WorldWideScience

Sample records for calcium release channel

  1. Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse.

    Science.gov (United States)

    Xu, Jian Wei; Slaughter, Malcolm M

    2005-08-17

    Large-conductance calcium-activated potassium (BK) channels are colocalized with calcium channels at sites of exocytosis at the presynaptic terminals throughout the nervous system. It is expected that their activation would provide negative feedback to transmitter release, but the opposite is sometimes observed. Attempts to resolve this apparent paradox based on alterations in action potential waveform have been ambiguous. In an alternative approach, we investigated the influence of this channel on neurotransmitter release in a nonspiking neuron, the salamander rod photoreceptors. Surprisingly, the BK channel facilitates calcium-mediated transmitter release from rods. The two presynaptic channels form a positive coupled loop. Calcium influx activates the BK channel current, leading to potassium efflux that increases the calcium current. The normal physiological voltage range of the rod is well matched to the dynamics of this positive loop. When the rod is further depolarized, then the hyperpolarizing BK channel current exceeds its facilitatory effect, causing truncation of transmitter release. Thus, the calcium channel-BK channel linkage performs two functions at the synapse: nonlinear potentiator and safety brake.

  2. Reversible block of the calcium release channel/ryanodine receptor by protamine, a heparin antidote.

    Science.gov (United States)

    Koulen, P; Ehrlich, B E

    2000-07-01

    Channel activity of the calcium release channel from skeletal muscle, ryanodine receptor type 1, was measured in the presence and absence of protamine sulfate on the cytoplasmic side of the channel. Single-channel activity was measured after incorporating channels into planar lipid bilayers. Optimally and suboptimally calcium-activated calcium release channels were inactivated by the application of protamine to the cytoplasmic side of the channel. Recovery of channel activity was not observed while protamine was present. The addition of protamine bound to agarose beads did not change channel activity, implying that the mechanism of action involves an interaction with the ryanodine receptor rather than changes in the bulk calcium concentration of the medium. The block of channel activity by protamine could be reversed either by removal by perfusion with buffer or by the addition of heparin to the cytoplasmic side of the channel. Microinjection of protamine into differentiated C(2)C(12) mouse muscle cells prevented caffeine-induced intracellular calcium release. The results suggest that protamine acts on the ryanodine receptor in a similar but opposite manner from heparin and that protamine can be used as a potent, reversible inhibitor of ryanodine receptor activity.

  3. Role for voltage gated calcium channels in calcitonin gene-related peptide release in the rat trigeminovascular system

    DEFF Research Database (Denmark)

    Amrutkar, D V; Ploug, K B; Olesen, J

    2011-01-01

    Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons and are i...... releases CGRP, and the release is regulated by Ca2+ ions and voltage-gated calcium channels.......Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons...

  4. Calcium release channel RyR2 regulates insulin release and glucose homeostasis

    OpenAIRE

    Santulli, Gaetano; Pagano, Gennaro; Sardu, Celestino; Xie, Wenjun; Reiken, Steven; D’Ascia, Salvatore Luca; Cannone, Michele; Marziliano, Nicola; Trimarco, Bruno; Guise, Theresa A.; Lacampagne, Alain; Marks, Andrew R.

    2015-01-01

    The type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic reticulum (ER) of several types of cells, including cardiomyocytes and pancreatic β cells. In cardiomyocytes, RyR2-dependent Ca2+ release is critical for excitation-contraction coupling; however, a functional role for RyR2 in β cell insulin secretion and diabetes mellitus remains controversial. Here, we took advantage of rare RyR2 mutations that were identified in patients with a genetic form of exercise-induced...

  5. Calcium release channel RyR2 regulates insulin release and glucose homeostasis.

    Science.gov (United States)

    Santulli, Gaetano; Pagano, Gennaro; Sardu, Celestino; Xie, Wenjun; Reiken, Steven; D'Ascia, Salvatore Luca; Cannone, Michele; Marziliano, Nicola; Trimarco, Bruno; Guise, Theresa A; Lacampagne, Alain; Marks, Andrew R

    2015-05-01

    The type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic reticulum (ER) of several types of cells, including cardiomyocytes and pancreatic β cells. In cardiomyocytes, RyR2-dependent Ca2+ release is critical for excitation-contraction coupling; however, a functional role for RyR2 in β cell insulin secretion and diabetes mellitus remains controversial. Here, we took advantage of rare RyR2 mutations that were identified in patients with a genetic form of exercise-induced sudden death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). As these mutations result in a "leaky" RyR2 channel, we exploited them to assess RyR2 channel function in β cell dynamics. We discovered that CPVT patients with mutant leaky RyR2 present with glucose intolerance, which was heretofore unappreciated. In mice, transgenic expression of CPVT-associated RyR2 resulted in impaired glucose homeostasis, and an in-depth evaluation of pancreatic islets and β cells from these animals revealed intracellular Ca2+ leak via oxidized and nitrosylated RyR2 channels, activated ER stress response, mitochondrial dysfunction, and decreased fuel-stimulated insulin release. Additionally, we verified the effects of the pharmacological inhibition of intracellular Ca2+ leak in CPVT-associated RyR2-expressing mice, in human islets from diabetic patients, and in an established murine model of type 2 diabetes mellitus. Taken together, our data indicate that RyR2 channels play a crucial role in the regulation of insulin secretion and glucose homeostasis.

  6. Role for voltage gated calcium channels in calcitonin gene-related peptide release in the rat trigeminovascular system

    DEFF Research Database (Denmark)

    Amrutkar, D V; Ploug, K B; Olesen, J;

    2011-01-01

    Clinical and genetic studies have suggested a role for voltage gated calcium channels (VGCCs) in the pathogenesis of migraine. Release of calcitonin gene-related peptide (CGRP) from trigeminal neurons has also been implicated in migraine. The VGCCs are located presynaptically on neurons and are i...

  7. Release of glutamate and CGRP from trigeminal ganglion neurons: Role of calcium channels and 5-HT1 receptor signaling

    Directory of Open Access Journals (Sweden)

    Hurley Joyce H

    2008-04-01

    Full Text Available Abstract Background The aberrant release of the neurotransmitters, glutamate and calcitonin-gene related peptide (CGRP, from trigeminal neurons has been implicated in migraine. The voltage-gated P/Q-type calcium channel has a critical role in controlling neurotransmitter release and has been linked to Familial Hemiplegic Migraine. Therefore, we examined the importance of voltage-dependent calcium channels in controlling release of glutamate and CGRP from trigeminal ganglion neurons isolated from male and female rats and grown in culture. Serotonergic pathways are likely involved in migraine, as triptans, a class of 5-HT1 receptor agonists, are effective in the treatment of migraine and their effectiveness may be due to inhibiting neurotransmitter release from trigeminal neurons. We also studied the effect of serotonin receptor activation on release of glutamate and CGRP from trigeminal neurons grown in culture. Results P/Q-, N- and L-type channels each mediate a significant fraction of potassium-stimulated release of glutamate and CGRP. We determined that 5-HT significantly inhibits potassium-stimulated release of both glutamate and CGRP. Serotonergic inhibition of both CGRP and glutamate release can be blocked by pertussis toxin and NAS-181, a 5-HT1B/1D antagonist. Stimulated release of CGRP is unaffected by Y-25130, a 5-HT3 antagonist and SB 200646, a 5-HT2B/2C antagonist. Conclusion These data suggest that release of both glutamate and CGRP from trigeminal neurons is controlled by calcium channels and modulated by 5-HT signaling in a pertussis-toxin dependent manner and probably via 5-HT1 receptor signaling. This is the first characterization of glutamate release from trigeminal neurons grown in culture.

  8. Clusters of calcium release channels harness the Ising phase transition to confine their elementary intracellular signals

    CERN Document Server

    Maltsev, Anna; Stern, Michael

    2016-01-01

    Intracellular Ca signals represent a universal mechanism of cell function. Messages carried by Ca are local, rapid, and powerful enough to be delivered over the thermal noise. A higher signal to noise ratio is achieved by a cooperative action of Ca release channels such as IP3 receptors or ryanodine receptors arranged in clusters or release units containing a few to several hundred release channels. The release channels synchronize their openings via Ca-induced-Ca-release, generating high-amplitude local Ca signals known as puffs in neurons or sparks in muscle cells. Despite the high release amplitude and positive feedback nature of the activation, Ca signals are strictly confined in time and space by an unexplained termination mechanism. Here we show that the collective transition of release channels from an open to a closed state is identical to the phase transition associated with the reversal of magnetic field in an Ising ferromagnet. We demonstrate this mechanism using numerical model simulations of Ca s...

  9. Effects of Arecoline on Calcium Channel Currents and Caffeine-induced Calcium Release in Isolated Single Ventricular Myocyte of Guinea Pig

    Institute of Scientific and Technical Information of China (English)

    林先明; 李真; 胡本容; 夏国瑾; 姚伟星; 向继洲

    2002-01-01

    Summary: The effects of Arecoline (Are) on calcium mobilization were investigated. In isolatedsingle ventricular myocyte of guinea pig, patch clamp whole cell recording techniques were used torecord the current of L-type calcium channel and cytosolic Ca2+ level ([Ca2+]i) labeled with fluo-rescence probe Fluo-3/AM was measured under a laser scanning confocal microscope. Results re-vealed that Are (3-100 μmol/L) could inhibit L-type calcium current in a concentration-depen-dent manner and the value of IC50 was 33. 73μmol/L (n= 5). In the absence of extracellular calci-um, the resting levels of [Ca2+]i was not affected by Are (n=6, P>0. 05), but pretreatmentwith Are (30 μmol/L) could significantly inhibit the [Ca2+]i elevation induced by caffeine (10mmol/L, n = 6, P < 0. 01). It was concluded that Are could inhibit not only calcium influxthrough L-type calcium channel but also calcium release from sarcoplasmic reticulum.

  10. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor, a calcium release channel, through non-enzymatic posttranslational modification by nitric oxide

    Directory of Open Access Journals (Sweden)

    Sho eKakizawa

    2013-10-01

    Full Text Available Nitric oxide (NO is a typical gaseous messenger involved in a wide range of biological processes. In our classical knowledge, effects of NO are largely achieved by activation of soluble guanylyl cyclase to form cyclic guanosine-3’, 5’-monophosphate. However, emerging evidences have suggested another signaling mechanism mediated by NO: S-nitrosylation of target proteins.S-nitrosylation is a covalent addition of an NO group to a cysteine thiol/sulfhydryl (RSH, and categorized into non-enzymatic posttranslational modification of proteins, contrasted to enzymatic posttranslational modification of proteins, such as phosphorylation mediated by various protein kinases.Very recently, we found novel intracellular calcium (Ca2+ mobilizing mechanism, NO-induced Ca2+ release (NICR in cerebellar Purkinje cells. NICR is mediated by type 1 ryanodine receptor (RyR1, a Ca2+ release channel expressed in endoplasmic-reticular membrane. Furthermore, NICR is indicated to be dependent on S-nitrosylation of RyR1, and involved in synaptic plasticity in the cerebellum. In this review, molecular mechanisms and functional significance of NICR, as well as non-enzymatic posttranslational modification of proteins by gaseous signals, are described.

  11. Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels.

    Science.gov (United States)

    Medrihan, Lucian; Cesca, Fabrizia; Raimondi, Andrea; Lignani, Gabriele; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    In the central nervous system, most synapses show a fast mode of neurotransmitter release known as synchronous release followed by a phase of asynchronous release, which extends over tens of milliseconds to seconds. Synapsin II (SYN2) is a member of the multigene synapsin family (SYN1/2/3) of synaptic vesicle phosphoproteins that modulate synaptic transmission and plasticity, and are mutated in epileptic patients. Here we report that inhibitory synapses of the dentate gyrus of Syn II knockout mice display an upregulation of synchronous neurotransmitter release and a concomitant loss of delayed asynchronous release. Syn II promotes γ-aminobutyric acid asynchronous release in a Ca(2+)-dependent manner by a functional interaction with presynaptic Ca(2+) channels, revealing a new role in synaptic transmission for synapsins.

  12. Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels.

    Science.gov (United States)

    Vaca, Luis; Sampieri, Alicia

    2002-11-01

    In the present study we have explored the role of calmodulin (CaM) and inositol 1,4,5-trisphosphate receptor (IP(3)R) in the communication process activated after the release of calcium from the endoplasmic reticulum (ER) and the activation of calcium influx via endogenous TRP1 channels from Chinese hamster ovary cells. Experiments using combined rapid confocal calcium and electrophysiology measurements uncovered a consistent delay of around 900 ms between the first detectable calcium released from the ER and the activation of the calcium current. This delay was evident with two different methods used to release calcium from the ER: either the blockade of the microsomal calcium ATPase with thapsigargin or activation of bradykinin receptors linked to the IP(3) cascade. Direct application of IP(3) or a peptide from the NH(2)-terminal region of the IP(3)R activated store operated calcium, reducing the delay period. Introduction of CaM into the cell via the patch pipette increased the delay period from 900 +/- 100 ms to 10 +/- 2.1 s (n = 18). Furthermore, the use of selective CaM antagonists W7 and trifluoperazine maleate resulted in a substantial reduction of the delay period to 200 +/- 100 ms with 5 microm trifluoperazine maleate (n = 16) and 150 +/- 50 ms with 500 nm W7 (n = 22). CaM reduced also the current density activated by thapsigargin or brandykinin to about 60% from control. The CaM antagonists did not affect significantly the current density. The results presented here are consistent with an antagonistic effect of IP(3)R and CaM for the activation of store operated calcium after depletion of the ER. The functional competition between the activating effect of IP(3)R and the inhibiting effect of CaM may modulate the delay period between the release of calcium from the ER and the activation of calcium influx observed in different cells, as well as the amount of current activated after depletion of the ER.

  13. Lipid Storage Disorders Block Lysosomal Trafficking By Inhibiting TRP Channel and Calcium Release

    OpenAIRE

    2012-01-01

    Lysosomal lipid accumulation, defects in membrane trafficking, and altered Ca2+ homeostasis are common features in many lysosomal storage diseases. Mucolipin TRP channel 1 (TRPML1) is the principle Ca2+ channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca2+ release, measured using a genetically-encoded Ca2+ indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells....

  14. Calcium-release channels in paramecium. Genomic expansion, differential positioning and partial transcriptional elimination.

    Directory of Open Access Journals (Sweden)

    Eva-Maria Ladenburger

    Full Text Available The release of Ca²⁺ from internal stores is a major source of signal Ca²⁺ in almost all cell types. The internal Ca²⁺ pools are activated via two main families of intracellular Ca²⁺-release channels, the ryanodine and the inositol 1,4,5-trisphosphate (InsP₃ receptors. Among multicellular organisms these channel types are ubiquitous, whereas in most unicellular eukaryotes the identification of orthologs is impaired probably due to evolutionary sequence divergence. However, the ciliated protozoan Paramecium allowed us to prognosticate six groups, with a total of 34 genes, encoding proteins with characteristics typical of InsP₃ and ryanodine receptors by BLAST search of the Paramecium database. We here report that these Ca²⁺-release channels may display all or only some of the characteristics of canonical InsP₃ and ryanodine receptors. In all cases, prediction methods indicate the presence of six trans-membrane regions in the C-terminal domains, thus corresponding to canonical InsP₃ receptors, while a sequence homologous to the InsP₃-binding domain is present only in some types. Only two types have been analyzed in detail previously. We now show, by using antibodies and eventually by green fluorescent protein labeling, that the members of all six groups localize to distinct organelles known to participate in vesicle trafficking and, thus, may provide Ca²⁺ for local membrane-membrane interactions. Whole genome duplication can explain radiation within the six groups. Comparative and evolutionary evaluation suggests derivation from a common ancestor of canonical InsP₃ and ryanodine receptors. With one group we could ascertain, to our knowledge for the first time, aberrant splicing in one thoroughly analyzed Paramecium gene. This yields truncated forms and, thus, may indicate a way to pseudogene formation. No comparable analysis is available for any other, free-living or parasitic/pathogenic protozoan.

  15. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release.

    Science.gov (United States)

    Shen, Dongbiao; Wang, Xiang; Li, Xinran; Zhang, Xiaoli; Yao, Zepeng; Dibble, Shannon; Dong, Xian-ping; Yu, Ting; Lieberman, Andrew P; Showalter, Hollis D; Xu, Haoxing

    2012-03-13

    Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.

  16. Disease causing mutations of calcium channels.

    Science.gov (United States)

    Lorenzon, Nancy M; Beam, Kurt G

    2008-01-01

    Calcium ions play an important role in the electrical excitability of nerve and muscle, as well as serving as a critical second messenger for diverse cellular functions. As a result, mutations of genes encoding calcium channels may have subtle affects on channel function yet strongly perturb cellular behavior. This review discusses the effects of calcium channel mutations on channel function, the pathological consequences for cellular physiology, and possible links between altered channel function and disease. Many cellular functions are directly or indirectly regulated by the free cytosolic calcium concentration. Thus, calcium levels must be very tightly regulated in time and space. Intracellular calcium ions are essential second messengers and play a role in many functions including, action potential generation, neurotransmitter and hormone release, muscle contraction, neurite outgrowth, synaptogenesis, calcium-dependent gene expression, synaptic plasticity and cell death. Calcium ions that control cell activity can be supplied to the cell cytosol from two major sources: the extracellular space or intracellular stores. Voltage-gated and ligand-gated channels are the primary way in which Ca(2+) ions enter from the extracellular space. The sarcoplasm reticulum (SR) in muscle and the endoplasmic reticulum in non-muscle cells are the main intracellular Ca(2+) stores: the ryanodine receptor (RyR) and inositol-triphosphate receptor channels are the major contributors of calcium release from internal stores.

  17. 17β-estradiol regulation of T-type calcium channels in gonadotropin-releasing hormone neurons

    Science.gov (United States)

    Zhang, Chunguang; Bosch, Martha A.; Rick, Elizabeth A.; Kelly, Martin J.; Ronnekleiv, Oline K.

    2009-01-01

    T-type calcium channels are responsible for generating low-threshold spikes that facilitate burst firing and neurotransmitter release in neurons. GnRH neurons exhibit burst firing, but the underlying conductances are not known. Previously, we have found that 17β-estradiol (E2) increases T-type channel expression and excitability of hypothalamic arcuate nucleus neurons. Therefore, we used ovariectomized oil- or E2-treated EGFP-GnRH mice to explore the expression and E2-regulation of T-type channels in GnRH neurons. Based on single cell RT-PCR and real-time PCR quantification of the T-type channel α1-subunits, we found that all three subunits were expressed in GnRH neurons with Cav3.3≥Cav3.2>Cav3.1. The mRNA expression of the three subunits was increased with surge-inducing levels of E2 during the morning. During the afternoon, Cav3.3 mRNA expression remained elevated, whereas Cav3.1 and Cav3.2 were decreased. The membrane estrogen receptor agonist STX increased the expression of Cav3.3, but not Cav3.2 in GnRH neurons. Whole-cell patch recordings in GnRH neurons revealed that E2 treatment significantly augmented T-type current density at both time-points, and increased the rebound excitation during the afternoon. Although E2 regulated the mRNA expression of all three subunits in GnRH neurons, the increased expression combined with the slower inactivation kinetics of the T-type current indicates that Cav3.3 may be the most important for bursting activity associated with the GnRH/LH surge. The E2-induced increase in mRNA expression, which depends in part on membrane-initiated signaling, leads to increased channel function and neuronal excitability, and could be a mechanism by which E2 facilitates burst firing and cyclic GnRH neurosecretion. PMID:19710308

  18. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  19. Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses in adult Drosophila brain.

    Science.gov (United States)

    Gu, Huaiyu; Jiang, Shaojuan Amy; Campusano, Jorge M; Iniguez, Jorge; Su, Hailing; Hoang, Andy An; Lavian, Monica; Sun, Xicui; O'Dowd, Diane K

    2009-01-01

    Voltage-gated calcium channels containing alpha1 subunits encoded by Ca(v)2 family genes are critical in regulating release of neurotransmitter at chemical synapses. In Drosophila, cac is the only Ca(v)2-type gene. Cacophony (CAC) channels are localized in motor neuron terminals where they have been shown to mediate evoked, but not AP-independent, release of glutamate at the larval neuromuscular junction (NMJ). Cultured embryonic neurons also express CAC channels, but there is no information about the properties of CAC-mediated currents in adult brain nor how these channels regulate transmission in central neural circuits where fast excitatory synaptic transmission is predominantly cholinergic. Here we report that wild-type neurons cultured from late stage pupal brains and antennal lobe projection neurons (PNs) examined in adult brains, express calcium currents with two components: a slow-inactivating current sensitive to the spider toxin Plectreurys toxin II (PLTXII) and a fast-inactivating PLTXII-resistant component. CAC channels are the major contributors to the slow-inactivating PLTXII-sensitive current based on selective reduction of this component in hypomorphic cac mutants (NT27 and TS3). Another characteristic of cac mutant neurons both in culture and in whole brain recordings is a reduced cholinergic miniature excitatory postsynaptic current frequency that is mimicked in wild-type neurons by acute application of PLTXII. These data demonstrate that cac encoded Ca(v)2-type calcium channels regulate action potential (AP)-independent release of neurotransmitter at excitatory cholinergic synapses in the adult brain, a function not predicted from studies at the larval NMJ.

  20. Single-channel properties of the sarcoplasmic reticulum calcium-release channel in slow- and fast-twitch muscles of Rhesus monkeys.

    Science.gov (United States)

    Bastide, B; Mounier, Y

    1998-08-01

    RyR1 is the main isoform of ryanodine receptor expressed in fast- and slow-twitch mammalian skeletal muscles although differences in Ca2+-release kinetics and properties have been reported. Single-channel measurements reveal that a large proportion (82%) of Ca2+-release channels measured in slow-twitch muscle preparations have properties similar to those of the Ca2+-release channels of fast-twitch preparations, i.e. the same conductance, an identical sensitivity to caffeine and a bell-shaped Ca2+ activation curve for pCa (-log10[Ca2+]) 7 to 3. A low proportion (18%) of Ca2+-release channels observed in preparations from slow-twitch muscles were characterized by a very high activity level. These channels were not inhibited at a millimolar concentration of Ca2+. Our data suggest that the different properties of Ca2+ release in slow- and fast-twitch muscles might not be related to intrinsic properties of the Ca2+-release channels of each type of muscle but rather to the co-expression of two isoforms of ryanodine receptor and the lower amount of Ca2+-release channels expressed in slow- than in fast-twitch muscles.

  1. Dual pathways of calcium entry in spike and plateau phases of luteinizing hormone release from chicken pituitary cells: sequential activation of receptor-operated and voltage-sensitive calcium channels by gonadotropin-releasing hormone

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J.S.; Wakefield, I.K.; King, J.A.; Mulligan, G.P.; Millar, R.P.

    1988-04-01

    It has previously been shown that, in pituitary gonadotrope cells, the initial rise in cytosolic Ca2+ induced by GnRH is due to a Ca2+ mobilization from intracellular stores. This raises the possibility that the initial transient spike phase of LH release might be fully or partially independent of extracellular Ca2+. We have therefore characterized the extracellular Ca2+ requirements, and the sensitivity to Ca2+ channel blockers, of the spike and plateau phases of secretion separately. In the absence of extracellular Ca2+ the spike and plateau phases were inhibited by 65 +/- 4% and 106 +/- 3%, respectively. Both phases exhibited a similar dependence on concentration of extracellular Ca2+. However, voltage-sensitive Ca2+ channel blockers D600 and nifedipine had a negligible effect on the spike phase, while inhibiting the plateau phase by approximately 50%. In contrast, ruthenium red, Gd3+ ions, and Co2+ ions inhibited both spike and plateau phases to a similar extent as removal of extracellular Ca2+. A fraction (35 +/- 4%) of spike phase release was resistant to removal of extracellular Ca2+. This fraction was abolished after calcium depletion of the cells by preincubation with EGTA in the presence of calcium ionophore A23187, indicating that it depends on intracellular Ca2+ stores. Neither absence of extracellular Ca2+, nor the presence of ruthenium red or Gd3+ prevented mobilization of 45Ca2+ from intracellular stores by GnRH. We conclude that mobilization of intracellular stored Ca2+ is insufficient by itself to account for full spike phase LH release.

  2. Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels.

    Science.gov (United States)

    Ionescu, Lucian; White, Carl; Cheung, King-Ho; Shuai, Jianwei; Parker, Ian; Pearson, John E; Foskett, J Kevin; Mak, Don-On Daniel

    2007-12-01

    The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) plays a critical role in generation of complex Ca(2+) signals in many cell types. In patch clamp recordings of isolated nuclei from insect Sf9 cells, InsP(3)R channels were consistently detected with regulation by cytoplasmic InsP(3) and free Ca(2+) concentrations ([Ca(2+)](i)) very similar to that observed for vertebrate InsP(3)R. Long channel activity durations of the Sf9-InsP(3)R have now enabled identification of a novel aspect of InsP(3)R gating: modal gating. Using a novel algorithm to analyze channel modal gating kinetics, InsP(3)R gating can be separated into three distinct modes: a low activity mode, a fast kinetic mode, and a burst mode with channel open probability (P(o)) within each mode of 0.007 +/- 0.002, 0.24 +/- 0.03, and 0.85 +/- 0.02, respectively. Channels reside in each mode for long periods (tens of opening and closing events), and transitions between modes can be discerned with high resolution (within two channel opening and closing events). Remarkably, regulation of channel gating by [Ca(2+)](i) and [InsP(3)] does not substantially alter channel P(o) within a mode. Instead, [Ca(2+)](i) and [InsP(3)] affect overall channel P(o) primarily by changing the relative probability of the channel being in each mode, especially the high and low P(o) modes. This novel observation therefore reveals modal switching as the major mechanism of physiological regulation of InsP(3)R channel activity, with implications for the kinetics of Ca(2+) release events in cells.

  3. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway.

    Science.gov (United States)

    Wulf-Johansson, H; Amrutkar, D V; Hay-Schmidt, A; Poulsen, A N; Klaerke, D A; Olesen, J; Jansen-Olesen, I

    2010-06-02

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine pathophysiology. Here we study the expression and localization of BK(Ca) channels and CGRP in the rat trigeminal ganglion (TG) and the trigeminal nucleus caudalis (TNC) as these structures are involved in migraine pain. Also the effect of the BK(Ca) channel blocker iberiotoxin and the BK(Ca) channel opener NS11021 on CGRP release from isolated TG and TNC was investigated. By RT-PCR, BK(Ca) channel mRNA was detected in the TG and the TNC. A significant difference in BK(Ca) channel mRNA transcript levels were found using qPCR between the TNC as compared to the TG. The BK(Ca) channel protein was more expressed in the TNC as compared to the TG shown by western blotting. Immunohistochemistry identified BK(Ca) channels in the nerve cell bodies of the TG and the TNC. The beta2- and beta4-subunit proteins were found in the TG and the TNC. They were both more expressed in the TNC as compared to TG shown by western blotting. In isolated TNC, the BK(Ca) channel blocker iberiotoxin induced a concentration-dependent release of CGRP that was attenuated by the BK(Ca) channel opener NS11021. No effect on basal CGRP release was found by NS11021 in isolated TG or TNC or by iberiotoxin in TG. In conclusion, we found both BK(Ca) channel mRNA and protein expression in the TG and the TNC. The BK(Ca) channel protein and the modulatory beta2- and beta4-subunt proteins were more expressed in the TNC than in the TG. Iberiotoxin induced an increase in CGRP release from the TNC that was attenuated by NS11021. Thus, BK(Ca) channels might have a role in trigeminovascular pain transmission.

  4. Voltage-Gated Calcium Channels in Nociception

    Science.gov (United States)

    Yasuda, Takahiro; Adams, David J.

    Voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of membrane ion channels ubiquitously expressed throughout the central and peripheral nervous systems. VGCCs contribute to various physiological processes and transduce electrical activity into other cellular functions. This chapter provides an overview of biophysical properties of VGCCs, including regulation by auxiliary subunits, and their physiological role in neuronal functions. Subsequently, then we focus on N-type calcium (Cav2.2) channels, in particular their diversity and specific antagonists. We also discuss the role of N-type calcium channels in nociception and pain transmission through primary sensory dorsal root ganglion neurons (nociceptors). It has been shown that these channels are expressed predominantly in nerve terminals of the nociceptors and that they control neurotransmitter release. To date, important roles of N-type calcium channels in pain sensation have been elucidated genetically and pharmacologically, indicating that specific N-type calcium channel antagonists or modulators are particularly useful as therapeutic drugs targeting chronic and neuropathic pain.

  5. Metabolism and pharmacokinetics of barnidipine hydrochloride, a calcium channel blocker, in man following oral administration of its sustained release formulation.

    Science.gov (United States)

    Teramura, T; Watanabe, T; Higuchi, S; Hashimoto, K

    1997-02-01

    1. The metabolism and pharmacokinetics of barnidipine hydrochloride, a 1, 4-dihydropyridine calcium antagonist were evaluated following single oral administration of a sustained release formulation (SR) capsule comprising of quick and slow release pellets to healthy male volunteers. 2. Various metabolites were identified and quantitated by newly established GC-MS analytical methods. Major metabolites were the hydrolyzed product of the benzyl-pyrrolidinyl ester (M-3) in plasma and its oxidized pyridine product (M-4) in plasma and urine. The pyridine form of unchanged barnidipine and the N-debenzylated product were observed as minor metabolites. Therefore, the primary metabolic pathways in man are (a) hydrolysis of the benzylpyrrolidine ester, (b) N-debenzylation, and (c) oxidation of the dihydropyridine ring. 3. When the SR and normal capsules were administered at a dose of 10 mg to six subjects in a crossover design, AUC 0-infinity of unchanged drug, M-3 and 4 in each subject receiving the SR were 97 +/- 15, 85 +/- 31 and 76 +/- 21% respectively of those subjects receiving the normal formulation. The sum of the excretion of urinary metabolites for the SR formulation was 65 +/- 6% of that for the normal formulation. These data suggest that the absorption of the SR formulation is slightly reduced but that its bioavailability is comparable to that of the normal formulation.

  6. Calcium release near L-type calcium channels promotes beat-to-beat variability in ventricular myocytes from the chronic AV block dog.

    Science.gov (United States)

    Antoons, Gudrun; Johnson, Daniel M; Dries, Eef; Santiago, Demetrio J; Ozdemir, Semir; Lenaerts, Ilse; Beekman, Jet D M; Houtman, Marien J C; Sipido, Karin R; Vos, Marc A

    2015-12-01

    Beat-to-beat variability of ventricular repolarization (BVR) has been proposed as a strong predictor of Torsades de Pointes (TdP). BVR is also observed at the myocyte level, and a number of studies have shown the importance of calcium handling in influencing this parameter. The chronic AV block (CAVB) dog is a model of TdP arrhythmia in cardiac hypertrophy, and myocytes from these animals show extensive remodeling, including of Ca(2+) handling. This remodeling process also leads to increased BVR. We aimed to determine the role that (local) Ca(2+) handling plays in BVR. In isolated LV myocytes an exponential relationship was observed between BVR magnitude and action potential duration (APD) at baseline. Inhibition of Ca(2+) release from sarcoplasmic reticulum (SR) with thapsigargin resulted in a reduction of [Ca(2+)]i, and of both BVR and APD. Increasing ICaL in the presence of thapsigargin restored APD but BVR remained low. In contrast, increasing ICaL with preserved Ca(2+) release increased both APD and BVR. Inhibition of Ca(2+) release with caffeine, as with thapsigargin, reduced BVR despite maintained APD. Simultaneous inhibition of Na(+)/Ca(2+) exchange and ICaL decreased APD and BVR to similar degrees, whilst increasing diastolic Ca(2+). Buffering of Ca(2+) transients with BAPTA reduced BVR for a given APD to a greater extent than buffering with EGTA, suggesting subsarcolemmal Ca(2+) transients modulated BVR to a larger extent than the cytosolic Ca(2+) transient. In conclusion, BVR in hypertrophied dog myocytes, at any APD, is strongly dependent on SR Ca(2+) release, which may act through modulation of the l-type Ca(2+) current in a subsarcolemmal microdomain.

  7. Store-Operated Calcium Channels.

    Science.gov (United States)

    Prakriya, Murali; Lewis, Richard S

    2015-10-01

    Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.

  8. Construction of calcium release sites in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    Alexandra eZahradnikova

    2012-08-01

    Full Text Available Local character of calcium release in cardiac myocytes, as defined by confocal recordings of calcium sparks, implies independent activation of individual calcium release sites based on ryanodine receptor (RyR channel recruitment. We constructed virtual calcium release sites (vCRSs composed of a variable number of RyR channels distributed in clusters in accordance with the experimentally observed cluster size distribution. The vCRSs consisted either of a single virtual calcium release unit, in which all clusters shared a common dyadic space, or of multiple virtual calcium release units containing one cluster each and having separate dyadic spaces. We explored the stochastic behavior of vCRSs to understand the activation and recruitment of RyRs during calcium sparks. RyRs were represented by the published allosteric gating model that included regulation by cytosolic Ca2+ and Mg2+. The interaction of Mg2+ with the RyR Ca2+-binding sites and the refractory period of vCRSs were optimized to accord with the experimentally observed calcium dependence of calcium spark frequency. The Mg2+-binding parameters of RyRs that provided the best description of spark frequency depended on the number of RyRs assembled in the virtual calcium release sites. Adequate inhibitory effect of Mg2+ on the calcium dependence of RyR open probability was achieved if the virtual calcium release sites contained at least three clusters. For the distribution of the number of open RyRs in evoked calcium sparks to correspond to the experimentally observed distribution of spark calcium release fluxes, at least 3 clusters had to share a common virtual calcium release unit, in which ~ 3 RyRs open to form an average spark. These results reconcile the small cluster size and stochastic placement of RyRs in the release sites with the estimates of the amount of RyR protein, volume density of calcium release sites, and the size of calcium release sites in rat cardiac myocytes.

  9. Calcium channels, neuromuscular synaptic transmission and neurological diseases.

    Science.gov (United States)

    Urbano, Francisco J; Pagani, Mario R; Uchitel, Osvaldo D

    2008-09-15

    Voltage-dependent calcium channels are essential in neuronal signaling and synaptic transmission, and their functional alterations underlie numerous human disorders whether monogenic (e.g., ataxia, migraine, etc.) or autoimmune. We review recent work on Ca(V)2.1 or P/Q channelopathies, mostly using neuromuscular junction preparations, and focus specially on the functional hierarchy among the calcium channels recruited to mediate neurotransmitter release when Ca(V)2.1 channels are mutated or depleted. In either case, synaptic transmission is greatly compromised; evidently, none of the reported functional replacements with other calcium channels compensates fully.

  10. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders;

    2010-01-01

    pathophysiology. Here we study the expression and localization of BK(Ca) channels and CGRP in the rat trigeminal ganglion (TG) and the trigeminal nucleus caudalis (TNC) as these structures are involved in migraine pain. Also the effect of the BK(Ca) channel blocker iberiotoxin and the BK(Ca) channel opener NS......Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine...

  11. Calcium release near l-type calcium channels promotes beat-to-beat variability in ventricular myocytes from the chronic AV block dog

    NARCIS (Netherlands)

    Antoons, G.; Johnson, Daniel M; Dries, Eef; Santiago, Demetrio J; Ozdemir, Semir; Lenaerts, Ilse; Beekman, Jet D M; Houtman, Marien J C; Sipido, Karin R; Vos, Marc A

    2015-01-01

    Beat-to-beat variability of ventricular repolarization (BVR) has been proposed as a strong predictor of Torsades de Pointes (TdP). BVR is also observed at the myocyte level, and a number of studies have shown the importance of calcium handling in influencing this parameter. The chronic AV block (CAV

  12. Osteoblasts detect pericellular calcium concentration increase via neomycin-sensitive voltage gated calcium channels.

    Science.gov (United States)

    Sun, Xuanhao; Kishore, Vipuil; Fites, Kateri; Akkus, Ozan

    2012-11-01

    The mechanisms underlying the detection of critically loaded or micro-damaged regions of bone by bone cells are still a matter of debate. Our previous studies showed that calcium efflux originates from pre-failure regions of bone matrix and MC3T3-E1 osteoblasts respond to such efflux by an increase in the intracellular calcium concentration. The mechanisms by which the intracellular calcium concentration increases in response to an increase in the pericellular calcium concentration are unknown. Elevation of the intracellular calcium may occur via release from the internal calcium stores of the cell and/or via the membrane bound channels. The current study applied a wide range of pharmaceutical inhibitors to identify the calcium entry pathways involved in the process: internal calcium release from endoplasmic reticulum (ER, inhibited by thapsigargin and TMB-8), calcium receptor (CaSR, inhibited by calhex), stretch-activated calcium channel (SACC, inhibited by gadolinium), voltage-gated calcium channels (VGCC, inhibited by nifedipine, verapamil, neomycin, and ω-conotoxin), and calcium-induced-calcium-release channel (CICRC, inhibited by ryanodine and dantrolene). These inhibitors were screened for their effectiveness to block intracellular calcium increase by using a concentration gradient induced calcium efflux model which mimics calcium diffusion from the basal aspect of cells. The inhibitor(s) which reduced the intracellular calcium response was further tested on osteoblasts seeded on mechanically loaded notched cortical bone wafers undergoing damage. The results showed that only neomycin reduced the intracellular calcium response in osteoblasts, by 27%, upon extracellular calcium stimulus induced by concentration gradient. The inhibitory effect of neomycin was more pronounced (75% reduction in maximum fluorescence) for osteoblasts seeded on notched cortical bone wafers loaded mechanically to damaging load levels. These results imply that the increase in

  13. Extent of use of immediate-release formulations of calcium channel blockers as antihypertensive monotherapy by primary care physicians: multicentric study from Bahrain.

    Directory of Open Access Journals (Sweden)

    Sequeira R

    2002-07-01

    Full Text Available BACKGROUND: The issue of cardiovascular safety of calcium channel blockers (CCBs has been widely debated in view of reflex increase in sympathetic activity induced by immediate release (IR / short acting formulations. It is generally agreed that such CCBs should not be used alone in the management of hypertension. AIMS: We have determined the extent to which primary care physicians prescribe CCBs as monotherapy, especially the immediate release formulations, in the management of uncomplicated hypertension and diabetic hypertension - with an emphasis upon the age of the patients. SETTING, DESIGN AND METHODS: A retrospective prescription-based study was carried out in seven out of 18 Health Centres in Bahrain. The study involved a registered population of 229,300 representing 46% of registered individuals, and 35 physicians representing 43% of all primary care physicians. The data was collected between November 1998 and January 1999 using chronic dispensing cards. RESULTS: In all categories CCBs were the third commonly prescribed antihypertensive as monotherapy, with a prescription rate of 11.1% in uncomplicated hypertension, 18% in diabetic hypertension and 20.1% in elderly patients above 65 years of age. Nifedipine formulations were the most extensively prescribed CCBs. Almost half of the CCB-treated patients were on IR-nifedipine, whereas IR-diltiazem and IR-verapamil, and amlodipine were infrequently prescribed. CONCLUSION: Prescription of IR-formulations of CCBs as monotherapy by primary care physicians does not conform with recommended guidelines. In view of concerns about the safety of such practice, measures to change the prescribing pattern are required.

  14. Calcium channel blockers and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Yi Tan; Yulin Deng; Hong Qing

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofi-brillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers in-volved in Alzheimer's disease therapy.

  15. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.

    Science.gov (United States)

    Jiang, Shaojuan Amy; Campusano, Jorge M; Su, Hailing; O'Dowd, Diane K

    2005-07-01

    Spontaneous calcium oscillations in mushroom bodies of late stage pupal and adult Drosophila brains have been implicated in memory consolidation during olfactory associative learning. This study explores the cellular mechanisms regulating calcium dynamics in Kenyon cells, principal neurons in mushroom bodies. Fura-2 imaging shows that Kenyon cells cultured from late stage Drosophila pupae generate spontaneous calcium transients in a cell autonomous fashion, at a frequency similar to calcium oscillations in vivo (10-20/h). The expression of calcium transients is up regulated during pupal development. Although the ability to generate transients is a property intrinsic to Kenyon cells, transients can be modulated by bath application of nicotine and GABA. Calcium transients are blocked, and baseline calcium levels reduced, by removal of external calcium, addition of cobalt, or addition of Plectreurys toxin (PLTX), an insect-specific calcium channel antagonist. Transients do not require calcium release from intracellular stores. Whole cell recordings reveal that the majority of voltage-gated calcium channels in Kenyon cells are PLTX-sensitive. Together these data show that influx of calcium through PLTX-sensitive voltage-gated calcium channels mediates spontaneous calcium transients and regulates basal calcium levels in cultured Kenyon cells. The data also suggest that these calcium transients represent cellular events underlying calcium oscillations in the intact mushroom bodies. However, spontaneous calcium transients are not unique to Kenyon cells as they are present in approximately 60% of all cultured central brain neurons. This suggests the calcium transients play a more general role in maturation or function of adult brain neurons.

  16. Calcium signalling and calcium channels: evolution and general principles.

    Science.gov (United States)

    Verkhratsky, Alexei; Parpura, Vladimir

    2014-09-15

    Calcium as a divalent cation was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules handling calcium. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, neurotransmitters, second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms.

  17. Calcium channel as a potential anticancer agent.

    Science.gov (United States)

    Kriazhev, L

    2009-11-01

    Anticancer treatment in modern clinical practices includes chemotherapy and radiation therapy with or without surgical interventions. Efficiency of both methods varies greatly depending on cancer types and stages. Besides, chemo- and radiotherapy are toxic and damaging that causes serious side effects. This fact prompts the search for alternative methods of antitumor therapy. It is well known that prolonged or high increase of intracellular calcium concentration inevitably leads to the cell death via apoptosis or necrosis. However, stimulation of cell calcium level by chemical agents is hardly achievable because cells have very sophisticated machinery for maintaining intracellular calcium in physiological ranges. This obstacle can be overridden, nevertheless. It was found that calcium channels in so called calcium cells in land snails are directly regulated by extracellular calcium concentration. The higher the concentration the higher the calcium intake is through the channels. Bearing in mind that extracellular/intracellular calcium concentration ratio in human beings is 10,000-12,000 fold the insertion of the channel into cancer cells would lead to fast and uncontrollable by the cells calcium intake and cell death. Proteins composing the channel may be extracted from plasma membrane of calcium cells and sequenced by mass-spectrometry or N-terminal sequencing. Either proteins or corresponding genes could be used for targeted delivery into cancer cells.

  18. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation.

    Directory of Open Access Journals (Sweden)

    Stefanie Ryglewski

    2007-04-01

    Full Text Available Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.

  19. The molecular choreography of a store-operated calcium channel.

    Science.gov (United States)

    Lewis, Richard S

    2007-03-15

    Store-operated calcium channels (SOCs) serve essential functions from secretion and motility to gene expression and cell growth. A fundamental mystery is how the depletion of Ca2+ from the endoplasmic reticulum (ER) activates Ca2+ entry through SOCs in the plasma membrane. Recent studies using genetic approaches have identified genes encoding the ER Ca2+ sensor and a prototypic SOC, the Ca2+-release-activated Ca2+ (CRAC) channel. New findings reveal a unique mechanism for channel activation, in which the CRAC channel and its sensor migrate independently to closely apposed sites of interaction in the ER and the plasma membrane.

  20. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  1. Calcium channel antagonists in hypertension.

    Science.gov (United States)

    Ambrosioni, E; Borghi, C

    1989-02-01

    The clinical usefulness of calcium entry-blockers for the treatment of high blood pressure is related to their capacity to act upon the primary hemodynamic derangement in hypertension: the increased peripheral vascular resistance. They can be used alone or in combination with other antihypertensive agents for the treatment of various forms of hypertensive disease. The calcium entry-blockers appear to be the most useful agents for the treatment of hypertension in the elderly and for the treatment of hypertension associated with ischemic heart disease, pulmonary obstructive disease, peripheral vascular disease, and supraventricular arrhythmias. They are effective in reducing blood pressure in pregnancy-associated hypertension and must be considered as first-line therapy for the treatment of hypertensive crisis.

  2. Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival.

    Science.gov (United States)

    Kang, Sang Soo; Han, Kyung-Seok; Ku, Bo Mi; Lee, Yeon Kyung; Hong, Jinpyo; Shin, Hye Young; Almonte, Antoine G; Woo, Dong Ho; Brat, Daniel J; Hwang, Eun Mi; Yoo, Seung Hyun; Chung, Chun Kee; Park, Sung-Hye; Paek, Sun Ha; Roh, Eun Joo; Lee, Sung Joong; Park, Jae-Yong; Traynelis, Stephen F; Lee, C Justin

    2010-02-01

    Calcium signaling is important in many signaling processes in cancer cell proliferation and motility including in deadly glioblastomas of the brain that aggressively invade neighboring tissue. We hypothesized that disturbing Ca(2+) signaling pathways might decrease the invasive behavior of giloblastoma, extending survival. Evaluating a panel of small-molecule modulators of Ca(2+) signaling, we identified caffeine as an inhibitor of glioblastoma cell motility. Caffeine, which is known to activate ryanodine receptors, paradoxically inhibits Ca(2+) increase by inositol 1,4,5-trisphospate receptor subtype 3 (IP(3)R3), the expression of which is increased in glioblastoma cells. Consequently, by inhibiting IP(3)R3-mediated Ca(2+) release, caffeine inhibited migration of glioblastoma cells in various in vitro assays. Consistent with these effects, caffeine greatly increased mean survival in a mouse xenograft model of glioblastoma. These findings suggest IP(3)R3 as a novel therapeutic target and identify caffeine as a possible adjunct therapy to slow invasive growth of glioblastoma.

