodulin, in Drosophila egg activation. Physiological and in vitro studies have led to a model in which mechanical forces that impact the Drosophila oocyte as it moves through the reproductive tract triggers the influx of calcium from the external environment, thereby initiating egg activation. Future research will aim to test this model, as well as to determine the spatiotemporal dynamics of cytoplasmic calcium flux and mode of signal propagation in this unique system. PMID:23218670

  11. The Role of Calcium in Osteoporosis

    Science.gov (United States)

    Arnaud, C. D.; Sanchez, S. D.

    1991-01-01

    Calcium requirements may vary throughout the lifespan. During the growth years and up to age 25 to 30, it is important to maximize dietary intake of calcium to maintain positive calcium balance and achieve peak bone mass, thereby possibly decreasing the risk of fracture when bone is subsequently lost. Calcium intake need not be greater than 800 mg/day during the relatively short period of time between the end of bone building and the onset of bone loss (30 to 40 years). Starting at age 40 to 50, both men and women lose bone slowly, but women lose bone more rapidly around the menopause and for about 10 years after. Intestinal calcium absorption and the ability to adapt to low calcium diets are impaired in many postmenopausal women and elderly persons owing to a suspected functional or absolute decrease in the ability of the kidney to produce 1,25(OH)2D2. The bones then become more and more a source of calcium to maintain critical extracellular fluid calcium levels. Excessive dietary intake of protein and fiber may induce significant negative calcium balance and thus increase dietary calcium requirements. Generally, the strongest risk factors for osteoporosis are uncontrollable (e.g., sex, age, and race) or less controllable (e.g., disease and medications). However, several factors such as diet, physical activity, cigarette smoking, and alcohol use are lifestyle related and can be modified to help reduce the risk of osteoporosis.

  12. Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation.

    Science.gov (United States)

    Xu, Jing; Du, Yali; Jiang, Zhengwu; She, Anming

    2015-01-01

    The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified by Ca(2+), NH4 (+), pH and cell density monitoring. Compared with stage 1 and 3, stage 2 was considered as the most critical part since biotic CaCO3 precipitation occurs during this stage. Kinetics studies showed that the microbial CaCO3 precipitation rate for calcium lactate was over twice of that for calcium nitrate, indicating that calcium lactate is more beneficial for the cell activity, which in turn determines urease production and CaCO3 precipitation. X-ray diffraction analysis confirmed the CaCO3 crystal as calcite, although scanning electron microscopy revealed a difference in crystal size and morphology if calcium source was different. The findings of this paper further suggest a promising application of microbiologically induced CaCO3 precipitation in remediation of surface and cracks of porous media, e.g., cement-based composites, particularly by using organic source of calcium lactate.

  13. Effect of orally administered dipterinyl calcium pentahydrate on oral glucose tolerance in diet-induced obese mice

    Directory of Open Access Journals (Sweden)

    Fuchs D

    2012-02-01

    Full Text Available Svetlana E Nikoulina1, Dietmar Fuchs2, Phillip Moheno11SanRx Pharmaceuticals, Inc, La Jolla, CA, USA; 2Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, AustriaAbstract: Calcium pterins have been shown to be significant immunotherapeutic agents in models of breast cancer, hepatitis B, and tuberculosis (Bacillus Calmette-Guérin mycobacteria. These compunds modulate the immuno-enzyme indoleamine 2,3-dioxygenase (IDO and the blood levels of several identified inflammatory cytokines. Recent research into the pathology of diabetes implicates inflammatory factors in the progression of the disease, leading the authors to study its possible control by one of the calcium pterins, dipterinyl calcium pentahydrate (DCP.The investigators tested DCP as a novel therapeutic for type 2 diabetes. Female C57BL/6 J mice with diet-induced obesity were fed a high-fat diet and were administered DCP in 0.4% carboxymethylcellulose for 21 days. Blood glucose was followed during the dosing period, and an oral glucose tolerance test (OGTT was carried out on day 21. Measurements of plasma indoleamine 2,3-dioxygenase metabolites (tryptophan and kynurenine and certain cytokines and chemokines were also taken. DCP 7 mg/kg/day reduced OGTT area under the curve (OGTT/AUC by 50% (P < 0.05. A significant multivariate regression (P = 0.013; R2 = 0.571 of OGTT/AUC was derived from DCP dosage and plasma Trp. Elevated plasma Trp concentration, likely from heterogeneity in diet and/or indoleamine 2,3-dioxygenase activity, was found to correlate with higher OGTT/AUC diabetic measures, possibly via inhibition of histamine degradation. In conclusion, an optimum dose of DCP 7 mg/kg/day significantly improved the OGTT diabetic state in these female diet-induced obese mice.Keywords: diabetes, immunotherapy, oral glucose tolerance test, tryptophan, kynurenine

  14. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum.

    Science.gov (United States)

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah

    2015-05-01

    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. TRPC1, STIM1, and ORAI influence signal-regulated intracellular and endoplasmic reticulum calcium dynamics in human myometrial cells.

    Science.gov (United States)

    Murtazina, Dilyara A; Chung, Daesuk; Ulloa, Aida; Bryan, Emily; Galan, Henry L; Sanborn, Barbara M

    2011-08-01

    To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.

  16. Load-induced modulation of signal transduction networks.

    Science.gov (United States)

    Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla

    2011-10-11

    Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.

  17. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling.

    Science.gov (United States)

    Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina

    2013-11-01

    The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John

  18. Calcium signaling in smooth muscle.

    Science.gov (United States)

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  19. Calcium-induced stabilization of -amylase against guanidine ...

    African Journals Online (AJOL)

    Guanidine hydrochloride (GdnHCl) denaturation of native and Ca- depleted Bacillus licheniformis α-amylase (BLA) was investigated both in the absence and presence of 2 mM calcium chloride (CaCl2) using circular dichroism, fluorescence spectroscopy and biological activity. In both states (Cadepleted and native form), ...

  20. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity.