  3. Altered expression of stromal interaction molecule (STIM)-calcium release-activated calcium channel protein (ORAI) and inositol 1,4,5-trisphosphate receptors (IP Rs) in cancer:will they become a new battlefield for oncotherapy?

    Institute of Scientific and Technical Information of China (English)

    Jing Wen; Ying Cheng Huang; HuanHuan Xiu; ZhiMing Shan; KangQing Xu

    2016-01-01

    The stromal interaction molecule (STIM)‑calcium release‑activated calcium channel protein (ORAI) and inositol 1,4,5‑trisphosphate receptors (IP3Rs) play pivotal roles in the modulation of Ca2+‑regulated pathways from gene transcription to cell apoptosis by driving calcium‑dependent signaling processes. Increasing evidence has implicated the dysregulation of STIM–ORAI and IP3Rs in tumorigenesis and tumor progression. By controlling the activities, struc‑ture, and/or expression levels of these Ca2+‑transporting proteins, malignant cancer cells can hijack them to drive essential biological functions for tumor development. However, the molecular mechanisms underlying the participa‑tion of STIM–ORAI and IP3Rs in the biological behavior of cancer remain elusive. In this review, we summarize recent advances regarding STIM–ORAI and IP3Rs and discuss how they promote cell proliferation, apoptosis evasion, and cell migration through temporal and spatial rearrangements in certain types of malignant cells. An understanding of the essential roles of STIM–ORAI and IP3Rs may provide new pharmacologic targets that achieve a better therapeutic effect by inhibiting their actions in key intracellular signaling pathways.

  4. Reduction of calcium release site models via fast/slow analysis and iterative aggregation/disaggregation.

    Science.gov (United States)

    Hao, Yan; Kemper, Peter; Smith, Gregory D

    2009-09-01

    Mathematical models of calcium release sites derived from Markov chain models of intracellular calcium channels exhibit collective gating reminiscent of the experimentally observed phenomenon of calcium puffs and sparks. Such models often take the form of stochastic automata networks in which the transition probabilities of each channel depend on the local calcium concentration and thus the state of the other channels. In order to overcome the state-space explosion that occurs in such compositionally defined calcium release site models, we have implemented several automated procedures for model reduction using fast/slow analysis. After categorizing rate constants in the single channel model as either fast or slow, groups of states in the expanded release site model that are connected by fast transitions are lumped, and transition rates between reduced states are chosen consistent with the conditional probability distribution among states within each group. For small problems these conditional probability distributions can be numerically calculated from the full model without approximation. For large problems the conditional probability distributions can be approximated without the construction of the full model by assuming rapid mixing of states connected by fast transitions. Alternatively, iterative aggregation/disaggregation may be employed to obtain reduced calcium release site models in a memory-efficient fashion. Benchmarking of several different iterative aggregation/disaggregation-based fast/slow reduction schemes establishes the effectiveness of automated calcium release site reduction utilizing the Koury-McAllister-Stewart method.

  5. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    Science.gov (United States)

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  6. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Aalkjær, Christian; Nilsson, Holger;

    2007-01-01

    waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium...

  7. Calcium channel blockers in cardiovascular pharmacotherapy.

    Science.gov (United States)

    Godfraind, Theophile

    2014-11-01

    This paper summarizes the pharmacological properties of calcium channel blockers (CCBs), their established therapeutic uses for cardiovascular disorders and the current improvement of their clinical effects through drug combinations. Their identification resulted from study of small molecules including coronary dilators, which were named calcium antagonists. Further experiments showed that they reduced contraction of arteries by inhibiting calcium entry and by interacting with binding sites identified on voltage-dependent calcium channels. This led to the denomination calcium channel blockers. In short-term studies, by decreasing total peripheral resistance, CCBs lower arterial pressure. By unloading the heart and increasing coronary blood flow, CCBs improve myocardial oxygenation. In long-term treatment, the decrease in blood pressure is more pronounced in hypertensive than in normotensive patients. A controversy on the safety of CCBs ended after a large antihypertensive trial (ALLHAT) sponsored by the National Heart, Lung, and Blood Institute. There are two main types of CCBs: dihydopyridine and non-dihydropyridine; the first type is vascular selective. Dihydropyrines are indicated for hypertension, chronic, stable and vasospastic angina. Non-dihydropyridines have the same indications plus antiarrythmic effects in atrial fibrillation or flutter and paroxysmal supraventricular tachycardia. In addition, CCBs reduced newly formed coronary lesions in atherosclerosis. In order to reach recommended blood pressure goals, there is a recent therapeutic move by combination of CCBs with other antihypertensive agents particularly with inhibitors acting at the level of the renin-angiotensin system. They are also combined with statins. Prevention of dementia has been reported in hypertensive patients treated with nitrendipine, opening a way for further studies on CCBs' beneficial effect in cognitive deterioration associated with aging.

  8. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration

  9. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Julian I.

    2007-05-02

    Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.

  10. Magnesium: Effect on ocular health as a calcium channel antagonist

    Directory of Open Access Journals (Sweden)

    Şafak Korkmaz

    2013-06-01

    Full Text Available Magnesium is the physiologic calcium channel blocker,involving in many different metabolic processes by maintainingcell membrane function, modulating smooth musclecontraction and influencing enzymatic activities. Magnesiumhas been shown to increase blood flow to tissuesby modifying endothelial function via endothelin-1 (ET-1and nitric Oxide (NO pathways. Magnesium also exhibitsneuroprotective role by blocking N-methyl-D-aspartate(NMDA receptor related calcium influx and by inhibitingthe release of glutamate, hence protects the cell againstoxidative stress and apoptosis. Both increase in bloodflow and its neuroprotective effect make magnesium agood candidate for glaucoma studies. Magnesium hasbeen shown to decrease oxidative stress and apoptosisin retinal tissue and to have retinal ganglion cell sparingeffect. A series of studies has been conducted aboutmagnesium could decrease insulin resistance in diabeticpatients, ease glycemia control and prevent diabetic retinopathy.Magnesium is found to be critically important inmaintaining normal ionic homeostasis of lens. Magnesiumdeficiency has been shown to cause increased lenticularoxidative stress and ionic imbalance in the lens so triggercataractogenesis. J Clin Exp Invest 2013; 4 (2: 244-251Key words: Magnesium, calcium channel blockage,glaucoma, neuroprotection, diabetic retinopathy, cataract

  11. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger;

    2007-01-01

    waves sweeping through the cytoplasm when the SR is stimulated to release calcium. A rise in cyclic guanosine monophosphate (cGMP) leads to the experimentally observed transition from waves to whole-cell calcium oscillations. At the same time membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion. Key words: Vasomotion, Chloride channel, cGMP, Mathematical model, Calcium waves....

  12. The impact of calcium current reversal on neurotransmitter release in the electrically stimulated retina

    Science.gov (United States)

    Werginz, Paul; Rattay, Frank

    2016-08-01

    Objective. In spite of intense theoretical and experimental investigations on electrical nerve stimulation, the influence of reversed ion currents on network activity during extracellular stimulation has not been investigated so far. Approach. Here, the impact of calcium current reversal on neurotransmitter release during subretinal stimulation was analyzed with a computational multi-compartment model of a retinal bipolar cell (BC) that was coupled with a four-pool model for the exocytosis from its ribbon synapses. Emphasis was laid on calcium channel dynamics and how these channels influence synaptic release. Main results. Stronger stimulation with anodic pulses caused transmembrane voltages above the Nernst potential of calcium in the terminals and, by this means, forced calcium ions to flow in the reversed direction from inside to the outside of the cell. Consequently, intracellular calcium concentration decreased resulting in a reduced vesicle release or preventing release at all. This mechanism is expected to lead to a pronounced ring-shaped pattern of exocytosis within a group of neighbored BCs when the stronger stimulated cells close to the electrode fail in releasing vesicles. Significance. Stronger subretinal stimulation causes failure of synaptic exocytosis due to reversal of calcium flow into the extracellular space in cells close to the electrode.

  13. Membrane sialic acid influences basophil histamine release by interfering with calcium dependence

    DEFF Research Database (Denmark)

    Jensen, C; Norn, S; Skov, P S

    1987-01-01

    The influence of the cell membrane content of sialic acid on basophil histamine release was examined in vitro in allergic patients and normal controls. Enzymatical removal of sialic acid enhanced histamine release induced by allergen and anti-IgE, whereas an increase in membrane sialic acid content....... This difference, together with the previous finding that alterations in membrane sialic acid content is reflected in the cell sensitivity to extracellular calcium, suggest an interaction between membrane sialic acid and the calcium channels involved in basophil histamine release....

  14. Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells.

    Directory of Open Access Journals (Sweden)

    Michelle R Rebello

    Full Text Available WE REPORTED THAT RYANODINE RECEPTORS ARE EXPRESSED IN TWO DIFFERENT TYPES OF MAMMALIAN PERIPHERAL TASTE RECEPTOR CELLS: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx.The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage.Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.

  15. Analytical models of calcium binding in a calcium channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinn-Liang [Department of Applied Mathematics, National Hsinchu University of Education, Hsinchu 300, Taiwan (China); Eisenberg, Bob [Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois 60612 (United States)

    2014-08-21

    The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions of the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na{sup +} and Ca{sup 2+} for [CaCl{sub 2}] ranging from 10{sup −8} to 10{sup −2} M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant.

  16. Voltage-gated Calcium Channels and Autism Spectrum Disorders.

    Science.gov (United States)

    Breitenkamp, Alexandra F; Matthes, Jan; Herzig, Stefan

    2015-01-01

    Autism spectrum disorder is a complex-genetic disease and its etiology is unknown for the majority of cases. So far, more than one hundred different susceptibility genes were detected. Voltage-gated calcium channels are among the candidates linked to autism spectrum disorder by results of genetic studies. Mutations of nearly all pore-forming and some auxiliary subunits of voltage gated calcium channels have been revealed from investigations of autism spectrum disorder patients and populations. Though there are only few electrophysiological characterizations of voltage-gated calcium channel mutations found in autistic patients these studies suggest their functional relevance. In summary, both genetic and functional data suggest a potential role of voltage-gated calcium channels in autism spectrum disorder. Future studies require refinement of the clinical and systems biological concepts of autism spectrum disorder and an appropriate holistic approach at the molecular level, e.g. regarding all facets of calcium channel functions.

  17. STIM and calcium channel complexes in cancer.

    Science.gov (United States)

    Jardin, Isaac; Rosado, Juan A

    2016-06-01

    The ion Ca(2+) is a ubiquitous second messenger that mediates a variety of cellular functions. Dysfunction of the mechanisms involved in Ca(2+) homeostasis underlies a number of pathological processes, including cancer. Store-operated Ca(2+) entry (SOCE) is a major mechanism for Ca(2+) entry modulated by the intracellular Ca(2+) stores. The Ca(2+)-selective store-operated current (ICRAC) is mediated by the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the store-operated Ca(2+) (SOC) channel Orai1, while other non-selective cation currents (ISOC) involves the participation of members of the canonical transient receptor potential (TRPC) channel family, including TRPC1. Distinct isoforms of the key components of SOCE have been described in mammalian cells, STIM1 and 2, Orai1-3 and TRPC1-7. In cancer cells, SOCE has been reported to play an important role in cell cycle progression and proliferation, migration, metastasis and evasion of apoptosis. Changes in the expression of the key elements of SOCE and Ca(2+) homeostasis remodeling have been account to play important roles in the phenotypic changes observed in transformed cells. Despite there are differences in the expression level of the molecular components of SOCE, as well as in the relevance of the STIM, Orai and TRPC isoforms in SOCE and tumorigenesis among cancer cell types, there is a body of evidence supporting an important role for SOCE underlying the phenotypic modifications of cancer cells that propose STIM and the SOC channels as suitable candidate targets for future prognostic or therapeutic strategies. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  18. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release.

    Science.gov (United States)

    Niu, Xufeng; Chen, Siqian; Tian, Feng; Wang, Lizhen; Feng, Qingling; Fan, Yubo

    2017-01-01

    The aim of this study is to investigate the calcium and orthophosphate ions release during the transformation of amorphous calcium phosphate (ACP) to hydroxyapatite (HA) in aqueous solution. The ACP is prepared by a wet chemical method and further immersed in the distilled water for various time points till 14d. The release of calcium and orthophosphate ions is measured with calcium and phosphate colorimetric assay kits, respectively. The transition of ACP towards HA is detected by x-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR). The results indicate that the morphological conversion of ACP to HA occurs within the first 9h, whereas the calcium and orthophosphate ions releases last for over 7d. Such sustained calcium and orthophosphate ions release is very useful for ACP as a candidate material for hard tissue regeneration.

  19. Renal vascular effects of calcium channel blockers in hypertension.

    Science.gov (United States)

    Benstein, J A; Dworkin, L D

    1990-12-01

    Recent evidence suggests that calcium channel blockers have specific effects on renal hemodynamics in patients with hypertension and may also slow the progression of chronic renal failure. When these agents are studied in vitro, their predominant effect is to reverse afferent arteriolar vasoconstriction induced by catecholamines or angiotensin II. Because efferent resistance may remain high, glomerular filtration rate rises while renal blood flow remains low. The effects in vivo are less consistent. In human hypertension, calcium channel blockers lower renal resistance and may raise both renal blood flow and glomerular filtration rate. In experimental models of chronic renal disease, calcium channel blockers slow the progression of renal damage; however, variable effects on renal hemodynamics have been found. Other factors implicated in the progression of renal damage, including compensatory renal hypertrophy, platelet aggregation, and calcium deposition, may also be favorably influenced by these agents. Recent studies suggest that calcium channel blockers may have similar protective effects in patients with hypertension and chronic renal disease.

  20. NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels.

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    Full Text Available NALCN is a member of the family of ion channels with four homologous, repeat domains that include voltage-gated calcium and sodium channels. NALCN is a highly conserved gene from simple, extant multicellular organisms without nervous systems such as sponges and placozoans and mostly remains a single gene compared to the calcium and sodium channels which diversified into twenty genes in humans. The single NALCN gene has alternatively-spliced exons at exons 15 or exon 31 that splices in novel selectivity filter residues that resemble calcium channels (EEEE or sodium channels (EKEE or EEKE. NALCN channels with alternative calcium, (EEEE and sodium, (EKEE or EEKE -selective pores are conserved in simple bilaterally symmetrical animals like flatworms to non-chordate deuterostomes. The single NALCN gene is limited as a sodium channel with a lysine (K-containing pore in vertebrates, but originally NALCN was a calcium-like channel, and evolved to operate as both a calcium channel and sodium channel for different roles in many invertebrates. Expression patterns of NALCN-EKEE in pond snail, Lymnaea stagnalis suggest roles for NALCN in secretion, with an abundant expression in brain, and an up-regulation in secretory organs of sexually-mature adults such as albumen gland and prostate. NALCN-EEEE is equally abundant as NALCN-EKEE in snails, but is greater expressed in heart and other muscle tissue, and 50% less expressed in the brain than NALCN-EKEE. Transfected snail NALCN-EEEE and NALCN-EKEE channel isoforms express in HEK-293T cells. We were not able to distinguish potential NALCN currents from background, non-selective leak conductances in HEK293T cells. Native leak currents without expressing NALCN genes in HEK-293T cells are NMDG(+ impermeant and blockable with 10 µM Gd(3+ ions and are indistinguishable from the hallmark currents ascribed to mammalian NALCN currents expressed in vitro by Lu et al. in Cell. 2007 Apr 20;129(2:371-83.

  1. The role of calcium in endotoxin-induced release of calcitonin gene-related peptide (CGRP) from rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    唐跃明; 韩启德; 王宪

    1997-01-01

    In the present study, the role of calcium in endotoxin-induced CGRP release was studied. 2 .5-50 μg/mL endotoxin and 1 -10 mmol/L caffeine caused concentration-dependent increase of CGRP release from rat spinal cord in vitro. However, no additive effect could he found when caffeine and endotoxin were concomitantly incubated. By using capsaicin, Ca2+-free medium, Omega-Conotoxin, nifedipine, W-7, ryanodine, MgCl2, Tris-ATP, rutheni-um red, the results indicate that the release of CGRP evoked by endotoxin from the sensory fibers of rat spinal cord is dependent on extracellular calcium. After entering into the cell through the N-type calcium channel, calcium binds to calmodulin, and triggers calcium release from intracellular calcium store by activating the caffeine-sensitive but ryan-odine-insensitive mechanism.

  2. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology.

    Science.gov (United States)

    Dolphin, Annette C

    2016-10-01

    Voltage-gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore-forming α1 subunit, the CaV 1, CaV 2 and CaV 3 channels. For all the subtypes of voltage-gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV 1 and CaV 2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage-gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2 δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.

  3. 43. Calmodulin regulating calcium sensitivity of Na channels

    Directory of Open Access Journals (Sweden)

    R. Vegiraju

    2016-07-01

    Full Text Available By extrapolating information from existing research and observing previous assumptions regarding the structure of the Na Channel, this experiment was conducted under the hypothesis that the Na Channel is in part regulated by the calmodulin protein, as a result proving calcium sensitivity of the Na Channel. Furthermore, we assume that there is a one to one stoichiometry between the Na Channel and the Calmodulin. There has been extensive research into the functionality and structure of sodium ion channels (Na channels, as several diseases are associated with the lack of regulation of sodium ions, that is caused by the disfunction of these Na channels. However, one highly controversial matter in the field is the importance of the protein calmodulin (CaM and calcium in Na channel function. Calmodulin is a protein that is well known for its role as a calcium binding messenger protein, and that association is believed to play an indirect role in regulating the Na channel through the Na channel’s supposed calcium sensitivity. While there are proponents for both sides, there has been relatively little research that provides strong evidence for either case. In this experiment, the effect of calmodulin on NaV 1.5 is tested by preparing a set of cardiac cells (of the human specie with the NaV 1.5 C-Termini and CaM protein, which were then to be placed in solutions with varying concentrations of calcium. We took special care to test multiple concentrations of calcium, as previous studies have tested very low concentrations, with Manu Ben-Johny’s team from the John Hopkins laboratory in particular testing up to a meager 50 micromolar, despite producing a well-respected paper (By comparison, the average Na channel can naturally sustain a concentration of almost 1-2 millimolar and on some occasions, reaching even higher concentrations. After using light scattering and observing the signals given off by the calcium interacting with these Nav1.5/Ca

  4. Heart failure drug digitoxin induces calcium uptake into cells by forming transmembrane calcium channels

    OpenAIRE

    2008-01-01

    Digitoxin and other cardiac glycosides are important, centuries-old drugs for treating congestive heart failure. However, the mechanism of action of these compounds is still being elucidated. Calcium is known to potentiate the toxicity of these drugs, and we have hypothesized that digitoxin might mediate calcium entry into cells. We report here that digitoxin molecules mediate calcium entry into intact cells. Multimers of digitoxin molecules also are able to form calcium channels in pure plan...

  5. Voltage gated calcium channels negatively regulate protective immunity to Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shashank Gupta

    Full Text Available Mycobacterium tuberculosis modulates levels and activity of key intracellular second messengers to evade protective immune responses. Calcium release from voltage gated calcium channels (VGCC regulates immune responses to pathogens. In this study, we investigated the roles of VGCC in regulating protective immunity to mycobacteria in vitro and in vivo. Inhibiting L-type or R-type VGCC in dendritic cells (DCs either using antibodies or by siRNA increased calcium influx in an inositol 1,4,5-phosphate and calcium release calcium activated channel dependent mechanism that resulted in increased expression of genes favoring pro-inflammatory responses. Further, VGCC-blocked DCs activated T cells that in turn mediated killing of M. tuberculosis inside macrophages. Likewise, inhibiting VGCC in infected macrophages and PBMCs induced calcium influx, upregulated the expression of pro-inflammatory genes and resulted in enhanced killing of intracellular M. tuberculosis. Importantly, compared to healthy controls, PBMCs of tuberculosis patients expressed higher levels of both VGCC, which were significantly reduced following chemotherapy. Finally, blocking VGCC in vivo in M. tuberculosis infected mice using specific antibodies increased intracellular calcium and significantly reduced bacterial loads. These results indicate that L-type and R-type VGCC play a negative role in M. tuberculosis infection by regulating calcium mobilization in cells that determine protective immunity.

  6. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells

    Science.gov (United States)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei

    2012-05-01

    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  7. Releasing effects in flame photometry: Determination of calcium

    Science.gov (United States)

    Dinnin, J.I.

    1960-01-01

    Strontium, lanthanum, neodymium, samarium, and yttrium completely release the flame emission of calcium from the depressive effects of sulfate, phosphate, and aluminate. Magnesium, beryllium, barium, and scandium release most of the calcium emission. These cations, when present in high concentration, preferentially form compounds with the depressing anions when the solution is evaporated rapidly in the flame. The mechanism of the interference and releasing effects is explained on the basis of the chemical equilibria in the evaporating droplets of solution and is shown to depend upon the nature of the compounds present in the aqueous phase of the solution. The need for background correction techniques is stressed. The releasing effect is used in the determination of calcium in silicate rocks without the need for separations.

  8. Calcium signaling and T-type calcium channels in cancer cell cycling

    Institute of Scientific and Technical Information of China (English)

    James T Taylor; Xiang-Bin Zeng; Jonathan E Pottle; Kevin Lee; Alun R Wang; Stephenie G Yi; Jennifer A S Scruggs; Suresh S Sikka; Ming Li

    2008-01-01

    Regulation of intracellular calcium is an important signaling mechanism for cell proliferation in both normal and cancerous cells. In normal epithelial cells,free calcium concentration is essential for cells to enter and accomplish the S phase and the M phase of the cell cycle. In contrast, cancerous cells can pass these phases of the cell cycle with much lower cytoplasmic free calcium concentrations, indicating an alternative mechanism has developed for fulfilling the intracellular calcium requirement for an increased rate of DNA synthesis and mitosis of fast replicating cancerous cells. The detailed mechanism underlying the altered calcium loading pathway remains unclear;however, there is a growing body of evidence that suggests the T-type Ca2+ channel is abnormally expressed in cancerous cells and that blockade of these channels may reduce cell proliferation in addition to inducing apoptosis. Recent studies also show that the expression of T-type Ca2+ channels in breast cancer cells is proliferation state dependent, i.e. the channels are expressed at higher levels during the fast-replication period, and once the cells are in a non-proliferation state, expression of this channel isminimal. Therefore, selectively blocking calcium entry into cancerous cells may be a valuable approach for preventing tumor growth. Since T-type Ca2+ channels are not expressed in epithelial cells, selective T-type Ca2+ channel blockers may be useful in the treatment of certain types of cancers.

  9. The cardiac L-type calcium channel distal carboxy terminus autoinhibition is regulated by calcium.

    Science.gov (United States)

    Crump, Shawn M; Andres, Douglas A; Sievert, Gail; Satin, Jonathan

    2013-02-01

    The L-type calcium channel (LTCC) provides trigger Ca(2+) for sarcoplasmic reticulum Ca-release, and LTCC function is influenced by interacting proteins including the LTCC distal COOH terminus (DCT) and calmodulin. DCT is proteolytically cleaved and reassociates with the LTCC complex to regulate calcium channel function. DCT reduces LTCC barium current (I(Ba,L)) in reconstituted channel complexes, yet the contribution of DCT to LTCC Ca(2+) current (I(Ca,L)) in cardiomyocyte systems is unexplored. This study tests the hypothesis that DCT attenuates cardiomyocyte I(Ca,L). We measured LTCC current and Ca(2+) transients with DCT coexpressed in murine cardiomyocytes. We also heterologously coexpressed DCT and Ca(V)1.2 constructs with truncations corresponding to the predicted proteolytic cleavage site, Ca(V)1.2Δ1801, and a shorter deletion corresponding to well-studied construct, Ca(V)1.2Δ1733. DCT inhibited I(Ba,L) in cardiomyocytes, and in human embryonic kidney (HEK) 293 cells expressing Ca(V)1.2Δ1801 and Ca(V)1.2Δ1733. Ca(2+)-CaM relieved DCT block in cardiomyocytes and HEK cells. The selective block of I(Ba,L) combined with Ca(2+)-CaM effects suggested that DCT-mediated blockade may be relieved under conditions of elevated Ca(2+). We therefore tested the hypothesis that DCT block is dynamic, increasing under relatively low Ca(2+), and show that DCT reduced diastolic Ca(2+) at low stimulation frequencies but spared high frequency Ca(2+) entry. DCT reduction of diastolic Ca(2+) and relief of block at high pacing frequencies and under conditions of supraphysiological bath Ca(2+) suggests that a physiological function of DCT is to increase the dynamic range of Ca(2+) transients in response to elevated pacing frequencies. Our data motivate the new hypothesis that DCT is a native reverse use-dependent inhibitor of LTCC current.

  10. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat

    DEFF Research Database (Denmark)

    Stankevicius, Edgaras; Dalsgaard, Thomas; Kroigaard, Christel

    2011-01-01

    mesenteric arteries, NS309 relaxations and NO release were inhibited by both N(G),N(G)-asymmetric dimethyl-l-arginine (ADMA) (300 μM), an inhibitor of NO synthase, and apamin (0.5 μM) plus 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) (1 μM), blockers of SK(Ca) and IK(Ca) channels, respectively...

  11. Heart failure drug digitoxin induces calcium uptake into cells by forming transmembrane calcium channels.

    Science.gov (United States)

    Arispe, Nelson; Diaz, Juan Carlos; Simakova, Olga; Pollard, Harvey B

    2008-02-19

    Digitoxin and other cardiac glycosides are important, centuries-old drugs for treating congestive heart failure. However, the mechanism of action of these compounds is still being elucidated. Calcium is known to potentiate the toxicity of these drugs, and we have hypothesized that digitoxin might mediate calcium entry into cells. We report here that digitoxin molecules mediate calcium entry into intact cells. Multimers of digitoxin molecules also are able to form calcium channels in pure planar phospholipid bilayers. These digitoxin channels are blocked by Al(3+) and La(3+) but not by Mg(2+) or the classical l-type calcium channel blocker, nitrendipine. In bilayers, we find that the chemistry of the lipid affects the kinetics of the digitoxin channel activity, but not the cation selectivity. Antibodies against digitoxin promptly neutralize digitoxin channels in both cells and bilayers. We propose that these digitoxin calcium channels may be part of the mechanism by which digitoxin and other active cardiac glycosides, such as digoxin, exert system-wide actions at and above the therapeutic concentration range.

  12. Contribution of presynaptic calcium-activated potassium currents to transmitter release regulation in cultured Xenopus nerve-muscle synapses.

    Science.gov (United States)

    Pattillo, J M; Yazejian, B; DiGregorio, D A; Vergara, J L; Grinnell, A D; Meriney, S D

    2001-01-01

    Using Xenopus nerve-muscle co-cultures, we have examined the contribution of calcium-activated potassium (K(Ca)) channels to the regulation of transmitter release evoked by single action potentials. The presynaptic varicosities that form on muscle cells in these cultures were studied directly using patch-clamp recording techniques. In these developing synapses, blockade of K(Ca) channels with iberiotoxin or charybdotoxin decreased transmitter release by an average of 35%. This effect would be expected to be caused by changes in the late phases of action potential repolarization. We hypothesize that these changes are due to a reduction in the driving force for calcium that is normally enhanced by the local hyperpolarization at the active zone caused by potassium current through the K(Ca) channels that co-localize with calcium channels. In support of this hypothesis, we have shown that when action potential waveforms were used as voltage-clamp commands to elicit calcium current in varicosities, peak calcium current was reduced only when these waveforms were broadened beginning when action potential repolarization was 20% complete. In contrast to peak calcium current, total calcium influx was consistently increased following action potential broadening. A model, based on previously reported properties of ion channels, faithfully reproduced predicted effects on action potential repolarization and calcium currents. From these data, we suggest that the large-conductance K(Ca) channels expressed at presynaptic varicosities regulate transmitter release magnitude during single action potentials by altering the rate of action potential repolarization, and thus the magnitude of peak calcium current.

  13. T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis

    Directory of Open Access Journals (Sweden)

    Michel Florian Rossier

    2016-05-01

    Full Text Available Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains and different calcium channels are associated with different functions, as shown by various channelopathies.Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis.Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T

  14. Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers

    Science.gov (United States)

    Nelson, Mark T.; French, Robert J.; Krueger, Bruce K.

    1984-03-01

    Many important physiological processes, including neurotransmitter release and muscle contraction1-3, are regulated by the concentration of Ca2+ ions in the cell. Levels of cytoplasmic Ca2+ can be elevated by the entry of Ca2+ ions through voltage-dependent channels which are selective for Ca2+, Ba2+ and Sr2+ ions4-14. We have measured currents through single, voltage-dependent calcium channels from rat brain that have been incorporated into planar lipid bilayers. Channel gating was voltage-dependent: membrane depolarization increased the channel open times and decreased the closed times. The channels were selective for divalent cations over monovalent ions. The well-known calcium channel blockers, lanthanum and cadmium, produced a concentration-dependent reduction of the apparent single-channel conductance. Contrary to expectations14, the nature of the divalent cation carrying current through the channel affected not only the single-channel conductance, but also the channel open times, with mean open times being shortest for barium.

  15. Store-operated calcium channels and pro-inflammatory signals

    Institute of Scientific and Technical Information of China (English)

    Wei-chiao CHANG

    2006-01-01

    In non-excitable cells such as T lymphocytes,hepatocytes,mast cells,endothelia and epithelia,the major pathway for calcium(Ca2+)entry is through store-operated Ca2+ channels in the plasma membrane.These channels are activated by the emptying of intracellular Ca2+ stores,however,neither the gating mechanism nor the downstream targets of these channels has been clear established.Here,I review some of the proposed gating mechanisms of store-operated Ca2+ channels and the functional implications in regulating pro-inflammatory signals.

  16. Calcium channel antagonists increase morphine-induced analgesia and antagonize morphine tolerance.

    Science.gov (United States)

    Contreras, E; Tamayo, L; Amigo, M

    1988-04-13

    The influence of calcium channel blockers on morphine-induced analgesia and on tolerance to the chronic administration of the opiate was investigated in mice. The effects of a test dose of morphine were significantly increased by the administration of diltiazem, flunarizine, nicardipine and verapamil. In contrast, nifedipine induced an antagonistic effect. The calcium channel antagonists did not change the reaction time to thermal stimulation in mice (hot plate test). The administration of nifedipine, flunarizine and verapamil reduced the intensity of the tolerance induced by a single dose of morphine administered in a slow release preparation. Diltiazem induced a non-significant decrease of the process. The present results are in accordance with the known interaction of acute and chronic morphine administration with the intracellular calcium concentration in neurones of the central nervous system.

  17. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus.

    Science.gov (United States)

    Raffaelli, Giacomo; Saviane, Chiara; Mohajerani, Majid H; Pedarzani, Paola; Cherubini, Enrico

    2004-05-15

    Large conductance calcium- and voltage-activated potassium channels (BK channels) activate in response to calcium influx during action potentials and contribute to the spike repolarization and fast afterhyperpolarization. BK channels targeted to active zones in presynaptic nerve terminals have been shown to limit calcium entry and transmitter release by reducing the duration of the presynaptic spike at neurosecretory nerve terminals and at the frog neuromuscular junction. However, their functional role in central synapses is still uncertain. In the hippocampus, BK channels have been proposed to act as an 'emergency brake' that would control transmitter release only under conditions of excessive depolarization and accumulation of intracellular calcium. Here we demonstrate that in the CA3 region of hippocampal slice cultures, under basal experimental conditions, the selective BK channel blockers paxilline (10 microM) and iberiotoxin (100 nM) increase the frequency, but not the amplitude, of spontaneously occurring action potential-dependent EPSCs. These drugs did not affect miniature currents recorded in the presence of tetrodotoxin, suggesting that their action was dependent on action potential firing. Moreover, in double patch-clamp recordings from monosynaptically interconnected CA3 pyramidal neurones, blockade of BK channels enhanced the probability of transmitter release, as revealed by the increase in success rate, EPSC amplitude and the concomitant decrease in paired-pulse ratio in response to pairs of presynaptic action potentials delivered at a frequency of 0.05 Hz. BK channel blockers also enhanced the appearance of delayed responses, particularly following the second action potential in the paired-pulse protocol. These results are consistent with the hypothesis that BK channels are powerful modulators of transmitter release and synaptic efficacy in central neurones.

  18. Ricardo Miledi and the calcium hypothesis of neurotransmitter release.

    Science.gov (United States)

    Jeng, Jade-Ming

    2002-01-01

    Ricardo Miledi has made significant contributions to our basic understanding of how synapses work. Here I discuss aspects of Miledi's research that helped to establish the requirement of presynaptic calcium for neurotransmitter release, from his earliest scientific studies to his classic experiments in the squid giant synapse.

  19. Regulation of voltage gated calcium channels by GPCRs and post-translational modification.

    Science.gov (United States)

    Huang, Junting; Zamponi, Gerald W

    2016-10-18

    Calcium entry via voltage gated calcium channels mediates a wide range of physiological functions, whereas calcium channel dysregulation has been associated with numerous pathophysiological conditions. There are myriad cell signaling pathways that act on voltage gated calcium channels to fine tune their activities and to regulate their cell surface expression. These regulatory mechanisms include the activation of G protein-coupled receptors and downstream phosphorylation events, and their control over calcium channel trafficking through direct physical interactions. Calcium channels also undergo post-translational modifications that alter both function and density of the channels in the plasma membrane. Here we focus on select aspects of these regulatory mechanisms and highlight recent developments.

  20. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    Science.gov (United States)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  1. Inhibition of N-Type Calcium Channels by Fluorophenoxyanilide Derivatives

    Directory of Open Access Journals (Sweden)

    Ellen C. Gleeson

    2015-04-01

    Full Text Available A set of fluorophenoxyanilides, designed to be simplified analogues of previously reported ω-conotoxin GVIA mimetics, were prepared and tested for N-type calcium channel inhibition in a SH-SY5Y neuroblastoma FLIPR assay. N-type or Cav2.2 channel is a validated target for the treatment of refractory chronic pain. Despite being significantly less complex than the originally designed mimetics, up to a seven-fold improvement in activity was observed.

  2. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    arterioles with the chloride channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Renin secretion was equally enhanced by omission of extracellular calcium and by addition of 0.5 mM DIDS. The inhibitory effect of calcium was blocked by DIDS. The stimulatory effects of low calcium [with....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...... the duration of the contractile response to norepinephrine. The results support the hypothesis that DIDS-sensitive calcium-activated chloride channels are involved in regulation of renin release and in the afferent arteriolar contraction after angiotensin II but do not play a pivotal role in the response...

  3. Diltiazem and verapamil preferentially block inactivated cardiac calcium channels.

    Science.gov (United States)

    Kanaya, S; Arlock, P; Katzung, B G; Hondeghem, L M

    1983-02-01

    Diltiazem has been proposed to act by blocking calcium channels of cardiac and smooth muscle since it has pharmacological [12-14] and clinical [10] effects that resemble those of verapamil, an agent that has been shown to block these channels [3]. However, block of the slow inward current by diltiazem has not been directly demonstrated. In fact, it has been suggested that diltiazem has an entirely different mechanism of action [7]. We therefore studied the blocking effects of diltiazem and verapamil on cardiac calcium channels by measuring the slow inward current in voltage-clamped ferret myocardium. Both drugs blocked the slow inward current in a use-dependent fashion, i.e. the block was enhanced by increased frequency of activating clamps and by more positive holding potentials. However, we found that short single activating clamps resulted in minimal block, whereas prolonging the clamp step progressively enhanced the blockade. Thus, a single long clamp caused as much blockade as a train of shorter pulses. These results demonstrate that diltiazem and verapamil block the slow inward current by binding to calcium channels in a state-dependent fashion, i.e. inactivated channels have a high affinity for the drugs, while rested and open channels have a lower affinity.

  4. New 1,4-dihydropyridines endowed with NO-donor and calcium channel agonist properties.

    Science.gov (United States)

    Visentin, Sonja; Rolando, Barbara; Di Stilo, Antonella; Fruttero, Roberta; Novara, Monica; Carbone, Emilio; Roussel, Christian; Vanthuyne, Nicolas; Gasco, Alberto

    2004-05-06

    A new series of calcium channel agonists structurally related to Bay K8644, containing NO donor furoxans and the related furazans unable to release NO, is described. The racemic mixtures were studied for their action on L-type Ca(2+) channels expressed in cultured rat insulinoma RINm5F cells. All the products proved to be potent calcium channel agonists. All the racemic mixtures, with the only exception of the carbamoyl derivatives 9, 12 endowed with scanty solubility, were separated by chiral chromatography into the corresponding enantiomers; the (+) enantiomers were found to be potent agonists while the (-) ones were feeble antagonists. The racemic mixtures were also assessed for their positive inotropic activity on electrically stimulated rat papillary muscle and for their ability to increase Ca(2+) entry into the vascular smooth muscle of rat aorta strips. The cyanofuroxan 8 proved to be an interesting product with dual Ca(2+)-dependent positive inotropic and NO-dependent vasodilating activity.

  5. Effects of calcium ion, calpains, and calcium channel blockers on retinitis pigmentosa.

    Science.gov (United States)

    Nakazawa, Mitsuru

    2011-01-01

    Recent advances in molecular genetic studies have revealed many of the causative genes of retinitis pigmentosa (RP). These achievements have provided clues to the mechanisms of photoreceptor degeneration in RP. Apoptosis is known to be a final common pathway in RP and, therefore, a possible therapeutic target for photoreceptor rescue. However, apoptosis is not a single molecular cascade, but consists of many different reactions such as caspase-dependent and caspase-independent pathways commonly leading to DNA fractionation and cell death. The intracellular concentration of calcium ions is also known to increase in apoptosis. These findings suggest that calpains, one of the calcium-dependent proteinases, play some roles in the process of photoreceptor apoptosis and that calcium channel antagonists may potentially inhibit photoreceptor apoptosis. Herein, the effects of calpains and calcium channel antagonists on photoreceptor degeneration are reviewed.

  6. Effects of Calcium Ion, Calpains, and Calcium Channel Blockers on Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Mitsuru Nakazawa

    2011-01-01

    Full Text Available Recent advances in molecular genetic studies have revealed many of the causative genes of retinitis pigmentosa (RP. These achievements have provided clues to the mechanisms of photoreceptor degeneration in RP. Apoptosis is known to be a final common pathway in RP and, therefore, a possible therapeutic target for photoreceptor rescue. However, apoptosis is not a single molecular cascade, but consists of many different reactions such as caspase-dependent and caspase-independent pathways commonly leading to DNA fractionation and cell death. The intracellular concentration of calcium ions is also known to increase in apoptosis. These findings suggest that calpains, one of the calcium-dependent proteinases, play some roles in the process of photoreceptor apoptosis and that calcium channel antagonists may potentially inhibit photoreceptor apoptosis. Herein, the effects of calpains and calcium channel antagonists on photoreceptor degeneration are reviewed.

  7. Outward potassium current oscillations in macrophage polykaryons: extracellular calcium entry and calcium-induced calcium release

    Directory of Open Access Journals (Sweden)

    Saraiva R.M.

    1997-01-01

    Full Text Available Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca2+-dependent K+ currents (IKCa probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na+-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca2+-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation

  8. Oxidative Stress and Maxi Calcium-Activated Potassium (BK Channels

    Directory of Open Access Journals (Sweden)

    Anton Hermann

    2015-08-01

    Full Text Available All cells contain ion channels in their outer (plasma and inner (organelle membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells, alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.

  9. Role of calcium in gonadotropin releasing hormone-induced luteinizing hormone secretion from the bovine pituitary

    Energy Technology Data Exchange (ETDEWEB)

    Kile, J.P.

    1986-01-01

    The hypothesis was tested that GnRH acts to release LH by increasing calcium uptake by gonadotroph which in turn stimulates calcium-calmodulin activity and results in LH release from bovine pituitary cells as it does in the rat. Pituitary glands of calves (4-10 months of age) were enzymatically dispersed (0.2% collagenase) and grown for 5 days to confluency in multiwell plates (3 x 10/sup 5//well). Cells treated with GnRH Ca/sup + +/ ionophore A23187, and ouabain all produced significant releases of LH release in a pronounced all or none fashion, while thorough washing of the cells with 0.5 mM EGTA in Ca/sup + +/-free media prevented the action of GnRH. GnRH caused a rapid efflux of /sup 45/Ca/sup + +/. Both GnRH-stimulated /sup 45/Ca efflux and LH release could be partially blocked by verapamil GnRH-induced LH release could also be blocked by nifedipine and tetrodotoxin, although these agents did not affect /sup 45/Ca efflux. The calmodulin antagonists calmidazolium and W7 were found to block GnRH induced LH release, as well as LH release induced by theophylline, KC PGE/sub 2/ and estradiol. These data indicated that: (1) calcium is required for GnRH action, but extracellular Ca/sup + +/ does not regulate LH release; (2) GnRH elevates intracellular Ca/sup + +/ by opening both voltage sensitive and receptor mediated Ca/sup + +/ channels; (3) activation of calmodulin is one mechanism involved in GnRH-induced LH release.

  10. Calcium homeostasis and cone signaling are regulated by interactions between calcium stores and plasma membrane ion channels.

    Directory of Open Access Journals (Sweden)

    Tamas Szikra

    Full Text Available Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca(2+ entry (SOCE to Ca(2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn(2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca(2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca(2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca(2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca(2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca(2+ channels. Exposure to MRS 1845 resulted in approximately 40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca(2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca(2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.

  11. Heterogeneity of Calcium Channel/cAMP-Dependent Transcriptional Activation.

    Science.gov (United States)

    Kobrinsky, Evgeny

    2015-01-01

    The major function of the voltage-gated calcium channels is to provide the Ca(2+) flux into the cell. L-type voltage-gated calcium channels (Cav1) serve as voltage sensors that couple membrane depolarization to many intracellular processes. Electrical activity in excitable cells affects gene expression through signaling pathways involved in the excitation-transcription (E-T) coupling. E-T coupling starts with activation of the Cav1 channel and results in initiation of the cAMP-response element binding protein (CREB)-dependent transcription. In this review we discuss the new quantitative approaches to measuring E-T signaling events. We describe the use of wavelet transform to detect heterogeneity of transcriptional activation in nuclei. Furthermore, we discuss the properties of discovered microdomains of nuclear signaling associated with the E-T coupling and the basis of the frequency-dependent transcriptional regulation.

  12. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    Science.gov (United States)

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-11-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases.

  13. Modulation of elementary calcium release mediates a transition from puffs to waves in an IP3R cluster model.

    Directory of Open Access Journals (Sweden)

    Martin Rückl

    2015-01-01

    Full Text Available The oscillating concentration of intracellular calcium is one of the most important examples for collective dynamics in cell biology. Localized releases of calcium through clusters of inositol 1,4,5-trisphosphate receptor channels constitute elementary signals called calcium puffs. Coupling by diffusing calcium leads to global releases and waves, but the exact mechanism of inter-cluster coupling and triggering of waves is unknown. To elucidate the relation of puffs and waves, we here model a cluster of IP3R channels using a gating scheme with variable non-equilibrium IP3 binding. Hybrid stochastic and deterministic simulations show that puffs are not stereotyped events of constant duration but are sensitive to stimulation strength and residual calcium. For increasing IP3 concentration, the release events become modulated at a timescale of minutes, with repetitive wave-like releases interspersed with several puffs. This modulation is consistent with experimental observations we present, including refractoriness and increase of puff frequency during the inter-wave interval. Our results suggest that waves are established by a random but time-modulated appearance of sustained release events, which have a high potential to trigger and synchronize activity throughout the cell.

  14. Synaptic Ribbons Require Ribeye for Electron Density, Proper Synaptic Localization, and Recruitment of Calcium Channels

    Directory of Open Access Journals (Sweden)

    Caixia Lv

    2016-06-01

    Full Text Available Synaptic ribbons are structures made largely of the protein Ribeye that hold synaptic vesicles near release sites in non-spiking cells in some sensory systems. Here, we introduce frameshift mutations in the two zebrafish genes encoding for Ribeye and thus remove Ribeye protein from neuromast hair cells. Despite Ribeye depletion, vesicles collect around ribbon-like structures that lack electron density, which we term “ghost ribbons.” Ghost ribbons are smaller in size but possess a similar number of smaller vesicles and are poorly localized to synapses and calcium channels. These hair cells exhibit enhanced exocytosis, as measured by capacitance, and recordings from afferent neurons post-synaptic to hair cells show no significant difference in spike rates. Our results suggest that Ribeye makes up most of the synaptic ribbon density in neuromast hair cells and is necessary for proper localization of calcium channels and synaptic ribbons.

  15. A calcium channel mutant mouse model of hypokalemic periodic paralysis

    OpenAIRE

    Wu, Fenfen; Mi, Wentao; Hernández-Ochoa, Erick O.; Burns, Dennis K.; Fu, Yu; Gray, Hillery F; Struyk, Arie F.; Martin F Schneider; Cannon, Stephen C.

    2012-01-01

    Hypokalemic periodic paralysis (HypoPP) is a familial skeletal muscle disorder that presents with recurrent episodes of severe weakness lasting hours to days associated with reduced serum potassium (K+). HypoPP is genetically heterogeneous, with missense mutations of a calcium channel (CaV1.1) or a sodium channel (NaV1.4) accounting for 60% and 20% of cases, respectively. The mechanistic link between CaV1.1 mutations and the ictal loss of muscle excitability during an attack of weakness in Hy...

  16. Calcium-permeable ion channels in the kidney.

    Science.gov (United States)

    Zhou, Yiming; Greka, Anna

    2016-06-01

    Calcium ions (Ca(2+)) are crucial for a variety of cellular functions. The extracellular and intracellular Ca(2+) concentrations are thus tightly regulated to maintain Ca(2+) homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca(2+) homeostasis by filtration and reabsorption. Approximately 60% of the Ca(2+) in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca(2+) is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca(2+)-permeable ion channel families as important regulators of Ca(2+) homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca(2+)-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets.

  17. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2.

    Science.gov (United States)

    Tomlinson, Susan E; Tan, S Veronica; Burke, David; Labrum, Robyn W; Haworth, Andrea; Gibbons, Vaneesha S; Sweeney, Mary G; Griggs, Robert C; Kullmann, Dimitri M; Bostock, Hugh; Hanna, Michael G

    2016-02-01

    Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development.

  18. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca(2+) release during the quasi-steady level of release in twitch fibers from frog skeletal muscle.

    Science.gov (United States)

    Fénelon, Karine; Lamboley, Cédric R H; Carrier, Nicole; Pape, Paul C

    2012-10-01

    Experiments were performed to characterize the properties of the intrinsic Ca(2+) buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([Ca(T)](SR) and [Ca(2+)](SR)) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca(2+) indicator). Results indicate SR Ca(2+) buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca(2+). Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca(2+)](SR) and [Ca(T)](SR) are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca(2+) permeability of the SR, namely d[Ca(T)](SR)/dt ÷ [Ca(2+)](SR) (denoted release permeability), in experiments in which only [Ca(T)](SR) or [Ca(2+)](SR) is measured. In response to a voltage-clamp step to -20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ~50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca(2+) release of 2.3 SR Ca(2+) release channels neighboring each channel activated by its associated voltage sensor. Release permeability at -60 mV increases as [Ca(T)](SR) decreases from its resting physiological level to ~0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca(2+)](SR) inhibits

  19. Voltage-Independent Calcium Release in Heart Muscle

    Science.gov (United States)

    Niggli, Ernst; Lederer, W. Jonathan

    1990-10-01

    The Ca2+ that activates contraction in heart muscle is regulated as in skeletal muscle by processes that depend on voltage and intracellular Ca2+ and involve a positive feedback system. How the initial electrical signal is amplified in heart muscle has remained controversial, however. Analogous protein structures from skeletal muscle and heart muscle have been identified physiologically and sequenced; these include the Ca2+ channel of the sarcolemma and the Ca2+ release channel of the sarcoplasmic reticulum. Although the parallels found in cardiac and skeletal muscles have provoked valuable experiments in both tissues, separation of the effects of voltage and intracellular Ca2+ on sarcoplasmic reticulum Ca2+ release in heart muscle has been imperfect. With the use of caged Ca2+ and flash photolysis in voltage-clamped heart myocytes, effects of membrane potential in heart muscle cells on Ca2+ release from intracellular stores have been studied. Unlike the response in skeletal muscle, voltage across the sarcolemma of heart muscle does not affect the release of Ca2+ from the sarcoplasmic reticulum, suggesting that other regulatory processes are needed to control Ca2+-induced Ca2+ release.

  20. Aging Reduces L-type Calcium Channel Current and the Vasodilatory Response of Small Mesenteric Arteries to Calcium Channel Blockers

    Directory of Open Access Journals (Sweden)

    Sulayma A Albarwani

    2016-05-01

    Full Text Available Calcium channel blockers are widely used to treat cardiovascular disease (CVD including hypertension. As aging is an independent risk factor for CVD, the use of calcium channel blockers increases with increasing age. Hence, this study was designed to evaluate the effect of aging on the sensitivity of small mesenteric arteries to L-type voltage-gated calcium channel (LTCC blockers and also to investigate whether there was a concomitant change in calcium current density. Third order mesenteric arteries from male F344 rats, aged 2.5 - 3 months (young and 22 - 26 months (old were mounted on wire myograph to measure the tension during isometric contraction. Arteries were contracted with 100 mM KCl and were then relaxed in a cumulative concentration-response dependent manner with nifedipine (0.1nM - 10 µM, verapamil (0.1nM-10 µM or diltiazem (0.1nM - 10µM. Relaxation-concentration response curves produced by cumulative concentrations of three different calcium channel blockers (CCBs in arteries of old rats were shifted to the right with statistically significant IC50s. pEC50 ± s.e.m: (8.37 ± 0.06 vs 8.04 ± 0.05 , 7.40 ± 0.07 vs 6.81 ± 0.04 and 6.58 ± 0.07 vs 6.34 ± 0.06 in young vs old. It was observed that the maximal contractions induced by 100 mM KCl, phenylephrine and reversed by sodium nitroprusside were not different between young and old groups. However, Bay K 8644 increased resting tension by 23±4.8% in young arteries and 4.7±1.6% in old arteries. LTCC current density were also significantly lower in old arteries (-2.77 ± 0.45 pA/pF compared to young arteries (-4.5 ± 0.40 pA/pF; with similar steady-state activation and inactivation curves. Parallel to this reduction, the expression of Cav1.2 protein was reduced by 57 ± 5% in arteries from old rats compared to those from young rats. In conclusion, our results suggest that aging reduces the response of small mesenteric arteries to the vasodilatory effect of the CCBs and this may

  1. Support for calcium channel gene defects in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Lu Ake Tzu-Hui

    2012-12-01

    Full Text Available Abstract Background Alternation of synaptic homeostasis is a biological process whose disruption might predispose children to autism spectrum disorders (ASD. Calcium channel genes (CCG contribute to modulating neuronal function and evidence implicating CCG in ASD has been accumulating. We conducted a targeted association analysis of CCG using existing genome-wide association study (GWAS data and imputation methods in a combined sample of parent/affected child trios from two ASD family collections to explore this hypothesis. Methods A total of 2,176 single-nucleotide polymorphisms (SNP (703 genotyped and 1,473 imputed covering the genes that encode the α1 subunit proteins of 10 calcium channels were tested for association with ASD in a combined sample of 2,781 parent/affected child trios from 543 multiplex Caucasian ASD families from the Autism Genetics Resource Exchange (AGRE and 1,651 multiplex and simplex Caucasian ASD families from the Autism Genome Project (AGP. SNP imputation using IMPUTE2 and a combined reference panel from the HapMap3 and the 1,000 Genomes Project increased coverage density of the CCG. Family-based association was tested using the FBAT software which controls for population stratification and accounts for the non-independence of siblings within multiplex families. The level of significance for association was set at 2.3E-05, providing a Bonferroni correction for this targeted 10-gene panel. Results Four SNPs in three CCGs were associated with ASD. One, rs10848653, is located in CACNA1C, a gene in which rare de novo mutations are responsible for Timothy syndrome, a Mendelian disorder that features ASD. Two others, rs198538 and rs198545, located in CACN1G, and a fourth, rs5750860, located in CACNA1I, are in CCGs that encode T-type calcium channels, genes with previous ASD associations. Conclusions These associations support a role for common CCG SNPs in ASD.

  2. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons.

    Science.gov (United States)

    Strong, J A; Fox, A P; Tsien, R W; Kaczmarek, L K

    The modulation of voltage-activated calcium currents by protein kinases provides excitable cells with a mechanism for regulating their electrical behaviour. At the single channel level, modulation of calcium current has, to date, been characterized only in cardiac muscle, where beta-adrenergic agonists, acting through cyclic AMP-dependent protein kinase, enhance the calcium current by increasing channel availability and opening. We now report that enhancement of calcium current in the peptidergic bag cell neurons of Aplysia by protein kinase C occurs through a different mechanism, the recruitment of a previously covert class of calcium channel. Under control conditions, bag cell neurons contain only one class of voltage-activated calcium channel with a conductance of approximately 12 pS. After exposure to agents that activate protein kinase C, these neurons also express a second class of calcium channel with a different unitary conductance (approximately 24 pS) that is never seen in untreated cells.

  3. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    Science.gov (United States)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  4. 中枢N-型钙离子通道对应激性高血压大鼠去甲肾上腺素释放的影响%Effects of central N-type calcium channels on noradrenaline release from locus coeruleus projecting to hypothalamus in stress induced hypertension rats

    Institute of Scientific and Technical Information of China (English)

    吴军同; 巩万坤; 夏兆俊; 王峰; 黄宏平; 汪萌芽

    2016-01-01

    目的:研究N-型电压门控性钙离子通道影响高血压大鼠的血压以及蓝斑投射到下丘脑去甲肾上腺素释放动力学的机制。方法:将24只雄性SD大鼠(180~200 g)随机分为对照组和模型组,模型组大鼠用噪声和足底电击刺激大鼠血压升高,在建立慢性应激性高血压大鼠模型的基础上,电刺激蓝斑核,运用碳纤维电极检测技术测定大鼠下丘脑内去甲肾上腺素( NE)的释放量,进一步观察给予电压门控性钙离子通道阻断剂对NE的刺激-分泌量和在体血压的影响。结果:与对照组相比,高血压模型组大鼠血压升高(P<0.05),电刺激蓝斑核,下丘脑检测到的去甲肾上腺素的释放信号幅度增大(P<00.5)。侧脑室给予N-型钙离子通道阻断剂使模型组大鼠的血压下降(P<0.05),去甲肾上腺素的释放信号幅度减少(P<0.05)。结论:中枢部位的电压门控N-型钙离子通道参与应激性高血压大鼠下丘脑去甲肾上腺素的释放和血压的调控。%Objective:To observe the dynamic characteristics of norepinephrine ( NE) release in hypothalamus followed by electrical stimulation in locus coeruleus in the rat model of stress-induced hypertension (SIH) and investigate the role of central N-type calcium channel in the pathogenesis of SIH. Methods:24 Male Sprague-Dawley rats (180-200 g) were randomly divided into control and SIH group.The SIH model rats were induced by both noise and foot-shock stresses.After modeling,NE release in the hypothalamus by electrical stimulation in locus coeruleus was determined and NE signal was re-corded by carbon fiber electrode.Results:Blood pressure and the peak value of NE signal in the hypothalamus following electrical stimulation in locus coer-uleus were elevated and higher in SIH rats than the controls ( P<0 .05 ) .Intracerebroventricular administration of ralfinamide mesylate ( sodium and N-type calcium

  5. Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals.

    Science.gov (United States)

    Brooke, Ruth E; Moores, Thomas S; Morris, Neil P; Parson, Simon H; Deuchars, Jim

    2004-12-01

    Voltage-gated potassium (Kv) channels are critical to regulation of neurotransmitter release throughout the nervous system but the roles and identity of the subtypes involved remain unclear. Here we show that Kv3 channels regulate transmitter release at the mouse neuromuscular junction (NMJ). Light- and electron-microscopic immunohistochemistry revealed Kv3.3 and Kv3.4 subunits within all motor nerve terminals of muscles examined [transversus abdominus, lumbrical and flexor digitorum brevis (FDB)]. To determine the roles of these Kv3 subunits, intracellular recordings were made of end-plate potentials (EPPs) in FDB muscle fibres evoked by electrical stimulation of tibial nerve. Tetraethylammonium (TEA) applied at low concentrations (0.05-0.5 mM), which blocks only a few known potassium channels including Kv3 channels, did not affect muscle fibre resting potential but significantly increased the amplitude of all EPPs tested. Significantly, this effect of TEA was still observed in the presence of the large-conductance calcium-activated potassium channel blockers iberiotoxin (25-150 nM) and Penitrem A (100 nM), suggesting a selective action on Kv3 subunits. Consistent with this, 15-microM 4-aminopyridine, which blocks Kv3 but not large-conductance calcium-activated potassium channels, enhanced evoked EPP amplitude. Unexpectedly, blood-depressing substance-I, a toxin selective for Kv3.4 subunits, had no effect at 0.05-1 microM. The combined presynaptic localization of Kv3 subunits and pharmacological enhancement of EPP amplitude indicate that Kv3 channels regulate neurotransmitter release from presynaptic terminals at the NMJ.

  6. Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Bruce Lyeth

    2013-06-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i. These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.

  7. Tailored sequential drug release from bilayered calcium sulfate composites

    Energy Technology Data Exchange (ETDEWEB)

    Orellana, Bryan R.; Puleo, David A., E-mail: puleo@uky.edu

    2014-10-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  8. End organ protection by calcium-channel blockers.

    Science.gov (United States)

    Tzivoni, D

    2001-02-01

    In recent years, much attention has been given to end organ protection by antihypertensive, anti-heart failure, and anti-ischemic medications. This review describes the available information on end organ protection by calcium-channel blockers (CCBs). In normotensive patients and patients with hypertension treated with long-acting dihydropyridines, medial thickness was thinner than in patients treated with atenolol or in untreated hypertensive patients. Long-term treatment was associated with significant reduction in left ventricular mass. Calcium-channel blockers also improved endothelial-dependent relaxation and reversed the vasoconstrictive response to nitric oxide inhibitors. In diabetic patients, CCBs were effective in preserving kidney function and microalbuminurea. The combination of angiotensin-converting enzyme (ACE) inhibitors and CCBs was more effective than ACE inhibitors alone in preserving kidney function. In animal experiments, CCBs prevented development of coronary atheroschlerosis; however, in humans only limited data are available on their antiatherogenic effect. Some studies suggest that CCBs exert antiplatelets properties and may therefore be beneficial in patients with coronary artery disease.

  9. Newer calcium channel antagonists and the treatment of hypertension.

    Science.gov (United States)

    Cummins, D F

    1999-07-01

    Calcium channel antagonists have become popular medications for the management of hypertension. These agents belong to the diphenylalkylamine, benzothiazepine, dihydropyridine, or tetralol chemical classes. Although the medications share a common pharmacological mechanism in reducing peripheral vascular resistance, clinical differences between the sub-classes can be linked to structural profiles. This heterogeneity is manifested by differences in vascular selectivity, effects on cardiac conduction and adverse events. The lack of differentiation between calcium channel antagonists in clinical trials has contributed to uncertainty associated with their impact on morbidity and mortality. Data from more recent studies in specific patient populations underscores the importance of investigating these antihypertensives as individual agents. A proposed therapeutic classification system suggests that newer agents should share the slow onset and long-acting antihypertensive effect of amlodipine. Additionally, a favourable trough-to-peak ratio has been recommended as an objective measurement of efficacy. The newer drugs, barnidipine and lacidipine, have a therapeutic profile similar to amlodipine, but trough-to-peak ratios are not substantially greater than the recommended minimum of 0.50. Aranidipine, cilnidipine and efonidipine have unique pharmacological properties that distinguish them from traditional dihydropyridines. Although clinical significance is unconfirmed, these newer options may be beneficial for patients with co-morbid conditions that preclude use of older antagonists.

  10. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway.

    Directory of Open Access Journals (Sweden)

    Javier Alamilla

    Full Text Available The medial nucleus of the trapezoid body (MNTB is a key nucleus in high-fidelity temporal processing that underlies sound localization in the auditory brainstem. While the glycinergic principal cells of the MNTB project to all primary nuclei of the superior olive, during development the projection from MNTB to the lateral superior olive (LSO is of interest because this immature inhibitory projection is known to undergo tonotopic refinement during an early postnatal period, and because during this period individual MNTB terminals in the LSO transiently release glycine GABA and glutamate. Developmental changes in calcium-dependent release are understood to be required to allow various auditory nuclei to follow high frequency activity; however, little is known about maturation of calcium-dependent release in the MNTB-LSO pathway, which has been presumed to have less stringent requirements for high-fidelity temporal following. In acute brainstem slices of rats age postnatal day 1 to 15 we recorded whole-cell responses in LSO principal neurons to electrical stimulation in the MNTB in order to measure sensitivity to external calcium, the contribution of different voltage-gated calcium channel subtypes to vesicular release, and the maturation of these measures for both GABA/glycine and glutamate transmission. Our results establish that release of glutamate at MNTB-LSO synapses is calcium-dependent. Whereas no significant developmental changes were evident for glutamate release, GABA/glycine release underwent substantial changes over the first two postnatal weeks: soon after birth L-type, N-type, and P/Q-type voltage-gated calcium channels (VGCCs together mediated release, but after hearing onset P/Q-type VGCCs predominated. Blockade of P/Q-type VGCCs reduced the estimated quantal number for GABA/gly and glutamate transmission at P5-8 and the frequency of evoked miniature glycinergic events at P12-15, without apparent effects on spontaneous release of

  11. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials.

  12. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    Science.gov (United States)

    Chameau, Pascal; Qin, Yongjun; Spijker, Sabine; Smit, August Benjamin; Smit, Guus; Joëls, Marian

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover, we addressed the putative gene targets that eventually lead to the enhanced calcium currents. Electrophysiological recordings were performed in nucleated patches that allow excellent voltage control. Calcium currents in these patches almost exclusively involve N- and L-type channels. We found that L- but not N-type calcium currents were largely enhanced after treatment with a high dose of corticosterone sufficient to activate glucocorticoid receptors. Voltage dependency and kinetic properties of the currents were unaffected by the hormone. Nonstationary noise analysis suggests that the increased current is not caused by a larger unitary conductance, but rather to a doubling of the number of functional channels. Quantitative real-time PCR revealed that transcripts of the Ca(v)1 subunits encoding for the N- or L-type calcium channels are not upregulated in the mouse CA1 area; instead, a strong, direct, and consistent upregulation of the beta4 subunit was observed. This indicates that the corticosteroid-induced increase in number of L-type calcium channels is not caused by a simple transcriptional regulation of the pore-forming subunit of the channels.

  13. The timing statistics of spontaneous calcium release in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Mesfin Asfaw

    Full Text Available A variety of cardiac arrhythmias are initiated by a focal excitation that disrupts the regular beating of the heart. In some cases it is known that these excitations are due to calcium (Ca release from the sarcoplasmic reticulum (SR via propagating subcellular Ca waves. However, it is not understood what are the physiological factors that determine the timing of these excitations at both the subcellular and tissue level. In this paper we apply analytic and numerical approaches to determine the timing statistics of spontaneous Ca release (SCR in a simplified model of a cardiac myocyte. In particular, we compute the mean first passage time (MFPT to SCR, in the case where SCR is initiated by spontaneous Ca sparks, and demonstrate that this quantity exhibits either an algebraic or exponential dependence on system parameters. Based on this analysis we identify the necessary requirements so that SCR occurs on a time scale comparable to the cardiac cycle. Finally, we study how SCR is synchronized across many cells in cardiac tissue, and identify a quantitative measure that determines the relative timing of SCR in an ensemble of cells. Using this approach we identify the physiological conditions so that cell-to-cell variations in the timing of SCR is small compared to the typical duration of an SCR event. We argue further that under these conditions inward currents due to SCR can summate and generate arrhythmogenic triggered excitations in cardiac tissue.

  14. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels.

    Science.gov (United States)

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S; Klyachko, Vitaly A

    2013-02-20

    Loss of FMRP causes fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx, and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation independent and are mediated selectively by BK channels via interaction of FMRP with BK channel's regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology.

  15. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons.

    Directory of Open Access Journals (Sweden)

    Allison Sargoy

    Full Text Available Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.

  16. Role of L-type calcium-channel modulation in nonconvulsive epilepsy in rats

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Ates, N.; Coenen, A.M.L.

    1995-01-01

    Old male Wistar rats spontaneously showing hundreds of spike-wave discharges daily were used to investigate the role of calcium ions in nonconvulsive epilepsy. The effects of the L-type calcium channel blocker nimodipine and the L-type channel opener BAY K 8644 on number and duration of these spike-

  17. CaV1.2 calcium channels: just cut out to be regulated?

    Science.gov (United States)

    Groth, Rachel D; Tirko, Natasha N; Tsien, Richard W

    2014-06-04

    Tight regulation of calcium entry through the L-type calcium channel CaV1.2 ensures optimal excitation-response coupling. In this issue of Neuron, Michailidis et al. (2014) demonstrate that CaV1.2 activity triggers negative feedback regulation through proteolytic cleavage of the channel within the core of the pore-forming subunit.

  18. LERCANIDIPINE, CALCIUM CHANNEL BLOCKER OF THE THIRD GENERATION: NEW POSSIBILITIES IN THE TREATMENT OF ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova

    2013-01-01

    Full Text Available Classification, modes of action and clinical effects of calcium channel blockers are presented. Advantages of the third generation of dihydropyridine calcium channel blockers are considered. Clinical pharmacology, studies on the efficacy, safety and prevention of hypertensive complications with lercanidipine are detailed.

  19. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex.

    Science.gov (United States)

    Neymotin, S A; McDougal, R A; Bulanova, A S; Zeki, M; Lakatos, P; Terman, D; Hines, M L; Lytton, W W

    2016-03-01

    Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium (Ca(2+)) regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused the release of Ca(2+) from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca(2+)-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca(2+) influx via NMDA and voltage-gated Ca(2+) channels (VGCCs). After a delay, mGluR activation led to ER Ca(2+) release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ∼1min. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, Ca(2+) levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca(2+) at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca(2+) could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in

  20. Honing in on the ATP Release Channel in Taste Cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    Studies over the last 8 years have identified 3 potential channels that appear to release ATP from Type II cells in response to taste stimuli. These studies have taken different methodological approaches but have all provided data supporting their candidate channel as the ATP release channel. These potential channels include Pannexin 1, Connexins (30 and/or 43), and most recently, the Calhm1 channel. Two papers in this issue of Chemical Senses provide compelling new evidence that Pannexin 1 is not the ATP release channel. Tordoff et al. did a thorough behavioral analysis of the Pannexin1 knock out mouse and found that these animals have the same behavioral responses as wild type mice for 7 different taste stimuli that were tested. Vandenbeuch et al. presented an equally thorough analysis of the gustatory nerve responses in the Pannexin1 knock out mouse and found no differences compared with controls. Thus when the role of Pannexin 1 is analyzed at the systems level, it is not required for normal taste perception. Further studies are needed to determine the role of this hemichannel in taste cells.

  1. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons.

    Science.gov (United States)

    Spafford, J David; Munno, David W; Van Nierop, Pim; Feng, Zhong-Ping; Jarvis, Scott E; Gallin, Warren J; Smit, August B; Zamponi, Gerald W; Syed, Naweed I

    2003-02-01

    We report here that unlike what was suggested for many vertebrate neurons, synaptic transmission in Lymnaea stagnalis occurs independent of a physical interaction between presynaptic calcium channels and a functional complement of SNARE proteins. Instead, synaptic transmission in Lymnaea requires the expression of a C-terminal splice variant of the Lymnaea homolog to mammalian N- and P/Q-type calcium channels. We show that the alternately spliced region physically interacts with the scaffolding proteins Mint1 and CASK, and that synaptic transmission is abolished following RNA interference knockdown of CASK or after the injection of peptide sequences designed to disrupt the calcium channel-Mint1 interactions. Our data suggest that Mint1 and CASK may serve to localize the non-L-type channels at the active zone and that synaptic transmission in invertebrate neurons utilizes a mechanism for optimizing calcium entry, which occurs independently of a physical association between calcium channels and SNARE proteins.

  2. Effects of calcium channel on 3-morpholinosydnonimine-induced rat hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Chang; Shuling Zhang; Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Shining Cai

    2011-01-01

    Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus.The present study investigated the effects of the broad-spectrum calcium channel blocker CdC12 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis.The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-1-induced neuronal apoptosis.The calcium channel blocker CdC12 did not increase the survival rate of neurons and did not affect SIN-1-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis.Results demonstrated that calcium channels did not significantly affect neuronal apoptosis.

  3. Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes

    Directory of Open Access Journals (Sweden)

    Michele Miragoli

    2016-01-01

    Full Text Available Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart.

  4. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  5. Evaluation of pH, calcium ion release and antimicrobial activity of a new calcium aluminate cement

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2013-07-01

    Full Text Available This study evaluated the pH, calcium ion release and antimicrobial activity of EndoBinder (EB, containing different radiopacifiers: bismuth oxide (Bi2O3, zinc oxide (ZnO or zirconium oxide (ZrO2, in comparison to MTA. For pH and calcium ion release tests, 5 specimens per group (n = 5 were immersed into 10 mL of distilled and deionized water at 37°C. After 2, 4, 12, 24, 48 h; 7, 14 and 28 days, the pH was measured and calcium ion release quantified in an atomic absorption spectrophotometer. For antimicrobial activity, the cements were tested against S. aureus, E. coli, E. faecalis and C. albicans, in triplicate. MTA presented higher values for pH and calcium ion release than the other groups, however, with no statistically significant difference after 28 days (p > 0.05; and the largest inhibition halos for all strains, with no significant difference (E. coli and E. faecalis for pure EB and EB + Bi2O3 (p > 0.05. EB presented similar performance to that of MTA as regards pH and calcium ion release; however, when ZnO and ZrO2 were used, EB did not present antimicrobial activity against some strains.

  6. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    Science.gov (United States)

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  7. Aging Reduces L-Type Calcium Channel Current and the Vasodilatory Response of Small Mesenteric Arteries to Calcium Channel Blockers

    Science.gov (United States)

    Albarwani, Sulayma A.; Mansour, Fathi; Khan, Abdul Aleem; Al-Lawati, Intisar; Al-Kaabi, Abdulla; Al-Busaidi, Al-Manar; Al-Hadhrami, Safa; Al-Husseini, Isehaq; Al-Siyabi, Sultan; Tanira, Musbah O.

    2016-01-01

    Calcium channel blockers (CCBs) are widely used to treat cardiovascular disease (CVD) including hypertension. As aging is an independent risk factor for CVD, the use of CCBs increases with increasing age. Hence, this study was designed to evaluate the effect of aging on the sensitivity of small mesenteric arteries to L-type voltage-gated calcium channel (LTCC) blockers and also to investigate whether there was a concomitant change in calcium current density. Third order mesenteric arteries from male F344 rats, aged 2.5–3 months (young) and 22–26 months (old) were mounted on wire myograph to measure the tension during isometric contraction. Arteries were contracted with 100 mM KCl and were then relaxed in a cumulative concentration-response dependent manner with nifedipine (0.1 nM–1 μM), verapamil (0.1 nM–10 μM), or diltiazem (0.1 nM–10 μM). Relaxation-concentration response curves produced by cumulative concentrations of three different CCBs in arteries of old rats were shifted to the right with statistically significant IC50s. pIC50 ± s.e.m: (8.37 ± 0.06 vs. 8.04 ± 0.05, 7.40 ± 0.07 vs. 6.81 ± 0.04, and 6.58 ± 0.07 vs. 6.34 ± 0.06) in young vs. old. It was observed that the maximal contractions induced by phenylephrine and reversed by sodium nitroprusside were not different between young and old groups. However, Bay K 8644 (1 μM) increased resting tension by 23 ± 4.8% in young arteries and 4.7 ± 1.6% in old arteries. LTCC current density were also significantly lower in old arteries (−2.77 ± 0.45 pA/pF) compared to young arteries (−4.5 ± 0.40 pA/pF); with similar steady-state activation and inactivation curves. Parallel to this reduction, the expression of Cav1.2 protein was reduced by 57 ± 5% in arteries from old rats compared to those from young rats. In conclusion, our results suggest that aging reduces the response of small mesenteric arteries to the vasodilatory effect of the CCBs and this may be due to, at least in part, reduced

  8. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina.

    Science.gov (United States)

    Pérez de Sevilla Müller, Luis; Sargoy, Allison; Fernández-Sánchez, Laura; Rodriguez, Allen; Liu, Janelle; Cuenca, Nicolás; Brecha, Nicholas

    2015-07-01

    High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca(2+), neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α(1) pore-forming subunit, which is associated with an extracellular α(2)δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α(2)δ(3) subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼ 305 bp corresponding to the predicted size of the α(2)δ(3) subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α(2)δ(3) subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α(2)δ(3) immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α(2)δ(3) calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.

  9. Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Ford, Kevin J; Davis, Graeme W

    2014-10-29

    The strength and dynamics of synaptic transmission are determined, in part, by the presynaptic action potential (AP) waveform at the nerve terminal. The ion channels that shape the synaptic AP waveform remain essentially unknown for all but a few large synapses amenable to electrophysiological interrogation. The Drosophila neuromuscular junction (NMJ) is a powerful system for studying synaptic biology, but it is not amenable to presynaptic electrophysiology. Here, we demonstrate that Archaerhodopsin can be used to quantitatively image AP waveforms at the Drosophila NMJ without disrupting baseline synaptic transmission or neuromuscular development. It is established that Shaker mutations cause a dramatic increase in neurotransmitter release, suggesting that Shaker is predominantly responsible for AP repolarization. Here we demonstrate that this effect is caused by a concomitant loss of both Shaker and slowpoke (slo) channel activity because of the low extracellular calcium concentrations (0.2-0.5 mM) used typically to assess synaptic transmission in Shaker. In contrast, at physiological extracellular calcium (1.5 mM), the role of Shaker during AP repolarization is limited. We then provide evidence that calcium influx through synaptic CaV2.1 channels and subsequent recruitment of Slo channel activity is important, in concert with Shaker, to ensure proper AP repolarization. Finally, we show that Slo assumes a dominant repolarizing role during repetitive nerve stimulation. During repetitive stimulation, Slo effectively compensates for Shaker channel inactivation, stabilizing AP repolarization and limiting neurotransmitter release. Thus, we have defined an essential role for Slo channels during synaptic AP repolarization and have revised our understanding of Shaker channels at this model synapse.

  10. The genetic background affects the vascular response in T-type calcium channels 3.2 deficient mice

    DEFF Research Database (Denmark)

    Svenningsen, Per; Hansen, Pernille B L

    2016-01-01

    Voltage-gated calcium channels (Cav ) are important regulators of vascular tone and are attractive targets for pharmacological treatment of hypertension. The clinical used calcium blockers are often not selective for one channel but affect several types of calcium channels (Hansen 2015). L...

  11. Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients

    Directory of Open Access Journals (Sweden)

    García Juan F

    2009-02-01

    Full Text Available Abstract Background Asthenozoospermia is one of the most common findings present in infertile males characterized by reduced or absent sperm motility, but its aetiology remains unknown in most cases. In addition, calcium is one of the most important ions regulating sperm motility. In this study we have investigated the progesterone-evoked intracellular calcium signal in ejaculated spermatozoa from men with normospermia or asthenozoospermia. Methods Human ejaculates were obtained from healthy volunteers and asthenospermic men by masturbation after 4–5 days of abstinence. For determination of cytosolic free calcium concentration, spermatozoa were loaded with the fluorescent ratiometric calcium indicator Fura-2. Results Treatment of spermatozoa from normospermic men with 20 micromolar progesterone plus 1 micromolar thapsigargin in a calcium free medium induced a typical transient increase in cytosolic free calcium concentration due to calcium release from internal stores. Similar results were obtained when spermatozoa were stimulated with progesterone alone. Subsequent addition of calcium to the external medium evoked a sustained elevation in cytosolic free calcium concentration indicative of capacitative calcium entry. However, when progesterone plus thapsigargin were administered to spermatozoa from patients with asthenozoospermia, calcium signal and subsequent calcium entry was much smaller compared to normospermic patients. As expected, pretreatment of normospermic spermatozoa with both the anti-progesterone receptor c262 antibody and with progesterone receptor antagonist RU-38486 decreased the calcium release induced by progesterone. Treatment of spermatozoa with cytochalasin D or jasplakinolide decreased the calcium entry evoked by depletion of internal calcium stores in normospermic patients, whereas these treatments proved to be ineffective at modifying the calcium entry in patients with asthenozoospermia. Conclusion Our results suggest

  12. Ionic channels and hormone release from peptidergic nerve terminals.

    Science.gov (United States)

    Lemos, J R; Nordmann, J J

    1986-09-01

    Although there is considerable evidence that depolarization of nerve cell terminals leads to the entry of Ca2+ and to the secretion of neurohormones and neurotransmitters, the details of how ionic currents control the release of neuroactive substances from nerve terminals are unknown. The small size of most nerve terminals has precluded direct analysis of membrane ionic currents and their influence on secretion. We now report that it is possible, using patch-clamp techniques, to study stimulus--secretion coupling in isolated peptidergic nerve terminals. Sinus gland terminals from Cardisoma are easily isolated following collagenase treatment and appear morphologically and electrically very similar to non-dissociated nerve endings. We have observed two types of single-channel currents not previously described. The first ('f') channel is activated by intracellular Na+ and the second ('s') by intracellular Ca2+. Both show little selectivity between Na+ and K+. In symmetrical K+, these cation channels have mean conductances of 69 and 213 pS, respectively. Furthermore, at least three types of Ca2+ channels can be reconstituted from nerve terminal membranes prepared from sinus glands. Nerve terminals can also be isolated from the rat neural lobe. These neurosecretosomes release oxytocin and vasopressin, in response to membrane depolarization, only in the presence of external Ca2+. The depolarization of the nerve endings is associated with an increase in intracellular free Ca2+ concentration and this increase, measured using a fluorescent indicator, is abolished by Ca2+ channel blockers. Channels similar in their properties to the f and s channels also exist in rat neural lobe endings. Since these channels have not been found in other neurones or neuronal structures they may be unique to peptidergic nerve terminals.

  13. 5,6-EET potently inhibits T-type calcium channels

    DEFF Research Database (Denmark)

    Cazade, M.; Bidaud, I.; Hansen, Pernille B. Lærkegaard;

    2014-01-01

    T-type calcium channels (T-channels) are important actors in neuronal pacemaking, in heart rhythm, and in the control of the vascular tone. T-channels are regulated by several endogenous lipids including the primary eicosanoid arachidonic acid (AA), which display an important role in vasodilation...

  14. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

    DEFF Research Database (Denmark)

    Rosenbaum, Sofia T; Svalø, Julie; Nielsen, Karsten;

    2012-01-01

    Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 mRNA...

  15. New Role of P/Q-type Voltage-gated Calcium Channels

    DEFF Research Database (Denmark)

    Hansen, Pernille B L

    2015-01-01

    Voltage-gated calcium channels are important for the depolarization-evoked contraction of vascular smooth muscle cells (SMCs), with L-type channels being the classical channel involved in this mechanism. However, it has been demonstrated that the CaV2.1 subunit, which encodes a neuronal isoform o...

  16. Signal processing by T-type calcium channel interactions in the cerebellum

    Science.gov (United States)

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  17. Signal processing by T-type calcium channel interactions in the cerebellum

    Directory of Open Access Journals (Sweden)

    Jordan D.T. Engbers

    2013-11-01

    Full Text Available T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs. In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT and hyperpolarization-activated cation current (IH are activated during trains of IPSPs. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT, and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect effects on

  18. Signal processing by T-type calcium channel interactions in the cerebellum.

    Science.gov (United States)

    Engbers, Jordan D T; Anderson, Dustin; Zamponi, Gerald W; Turner, Ray W

    2013-11-27

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (I T) and hyperpolarization-activated cation current (I H) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with I T generating a rebound burst and I H controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing I H to increase the efficacy of I T and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  19. Neuroprotective activity of stiripentol with a possible involvement of voltage-dependent calcium and sodium channels.

    Science.gov (United States)

    Verleye, Marc; Buttigieg, Dorothée; Steinschneider, Rémy

    2016-02-01

    A growing body of data has shown that recurrent epileptic seizures may be caused by an excessive release of the excitatory neurotransmitter glutamate in the brain. Glutamatergic overstimulation results in massive neuronal influxes of calcium and sodium through N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainic acid glutamate subtype receptors and also through voltage-gated calcium and sodium channels. These persistent and abnormal sodium and calcium entry points have deleterious consequences (neurotoxicity) for neuronal function. The therapeutic value of an antiepileptic drug would include not only control of seizure activity but also protection of neuronal tissue. The present study examines the in vitro neuroprotective effects of stiripentol, an antiepileptic compound with γ-aminobutyric acidergic properties, on neuronal-astroglial cultures from rat cerebral cortex exposed to oxygen-glucose deprivation (OGD) or to glutamate (40 µM for 20 min), two in vitro models of brain injury. In addition, the affinity of stiripentol for the different glutamate receptor subtypes and the interaction with the cell influx of Na(+) and of Ca(2+) enhanced by veratridine and NMDA, respectively, are assessed. Stiripentol (10-100 µM) included in the culture medium during OGD or with glutamate significantly increased the number of surviving neurons relative to controls. Stiripentol displayed no binding affinity for different subtypes of glutamate receptors (IC50  >100 µM) but significantly blocked the entry of Na(+) and Ca(2+) activated by veratridine and NMDA, respectively. These results suggest that Na(+) and Ca(2+) channels could contribute to the neuroprotective properties of sitiripentol.

  20. Evaluation of calcium ion release and change in pH on combining calcium hydroxide with different vehicles

    Directory of Open Access Journals (Sweden)

    Charu Grover

    2014-01-01

    Full Text Available Introduction: Intracanal medicaments have traditionally been used in endodontics to disinfect root canals between appointments. Calcium hydroxide is widely used as an intracanal medicament for disinfection and to promote periapical healing. It is stable for long periods, harmless to the body, and bactericidal in a limited area. The efficacy of calcium hydroxide as a disinfectant is dependent on the availability of the hydroxyl ions in the solution that depends on the vehicle in which the calcium hydroxide is carried. In general, three types of vehicles are used: Aqueous, viscous or oily. Some in vitro studies have shown that the type of vehicle has a direct relationship with the concentration and the velocity of ionic liberation as well as with the antibacterial action when the paste is carried into a contaminated area. Aim of the Study: To evaluate the calcium ion release and measure the change in pH of the environment that occurred when calcium hydroxide was combined with different vehicles (distilled water, propylene glycol, calcium hydroxide containing gutta-percha points and chitosan over different time periods. Materials and Methods: Forty single rooted mandibular first premolar teeth were decoronated for this study. Working length was established and the root canals were enlarged and irrigation accomplished with 2 ml of NaOCl solution after every file. The teeth were then randomly divided into four groups. The canals were then packed with different preparations of calcium hydroxide using the following vehicles-distilled water, propylene glycol, gutta-percha points and chitosan. Calcium ion release in different groups was analyzed using an ultraviolet spectrophotometer at 220 nm. The change in pH of was determined using a pH meter. Results were statistically evaluated using one-way ANOVA test. Result: For calcium ion release, Group 2 showed cumulative drug release of 81.97% at the end of 15 days, whereas Group 1, 3 and 4 showed a release

  1. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect...... immunogold labelling using a monoclonal antibody specific for phenylalkylamine and dihydropyridine sensitive Ca2+ channels. Using the same technique and a monoclonal antibody (bd-17) to the beta 2/beta 3-subunit of the GABAA-receptor, double labelling of Ca2+ channels and GABAA-receptors with gold particles...... of THIP-treated cultures. This suggests that primarily low affinity GABAA-receptors are closely associated with Ca2+ channels and this may be important for the ability of these receptors to mediate an inhibitory action on transmitter release even under extreme depolarizing conditions....

  2. Calcium-permeable ion channels in control of autophagy and cancer.

    Science.gov (United States)

    Kondratskyi, Artem; Yassine, Maya; Kondratska, Kateryna; Skryma, Roman; Slomianny, Christian; Prevarskaya, Natalia

    2013-01-01

    Autophagy, or cellular self-eating, is a tightly regulated cellular pathway the main purpose of which is lysosomal degradation and subsequent recycling of cytoplasmic material to maintain normal cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Cancer is the disease associated with abnormal tissue growth following an alteration in such fundamental cellular processes as apoptosis, proliferation, differentiation, migration and autophagy. The role of autophagy in cancer is complex, as it can promote both tumor prevention and survival/treatment resistance. It's now clear that modulation of autophagy has a great potential in cancer diagnosis and treatment. Recent findings identified intracellular calcium as an important regulator of both basal and induced autophagy. Calcium is a ubiquitous secondary messenger which regulates plethora of physiological and pathological processes such as aging, neurodegeneration and cancer. The role of calcium and calcium-permeable channels in cancer is well-established, whereas the information about molecular nature of channels regulating autophagy and the mechanisms of this regulation is still limited. Here we review existing mechanisms of autophagy regulation by calcium and calcium-permeable ion channels. Furthermore, we will also discuss some calcium-permeable channels as the potential new candidates for autophagy regulation. Finally we will propose the possible link between calcium permeable channels, autophagy and cancer progression and therapeutic response.

  3. Emerging roles of L-type voltage gated and other calcium channels in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Abdallah eBadou

    2013-08-01

    Full Text Available In T lymphocytes, calcium ion controls a variety of biological processes including development, survival, proliferation, and effector functions. These distinct and specific roles are regulated by different calcium signals, which are generated by various plasma membrane calcium channels. The repertoire of calcium-conducting proteins in T lymphocytes includes store-operated CRAC channels, transient receptor potential (TRP channels, P2X channels, and L-type voltage-gated calcium (Cav1 channels. In this paper, we will focus mainly on the role of the Cav1 channels found expressed by T lymphocytes, where these channels appear to operate in a TCR stimulation-dependent and voltage-sensor independent manner. We will review their expression profile at various differentiation stages of CD4 and CD8 T lymphocytes. Then, we will present crucial genetic evidence in favor of a role of these Cav1 channels and related regulatory proteins in both CD4 and CD8 T cell functions such as proliferation, survival, cytokine production and cytolysis. Finally, we will provide evidence and speculate on how these voltage-gated channels might function in the T lymphocyte, a non-excitable cell.

  4. Dopamine midbrain neurons in health and Parkinson's disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels.

    Science.gov (United States)

    Dragicevic, E; Schiemann, J; Liss, B

    2015-01-22

    Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). Apart from having diverse functions in health and disease states, DA midbrain neurons display distinct electrical activity patterns, crucial for DA release. These activity patterns are generated and modulated by specific sets of ion channels. Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD.

  5. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells.

    Science.gov (United States)

    Kong, Wei-Jia; Guo, Chang-Kai; Zhang, Xiao-Wen; Chen, Xiong; Zhang, Song; Li, Guan-Qiao; Li, Zhi-Wang; Van Cauwenberge, Paul

    2007-01-19

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells (VHCs II) among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-containing nAChR)-activated small conductance, calcium-dependent potassium current (SK) in cochlear hair cells and frog saccular hair cells. The activation of SK current was necessary for the calcium influx through the alpha9-containing nAChR. Recently, we have demonstrated that ACh-induced big conductance, calcium-dependent potassium current (BK) was present in VHCs II of the vestibular end-organ of guinea pig. In this study, the nature of calcium influx for the activation of ACh-induced BK current in saccular VHCs II of guinea pig was investigated. Following extracellular perfusion of ACh, saccular VHCs II displayed a sustained outward current, which was sensitive to iberiotoxin (IBTX). High concentration of apamin failed to inhibit the current amplitude of ACh-induced outward current. Intracellular application of Cs(+) completely abolished the current evoked by ACh. ACh-induced current was potently inhibited by nifedipine, nimodipine, Cd(2+) and Ni(2+), respectively. The inhibition potency of these four calcium channel antagonists was nimodipine>nifedipine>cadmium>nickel. The L-type Ca(2+) channels agonist, (-)-Bay-K 8644 mimicked the effect of ACh and activated an IBTX-sensitive current. In addition, partial VHCs II displayed a biphasic waveform. In conclusion, the present data showed that in the guinea pig saccular VHCs II, ACh-induced BK channel was coupled with the calcium channel, but not the receptor. The perfusion of ACh will drive the opening of calcium channels; the influx of calcium ions will then activate the BK current.

  6. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels.

    Science.gov (United States)

    Zemkova, Hana; Tomić, Melanija; Kucka, Marek; Aguilera, Greti; Stojilkovic, Stanko S

    2016-04-01

    Transgenic mice expressing the tdimer2(12) form of Discosoma red fluorescent protein under control of the proopiomelanocortin gene's regulatory elements are a useful model for studying corticotrophs. Using these mice, we studied the ion channels and mechanisms controlling corticotroph excitability. Corticotrophs were either quiescent or electrically active, with a 22-mV difference in the resting membrane potential (RMP) between the 2 groups. In quiescent cells, CRH depolarized the membrane, leading to initial single spiking and sustained bursting; in active cells, CRH further facilitated or inhibited electrical activity and calcium spiking, depending on the initial activity pattern and CRH concentration. The stimulatory but not inhibitory action of CRH on electrical activity was mimicked by cAMP independently of the presence or absence of arachidonic acid. Removal of bath sodium silenced spiking and hyperpolarized the majority of cells; in contrast, the removal of bath calcium did not affect RMP but reduced CRH-induced depolarization, which abolished bursting electrical activity and decreased the spiking frequency but not the amplitude of single spikes. Corticotrophs with inhibited voltage-gated sodium channels fired calcium-dependent action potentials, whereas cells with inhibited L-type calcium channels fired sodium-dependent spikes; blockade of both channels abolished spiking without affecting the RMP. These results indicate that the background voltage-insensitive sodium conductance influences RMP, the CRH-depolarization current is driven by a cationic conductance, and the interplay between voltage-gated sodium and calcium channels plays a critical role in determining the status and pattern of electrical activity and calcium signaling.

  7. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles

    DEFF Research Database (Denmark)

    Poulsen, Christian B; Al-Mashhadi, Rozh H; Cribbs, Leanne L;

    2011-01-01

    Voltage-gated calcium channels are important for the regulation of renal blood flow and the glomerular filtration rate. Excitation-contraction coupling in afferent arterioles is known to require activation of these channels and we studied their role in the regulation of cortical efferent arteriolar...... tone. We used microdissected perfused mouse efferent arterioles and found a transient vasoconstriction in response to depolarization with potassium; an effect abolished by removal of extracellular calcium. The T-type voltage-gated calcium channel antagonists mibefradil and nickel blocked this potassium....... Low concentrations of nickel, an agent that blocks Ca(v)3.2, had a similar effect. Thus, T-type voltage-gated calcium channels are functionally important for depolarization-induced vasoconstriction and subsequent dilatation in mouse cortical efferent arterioles.Kidney International advance online...