    Science.gov (United States)

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-05-23

    The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms

  1. Hydrogen-enriched water restoration of impaired calcium propagation by arsenic in primary keratinocytes

    Science.gov (United States)

    Yu, Wei-Tai; Chiu, Yi-Ching; Lee, Chih-Hung; Yoshioka, Tohru; Yu, Hsin-Su

    2013-11-01

    Endemic contamination of artesian water for drinking by arsenic is known to cause several human cancers, including cancers of the skin, bladder, and lungs. In skin, multiple arsenic-induced Bowen's disease (As-BD) can develop into invasive cancers after decades of arsenic exposure. The characteristic histological features of As-BD include full-layer epidermal dysplasia, apoptosis, and abnormal proliferation. Calcium propagation is an essential cellular event contributing to keratinocyte differentiation, proliferation, and apoptosis, all of which occur in As-BD. This study investigated how arsenic interferes calcium propagation of skin keratinocytes through ROS production and whether hydrogen-enriched water would restore arsenic-impaired calcium propagation. Arsenic was found to induce oxidative stress and inhibit ATP- and thapsigaragin-induced calcium propagation. Pretreatment of arsenic-treated keratinocytes by hydrogen-enriched water or beta-mercaptoethanol with potent anti-oxidative effects partially restored the propagation of calcium by ATP and by thapsigaragin. It was concluded that arsenic may impair calcium propagation, likely through oxidative stress and interactions with thiol groups in membrane proteins.

  2. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves

    Science.gov (United States)

    Restrepo, Simon; Basler, Konrad

    2016-08-01

    Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.

  3. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  4. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  5. Exopolysaccharides regulate calcium flow in cariogenic biofilms

    Science.gov (United States)

    Varenganayil, Muth M.; Decho, Alan W.

    2017-01-01

    Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya’s agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries. PMID:29023506

  6. Exopolysaccharides regulate calcium flow in cariogenic biofilms.

    Directory of Open Access Journals (Sweden)

    Monika Astasov-Frauenhoffer

    Full Text Available Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya's agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC. Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries.

  7. Contracture of Slow Striated Muscle during Calcium Deprivation

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1963-01-01

    When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle. PMID:14065284

  8. T-type calcium channel antagonism decreases motivation for nicotine and blocks nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine.

    Science.gov (United States)

    Uslaner, Jason M; Vardigan, Joshua D; Drott, Jason M; Uebele, Victor N; Renger, John J; Lee, Ariel; Li, Zhaoxia; Lê, A D; Hutson, Pete H

    2010-10-15

    Recent evidence suggests an involvement of T-type calcium channels in the effects of drugs of abuse. We examined the influence of the novel, potent, and selective T-type calcium channel antagonist [2-(4-cyclopropylphenyl)-N-((1R)-1-{5-[2,2,2-trifluoroethyl]oxo}pyridine-2-yl)ethyl]acetamide] (TTA-A2) (.3, 1, or 3 mg/kg) on motivation for nicotine, as measured by nicotine self-administration on a progressive ratio (PR) schedule, and nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine delivery (n = 11 or 12 Long Evans rats/group). Furthermore, we examined the specificity of the TTA-A2 effects by characterizing its influence on PR responding for food (in the absence or presence of nicotine-potentiated responding), food- versus nicotine-induced cue-potentiated reinstatement for a response previously reinforced by food administration (n = 11 or 12 Wistar Hannover rats/group), and its ability to induce a conditioned place aversion. TTA-A2 dose-dependently decreased self-administration of nicotine on a PR schedule and the ability of both nicotine and a cue paired with nicotine to reinstate responding. The effects were specific for nicotine's incentive motivational properties, as TTA-A2 did not influence responding for food on a PR schedule but did attenuate the ability of nicotine to potentiate responding for food. Likewise, TTA-A2 did not alter food-induced cue-potentiated reinstatement for a response previously reinforced by food but did decrease nicotine-induced cue-potentiated reinstatement. Finally, TTA-A2 did not produce an aversive state, as indicated by a lack of ability to induce conditioned place aversion. These data suggest that T-type calcium channel antagonists have potential for alleviating nicotine addiction by selectively decreasing the incentive motivational properties of nicotine. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Rodriguez-del Valle Nuri

    2007-11-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  10. Calcium-Induced Activation of a Mutant G-Protein-Coupled Receptor Causes In Vitro Transformation of NIH/3T3 Cells

    Directory of Open Access Journals (Sweden)

    Ana O. Hoff

    1999-12-01

    Full Text Available The calcium-sensing receptor (CaR is a G-proteincoupled receptor that is widely expressed, has tissuespecific functions, regulates cell growth. Activating mutations of this receptor cause autosomal dominant hypocalcemia, a syndrome characterized by hypocalcemia and hypercalciuria. The identification of a family with an activating mutation of the CaR (Thr151 Met in which hypocalcemia cosegregates with several unusual neoplasms led us to examine the transforming effects of this mutant receptor. Transfection of NIH/3T3 cells with the mutant but not the normal receptor supported colony formation in soft agar at subphysiologic calcium concentrations. The mutant CaR causes a calcium-dependent activation of the extracellular signal-regulated protein kinase (ERK 1/2 and Jun-N-terminal kinase/stress-activated (JNK/ SAPK pathways, but not P38 MAP kinase. These findings contribute to a growing body of information suggesting that this receptor plays a role in the regulation of cellular proliferation, that aberrant activation of the mutant receptor in this family may play a role in the unusual neoplastic manifestations.

  11. Letrozole induced low estrogen levels affected the expressions of duodenal and renal calcium-processing gene in laying hens.

    Science.gov (United States)

    Li, Qiao; Zhao, Xingkai; Wang, Shujie; Zhou, Zhenlei

    2018-01-01

    Estrogen regulates the calcium homeostasis in hens, but the mechanisms involved are still unclear fully. In this study, we investigated whether letrozole (LZ) induced low estrogen levels affected the calcium absorption and transport in layers. In the duodenum, we observed a significant decrease of mRNA expressions of Calbindin-28k (CaBP-28k) and plasma membrane Ca 2+ -ATPase (PMCA 1b) while CaBP-28k protein expression was declined in birds with LZ treatment, and the mRNA levels of duodenal transient receptor potential vanilloid 6 (TRPV6) and Na + /Ca 2+ exchanger 1 (NCX1) were not affected. Interestingly, we observed the different changes in the kidney. The renal mRNA expressions of TRPV6 and NCX1 were unregulated while the PMCA1b was down-regulated in low estrogen layers, however, the CaBP-28k gene and protein expressions were no changed in the kidney. Furthermore, it showed that the duodenal estradiol receptor 2 (ESR2) transcripts rather than parathyroid hormone 1 receptor (PTH1R) and calcitonin receptor (CALCR) played key roles to down-regulate calcium transport in LZ-treated birds. In conclusion, CaBP-28k, PMCA 1b and ESR2 genes in the duodenum may be primary targets for estrogen regulation in order to control calcium homeostasis in hens. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Signal transduction of p53-independent apoptotic pathway induced by hexavalent chromium in U937 cells

    International Nuclear Information System (INIS)

    Hayashi, Yoko; Kondo, Takashi; Zhao Qingli; Ogawa Ryohei; Cui Zhengguo; Feril, Loreto B.; Teranishi, Hidetoyo; Kasuya, Minoru