  8. N-type calcium channel blockers: novel therapeutics for the treatment of pain.

    Science.gov (United States)

    Schroeder, C I; Doering, C J; Zamponi, G W; Lewis, R J

    2006-09-01

    Highly selective Ca(v)2.2 voltage-gated calcium channel (VGCC) inhibitors have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Cone snail venoms provided the first drug in class with FDA approval granted in 2005 to Prialt (omega-conotoxin MVIIA, Elan) for the treatment of neuropathic pain. Since this pioneering work, major efforts underway to develop alternative small molecule inhibitors of Ca(v)2.2 calcium channel have met with varied success. This review focuses on the properties of the Ca(v)2.2 calcium channel in different pain states, the action of omega-conotoxins GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved Ca(v)2.2 calcium channel therapeutics, and finally the development of small molecules for the treatment of chronic pain.

  9. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland.

    Science.gov (United States)

    Barbosa, Roseli; Scialfa, Julieta Helena; Terra, Ilza Mingarini; Cipolla-Neto, José; Simonneaux, Valérie; Afeche, Solange Castro

    2008-02-27

    Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.

  10. Dihydropyridine type calcium channel blocker-induced turbid dialysate in patients undergoing peritoneal dialysis.

    Science.gov (United States)

    Yoshimoto, K; Saima, S; Nakamura, Y; Nakayama, M; Kubo, H; Kawaguchi, Y; Nishitani, H; Nakamura, Y; Yasui, A; Yokoyama, K; Kuriyama, S; Shirai, D; Kugiyama, A; Hayano, K; Fukui, H; Horigome, I; Amagasaki, Y; Tsubakihara, Y; Kamekawa, T; Ando, R; Tomura, S; Okamoto, R; Miwa, S; Koyama, T; Echizen, H

    1998-08-01

    We previously reported that manidipine, a new dihydropyridine type calcium channel blocker, produced chylous peritoneal dialysate being visually indistinguishable from infective peritonitis in 5 patients undergoing continuous ambulatory peritoneal dialysis (CAPD) [Yoshimoto et al. 1993]. To study whether such an adverse drug reaction would also be elicited by other commonly prescribed calcium channel blockers in CAPD patients, we have conducted postal inquiry to 15 collaborating hospitals and an institutional survey in International Medical Center of Japan as to the possible occurrence of calcium channel blocker-associated non-infective, turbid peritoneal dialysate in CAPD patients. Our diagnostic criteria for drug-induced turbidity of dialysate as a) it developed within 48 h after the administration of a newly introduced calcium channel blocker to the therapeutic regimen, b) absence of clinical symptoms of peritoneal inflammation (i.e., pyrexia, abdominal pain, nausea or vomiting), c) the fluid containing normal leukocyte counts and being negative for bacterial and fungal culture of the fluid, and d) it disappeared shortly after the withdrawal of the assumed causative agent. Results showed that 19 out of 251 CAPD patients given one of the calcium channel blockers developed non-infective turbid peritoneal dialysis that fulfilled all the above criteria. Four calcium channel blockers were suspected to be associated with the events: benidipine [2 out of 2 (100%) patients given the drug], manidipine [15 out of 36 (42%) patients], nisoldipine [1 out of 11 (9%) patients] and nifedipine [1 out of 159 (0.6%)] in descending order of frequency. None of the patients who received nicardipine, nilvadipine, nitrendipine, barnidipine and diltiazem (25, 7, 2, 1 and 8 patients, respectively) exhibited turbid dialysate. In conclusion, we consider that certain dihydropyridine type calcium channel blockers would cause turbid peritoneal dialysate being similar to that observed in

  11. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    Science.gov (United States)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  12. T-type calcium channel expression in cultured human neuroblastoma cells

    Institute of Scientific and Technical Information of China (English)

    Xianjie Wen; Shiyuan Xu; Lingling Wang; Hua Liang; Chengxiang Yang; Hanbing Wang; Hongzhen Liu

    2011-01-01

    Human neuroblastoma cells (SH-SY5Y) have similar structures and functions as neural cells and have been frequently used for cell culture studies of neural cell functions. Previous studies have revealed Land N-type calcium channels in SH-SY5Y cells. However, the distribution of the low -voltage activated calcium channel (namely called T-type calcium channel, including Cav3.1, Cav3.2, and Cav3.3) in SH-SY5Y cells remains poorly understood. The present study detected mRNA and protein expression of the T-type calcium channel (Cav3.1, Cav3.2, and Cav3.3) in cultured SH-SY5Y cells using real-time polymerase chain reaction (PCR) and western blot analysis. Results revealed mRNA and protein expression from all three T-type calcium channel subtypes in SH-SY5Y cells. Moreover,Cav3.1 was the predominant T-type calcium channel subtype in SH-SY5Y cells.

  13. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups

    Directory of Open Access Journals (Sweden)

    Diana Carolina Ferrari

    2012-03-01

    Full Text Available Midbrain dopaminergic neurons (mDA neurons are essential for the control of diverse motor and cognitive behaviors. However, our understanding of the activity of immature mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in embryonic life and dopaminergic axons enter the striatum and contact striatal neurons a few days before birth, but when these are functional is not known. Here, we recorded Ca2+ transients and Na+ spikes from embryonic (E16-E18 and early postnatal (P0-P7 mDA neurons with dynamic two photon imaging and patch clamp techniques in slices from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the striatum with amperometry. We show that half of identified E16-P0 mDA neurons spontaneously generate non-synaptic, intrinsically-driven Ca2+ spikes and Ca2+ plateaus mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18-P0, half of the mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation at birth (P0 = E19. At that stage (E18-P0, dopaminergic terminals release dopamine in a calcium-dependent manner in the striatum in response to local stimulation. We propose that the intrinsic spontaneous activity of mouse mDA neurons may impact the development/activity of the striatal network from birth.

  14. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting...... in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal...... of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx...

  15. Differential CaMKII regulation by voltage-gated calcium channels in the striatum.

    Science.gov (United States)

    Pasek, Johanna G; Wang, Xiaohan; Colbran, Roger J

    2015-09-01

    Calcium signaling regulates synaptic plasticity and many other functions in striatal medium spiny neurons to modulate basal ganglia function. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a major calcium-dependent signaling protein that couples calcium entry to diverse cellular changes. CaMKII activation results in autophosphorylation at Thr286 and sustained calcium-independent CaMKII activity after calcium signals dissipate. However, little is known about the mechanisms regulating striatal CaMKII. To address this, mouse brain slices were treated with pharmacological modulators of calcium channels and punches of dorsal striatum were immunoblotted for CaMKII Thr286 autophosphorylation as an index of CaMKII activation. KCl depolarization increased levels of CaMKII autophosphorylation ~2-fold; this increase was blocked by an LTCC antagonist and was mimicked by treatment with pharmacological LTCC activators. The chelation of extracellular calcium robustly decreased basal CaMKII autophosphorylation within 5min and increased levels of total CaMKII in cytosolic fractions, in addition to decreasing the phosphorylation of CaMKII sites in the GluN2B subunit of NMDA receptors and the GluA1 subunit of AMPA receptors. We also found that the maintenance of basal levels of CaMKII autophosphorylation requires low-voltage gated T-type calcium channels, but not LTCCs or R-type calcium channels. Our findings indicate that CaMKII activity is dynamically regulated by multiple calcium channels in the striatum thus coupling calcium entry to key downstream substrates.

  16. Do Ca2+-adsorbing ceramics reduce the release of calcium ions from gypsum-based biomaterials?

    Science.gov (United States)

    Belcarz, Anna; Zalewska, Justyna; Pałka, Krzysztof; Hajnos, Mieczysław; Ginalska, Grazyna

    2015-02-01

    Bone implantable materials based on calcium sulfate dihydrate dissolve quickly in tissue liquids and release calcium ions at very high levels. This phenomenon induces temporary toxicity for osteoblasts, may cause local inflammation and delay the healing process. Reduction in the calcium ion release rate by gypsum could be therefore beneficial for the healing of gypsum-filled bone defects. The aim of this study concerned the potential use of calcium phosphate ceramics of various porosities for the reduction of high Ca(2+) ion release from gypsum-based materials. Highly porous ceramics failed to reduce the level of Ca(2+) ions released to the medium in a continuous flow system. However, it succeeded to shorten the period of high calcium level. It was not the phase composition but the high porosity of ceramics that was found crucial for both the shortening of the Ca(2+) release-related toxicity period and intensification of apatite deposition on the composite. Nonporous ceramics was completely ineffective for this purpose and did not show any ability to absorb calcium ions at a significant level. Moreover, according to our observations, complex studies imitating in vivo systems, rather than standard tests, are essential for the proper evaluation of implantable biomaterials.

  17. Multi-ion conduction bands in a simple model of calcium ion channels

    CERN Document Server

    Kaufman, I; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2012-01-01

    We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters (SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the fixed negative charge Qf at the SF. This structure comprises distinct regions of high conductance (conduction bands) M0, M1, M2 separated by regions of zero-conductance (stop-bands). Two of these conduction bands, M1 and M2, demonstrate high calcium selectivity and prominent anomalous mole fraction effects and can be identified with the L-type and RyR calcium channels.

  18. Release of Crude Oil from Silica and Calcium Carbonate Surfaces

    DEFF Research Database (Denmark)

    Liu, Xiaoyan; Yan, Wei; Stenby, Erling Halfdan;

    2016-01-01

    Adsorption and desorption of a North Sea crude oil to silica and calcium carbonate surfaces were studied by a quartz crystal microbalance, while the bare surfaces and adsorbed oil layers were characterized by atomic force microscopy and contact angle measurements. Water contact angles were measured...... on the bare surfaces, surfaces with an adsorbed oil layer, and surfaces after being exposed to aqueous salt solutions. This showed that the silica surface became more hydrophobic after oil adsorption, while the wettability of the calcium carbonate surface was not significantly changed by adsorption of an oil...... layer. A surface energy component analysis based on the acid base theory showed that oil adsorption on the surfaces depends upon apolar, acidic, and basic oil components of the crude oil and that the adsorbed oil components differ for adsorption to silica and calcium carbonate. Desorption of the crude...

  19. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  20. A different dihydropyridine calcium channel blocker in hypertensive patients who developed pedal edema on dihydropyridine calcium channel blocker therapy

    Directory of Open Access Journals (Sweden)

    Ayşe Yüksel

    2014-03-01

    Full Text Available Abstract Aim. Dihydropyridine calcium channel blockers (CCB are widely preferred for the treatment of hypertension for their efficacy, metabolic neutrality and low side effect profile. However pedal edema formation limits their usage. The aim of the present study is to evaluate the incidence of pedal edema formation with a different dihydropyridine CCB in hypertensive patients who developed pedal edema during a dihydropyridine CCB therapy. Method. Fifty-eight hypertensive patients (34 female, 24 male, mean age: 65.3±10.5 in whom pedal edema developed during treatment with a dihydropyridine CCB (amlodipine 10mg/day in 40 patients, amlodipine 5mg/day in 14 patients, nifedipine GITS 30mg/day in 4 patients were enrolled. CCB which caused pedal edema was withdrawn and a different CCB (felodipine or lacidipine were initiated after the resolution of the pedal edema. CCB therapy was continued as long as the patient tolerated pedal edema. Results. At the end of one year, 44 out of 58 patients (36 [81.8%] free of pedal edema, 8 [19.2%] with pedal edema continued CCB therapy. Eleven (37.9% patients in the felodipine group and 9 (31.0% patients in the lacidipine group developed pedal edema. In 7 patients in felodipine group and in 5 patients in the lacidipine group the study drug was withdrawn due to pedal edema. In two patients, study drug was withdrawn due to intractable headache (felodipine group or due to flushing (lacidipine group. Conclusion. A different group of dihydropyridine CCB be used as an alternative therapy for hypertension whenever pedal edema develops during treatment with a dihydropyridine CCB.

  1. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    Science.gov (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.

  2. Histamine release induced from rat mast cells by the ionophore A23187 in the absence of extracellular calcium

    DEFF Research Database (Denmark)

    Johansen, Torben

    1980-01-01

    Isolated rat mast cells were used to study whether ionophore A23187 could induce histamine release by mobilizing cellular calcium. The histamine release was a slow process which was completed after about 20 min incubation with A23187. The A23187-induced histamine release was inhibited after...... incubation of the cells with EDTA for 1 h in a 37 degrees C water bath in calcium-free medium. Reintroduction of calcium in excess of EDTA induced the release of histamine. The observations suggest that A23187 can induce histamine release by mobilizing a cellular pool of calcium....

  3. Nitric oxide affects sarcoplasmic calcium release in skeletal myotubes.

    NARCIS (Netherlands)

    Heunks, L.M.A.; Machiels, H.A.; Dekhuijzen, P.N.R.; Prakash, Y.S.; Sieck, G.C.

    2001-01-01

    In the present study, we used real-time confocal microscopy to examine the effects of two nitric oxide (NO) donors on acetylcholine (ACh; 10 microM)- and caffeine (10 mM)-induced intracellular calcium concentration ([Ca2+]i) responses in C2C12 mouse skeletal myotubes. We hypothesized that NO reduces

  4. BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis.

    Science.gov (United States)

    Béguin, Pascal; Nagashima, Kazuaki; Mahalakshmi, Ramasubbu N; Vigot, Réjan; Matsunaga, Atsuko; Miki, Takafumi; Ng, Mei Yong; Ng, Yu Jin Alvin; Lim, Chiaw Hwee; Tay, Hock Soon; Hwang, Le-Ann; Firsov, Dmitri; Tang, Bor Luen; Inagaki, Nobuya; Mori, Yasuo; Seino, Susumu; Launey, Thomas; Hunziker, Walter

    2014-04-28

    Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca(2+)-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca(2+) overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain-binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca(2+) channel activity at the plasma membrane, resulting in the inhibition of Ca(2+)-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity.

  5. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole.

    Science.gov (United States)

    Miri, Ramin; Javidnia, Katayoun; Mirkhani, Hossein; Hemmateenejad, Bahram; Sepeher, Zahra; Zalpour, Masomeh; Behzad, Taherh; Khoshneviszadeh, Mehdi; Edraki, Najmeh; Mehdipour, Ahmad R

    2007-10-01

    The discovery that 1,4-dihydropyridine class of calcium channel antagonists inhibit Ca2+ influx represented a major therapeutic advance in the treatment of cardiovascular disease. In contrast to the effects of known calcium channel blockers of the Nifedipine-type, the so-called calcium channel agonists, such as Bay K8644 and CGP 28392, increase calcium influx by binding at the same receptor regions. Our goal was to discover a dual cardioselective Ca2+-channel agonist/vascular selective smooth muscle Ca2+ channel antagonist third-generation 1,4-dihydropyridine drug which would have a suitable therapeutic profile for treating congestive heart failure (CHF) patients. A series of unsymmetrical alkyl, cycloalkyl and aryl ester analogues of 2-methyl-4-(1-methyl)-5-nitro-2-imidazolyl-5-oxo-1,4,5,6,7, 8-hexahydroquinolin-3-arboxylate were synthesized using modified Hantzsch reaction. All compounds show calcium antagonist activity on guinea-pig ileum longitudinal smooth muscle and some of them show agonist effect activity on guinea-pig auricle. Effect of structural parameters on the Ca2+ channel agonist/antagonist was evaluated by quantitative structure-activity relationship analysis. These compounds could be considered as a synthon for developing a suitable drug for treating CHF patients.

  6. The effects of inorganic lead on voltage-sensitive calcium channels differ among cell types and among channel subtypes.

    Science.gov (United States)

    Audesirk, G; Audesirk, T

    1993-01-01

    The whole-cell version of patch clamping was used to compare the effects of acute in vitro exposure to inorganic lead (Pb2+) on voltage-sensitive calcium channels in cultured N1E-115 mouse neuroblastoma cells and E18 rat hippocampal neurons. Free Pb2+ concentrations in salines with a high lead-buffering capacity were measured with a calibrated Pb(2+)-selective electrode. Previously, we found that N1E-115 neurons contain low voltage activated, rapidly inactivating (T) channels and high voltage activated, slowly inactivating (L) channels. Pb2+ inhibits both channel subtypes in N1E-115 cells, with some selectivity against L-type channels (IC50 approximately 700 nM free Pb2+ for L-type channels, 1300 nM free Pb2+ for T-type channels; Audesirk and Audesirk, 1991). In addition to T-type and L-type channels, cultured E18 rat hippocampal neurons have been reported to contain high voltage-activated, rapidly inactivating (N) channels. In our experiments with 5 to 20 day old cultures, almost all neurons showed substantial L-type current, approximately half showed significant N-type current, and fewer than 5% showed significant T-type current. We found that Pb2+ is somewhat selective against L-type channels (IC50 approximately 30 nM free Pb2+ in 10 mM Ba2+ as the charge carrier, 55 nM in 50 mM Ba2+) compared to N-channels (IC50 approximately 80 nM free Pb2+ in 10 mM Ba2+, 200 nM in 50 mM Ba2+). These results suggest that the effects of Pb2+ on calcium channels of vertebrate neurons vary both among cell types and among channel subtypes.

  7. State-dependent FRET reports calcium- and voltage-dependent gating-ring motions in BK channels

    OpenAIRE

    Miranda, Pablo; Contreras, Jorge E.; Plested, Andrew J. R.; Sigworth, Fred J.; Holmgren, Miguel; Giraldez, Teresa

    2013-01-01

    Large-conductance voltage- and calcium-dependent potassium channels (BK, “Big K+”) are important controllers of cell excitability. In the BK channel, a large C-terminal intracellular region containing a “gating-ring” structure has been proposed to transduce Ca2+ binding into channel opening. Using patch-clamp fluorometry, we have investigated the calcium and voltage dependence of conformational changes of the gating-ring region of BK channels, while simultaneously monitoring channel conductan...

  8. A highly calcium-selective cation current activated by intracellular calcium release in MDCK cells.

    Science.gov (United States)

    Delles, C; Haller, T; Dietl, P

    1995-08-01

    1. The whole-cell patch clamp technique and fluorescence microscopy with the Ca2+ indicators fura-2 and fluo-3 were used to measure the whole-cell current and the free intracellular Ca2+ concentration ([Ca2+]i) in Madin-Darby canine kidney (MDCK) cells. 2. In a Ca(2+)-free bath solution, thapsigargin (TG) caused a transient increase of [Ca2+]i. Subsequent addition of Ca2+ caused a long lasting elevation of [Ca2+]i. 3. In a Ca(2+)-free bath solution, extracellular application of TG, ATP or ionomycin, or intracellular application of inositol 1,4,5-trisphosphate (IP3), caused a small but significant inward current (Iin) and a transient outward Ca(2+)-dependent K+ current (IK(Ca)), consistent with intracellular Ca2+ release. Subsequent addition of Ca2+ induced a prominent Iin with a current density of -4.2 +/- 0.7 pA pF-1. This Iin was unaffected by inositol 1,3,4,5-tetrakisphosphate (IP4). 4. Na+ replacement by mannitol, N-methyl-D-glucamine+ (NMG+), aminomethylidin-trimethanol+ (Tris+) or choline+ reduced Iin by 54, 65, 52 and 56%, respectively. This indicates an apparent Ca2+ selectivity over Na+ of 26:1. Iin was, however, unaffected by replacing Cl- with gluconate- or by the K+ channel blocker charybdotoxin (CTX). 5. Iin was completely blocked by La3+ (IC50 = 0.77 microM). Consistently, La3+ completely reversed the TG-induced elevation of [Ca2+]i. SK&F 96365 (1-[3-(4-methoxyphenyl)-propoxyl]-1-(4-methoxy-phenyl)-ethyl-1H-im idazole) HCl did not inhibit the TG-induced Iin. It did, however, exhibit a biphasic effect on [Ca2+]i, consisting of an initial Ca2+ decay and a subsequent Ca2+ elevation. La3+ completely reversed the SK&F 96365-induced elevation of [Ca2+]i. 6. In the absence of Na+, Iin was dependent on the bath Ca2+ concentration (EC50 = 1.02 mM). Ca2+ replacement by Ba2+ or Mn2+ resulted in a reduction of Iin by 95 and 94%, respectively. 7. From these experiments we conclude that Ca2+ release from intracellular Ca2+ stores, induced by different independent

  9. Short-term exposure to L-type calcium channel blocker, verapamil, alters the expression pattern of calcium-binding proteins in the brain of goldfish, Carassius auratus.

    Science.gov (United States)

    Palande, Nikhil V; Bhoyar, Rahul C; Biswas, Saikat P; Jadhao, Arun G

    2015-01-01

    The influx of calcium ions (Ca(2+)) is responsible for various physiological events including neurotransmitter release and synaptic modulation. The L-type voltage dependent calcium channels (L-type VDCCs) transport Ca(2+) across the membrane. Calcium-binding proteins (CaBPs) bind free cytosolic Ca(2+) and prevent excitotoxicity caused by sudden increase in cytoplasmic Ca(2+). The present study was aimed to understand the regulation of expression of neuronal CaBPs, namely, calretinin (CR) and parvalbumin (PV) following blockade of L-type VDCCs in the CNS of Carassius auratus. Verapamil (VRP), a potent L-type VDCC blocker, selectively blocks Ca(2+) entry at the plasma membrane level. VRP present in the aquatic environment at a very low residual concentration has shown ecotoxicological effects on aquatic animals. Following acute exposure for 96h, median lethal concentration (LC50) for VRP was found to be 1.22mg/L for goldfish. At various doses of VRP, the behavioral alterations were observed in the form of respiratory difficulty and loss of body balance confirming the cardiovascular toxicity caused by VRP at higher doses. In addition to affecting the cardiovascular system, VRP also showed effects on the nervous system in the form of altered expression of PV. When compared with controls, the pattern of CR expression did not show any variations, while PV expression showed significant alterations in few neuronal populations such as the pretectal nucleus, inferior lobes, and the rostral corpus cerebellum. Our result suggests possible regulatory effect of calcium channel blockers on the expression of PV.

  10. INVITED PAPER: Control of sudden releases in channel flow

    Science.gov (United States)

    Katopodes, Nikolaos D.

    2009-12-01

    We present a method for the detection and real-time control of chemical releases in channel flow. Sensor arrays capable of detecting a broad menu of chemical agents are required at strategic locations of the channel. The sensors detect the instantaneous, spatially distributed concentration of the chemical agent and transmit the associated information to a predictive control model. The model provides optimal operation scenarios for computer controlled bleed valves mounted on the channel walls and connected to a common manifold. Control and elimination of the chemical cloud are achieved by optimal blowing and suction of ambient fluid. Gradient information is obtained by use of adjoint equations, so optimization of the control actions is achieved with the highest possible efficiency. The control is optimized over a finite prediction horizon and instructions are sent to the valve manifold. Next, the sensor arrays detect all changes effected by the control and report them to the control model, which advances the process over the next control horizon. Non-reflective boundary conditions for the adjoint equations are derived by a characteristic analysis, which minimizes spurious information in the computation of sensitivities.

  11. Defining the role of calcium channel antagonists in heart failure due to systolic dysfunction.

    Science.gov (United States)

    Mahé, Isabelle; Chassany, Olivier; Grenard, Anne-Sophie; Caulin, Charles; Bergmann, Jean-François

    2003-01-01

    Calcium channel antagonists (CCAs) may either be divided into the dihydropyridines (e.g. amlodipine, felodipine, isradipine, lacidipine, nilvadipine, nifedipine, nicardipine etc.), the phenylalkylamines (e.g. verapamil) and the benzothiazepines (e.g. diltiazem) according to their chemical structure, or into first generation agents (nifedipine, verapamil and diltiazem) and second generation agents (subsequently developed dihydropyridine-derivatives). Second generation CCAs are characterized by greater selectivity for calcium channels in vascular smooth muscle cells than the myocardium, a longer duration of action and a small trough-to-peak variation in plasma concentrations. Heart failure is characterized by decreased cardiac output resulting in inadequate oxygen delivery to peripheral tissues. Although the accompanying neurohormonal activation, leading to vasoconstriction and increased blood pressure, is initially beneficial in increasing tissue perfusion, prolonged activation is detrimental because it increases afterload and further reduces cardiac output. At the level of the myocyte, heart failure is associated with increased intracellular calcium levels which are thought to impair diastolic function. These changes indicate that the CCAs would be beneficial in patients with heart failure. There has been a strong interest and increasing experience in the use of CCAs in patients with heart failure. Despite potential beneficial effects in initial small trials, findings from larger trials suggest that CCA may have detrimental effects upon survival and cardiovascular events. However, this may not necessarily be a 'class b' effect of the CCAs as there is considerable heterogeneity in the chemical structure of individual agents. Clinical experience with different CCAs in patients with heart failure includes trials that evaluated their effects on hemodynamic parameters, exercise tolerance and on symptomatology. However, the most relevant results are those from randomized

  12. Controlled adsorption and release onto calcium phosphates materials and drug delivery applications

    Directory of Open Access Journals (Sweden)

    Barroug A.

    2013-11-01

    Full Text Available The adsorptive properties of synthetic calcium phosphates analogous to bone mineral were examined with respect to cisplatin and risedronate, two biological active drugs; the uptake and release experiments were carried out under various conditions in order to understand the basic mechanism of interaction. The effect of temperature and solution composition were highlighted and discussed. The adsorption results obtained for the therapeutic agents demonstrated that, depending on the conditions investigated (nature of the sorbent, concentration range, ionic composition, temperature…, the shape of the isotherms is of Freundlich or Langmuir type. The adsorption is described as an ion-exchange process in dilute solutions, while the interaction appears to be reactive for concentrated solutions (dissolution of mineral ions from the apatite substrate and formation of soluble calcium complex and/or precipitation of calcium salts involving sorbate molecules. The information gained on the surface reactivity of calcium phosphate were exploited to associate an antibiotic to calcium phosphate cements for drug delivery applications. The specimens were obtained by combination of calcium phosphate and calcium carbonate powders upon mixing with water. The physicochemical properties of the paste were altered by the drug loading method (in the liquid or solid phase. Thus, a dose-dependent effect was noticed for the paste setting time, hardening and the release process.

  13. CHARACTERIZING CALCIUM INFLUX VIA VOLTAGE- AND LIGAND-GATED CALCIUM CHANNELS IN EMBRYONIC ALLIGATOR NEURONS IN CULTURE

    Science.gov (United States)

    Ju, Weina; Wu, Jiang; Pritz, Michael B.; Khanna, Rajesh

    2013-01-01

    Vertebrate brains share many features in common. Early in development, both the hindbrain and diencephalon are built similarly. Only later in time do differences in morphology occur. Factors that could potentially influence such changes include certain physiological properties of neurons. As an initial step to investigate this problem, embryonic Alligator brain neurons were cultured and calcium responses were characterized. The present report is the first to document culture of Alligator brain neurons in artificial cerebrospinal fluid (ACSF) as well as in standard mammalian tissue culture medium supplemented with growth factors. Alligator brain neuron cultures were viable for at least 1 week with unipolar neurites emerging by 24 hours. Employing Fura-2 AM, robust depolarization-induced calcium influx, was observed in these neurons. Using selective blockers of the voltage-gated calcium channels, the contributions of N-, P/Q-, R-, T-, and L-type channels in these neurons were assessed and their presence documented. Lastly, Alligator brain neurons were challenged with an excitotoxic stimulus (glutamate + glycine) where delayed calcium deregulation could be prevented by a classical NMDA receptor antagonist. PMID:24260711

  14. Calcium-Activated Potassium Channels in Ischemia Reperfusion: A Brief Update

    Directory of Open Access Journals (Sweden)

    Jean-Yves eTano

    2014-10-01

    Full Text Available Ischemia and reperfusion (IR injury constitutes one of the major causes of cardiovascular morbidity and mortality. The discovery of new therapies to block/mediate the effects of IR is therefore an important goal in the biomedical sciences. Dysfunction associated with IR involves modification of calcium-activated potassium channels (KCa through different mechanisms, which are still under study. Respectively, the KCa family, major contributors to plasma membrane calcium influx in cells and essential players in the regulation of the vascular tone are interesting candidates. This family is divided into two groups including the large conductance (BKCa and the small/intermediate conductance (SKCa/IKCa K+ channels. In the heart and brain, these channels have been described to offer protection against IR injury. BKCa and SKCa channels deserve special attention since new data demonstrate that these channels are also expressed in mitochondria. More studies are however needed to fully determine their potential use as therapeutic targets.

  15. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles.

    Science.gov (United States)

    Turner, Timothy J

    2004-12-15

    A major factor underlying compulsive tobacco use is nicotine-induced modulation of dopamine release in the mesolimbic reward pathway (Wise and Rompre, 1989). An established biochemical mechanism for nicotine-enhanced dopamine release is by activating presynaptic nicotinic acetylcholine receptors (nAChRs) (Wonnacott, 1997). Prolonged application of 10(-7) to 10(-5) m nicotine to striatal synaptosomes promoted a sustained efflux of [3H]dopamine. This nicotine effect was mediated by non-alpha7 nAChRs, because it was blocked by 5 mum mecamylamine but was resistant to 100 nm alpha-bungarotoxin (alphaBgTx). Dopamine release was diminished by omitting Na+ or by applying peptide calcium channel blockers, indicating that nAChRs trigger release by depolarizing the nerve terminals. However, because alpha7 receptors rapidly desensitize in the continuous presence of agonists, a repetitive stimulation protocol was used to evaluate the possible significance of desensitization. This protocol produced a transient increase in [3H]dopamine released by depolarization and a significant increase in the response to hypertonic solutions that measure the size of the readily releasable pool (RRP) of synaptic vesicles. The nicotine-induced increase in the size of the readily releasable pool was blocked by alphaBgTx and by the calmodulin antagonist calmidazolium, suggesting that Ca2+ entry through alpha7 nAChRs specifically enhances synaptic vesicle mobilization at dopamine terminals. Thus, nicotine enhances dopamine release by two complementary actions mediated by discrete nAChR subtypes and suggest that the alpha7 nAChR-mediated pathway is tightly and specifically coupled to refilling of the RRP of vesicles in dopamine terminals.

  16. T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels.

    Directory of Open Access Journals (Sweden)

    Didi Matza

    Full Text Available The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1 α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling.

  17. Comparative pharmacodynamics of eight calcium channel blocking agents in Japanese essential hypertensive patients.

    Science.gov (United States)

    Shimada, S; Nakajima, Y; Yamamoto, K; Sawada, Y; Iga, T

    1996-03-01

    The relationships between plasma drug concentration and antihypertensive effect of eight calcium channel antagonists (nicardipine, nifedipine, nilvadipine, benidipine, manidipine, barnidipine, nitrendipine and efonidipine) in Japanese essential hypertensive patients were analyzed. Based on the effect compartment model, we could explain the long duration of the pharmacological effect, and there was significant correlation (r = 0.876, p < 0.05) between estimated EC50 values and the dissociation constants (Kd) obtained from in vitro binding studies. We also developed the ion-channel binding model to understand the pharmacodynamics of long acting calcium antagonists. The model was also well fitted to antihypertensive effect data. A significant correlation between the apparent in vivo dissociation constants and in vitro Kd values was observed with a slope of 1.45 (r = 0.913), suggesting that the mechanism of long-lasting antihypertensive effect of newer developed calcium antagonists is due to their high binding affinity at ion-channel sites.

  18. TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit

    Science.gov (United States)

    Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia

    2015-01-01

    Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056

  19. Modulatory effects of the fruits of Tribulus terrestris L. on the function of atopic dermatitis-related calcium channels, Orai1 and TRPV3

    Institute of Scientific and Technical Information of China (English)

    Joo Hyun Nam; Hyo Won Jung; Young-Won Chin; Woo Kyung Kim; Hyo Sang Bae

    2016-01-01

    Objective: To examine the effects of Tribulus terrestris L. (T. terrestris) extract on the modulation of calcium channels to evaluate its use in topical agents for treatment of atopic dermatitis. Methods: The 70% methanol extract of T. terrestris was prepared. Human HEK293T cells with over-expressed calcium release-activated calcium channel protein 1 (Orai1), transient receptor potential vanilloid 1, or transient receptor potential vanilloid 3 (TRPV3) were treated with T. terrestris extract. Modulation of ion channels was measured using a conventional whole-cell patch-clamp technique. Results: T. terrestris extract (100 mg/mL) significantly inhibited Orai1 activity in Orai1-stromal interaction molecule 1 co-overexpressed HEK293T cells. In addition, T. terrestris extract significantly increased the TRPV3 activity compared with 2-Aminoethyl diphe-nylborinate (100 mmol/L), which induces the full activation of TRPV3. Conclusions: Our results suggest that T. terrestris extract may have a therapeutic po-tential for recovery of abnormal skin barrier pathologies in atopic dermatitis through modulating the activities of calcium ion channels, Orai1 and TRPV3. This is the first study to report the modulatory effect of a medicinal plant on the function of ion channels in skin barrier.

  20. Modulatory effects of the fruits of Tribulus terrestris L. on the function of atopic dermatitis-related calcium channels,Orai1 and TRPV3

    Institute of Scientific and Technical Information of China (English)

    Joo Hyun Nam; Hyo Won Jung; Young-Won Chin; Woo Kyung Kim; Hyo Sang Bae

    2016-01-01

    Objective: To examine the effects of Tribulus terrestris L.(T. terrestris) extract on the modulation of calcium channels to evaluate its use in topical agents for treatment of atopic dermatitis.Methods: The 70% methanol extract of T. terrestris was prepared. Human HEK293 T cells with over-expressed calcium release-activated calcium channel protein 1(Orai1),transient receptor potential vanilloid 1, or transient receptor potential vanilloid 3(TRPV3)were treated with T. terrestris extract. Modulation of ion channels was measured using a conventional whole-cell patch-clamp technique.Results: T. terrestris extract(100 mg/m L) significantly inhibited Orai1 activity in Orai1-stromal interaction molecule 1 co-overexpressed HEK293 T cells. In addition, T. terrestris extract significantly increased the TRPV3 activity compared with 2-Aminoethyl diphenylborinate(100 mmol/L), which induces the full activation of TRPV3.Conclusions: Our results suggest that T. terrestris extract may have a therapeutic potential for recovery of abnormal skin barrier pathologies in atopic dermatitis through modulating the activities of calcium ion channels, Orai1 and TRPV3. This is the first study to report the modulatory effect of a medicinal plant on the function of ion channels in skin barrier.

  1. Tolperisone-type drugs inhibit spinal reflexes via blockade of voltage-gated sodium and calcium channels.

    Science.gov (United States)

    Kocsis, Pál; Farkas, Sándor; Fodor, László; Bielik, Norbert; Thán, Márta; Kolok, Sándor; Gere, Anikó; Csejtei, Mónika; Tarnawa, István

    2005-12-01

    The spinal reflex depressant mechanism of tolperisone and some of its structural analogs with central muscle relaxant action was investigated. Tolperisone (50-400 microM), eperisone, lanperisone, inaperisone, and silperisone (25-200 microM) dose dependently depressed the ventral root potential of isolated hemisected spinal cord of 6-day-old rats. The local anesthetic lidocaine (100-800 microM) produced qualitatively similar depression of spinal functions in the hemicord preparation, whereas its blocking effect on afferent nerve conduction was clearly stronger. In vivo, tolperisone and silperisone as well as lidocaine (10 mg/kg intravenously) depressed ventral root reflexes and excitability of motoneurons. However, in contrast with lidocaine, the muscle relaxant drugs seemed to have a more pronounced action on the synaptic responses than on the excitability of motoneurons. Whole-cell measurements in dorsal root ganglion cells revealed that tolperisone and silperisone depressed voltage-gated sodium channel conductance at concentrations that inhibited spinal reflexes. Results obtained with tolperisone and its analogs in the [3H]batrachotoxinin A 20-alpha-benzoate binding in cortical neurons and in a fluorimetric membrane potential assay in cerebellar neurons further supported the view that blockade of sodium channels may be a major component of the action of tolperisone-type centrally acting muscle relaxant drugs. Furthermore, tolperisone, eperisone, and especially silperisone had a marked effect on voltage-gated calcium channels, whereas calcium currents were hardly influenced by lidocaine. These data suggest that tolperisone-type muscle relaxants exert their spinal reflex inhibitory action predominantly via a presynaptic inhibition of the transmitter release from the primary afferent endings via a combined action on voltage-gated sodium and calcium channels.

  2. Calcium channel antagonist and beta-blocker overdose: antidotes and adjunct therapies.

    Science.gov (United States)

    Graudins, Andis; Lee, Hwee Min; Druda, Dino

    2016-03-01

    Management of cardiovascular instability resulting from calcium channel antagonist (CCB) or beta-adrenergic receptor antagonist (BB) poisoning follows similar principles. Significant myocardial depression, bradycardia and hypotension result in both cases. CCBs can also produce vasodilatory shock. Additionally, CCBs, such as verapamil and diltiazem, are commonly ingested in sustained-release formulations. This can also be the case for some BBs. Peak toxicity can be delayed by several hours. Provision of early gastrointestinal decontamination with activated charcoal and whole-bowel irrigation might mitigate this. Treatment of shock requires a multimodal approach to inotropic therapy that can be guided by echocardiographic or invasive haemodynamic assessment of myocardial function. High-dose insulin euglycaemia is commonly recommended as a first-line treatment in these poisonings, to improve myocardial contractility, and should be instituted early when myocardial dysfunction is suspected. Catecholamine infusions are complementary to this therapy for both inotropic and chronotropic support. Catecholamine vasopressors and vasopressin are used in the treatment of vasodilatory shock. Optimizing serum calcium concentration can confer some benefit to improving myocardial function and vascular tone after CCB poisoning. High-dose glucagon infusions have provided moderate chronotropic and inotropic benefits in BB poisoning. Phosphodiesterase inhibitors and levosimendan have positive inotropic effects but also produce peripheral vasodilation, which can limit blood pressure improvement. In cases of severe cardiogenic shock and/or cardiac arrest post-poisoning, extracorporeal cardiac assist devices have resulted in successful recovery. Other treatments used in refractory hypotension include intravenous lipid emulsion for lipophilic CCB and BB poisoning and methylene blue for refractory vasodilatory shock.

  3. Disruption of learned timing in P/Q calcium channel mutants.

    Directory of Open Access Journals (Sweden)

    Akira Katoh

    Full Text Available To optimize motor performance, both the amplitude and temporal properties of movements should be modifiable by motor learning. Here we report that the modification of movement timing is highly dependent on signaling through P/Q-type voltage-dependent calcium channels. Two lines of mutant mice heterozygous for P/Q-type voltage-dependent calcium channels exhibited impaired plasticity of eye movement timing, but relatively intact plasticity of movement amplitude during motor learning in the vestibulo-ocular reflex. The results thus demonstrate a distinction between the molecular signaling pathways regulating the timing versus amplitude of movements.

  4. Somato-axodendritic release of oxytocin into the brain due to calcium amplification is essential for social memory.

    Science.gov (United States)

    Higashida, Haruhiro

    2016-07-01

    Oxytocin (OT) is released into the brain from the cell soma, axons, and dendrites of neurosecretory cells in the hypothalamus. Locally released OT can activate OT receptors, form inositol-1,4,5-trisphosphate and elevate intracellular free calcium (Ca(2+)) concentrations [(Ca(2+)) i ] in self and neighboring neurons in the hypothalamus, resulting in further OT release: i.e., autocrine or paracrine systems of OT-induced OT release. CD38-dependent cyclic ADP-ribose (cADPR) is also involved in this autoregulation by elevating [Ca(2+)] i via Ca(2+) mobilization through ryanodine receptors on intracellular Ca(2+) pools that are sensitive to both Ca(2+) and cADPR. In addition, it has recently been reported that heat stimulation and hyperthermia enhance [Ca(2+)] i increases by Ca(2+) influx, probably through TRPM2 cation channels, suggesting that cADPR and TRPM2 molecules act as Ca(2+) signal amplifiers. Thus, OT release is not simply due to depolarization-secretion coupling. Both of these molecules play critical roles not only during labor and milk ejection in reproductive females, but also during social behavior in daily life in both genders. This was clearly demonstrated in CD38 knockout mice in that social behavior was impaired by reduction of [Ca(2+)] i elevation and subsequent OT secretion. Evidence for the associations of CD38 with social behavior and psychiatric disorder is discussed, especially in subjects with autism spectrum disorder.

  5. Presynaptic calcium channels and α3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components.

    Science.gov (United States)

    Carlson, Steven S; Valdez, Gregorio; Sanes, Joshua R

    2010-11-01

    At chemical synapses, synaptic cleft components interact with elements of the nerve terminal membrane to promote differentiation and regulate function. Laminins containing the β2 subunit are key cleft components, and they act in part by binding the pore-forming subunit of a pre-synaptic voltage-gated calcium channel (Ca(v)α) (Nishimune et al. 2004). In this study, we identify Ca(v)α-associated intracellular proteins that may couple channel-anchoring to assembly or stabilization of neurotransmitter release sites called active zones. Using Ca(v)α-antibodies, we isolated a protein complex from Torpedo electric organ synapses, which resemble neuromuscular junctions but are easier to isolate in bulk. We identified 10 components of the complex: six cytoskeletal proteins (α2/β2 spectrins, plectin 1, AHNAK/desmoyokin, dystrophin, and myosin 1), two active zone components (bassoon and piccolo), synaptic laminin, and a calcium channel β subunit. Immunocytochemistry confirmed these proteins in electric organ synapses, and PCR analysis revealed their expression by developing mammalian motor neurons. Finally, we show that synaptic laminins also interact with pre-synaptic integrins containing the α3 subunit. Together with our previous finding that a distinct synaptic laminin interacts with SV2 on nerve terminals (Son et al. 2000), our results identify three paths by which synaptic cleft laminins can send developmentally important signals to nerve terminals.

  6. Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels.

    Science.gov (United States)

    Fanger, C M; Rauer, H; Neben, A L; Miller, M J; Rauer, H; Wulff, H; Rosa, J C; Ganellin, C R; Chandy, K G; Cahalan, M D

    2001-04-13

    To maintain Ca(2+) entry during T lymphocyte activation, a balancing efflux of cations is necessary. Using three approaches, we demonstrate that this cation efflux is mediated by Ca(2+)-activated K(+) (K(Ca)) channels, hSKCa2 in the human leukemic T cell line Jurkat and hIKCa1 in mitogen-activated human T cells. First, several recently developed, selective and potent pharmacological inhibitors of K(Ca) channels but not K(V) channels reduce Ca(2+) entry in Jurkat and in mitogen-activated human T cells. Second, dominant-negative suppression of the native K(Ca) channel in Jurkat T cells by overexpression of a truncated fragment of the cloned hSKCa2 channel decreases Ca(2+) influx. Finally, introduction of the hIKCa1 channel into Jurkat T cells maintains rapid Ca(2+) entry despite pharmacological inhibition of the native small conductance K(Ca) channel. Thus, K(Ca) channels play a vital role in T cell Ca(2+) signaling.

  7. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Directory of Open Access Journals (Sweden)

    Masahiro Kawahara

    2011-01-01

    Full Text Available Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP play crucial roles in the pathogenesis of Alzheimer's disease (AD. Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”, and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.

  8. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    Science.gov (United States)

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  9. Caffeine potentiation of calcium release in frog skeletal muscle fibres.

    Science.gov (United States)

    Delay, M; Ribalet, B; Vergara, J

    1986-06-01

    The effects of caffeine at concentrations up to 3 mM were studied on Ca signals obtained using the metallochromic Ca indicator dyes Arsenazo III and Antipyrylazo III in cut frog skeletal muscle fibres mounted in a triple Vaseline-gap chamber and stimulated by voltage clamp or action potential. The peak amplitude of the transient absorbance change due to Ca2+ release following action potential stimulation is potentiated by an amount dependent on caffeine concentration up to 0.5 mM, and by a concentration-independent amount between 0.5 and 2 mM. At 3 mM-caffeine, the potentiation is reduced, and the Ca signal can have a smaller amplitude than under the control condition. The time course of the rising phase of the Ca signal is preserved by the potentiating effect of caffeine; however, the decay rate of the Ca signal is increasingly slowed at caffeine concentrations greater than 0.5 mM. No substantial change was found in the resting myoplasmic Ca2+ level at caffeine concentrations near 0.5 mM. Even if the free Ca2+ concentration in the presence of this level of caffeine were to increase by 0.04 microM (the threshold of detectability), the calculated potentiation of the Ca signal due to increased partial saturation of intracellular Ca2+ buffers would amount to only about 7%. This value is significantly less than the amount of potentiation observed (up to 40%) following action potentials at caffeine levels of 0.5 mM and above. Experiments made with the impermeant potentiometric dye NK2367 show no alteration by caffeine of the electrical properties of the tubular system. Caffeine at up to moderate concentrations causes a substantial increase in the maximal Ca2+ release obtained following large depolarizations. The voltage dependence of the Ca2+ release is characterized by a caffeine concentration-dependent shift towards more negative membrane potentials. The potentiation of Ca2+ release by caffeine was found to be independent of the external free Ca2+ level. The

  10. The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites.

    Science.gov (United States)

    Schnieders, Julia; Gbureck, Uwe; Vorndran, Elke; Schossig, Michael; Kissel, Thomas

    2011-11-01

    The influence of porosity on release profiles of antibiotics from calcium phosphate composites was investigated to optimize the duration of treatment. We hypothesized, that by the encapsulation of vancomycin-HCl into biodegradable microspheres prior admixing to calcium phosphate bone cement, the influence of porosity of the cement matrix on vancomycin release could be reduced. Encapsulation of vancomycin into a biodegradable poly(lactic co-glycolic acid) copolymer (PLGA) was performed by spray drying; drug-loaded microparticles were added to calcium phosphate cement (CPC) at different powder to liquid ratios (P/L), resulting in different porosities of the cement composites. The effect of differences in P/L ratio on drug release kinetics was compared for both the direct addition of vancomycin-HCl to the cement liquid and for cement composites modified with vancomycin-HCl-loaded microspheres. Scanning electron microscopy (SEM) was used to visualize surface and cross section morphology of the different composites. Brunauer, Emmett, and Teller-plots (BET) was used to determine the specific surface area and pore size distribution of these matrices. It could be clearly shown, that variations in P/L ratio influenced both the porosity of cement and vancomycin release profiles. Antibiotic activity during release study was successfully measured using an agar diffusion assay. However, vancomycin-HCl encapsulation into PLGA polymer microspheres decreased porosity influence of cement on drug release while maintaining antibiotic activity of the embedded substance.

  11. Effect of propionyl-L-carnitine on L-type calcium channels in human heart sarcolemma

    Energy Technology Data Exchange (ETDEWEB)

    Bevilacqua, M.; Vago, T.; Norbiato, G. (Servizio di Endocrinologia, Milano, (Italy))

    1991-02-01

    Propionyl-L-carnitine (PC) protects perfused rat hearts against damage by ischemia-reperfusion. Activation of L-type calcium channel play a role on ischemia-reperfusion damage. Therefore, we studied the effect of PC on some properties of L-type calcium channels in an in vitro preparation from human myocardium sarcolemma (from patients with idiopathic dilated cardiomyopathy). Binding of the L-type calcium channel blockers isradipine ({sup 3}H)-PN 200-110 (PN) to plasma membrane preparations revealed a single population of binding sites (total number: Bmax = 213 +/- 34 fM/mg protein and affinity: Kd = 152 +/- 19 nM; n = 6). The characteristics of these binding sites were evaluated in the presence and in the absence of Ca{sup 2}{sup +} and of calcium blockers (D-888, a verapamillike drug, and diltiazem). Incubation in a Ca{sup 2}{sup +}-containing buffer increased the affinity of PN binding sites. Binding sites for PN were modulated by organic calcium channel blockers; in competition isotherms at 37{degree}C, D-888 (desmethoxyverapamil) decreased the PN binding, whereas diltiazem increased it. These results strongly suggest that the site labelled by PN is the voltage-operated calcium channel of the human myocardium. The addition of PC (1 mM) to plasma membranes labelled with PN at 37{degree}C decreased the affinity of the binding; this effect was counteracted by the addition of Ca{sup 2}{sup +} to the medium. This result was consistent with a competition between Ca{sup 2}{sup +} and PC. The effect of PC incubation at 4{degree}C was the opposite; at this temperature PC increased the affinity of the binding sites and the effect was obscured by Ca{sup 2}{sup +}.

  12. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease.

    Science.gov (United States)

    Duda, Johanna; Pötschke, Christina; Liss, Birgit

    2016-10-01

    Dopamine-releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age-dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement-related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium- and activity-dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2-autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double-edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed-forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD-paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD-triggers, as well as on bidirectional functions of voltage-gated L-type calcium channels and metabolically gated ATP-sensitive potassium (K-ATP) channels, and their probable interplay in health and PD. We propose that SN DA neurons possess several feedback and feed-forward mechanisms to protect and adapt

  13. Formulation and Mathematical Optimization of Controlled Release Calcium Alginate Micro Pellets of Frusemide

    OpenAIRE

    Amitava Ghosh; Prithviraj Chakraborty

    2013-01-01

    Objective. Frusemide loaded calcium alginate micropellets, an oral microparticulate delivery system, was statistically optimized exhibiting prolonged therapeutic action minimizing its adverse effects. Methods. Ionotropic Gelation technique was adopted employing 32 Factorial designs and keeping the entire process free from organic solvents. Physicochemical and the release characteristics of the prepared formulations were studied, keeping variations only in sodium alginate (primary polymer) and...

  14. PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics.

    NARCIS (Netherlands)

    Habraken, W.J.E.M.; Wolke, J.G.C.; Mikos, A.G.; Jansen, J.A.

    2008-01-01

    Bone cements with biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres have already been proven to provide a macroporous calcium phosphate cement (CPC) during in situ microsphere degradation. Furthermore, in vitro/in vivo release studies with these PLGA microsphere/CPC composites (PLGA/CP

  15. Radionuclide Release after Channel Flow Blockage Accident in CANDU-6 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon; Jun, Hwang Yong [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The channel flow blockage accident is one of the in core loss of coolant accidents, the release path of radionuclide is very different from conventional loss of coolant accidents. The large amount of radionuclide released from broken channel is being washed during it passes through the moderator in Calandria. The objective of containment behavior analysis for channel flow blockage event is to assess the amount of radionuclide release to the ambient atmosphere. Radionuclide release rates in case of channel flow blockage with all safety system available, that is containment building is intact, as well as with containment system impairment are analyzed with GOTHIC and SMART code

  16. David J. Triggle: Medicinal chemistry, to pharmacology, calcium channels, and beyond.

    Science.gov (United States)

    Walker, Michael J A

    2015-11-15

    David Triggle's scientific career began as a chemist, went through medicinal chemistry into pharmacology, and finally on to somewhat more philosophical interests in later years. It was a career marked by many contributions to all of those aspects of science. Chief amongst his many contributions, in addition to those in medicinal chemistry, was his work on the drugs known as calcium ion channel blockers or (calcium antagonists). In the calcium ion channel field he was a particularly instrumental figure in sorting out the mechanisms, actions and roles of the class of calcium channel blockers, known chemical and pharmacologically as the dihydropyridines (DHPs) in particular, as well as other calcium blockers of diverse structures. During the course of a long career, and extensive journeys into medicinal chemistry and pharmacology, he published voluminously in terms of papers, reviews, conference proceedings and books. Notably, many of his papers often had limited authorship where, as senior author it reflected his deep involvement in all aspects of the reported work. His work always helped clarify the field while his incisive reviews, together with his role in coordinating and running scientific meetings, were a great help in clarifying and organizing various fields of study. He has had a long and illustrious career, and is wellknown in the world of biomedical science; his contributions are appreciated, and well recognized everywhere. The following article attempts to chart a path through his work and contributions to medicinal chemistry, pharmacology, science, academia and students.

  17. Design, Synthesis and Structure-activity of N-Glycosyl-1-pyridyl-1H-pyrazole-5-carboxamide as Inhibitors of Calcium Channels

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yun-yun; LI Yu-xin; LI Yi-ming; YANG Xiao-ping; MAO Ming-zhen; LI Zheng-ming

    2013-01-01

    Carbohydrates,with broad-spectrum structures and biological functions,are key organic compounds in nature,along with nucleic acids and proteins.As part of our ongoing efforts to develop a new class of pesticides with novel mechanism of action,a series of novel N-glycosyl-l-pyridyl-lH-pyrazole-5-carboxamide was designed and synthesized via the reactions of glycosyl methanamides and pyridyl-pyrazole acid.The compounds were characterized by 1H NMR and 13C NMR.The bioassay results indicate that some of these compounds exhibit moderate insecticidal activities and assessed as potential inhibitors of calcium channels.The modulation of voltage-gated calcium channels by compounds 4a and 5a in the central neurons isolated from the third instar larvae of Spodoptera exigua was studied by whole-cell patch-clamp technique.In addition,compound 5a inhibits the recorded calcium currents reversible on washout.Experimental results also indicate that compound 5a did not release stored calcium from the Endoplasmic Reticulum.The present work demonstrates that N-glycosyl-l-pyridyl-lH-pyrazole-5-carboxamides cannot be used as possible inhibitors of calcium channels for developing novel pesticides.

  18. [Discovering L-type calcium channels inhibitors of antihypertensive drugs based on drug repositioning].

    Science.gov (United States)

    Liang, Ying-xi; He, Yu-su; Jiang, Lu-di; Yue, Qiao-xin; Cui, Shuai; Bin, Li; Ye, Xiao-tong; Zhang, Xiao-hua; Zhang, Yang-ling

    2015-09-01

    This study was amid to construct the pharmacophore model of L-type calcium channel antagonist in the application of screening Drugbank and TCMD. This paper repositions the approved drugs resulting from virtual screening and discusses the relocation-based drug discovery methods, screening antihypertensive drugs with L-type calcium channel function from TCMD. Qualitative hypotheses wre generated by HipHop separately on the basis of 12 compounds with antagonistic action on L-type calcium channel expressed in rabbit cardiac muscle. Datebase searching method was used to evaluate the generated hypotheses. The optimum hypothesis was used to search Drugbank and TCMD. This paper repositions the approved drugs and evaluates the antihypertensive effect of the chemical constituent of traditional Chinese medicine resulting from virtual screening by the matching score and literature. The results showed that optimum qualitative hypothesis is with six features, which were two hydrogen-bond acceptors, four hydrophobic groups, and the CAI value of 2.78. Screening Drugbank achieves 93 approved drugs. Screening TCMD achieves 285 chemical constituents of traditional Chinese medicine. It was concluded that the hypothesis is reliable and can be used to screen datebase. The approved drugs resulting from virtual screening, such as pravastatin, are potentially L-type calcium channels inhibitors. The chemical constituents of traditional Chinese medicine, such as Arctigenin III and Arctigenin are potentially antihypertensive drugs. It indicates that Drug Repositioning based on hypothesis is possible.

  19. L-type Voltage-Gated Calcium Channels in Conditioned Fear: A Genetic and Pharmacological Analysis

    Science.gov (United States)

    McKinney, Brandon C.; Sze, Wilson; White, Jessica A.; Murphy, Geoffrey G.

    2008-01-01

    Using pharmacological approaches, others have suggested that L-type voltage-gated calcium channels (L-VGCCs) mediate both consolidation and extinction of conditioned fear. In the absence of L-VGCC isoform-specific antagonists, we have begun to investigate the subtype-specific role of LVGCCs in consolidation and extinction of conditioned fear…

  20. Calcium channel blockers and cancer : A risk analysis using the UK Clinical Practice Research Datalink (CPRD)

    NARCIS (Netherlands)

    Grimaldi-Bensouda, Lamiae; Klungel, Olaf; Kurz, Xavier; De Groot, Mark C H; Afonso, Ana S Maciel; De Bruin, Marie L.; Reynolds, Robert; Rossignol, Michel

    2016-01-01

    OBJECTIVE: The evidence of an association between calcium channel blockers (CCBs) and cancer is conflicting. The objective of the present study was to evaluate the risk of cancer (all, breast, prostate and colon cancers) in association with exposure to CCB. METHODS: This is a population-based cohort

  1. [Influence of rifampicin on antihypertensive effects of dihydropiridine calcium-channel blockers in four elderly patients].

    Science.gov (United States)

    Yoshimoto, H; Takahashi, M; Saima, S

    1996-09-01

    Rifamicin, an antituberculosis agent, is one of the most potent inducers of hepatic drug-oxidation enzymes. Rifampicin can reduce the efficacy of several therapeutically important drugs (including verapamil and diltiazem) by accelerating systemic elimination or by increasing hepatic first-pass metabolism. Because dihydropyridine calcium-channel blockers are mainly metabolized by the liver, rifampicin may also increase the extraction of these drugs and thereby reduce their antihypertensive effects. Here we report four possible cases of interaction between rifampicin and dihydropiridine calcium-channel blockers. Rifampicin was given to treat tuberculosis in four elderly hypertensive patients whose blood pressure was well-controlled by one or more dihydropiridine calcium-channel blockers (nisoldipine, nifedipine, or barnidipine and manidipine), shortly after the start of antituberculosis therapy, their blood pressures rose. Either much greater doses of dihydropyridines or additional antihypertensive agents had to be given to keep blood pressure under control. After withdrawal of rifampicin, blood pressure fell in all patients and the doses of the antihypertensive agents had to be reduced. These findings indicate that rifampicin may lessen the antihypertensive effects of dihydropiridine calcium-channel blockers.

  2. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice

    Science.gov (United States)

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  3. Activity-dependent regulation of T-type calcium channels by submembrane calcium ions.

    Science.gov (United States)

    Cazade, Magali; Bidaud, Isabelle; Lory, Philippe; Chemin, Jean

    2017-01-21

    Voltage-gated Ca(2+) channels are involved in numerous physiological functions and various mechanisms finely tune their activity, including the Ca(2+) ion itself. This is well exemplified by the Ca(2+)-dependent inactivation of L-type Ca(2+) channels, whose alteration contributes to the dramatic disease Timothy Syndrome. For T-type Ca(2+) channels, a long-held view is that they are not regulated by intracellular Ca(2+). Here we challenge this notion by using dedicated electrophysiological protocols on both native and expressed T-type Ca(2+) channels. We demonstrate that a rise in submembrane Ca(2+) induces a large decrease in T-type current amplitude due to a hyperpolarizing shift in the steady-state inactivation. Activation of most representative Ca(2+)-permeable ionotropic receptors similarly regulate T-type current properties. Altogether, our data clearly establish that Ca(2+) entry exerts a feedback control on T-type channel activity, by modulating the channel availability, a mechanism that critically links cellular properties of T-type Ca(2+) channels to their physiological roles.

  4. Calcium Channel Expression and Applicability as Targeted Therapies in Melanoma

    Directory of Open Access Journals (Sweden)

    A. Macià

    2015-01-01

    Full Text Available The remodeling of Ca2+ signaling is a common finding in cancer pathophysiology serving the purpose of facilitating proliferation, migration, or survival of cancer cells subjected to stressful conditions. One particular facet of these adaptive changes is the alteration of Ca2+ fluxes through the plasma membrane, as described in several studies. In this review, we summarize the current knowledge about the expression of different Ca2+ channels in the plasma membrane of melanoma cells and its impact on oncogenic Ca2+ signaling. In the last few years, new molecular components of Ca2+ influx pathways have been identified in melanoma cells. In addition, new links between Ca2+ homeostasis and specific cell processes important in melanoma tumor progression have been unveiled. Thus, not only do Ca2+ channels appear to have a potential as prognostic markers, but their pharmacological blockade or gene silencing is hinted as interesting therapeutic approaches.

  5. NMDAR-mediated calcium transients elicited by glutamate co-release at developing inhibitory synapses

    Directory of Open Access Journals (Sweden)

    Abigail Kalmbach

    2010-07-01

    Full Text Available Before hearing onset, the topographic organization of the inhibitory sound localization pathway from the medial nucleus of the trapezoid body (MNTB to the lateral superior olive (LSO is refined by means of synaptic silencing and strengthening. During this refinement period MNTB-LSO synapses not only release GABA and glycine but also release glutamate. This co-released glutamate can elicit postsynaptic currents that are predominantly mediated by NMDA receptors (NMDARs. To gain a better understanding of how glutamate contributes to synaptic signaling at developing MNTB-LSO inhibitory synapse, we investigated to what degree and under what conditions NMDARs contribute to postsynaptic calcium responses. Our results demonstrate that MNTB-LSO synapses can elicit compartmentalized calcium responses along aspiny LSO dendrites. These responses are significantly attenuated by the NMDARs antagonist APV. APV, however, has no effect on somatically recorded electrical postsynaptic responses, indicating little, if any, contribution of NMDARs to spike generation. Small NMDAR-mediated calcium responses were also observed under physiological levels of extracellular magnesium concentrations indicating that MNTB-LSO synapses activate magnesium sensitive NMDAR on immature LSO dendrites. In Fura-2 AM loaded neurons, blocking GABAA and glycine receptors decreased NMDAR contribution to somatic calcium responses suggesting that GABA and glycine, perhaps by shunting backpropagating action potentials, decrease the level of NMDAR activation under strong stimulus conditions.

  6. EFFECT OF ELECTROACUPUNCTURE AND CALCIUM-CHANNEL INHIBITORS ON CYTOPLASMIC FREE CALCIUM CONCENTRATION OF MOUSE BRAIN CELLS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-mei; XIE Ji-min; CHEN Min; ZHANG Yan

    2005-01-01

    Objective: To study the effect of electroacupuncture (EA) and Verapamil and Nifedipine (calcium channel inhibitors) on free calcium concentrations of cells and intrasynaptosomes in hypothalamus (HT), periaqueductual grey matter (PAG) and hippocampus (HIP) of mice. Methods: The female ICR mice were randomly divided into control, EA, CaCl2 and CaCl2+EA groups (n=8 in each group). Pain threshold was detected by using radiation-heat irradiation-induced tail flick method. EA (8 Hz, a suitable stimulating strength, dense-sparse waves and duration of 30 min) was applied to"Shuigou" (水沟 GV 26) and "Chengjiang" (承浆CV 24). CaCl2 (10 μL, 0.2 μmol/L) was injected into the lateral cerebral ventricle of mice after EA. The concentrations of cytosolic free calcium ([Ca2+]i) in HIP, PAG, HT cell suspension specimen and hippocampal intrasynaptosome suspension of mice were determined by the fluorescent calcium indicator Fura-2-AM and a spectrofluorometer. Results: During EA analgesia, the intracellular free [Ca2+]i in HT and PAG specimens and intrsynaptosomal [Ca2+]i of the 3 cerebral regions decreased considerably (P<0.05~0.01), but that in hippocampal cell suspension increased significantly (P<0.01) in comparison with control group. The concentrations of hippocampal intrasynaptosomal free [Ca2+]i decreased significantly after adding Verapamil and Nifedipine to the extracted hippocampal intrasynaptosomal specimen. Microinjection of CaCl2 into lateral ventricle had no apparent influence on degree of analgesia (DA)% and intracellular and intrasynapsotomal [Ca2+]i, but significantly lower DA% and reduce changes of cytosolic and intrasynaptosomal [Ca2+]i induced by EA stimulation. Conclusion: Calcium ion in the neurons and intrasynaptosome of HT, PAG and HIP is involved in electroacupuncture analgesia.

  7. Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Poulsen, Christian B; Walter, Steen

    2011-01-01

    in kidney function. It was hypothesized that human renal vascular excitation-contraction coupling involves different subtypes of channels. In human renal artery and dissected intrarenal blood vessels from nephrectomies, PCR analysis showed expression of L-type (Ca(v) 1.2), P/Q-type (Ca(v) 2.1), and T-type......, and L- and P/Q-type channels are of functional importance for the depolarization-induced vasoconstriction. The contribution of P/Q-type channels to contraction in the human vasculature is a novel mechanism for the regulation of renal blood flow and suggests that clinical treatment with calcium blockers......Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved...

  8. Barnidipine: a new calcium channel blocker for hypertension treatment.

    Science.gov (United States)

    Liau, Chiau-Suong

    2005-03-01

    Although it is commonly agreed that all antihypertensive medications have similar efficacy, there are important differences related to safety, tolerability, patient adherence, cost effectiveness and effects on the prevention or retardation of associated disease progression. It is desirable for antihypertensives to have a long duration of action so that once-daily dosing is possible. In addition, antihypertensive medication must be able to be administered concomitantly with other drugs likely to be taken by the patients. This is particularly critical in the elderly population. Barnidipine, a novel, long-acting calcium antagonist, has met these challenges of modern pharmacotherapy. Its once-daily dosing, good tolerability and durable antihypertensive effect contribute to excellent patient adherence and make this drug a valuable addition to the antihypertensive formulary.

  9. P-type calcium channels are blocked by the alkaloid daurisoline.

    Science.gov (United States)

    Lu, Y M; Fröstl, W; Dreessen, J; Knöpfel, T

    1994-07-21

    IN looking for a structurally defined non-peptide P-channel blocker we have tested the alkaloid daurisoline which has been isolated from traditional Chinese medicinal herb (Menispermum dauricum) used for the treatment of epilepsy, hypertension and asthma. We have found that daurisoline is an inhibitor of omega-Aga-IVA sensitive barium currents in cerebellar Purkinje cells and of excitatory postsynaptic potentials evoked in Purkinje cells by stimulating parallel fibres in acutely prepared cerebellar slices. Daurisoline did not significantly affect omega-Aga-IVA-insensitive barium currents recorded from granule cells freshly isolated from rat cerebellum. Daurisoline passes the blood-brain barrier and will, therefore, facilitate the functional characterization of brain calcium channels as well as the exploration of P-type calcium channels as possible drug targets.

  10. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK channels

    Science.gov (United States)

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A.; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S.; Klyachko, Vitaly A.

    2013-01-01

    SUMMARY Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation-independent and are mediated selectively by BK channels via interaction of FMRP with BK channel’s regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology. PMID:23439122

  11. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions.

    Science.gov (United States)

    Gbureck, Uwe; Vorndran, Elke; Barralet, Jake E

    2008-09-01

    The release kinetics of vancomycin from calcium phosphate dihydrate (brushite) matrices and polymer/brushite composites were compared using different fluid replacement regimes, a regular replacement (static conditions) and a continuous flow technique (dynamic conditions). The use of a constantly refreshed flowing resulted in a faster drug release due to a constantly high diffusion gradient between drug loaded matrix and the eluting medium. Drug release was modeled using the Weibull, Peppas and Higuchi equations. The results showed that drug liberation was diffusion controlled for the ceramics matrices, whereas ceramics/polymer composites led to a mixed diffusion and degradation controlled release mechanism. The continuous flow technique was for these materials responsible for a faster release due to an accelerated polymer degradation rate compared with the regular fluid replacement technique.

  12. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    OpenAIRE

    Ivanov, Vadim; Ivanova, Svetlana; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition...

  13. Reciprocal regulation of reactive oxygen species and phospho-CREB regulates voltage gated calcium channel expression during Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Arti Selvakumar

    Full Text Available Our previous work has demonstrated the roles played by L-type Voltage Gated Calcium Channels (VGCC in regulating Mycobacterium tuberculosis (M. tb survival and pathogenesis. Here we decipher mechanisms and pathways engaged by the pathogen to regulate VGCC expression in macrophages. We show that M. tb and its antigen Rv3416 use phospho-CREB (pCREB, Reactive Oxygen Species (ROS, Protein Kinase C (PKC and Mitogen Activated Protein Kinase (MAPK to modulate VGCC expression in macrophages. siRNA mediated knockdown of MyD88, IRAK1, IRAK2 or TRAF6 significantly inhibited antigen mediated VGCC expression. Inhibiting Protein Kinase C (PKC or MEK-ERK1/2 further increased VGCC expression. Interestingly, inhibiting intracellular calcium release upregulated antigen mediated VGCC expression, while inhibiting extracellular calcium influx had no significant effect. siRNA mediated knockdown of transcription factors c-Jun, SOX5 and CREB significantly inhibited Rv3416 mediated VGCC expression. A dynamic reciprocal cross-regulation between ROS and pCREB was observed that in turn governed VGCC expression with ROS playing a limiting role in the process. Further dissection of the mechanisms such as the interplay between ROS and pCREB would improve our understanding of the regulation of VGCC expression during M. tb infection.

  14. Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair.

    Science.gov (United States)

    Lek, Angela; Evesson, Frances J; Lemckert, Frances A; Redpath, Gregory M I; Lueders, Ann-Katrin; Turnbull, Lynne; Whitchurch, Cynthia B; North, Kathryn N; Cooper, Sandra T

    2013-03-20

    Dysferlin is proposed as a key mediator of calcium-dependent muscle membrane repair, although its precise role has remained elusive. Dysferlin interacts with a new membrane repair protein, mitsugumin 53 (MG53), an E3 ubiquitin ligase that shows rapid recruitment to injury sites. Using a novel ballistics assay in primary human myotubes, we show it is not full-length dysferlin recruited to sites of membrane injury but an injury-specific calpain-cleavage product, mini-dysferlinC72. Mini-dysferlinC72-rich vesicles are rapidly recruited to injury sites and fuse with plasma membrane compartments decorated by MG53 in a process coordinated by L-type calcium channels. Collective interplay between activated calpains, dysferlin, and L-type channels explains how muscle cells sense a membrane injury and mount a specialized response in the unique local environment of a membrane injury. Mini-dysferlinC72 and MG53 form an intricate lattice that intensely labels exposed phospholipids of injury sites, then infiltrates and stabilizes the membrane lesion during repair. Our results extend functional parallels between ferlins and synaptotagmins. Whereas otoferlin exists as long and short splice isoforms, dysferlin is subject to enzymatic cleavage releasing a synaptotagmin-like fragment with a specialized protein- or phospholipid-binding role for muscle membrane repair.

  15. Release of Potassium Ion and Calcium Ion from Phosphorylcholine Group Bearing Hydrogels

    Directory of Open Access Journals (Sweden)

    Kazuhiko Ishihara

    2013-11-01

    Full Text Available In an attempt to recreate the microenvironment necessary for directed hematopoietic stem cell differentiation, control over the amount of ions available to the cells is necessary. The release of potassium ion and calcium ion via the control of cross-linking density of a poly(2-hydroxyethyl methacrylate (pHEMA-based hydrogel containing 1 mol % 2-methacryloyloxyethyl phosphorylcholine (MPC and 5 mol % oligo(ethylene glycol (400 monomethacrylate [OEG(400MA] was investigated. Tetra(ethylene glycol diacrylate (TEGDA, the cross-linker, was varied over the range of 1–12 mol %. Hydrogel discs (ϕ = 4.5 mm and h = 2.0 mm were formed by UV polymerization within silicone isolators to contain 1.0 M CaCl2 and 0.1 M KCl, respectively. Isothermal release profiles, were measured at 37 °C in 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid sodium salt (HEPES buffer using either calcium ion or potassium ion selective electrodes (ISE. The resulting release profiles were found to be independent of cross-linking density. Average (n = 3 release profiles were fit to five different release models with the Korsmeyer-Peppas equation, a porous media transport model, exhibiting the greatest correlation (R2 > 0.95. The diffusion exponent, n was calculated to be 0.24 ± 0.02 and 0.36 ± 0.04 for calcium ion and potassium ion respectively indicating non-Fickian diffusion. The resulting diffusion coefficients were calculated to be 2.6 × 10−6 and 11.2 × 10−6 cm2/s, which compare well to literature values of 2.25 × 10−6 and 19.2 × 10−6 cm2/s for calcium ion and potassium ion, respectively.

  16. Preparation of calcium chloride-loaded solid lipid particles and heat-triggered calcium ion release

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huangying; Kim, Jin-Chul [Kangwon National University, Chunchon (Korea, Republic of)

    2015-08-15

    CaCl{sub 2}-loaded solid lipid particles (SLPs) were prepared by a melt/emulsification/solidification method. CaCl{sub 2} microparticles (1-5 μm) could be obtained in a mortar with aid of the dispersant (Tween 80/Span80 (35/65, w/w)) when the ratio of CaCl{sub 2} to dispersant was 2 : 0.1 (w/w). SLP was prepared by dispersing 0.42 g of micronized CaCl{sub 2} particles in 2 g of molten PBSA, emulsifying the mixture at 85 .deg. C in 40 ml of Tween 20 solution (0.5% w/v), and quenching the emulsion in an ice bath. The diameter of CaCl{sub 2}-loaded SLP was 10-150 μm. The unenveloped CaCl{sub 2} could be removed by dialysis and the specific loading of CaCl{sub 2} in SLP was 0.036mg/mg. An EDS spectrum of CaCl{sub 2}-loaded SLP, which was dialyzed, showed that the unenveloped CaCl{sub 2} was completely removed. Any excipients (dispersant, Tween 20, CaCl{sub 2}) had little effect on the melting point of SLPs. No appreciable amount of Ca2+ was released in 20-50 .deg. C for 22 h. But the release degree at 60 .deg. C was significant (about 2.3%) during the same period. The matrix of the lipid particle was in a liquid state at 60 .deg. C, so CaCl{sub 2} particles could move freely and contact the surrounding water, leading to the release. At 70 .deg. C, the release degree at a given time was a few times higher than that obtained at 60 .deg. C.

  17. Putative calcium-binding domains of the Caenorhabditis elegans BK channel are dispensable for intoxication and ethanol activation.

    Science.gov (United States)

    Davis, S J; Scott, L L; Ordemann, G; Philpo, A; Cohn, J; Pierce-Shimomura, J T

    2015-07-01

    Alcohol modulates the highly conserved, voltage- and calcium-activated potassium (BK) channel, which contributes to alcohol-mediated behaviors in species from worms to humans. Previous studies have shown that the calcium-sensitive domains, RCK1 and the Ca(2+) bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates the BK channel in vivo, and deletion of the worm BK channel, SLO-1, confers strong resistance to intoxication. To determine if the conserved RCK1 and calcium bowl domains were also critical for intoxication and basal BK channel-dependent behaviors in C. elegans, we generated transgenic worms that express mutated SLO-1 channels predicted to have the RCK1, Ca(2+) bowl or both domains rendered insensitive to calcium. As expected, mutating these domains inhibited basal function of SLO-1 in vivo as neck and body curvature of these mutants mimicked that of the BK null mutant. Unexpectedly, however, mutating these domains singly or together in SLO-1 had no effect on intoxication in C. elegans. Consistent with these behavioral results, we found that ethanol activated the SLO-1 channel in vitro with or without these domains. By contrast, in agreement with previous in vitro findings, C. elegans harboring a human BK channel with mutated calcium-sensing domains displayed resistance to intoxication. Thus, for the worm SLO-1 channel, the putative calcium-sensitive domains are critical for basal in vivo function but unnecessary for in vivo ethanol action.

  18. Single-channel Analysis and Calcium Imaging in the Podocytes of the Freshly Isolated Glomeruli.

    Science.gov (United States)

    Ilatovskaya, Daria V; Palygin, Oleg; Levchenko, Vladislav; Staruschenko, Alexander

    2015-06-27

    Podocytes (renal glomerular epithelial cells) are known to regulate glomerular permeability and maintain glomerular structure; a key role for these cells in the pathogenesis of various renal diseases has been established since podocyte injury leads to proteinuria and foot process effacement. It was previously reported that various endogenous agents may cause a dramatic overload in intracellular Ca(2+) concentration in podocytes, presumably leading to albuminuria, and this likely occurs via calcium-conducting ion channels. Therefore, it appeared important to study calcium handling in the podocytes both under normal conditions and in various pathological states. However, available experimental approaches have remained somewhat limited to cultured and transfected cells. Although they represent a good basic model for such studies, they are essentially extracted from the native environment of the glomerulus. Here we describe the methodology of studying podocytes as a part of the freshly isolated whole glomerulus. This preparation retains the functional potential of the podocytes, which are still attached to the capillaries; therefore, podocytes remain in the environment that conserves the major parts of the glomeruli filtration apparatus. The present manuscript elaborates on two experimental approaches that allow 1) real-time detection of calcium concentration changes with the help of ratiometric confocal fluorescence microscopy, and 2) the recording of the single ion channels activity in the podocytes of the freshly isolated glomeruli. These methodologies utilize the advantages of the native environment of the glomerulus that enable researchers to resolve acute changes in the intracellular calcium handling in response to applications of various agents, measure basal concentration of calcium within the cells (for instance, to evaluate disease progression), and assess and manipulate calcium conductance at the level of single ion channels.

  19. Enhanced currents through L-type calcium channels in cardiomyocytes disturb the electrophysiology of the dystrophic heart.

    Science.gov (United States)

    Koenig, Xaver; Rubi, Lena; Obermair, Gerald J; Cervenka, Rene; Dang, Xuan B; Lukacs, Peter; Kummer, Stefan; Bittner, Reginald E; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2014-02-15

    Duchenne muscular dystrophy (DMD), induced by mutations in the gene encoding for the cytoskeletal protein dystrophin, is an inherited disease characterized by progressive muscle weakness. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with cardiac complications. These include cardiomyopathy development and cardiac arrhythmias. The current understanding of the pathomechanisms in the heart is very limited, but recent research indicates that dysfunctional ion channels in dystrophic cardiomyocytes play a role. The aim of the present study was to characterize abnormalities in L-type calcium channel function in adult dystrophic ventricular cardiomyocytes. By using the whole cell patch-clamp technique, the properties of currents through calcium channels in ventricular cardiomyocytes isolated from the hearts of normal and dystrophic adult mice were compared. Besides the commonly used dystrophin-deficient mdx mouse model for human DMD, we also used mdx-utr mice, which are both dystrophin- and utrophin-deficient. We found that calcium channel currents were significantly increased, and channel inactivation was reduced in dystrophic cardiomyocytes. Both effects enhance the calcium influx during an action potential (AP). Whereas the AP in dystrophic mouse cardiomyocytes was nearly normal, implementation of the enhanced dystrophic calcium conductance in a computer model of a human ventricular cardiomyocyte considerably prolonged the AP. Finally, the described dystrophic calcium channel abnormalities entailed alterations in the electrocardiograms of dystrophic mice. We conclude that gain of function in cardiac L-type calcium channels may disturb the electrophysiology of the dystrophic heart and thereby cause arrhythmias.

  20. Novel tacrine derivatives that block neuronal calcium channels.

    Science.gov (United States)

    de los Ríos, Cristóbal; Marco, José L; Carreiras, María D C; Chinchón, P M; García, Antonio G; Villarroya, Mercedes

    2002-06-01

    A new series of tacrine (9-amino-1,2,3,4-tetrahydroacridine) derivatives were synthesized and their effects on 45Ca(2+) entry into bovine adrenal chromaffin cells stimulated with dimethylphenylpiperazinium (DMPP) or K(+), studied. At 3 microM, compound 1 did not affect (45)Ca(2+) uptake evoked by DMPP. Compounds 14, 15 and 17 inhibited the effects of DMPP by 30%. Compounds 3, 9 and tacrine blocked the DMPP signal by about 50%. Compounds 5 and 12 were the most potent blockers of DMPP-stimulated 45Ca(2+) entry (90%); the rest of the compounds inhibited the effects of DMPP by 70-80%. Compounds 1, 3, 4, 8, 10, 11, 13, 16, 17 and tacrine inhibited 45Ca(2+) uptake induced by K(+) about 20%. Compounds 6, 14 and 15 inhibited the K(+) effects by 10% or less. Compounds 7, 9, 12 and 18 blocked the K(+) signal by 30% and, finally, compounds 2 and 5 inhibited the K(+)-induced 45Ca(2+) entry by 50%. None of the new compounds was as effective as diltiazem (IC(50)=0.03 microM) in causing relaxation of the rat aorta precontracted with 35 mM K(+); the most potent was compound 7 (IC(50)=0.3 microM). Compounds 5, 6, 8, 9, 10 and 13 had IC(50)s around 10 microM and compounds 3, 4, 11 and 12 around 20 microM. Blockade of Ca(2+) entry through neuronal voltage-dependent Ca(2+) channels, without concomitant blockade of vascular Ca(2+) channels, suggests that some of these compounds might exhibit neuroprotectant effects but not undesirable hemodynamic effects.

  1. Iron overload and apoptosis of HL-1 cardiomyocytes: effects of calcium channel blockade.

    Directory of Open Access Journals (Sweden)

    Mei-pian Chen

    Full Text Available Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC and T-type calcium channels (TTCC have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II and Fe(III ingress in cultured cardiomyocytes and ensuing apoptosis.Fe(II and Fe(III uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC.Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis.Our study implicates LTCC as major mediators of Fe(III uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in

  2. A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Wacha, András [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117 (Hungary); Gomes, Pedro S. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal); Alves, Luís C. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N.10, 2695-066 Bobadela LRS (Portugal); Fernandes, M. Helena Vaz [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Salvado, Isabel M. Miranda, E-mail: isabelmsalvado@ua.pt [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Fernandes, M. Helena R. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal)

    2016-05-01

    The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS–SiO{sub 2} have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS–SiO{sub 2}–CaO–SrO, was prepared with the incorporation of 0.05 mol of titanium per mol of SiO{sub 2}. Calcium and strontium were added using the respective acetates as sources, following a sol–gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity. - Highlights: • A hybrid PDMS–SiO{sub 2}–CaO–SrO material was prepared with the incorporation of Ti. • Sr was released in concentrations suitable for the induction of bone tissue repair. • The material demonstrated to be cytocompatible when tested with osteoblastic cells.

  3. Effect of Drug Loading Method on Drug Content and Drug Release from Calcium Pectinate Gel Beads

    OpenAIRE

    2010-01-01

    Drug-loaded calcium pectinate gel (CaPG) beads were prepared by either mixing, absorption, or swelling method. The effects of drug loading method as well as the drug loading factors (i.e., drug concentration, soaking time in drug solution, type of solvent) on drug content and drug release were investigated. The amount of drug uptake (i.e., drug content) into CaPG beads increased as the initial drug concentration increased and varied depending on the loading method. The in vitro release studie...

  4. Evaluation of the pH, calcium release and antibacterial activity of MTA Fillapex

    Directory of Open Access Journals (Sweden)

    Milton Carlos Kuga

    Full Text Available OBJECTIVE: This study evaluated, in several analysis periods, pH and calcium release and antibacterial activity provided by MTA Fillapex sealer compared to Sealapex and AH Plus sealers. MATERIAL AND METHOD: Polyethylene tubes were filled with a sealer and immersed in distilled water. After 24 hours, 14 and 28 days, pH and calcium release by endodontic sealers were evaluated directly in water which the tubes were stored. Sealers antibacterial activity was evaluated against Enterococcus faecalis and Staphylococcus aureus by means of agar diffusion test. All data were submitted to ANOVA and Tukey tests (α=0.05. RESULT: In all periods evaluated, Sealapex had the highest pH value (p0.05. In relation to S. aureus, Sealapex presented better antibacterial effectiveness than the MTA Fillapex and AH Plus (p0.05. CONCLUSION: In final evaluation period, pH values and calcium release provided by MTA Fillapex were lower than provided by Sealapex and higher than provided by AH Plus. The MTA Fillapex antimicrobial action was similar to other endodontic sealers.

  5. Effect of soft drinks on the release of calcium from enamel surfaces.

    Science.gov (United States)

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Surarit, Rudee

    2013-09-01

    Continuous consumption of soft drinks is the main cause of potential oral health problems, including dental caries and erosion. The purpose of this study was to compare the effect of three different types of soft drinks on the release of calcium from the enamel surface of teeth. Forty bovine teeth were selected for the experiment. They were divided into four groups (n=10/group): Group 1 (Coke), Group 2 (Pepsi), Group 3 (Sprite), and Group 4 (distilled water, the control). The pH of each beverage was measured using a pH meter. The release of calcium ions was measured using an atomic absorption spectrophotometer at baseline, 15, 30, and 60 minutes. The results were assessed by analysis of variance and then by the Tukey test (psoft drinks. Coke, Pepsi, and Sprite showed no significant mean differences in the calcium released, but there was a significant mean difference of these soft drinks with distilled water at 60 minutes. We concluded that prolonged exposure to soft drinks could lead to significant enamel loss.

  6. Endothelin induces two types of contractions of rat uterus: phasic contractions by way of voltage-dependent calcium channels and developing contractions through a second type of calcium channels

    Energy Technology Data Exchange (ETDEWEB)

    Kozuka, M.; Ito, T.; Hirose, S.; Takahashi, K.; Hagiwara, H.

    1989-02-28

    Effects of endothelin on nonvascular smooth muscle have been examined using rat uterine horns and two modes of endothelin action have been revealed. Endothelin (0.3 nM) caused rhythmic contractions of isolated uterus in the presence of extracellular calcium. The rhythmic contractions were completely inhibited by calcium channel antagonists. These characteristics of endothelin-induced contractions were very similar to those induced by oxytocin. Binding assays using /sup 125/I-endothelin showed that endothelin and the calcium channel blockers did not compete for the binding sites. However, endothelin was unique in that it caused, in addition to rhythmic contractions, a slowly developing monophasic contraction that was insensitive to calcium channel blockers. This developing contraction became dominant at higher concentrations of endothelin and was also calcium dependent.

  7. A role for L-type calcium channels in the maturation of parvalbumin-containing hippocampal interneurons.

    Science.gov (United States)

    Jiang, M; Swann, J W

    2005-01-01

    While inhibitory interneurons are well recognized to play critical roles in the brain, relatively little is know about the molecular events that regulate their growth and differentiation. Calcium ions are thought to be important in neuronal development and L-type voltage gated Ca(+2) channels have been implicated in activity-dependent mechanisms of early-life. However, few studies have examined the role of these channels in the maturation of interneurons. The studies reported here were conducted in hippocampal slice cultures and indicate that the L-type Ca(+2) channel agonists and antagonists accelerate and suppress respectively the growth of parvalbumin-containing interneurons. The effects of channel blockade were reversible suggesting they are not the result of interneuronal cell death. Results from immunoblotting showed that these drugs have similar effects on the expression of the GABA synthetic enzymes, glutamic acid decarboxylase65, glutamic acid decarboxylase67 and the vesicular GABA transporter. This suggests that L-type Ca(+2) channels regulate not only parvalbumin expression but also interneuron development. These effects are likely mediated by actions on the interneurons themselves since the alpha subunits of L-type channels, voltage-gated calcium channel subunit 1.2 and voltage-gated calcium channel subunit 1.3 were found to be highly expressed in neonatal mouse hippocampus and co-localized with parvalbumin in interneurons. Results also showed that while these interneurons can contain either subunit, voltage-gated calcium channel subunit 1.3 was more widely expressed. Taken together results suggest that an important subset of developing interneurons expresses L-type Ca(+2) channels alpha subunits, voltage-gated calcium channel subunit 1.2 and especially voltage-gated calcium channel subunit 1.3 and that these channels likely regulate the development of these interneurons in an activity-dependent manner.

  8. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  9. Role of Calcium Channels in the Protective Effect of Hydrogen Sulfide in Rat Cardiomyoblasts

    Directory of Open Access Journals (Sweden)

    Daniele Avanzato

    2014-04-01

    Full Text Available Background: Hydrogen sulfide contributes to the reduction of oxidative stress-related injury in cardiomyocytes but the underlying mechanism is still unclear. Aims: Here we investigated the role of voltage-operated calcium channels (VOCCs as mediators of the beneficial effect of H2S against oxidative stress in cultured rat cardiomyoblasts (H9c2. Methods: Intracellular calcium signals were measured by fluorimetric live cell imaging and cell viability by colorimetric assay. Results: Treatment with H2S donor (NaHS 10 µM or Nifedipine (10 µM decreased resting intracellular calcium concentration [Ca]i, suggesting that L-type VOCCs are negatively modulated by H2S. In the presence of Nifedipine H2S was still able to lower [Ca]i, while co-incubation with Nifedipine and Ni2+ 100 µM completely prevented H2S-dependent [Ca]i decrease, suggesting that both L-type and T-type VOCCs are inhibited by H2S. In addition, in the same experimental conditions, H2S triggered a slow increase of [Ca]i whose molecular nature remains to be clarified. Pretreatment of H9c2 with NaHS (10 µM significantly prevented cell death induced by H2O2. This effect was mimicked by pretreatment with L-Type calcium channel inhibitor Nifedipine (10 µM. Conclusions: The data provide the first evidence that H2S protects rat cardiomyoblasts against oxidative challenge through the inhibition of L-type calcium channels.

  10. Experts Consensus Recommendations for the Management of Calcium Channel Blocker Poisoning in Adults

    Science.gov (United States)

    Anseeuw, Kurt; Cantrell, Frank Lee; Gilchrist, Ian C.; Hantson, Philippe; Bailey, Benoit; Lavergne, Valéry; Gosselin, Sophie; Kerns, William; Laliberté, Martin; Lavonas, Eric J.; Juurlink, David N.; Muscedere, John; Yang, Chen-Chang; Sinuff, Tasnim; Rieder, Michael; Mégarbane, Bruno

    2017-01-01

    Objective: To provide a management approach for adults with calcium channel blocker poisoning. Data Sources, Study Selection, and Data Extraction: Following the Appraisal of Guidelines for Research & Evaluation II instrument, initial voting statements were constructed based on summaries outlining the evidence, risks, and benefits. Data Synthesis: We recommend 1) for asymptomatic patients, observation and consideration of decontamination following a potentially toxic calcium channel blocker ingestion (1D); 2) as first-line therapies (prioritized based on desired effect), IV calcium (1D), high-dose insulin therapy (1D–2D), and norepinephrine and/or epinephrine (1D). We also suggest dobutamine or epinephrine in the presence of cardiogenic shock (2D) and atropine in the presence of symptomatic bradycardia or conduction disturbance (2D); 3) in patients refractory to the first-line treatments, we suggest incremental doses of high-dose insulin therapy if myocardial dysfunction is present (2D), IV lipid-emulsion therapy (2D), and using a pacemaker in the presence of unstable bradycardia or high-grade arteriovenous block without significant alteration in cardiac inotropism (2D); 4) in patients with refractory shock or who are periarrest, we recommend incremental doses of high-dose insulin (1D) and IV lipid-emulsion therapy (1D) if not already tried. We suggest venoarterial extracorporeal membrane oxygenation, if available, when refractory shock has a significant cardiogenic component (2D), and using pacemaker in the presence of unstable bradycardia or high-grade arteriovenous block in the absence of myocardial dysfunction (2D) if not already tried; 5) in patients with cardiac arrest, we recommend IV calcium in addition to the standard advanced cardiac life-support (1D), lipid-emulsion therapy (1D), and we suggest venoarterial extracorporeal membrane oxygenation if available (2D). Conclusion: We offer recommendations for the stepwise management of calcium channel blocker

  11. Postcountershock myocardial damage after pretreatment with adrenergic and calcium channel antagonists in halothane-anesthetized dogs

    Energy Technology Data Exchange (ETDEWEB)

    Gaba, D.M.; Metz, S.; Maze, M.