    2004-01-01

    It has been reported that the hexavalent chromium compound (Cr(VI)) can induce both p53-dependent and p53-independent apoptosis. While a considerable amount of information is available on the p53-dependent pathway, only little is known about the p53-independent pathway. To elucidate the p53-independent mechanism, the roles of the Ca 2+ -calpain- and mitochondria-caspase-dependent pathways in apoptosis induced by Cr(VI) were investigated. When human lymphoma U937 cells, p53 mutated cells, were treated with 20 μM Cr(VI) for 24 h, nuclear morphological changes and DNA fragmentation were observed. Production of hydroxyl radicals revealed by electron paramagnetic resonance (EPR)-spin trapping, and increase of intracellular calcium ion concentration monitored by digital imaging were also observed in Cr(VI)-treated cells. An intracellular Ca 2+ chelator, BAPTA-AM, and calpain inhibitors suppressed the Cr(VI)-induced DNA fragmentation. The number of cells showing low mitochondrial membrane potential (MMP), high level of superoxide anion radicals (O 2 - ), and high activity of caspase-3, which are indicators of mitochondria-caspase-dependent pathway, increased significantly in Cr(VI)-treated cells. An antioxidant, N-acetyl-L-cysteine (NAC), decreased DNA fragmentation and inhibited the changes in MMP, O 2 - formation, and activation of caspase-3 induced by Cr(VI). No increase of the expressions of Fas and phosphorylated JNK was observed after Cr(VI) treatment. Cell cycle analysis revealed that the fraction of G2/M phase tended to increase after 24 h of treatment, suggesting that Cr(VI)-induced apoptosis is related to the G2 block. These results indicate that Ca 2+ -calpain- and mitochondria-caspase-dependent pathways play significant roles in the Cr(VI)-induced apoptosis via the G2 block, which are independent of JNK and Fas activation. The inhibition of apoptosis and all its signal transductions by NAC suggests that intracellular reactive oxygen species (ROS) are

  13. Effects of soaking and acidification on physicochemical properties of calcium-fortified rice.

    Science.gov (United States)

    Sirisoontaralak, Porntip; Limboon, Pailin; Jatuwong, Sujitra; Chavanalikit, Arusa

    2016-06-01

    Calcium-fortified rice was prepared by soaking milled rice in calcium lactate solution, steaming and drying, and physicochemical properties were determined to evaluate effects of calcium concentration (0, 30, 50 g L(-1) ), soaking temperature (ambient temperature, 40 °C, 60 °C) and acidification. Calcium-fortified rice had less lightness. More total solid loss was observed, especially at high soaking temperature. Harder texture was detected with increased calcium concentration. Calcium fortification lowered pasting viscosity of milled rice. Panelists accepted all fortified rice; however, only rice soaked at 50 g L(-1) concentration could be claimed as a good source of calcium. Increasing of soaking temperature induced more penetration of calcium to rice kernels but calcium was lost more easily after washing. With addition of acetic acid to the soaking solution, enriched calcium content was comparable to that of high soaking temperature but with better retention after washing and calcium solubility was improved. Acid induced reduction of lightness and cooked rice hardness but increased total solid loss and pasting viscosity. Although the taste of acetic acid remained, panelists still accepted the fortified rice. Calcium-fortified rice (190.47-194.3 mg 100 g(-1) ) could be successfully produced by soaking milled rice in 50 g L(-1) calcium lactate solution at 40 °C or at ambient temperature with acidification. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. A review on the kinetics of microbially induced calcium carbonate precipitation by urea hydrolysis

    Science.gov (United States)

    van Paassen, L. A.

    2017-12-01

    In this study the kinetics of calcium carbonate precipitation induced by the ureolytic bacteria are reviewed based on experiments and mathematical modelling. The study shows how urea hydrolysis rate depends on the amount of bacteria and the conditions during growth, storage, hydrolysis and precipitation. The dynamics of Microbially Induced Carbonate Precipitation has been monitored in non-seeded liquid batch experiments. Results show that particulary for a fast hydrolysis of urea (>1 M-urea day-1) in a highly concentrated equimolar solution with calcium chloride (>0.25 M) the solubility product of CaCO3 is exceeded within a short period (less than 30 minutes), the supersaturation remains high for an exended period, resulting in prolonged periods of nucleation and crystal growth and extended growth of metastable precursor mineral phases. The pH, being a result of the speciation, quickly rises until critical supersaturation is reached and precipitation is initiated. Then pH drops (sometimes showing oscillating behaviour) to about neutral where it stays until all substrates are depleted. Higher hydrolysis rates lead to higher supersaturation and pH and relatively many small crystals, whereas higher concentrations of urea and calcium chloride mainly lead to lower pH values. The conversion can be reasonably monitored by electrical conductivity and reasonably predicted, using a simplified model based on a single reaction as long as the urea hydrolysis rate is known. Complex geochemical models, which include chemical speciciation through acid-base equilibria and kinetic equations to describe mineral precipitation, do not show significant difference from the simplified model regarding the bulk chemistry and the total amount of precipitates. However, experiments show that ureolytic MICP can result in a highly variable crystal morphologies with large variation in the affected hydraulic properties when applied in a porous medium. In order to calculate the number, size and

  15. FMRFamide signaling promotes stress-induced sleep in Drosophila.

    Science.gov (United States)

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D; Raizen, David M; Williams, Julie A

    2015-07-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Mitigating Wind Induced Noise in Outdoor Microphone Signals Using a Singular Spectral Subspace Method

    Directory of Open Access Journals (Sweden)

    Omar Eldwaik

    2018-01-01

    Full Text Available Wind induced noise is one of the major concerns of outdoor acoustic signal acquisition. It affects many field measurement and audio recording scenarios. Filtering such noise is known to be difficult due to its broadband and time varying nature. In this paper, a new method to mitigate wind induced noise in microphone signals is developed. Instead of applying filtering techniques, wind induced noise is statistically separated from wanted signals in a singular spectral subspace. The paper is presented in the context of handling microphone signals acquired outdoor for acoustic sensing and environmental noise monitoring or soundscapes sampling. The method includes two complementary stages, namely decomposition and reconstruction. The first stage decomposes mixed signals in eigen-subspaces, selects and groups the principal components according to their contributions to wind noise and wanted signals in the singular spectrum domain. The second stage reconstructs the signals in the time domain, resulting in the separation of wind noise and wanted signals. Results show that microphone wind noise is separable in the singular spectrum domain evidenced by the weighted correlation. The new method might be generalized to other outdoor sound acquisition applications.