    1985-05-01

    Transthoracic electric countershock can cause necrotic myocardial lesions in humans as well as experimental animals. The authors investigated the effect on postcountershock myocardial damage of pretreatment with prazosin, an alpha-1 antagonist; L-metoprolol, a beta-1 antagonist, and verapamil, a calcium channel-blocking agent. Twenty dogs were anesthetized with halothane and given two transthoracic countershocks of 295 delivered joules each after drug or vehicle treatment. Myocardial injury was quantitated 24 h following countershock by measuring the uptake of technetium-99m pyrophosphate in the myocardium. Elevated technetium-99m pyrophosphate uptake occurred in visible lesions in most dogs regardless of drug treatment. For each of four parameters of myocardial damage there was no statistically significant difference between control animals and those treated with prazosin, metoprolol, or verapamil. These data suggest that adrenergic or calcium channel-mediated mechanisms are not involved in the pathogenesis of postcountershock myocardial damage.

  12. A combined role of calcium channel blockers and angiotensin receptor blockers in stroke prevention

    Directory of Open Access Journals (Sweden)

    Ji-Guang Wang

    2009-07-01

    Full Text Available Ji-Guang WangCentre for Epidemiological Studies and Clinical Trials, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, ChinaAbstract: Stroke is a leading cause of death and disability worldwide. The importance of lowering blood pressure for reducing the risk of stroke is well established. However, not all the benefits of antihypertensive treatments in stroke can be accounted for by reductions in BP and there may be differences between antihypertensive classes as to which provides optimal protection. Dihydropyridine calcium channel blockers, such as amlodipine, and angiotensin receptor blockers, such as valsartan, represent the two antihypertensive drug classes with the strongest supportive data for the prevention of stroke. Therefore, when combination therapy is required, a combination of these two antihypertensive classes represents a logical approach.Keywords: stroke, angiotensin, calcium channel, cerebrovascular, hypertension, blood pressure

  13. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2.

    Science.gov (United States)

    Ponissery Saidu, Samsudeen; Stephan, Aaron B; Talaga, Anna K; Zhao, Haiqing; Reisert, Johannes

    2013-06-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplification of cDNA ends analysis was conducted to characterize the 5' end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5' end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca(2+) sensitivity and that the exon 4-encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties.

  14. The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release*

    Science.gov (United States)

    Hedgepeth, Serena C.; Garcia, M. Iveth; Wagner, Larry E.; Rodriguez, Ana M.; Chintapalli, Sree V.; Snyder, Russell R.; Hankins, Gary D. V.; Henderson, Beric R.; Brodie, Kirsty M.; Yule, David I.; van Rossum, Damian B.; Boehning, Darren

    2015-01-01

    The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. PMID:25645916

  15. Direct recording and molecular identification of the calcium channel of primary cilia

    Science.gov (United States)

    Decaen, Paul G.; Delling, Markus; Vien, Thuy N.; Clapham, David E.

    2013-12-01

    A primary cilium is a solitary, slender, non-motile protuberance of structured microtubules (9+0) enclosed by plasma membrane. Housing components of the cell division apparatus between cell divisions, primary cilia also serve as specialized compartments for calcium signalling and hedgehog signalling pathways. Specialized sensory cilia such as retinal photoreceptors and olfactory cilia use diverse ion channels. An ion current has been measured from primary cilia of kidney cells, but the responsible genes have not been identified. The polycystin proteins (PC and PKD), identified in linkage studies of polycystic kidney disease, are candidate channels divided into two structural classes: 11-transmembrane proteins (PKD1, PKD1L1 and PKD1L2) remarkable for a large extracellular amino terminus of putative cell adhesion domains and a G-protein-coupled receptor proteolytic site, and the 6-transmembrane channel proteins (PKD2, PKD2L1 and PKD2L2; TRPPs). Evidence indicates that the PKD1 proteins associate with the PKD2 proteins via coiled-coil domains. Here we use a transgenic mouse in which only cilia express a fluorophore and use it to record directly from primary cilia, and demonstrate that PKD1L1 and PKD2L1 form ion channels at high densities in several cell types. In conjunction with an accompanying manuscript, we show that the PKD1L1-PKD2L1 heteromeric channel establishes the cilia as a unique calcium compartment within cells that modulates established hedgehog pathways.

  16. Applying Theoretical Approach for Predicting the Selective Calcium Channel Blockers Pharmacological Parameter by Biopartitioning Micellar Chromatography

    Institute of Scientific and Technical Information of China (English)

    WANG Su-Min; YANG Geng-Liang; LI Zhi-Wei; LIU Hai-Yan; GUO Hui-Juan

    2006-01-01

    The usefulness of biopartitioning micellar chromatography (BMC) for predicting oral drug acute toxicity and apparent bioavailability was demonstrated. A logarithmic model (an LD50 model) and the second order polynomial models (apparent bioavailability model) have been obtained using the retention data of the selective calcium channel blockers to predict pharmacological properties of compounds. The use of BMC is simple, reproducible and can provide key information about the acute toxicity and transport properties of new compounds during the drug discovery process.

  17. Calcium-channel blockers for the prevention of stroke: from scientific evidences to the clinical practice

    Directory of Open Access Journals (Sweden)

    S. Taddei

    2013-05-01

    Full Text Available AIM OF THE REVIEW The present review aims to analyze the role of calcium-channel blockers, and particularly newer molecules, as first-line therapy for cerebrovascular disease. BACKGROUND Stroke is the leading cause of disability in the general population. Among traditional cardiovascular risk factors, hypertension has a key role in the genesis of both hemorrhagic and ischemic stroke and a direct correlation exists between blood pressure values and the risk of stroke. Moreover, blood pressure reduction has been demonstrated to be the most important route to reduce stroke incidence and recurrence. However, the mere reduction of blood pressure values does not normalize the cardiovascular risk of the hypertensive patient. It is therefore necessary to use drug classes that beyond their blood pressure-lowering effect have also an additional effect in terms of organ protection. Among these, calcium-channel blockers have a crucial profile. Firstly, they are effective in inducing left ventricular hypertrophy regression, with a strength at least equal to that of ACE-inhibitors. Secondly, they have an antithrombotic and an endothelium-protecting effect, mediated by their antioxidant activity. Finally, calcium-channel blockers are the most powerful drugs in preventing vascular remodeling. For these reasons this drug class has probably the strongest antiatherosclerotic effect, and it is the first-choice treatment mainly for cerebrovascular disease. Among different available calcium-channel blockers, the newer ones seem to possess pharmacokinetic characteristics allowing a more homogeneous 24 hours coverage as compared to older molecules, and preliminary data seem to suggest a greater beneficial effect also on left ventricular hypertrophy and lower incidence of side effects. CONCLUSIONS Although blood pressure reduction is the main tool to reduce cerebrovascular risk in hypertensive patients, some drug classes, such as calciumchannel blockers, seem to provide

  18. Anti-Convulsant Activity of Boerhaavia diffusa: Plausible Role of Calcium Channel Antagonism

    OpenAIRE

    Mandeep Kaur; Rajesh Kumar Goel

    2011-01-01

    “Ethnopharmacological” use of roots of Boerhaavia diffusa (B. diffusa) in the treatment of epilepsy in Nigerian folk medicine and reports showing the presence of a calcium channel antagonistic compound “liriodendrin” in its roots, led us to undertake the present study. The study was designed to investigate the methanolic root extract of B. diffusa and its different fractions including liriodendrin-rich fraction for exploring the possible role of liriodendrin in its anti-convulsant activity. A...

  19. Lavender Oil-Potent Anxiolytic Properties via Modulating Voltage Dependent Calcium Channels

    OpenAIRE

    2013-01-01

    Recent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs) as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, bioc...

  20. Expression of the apoptotic calcium channel P2X7 in the glandular epithelium.

    Science.gov (United States)

    Slater, Michael; Danieletto, Suzanne; Barden, Julian A

    2005-03-01

    In the current study, expression of the apoptotic calcium channel receptor P2X(7) and prostate-specific antigen (PSA) levels were studied in biopsy cores from 174 patients as well as 20 radical prostatectomy cases. In clinical biopsies, we have previously demonstrated that P2X(1 )and P2X(2) calcium channel receptors are absent from normal prostate epithelium that does not progress to prostate cancer within 5 years. In cases that did progress to prostate cancer however, P2X(1 )and P2X(2) labeling was observed in a stage-specific manner first in the nucleus, then the cytoplasm and finally on the apical epithelium, as prostate cancer developed. These markers were present up to 5 years before cancer was detectable by the usual morphological criteria (Gleason grading) as determined by H and E staining. In the current study, the apoptotic calcium channel receptor P2X(7) yielded similar results to that of P2X(1) and P2X(2). Using radical prostatectomy tissue sections as well as biopsies, these changes in calcium channel metabolism were noted throughout the prostate, indicating a field effect. This finding suggests that the presence of a prostate tumor could be detected without the need for direct sampling of tumor tissue, leading to detection of false negative cases missed by H or E stain. The reliability of PSA levels as a prognostic indicator has been questioned in recent years. In the current study, PSA levels were correlated with the P2X(7) labeling results. All patients who exhibited no P2X(7) labeling had a prostatic serum antigen (PSA) level of 2. This finding suggests that increasing PSA may be an accurate indicator of cancer development.

  1. Effects of Calcium Channel Blockers on Antidepressant Action of Alprazolam and Imipramine

    Directory of Open Access Journals (Sweden)

    Gorash ZM

    2007-01-01

    Full Text Available Alprazolam is effective as an anxiolytic and in the adjunct treatment of depression. In this study, the effects of calcium channel antagonists on the antidepressant action of alprazolam and imipramine were investigated. A forced swimming maze was used to study behavioral despair in albino mice. Mice were divided into nine groups (n = 7 per group. One group received a single dose of 1% Tween 80; two groups each received a single dose of the antidepressant alone (alprazolam or imipramine; two groups each received a single dose of the calcium channel blocker (nifedipine or verapamil; four groups each received a single dose of the calcium channel blocker followed by a single dose of the antidepressant (with same doses used for either in the previous four groups. Drug administration was performed concurrently on the nine groups. Our data confirmed the antidepressant action of alprazolam and imipramine. Both nifedipine and verapamil produced a significant antidepressant effect (delay the onset of immobility when administered separately. Verapamil augmented the antidepressant effects of alprazolam and imipramine (additive antidepressant effect. This may be due to the possibility that verapamil might have antidepressant-like effect through different mechanism. Nifedipine and imipramine combined led to a delay in the onset of immobility greater than their single use but less than the sum of their independent administration. This may be due to the fact that nifedipine on its own might act as an antidepressant but blocks one imipramine mechanism that depends on L-type calcium channel activation. Combining nifedipine with alprazolam produced additional antidepressant effects, which indicates that they exert antidepressant effects through different mechanisms.

  2. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct.

    Science.gov (United States)

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30(-/-) mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca(2+)]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30(-/-) mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca(2+)]i in wild type CCDs. This response was blunted in Cx30(-/-) CCDs ([Ca(2+)]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca(2+)]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca(2+)]i oscillations in free-flowing CDs of wild type but not Cx30(-/-) mice. The [Ca(2+)]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption.

  3. Deltamethrin Inhibits the Human T-type Voltage-Sensitive Calcium Channel (Cav3.2

    Directory of Open Access Journals (Sweden)

    Steven B. Symington

    2009-01-01

    Full Text Available The goal of this study was to determine the effect of deltamethrin, a pyrethroid insecticide, on CaV3.2, a human T-type voltage-sensitive calcium channel expressed in Xenopus laevis (X.laevis oocytes. Cav3.2 cDNA was transcribed into cRNA; the cRNA was then injected into X.laevis oocytes and electrophysiologically characterized using the two-electrode voltage clamp technique with Ba2+ as a charge carrier. Deltamethrin (10-7 M reduced peak current in a nonreversible manner compared to the untreated control, but had no effect on the voltagedependent activation and inactivation kinetics. These findings confirm that human CaV3.2 is a target for deltamethrin and quite possibly other pyrethroid insecticides. These studies provide insight into the molecular mechanisms of the effect that pyrethroids have on voltage-sensitive calcium channels in general. This information will allow a more complete understanding of the molecular and cellular nature of pyrethroid-induced toxicity and expand our knowledge of the structure-activity relationships of pyrethroids with regard to their action on voltage-sensitive calcium channels.

  4. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  5. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR

    Directory of Open Access Journals (Sweden)

    Mercè eIzquierdo-Serra

    2013-03-01

    Full Text Available A wide range of light-activated molecules (photoswitches and phototriggers have been used to the study of computational properties of an isolated neuron by acting pre and postsynaptically. However, new tools are being pursued to elicit a presynaptic calcium influx that triggers the release of neurotransmitters, most of them based in calcium-permeable Channelrhodopsin-2 mutants. Here we describe a method to control exocytosis of synaptic vesicles through the use of a light-gated glutamate receptor (LiGluR, which has recently been demonstrated that supports secretion by means of calcium influx in chromaffin cells. Expression of LiGluR in hippocampal neurons enables reversible control of neurotransmission with light, and allows modulating the firing rate of the postsynaptic neuron with the wavelength of illumination. This method may be useful for the determination of the complex transfer function of individual synapses.

  6. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release.

    Science.gov (United States)

    Hu, H; Shao, L R; Chavoshy, S; Gu, N; Trieb, M; Behrens, R; Laake, P; Pongs, O; Knaus, H G; Ottersen, O P; Storm, J F

    2001-12-15

    Large-conductance Ca(2+)-activated K(+) channels (BK, also called Maxi-K or Slo channels) are widespread in the vertebrate nervous system, but their functional roles in synaptic transmission in the mammalian brain are largely unknown. By combining electrophysiology and immunogold cytochemistry, we demonstrate the existence of functional BK channels in presynaptic terminals in the hippocampus and compare their functional roles in somata and terminals of CA3 pyramidal cells. Double-labeling immunogold analysis with BK channel and glutamate receptor antibodies indicated that BK channels are targeted to the presynaptic membrane facing the synaptic cleft in terminals of Schaffer collaterals in stratum radiatum. Whole-cell, intracellular, and field-potential recordings from CA1 pyramidal cells showed that the presynaptic BK channels are activated by calcium influx and can contribute to repolarization of the presynaptic action potential (AP) and negative feedback control of Ca(2+) influx and transmitter release. This was observed in the presence of 4-aminopyridine (4-AP, 40-100 microm), which broadened the presynaptic compound action potential. In contrast, the presynaptic BK channels did not contribute significantly to regulation of action potentials or transmitter release under basal experimental conditions, i.e., without 4-AP, even at high stimulation frequencies. This is unlike the situation in the parent cell bodies (CA3 pyramidal cells), where BK channels contribute strongly to action potential repolarization. These results indicate that the functional role of BK channels depends on their subcellular localization.

  7. Quantitative Structure-Activity Relationship Studies of 4-Imidazolyl- 1,4-dihydropyridines as Calcium Channel Blockers

    Directory of Open Access Journals (Sweden)

    Farzin Hadizadeh

    2013-08-01

    Conclusion: The predictive ability of the model was found to be satisfactory and could be used for designing a similar group of 1,4- dihydropyridines , based on a pyridine structure core which can block calcium channels.

  8. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.

    Science.gov (United States)

    Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian

    2014-10-06

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle.

  9. Comparison of electrophysiological effects of calcium channel blockers on cardiac repolarization.

    Science.gov (United States)

    Lee, Hyang-Ae; Hyun, Sung-Ae; Park, Sung-Gurl; Kim, Ki-Suk; Kim, Sung Joon

    2016-01-01

    Dihydropyridine (DHP) calcium channel blockers (CCBs) have been widely used to treat of several cardiovascular diseases. An excessive shortening of action potential duration (APD) due to the reduction of Ca(2+) channel current (I Ca) might increase the risk of arrhythmia. In this study we investigated the electrophysiological effects of nicardipine (NIC), isradipine (ISR), and amlodipine (AML) on the cardiac APD in rabbit Purkinje fibers, voltage-gated K(+) channel currents (I Kr, I Ks) and voltage-gated Na(+) channel current (I Na). The concentration-dependent inhibition of Ca(2+) channel currents (I Ca) was examined in rat cardiomyocytes; these CCBs have similar potency on I Ca channel blocking with IC50 (the half-maximum inhibiting concentration) values of 0.142, 0.229, and 0.227 nM on NIC, ISR, and AML, respectively. However, ISR shortened both APD50 and APD90 already at 1 µM whereas NIC and AML shortened APD50 but not APD90 up to 30 µM. According to ion channel studies, NIC and AML concentration-dependently inhibited I Kr and I Ks while ISR had only partial inhibitory effects (NIC and AML could compensate for the AP shortening effects due to the block of I Ca.

  10. Degradation and drug release in calcium polyphosphate bioceramics: an MRI-based characterization.

    Science.gov (United States)

    Bray, J M; Filiaggi, M J; Bowen, C V; Beyea, S D

    2012-10-01

    Degradable, bioceramic bone implants made of calcium polyphosphate (CPP) hold potential for controlled release of therapeutic agents in the treatment of localized bone disease. Magnetic resonance imaging techniques for non-invasively mapping fluid distribution, T(1) and T(2) relaxation times and the apparent diffusion coefficient were performed in conjunction with a drug elution protocol to resolve free and bound water components within the material microstructure in two CPP formulations (G1 and G2). The T(2) maps provided the most accurate estimates of free and bound water, and showed that G1 disks contained a detectable free water component at all times, with drug release dominated by a Fickian diffusion mechanism. Drug release from G2 disks was characterized by a combined diffusional/structural relaxation mechanism, which may be related to the gradual infiltration of a free water component associated with swelling and/or chemical degradation.

  11. Inositol trisphosphate and calcium signalling

    Science.gov (United States)

    Berridge, Michael J.

    1993-01-01

    Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals. It operates through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle. This family of intracellular calcium channels displays the regenerative process of calcium-induced calcium release responsible for the complex spatiotemporal patterns of calcium waves and oscillations. Such a dynamic signalling pathway controls many cellular processes, including fertilization, cell growth, transformation, secretion, smooth muscle contraction, sensory perception and neuronal signalling.

  12. The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence.

    Directory of Open Access Journals (Sweden)

    Patrícia Alves de Castro

    Full Text Available Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Calcium homeostasis and signaling is essential for numerous biological processes and also influences A. fumigatus pathogenicity. The presented study characterized the function of the A. fumigatus homologues of three Saccharomyces cerevisiae calcium channels, voltage-gated Cch1, stretch-activated Mid1 and vacuolar Yvc1. The A. fumigatus calcium channels cchA, midA and yvcA were regulated at transcriptional level by increased calcium levels. The YvcA::GFP fusion protein localized to the vacuoles. Both ΔcchA and ΔmidA mutant strains showed reduced radial growth rate in nutrient-poor minimal media. Interestingly, this growth defect in the ΔcchA strain was rescued by the exogenous addition of CaCl2. The ΔcchA, ΔmidA, and ΔcchA ΔmidA strains were also sensitive to the oxidative stress inducer, paraquat. Restriction of external Ca(2+ through the addition of the Ca(2+-chelator EGTA impacted upon the growth of the ΔcchA and ΔmidA strains. All the A. fumigatus ΔcchA, ΔmidA, and ΔyvcA strains demonstrated attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Infection with the parental strain resulted in a 100% mortality rate at 15 days post-infection, while the mortality rate of the ΔcchA, ΔmidA, and ΔyvcA strains after 15 days post-infection was only 25%. Collectively, this investigation strongly indicates that CchA, MidA, and YvcA play a role in A. fumigatus calcium homeostasis and virulence.

  13. Calcium binding-mediated sustained release of minocycline from hydrophilic multilayer coatings targeting infection and inflammation.

    Directory of Open Access Journals (Sweden)

    Zhiling Zhang

    Full Text Available Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca(2+ is less stable at acidic pH, enabling 'smart' drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca(2+ concentration, and Ca(2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca(2+ binding affinity, enabling its use in a variety of biomedical applications.

  14. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.

    Science.gov (United States)

    Ahmed, I; Parsons, A J; Palmer, G; Knowles, J C; Walker, G S; Rudd, C D

    2008-09-01

    Composites comprising a biodegradable polymeric matrix and a bioactive filler show considerable promise in the field of regenerative medicine, and could potentially serve as degradable bone fracture fixation devices, depending on the properties obtained. Therefore, glass fibres from a binary calcium phosphate (50P(2)O(5)+50CaO) glass were used to reinforce polycaprolactone, at two different volume fractions (V(f)). As-drawn, non-treated and heat-treated fibres were assessed. Weight loss, ion release and the initial mechanical properties of the fibres and composites produced have been investigated. Single fibre tensile testing revealed a fibre strength of 474MPa and a tensile modulus of 44GPa. Weibull analysis suggested a scale value of 524. The composites yielded flexural strength and modulus of up to 30MPa and 2.5GPa, respectively. These values are comparable with human trabecular bone. An 8% mass loss was seen for the lower V(f) composite, whereas for the two higher V(f) composites an approximate 20% mass loss was observed over the course of the 5week study. A plateau in the degradation profile at 350h indicated that fibre dissolution was complete at this interval. This assertion was further supported via ion release studies. The leaching of fibres from the composite created a porous structure, including continuous channels within the polymer matrix. This offers further scope for tailoring scaffold development, as cells from the surrounding tissue may be induced to migrate into the resulting porous matrix.

  15. Inhibitors of arachidonate-regulated calcium channel signaling suppress triggered activity induced by the late sodium current.

    Science.gov (United States)

    Wolkowicz, Paul; Umeda, Patrick K; Sharifov, Oleg F; White, C Roger; Huang, Jian; Mahtani, Harry; Urthaler, Ferdinand

    2014-02-05

    Disturbances in myocyte calcium homeostasis are hypothesized to be one cause for cardiac arrhythmia. The full development of this hypothesis requires (i) the identification of all sources of arrhythmogenic calcium and (ii) an understanding of the mechanism(s) through which calcium initiates arrhythmia. To these ends we superfused rat left atria with the late sodium current activator type II Anemonia sulcata toxin (ATXII). This toxin prolonged atrial action potentials, induced early afterdepolarization, and provoked triggered activity. The calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphon-amide) suppressed ATXII triggered activity but its inactive congener KN-92 (2-[N-(4-methoxy benzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) did not. Neither drug affected normal atrial contractility. Calcium entry via L-type channels or calcium leakage from sarcoplasmic reticulum stores are not critical for this type of ectopy as neither verapamil ((RS)-2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl]-(methyl)amino}-2-prop-2-ylpentanenitrile) nor ryanodine affected ATXII triggered activity. By contrast, inhibitors of the voltage independent arachidonate-regulated calcium (ARC) channel and the store-operated calcium channel specifically suppressed ATXII triggered activity without normalizing action potentials or affecting atrial contractility. Inhibitors of cytosolic calcium-dependent phospholipase A2 also suppressed triggered activity suggesting that this lipase, which generates free arachidonate, plays a key role in ATXII ectopy. Thus, increased left atrial late sodium current appears to activate atrial Orai-linked ARC and store operated calcium channels, and these voltage-independent channels may be unexpected sources for the arrhythmogenic calcium that underlies triggered activity.

  16. Role of low voltage activated calcium channels in neuritogenesis and active migration of embryonic neural progenitor cells.

    Science.gov (United States)

    Louhivuori, Lauri M; Louhivuori, Verna; Wigren, Henna-Kaisa; Hakala, Elina; Jansson, Linda C; Nordström, Tommy; Castrén, Maija L; Akerman, Karl E

    2013-04-15

    The central role of calcium influx and electrical activity in embryonic development raises important questions about the role and regulation of voltage-dependent calcium influx. Using cultured neural progenitor cell (NPC) preparations, we recorded barium currents through voltage-activated channels using the whole-cell configuration of the patch-clamp technique and monitored intracellular free calcium concentrations with Fura-2 digital imaging. We found that NPCs as well as expressing high-voltage-activated (HVA) calcium channels express functional low-threshold voltage-dependent calcium channels in the very early stages of differentiation (5 h to 1 day). The size of the currents recorded at -50 versus -20 mV after 1 day in differentiation was dependent on the nature of the charge carrier. Peak currents measured at -20 mV in the presence 10 mM Ca2+ instead of 10 mM Ba2+ had a tendency to be smaller, whereas the nature of the divalent species did not influence the amplitude measured at -50 mV. The T-type channel blockers mibefradil and NNC 55-0396 significantly reduced the calcium responses elicited by depolarizing with extracellular potassium, while the overall effect of the HVA calcium channel blockers was small at differentiation day 1. At differentiation day 20, the calcium responses were effectively blocked by nifedipine. Time-lapse imaging of differentiating neurospheres cultured in the presence of low-voltage-activated (LVA) blockers showed a significant decrease in the number of active migrating neuron-like cells and neurite extensions. Together, these data provide evidence that LVA calcium channels are involved in the physiology of differentiating and migrating NPCs.

  17. Synthesis of porous poly(acrylamide hydrogels using calcium carbonate and its application for slow release of potassium nitrate

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Porous poly(acrylamide was synthesized using calcium carbonate microparticles and subsequent acid treatment to remove the calcium carbonate. Methylenebisacrylamide and ammonium persulfate/sodium metabisulfite were used as crosslinking agent and redox initiator, respectively. The porous structure of resulted hydrogels was confirmed using SEM micrographs. The effect of methylenebisacrylamide concentration and calcium carbonate amount on the swelling of the hydrogels was investigated. The results showed that the effect of methylenebisacrylamide and calcium carbonate variables on the swelling is reverse. The hydrogels were subsequently utilized for the loading of potassium nitrate. Potassium nitrate as active agent was loaded into hydrogels and subsequently the release of this active agent was investigated. In these series of investigation, the effect of content of loading, methylenebisacrylamide and calcium carbonate amount on the release of potassium nitrate from hydrogels was investigated.

  18. Non-cardiogenic pulmonary edema and life-threatening shock due to calcium channel blocker overdose: a case report and clinical review.

    Science.gov (United States)

    Siddiqi, Tauseef Afaq; Hill, Jennifer; Huckleberry, Yvonne; Parthasarathy, Sairam

    2014-02-01

    Calcium channel blockers (CCBs) overdose can be life-threatening when manifest as catastrophic shock and non-cardiogenic pulmonary edema. We describe a case of massive overdose of multiple medications, including sustained-release verapamil, which was resistant to conventional support. Initial treatment for CCB overdose is primarily supportive, and includes fluid resuscitation. The mechanism of non-cardiogenic pulmonary edema is not well known, and reported cases have been successfully treated with mechanical ventilation. Circulatory shock may fail to respond to atropine, glucagon, and calcium in severely poisoned patients, and vasopressors are usually required. Attempting to overcome calcium-channel antagonism with the supra-therapeutic doses of calcium salts is clinically indicated to reverse hypotension and bradycardia. There is evidence that hyperinsulinemia-euglycemia therapy is superior to other therapies for CCB poisoning, and the mechanism is thought to be the insulin-mediated active transport of glucose into the cells, which counters the CCB-induced intra-cellular carbohydrate-deficient state. Conventional decontamination measures are ineffective in accelerating clearance of CCB. Experience with intravenous lipid emulsion for lipophilic drug overdose, such as verapamil, is limited, but has been proposed as a rescue therapy and might improve cardiac inotropy through intravascular sequestration of the lipophilic CCB.

  19. Correlated ions in a calcium channel model: a Poisson-Fermi theory.

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2013-10-10

    We derive a continuum model, called the Poisson-Fermi equation, of biological calcium channels (of cardiac muscle, for example) designed to deal with crowded systems in which ionic species and side chains nearly fill space. The model is evaluated in three dimensions. It includes steric and correlation effects and is derived from classical hard-sphere lattice models of configurational entropy of finite size ions and solvent molecules. The maximum allowable close packing (saturation) condition is satisfied by all ionic species with different sizes and valences in a channel system, as shown theoretically and numerically. Unphysical overcrowding ("divergence") predicted by the Gouy-Chapman diffuse model (produced by a Boltzmann distribution of point charges with large potentials) does not occur with the Fermi-like distribution. Using probability theory, we also provide an analytical description of the implicit dielectric model of ionic solutions that gives rise to a global and a local formula for the chemical potential. In this primitive model, ions are treated as hard spheres and solvent molecules are described as a dielectric medium. The Poisson-Fermi equation is a local formula dealing with different correlations at different places. The correlation effects are apparent in our numerical results. Our results show variations of dielectric permittivity from bath to channel pore described by a new dielectric function derived as an output from the Poisson-Fermi analysis. The results are consistent with existing theoretical and experimental results. The binding curve of Poisson-Fermi is shown to match Monte Carlo data and illustrates the anomalous mole fraction effect of calcium channels, an effective blockage of permeation of sodium ions by a tiny concentration (or number) of calcium ions.

  20. Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Blain, Alison; Greally, Elizabeth;

    2011-01-01

    calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset...... in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight...

  1. Effects of glycoprotein Ⅱb/Ⅲa antagonists and chloride channel blockers on platelet cytoplasmic free calcium

    Institute of Scientific and Technical Information of China (English)

    YIN Song-mei; XIE Shuang-feng; NIE Da-nian; LI Yi-qing; LI Hai-ming; MA Li-ping; WANG Xiu-ju; WU Yu-dan; FENG Jian-hong

    2005-01-01

    @@ Platelet activation plays an important role in thrombosis. Platelet glycoprotein Ⅱb/Ⅲa (GP Ⅱb/Ⅲa) is the receptor of fibrinogen. Platelet cross-linking with fibrinogen through GPⅡb/Ⅲa is the process of thrombosis. Ca2+ is an important intracellular second messenger in platelet activation. It has been reported that GPⅡb/Ⅲa receptors were involved in the calcium influx of activated platelet, and GPⅡb/Ⅲa receptor had characteristics of calcium channel or an adjacent calcium channel.

  2. Formaldehyde increases intracellular calcium concentration in primary cultured hippocampal neurons partly through NMDA receptors and T-type calcium channels

    Institute of Scientific and Technical Information of China (English)

    Ye-Nan Chi; Xu Zhang; Jie Cai; Feng-Yu Liu; Guo-Gang Xing; You Wan

    2012-01-01

    Objective Formaldehyde at high concentrations is a contributor to air pollution.It is also an endogenous metabolic product in cells,and when beyond physiological concentrations,has pathological effects on neurons.Formaldehyde induces mis-folding and aggregation of neuronal tau protein,hippocampal neuronal apoptosis,cognitive impairment and loss of memory functions,as well as excitation of peripheral nociceptive neurons in cancer pain models.Intracellular calcium ([Ca2+]i) is an important intracellular messenger,and plays a key role in many pathological processes.The present study aimed to investigate the effect of formaldehyde on [Ca2+]i and the possible involvement of N-methyl-D-aspartate receptors (NMDARs) and T-type Ca2+ channels on the cell membrane.Methods Using primary cultured hippocampal neurons as a model,changes of [Ca2+]i in the presence of formaldehyde at a low concentration were detected by confocal laser scanning microscopy.Results Formaldehyde at 1 mmol/L approximately doubled [Ca2+]i.(2R)-amino-5-phosphonopentanoate (AP5,25 μtmol/L,an NMDAR antagonist) and mibefradil (MIB,1 μtmol/L,a T-type Ca2+ channel blocker),given 5 min after formaldehyde perfusion,each partly inhibited the formaldehyde-induced increase of [Ca2+]i,and this inhibitory effect was reinforced by combined application of AP5 and MIB.When applied 3 min before formaldehyde perfusion,AP5 (even at 50 μmol/L) did not inhibit the formaldehyde-induced increase of [Ca2+]i,but MIB (1 μmol/L) significantly inhibited this increase by 70%.Conclusion These results suggest that formaldehyde at a low concentration increases [Ca2+]i in cultured hippocampal neurons; NMDARs and T-type Ca2+ channels may be involved in this process.

  3. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK channels

    OpenAIRE

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A.; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S; Klyachko, Vitaly A.

    2013-01-01

    Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely r...

  4. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    CERN Document Server

    Kaufman, I; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-01-01

    We use Brownian dynamics simulations to study the permeation properties of a generic electrostatic model of a biological ion channel as a function of the fixed charge Q_f at its selectivity filter. We reconcile the recently-discovered discrete calcium conduction bands M0 (Q_f=1e), M1 (3e), M2 (5e) with the set of sodium conduction bands L0 (0.5-0.7e), L1 (1.5-2e) thereby obtaining a completed pattern of conduction and selectivity bands v Q_f for the sodium-calcium channels family. An increase of Q_f leads to an increase of calcium selectivity: L0 (sodium selective, non-blocking channel) -> M0 (non-selective channel) -> L1 (sodium selective channel with divalent block) -> M1 (calcium selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L1 band is identified with the eukaryotic (DEKA) sodium channel, and L0 (speculatively) with the bacterial NaChBac channel. The scheme created is able to account for the experimentally observed mutation-induced ...

  5. Mechanism of histamine release from rat mast cells induced by the ionophore A23187: effects of calcium and temperature

    DEFF Research Database (Denmark)

    Johansen, Torben

    1978-01-01

    1 The mechanism of histamine release from a pure population of rat mast cells induced by the lipid soluble antibiotic, A23187, has been studied and compared with data for anaphylactic histamine release reported in the literature. 2 Histamine release induced by A23187 in the presence of calcium 10......(-3) mol/l was completed in 10 minutes. By preincubation of the mast cells with A23187 for 10 min in the absence of calcium the histamine release induced by calcium, 10(-3) mol/l or 5 x 10(-3) mol/l, was completed in 90 s and 45 s, respectively. 3 A23187-induced histamine release was maximal with calcium...... 10(-3) mol/l when the cells were incubated at 33 to 39 degrees C for 10 minutes. 4 The cellular mechanism, which was stimulated by A23187 and calcium for the release of histamine, was irreversibly inactivated by incubation at 45 degrees C. 5 An inhibition of energy metabolism was excluded...

  6. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.

    Science.gov (United States)

    Vaisey, George; Miller, Alexandria N; Long, Stephen B

    2016-11-22

    Cytoplasmic calcium (Ca(2+)) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca(2+)-independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca(2+) activation and ion selectivity. A "Ca(2+) clasp" within the channel's intracellular region acts as a sensor of cytoplasmic Ca(2+). Alanine substitutions within a hydrophobic "neck" of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca(2+). We conclude that the primary function of the neck is as a "gate" that controls chloride permeation in a Ca(2+)-dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel's ion selectivity. We find that mutation of a cytosolic "aperture" of the pore does not perturb the Ca(2+) dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single "selectivity filter," in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.

  7. Antioxidant effect of T-type calcium channel blockers in gastric injury.

    Science.gov (United States)

    Bilici, Dilek; Banoğlu, Z Nur; Kiziltunç, Ahmet; Avci, Bahattin; Ciftçioğlu, Akif; Bilici, Sefa

    2002-04-01

    It is known that calcium ion has an important role in the cellular function. For this reason, calcium channel blockers may have a protective action against gastric injury which is induced by various stimuli. In this study, the influence of mibefradil on ethanol-induced gastric injury was investigated in rats. Mibefradil was given at a dose 50 mg/kg intraperitoneally 30 min before administration of 1 ml absolute ethanol given by gavage. We compared this effect of mibefradil with that of omeprazol. Ethanol-induced mucosal damage was evaluated using three different approaches: analysis of biochemical parameters and pathologic and macroscopic investigation. It was found that pretreatment with mibefradil significantly reduced ethanol-induced macroscopic, pathologic, and biochemical changes in the gastric mucosa. In conclusion, it is speculated that this findings may prove important in the development of new and improved therapies for the treatment and prevention of gastric ulcers in humans.

  8. Calcium Channel Blockers and Esophageal Sclerosis: Should We Expect Exacerbation of Interstitial Lung Disease

    Directory of Open Access Journals (Sweden)

    Charalampos Seretis

    2012-01-01

    Full Text Available Esophageal sclerosis is the most common visceral manifestation of systemic sclerosis, resulting in impaired esophageal clearance and retention of ingested food; in addition, co-existence of lung fibrosis with esophageal scleroderma is not uncommon. Both the progression of generalized connective tissue disorders and the damaging effect of chronic aspiration due to esophageal dysmotility appear to be involved in this procedure of interstitial fibrosis. Nifedipine is a widely prescribed calcium antagonist in a significant percentage of rheumatologic patients suffering from Raynaud syndrome, in order to inhibit peripheral vasospasm. Nevertheless, blocking calcium channels has proven to contribute to exacerbation of gastroesophageal reflux, which consequently can lead to chronic aspiration. We describe the case of severe exacerbation of interstitial lung disease in a 76-year-old female with esophageal sclerosis who was treated with oral nifedipine for Raynaud syndrome.

  9. Calcium channel blocker prevents stress-induced activation of renin and aldosterone in conscious pig

    Energy Technology Data Exchange (ETDEWEB)

    Ceremuzynski, L.K.; Klos, J.; Barcikowski, B.; Herbaczynska-Cedro, K. (Department of Cardiology, Postgraduate Medical School, Warsaw (Poland))

    1991-06-01

    A considerable amount of data suggest the involvement of calcium-mediated processes in the activation of the renin-angiotensin-aldosterone (RAA) cascade. To investigate the effect of calcium-channel inhibition on the RAA system, the authors studied 21 conscious pigs. Blood renin and aldosterone levels increased by subjecting animals to 24 hours of immobilization stress. Renin and aldosterone levels were repeatedly measured by radioimmunoassay in blood samples taken periodically over 24 hours from a chronically implanted arterial cannula. Pretreatment of the animals (N = 11) with nisoldipine, 2 {times} 20 mg p.o. daily for 2 days before and on the day of immobilization, transiently attenuated the stress-induced increase of plasma renin activity and completely prevented the rise of aldosterone, as compared to nontreated controls (N = 10). The finding that nisoldipine suppresses RAA activation induced by a nonpharmacologic stimulus in the conscious intact animal may have clinical implications.

  10. Nitric oxide regulates neuronal activity via calcium-activated potassium channels.

    Directory of Open Access Journals (Sweden)

    Lei Ray Zhong

    Full Text Available Nitric oxide (NO is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.

  11. Responses of channel catfish (Ictalurus punctatus) swim-up fry to dietary calcium in soft and hard water.

    Science.gov (United States)

    Scarpa, J; Gatlin, D M

    1993-12-01

    1. Responses of channel catfish (Ictalurus punctatus) swim-up fry to dietary calcium in soft ( 100 mg/l as CaCO3) water were determined by feeding purified egg-white diets containing 0, 0.5, 1.0, or 2.0% calcium from CaCO3 for 8 weeks. 2. Catfish fry fed the basal diet (0.03% Ca) in hard and soft water had lower whole-body ash and whole-body calcium concentrations but higher weight gain and survival than those fed calcium-supplemented diets. 3. Fry in soft water generally had lower whole-body ash, whole-body calcium, and survival, as well as a higher incidence of spinal deformities than fry in hard water. 4. Feeding higher levels of calcium to fry reared in soft water did not increase whole-body calcium levels or decrease spinal deformities to the levels observed for fry reared in hard water and fed supplemental calcium. 5. These data indicate that calcium derived solely from dietary or environmental sources was not sufficient for optimum health of channel catfish fry.

  12. Sustained release of small molecules from carbon nanotube-reinforced monetite calcium phosphate cement.

    Science.gov (United States)

    Lin, Boren; Zhou, Huan; Leaman, Douglas W; Goel, Vijay K; Agarwal, Anand K; Bhaduri, Sarit B

    2014-10-01

    The interest in developing calcium phosphate cement (CPC) as a drug delivery system has risen because of its capability to achieve local and controlled treatment to the site of the bone disease. The purpose of this study was to investigate the release pattern of drug-carrying carboxylic acid-functionalized multi-walled carbon nanotube (MWCNT)-reinforced monetite (DCPA, CaHPO4)-based CPC. Z-Leu-Leu-Leu-al (MG132), a small peptide molecule inhibiting NF-κB-mediated osteoclastic resorption, was used as a model drug. MG132 was added into the cement during setting and released into the medium used to culture indicator cells. Significant cell death was observed in osteoblast MC3T3-E1 cells cultured in the medium incubated with MG132-loaded CPC; however, with the presence of MWCNTs in the cement, the toxic effect was not detectable. NF-κB activation was quantified using a NF-κB promoter-driving luciferase reporter in human embryonic kidney 293 cells. The medium collected after incubation with drug-incorporated CPC with or without MWCNT inhibited TNFα-induced NF-κB activation indicating that the effective amount of MG132 was released. CPC/drug complex showed a rapid release within 24h whereas incorporation of MWCNTs attenuated this burst release effect. In addition, suppression of TNFα-induced osteoclast differentiation in RAW 264.7 cell culture also confirmed the sustained release of MWCNT/CPC/drug. Our data demonstrated the drug delivery capability of this cement composite, which can potentially be used to carry therapeutic molecules to improve bone regeneration in conjunction with its fracture stabilizing function. Furthermore, it suggested a novel approach to lessen the burst release effect of the CPC-based drug delivery system by incorporating functionalized MWCNTs.

  13. ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct

    Directory of Open Access Journals (Sweden)

    Per eSvenningsen

    2013-10-01

    Full Text Available ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC and AQP2. Recently, we have shown that connexin (Cx 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30-/- mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i signaling in the CD. Cortical CDs (CCDs from wild type and Cx30-/- mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30-/- CCDs ([Ca2+]i increased only 1.2-fold, p

  14. Antischistosomal activity of a calcium channel antagonist on schistosomula and adult Schistosoma mansoni worms

    Directory of Open Access Journals (Sweden)

    Vanessa Silva-Moraes

    2013-08-01

    Full Text Available Current schistosomiasis control strategies are largely based on chemotherapeutic agents and a limited number of drugs are available today. Praziquantel (PZQ is the only drug currently used in schistosomiasis control programs. Unfortunately, this drug shows poor efficacy in patients during the earliest infection phases. The effects of PZQ appear to operate on the voltage-operated Ca2+channels, which are located on the external Schistosoma mansoni membrane. Because some Ca2+channels have dihydropyridine drug class (a class that includes nifedipine sensitivity, an in vitro analysis using a calcium channel antagonist (clinically used for cardiovascular hypertension was performed to determine the antischistosomal effects of nifedipine on schistosomula and adult worm cultures. Nifedipine demonstrated antischistosomal activity against schistosomula and significantly reduced viability at all of the concentrations used alone or in combination with PZQ. In contrast, PZQ did not show significant efficacy when used alone. Adult worms were also affected by nifedipine after a 24 h incubation and exhibited impaired motility, several lesions on the tegument and intense contractility. These data support the idea of Ca2+channels subunits as drug targets and favour alternative therapeutic schemes when drug resistance has been reported. In this paper, strong arguments encouraging drug research are presented, with a focus on exploring schistosomal Ca2+channels.

  15. COMPUTER AIDED DESIGN OF SELECTIVE CALCIUM CHANNEL BLOCKERS: USING PHARMACOPHORE - BASED AND DOCKING SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Reetu

    2012-03-01

    Full Text Available In the present study, 3-D QSAR analysis was performed on the previously synthesized and evaluated derivatives of novel 2-arylthiazolidinones as selective analgesic N-type calcium channel blockers. Calcium Channel blockers is the molecular target responsible for the treatment of neuropathic and inflammatory pain. The 3D-QSAR study based on the principle of the alignment of pharmacophoric features by PHASE module of Schrodinger suite has been carried out on the same set of calcium channel blockers. Statistically significant 3-D QSAR model (R2=0.9288 were generated using 21 molecules in the training set. The predictive ability of model was determined using a randomly chosen test set of 6 molecules which gave predictive correlation coefficients (R2pred of 0.946 for 3-D models, indicating good predictive power. PHASE pharmacophore hypothesis AAHR.13 may correspond very closely to the interactions recorded in the active site of the ligand bound complex. These studies produced models with high correlation coefficient and good predictive abilities. Docking studies were also carried out wherein these analogues were docked into the active sites of COX-2 to analyze the receptor-ligand interactions that confer selectivity for COX-2. Compound 2 have the highest dock score (-7.28. In the active site, there are some strong hydrogen-bonding interactions observed between residues GLU67, ALA103, ASP96, SER184 and ASP22. Additionally a correlation of the quantitative structure –activity relationship data and the docking results is found to validate each other and suggest the importance of the binding step in overall drug action.

  16. The role of L-type calcium channels in the development and expression of behavioral sensitization to ethanol.

    Science.gov (United States)

    Broadbent, Julie

    2013-10-11

    Behavioral sensitization is thought to play a significant role in drug addiction. L-type calcium channels have been implicated in sensitization to stimulant and opiate drugs but it is unclear if these channels also contribute to sensitization to ethanol. The effects of three L-type calcium channel blockers, nifedipine (1-7.5 mg/kg), diltiazem (12.5-50 mg/kg), and verapamil (12.5 and 25 mg/kg), on sensitization to ethanol (2 g/kg) were examined in DBA/2J mice. All three blockers reduced but did not prevent expression of sensitization. Only nifedipine blocked acquisition of sensitization. Nifedipine and verapamil decreased blood ethanol levels. The current findings suggest L-type calcium channels do not play a substantial role in sensitization to ethanol and that the neural mechanisms underlying sensitization to ethanol are distinct from those mediating sensitization to stimulants and opiates.

  17. Effect of Multimodal Pore Channels on Cargo Release from Mesoporous Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sushilkumar A. Jadhav

    2016-01-01

    Full Text Available Mesoporous silica nanoparticles (MSNs with multimodal pore channels were fully characterized by TEM, nitrogen adsorption-desorption, and DLS analyses. MSNs with average diameter of 200 nm with dual pore channel zones with pore diameters of 1.3–2.6 and 4 nm were tested for their use in drug delivery application. Important role of the multimodal pore systems present on MSNs on the quantitative release of model drug ibuprofen was investigated. The results obtained revealed that the release profile for ibuprofen clearly shows distinct zones which can be attributed to the respective porous channel zones present on the particles. The fluctuations in the concentration of ibuprofen during the prolonged release from MSNs were caused by the multimodal pore channel systems.

  18. POSITIONS OF CALCIUM CHANNEL BLOCKER LERCANIDIPINE ACCORDING TO EVIDENCE BASED CARDIOLOGY

    Directory of Open Access Journals (Sweden)

    Yu. V. Lukina

    2010-01-01

    Full Text Available Data of evidence based cardiology including results of international clinical trials on efficacy and safety of the modern calcium channel blocker (CCB, lercanidipine, are presented. Results of these trials show the firm position of lercanidipine in the modern cardiology and confirm that treatment with lercanidipine leads to significant reduction of systolic and diastolic blood pressure (BP with no effect on heart rate (HR. Peripheral edema (the common side effect of CCBs occurs rarer with lercanidipine treatment than this with any other CCB treatment. Lercanidipine can be recommended to patients with concomitant diseases due to its additional features.

  19. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B;

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  20. Incorporation of a controlled-release glass into a calcium phosphate cement.

    Science.gov (United States)

    Khairoun, I; Boltong, M G; Gil, F J; Driessens, F C; Planell, J A; Seijas, M M; Martínez, S

    1999-04-01

    A so-called controlled-release glass was synthesized occurring in the system CaO-Na2O-P2O5. A certain sieve fraction of this glass was incorporated in a calcium phosphate cement, of which the powder contained alpha-tricalcium phosphate (alpha-TCP), dicalcium phosphate (DCP) and precipitated hydroxyapatite (HA). The glass appeared to retard the cement setting slightly and it reduced considerably the compressive strength after aging in aqueous solutions which were continuously refreshed. Scanning electron microscope (SEM) pictures and X-ray diffraction (XRD) patterns of the samples after 5 weeks of aging showed that the glass was not dissolved but that large brushite crystals were formed. Thereby, aging in CaCl2 solutions resulted in more brushite formation than aging in NaCl solutions. The brushite crystals did not reinforce the cement. Neither was the aged glass-containing cement weaker than it was before the brushite formation right after complete setting. In conclusion, the incorporation of controlled-release glasses into a calcium phosphate cement and subsequent aging in aqueous solutions did not result in the formation of macropores in the cement structure, but that of brushite crystals. This incorporation reduced the compressive strength of the cement considerably.

  1. The omega-atracotoxins: selective blockers of insect M-LVA and HVA calcium channels.

    Science.gov (United States)

    Chong, Youmie; Hayes, Jessica L; Sollod, Brianna; Wen, Suping; Wilson, David T; Hains, Peter G; Hodgson, Wayne C; Broady, Kevin W; King, Glenn F; Nicholson, Graham M

    2007-08-15

    The omega-atracotoxins (omega-ACTX) are a family of arthropod-selective peptide neurotoxins from Australian funnel-web spider venoms (Hexathelidae: Atracinae) that are candidates for development as biopesticides. We isolated a 37-residue insect-selective neurotoxin, omega-ACTX-Ar1a, from the venom of the Sydney funnel-web spider Atrax robustus, with high homology to several previously characterized members of the omega-ACTX-1 family. The peptide induced potent excitatory symptoms, followed by flaccid paralysis leading to death, in acute toxicity tests in house crickets. Using isolated smooth and skeletal nerve-muscle preparations, the toxin was shown to lack overt vertebrate toxicity at concentrations up to 1 microM. To further characterize the target of the omega-ACTXs, voltage-clamp analysis using the whole-cell patch-clamp technique was undertaken using cockroach dorsal unpaired median neurons. It is shown here for the first time that omega-ACTX-Ar1a, and its homolog omega-ACTX-Hv1a from Hadronyche versuta, reversibly block both mid-low- (M-LVA) and high-voltage-activated (HVA) insect calcium channel (Ca(v)) currents. This block occurred in the absence of alterations in the voltage-dependence of Ca(v) channel activation, and was voltage-independent, suggesting that omega-ACTX-1 family toxins are pore blockers rather than gating modifiers. At a concentration of 1 microM omega-ACTX-Ar1a failed to significantly affect global K(v) channel currents. However, 1 microM omega-ACTX-Ar1a caused a modest 18% block of insect Na(v) channel currents, similar to the minor block of Na(v) channels reported for other insect Ca(v) channel blockers such as omega-agatoxin IVA. These findings validate both M-LVA and HVA Ca(v) channels as potential targets for insecticides.

  2. Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system.

    Science.gov (United States)

    Gymnopoulos, Marco; Cingolani, Lorenzo A; Pedarzani, Paola; Stocker, Martin

    2014-04-01

    Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up- or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development.

  3. Voltage and Calcium Dual Channel Optical Mapping of Cultured HL-1 Atrial Myocyte Monolayer

    Science.gov (United States)

    Zhao, Weiwei; Fast, Vladimir G.; Ye, Tong; Ai, Xun

    2015-01-01

    Optical mapping has proven to be a valuable technique to detect cardiac electrical activity on both intact ex vivo hearts and in cultured myocyte monolayers. HL-1 cells have been widely used as a 2-Dimensional cellular model for studying diverse aspects of cardiac physiology. However, it has been a great challenge to optically map calcium (Ca) transients and action potentials simultaneously from the same field of view in a cultured HL-1 atrial cell monolayer. This is because special handling and care is required to prepare healthy cells that can be electrically captured and optically mapped. Therefore, we have developed an optimal working protocol for dual channel optical mapping. In this manuscript, we have described in detail how to perform the dual channel optical mapping experiment. This protocol is a useful tool to enhance the understanding of action potential propagation and Ca kinetics in arrhythmia development. PMID:25867896

  4. 17β-Estradiol Regulation of the mRNA Expression of T-type Calcium Channel subunits: Role of Estrogen Receptor α and Estrogen Receptor β

    Science.gov (United States)

    Bosch, Martha A.; Hou, Jingwen; Fang, Yuan; Kelly, Martin J.; Rønnekleiv., Oline K.

    2009-01-01

    Low voltage-activated (T-type) calcium channels are responsible for burst firing and transmitter release in neurons and are important for exocytosis and hormone secretion in pituitary cells. T-type channels contain an α1 subunit, of which there are three subtypes, Cav3.1, 3.2 and 3.3, and each subtype has distinct kinetic characteristics. Although 17β-estradiol modulates T-type calcium channel expression and function, little is known about the molecular mechanisms involved. Presently, we used real-time PCR quantification of RNA extracted from hypothalamic nuclei and pituitary in vehicle and E2-treated C57BL/6 mice to elucidate E2-mediated regulation of Cav3.1, 3.2 and 3.3 subunits. The three subunits were expressed in both the hypothalamus and the pituitary. E2 treatment increased the mRNA expression of Cav3.1 and 3.2, but not Cav3.3, in the medial preoptic area and the arcuate nucleus. In the pituitary, Cav3.1 was increased with E2-treatment and Cav3.2 and 3.3 were decreased. In order to examine whether the classical estrogen receptors (ERs) were involved in the regulation, we used ERα- and ERβ-deficient C57BL/6 mice and explored the effects of E2 on T-type channel subtypes. Indeed, we found that the E2-induced increase in Cav3.1 in the hypothalamus was dependent on ERα, whereas the E2 effect on Cav3.2 was dependent on both ERα and ERβ. However, the E2-induced effects in the pituitary were dependent on only the expression of ERα. The robust E2-regulation of the T-type calcium channels could be an important mechanism by which E2 increases the excitability of hypothalamic neurons and modulates pituitary secretion. PMID:19003958

  5. L-type calcium channels and calcium/calmodulin-dependent kinase II differentially mediate behaviors associated with nicotine withdrawal in mice.

    Science.gov (United States)

    Jackson, K J; Damaj, M I

    2009-07-01

    Smoking is a widespread health problem. Because the nicotine withdrawal syndrome is a major contributor to continued smoking and relapse, it is important to understand the molecular and behavioral mechanisms of nicotine withdrawal to generate more effective smoking cessation therapies. Studies suggest a role for calcium-dependent mechanisms, such as L-type calcium channels and calcium/calmodulin-dependent protein kinase II (CaMKII), in the effects of nicotine dependence; however, the role of these mechanisms in nicotine-mediated behaviors is unclear. Thus, the goal of this study was to elucidate the role of L-type calcium channels and CaMKII in nicotine withdrawal behaviors. Using both pharmacological and genetic methods, our results show that L-type calcium channels are involved in physical, but not affective, nicotine withdrawal behaviors. Although our data do provide evidence of a role for CaMKII in nicotine withdrawal behaviors, our pharmacological and genetic assessments yielded different results concerning the specific role of the kinase. Pharmacological data suggest that CaMKII is involved in somatic signs and affective nicotine withdrawal, and activity level is decreased after nicotine withdrawal, whereas the genetic assessments yielded results suggesting that CaMKII is involved only in the anxiety-related response, yet the kinase activity may be increased after nicotine withdrawal; thus, future studies are necessary to clarify the precise behavioral specifics of the relevance of CaMKII in nicotine withdrawal behaviors. Overall, our data show that L-type calcium channels and CaMKII are relevant in nicotine withdrawal and differentially mediate nicotine withdrawal behaviors.

  6. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity

    DEFF Research Database (Denmark)

    Lund, Trine Meldgaard; Ploug, K.B.; Iversen, Anne

    2015-01-01

    -hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown...... an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β...... to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release....

  7. Involvement of phospholipase C and intracellular calcium signaling in the gonadotropin-releasing hormone regulation of prolactin release from lactotrophs of tilapia (Oreochromis mossambicus)

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Weber, G M; Strom, C N;

    2005-01-01

    Gonadotropin-releasing hormone (GnRH) is a potent stimulator of prolactin (PRL) secretion in various vertebrates including the tilapia, Oreochromis mossambicus. The mechanism by which GnRH regulates lactotroph cell function is poorly understood. Using the advantageous characteristics of the teleost...... pituitary gland from which a nearly pure population of PRL cells can be isolated, we examined whether GnRH might stimulate PRL release through an increase in phospholipase C (PLC), inositol triphosphate (IP3), and intracellular calcium (Ca(i)2+) signaling. Using Ca(i)2+ imaging and the calcium-sensitive dye....... Secretion of tPRL(188) in response to cGnRH-II was suppressed by Ca2+ antagonists (TMB-8 and nifedipine). These data, along with our previous findings that show PRL release increases with a rise in Ca(i)2+, suggest that GnRH may elicit its PRL releasing effect by increasing Ca(i)2+. Furthermore, the rise...

  8. T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex.

    Science.gov (United States)

    Deleuze, Charlotte; David, François; Béhuret, Sébastien; Sadoc, Gérard; Shin, Hee-Sup; Uebele, Victor N; Renger, John J; Lambert, Régis C; Leresche, Nathalie; Bal, Thierry

    2012-08-29

    The thalamic output during different behavioral states is strictly controlled by the firing modes of thalamocortical neurons. During sleep, their hyperpolarized membrane potential allows activation of the T-type calcium channels, promoting rhythmic high-frequency burst firing that reduces sensory information transfer. In contrast, in the waking state thalamic neurons mostly exhibit action potentials at low frequency (i.e., tonic firing), enabling the reliable transfer of incoming sensory inputs to cortex. Because of their nearly complete inactivation at the depolarized potentials that are experienced during the wake state, T-channels are not believed to modulate tonic action potential discharges. Here, we demonstrate using mice brain slices that activation of T-channels in thalamocortical neurons maintained in the depolarized/wake-like state is critical for the reliable expression of tonic firing, securing their excitability over changes in membrane potential that occur in the depolarized state. Our results establish a novel mechanism for the integration of sensory information by thalamocortical neurons and point to an unexpected role for T-channels in the early stage of information processing.

  9. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

    Science.gov (United States)

    Castillo, Karen; Contreras, Gustavo F; Pupo, Amaury; Torres, Yolima P; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-04-14

    Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation.

  10. Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Jian-quan ZHENG; Xie-chuan WENG; Xiao-dan GAI; Jin LI; Wen-bin XIAO

    2004-01-01

    AIM: To investigate whether agmatine could selectively block a given type of the voltage-gated calcium channels (VGCC) and whether related receptors are involved in the blocking effect of agmatine on VGCC. METHODS: The whole-cell patch recording technique was performed to record VGCC currents in the cultured neonatal rat hippocampal neurons. RESULTS: Verapamil (100 μmol/L), a selective blocker of L-type calcium channel, significantly inhibited VGCC current by 80 %± 7 %. Agmatine (100 μmol/L) could further depress the remained currents by 25 %±6 %. The α2-adrenoceptor antagonist yohimbine (10 μmol/L) and the I2 imidazoline receptor antagonist idazoxon (10 and 40 μmol/L) had no significant effect on VGCC currents when used respectively. When the mixture of yohimbine and agmatine was applied, VGCC currents were still depressed remarkably. However, the blocking effect of agmatine was decreased by 29 %± 8 % in the presence of idazoxon (10 μmol/L). The effect of idazoxon did not increase at a higher concentration (40 μmol/L). CONCLUSION: Agmatine could block the L- and other types of VGCC currents in the cultured rat hippocampal neurons. Blocking effect of agmatine on VGCC was partially related to I2 imidazoline receptor and had no relationship with α2-adrenoceptors.

  11. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.

    Science.gov (United States)

    Liu, Shuyuan; Yue, Longtao; Gu, Wenrui; Li, Xiuyun; Zhang, Liuping; Sun, Shujuan

    2016-01-01

    Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).

  12. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.

    Directory of Open Access Journals (Sweden)

    Shuyuan Liu

    Full Text Available Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers, amlodipine (AML, nifedipine (NIF, benidipine (BEN and flunarizine (FNZ with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1 expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2. The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin and YVC1 (encoding calcium channel protein in vacuole membrane.

  13. Synergism of ochratoxin B and calcium-channel antagonist verapamil caused mitochondrial dysfunction.

    Science.gov (United States)

    Chatopadhyay, Pronobesh; Tariang, Banlumlang; Agnihotri, Amit; Veer, Vijay

    2014-09-01

    We examined the mechanism by which the ochratoxin B induced interaction with calcium-channel antagonist verapamil and mitochondrial dysfunction of the rat trachea in vitro experiment. The tracheas were cut into 2-3 mm wide rings and suspended in a tissue bath. Isometric tension was continuously measured with an isometric force transducer connected to a computer-based data acquisition system. Verapamil (1 × 10(-6) M) produced a concentration-dependent contraction response in rat's tracheal rings pre-contracted by acetylcholine. Incubation of rat's tracheal rings with the ochratoxin B significantly potentiated the contraction responses of verapamil. Verapamil and OTB accelerate the overloading of Ca(2+) in tracheal smooth muscle contributes the tissue toxicity as shown in electron microscopy and mitochondrial enzymes, through a mechanism that could involve perturbations of Ca(2+) homeostasis. These results proved that ochratoxin B is a potential vasoconstrictor mycotoxin with the presence of calcium-channel antagonist. In conclusion, disturbance of Ca(2+) homeostasis caused by OTA and plays a significant role in produces toxicity through mitochondrial enzyme inhibition.

  14. Calcium-channel blockers and other factors influencing delayed function in renal allografts.

    Science.gov (United States)

    Ferguson, C J; Hillis, A N; Williams, J D; Griffin, P J; Salaman, J R

    1990-01-01

    A retrospective analysis was undertaken to examine the influence of calcium-channel blocking drugs on early renal allograft function. Delayed function was defined as the need for dialysis or a reduction in serum creatinine of less than 15% within 4 days of transplantation. The drug histories of 172 patients were examined. After exclusions, the data from 138 patients were analysed. No patient was taking any calcium-channel blocking drug other than nifedipine. Thirty-one patients were taking nifedipine at the time of transplantation and these had a delayed function rate of 16% compared with 40% for 107 patients not taking nifedipine (chi 2, P less than 0.05). Delayed function occurred in 61% of cases when the donor age was over 50 years compared with 29% with younger donors (chi 2, P less than 0.05). A total ischaemic time of longer than 24 h and administration of inotropic support to the donor were associated with delayed function (chi 2, P less than 0.05). Administration to the donor of mannitol, steroids, phenoxybenzamine and heparin had no effect on the rate of delayed function. Recipients treated with low-dose dopamine in the perioperative period had no advantage. Elevated trough whole blood concentrations of cyclosporin in the first week after transplant were associated with delayed function (Mann-Whitney U, P less than 0.05).

  15. High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning.

    Science.gov (United States)

    Engebretsen, Kristin M; Kaczmarek, Kathleen M; Morgan, Jenifer; Holger, Joel S

    2011-04-01

    INTRODUCTION. High-dose insulin therapy, along with glucose supplementation, has emerged as an effective treatment for severe beta-blocker and calcium channel-blocker poisoning. We review the experimental data and clinical experience that suggests high-dose insulin is superior to conventional therapies for these poisonings. PRESENTATION AND GENERAL MANAGEMENT. Hypotension, bradycardia, decreased systemic vascular resistance (SVR), and cardiogenic shock are characteristic features of beta-blocker and calcium-channel blocker poisoning. Initial treatment is primarily supportive and includes saline fluid resuscitation which is essential to correct vasodilation and low cardiac filling pressures. Conventional therapies such as atropine, glucagon and calcium often fail to improve hemodynamic status in severely poisoned patients. Catecholamines can increase blood pressure and heart rate, but they also increase SVR which may result in decreases in cardiac output and perfusion of vascular beds. The increased myocardial oxygen demand that results from catecholamines and vasopressors may be deleterious in the setting of hypotension and decreased coronary perfusion. METHODS. The Medline, Embase, Toxnet, and Google Scholar databases were searched for the years 1975-2010 using the terms: high-dose insulin, hyperinsulinemia-euglycemia, beta-blocker, calcium-channel blocker, toxicology, poisoning, antidote, toxin-induced cardiovascular shock, and overdose. In addition, a manual search of the Abstracts of the North American Congress of Clinical Toxicology and the Congress of the European Association of Poisons Centres and Clinical Toxicologists published in Clinical Toxicology for the years 1996-2010 was undertaken. These searches identified 485 articles of which 72 were considered relevant. MECHANISMS OF HIGH-DOSE INSULIN BENEFIT. There are three main mechanisms of benefit: increased inotropy, increased intracellular glucose transport, and vascular dilatation. EFFICACY OF HIGH

  16. Pannexin 1 channels: new actors in the regulation of catecholamine release from adrenal chromaffin cells

    Science.gov (United States)

    Momboisse, Fanny; Olivares, María José; Báez-Matus, Ximena; Guerra, María José; Flores-Muñoz, Carolina; Sáez, Juan C.; Martínez, Agustín D.; Cárdenas, Ana M.

    2014-01-01

    Chromaffin cells of the adrenal gland medulla synthesize and store hormones and peptides, which are released into the blood circulation in response to stress. Among them, adrenaline is critical for the fight-or-flight response. This neurosecretory process is highly regulated and depends on cytosolic [Ca2+]. By forming channels at the plasma membrane, pannexin-1 (Panx1) is a protein involved in many physiological and pathological processes amplifying ATP release and/or Ca2+ signals. Here, we show that Panx1 is expressed in the adrenal gland where it plays a role by regulating the release of catecholamines. In fact, inhibitors of Panx1 channels, such as carbenoxolone (Cbx) and probenecid, reduced the secretory activity induced with the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP, 50 μM) in whole adrenal glands. A similar inhibitory effect was observed in single chromaffin cells using Cbx or 10Panx1 peptide, another Panx1 channel inhibitors. Given that the secretory response depends on cytosolic [Ca2+] and Panx1 channels are permeable to Ca2+, we studied the possible implication of Panx1 channels in the Ca2+ signaling occurring during the secretory process. In support of this possibility, Panx1 channel inhibitors significantly reduced the Ca2+ signals evoked by DMPP in single chromaffin cells. However, the Ca2+ signals induced by caffeine in the absence of extracellular Ca2+ was not affected by Panx1 channel inhibitors, suggesting that this mechanism does not involve Ca2+ release from the endoplasmic reticulum. Conversely, Panx1 inhibitors significantly blocked the DMPP-induce dye uptake, supporting the idea that Panx1 forms functional channels at the plasma membrane. These findings indicate that Panx1 channels participate in the control the Ca2+ signal that triggers the secretory response of adrenal chromaffin cells. This mechanism could have physiological implications during the response to stress. PMID:25237296

  17. Pannexin 1 channels: new actors in the regulation of catecholamine release from adrenal chromaffin cells

    Directory of Open Access Journals (Sweden)

    Fanny eMomboisse

    2014-09-01

    Full Text Available Chromaffin cells of the adrenal gland medulla synthesize and store hormones and peptides, which are released into the blood circulation in response to stress. Among them, adrenaline is critical for the fight-or-flight response. This neurosecretory process is highly regulated and depends on cytosolic [Ca2+]. By forming channels at the plasma membrane, pannexin-1 (Panx1 is a protein involved in many physiological and pathological processes amplifying ATP release and/or Ca2+ signals. Here, we show that Panx1 is expressed in the adrenal gland where it plays a role by regulating the release of catecholamines. In fact, inhibitors of Panx1 channels, such as carbenoxolone (Cbx and probenecid, reduced the secretory activity induced with the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP, 50 µM in whole adrenal glands. A similar inhibitory effect was observed in single chromaffin cells using Cbx or 10Panx1 peptide, another Panx1 channel inhibitors. Given that the secretory response depends on cytosolic [Ca2+] and Panx1 channels are permeable to Ca2+, we studied the possible implication of Panx1 channels in the Ca2+ signaling occurring during the secretory process. In support of this possibility, Panx1 channel inhibitors significantly reduced the Ca2+ signals evoked by DMPP in single chromaffin cells. However, the Ca2+ signals induced by caffeine in the absence of extracellular Ca2+ was not affected by Panx1 channel inhibitors, suggesting that this mechanism does not involve Ca2+ release from the endoplasmic reticulum. Conversely, Panx1 inhibitors significantly blocked the DMPP-induce dye uptake, supporting the idea that Panx1 forms functional channels at the plasma membrane. These findings indicate that Panx1 channels participate in the control the Ca2+ signal that triggers the secretory response of adrenal chromaffin cells. This mechanism could have physiological implications during the response to stress.

  18. The effects of S4 segments on the voltage-dependence of inactivation for Cav3.1 calcium channels

    Institute of Scientific and Technical Information of China (English)

    LI JunYing

    2007-01-01

    T-type calcium channels exhibit fast voltage-dependent inactivation,for which the underlying structure-function relationship still remains unclear.To investigate the roles of S4 segments in voltage-dependent inactivation of T-type calcium channels,we created S4 replacement chimeras between Cav3.1 calcium channels(fast voltage-dependent inactivation)and Cav1.2 calcium channels(little oltage-dependent inactivation)by replacing S4s in Cav3.1 with the corresponding regions in Cav1.2.Wild type and chimeric channels were expressed in Xenopus oocytes and channel currents were recorded with two-electrode voltage-clamp.We showed that replacing S4 region in domain I shifted voltage-dependence for inactivation of Cav3.1 to the left,and the V0.5 inact and kinact value were significantly changed.However replacing S4s in domains Ⅱ-Ⅳ had no effects on the voltage-dependent inactivation properties.These results suggest that the roles of S4 segments in domains Ⅰ-Ⅳ are different,and S4 in domain I is likely to be involved in voltage-dependent Inactivation process.Its movement during membrane depolarization may trigger a conformational change in the inactivation gate.

  19. Effects of acute and chronic nicotine on elevated plus maze in mice: involvement of calcium channels.

    Science.gov (United States)

    Biala, Grazyna; Budzynska, Barbara

    2006-05-30

    The current experiments examined the anxiety-related effects of acute and repeated nicotine administration using the elevated plus maze test in mice. Nicotine (0.1 mg/kg s.c., 5 and 30 min after injection; 0.5 mg/kg, s.c., 5 min after injection) had an anxiogenic effect, shown by specific decreases in the percentage of time spent on the open arms and in the percentage of open arm entries. Tolerance developed to this anxiogenic action after 6 days of daily nicotine administration (0.1 mg/kg, s.c.). Five minutes after the seventh injection, an anxiolytic effect was observed, i.e., specific increases in the percentage of time spent on the open arms and in the percentage of open arm entries. L-type voltage-dependent calcium channel antagonists nimodipine (5 and 10 mg/kg, i.p.), flunarizine (5 and 10 mg/kg, i.p.), verapamil (5, 10, 20 mg/kg) and diltiazem (5, 10, 20 mg/kg, i.p.) were also injected prior to an acute low dose of nicotine or to each injection of chronic nicotine. Our results revealed that calcium channel blockers dose-dependently attenuated both an anxiogenic effect of nicotine as well as the development of tolerance to this effect. Our results suggest that neural calcium-dependent mechanisms are involved in the anxiety-related responses to acute and chronic nicotine injection that may ultimately lead to addiction and smoking relapse in human smokers.

  20. Changes of neuronal calcium channel following brain damage induced by injection of pertussis bacilli in rats

    Institute of Scientific and Technical Information of China (English)

    陈立华; 于嘉; 刘丽旭; 曹美鸿

    2002-01-01

    To explore changes of neuronal calcium channel following brain damage induced by injection of pertussis bacilli in rats, and to investigate the relationship between cytosolic free calcium concentration ( [ Ca2 + ] i ) in the synaptosome and Ca2 + -ATPase activities of mitochondria. Methods: The level of [ Ca2+ ]i in the synaptosome and Ca2+ -ATPase activities of mitochondria in the acute brain damage induced by injection of pertussis bacilli (PB)in rat was determined and nimodipine was administrated to show its effects on [ Ca2+ ]i in the synaptosome and on alteration of Ca2+ -ATPase activity in the mitochondria.Seventy-three rats were randomly divided into four groups,ie, normal control group (Group A ), sham-operation control group (Group B), PB group (Group C) and nimodipine treatment group (Group D). Results: The level of [ Ca2+ ]i was significantly increased in the PB-injected cerebral hemisphere in the Group C as compared with that in the Group A and the Group B at 30 minutes after injection of PB. The level of [ Ca2+ ]i was kept higher in the 4 hours and 24 hours subgroups after the injection in the Group C ( P < 0.05).In contrast, the Ca2+ -ATPase activities were decreased remarkably among all of the subgroups in the Group C.Nimodipine, which was administered after injection of PB,could significantly decrease the [ Ca2+ ]i and increase the activity of Ca2 + -ATPase ( P < 0.05 ). Conclusions: The neuronal calcium channel is opened after injection of PB. There is a negative correlation between activities of Ca2 +-ATPase and [ Ca2 + ]i.Nimodipine can reduce brain damage through stimulating the activities of Ca2+ -ATPase in the mitochondria, and decrease the level of [ Ca2+ ]i in the synaptosome.Treatment with nimodipine dramatically reduces the effects of brain damage induced by injection of PB.

  1. Lavender oil-potent anxiolytic properties via modulating voltage dependent calcium channels.

    Science.gov (United States)

    Schuwald, Anita M; Nöldner, Michael; Wilmes, Thomas; Klugbauer, Norbert; Leuner, Kristina; Müller, Walter E

    2013-01-01

    Recent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs) as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, biochemical, and electrophysiological experiments were investigated in physiological concentrations in the nanomolar range, which correlate to a single dosage of 80 mg/d in humans that was used in clinical trials. We show for the first time that lavender oil bears some similarities with the established anxiolytic pregabalin. Lavender oil inhibits VOCCs in synaptosomes, primary hippocampal neurons and stably overexpressing cell lines in the same range such as pregabalin. Interestingly, Silexan does not primarily bind to P/Q type calcium channels such as pregabalin and does not interact with the binding site of pregabalin, the α2δ subunit of VOCCs. Lavender oil reduces non-selectively the calcium influx through several different types of VOCCs such as the N-type, P/Q-type and T-type VOCCs. In the hippocampus, one brain region important for anxiety disorders, we show that inhibition by lavender oil is mainly mediated via N-type and P/Q-type VOCCs. Taken together, we provide a pharmacological and molecular rationale for the clinical use of the oral application of lavender oil in patients suffering from anxiety.

  2. Lavender oil-potent anxiolytic properties via modulating voltage dependent calcium channels.

    Directory of Open Access Journals (Sweden)

    Anita M Schuwald

    Full Text Available Recent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, biochemical, and electrophysiological experiments were investigated in physiological concentrations in the nanomolar range, which correlate to a single dosage of 80 mg/d in humans that was used in clinical trials. We show for the first time that lavender oil bears some similarities with the established anxiolytic pregabalin. Lavender oil inhibits VOCCs in synaptosomes, primary hippocampal neurons and stably overexpressing cell lines in the same range such as pregabalin. Interestingly, Silexan does not primarily bind to P/Q type calcium channels such as pregabalin and does not interact with the binding site of pregabalin, the α2δ subunit of VOCCs. Lavender oil reduces non-selectively the calcium influx through several different types of VOCCs such as the N-type, P/Q-type and T-type VOCCs. In the hippocampus, one brain region important for anxiety disorders, we show that inhibition by lavender oil is mainly mediated via N-type and P/Q-type VOCCs. Taken together, we provide a pharmacological and molecular rationale for the clinical use of the oral application of lavender oil in patients suffering from anxiety.

  3. Inhibition of voltage-gated calcium channels by sequestration of beta subunits.

    Science.gov (United States)

    Cuchillo-Ibañez, Inmaculada; Aldea, Marcos; Brocard, Jacques; Albillos, Almudena; Weiss, Norbert; Garcia, Antonio G; De Waard, Michel

    2003-11-28

    The auxiliary Ca(v)beta subunit is essential for functional expression of high-voltage activated Ca(2+) channels. Here, we describe a lure sequence designed to sequester the Ca(v)beta subunits in transfected bovine chromaffin cells. This sequence is composed of the extracellular and transmembrane domains of the alpha chain of the human CD8, the I-II loop of Ca(v)2.1 subunit, and EGFP. We showed that expressing the CD8-I-II-EGFP sequence in chromaffin cells led to a >50% decrease in overall Ca(2+) current density. Although this decrease involved all the Ca(2+) channel types (L, N, P/Q, R), the proportion of each type supporting the remaining current was altered. A similar effect was observed after transfection when measuring the functional role of Ca(2+) channels in catecholamine release by chromaffin cells: global decrease of release and change of balance between the different channel types supporting it. Possible explanations for this apparent discrepancy are further discussed.

  4. Structural Characterization of Calcium Alginate Matrices by Means of Mechanical and Release Tests

    Directory of Open Access Journals (Sweden)

    Romano Lapasin

    2009-08-01

    Full Text Available In this paper we have concentrated on the characterization of calcium alginate hydrogels loaded with a model drug (myoglobin by means of a mechanical approach; in addition, release tests of myoglobin from alginate hydrogels were performed. At a fixed temperature, relaxation tests (mechanical study were carried out on matrices constituted by different polymer concentrations. The interpretation of the relaxation behavior of the different matrices was conducted using the generalized Maxwell model; as a result of this investigation it was possible to conclude that for polymer concentrations greater than 0.5 g/ 100 mL the matrices behaved as solid materials. In addition, it was observed that the mechanical properties of the matrices increased with polymer concentration. With regard to the release tests, the diffusion coefficient of myoglobin in the matrix in relation to polymer concentrations was determined. The mechanical and release data where then analyzed by Flory’s theory and by a modified free-volume theory, respectively, to estimate the network mesh size ξ. The comparison between the mesh sizes obtained by the two approaches showed a satisfactory agreement for polymer concentrations greater than 0.5 g/100 mL. It should be noted that the approach proposed here to determine the polymeric network meshes is absolutely general and can be advantageously applied to the characterization of other similar polymeric systems.

  5. Controlled release calcium silicate based floating granular delivery system of ranitidine hydrochloride.

    Science.gov (United States)

    Jain, Ashish K; Jain, Sunil K; Yadav, Awesh; Agrawal, Govind P

    2006-10-01

    The objective of the present investigation was to prepare and evaluate floating granular delivery system consisting of (i) calcium silicate (CS) as porous carrier; (ii) ranitidine hydrochloride (RH), an anti-ulcer agent; and (iii) hydroxypropyl methylcellulose K4M (HPMC) and ethylcellulose (EC) as matrix forming polymers. The effect of various formulation and process variables on the particle morphology, particle size, micromeritic properties, percent drug content, in vitro floating behavior, and in vitro drug release from the floating granules was studied. The scanning electron microscopy (SEM) of granules revealed that that more pores of CS in secondary coated granules (SCG) were covered by the polymer film than those in primary coated granules (PCG). The formulation demonstrated favorable in vitro floating and drug release characteristics. The in vivo evaluation for the determination of pharmacokinetic parameters was performed in albino rats. Higher plasma concentration was maintained throughout the study period from the floating granules of RH. The enhanced bioavailability and elimination half-life observed in the present study may be due to the floating nature of the dosage form. The results suggested that CS is a useful carrier for the development of floating and sustained release preparations.

  6. Synthesis, characterization, and in vitro release of diclofenac sodium from hybrid nanostructured magnetite-calcium pectinate

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Raj Kumar, E-mail: duttafcy@iitr.ernet.in; Sahu, Saurabh, E-mail: saurabhsahu12@gmail.com [Indian Institute of Technology Roorkee, Analytical Chemistry Laboratory, Department of Chemistry (India); Reddy, V. R., E-mail: vrreddy@csr.res.in [UGC-DAE Consortium for Scientific Research (India)

    2012-08-15

    A stable spherical nanostructured calcium pectinate loaded with diclofenac sodium (DS) and functionalized by superparamagnetic iron oxide nanoparticles, referred as MCPDS, was developed as a potential magnetically targeted drug delivery system. The sizes of the MCPDS were in the range of 100-200 nm in dried condition, confirmed by scanning electron microscopy and transmission electron microscopy. In the aqueous medium, the sizes of MCPDS were in the range 300 {+-} 50 nm, measured by dynamic light scattering technique. The X-ray diffraction and {sup 57}Fe Moessbauer spectroscopy confirmed magnetite phase in MCPDS. The magnetic property of the MCPDS nanostructures was confirmed from high saturation magnetization (44.05 emu/g), measured using a vibrating sample magnetometer. The superparamagnetic property of MCPDS was characterized by superconducting quantum unit interference device magnetometry and corroborated by Moessbauer spectroscopy. The loading efficiency of DS in MCPDS was measured by UV-Vis spectrophotometry and corroborated by thermal analysis. The in vitro release of the drug from MCPDS in simulated gastrointestinal fluids and in phosphate buffer solution was found to be pH sensitive and exhibited sustained release property. The cumulative drug release agreed well with that of swelling controlled diffusion mechanism, given by the Korsemeyer Peppas model.

  7. BK Channels Alleviate Lysosomal Storage Diseases by Providing Positive Feedback Regulation of Lysosomal Ca2+ Release.

    Science.gov (United States)

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Zhang, Zhu; Toro, Ligia; Dong, Xian-Ping

    2015-05-26

    Promoting lysosomal trafficking represents a promising therapeutic approach for lysosome storage diseases. Efficient Ca(2+) mobilization from lysosomes is important for lysosomal trafficking. Ca(2+) release from lysosomes could generate a negative potential in the lumen to disturb subsequent Ca(2+) release in the absence of counter ion flux. Here we report that lysosomes express big-conductance Ca(2+)-activated potassium (BK) channels that form physical and functional coupling with the lysosomal Ca(2+) release channel, TRPML1. Ca(2+) release via TRPML1 causes BK activation, which in turn facilitates further lysosomal Ca(2+) release and membrane trafficking. Importantly, BK overexpression rescues the impaired TRPML1-mediated Ca(2+) release and abnormal lysosomal storage in cells from Niemann-Pick C1 patients. Therefore, we have identified a lysosomal K(+) channel that provides a positive feedback mechanism to facilitate TRPML1-mediated Ca(2+) release and membrane trafficking. Our findings suggest that upregulating BK may be a potential therapeutic strategy for certain lysosomal storage diseases and common neurodegenerative disorders.

  8. Possible roles of exceptionally conserved residues around the selectivity filters of sodium and calcium channels.

    Science.gov (United States)

    Tikhonov, Denis B; Zhorov, Boris S

    2011-01-28

    In the absence of x-ray structures of sodium and calcium channels their homology models are used to rationalize experimental data and design new experiments. A challenge is to model the outer-pore region that folds differently from potassium channels. Here we report a new model of the outer-pore region of the NaV1.4 channel, which suggests roles of highly conserved residues around the selectivity filter. The model takes from our previous study (Tikhonov, D. B., and Zhorov, B. S. (2005) Biophys. J. 88, 184-197) the general disposition of the P-helices, selectivity filter residues, and the outer carboxylates, but proposes new intra- and inter-domain contacts that support structural stability of the outer pore. Glycine residues downstream from the selectivity filter are proposed to participate in knob-into-hole contacts with the P-helices and S6s. These contacts explain the adapted tetrodotoxin resistance of snakes that feed on toxic prey through valine substitution of isoleucine in the P-helix of repeat IV. Polar residues five positions upstream from the selectivity filter residues form H-bonds with the ascending-limb backbones. Exceptionally conserved tryptophans are engaged in inter-repeat H-bonds to form a ring whose π-electrons would facilitate passage of ions from the outer carboxylates to the selectivity filter. The outer-pore model of CaV1.2 derived from the NaV1.4 model is also stabilized by the ring of exceptionally conservative tryptophans and H-bonds between the P-helices and ascending limbs. In this model, the exceptionally conserved aspartate downstream from the selectivity-filter glutamate in repeat II facilitates passage of calcium ions to the selectivity-filter ring through the tryptophan ring. Available experimental data are discussed in view of the models.

  9. Formulation and Mathematical Optimization of Controlled Release Calcium Alginate Micro Pellets of Frusemide

    Directory of Open Access Journals (Sweden)

    Amitava Ghosh

    2013-01-01

    Full Text Available Objective. Frusemide loaded calcium alginate micropellets, an oral microparticulate delivery system, was statistically optimized exhibiting prolonged therapeutic action minimizing its adverse effects. Methods. Ionotropic Gelation technique was adopted employing 32 Factorial designs and keeping the entire process free from organic solvents. Physicochemical and the release characteristics of the prepared formulations were studied, keeping variations only in sodium alginate (primary polymer and Acrycoat E30D (copolymer dispersion. Result. Sodium alginate was predominant over Acrycoat E30D in all batches. Nonadditives or interaction was observed to be insignificant. Multiple regressions produced second-order polynomial equation, and the predictive results obtained were validated with high degree of correlation. The in vivo study applauded that optimized calcium alginate micropellets of frusemide can produce a much greater diuretic effect over an extended period of 24 hours. Conclusion. This study reveals that the potential of a single dose of the mathematically optimized micro pellets of frusemide formulation is sufficient in the management of peripheral edema and ascites in congestive heart failure and as well in the treatment of chronic hypertension, leading to better patient compliance, and can be produced with minimum experimentation and time, proving far more cost-effective formulation than the conventional methods of formulating dosage forms.

  10. Preadmission Use of Calcium Channel Blockers and Outcomes After Hospitalization With Pneumonia: A Retrospective Propensity-Matched Cohort Study.

    Science.gov (United States)

    Zheng, Lin; Hunter, Krystal; Gaughan, John; Poddar, Sameer

    In sepsis, an overwhelming immune response, as mediated by the release of various inflammatory mediators, can lead to shock, multiple organ damage, and even death. Pneumonia is the leading cause of sepsis. In animal septic models, sepsis could induce uncontrolled calcium (Ca) leaking, raising cytosolic Ca to a toxic level, causing irreversible cellular injuries and organ failure. All types of calcium channel blockers (CCBs), by inhibiting Ca influx, have been shown to decrease overall mortality in various septic animal models. However, to our best knowledge, no clinical study had been conducted to investigate the beneficial effect(s) of CCBs in sepsis. We conducted a retrospective propensity-matched cohort study after screening 2214 patients hospitalized for pneumonia from year 2012 to 2014 at our institution. We identified 387 preadmission CCB users and 387 nonusers by propensity score matching. Logistic regression analysis was then used to determine the association between preadmission CCB use and outcomes in pneumonia. Our study showed that the odds for development of severe sepsis was significantly lower in the CCB user group [odds ratio (OR), 0.466; 95% confidence interval (CI), 0.311-0.697; P = 0.002]. Preadmission CCB use was associated with a lower risk of contracting bacteremia (OR, 0.498; 95% CI, 0.262-0.99; P = 0.0327), lower risk of acute respiratory insufficiency (OR, 0.573; 95% CI, 0.412-0.798; P = 0.001), lower risk of intensive care unit admission (OR, 0.602; 95% CI, 0.432-0.840; P = 0.0028). In conclusion, our study suggested preadmission CCB use was associated with a reduction in the risks of development of respiratory insufficiency, bacteremia, and severe sepsis in patients admitted to the hospital with pneumonia.

  11. TRPC1 regulates calcium-activated chloride channels in salivary gland cells.

    Science.gov (United States)

    Sun, Yuyang; Birnbaumer, Lutz; Singh, Brij B

    2015-11-01

    Calcium-activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca(2+) influx that activates ion channels such as CaCC to initiate Cl(-) efflux. However direct evidence as well as the molecular identity of the Ca(2+) channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl(-) current was activated by increasing [Ca(2+)]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh-A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store-depletion and activates TRPC1-mediated Ca(2+) entry, potentiated the Cl(-) current, which was inhibited by the addition of a non-specific TRPC channel blocker SKF96365 or removal of external Ca(2+). Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca(2+) entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl(-) currents upon increasing [Ca(2+)]i. These Cl(-) currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh-A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl(-) currents without decreasing TMEM16a expression. Together the data suggests that Ca(2+) entry via the TRPC1 channels is essential for the activation of CaCC.

  12. Differential regulation of voltage- and calcium-activated potassium channels in human B lymphocytes.

    Science.gov (United States)

    Partiseti, M; Choquet, D; Diu, A; Korn, H

    1992-06-01

    The expression and characteristics of K+ channels of human B lymphocytes were studied by using single and whole-cell patch-clamp recordings. They were gated by depolarization (voltage-gated potassium current, IKv, 11-20 pS) and by an increase in intracellular Ca2+ concentration (calcium-activated potassium current, IKCa, 26 pS), respectively. The level of expression of these channels was correlated with the activational status of the cell. Both conductances are blocked by tetraethylammonium, verapamil, and charybdotoxin, and are insensitive to apamin; 4-aminopyridine blocks IK, preferentially. We used a protein kinase C activator (PMA) or antibodies to membrane Ig (anti-mu) to activate resting splenocytes in culture. Although IKv was recorded in the majority of the resting lymphocytic population, less than 20% of the activated cells expressed this conductance. However, in this subset the magnitude of IKv was 20-fold larger than in resting cells. On the other hand, IKCa was detected in nearly one half of the resting cells, whereas all activated cells expressed this current. The magnitude of IKCa was, on average, 30 times larger in activated than in nonactivated cells. These results probably reflect that during the course of activation 1) the number of voltage-dependent K+ channels per cell decreases and increases in a small subset and 2) the number of Ca(2+)-dependent K+ channels per cell increases in all cells. We suggest that the expression of functional Ca(2+)- and voltage-activated K+ channels are under the control of different regulatory signals.

  13. [Effect of calcium channel blockers on developing nervous syndrome of high pressure and nitrogen narcosis in mice].

    Science.gov (United States)

    Sledkov, A I

    1997-01-01

    In the experiments conducted on mice which prior to compression in a heliox environment have been injected the blockers of various types of calcium channels (flunarezine, verapramil and nifedipine) as well as bemethyl (actoprotector) and oxymethacye (antioxidant) there escaped detection of noticeable effect of these drugs on developing the high pressure nervous syndrome (HPNS). On exposure to the hyperbaric nitrogen-oxygen environment verapromil (phenylalkulamine blocker of L-type calcium channels) had a protection effect with respect to a convulsive component of the nitrogen narcosis.

  14. Modulated Hawking radiation and a nonviolent channel for information release

    Directory of Open Access Journals (Sweden)

    Steven B. Giddings

    2014-11-01

    Full Text Available Unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein–Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking's. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are a promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.

  15. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropy.