  17. Biophysical characterization and functional studies on calbindin-D28K: A vitamin D-induced calcium-binding protein

    International Nuclear Information System (INIS)

    Leathers, V.L.

    1989-01-01

    Vitamin D dependent calcium binding protein, or calbindin-D, is the principal protein induced in the intestine in response to the steroid hormone 1,25(OH) 2 -vitamin D 3 . A definitive role for calbindin-D in vitamin D 3 mediated biological responses remains unclear. Biophysical and functional studies on chick intestinal calbindin-D 28K (CaBP) were initiated so that some insight might be gained into its relevance to the process of intestinal calcium transport. Calbindin-D belongs to a class of high affinity calcium binding proteins which includes calmodulin, parvalbumin and troponin C. The Ca 2+ binding stoichiometry and binding constants for calbindin-D 28K were quantitated by Quin 2 titration analysis. The protein was found to bind 5-6 Ca 2+ ions with a K D on the order of 10 -8 , in agreement with the 6 domains identified from the amino acid sequence. A slow Ca 2+ exchange rate (80 s -1 ) as assessed by 43 Ca NMR and extensive calcium dependent conformational changes in 1 H NMR spectra were also observed. Functional studies on chick intestinal CaBP were carried out by two different methods. Interactions between CaBP and intestinal cellular components were assessed via photoaffinity labeling techniques. Specific calcium dependent complexes for CaBP were identified with bovine intestinal alkaline phosphatase and brush border membrane proteins of 60 and 150 kD. CaBP was also found to co-migrate with the alkaline phosphatase activity of chick intestinal brush border membranes as evaluated by gel filtration chromatography. The second procedure for evaluating CaBP functionality has involved the quantitation of CaBP association with vesicular transport components as assessed by ELISA. CaBP, immunoreactivity was observed in purified lysosomes, microsomes and microtubules

  18. Crosstalk between KCNK3-Mediated Ion Current and Adrenergic Signaling Regulates Adipose Thermogenesis and Obesity.

    Science.gov (United States)

    Chen, Yi; Zeng, Xing; Huang, Xuan; Serag, Sara; Woolf, Clifford J; Spiegelman, Bruce M

    2017-11-02

    Adrenergic stimulation promotes lipid mobilization and oxidation in brown and beige adipocytes, where the harnessed energy is dissipated as heat in a process known as adaptive thermogenesis. The signaling cascades and energy-dissipating pathways that facilitate thermogenesis have been extensively described, yet little is known about the counterbalancing negative regulatory mechanisms. Here, we identify a two-pore-domain potassium channel, KCNK3, as a built-in rheostat negatively regulating thermogenesis. Kcnk3 is transcriptionally wired into the thermogenic program by PRDM16, a master regulator of thermogenesis. KCNK3 antagonizes norepinephrine-induced membrane depolarization by promoting potassium efflux in brown adipocytes. This limits calcium influx through voltage-dependent calcium channels and dampens adrenergic signaling, thereby attenuating lipolysis and thermogenic respiration. Adipose-specific Kcnk3 knockout mice display increased energy expenditure and are resistant to hypothermia and obesity. These findings uncover a critical K + -Ca 2+ -adrenergic signaling axis that acts to dampen thermogenesis, maintain tissue homeostasis, and reveal an electrophysiological regulatory mechanism of adipocyte function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  20. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  1. Motilin-induced gastric contractions signal hunger in man.

    Science.gov (United States)

    Tack, J; Deloose, E; Ang, D; Scarpellini, E; Vanuytsel, T; Van Oudenhove, L; Depoortere, I

    2016-02-01

    Hunger is controlled by the brain, which receives input from signals of the GI tract (GIT). During fasting, GIT displays a cyclical motor pattern, the migrating motor complex (MMC), regulated by motilin. To study the relationship between hunger and MMC phases (I-III), focusing on spontaneous and pharmacologically induced phase III and the correlation with plasma motilin and ghrelin levels. The role of phase III was also studied in the return of hunger after a meal in healthy individuals and in patients with loss of appetite. In fasting healthy volunteers, mean hunger ratings during a gastric (62.5±7.5) but not a duodenal (40.4±5.4) phase III were higher (phunger scores from 29.2±7 to 61.7±8. The somatostatin analogue octreotide induced a premature intestinal phase III without a rise in hunger scores. Hunger ratings significantly correlated (β=0.05; p=0.01) with motilin plasma levels, and this relationship was lost after erythromycin administration. Motilin, but not ghrelin administration, induced a premature gastric phase III and a rise in hunger scores. In contrast to octreotide, postprandial administration of erythromycin induced a premature gastric phase III accompanied by an early rise in hunger ratings. In patients with unexplained loss of appetite, gastric phase III was absent and hunger ratings were lower. Motilin-induced gastric phase III is a hunger signal from GIT in man. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Spatiotemporal multiple coherence resonances and calcium waves in a coupled hepatocyte system

    International Nuclear Information System (INIS)

    Bao-Hua, Wang; Qi-Shao, Lu; Shu-Juan, Lü; Xiu-Feng, Lang

    2009-01-01

    Spatiotemporal multiple coherence resonances for calcium activities induced by weak Gaussian white noise in coupled hepatocytes are studied. It is shown that bi-resonances in hepatocytes are induced by the interplay and competition between noise and coupling of cells, in other words, the cell in network can be excited either by noise or by its neighbour via gap junction which can transfer calcium ions between cells. Furthermore, the intercellular annular calcium waves induced by noise are observed, in which the wave length decreases with noise intensity augmenting but increases monotonically with coupling strength increasing. And for a fixed noise level, there is an optimal coupling strength that makes the coherence resonance reach maximum. (general)

  3. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.; Rüdiger, Sten; Erban, Radek

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While

  4. Two-photon activation of endogenous store-operated calcium channels without optogenetics

    Science.gov (United States)

    Cheng, Pan; Tang, Wanyi; He, Hao

    2018-02-01

    Store-operated calcium (SOC) channels, regulated by intracellular Ca2+ store, are the essential pathway of calcium signaling and participate in a wide variety of cellular activities such as gene expression, secretion and immune response1. However, our understanding and regulation of SOC channels are mainly based on pharmacological methods. Considering the unique advantages of optical control, optogenetic control of SOC channels has been developed2. However, the process of genetic engineering to express exogenous light-sensitive protein is complicated, which arouses concerns about ethic difficulties in some research of animal and applications in human. In this report, we demonstrate rapid, robust and reproducible two-photon activation of endogenous SOC channels by femtosecond laser without optogenetics. We present that the short-duration two-photon scanning on subcellular microregion induces slow Ca2+ influx from extracellular medium, which can be eliminated by removing extracellular Ca2+. Block of SOC channels using various pharmacological inhibitors or knockdown of SOC channels by RNA interference reduce the probability of two-photon activated Ca2+ influx. On the contrary, overexpression of SOC channels can increase the probability of Ca2+ influx by two-photon scanning. These results collectively indicate Ca2+ influx through two-photon activated SOC channels. Different from classical pathway of SOC entry activated by Ca2+ store depletion, STIM1, the sensor protein of Ca2+ level in endoplasmic reticulum, does not show any aggregation or migration in this two-photon activated Ca2+ influx, which rules out the possibility of intracellular Ca2+ store depletion. Thereby, we propose this all-optical method of two-photon activation of SOC channels is of great potential to be widely applied in the research of cell calcium signaling and related biological research.

  5. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration

  6. Endoplasmic reticulum calcium transport ATPase expression during differentiation of colon cancer and leukaemia cells

    International Nuclear Information System (INIS)

    Papp, Bela; Brouland, Jean-Philippe; Gelebart, Pascal; Kovacs, Tuende; Chomienne, Christine

    2004-01-01

    The calcium homeostasis of the endoplasmic reticulum (ER) is connected to a multitude of cell functions involved in intracellular signal transduction, control of proliferation, programmed cell death, or the synthesis of mature proteins. Calcium is accumulated in the ER by various biochemically distinct sarco/endoplasmic reticulum calcium transport ATPase isoenzymes (SERCA isoforms). Experimental data indicate that the SERCA composition of some carcinoma and leukaemia cell types undergoes significant changes during differentiation, and that this is accompanied by modifications of SERCA-dependent calcium accumulation in the ER. Because ER calcium homeostasis can also influence cell differentiation, we propose that the modulation of the expression of various SERCA isoforms, and in particular, the induction of the expression of SERCA3-type proteins, is an integral part of the differentiation program of some cancer and leukaemia cell types. The SERCA content of the ER may constitute a new parameter by which the calcium homeostatic characteristics of the organelle are adjusted. The cross-talk between ER calcium homeostasis and cell differentiation may have some implications for the better understanding of the signalling defects involved in the acquisition and maintenance of the malignant phenotype

  7. Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration

    Science.gov (United States)

    Bhalla, Upinder S.; Hellgren Kotaleski, Jeanette

    2016-01-01

    In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction. PMID:27584878

  8. Involvement of heme oxygenase-1 in β-cyclodextrin-hemin complex-induced cucumber adventitious rooting process.

    Science.gov (United States)

    Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong

    2012-09-01

    Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.

  9. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    Science.gov (United States)

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3

  10. The complex nature of calcium cation interactions with phospholipid bilayers

    Science.gov (United States)

    Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz

    2016-01-01

    Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555

  11. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation

    Directory of Open Access Journals (Sweden)

    Halleskog Carina

    2012-05-01

    Full Text Available Abstract Background WNT-5A signaling in the central nervous system is important for morphogenesis, neurogenesis and establishment of functional connectivity; the source of WNT-5A and its importance for cellular communication in the adult brain, however, are mainly unknown. We have previously investigated the inflammatory effects of WNT/β-catenin signaling in microglia in Alzheimer's disease. WNT-5A, however, generally recruits β-catenin-independent signaling. Thus, we aim here to characterize the role of WNT-5A and downstream signaling pathways for the inflammatory transformation of the brain's macrophages, the microglia. Methods Mouse brain sections were used for immunohistochemistry. Primary isolated microglia and astrocytes were employed to characterize the WNT-induced inflammatory transformation and underlying intracellular signaling pathways by immunoblotting, quantitative mRNA analysis, proliferation and invasion assays. Further, measurements of G protein activation by [γ-35 S]GTP binding, examination of calcium fluxes and cyclic AMP production were used to define intracellular signaling pathways. Results Astrocytes in the adult mouse brain express high levels of WNT-5A, which could serve as a novel astroglia-microglia communication pathway. The WNT-5A-induced proinflammatory microglia response is characterized by increased expression of inducible nitric oxide synthase, cyclooxygenase-2, cytokines, chemokines, enhanced invasive capacity and proliferation. Mapping of intracellular transduction pathways reveals that WNT-5A activates heterotrimeric Gi/o proteins to reduce cyclic AMP levels and to activate a Gi/o protein/phospholipase C/calcium-dependent protein kinase/extracellular signal-regulated kinase 1/2 (ERK1/2 axis. We show further that WNT-5A-induced ERK1/2 signaling is responsible for distinct aspects of the proinflammatory transformation, such as matrix metalloprotease 9/13 expression, invasion and proliferation. Conclusions

  12. Study on two-dimensional induced signal readout of MRPC

    International Nuclear Information System (INIS)

    Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin

    2012-01-01

    A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.

  13. Role of polyhydroxybutyrate in mitochondrial calcium uptake

    Science.gov (United States)

    Smithen, Matthew; Elustondo, Pia A.; Winkfein, Robert; Zakharian, Eleonora; Abramov, Andrey Y.; Pavlov, Evgeny

    2013-01-01

    Polyhydroxybutyrate (PHB) is a biological polymer which belongs to the class of polyesters and is ubiquitously present in all living organisms. Mammalian mitochondrial membranes contain PHB consisting of up to 120 hydroxybutyrate residues. Roles played by PHB in mammalian mitochondria remain obscure. It was previously demonstrated that PHB of the size similar to one found in mitochondria mediates calcium transport in lipid bilayer membranes. We hypothesized that the presence of PHB in mitochondrial membrane might play a significant role in mitochondrial calcium transport. To test this, we investigated how the induction of PHB hydrolysis affects mitochondrial calcium transport. Mitochondrial PHB was altered enzymatically by targeted expression of bacterial PHB hydrolyzing enzyme (PhaZ7) in mitochondria of mammalian cultured cells. The expression of PhaZ7 induced changes in mitochondrial metabolism resulting in decreased mitochondrial membrane potential in HepG2 but not in U87 and HeLa cells. Furthermore, it significantly inhibited mitochondrial calcium uptake in intact HepG2, U87 and HeLa cells stimulated by the ATP or by the application of increased concentrations of calcium to the digitonin permeabilized cells. Calcium uptake in PhaZ7 expressing cells was restored by mimicking calcium uniporter properties with natural electrogenic calcium ionophore - ferutinin. We propose that PHB is a previously unrecognized important component of the mitochondrial calcium uptake system. PMID:23702223

  14. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    International Nuclear Information System (INIS)

    Yu, Mingxiang; Chen, Xianying; Lv, Chaoyang; Yi, Xilu; Zhang, Yao; Xue, Mengjuan; He, Shunmei; Zhu, Guoying; Wang, Hongfu

    2014-01-01

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases

  15. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Xianying [Department of Endocrinology and Metabolism, Hainan Provincial Nong Ken Hospital, Hainan (China); Lv, Chaoyang [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Yi, Xilu [Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Shanghai (China); Zhang, Yao; Xue, Mengjuan; He, Shunmei [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Zhu, Guoying [Institute of Radiation Medicine, Fudan University, Shanghai (China); Wang, Hongfu, E-mail: hfwang@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  16. Impaired Compensation for Salt-Induced Urinary Calcium Loss in a Space Flight Model

    Science.gov (United States)

    Navidi, Meena; Harper, J. S.; Evans, J.; Fung, P.; Wolinsky, I.; Arnaud, S. B.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The loss of urinary calcium (UCa) induced by high sodium (HiNa) diets is compensated for by an increase in net intestinal Ca absorption (abs.). To determine the capacity of the intestine to absorb Ca in a space flight model in which the formation of 1,25-dihydroxyvitamin D (1,25-D) is suppressed, we induced Ca loss with HiNa diets (8%) and restricted dietary Ca (0.2%). In 200 g rats with hind limbs unloaded by tail suspension (S), we examined intestinal Ca abs. by direct measurement in the duodenum (everted gut sac or S/M), vitamin D receptors (VDR) and Ca balance. We also measured serum ionized calcium (ICa), pH, parathyroid hormone (PTH) and 1,25D. PTH was related to ICa (r = -0.44, p is less than 0.02), pH (r = -0.47, p is less than 0.02) and %Ca abs. (r = -0.40, p is less than 0.05). 1,25-D was related to %Ca abs. (r = 0.60, p is less than 0.001) but not VDR or S/M. Effects of the model were lower serum 1,25-D (110 +/- 59 vs. 199 +/- 80 pg/ml, p is less than 0.005), %Ca abs. (83 +/- 6.9 vs. 93 +/- 3.2, p is less than 0.03) and Ca balance (27 +/- 0.2 vs. 30 +/- 0.3 mg/d, p is less than 0.001) in S than controls (C). The HiNa diet increased UCa excretion from 2 to 13% of dietary Ca. Responses to HiNa diets, compared to normal Na, revealed no differences in 1,25-D, Ca abs. or VDR. Ca balances were lower in HiNa (27 +/- 0.3 vs. 30 +/- 0.4 mg/d, p is less than 0.001) in spite of higher Ca intakes. The failure of S rats fed HiNa diets to increase Ca abs. in response to Na-induced Ca loss appears to be related to suppressed 1,25-D in the space flight model, the cause of which remains obscure.

  17. Role of calcium-enriched mixture in endodontics

    Directory of Open Access Journals (Sweden)

    Pradeep Kabbinale

    2015-01-01

    Full Text Available Calcium-enriched mixture (CEM has been recently introduced as a hydrophilic tooth-colored cement. The CEM cement powder is composed of calcium oxide, calcium sulfate, phosphorus oxide, and silica as major elements. CEM is alkaline cement (pH~11 that releases calcium hydroxide (CH during and after setting. The physical properties of CEM, such as flow, film thickness, and primary setting time are favorable. This cement is biocompatible and induces formation of cementum, dentin, bone and periodontal tissues. This novel cement has an antibacterial effect comparable to CH and superior to mineral trioxide aggregate (MTA and sealing ability similar to MTA. Its clinical applications include pulp capping, pulpotomy, root-end filling and perforation repair. This review describes the composition, properties and clinical applications of CEM in endodontics.

  18. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    Science.gov (United States)

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  19. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk; Oh, Jae Eun; Balonis, Magdalena; Glasser, Fredrik P.; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-01-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt

  20. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  1. Deregulation of calcium fluxes in HTLV-I infected CD4-positive T-cells plays a major role in malignant transformation.

    Science.gov (United States)

    Akl, Haidar; Badran, Bassam; El Zein, Nabil; Dobirta, Gratiela; Burny, Arsene; Martiat, Philippe

    2009-01-01

    The CD4+ T-cell malignancy induced by human T-cell leukemia virus type 1 (HTLV-I) infection and termed; Adult T-cell Leukemia lymphoma (ATLL), is caused by defects in the mechanisms underlying cell proliferation and cell death. In the CD4+ T-cells, calcium ions are central for both phenomena. ATLL is associated with a marked hypercalcemia in many patients. The consequence of a defect in the Ca2+ signaling pathway for lymphocyte activation is characterized by an impaired NFAT activation and transcription of cytokines, chemokines and many other NFAT target genes whose transcription is essential for productive immune defense. Fresh ATLL cells lack the TCR/CD3 and CD7 molecules on their surface. Whereas CD7 is a calcium transporter, reduction in calcium influx in response to T-cell activation was reported as a functional consequence of TCR/CD3 expression deficiency. Understanding these changes and identifying the molecular players involved might provide further insights on how to improve ATLL treatment.

  2. Calcium and α-tocopherol suppress cured-meat promotion of chemically induced colon carcinogenesis in rats and reduce associated biomarkers in human volunteers123

    Science.gov (United States)

    Martin, Océane CB; Santarelli, Raphaelle L; Taché, Sylviane; Naud, Nathalie; Guéraud, Françoise; Audebert, Marc; Dupuy, Jacques; Meunier, Nathalie; Attaix, Didier; Vendeuvre, Jean-Luc; Mirvish, Sidney S; Kuhnle, Gunter CG; Cano, Noel; Corpet, Denis E

    2013-01-01

    Background: Processed meat intake has been associated with increased colorectal cancer risk. We have shown that cured meat promotes carcinogen-induced preneoplastic lesions and increases specific biomarkers in the colon of rats. Objectives: We investigated whether cured meat modulates biomarkers of cancer risk in human volunteers and whether specific agents can suppress cured meat–induced preneoplastic lesions in rats and associated biomarkers in rats and humans. Design: Six additives (calcium carbonate, inulin, rutin, carnosol, α-tocopherol, and trisodium pyrophosphate) were added to cured meat given to groups of rats for 14 d, and fecal biomarkers were measured. On the basis of these results, calcium and tocopherol were kept for the following additional experiments: cured meat, with or without calcium or tocopherol, was given to dimethylhydrazine-initiated rats (47% meat diet for 100 d) and to human volunteers in a crossover study (180 g/d for 4 d). Rat colons were scored for mucin-depleted foci, putative precancer lesions. Biomarkers of nitrosation, lipoperoxidation, and cytotoxicity were measured in the urine and feces of rats and volunteers. Results: Cured meat increased nitroso compounds and lipoperoxidation in human stools (both P meat (P = 0.01). Conclusion: Data suggest that the addition of calcium carbonate to the diet or α-tocopherol to cured meat may reduce colorectal cancer risk associated with cured-meat intake. This trial was registered at clinicaltrials.gov as NCT00994526. PMID:24025632

  3. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Xiquan Gao

    2014-03-01

    Full Text Available An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP, which is called PAMP-triggered immunity (PTI. The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI. Calcium (Ca2+ signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response.

  4. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Science.gov (United States)

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  5. Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells.

    Science.gov (United States)

    Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2016-11-01

    Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells.

    Science.gov (United States)

    Sun, Wen; Wu, Xiaxia; Gao, Hongwei; Yu, Jie; Zhao, Wenwen; Lu, Jin-Jian; Wang, Jinhua; Du, Guanhua; Chen, Xiuping

    2017-07-01

    Necroptosis is a form of programmed necrosis mediated by signaling complexes with receptor-interacting protein 1 (RIP1) and RIP3 kinases as the main mediators. However, the underlying execution pathways of this phenomenon have yet to be elucidated in detail. In this study, a RIP1/RIP3 complex was formed in 2-methoxy-6-acetyl-7-methyljuglone (MAM)-treated HCT116 and HT29 colon cancer cells. With this formation, mitochondrial reactive oxygen species (ROS) levels increased, mitochondrial depolarization occurred, and ATP concentrations decreased. This process was identified as necroptosis. This finding was confirmed by experiments showing that MAM-induced cell death was attenuated by the pharmacological or genetic blockage of necroptosis signaling, including RIP1 inhibitor necrostatin-1s (Nec-1s) and siRNA-mediated gene silencing of RIP1 and RIP3, but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1H-Indol-3-yl)-3-pentylamino-maleimide (IM54). Transmission electron microscopy (TEM) analysis further revealed the ultrastructural features of MAM-induced necroptosis. MAM-induced RIP1/RIP3 complex triggered necroptosis through cytosolic calcium (Ca 2+ ) accumulation and sustained c-Jun N-terminal kinase (JNK) activation. Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate necroptotic features, including mitochondrial ROS elevation, mitochondrial depolarization, and ATP depletion. 2-thenoyltrifluoroacetone (TTFA), which is a mitochondrial complex II inhibitor, was found to effectively reverse both MAM induced mitochondrial ROS generation and cell death, indicating the complex II was the ROS-producing site. The essential role of mitochondrial ROS was confirmed by the protective effect of overexpression of manganese superoxide dismutase (MnSOD). MAM-induced necroptosis was independent of TNFα, p53, MLKL, and lysosomal membrane permeabilization. In summary, our study demonstrated that RIP1/RIP3 complex-triggered cytosolic calcium

  7. Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots.

    Science.gov (United States)

    Özsu, Nesibe; Monteiro, Antónia

    2017-10-16

    One hypothesis surrounding the origin of novel traits is that they originate from the co-option of pre-existing genes or larger gene regulatory networks into novel developmental contexts. Insights into a trait's evolutionary origins can, thus, be gained via identification of the genes underlying trait development, and exploring whether those genes also function in other developmental contexts. Here we investigate the set of genes associated with the development of eyespot color patterns, a trait that originated once within the Nymphalid family of butterflies. Although several genes associated with eyespot development have been identified, the eyespot gene regulatory network remains largely unknown. In this study, next-generation sequencing and transcriptome analyses were used to identify a large set of genes associated with eyespot development of Bicyclus anynana butterflies, at 3-6 h after pupation, prior to the differentiation of the color rings. Eyespot-associated genes were identified by comparing the transcriptomes of homologous micro-dissected wing tissues that either develop or do not develop eyespots in wild-type and a mutant line of butterflies, Spotty, with extra eyespots. Overall, 186 genes were significantly up and down-regulated in wing tissues that develop eyespots compared to wing tissues that do not. Many of the differentially expressed genes have yet to be annotated. New signaling pathways, including the Toll, Fibroblast Growth Factor (FGF), extracellular signal-regulated kinase (ERK) and/or Jun N-terminal kinase (JNK) signaling pathways are associated for the first time with eyespot development. In addition, several genes involved in wound healing and calcium signaling were also found to be associated with eyespots. Overall, this study provides the identity of many new genes and signaling pathways associated with eyespots, and suggests that the ancient wound healing gene regulatory network may have been co-opted to cells at the center of the

  8. Role of Calcium Sensing Receptor in Streptozotocin-Induced Diabetic Rats Exposed to Renal Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-02-01

    Full Text Available Background/Aims: Renal ischemia/reperfusion (I/R injury (RI/RI is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations at its onset, which can result in inflammation, abnormal lipid metabolism, the production of reactive oxygen species (ROS, and nitroso-redox imbalance. The calcium-sensing receptor (CaSR is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic RI/ RI remains unclear. The present study was intended to investigate the role of CaSR on RI/RI in diabetes mellitus (DM. Methods: The bilateral renal arteries and veins of streptozotocin (STZ-induced diabetic rats were subjected to 45-min ischemia followed by 2-h reperfusion with or without R-568 (agonist of CaSR and NPS-2143 (antagonist of CaSR at the beginning of I/R procedure. DM without renal I/R rats served as control group. The expressions of CaSR, calmodulin (CaM, and p47phox in the renal tissue were analyzed by qRT-PCR and Western blot. The renal pathomorphology, renal function, oxidative stress, inflammatory response, and calcium disorder were evaluated by detection of a series of indices by hematoxylin-eosin (HE staining, transmission electron microscope (TEM, commercial kits, enzyme-linked immunosorbent assay (ELISA, and spectrophotofluorometry, respectively. Results: Results showed that the expressions of CaSR, CaM, and p47phox in I/R group were significantly up-regulated as compared with those in DM group, which were accompanied by renal tissue injury, increased calcium, oxidative stress, inflammation, and nitroso-redox imbalance. Conclusion: These results suggest that activation of CaSR is involved in the induction of damage of renal tubular epithelial cell during diabetic RI/RI, resulting in lipid peroxidation, inflammatory response, nitroso-redox imbalance, and apoptosis.

  9. Clarification of serotonin-induced effects in peripheral artery disease observed through the femoral artery response in models of diabetes and vascular occlusion: The role of calcium ions.

    Science.gov (United States)

    Stojanović, Marko; Prostran, Milica; Janković, Radmila; Radenković, Miroslav

    2017-07-01

    Recent findings have demonstrated that serotonin is an important participant in the development and progression of peripheral artery diseases. Taking this into consideration, the goals of this study were to investigate the effects of serotonin on isolated Wistar rat femoral arteries in both healthy and diabetic animals, with and without artery occlusion, with a particular focus on determining the role of calcium in this process. Contraction experiments with serotonin on intact and denuded femoral artery rings, in the presence or absence of nifedipine and ouabain (both separately, or in combination), as well as Ca 2+ -free Krebs-Ringer bicarbonate solution were performed. The serotonin-induced results were concentration dependent, but only in healthy animals. The endothelium-dependent contraction of the femoral artery was assessed. In healthy animals, the endothelium-reliant part of contraction was dependent on the extracellular calcium, while the smooth muscle-related part was instead dependent on the intracellular calcium. In diabetic animals, both nifedipine and ouabain influenced serotonin-induced vascular effects by blocking intracellular calcium pathways. However, this was diminished after the simultaneous administration of both blockers. © 2017 John Wiley & Sons Australia, Ltd.

  10. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger

    2007-01-01

    approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... channels on the cell surface stimulating synchronized release of SR-calcium and inducing the shift from waves to whole-cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated...

  11. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  12. Effect of cadmium on myocardial contractility and calcium fluxes

    International Nuclear Information System (INIS)

    Pilati, C.F.

    1979-01-01

    The effect of cadmium on myocardial mechanical performance and calcium fluxes was studied in kitten isometric papillary muscles and in isovolumic Langendorff-perfused rabbit hearts. Therefore, it is concluded that cadmium-induced decreases in contractility are not primarily the result of cadmium interference with ATP metabolic processes. Furthermore, these results imply that cadmium causes no structural alterations of the contractile proteins. These data suggest that cadmium may be competing with the calcium needed for excitation-contraction coupling. During experiments using radioisotopic calcium, a statistically significant cellular influx of calcium was observed following the onset of 100 μM Cd ++ perfusion of isolated, Langendorff-prepared rabbit hearts

  13. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ye, Xing; Lin, Junyi; Lin, Zebin; Xue, Aimin; Li, Liliang; Zhao, Ziqin; Liu, Li; Shen, Yiwen; Cong, Bin

    2017-10-15

    Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    International Nuclear Information System (INIS)

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-01-01

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein δ expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor γ expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-α did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  15. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    International Nuclear Information System (INIS)

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S.

    2005-01-01

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKCα-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis

  16. Investigation of radiation-induced multilayered signalling response of the inflammatory pathway

    International Nuclear Information System (INIS)

    Babini, G.; Ugolini, M.; Morini, J.; Baiocco, G.; Ottolenghi, A.; Mariotti, L.; Tabarelli de Fatis, P.; Liotta, M.

    2015-01-01

    Ionising radiation exposure of cells might induce the perturbation of cell functions and, in particular, the activation or inhibition of several important pathways. This perturbation can cause the deregulation of both intra- and extra-cellular signalling cascades (such as the inflammatory pathway) and alter not only the behaviour of directly exposed cells but also the neighbouring nonirradiated ones, through the so-called bystander effect. The aim of the present work was to investigate the complex nonlinear interactions between the inflammatory pathway and other strictly interlaced signalling pathways, such as Erk1/2 and Akt/PKB, focusing on the radiation-induced perturbation of such pathways in the dose range of 0 -2 Gy. The results show how radiation affects these interconnected pathways and how confounding factors, such as the change of culture medium, can hide radiation-induced perturbations. (authors)

  17. Inhibition Mechanism of Uranyl Reduction Induced by Calcium-Carbonato Complexes

    Science.gov (United States)

    Jones, M. E.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium mobility in the subsurface is controlled by the redox state and chemical speciation, generally as minimally soluble U(IV) or soluble U(VI) species. In the presence of even low carbonate concentrations the uranyl-carbonato complex quickly becomes the dominant aqueous species; they are, in fact, the primary aqueous species in most groundwaters. Calcium in groundwater leads to ternary calcium-uranyl-carbonato complexes that limit the rate and extent of U(VI) reduction. This decrease in reduction rate has been attributed to surface processes, thermodynamic limitations, and kinetic factors. Here we present a new mechanism for the inhibition of ferrous iron reduction of uranyl-carbonato species in the presence of calcium. A series of experiments under variable Ca conditions were preformed to determine the role of Ca in the inhibition of U reduction by ferrous iron. Calcium ions in the Ca2UO2(CO3)3 complex sterically prevent the interaction of Fe(II) with U(VI), in turn preventing the Fe(II)-U(VI) distance required for electron transfer. The mechanism described here helps to predict U redox transformations in suboxic environments and clarifies the role of Ca in the fate and mobility of U. Electrochemical measurements further show the decrease of the U(VI) to U(V) redox potential of the uranyl-carbonato complex with decreasing pH suggesting the first electron transfer is critical determining the rate and extent of uranium reduction.

  18. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    -adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...... not by itself causing fast transient increases in [Ca2+]i. In addition, we suggest that endogenously produced NO activated by ß-adrenergic receptor stimulation, plays an important role in signalling to the surrounding tissue....

  19. N-acetyl-l-cysteine and Mn2+ attenuate Cd2+-induced disturbance of the intracellular free calcium homeostasis in cultured cerebellar granule neurons.

    Science.gov (United States)

    Isaev, Nickolay K; Avilkina, Svetlana; Golyshev, Sergey A; Genrikhs, Elisaveta E; Alexandrova, Olga P; Kapkaeva, Marina R; Stelmashook, Elena V

    2018-01-15

    Cadmium is a highly toxic heavy metal that is capable of accumulating in the body via direct exposure or through the alimentary and respiratory tract, leading to neurodegeneration. In this article, we show that the application of CdCl 2 (0.001-0.005mM) for 48h induced high dose-dependent death rate of cultured cerebellar granule neurons (CGNs). Unlike Trolox or vitamin E, antioxidant N-acetyl-l-cysteine (NAC, 1mM) and Mn 2+ (0.0025-0.005mM) significantly protected CGNs from this toxic effect. Using Fluo-4 AM, measurements of intracellular calcium ions demonstrated that 24h-exposure to Cd 2+ induced intensive increase of Fluo-4 fluorescence in neurons accompanied by mitochondria swelling. These data imply that the cadmium-induced Ca 2+ increase is an important element in the death of neurons due to toxic effect of cadmium and the mechanism of protective action of manganese and NAC is mediated by the prevention of increase in calcium levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Inhibition of large conductance calcium-dependent potassium ...

    African Journals Online (AJOL)

    conductance, calcium and voltage- dependent potassium (BKCa) channels thereby promoting vasoconstriction. Our results show that the Rho-kinase inhibitor, Y-27632, induced concentration-dependent relaxation in rat mesenteric artery.