    Science.gov (United States)

    McGarry, S J; Williams, A J

    1993-04-01

    1. The effect of digoxin on rapid 45Ca2+ efflux from cardiac and skeletal sarcoplasmic reticulum (SR) vesicles was investigated. Additionally the interaction of digoxin with single cardiac and skeletal muscle SR Ca(2+)-release channels incorporated into planar phospholipid bilayers and held under voltage clamp was determined. 2. Digoxin (1 nM) increased the initial rate and amount of Ca(2+)-induced release of 45Ca2+ from cardiac SR vesicles, passively loaded with 45CaCl2, at an extravesicular [Ca2+] of 0.1 microM. The efflux in the presence and absence of digoxin was inhibited at pM extravesicular Ca2+ and blocked by 5 mM Mg2+. 3. To elucidate the mechanism of action of digoxin, single-channel recording was used. Digoxin (1-20 nM) increased single-channel open probability (Po) when added to the cytosolic but not the luminal face of the cardiac channel in the presence of sub-maximally activating Ca2+ (0.1 microM-10 microM) with an EC50 of 0.91 nM at 10 microM Ca2+. The mechanisms underlying the action of digoxin appear to be concentration-dependent. The activation observed at 1 nM digoxin appears to be consistent with the sensitization of the channel to the effects of Ca2+. At higher concentrations the drug appears to interact synergistically with Ca2+ to produce values of Po considerably greater than those seen with Ca2+ as the sole activating ligand. 4. Digoxin had no effect on single-channel conductance or the Ca2+/Tris permeability ratio. In channels activated by digoxin the Po was decreased by Mg2+. Single-channels were characteristically modified to along lasting open, but reduced, conductance state when 100 nM ryanodine was added to the cytosolic side of the channel.5. Activation of the cardiac SR Ca2+-release channel was observed with similar concentrations of digitoxin, however, higher concentrations of ouabain were required to increase PO. In contrast, a steroid which is not positively inotropic, chlormadinone acetate, had no effect on either cardiac or

  16. The large conductance calcium-activated K(+) channel interacts with the small GTPase Rab11b.

    Science.gov (United States)

    Sokolowski, Sophia; Harvey, Margaret; Sakai, Yoshihisa; Jordan, Amy; Sokolowski, Bernd

    2012-09-21

    The transduction of sound by the receptor or hair cells of the cochlea leads to the activation of ion channels found in the basal and lateral regions of these cells. Thus, the processing of these transduced signals to the central nervous system is tied to the regulation of baso-lateral ion channels. The large conductance calcium-activated potassium or BK channel was revealed to interact with the small GTPase, Rab11b, which is one of many Rabs found in various endosomal pathways. Immunoelectron microscopy showed the colocalization of these two proteins in receptor cells and auditory neurons. Using Chinese hamster ovary cells as a heterologous expression system, Rab11b increased or decreased BK expression, depending on the overexpression or RNAi knockdown of Rab, respectively. Additional mutation analyses, using a yeast two-hybrid assay, suggested that this GTPase moderately interacts within a region of BK exclusive of the N- or C-terminal tails. These data suggest that this small GTPase regulates BK in a slow recycling process through the endocytic compartment and to the plasmalemma.

  17. R-type calcium channels are crucial for semaphorin 3A-induced DRG axon growth cone collapse.

    Directory of Open Access Journals (Sweden)

    Rimantas Treinys

    Full Text Available Semaphorin 3A (Sema3A is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels.

  18. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels

    Directory of Open Access Journals (Sweden)

    See-Ziau Hoe

    2011-01-01

    Full Text Available INTRODUCTION: Gynura procumbens has been shown to decrease blood pressure via inhibition of the angiotensinconverting enzyme. However, other mechanisms that may contribute to the hypotensive effect have not been studied. OBJECTIVES: To investigate the cardiovascular effects of a butanolic fraction of Gynura procumbens in rats. METHODS: Anaesthetized rats were given intravenous bolus injections of butanolic fraction at doses of 2.5-20 mg/kg in vivo. The effect of butanolic fraction on vascular reactivity was recorded in isolated rat aortic rings in vitro. RESULTS: Intravenous administrations of butanolic fraction elicited significant (p<0.001 and dose-dependent decreases in the mean arterial pressure. However, a significant (p<0.05 decrease in the heart rate was observed only at the higher doses (10 and 20 mg/kg. In isolated preparations of rat aortic rings, phenylephrine (1×10-6 M- or potassium chloride (8×10-2 M-precontracted endothelium-intact and -denuded tissue; butanolic fraction (1×10-6-1×10-1 g/ml induced similar concentration-dependent relaxation of the vessels. In the presence of 2.5×10-3 and 5.0×10-3 g/ml butanolic fraction, the contractions induced by phenylephrine (1×10-9-3×10-5 M and potassium chloride (1×10-2-8×10-2 M were significantly antagonized. The calcium-induced vasocontractions (1×10-4-1×10-2 M were antagonized by butanolic fraction concentration-dependently in calcium-free and high potassium (6×10-2 M medium, as well as in calcium- and potassium-free medium containing 1×10-6 M phenylephrine. However, the contractions induced by noradrenaline (1×10-6 M and caffeine (4.5×10-2 M were not affected by butanolic fraction. CONCLUSION: Butanolic fraction contains putative hypotensive compounds that appear to inhibit calcium influx via receptor-operated and/or voltage-dependent calcium channels to cause vasodilation and a consequent fall in blood pressure.

  19. Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway.

    Science.gov (United States)

    Cui, Yujie; Liu, Xiaoyu; Yang, Tingting; Mei, Yan-Ai; Hu, Changlong

    2014-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMF) causes various biological effects through altering intracellular calcium homeostasis. The role of high voltage-gated (HVA) calcium channels in ELF-EMF induced effects has been extensively studied. However, the effect of ELF-EMF on low-voltage-gated (LVA) T-type calcium channels has not been reported. In this study, we test the effect of ELF-EMF (50Hz) on human T-type calcium channels transfected in HEK293 cells. Conversely to its stimulant effects on HVA channels, ELF-EMF exposure inhibited all T-type (Cav3.1, Cav3.2 and Cav3.3) channels. Neither the protein expression nor the steady-state activation and inactivation kinetics of Cav3.2 channels were altered by ELF-EMF (50Hz, 0.2mT) exposure. Exposure to ELF-EMF increased both arachidonic acid (AA) and leukotriene E4 (LTE4) levels in HEK293 cells. CAY10502 and bestatin, which block the increase of AA and LTE4 respectively, abrogated the ELF-EMF inhibitory effect on Cav3.2 channels. Exogenous LTE4 mimicked the ELF-EMF inhibition of T-type calcium channels. ELF-EMF (50Hz) inhibits native T-type calcium channels in primary cultured mouse cortical neurons via LTE4. We conclude that 50Hz ELF-EMF inhibits T-type calcium channels through AA/LTE4 signaling pathway.

  20. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    NARCIS (Netherlands)

    Chameau, P.J.P.; Qin, Y.J.; Smit, G.; Joëls, M.

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover,

  1. A deleterious gene-by-environment interaction imposed by calcium channel blockers in Marfan syndrome.

    Science.gov (United States)

    Doyle, Jefferson J; Doyle, Alexander J; Wilson, Nicole K; Habashi, Jennifer P; Bedja, Djahida; Whitworth, Ryan E; Lindsay, Mark E; Schoenhoff, Florian; Myers, Loretha; Huso, Nick; Bachir, Suha; Squires, Oliver; Rusholme, Benjamin; Ehsan, Hamid; Huso, David; Thomas, Craig J; Caulfield, Mark J; Van Eyk, Jennifer E; Judge, Daniel P; Dietz, Harry C

    2015-10-27

    Calcium channel blockers (CCBs) are prescribed to patients with Marfan syndrome for prophylaxis against aortic aneurysm progression, despite limited evidence for their efficacy and safety in the disorder. Unexpectedly, Marfan mice treated with CCBs show accelerated aneurysm expansion, rupture, and premature lethality. This effect is both extracellular signal-regulated kinase (ERK1/2) dependent and angiotensin-II type 1 receptor (AT1R) dependent. We have identified protein kinase C beta (PKCβ) as a critical mediator of this pathway and demonstrate that the PKCβ inhibitor enzastaurin, and the clinically available anti-hypertensive agent hydralazine, both normalize aortic growth in Marfan mice, in association with reduced PKCβ and ERK1/2 activation. Furthermore, patients with Marfan syndrome and other forms of inherited thoracic aortic aneurysm taking CCBs display increased risk of aortic dissection and need for aortic surgery, compared to patients on other antihypertensive agents.

  2. Use of clopidogrel and calcium channel blockers and risk of major adverse cardiovascular events

    DEFF Research Database (Denmark)

    Schmidt, Morten; Johansen, Martin B; Robertson, Douglas J

    2012-01-01

    Eur J Clin Invest 2011 ABSTRACT: Background  The CYP3A4 inhibition by calcium channel blockers (CCBs) may attenuate the effectiveness of clopidogrel. Using time-varying drug exposure ascertainment, we examined whether CCB use modified the association between clopidogrel use and major adverse......-month follow-up, we tracked the use of clopidogrel and CCBs and the rate of MACE (composite of myocardial infarction, ischaemic stroke, stent thrombosis, target lesion revascularization, or cardiac death). We used Cox regression to compute hazard ratios, controlling for potential confounders. Results......  Overall, the 12-month risk for MACE was 14·5%. The rate was 130 per 1000 person years for concomitant clopidogrel and CCB use, 106 for clopidogrel without CCB use, 213 for CCB without clopidogrel use, and 248 for no use of either drug. The adjusted hazard ratio for MACE comparing clopidogrel use...

  3. Mechanism of Action of Novel Glibenclamide Derivatives on Potassium and Calcium Channels for Insulin Secretion.

    Science.gov (United States)

    Frederico, Marisa Jádson Silva; Castro, Allisson Jhonatan Gomes; Menegaz, Danusa; De Bernardis Murat, Cahuê; Mendes, Camila Pires; Mascarello, Alessandra; Nunes, Ricardo José; Silva, Fátima Regina Mena Barreto

    2016-06-14

    Glibenclamide is widely used and remains a cornerstone and an effective antihyperglycemic drug. After the casual discovery of its hypoglycemic potential, this compound was introduced for diabetes treatment. However, the long-term side effects reveal that glibenclamide should be replaced by new molecules able to maintain the health of β-cells, protecting them from hyperstimulation/hyperexcitability, hyperinsulinemia, functional failure and cell death. The aim of this review was to highlight the main mechanism of action of glibenclamide and the influence of its derivatives, such as acyl-hydrazones, sulfonamides and sulfonylthioureas on β-cells potassium and calcium channels for insulin secretion as well as the contribution of these new compounds to restore glucose homeostasis. Furthermore, the role of glibenclamide-based novel structures that promise less excitability of β-cell in a long-term treatment with effectiveness and safety for diabetes therapy was discussed.

  4. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from t

  5. The mutant Moonwalker TRPC3 channel links calcium signaling to lipid metabolism in the developing cerebellum.

    Science.gov (United States)

    Dulneva, Anna; Lee, Sheena; Oliver, Peter L; Di Gleria, Katalin; Kessler, Benedikt M; Davies, Kay E; Becker, Esther B E

    2015-07-15

    The Moonwalker (Mwk) mouse is a model of dominantly inherited cerebellar ataxia caused by a gain-of-function mutation in the transient receptor potential (TRP) channel TRPC3. Here, we report impairments in dendritic growth and synapse formation early on during Purkinje cell development in the Mwk cerebellum that are accompanied by alterations in calcium signaling. To elucidate the molecular effector pathways that regulate Purkinje cell dendritic arborization downstream of mutant TRPC3, we employed transcriptomic analysis of developing Purkinje cells isolated by laser-capture microdissection. We identified significant gene and protein expression changes in molecules involved in lipid metabolism. Consistently, lipid homeostasis in the Mwk cerebellum was found to be disturbed, and treatment of organotypic cerebellar slices with ceramide significantly improved dendritic outgrowth of Mwk Purkinje cells. These findings provide the first mechanistic insights into the TRPC3-dependent mechanisms, by which activated calcium signaling is coupled to lipid metabolism and the regulation of Purkinje cell development in the Mwk cerebellum.

  6. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Peel Samantha E

    2006-09-01

    Full Text Available Abstract Background Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC or receptor operated channels (ROC. Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. Methods To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. Results Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70% of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60% or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. Conclusion Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.

  7. Anti-Convulsant Activity of Boerhaavia diffusa: Plausible Role of Calcium Channel Antagonism

    Directory of Open Access Journals (Sweden)

    Mandeep Kaur

    2011-01-01

    Full Text Available “Ethnopharmacological” use of roots of Boerhaavia diffusa (B. diffusa in the treatment of epilepsy in Nigerian folk medicine and reports showing the presence of a calcium channel antagonistic compound “liriodendrin” in its roots, led us to undertake the present study. The study was designed to investigate the methanolic root extract of B. diffusa and its different fractions including liriodendrin-rich fraction for exploring the possible role of liriodendrin in its anti-convulsant activity. Air-dried roots of B. diffusa were extracted with methanol by cold maceration. The methanol soluble fraction of extract thus obtained was successively extracted to obtain liriodendrin-rich fraction and two side fractions, that is, chloroform fraction and phenolic compound fraction. Anti-convulsant activity of methanolic extract (1000, 1500 and 2000 mg kg-1, intraperitoneally (i.p. and its different fractions, that is, liriodendrin-rich fraction (10, 20 and 40 mg kg-1, i.p., chloroform fraction (20 mg kg-1, i.p. and phenolic compound fraction (1 mg kg-1, i.p. were studied in pentylenetetrazol (PTZ-induced seizures (75 mg kg-1, i.p.. The crude methanolic extract of B. diffusa and only its liriodendrin-rich fraction showed a dose-dependent protection against PTZ-induced convulsions. The liriodendrin-rich fraction also showed significant protection against seizures induced by BAY k-8644. These findings reiterated the anti-convulsant activity of methanolic extract of B. diffusa roots. Furthermore, it can be concluded that the observed anti-convulsant activity was due to its calcium channel antagonistic action as this activity was retained only in the liodendrin-rich fraction, which has additionally been confirmed by significant anti-convulsant activity of liriodendrin-rich fraction in BAY k-8644-induced seizures.

  8. Anti-Convulsant Activity of Boerhaavia diffusa: Plausible Role of Calcium Channel Antagonism.

    Science.gov (United States)

    Kaur, Mandeep; Goel, Rajesh Kumar

    2011-01-01

    "Ethnopharmacological" use of roots of Boerhaavia diffusa (B. diffusa) in the treatment of epilepsy in Nigerian folk medicine and reports showing the presence of a calcium channel antagonistic compound "liriodendrin" in its roots, led us to undertake the present study. The study was designed to investigate the methanolic root extract of B. diffusa and its different fractions including liriodendrin-rich fraction for exploring the possible role of liriodendrin in its anti-convulsant activity. Air-dried roots of B. diffusa were extracted with methanol by cold maceration. The methanol soluble fraction of extract thus obtained was successively extracted to obtain liriodendrin-rich fraction and two side fractions, that is, chloroform fraction and phenolic compound fraction. Anti-convulsant activity of methanolic extract (1000, 1500 and 2000 mg kg(-1), intraperitoneally (i.p.)) and its different fractions, that is, liriodendrin-rich fraction (10, 20 and 40 mg kg(-1), i.p., chloroform fraction (20 mg kg(-1), i.p.) and phenolic compound fraction (1 mg kg(-1), i.p.) were studied in pentylenetetrazol (PTZ)-induced seizures (75 mg kg(-1), i.p.). The crude methanolic extract of B. diffusa and only its liriodendrin-rich fraction showed a dose-dependent protection against PTZ-induced convulsions. The liriodendrin-rich fraction also showed significant protection against seizures induced by BAY k-8644. These findings reiterated the anti-convulsant activity of methanolic extract of B. diffusa roots. Furthermore, it can be concluded that the observed anti-convulsant activity was due to its calcium channel antagonistic action as this activity was retained only in the liodendrin-rich fraction, which has additionally been confirmed by significant anti-convulsant activity of liriodendrin-rich fraction in BAY k-8644-induced seizures.

  9. CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through upregulating L-type calcium channel activity.

    Science.gov (United States)

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-09-01

    A specialized culture medium termed ciliary neurotrophic factor-treated astrocyte-conditioned medium (CNTF-ACM) allows investigators to assess the peripheral effects of CNTF-induced activated astrocytes upon cultured neurons. CNTF-ACM has been shown to upregulate neuronal L-type calcium channel current activity, which has been previously linked to changes in mitochondrial respiration and oxidative stress. Therefore, the aim of this study was to evaluate CNTF-ACM's effects upon mitochondrial respiration and oxidative stress in rat cortical neurons. Cortical neurons, CNTF-ACM, and untreated control astrocyte-conditioned medium (UC-ACM) were prepared from neonatal Sprague-Dawley rat cortical tissue. Neurons were cultured in either CNTF-ACM or UC-ACM for a 48-h period. Changes in the following parameters before and after treatment with the L-type calcium channel blocker isradipine were assessed: (i) intracellular calcium levels, (ii) mitochondrial membrane potential (ΔΨm), (iii) oxygen consumption rate (OCR) and adenosine triphosphate (ATP) formation, (iv) intracellular nitric oxide (NO) levels, (v) mitochondrial reactive oxygen species (ROS) production, and (vi) susceptibility to the mitochondrial complex I toxin rotenone. CNTF-ACM neurons displayed the following significant changes relative to UC-ACM neurons: (i) increased intracellular calcium levels (p ACM (p ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through elevating L-type calcium channel activity.

  10. Blockade of L-type calcium channel in myocardium and calcium-induced contractions of vascular smooth muscle by by CPU 86017

    Institute of Scientific and Technical Information of China (English)

    De-zai DAI; Hui-juan HU; Jing ZHAO; Xue-mei HAO; Dong-mei YANG; Pei-ai ZHOU; Cai-hong WU

    2004-01-01

    AIM: To assess the blockade by CPU 86017 on the L-type calcium channels in the myocardium and on the Ca2+related contractions of vascular smooth muscle. METHODS: The whole-cell patch-clamp was applied to investigate the blocking effect of CPU 86017 on the L-type calcium current in isolated guinea pig myocytes and contractions by KC1 or phenylephrine (Phe) of the isolated rat tail arteries were measured. RESULTS: Suppression of the L-type current of the isolated myocytes by CPU 86017 was moderate, in time- and concentration-dependent manner and with no influence on the activation and inactivation curves. The IC50 was 11.5 μmol/L. Suppressive effect of CPU 86017 on vaso-contractions induced by KC1 100 mmol/L, phenylephrine I μmol/Lin KH solution (phase 1),Ca2+ free KH solution ( phase 2), and by addition of CaCI2 into Ca2+-free KH solution (phase 3) were observed. The IC50 to suppress vaso-contractions by calcium entry via the receptor operated channel (ROC) and Voltage-dependent channel (VDC) was 0.324 μmol/L and 16.3 μmol/L, respectively. The relative potency of CPU 86017 to suppress vascular tone by Ca2+ entry through ROC and VDC is 1/187 of prazosin and 1/37 of verapamil, respectively.CONCLUSION: The blocking effects of CPU 86017 on the L-type calcium channel of myocardium and vessel are moderate and non-selective. CPU 86017 is approximately 50 times more potent in inhibiting ROC than VDC.

  11. Stochastic models of intracellular calcium signals

    Energy Technology Data Exchange (ETDEWEB)

    Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de

    2014-01-10

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  12. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels

    DEFF Research Database (Denmark)

    Hansen, P B L

    2013-01-01

    -type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular...

  13. Efficacy and safety of calcium channel blockers in heart failure : Focus on recent trials with second-generation dihydropyridines

    NARCIS (Netherlands)

    de Vries, RJM; van Veldhuisen, DJ; Dunselman, PHJM

    2000-01-01

    Background Chronic heart failure (CHF) has high morbidity and mortality rates despite treatment with angiotensin-converting-enzyme inhibitors, diuretics, and digoxin. Adjunctive-vasodilation through calcium channel blockade has been suggested as potentially useful, However, the first-generation calc

  14. L—type calcium channel blockers inhibit the development but not the expression of sensitization to morphine in mice

    Institute of Scientific and Technical Information of China (English)

    ZhanQ; ZhenJW

    2002-01-01

    The relationship between opioid actions and L-type calcium channel blockers has been well documented.However,there is no report relevant to L-type calcium channel blockers and morphinesensitization,which is suggested to be an analog of behaviors that are the characteristics of drug addiction.Here the effects of three L-type calcium channel blockers,nimodipine,nifedipine and verapamil,on morphine-induced locomotor activity,the development and the expression of sensitization to morphine were studied systematically.The results showed that both nimodipine and verapamil attenuated,while nifedipine had only a tendency to decrease morphine-induced locomotor activity.All the three drugs inhibited the development of sensitization to morphine.However,none of them showed any effects on the expression of morphine sensitization.These results indicate that blocking L-tpye calcium channel attenuates the locomotor stimulating effects of morphine and inhibits the development but not the expression of morphine-sensitization.

  15. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  16. Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity.

    Science.gov (United States)

    Cipolla, Marilyn J; Sweet, Julie; Chan, Siu-Lung; Tavares, Matthew J; Gokina, Natalia; Brayden, Joseph E

    2014-07-01

    Brain parenchymal arterioles (PAs) are high-resistance vessels that branch off pial arteries and perfuse the brain parenchyma. PAs are the target of cerebral small vessel disease and have been shown to have greater pressure-induced tone at lower pressures than pial arteries. We investigated mechanisms by which brain PAs have increased myogenic tone compared with middle cerebral arteries (MCAs), focusing on differences in vascular smooth muscle (VSM) calcium and ion channel function. The amount of myogenic tone and VSM calcium was measured using Fura 2 in isolated and pressurized PAs and MCAs. Increases in intraluminal pressure caused larger increases in tone and cytosolic calcium in PAs compared with MCAs. At 50 mmHg, myogenic tone was 37 ± 5% for PAs vs. 6.5 ± 4% for MCAs (P channel (VDCC) inhibitor nifedipine than MCAs (EC50 for PAs was 3.5 ± 0.4 vs. 82.1 ± 2.1 nmol/l for MCAs;P channel inhibitor iberiotoxin, whereas MCAs constricted ∼15%. Thus increased myogenic tone in PAs appears related to differences in ion channel activity that promotes VSM membrane depolarization but not to a direct sensitization of the contractile apparatus to calcium.

  17. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury

    DEFF Research Database (Denmark)

    Møller, Linda Maria Sevelsted; Fialla, Annette Dam; Schierwagen, Robert

    2016-01-01

    The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Ef...

  18. Increased Expression of the Calcium-Activated Chloride Channel in Hclca1 in Airways of Patients with Obstructive Chronic Bronchitis

    Directory of Open Access Journals (Sweden)

    Hans-Peter Hauber

    2005-01-01

    Full Text Available BACKGROUND: Interleukin (IL-9 and its effect on enhancing the human calcium-activated chloride channel 1 (hCLCA1 expression have been shown to induce mucin production. Increased expression of hCLCA1 may, in turn, contribute to mucus overproduction in chronic obstructive pulmonary disease (COPD with a chronic bronchitis (CB phenotype.

  19. Immunogenicity of P/Q-type calcium channel in small cell lung cancer: investigation of alpha1 subunit polyglutamine expansion.

    Science.gov (United States)

    Black, J L; Nelson, T R; Snow, K; Lennon, V A

    1999-12-01

    The ectopic expression of neuronal P/Q-type voltage-gated calcium channels in small cell lung carcinoma (SCLC) is thought to induce antisynaptic autoimmunity in the paraneoplastic Lambert-Eaton myasthenic syndrome. The gene CACNL1A4, encoding the principal (alpha1A) subunit of this calcium channel, is mutated in several inherited neurological disorders. One of these disorders (spinocerebellar ataxia, type 6, or SCA-6) involves the expansion of a trinucleotide (CAG) repeat unit. We hypothesized that a somatic CAG repeat instability of this gene in neoplastic cells might generate a non-self epitope capable of initiating autoimmunity to P/Q-type calcium channels. We therefore analyzed the CACNL1A4 gene in SCLC lines established from metastases derived from seven individual patients (four associated with Lambert-Eaton myasthenic syndrome, one associated with myasthenia gravis, and two not associated with neurological autoimmunity). We compared their CAG repeat numbers (determined by polymerase chain reaction (PCR) amplification followed by separation of products on a 6% polyacrylamide/8M urea gel) to published norms and to DNA from a patient with SCA-6. The number of CAG repeats in SCLC DNA fell within a normal range whether or not the neoplasm was complicated by neurological autoimmunity. Therefore, it is unlikely that somatically unstable CAG repeat units in the gene encoding the P/Q-type voltage-gated calcium channel account for this tumor protein's immunogenicity in the Lambert-Eaton myasthenic syndrome.

  20. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D;

    2001-01-01

    .2 protein was demonstrated by immunochemical labeling of rat preglomerular vasculature and juxtamedullary efferent arterioles and vasa recta. Cortical efferent arterioles were not immunopositive. Recordings of intracellular calcium concentration with digital fluorescence imaging microscopy showed......The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells...... showed coexpression of mRNAs for T-type subunits (Ca(V)3.1, Ca(V)3.2) and for an L-type subunit (Ca(V)1.2). The same expression pattern was observed in juxtamedullary efferent arterioles and outer medullary vasa recta. No calcium channel messages were detected in cortical efferent arterioles. Ca(V)1...

  1. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    Science.gov (United States)

    Brennan, Sarah C; Finney, Brenda A; Lazarou, Maria; Rosser, Anne E; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.5 in mouse) in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+) channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match

  2. Cyclic-AMP regulation of calcium-dependent K channels in an insect central neurone.

    Science.gov (United States)

    David, J A; Pitman, R M

    1996-01-26

    In the cockroach fast coxal depressor motoneurone, either the muscarinic agonist McN-A-343 or dibutyryl cAMP (Db-cAMP) induced a reduction in voltage-dependent outward current. The response to McN is due to suppression of a calcium-dependent potassium current (IK,Ca) produced secondarily to a reduction in voltage-dependent calcium current (ICa). The response to Db-cAMP was investigated in order to establish whether cAMP might mediate the response to McN. ICa was suppressed by 3-isobutyl-1-methylxanthine (IBMX) but not by Db-cAMP. The effects of IBMX were therefore unlikely to be the result of phosphodiesterase inhibition. Since caffeine also suppressed ICa, the observed effect of IBMX is probably due to release of Ca2+ from intracellular stores. IK,Ca, evoked by injection of Ca2+, was reduced by Db-cAMP or forskolin but not by McN. These results indicate that the electrical response to McN in this neurone is not mediated by changes in cAMP.

  3. Membrane Properties Involved in Calcium-Stimulated Microparticle Release from the Plasma Membranes of S49 Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Lauryl E. Campbell

    2014-01-01

    Full Text Available This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32–42°C. A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.

  4. BIN1 localizes the L-type calcium channel to cardiac T-tubules.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Hong

    2010-02-01

    Full Text Available The BAR domain protein superfamily is involved in membrane invagination and endocytosis, but its role in organizing membrane proteins has not been explored. In particular, the membrane scaffolding protein BIN1 functions to initiate T-tubule genesis in skeletal muscle cells. Constitutive knockdown of BIN1 in mice is perinatal lethal, which is associated with an induced dilated hypertrophic cardiomyopathy. However, the functional role of BIN1 in cardiomyocytes is not known. An important function of cardiac T-tubules is to allow L-type calcium channels (Cav1.2 to be in close proximity to sarcoplasmic reticulum-based ryanodine receptors to initiate the intracellular calcium transient. Efficient excitation-contraction (EC coupling and normal cardiac contractility depend upon Cav1.2 localization to T-tubules. We hypothesized that BIN1 not only exists at cardiac T-tubules, but it also localizes Cav1.2 to these membrane structures. We report that BIN1 localizes to cardiac T-tubules and clusters there with Cav1.2. Studies involve freshly acquired human and mouse adult cardiomyocytes using complementary immunocytochemistry, electron microscopy with dual immunogold labeling, and co-immunoprecipitation. Furthermore, we use surface biotinylation and live cell confocal and total internal fluorescence microscopy imaging in cardiomyocytes and cell lines to explore delivery of Cav1.2 to BIN1 structures. We find visually and quantitatively that dynamic microtubules are tethered to membrane scaffolded by BIN1, allowing targeted delivery of Cav1.2 from the microtubules to the associated membrane. Since Cav1.2 delivery to BIN1 occurs in reductionist non-myocyte cell lines, we find that other myocyte-specific structures are not essential and there is an intrinsic relationship between microtubule-based Cav1.2 delivery and its BIN1 scaffold. In differentiated mouse cardiomyocytes, knockdown of BIN1 reduces surface Cav1.2 and delays development of the calcium transient

  5. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/ CIPK6 calcium sensor/protein kinase complex

    Institute of Scientific and Technical Information of China (English)

    Katrin Held; Jean-Baptiste Thibaud; J(o)rg Kudla; Francois Pascaud; Christian Eckert; Pawel Gajdanowicz; Kenji Hashimoto; Claire Corratgé-Faillie; Jan Niklas Offenborn; Beno(i)t Lacombe; Ingo Dreyer

    2011-01-01

    Potassium (K+) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K+ channels remain poorly understood. Here, we show that the calcium (Ca2+)sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM)targeting of the K+ channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering pheuotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca2+-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca2+ sensor modulates K+ channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.

  6. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction

    Science.gov (United States)

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J.; Woodruff, Prescott G.; Solberg, Owen D.; Donne, Matthew L.; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V.; Wolters, Paul J.; Hogan, Brigid L. M.; Finkbeiner, Walter E.; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R.

    2012-01-01

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms. PMID:22988107

  7. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins.

    Science.gov (United States)

    Lee, Andre; Vastermark, Ake; Saier, Milton H

    2014-08-01

    Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg(2+) transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca(2+) and Mg(2+) transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels.

  8. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    Science.gov (United States)

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  9. RGS12 interacts with the SNARE-binding region of the Cav2.2 calcium channel.

    Science.gov (United States)

    Richman, Ryan W; Strock, Jesse; Hains, Melinda D; Cabanilla, Nory Jun; Lau, King-Kei; Siderovski, David P; Diversé-Pierluissi, María

    2005-01-14

    Activation of GABAB receptors in chick dorsal root ganglion (DRG) neurons inhibits the Cav2.2 calcium channel in both a voltage-dependent and voltage-independent manner. The voltage-independent inhibition requires activation of a tyrosine kinase that phosphorylates the alpha1 subunit of the channel and thereby recruits RGS12, a member of the "regulator of G protein signaling" (RGS) proteins. Here we report that RGS12 binds to the SNARE-binding or "synprint" region (amino acids 726-985) in loop II-III of the calcium channel alpha1 subunit. A recombinant protein encompassing the N-terminal PTB domain of RGS12 binds to the synprint region in protein overlay and surface plasmon resonance binding assays; this interaction is dependent on tyrosine phosphorylation and yet is within a sequence that differs from the canonical NPXY motif targeted by other PTB domains. In electrophysiological experiments, microinjection of DRG neurons with synprint-derived peptides containing the tyrosine residue Tyr-804 altered the rate of desensitization of neurotransmitter-mediated inhibition of the Cav2.2 calcium channel, whereas peptides centered about a second tyrosine residue, Tyr-815, were without effect. RGS12 from a DRG neuron lysate was precipitated using synprint peptides containing phosphorylated Tyr-804. The high degree of conservation of Tyr-804 in the SNARE-binding region of Cav2.1 and Cav2.2 calcium channels suggests that this region, in addition to the binding of SNARE proteins, is also important for determining the time course of the modulation of calcium current via tyrosine phosphorylation.

  10. Advanced knowledge of the calcium ion channels on the pulmonary artery smooth muscle cells%肺动脉平滑肌细胞上的钙离子通道研究进展

    Institute of Scientific and Technical Information of China (English)

    姜红妮; 瞿介明

    2011-01-01

    钙离子(Ca2+)为肺动脉平滑肌细胞(PASMC)内至关重要的第二信史,其细胞内浓度的精细变化直接受到多种Ca2+通道的调控.按照细胞内Ca2+的来源,位于细胞膜上,调控细胞外Ca2+进入细胞的通道称为钙内流通道,位于肌质网上调控内质网/肌质网内钙库的Ca2+释放的通道称为钙释放通道.根据Ca2+通道激活方式的不同,Ca2+内流的通道主要分为电压依赖性Ca2+通道(VDCC)和非电压操纵性Ca2+通道(non VDCC).目前发现PASMC上表达的VDCC为CaV 1.2 L型通道,non-VDCC包括受体操纵性通道和钙库操纵性通道.PASMC 上的钙释放通道主要包括三磷酸肌醇受体系统和雷诺定受体系统.这些Ca2+通道通过对细胞内Ca2+的精细调节,使PASMC对各种信号刺激发生反应.%Calcium ion (Ca2+ ) is an extremely crucial second messenger in the pulmonary artery smooth muscle cells (PASMC). The intracellular Ca2+ concentration is finely regulated by multiple Ca2+channels. According to the source of intraeellular Ca2+ , those lie in the cellular membrane and permit the extraeellular Ca2+ to enter into cytoplasm are named as calcium entry channels, and those lie in the sarcoplasmic reticulum and release the Ca2+ stored in it are called calcium release channels. According to pathway of activation, calcium entry channels are divided into voltage-operated Ca2+ channels (VOCC) and non-voltage-dependent Ca2+ channels (non-VOCC). The CaV 1.2 group or L-type VDCC, receptoroperated and store-operated non-VDCC have been found expressed in the PASMC. The calcium release channels mainly include inositol 1,4,5-trisphosphate receptor and Ryanodine receptor. Through the fine adjustment of all these Ca2+ channels, the PASMC react to various stimulus signals.

  11. Effects of inorganic lead on voltage-sensitive calcium channels in N1E-115 neuroblastoma cells.

    Science.gov (United States)

    Audesirk, G; Audesirk, T

    1991-01-01

    N1E-115 mouse neuroblastoma cells have been reported to possess two types of voltage-sensitive calcium channels: Low voltage activated, rapidly inactivating T-type (type I) and high voltage activated, slowly inactivating L-type (type II). We studied the effects of acute in vitro exposure to inorganic lead on these calcium channels, using the whole-cell variant of patch clamping. Using salines with a high lead-buffering capacity, we found that both T-type and L-type channels are reversibly inhibited in a dose-dependent manner at free Pb2+ concentrations ranging from 20 nM to 14 microM. L-type channels are somewhat more sensitive to Pb2+ than T-type channels are (L-type: IC50 approx. 0.7 microM; T-type: IC50 approx. 1.3 microM). Both channels show small but significant inhibition (approx. 10%) at 20 nM free Pb2+. Pb2+ affects neither activation nor inactivation of T-type channels, but enhances inactivation of L-type channels at holding potentials around -60 to -40 mV. A peculiar phenomenon was observed in cells exposed to 2.3 microM free Pb2+. T-type channels were inhibited in all 20 cells studied. In 15 cells, L-type channels were also inhibited, but in the remaining 5 cells, current flow through L-type channels was enhanced by Pb2+ exposure.

  12. A new hand-held optical reflectometer to measure enamel erosion: correlation with surface hardness and calcium release.

    Science.gov (United States)

    Carvalho, Thiago Saads; Baumann, Tommy; Lussi, Adrian

    2016-04-28

    In the present study, the surface reflection intensity (SRI) was measured from enamel with different induced erosion degrees using a hand-held pen-size reflectometer (Hand-Held) and a Table-Top reflectometer. To validate the Hand-Held reflectometer, we correlated its optical signals with the change of surface microhardness (SMH), and amount of calcium released from the enamel samples during erosion. We used 124 tooth enamel specimens that were exposed to an erosive challenge of either 1, 2, 4, 6, 8, or 10 minutes. SRI and SMH were measured before and after the erosive challenge and we also measured the amount of calcium released to the citric acid. Relative SRI loss (rSRIloss) and relative SMH loss (rSMHloss) were calculated. rSRIloss from the Hand-Held and the Table-Top reflectometers were similar and significantly correlated to rSMHloss and calcium release. The regression analyses showed a significant association between rSRIloss from both reflectometers and rSMHloss and calcium, showing that both reflectometers can be used to measure erosive demineralization of enamel. The Hand-Held reflectometer is capable of assessing in vitro erosion, correlating to other commonly used methods. It is small, easy to handle and provides fast measurement, being a possible candidate to measure erosion in clinical studies.

  13. High affinity complexes of pannexin channels and L-type calcium channel splice-variants in human lung: Possible role in clevidipine-induced dyspnea relief in acute heart failure

    Directory of Open Access Journals (Sweden)

    Gerhard P. Dahl

    2016-08-01

    Research in Context: Clevidipine lowers blood pressure by inhibiting calcium channels in vascular smooth muscle. In patients with acute heart failure, clevidipine was shown to relieve breathing problems. This was only partially related to the blood pressure lowering actions of clevidipine and not conferred by another calcium channel inhibitor. We here found calcium channel variants in human lung that are more selectively inhibited by clevidipine, especially when associated with pannexin channels. This study gives a possible mechanism for clevidipine's relief of breathing problems and supports future clinical trials testing the role of clevidipine in the treatment of acute heart failure.

  14. Water Channels Are Involved in Stomatal Oscillations Encoded by Parameter-Specific Cytosolic Calcium Oscillations

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Earlier studies have shown that various stimuli can induce specific cytosolic calcium ([Ca2+]cyt) oscillations in guard cells and various oscillations in stomatal apertures. Exactly how [Ca2+]cyt oscillation signaling functions in stomatal oscillation is not known. In the present study, the epidermis of broad bean (Vicia faba L.)was used and a rapid ion-exchange treatment with two shifting buffers differing in K+ and Ca2+ concentrations was applied. The treatment for five transients at a 10-min transient period induced clear and regular stomatal oscillation. However, for other transient numbers and periods, the treatments induced some irregular oscillations or even no obvious oscillations in stomatal aperture. The results indicate that stomatal oscillation is encoded by parameter-specific [Ca2+]cyt oscillation: the parameters of [Ca2+]cyt oscillation affected the occurrence rate and the parameters of stomatal oscillation. The water channel inhibitor HgCl2 completely inhibited stomatal oscillation and the inhibitory effect could be partially reversed by β-mercaptoethanol (an agent capable of reversing water channel inhibition by HgCl2). Other inhibitory treatments against ion transport (i.e. the application of LaCl3, EGTA, or tetraethylammonium chloride (TEACl))weakly impaired stomatal oscillation when the compounds were added after rapid ion-exchange treatment.If these compounds were added before rapid-ion exchange treatment, the inhibitory effect was much more apparent (except in the case of TEACI). The results of the present study suggest that water channels are involved in stomatal oscillation as a downstream element of [Ca2+]cyt oscillation signaling.

  15. Sustained calcium entry through P2X nucleotide receptor channels in human airway epithelial cells.

    Science.gov (United States)

    Zsembery, Akos; Boyce, Amanda T; Liang, Lihua; Peti-Peterdi, János; Bell, P Darwin; Schwiebert, Erik M

    2003-04-11

    Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.

  16. Mapping of dihydropyridine binding residues in a less sensitive invertebrate L-type calcium channel (LCa v 1).

    Science.gov (United States)

    Senatore, Adriano; Boone, Adrienne; Lam, Stanley; Dawson, Taylor F; Zhorov, Boris; Spafford, J David

    2011-01-01

    Invertebrate L-type calcium channel, LCa(v) 1, isolated from the pond snail Lymnaea stagnalis is nearly indistinguishable from mammalian Ca(v) 1.2 (α1C) calcium channel in biophysical characteristics observed in vitro. These L-type channels are likely constrained within a narrow range of biophysical parameters to perform similar functions in the snail and mammalian cardiovascular systems. What distinguishes snail and mammalian L-type channels is a difference in dihydropyridine sensitivity: 100 nM isradipine exhibits a significant block of mammalian Ca(v) 1.2 currents without effect on snail LCa(v)1 currents. The native snail channel serves as a valuable surrogate for validating key residue differences identified from previous experimental and molecular modeling work. As predicted, three residue changes in LCa(v)1 (N_3o18, F_3i10, and I_4i12) replaced with DHP-sensing residues in respective positions of Ca(v) 1.2, (Q_3o18, Y_3i10, and M_4i12) raises the potency of isradipine block of LCa(v)1 channels to that of mammalian Ca(v) 1.2. Interestingly, the single N_3o18_Q mutation in LCa(v) 1 channels lowers DHP sensitivity even further and the triple mutation bearing enhanced isradipine sensitivity, still retains a reduced potency of agonist, (S)-Bay K8644.

  17. Monte Carlo simulation of the effects of vesicle geometry on calcium microdomains and neurotransmitter release

    Science.gov (United States)

    Limsakul, Praopim; Modchang, Charin

    2016-07-01

    We investigate the effects of synaptic vesicle geometry on Ca2+ diffusion dynamics in presynaptic terminals using MCell, a realistic Monte Carlo algorithm that tracks individual molecules. By modeling the vesicle as a sphere and an oblate or a prolate spheroid with a reflective boundary, we measure the Ca2+ concentration at various positions relative to the vesicle. We find that the presence of a vesicle as a diffusion barrier modifies the shape of the [Ca2+] microdomain in the vicinity of the vesicle. Ca2+ diffusion dynamics also depend on the distance between the vesicle and the voltage-gated calcium channels (VGCCs) and on the shape of the vesicle. The oblate spheroidal vesicle increases the [Ca2+] up to six times higher than that in the absence of a vesicle, while the prolate spheroidal vesicle can increase the [Ca2+] only 1.4 times. Our results also show that the presence of vesicles that have different geometries can maximally influence the [Ca2+] microdomain when the vesicle is located less than 50 nm from VGCCs.

  18. Actin Dynamics Regulates Voltage-Dependent Calcium-Permeable Channels of the Vicia faba Guard Cell Plasma Membrane

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Liu-Min Fan

    2009-01-01

    Free cytosolic Ca~(2+) ([Ca~(2+)]_(cyt)) is an ubiquitous second messenger in plant cell signaling, and [Ca~(2+)]_(cyt) elevation is associated with Ca~(2+)-permeable channels in the plasma membrane and endomembranes regulated by a wide range of stimuli. However, knowledge regarding Ca~(2+) channels and their regulation remains limited in planta. A type of voltage-dependent Ca~(2+)-permeable channel was identified and characterized for the Vicia faba L. guard cell plasma membrane by using patch-clamp techniques. These channels are permeable to both Ba~(2+) and Ca~(2+), and their activities can be inhibited by micromolar Gd~(3+). The unitary conductance and the reversal potential of the channels depend on the Ca~(2+) or Ba~(2+) gradients across the plasma membrane. The inward whole-cell Ca~(2+) (Ba~(2+)) current, as well as the unitary current amplitude and NP. of the single Ca~(2+) channel, increase along with the membrane hyperpolarization. Pharmacological experiments suggest that actin dynamics may serve as an upstream regulator of this type of calcium channel of the guard cell plasma membrane. Cytochalasin D, an actin polymerization blocker, activated the NP_o of these channels at the single channel level and increased the current amplitude at the whole-cell level. But these channel activations and current increments could be restrained by pretreatment with an F-actin stabilizer, phalloidin. The potential physiological significance of this regulatory mechanism is also discussed.

  19. A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites.

    Science.gov (United States)

    Chono, Koji; Takagi, Hiroshi; Koyama, Shozo; Suzuki, Hideo; Ito, Etsuro

    2003-10-30

    The present study was designed to elucidate the roles of dendritic voltage-gated K+ channels in Ca2+ influx mechanism of a rat Purkinje cell using a computer simulation program. First, we improved the channel descriptions and the maximum conductance in the Purkinje cell model to mimic both the kinetics of ion channels and the Ca2+ spikes, which had failed in previous studies. Our cell model is, therefore, much more authentic than those in previous studies. Second, synaptic inputs that mimic stimulation of parallel fibers and induce sub-threshold excitability were simultaneously applied to the spiny dendrites. As a result, transient Ca2+ responses were observed in the stimulation points and they decreased with the faster decay rate in the cell model including high-threshold Ca2+-dependent K+ channels than in those excluding these channels. Third, when a single synaptic input was applied into a spiny dendrite, Ca2+-dependent K+ channels suppressed Ca2+ increases at stimulation and recording points. Finally, Ca2+-dependent K+ channels were also found to suppress the time to peak Ca2+ values in the recording points. These results suggest that the opening of Ca2+-dependent K+ channels by Ca2+ influx through voltage-gated Ca2+ channels hyperpolarizes the membrane potentials and deactivates these Ca2+ channels in a negative feedback manner, resulting in local, weak Ca2+ responses in spiny dendrites of Purkinje cells.

  20. Block by a putative antiarrhythmic agent of a calcium-dependent potassium channel in cultured hippocampal neurons.

    Science.gov (United States)

    McLarnon, J G

    1990-05-04

    The actions of a new, putative antiarrhythmic drug, KC-8851 on single channel currents in hippocampal CA1 neurons have been studied. A calcium-dependent potassium current IK(Ca) was activated in the cultured neurons when a solution containing 140 mM K+ and 0.2 mM Ca2+ was applied to inside-out patches. Addition of the compound KC-8851, at concentrations between 1-50 microM, resulted in significant, dose-dependent, decreases in the mean open times of the K channel. The onward (blocking) rate constant was determined from a simple channel blockade scheme and was 5 x 10(7) M-1s-1; this rate constant was not dependent on voltage. Addition of KC-8851 to the solution bath with outside-out patches also caused significant decreases in the mean open times of the IK(Ca) channel consistent with channel blockade by the drug.

  1. Soil Manganese and Iron Released due to Calcium Salts:Bioavailability to Pepper (Capsicum frutescens L.)

    Institute of Scientific and Technical Information of China (English)

    SI You-Bin; ZHOU Jing; ZHOU Dong-Mei; CHEN Huai-Man

    2004-01-01

    Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability to pepper (Capsicum frutescens L.) were studied in a pot experiment. Addition of Ca(NO3)2 decreased soil pH and increased both exchangeable and DTPA (diethylenetriamine pentaacetic acid)-extractable Mn and Fe in soils. Meanwhile, total Mn accumulation in the shoots of Capsicum frutescens L. on the salt-treated soils increased significantly (P < 0.01) compared with the control, suggesting that salt addition to soil induced Mn toxicity in Capsicum frutescens L. Although exchangeable and DTPA-extractable Fe increased also in the salt-treated soils, Fe uptake by the shoots of Capsicum frutescens L. decreased. The effect of added salts in soils on dry matter weight of pepper varied with the soil characteristics, showing different buffer capacities of the soils for salt toxicity in an order of yellow-brown soil > albic soil > yellow-red soil. Fe/Mn ratio in shoots of Capsicum frutescens L. decreased with increasing salt addition for all the soils, which was ascribed to the antagonistic effect of Mn on Fe accumulation. The ratio of Fe/Mn in the tissue was a better indicator of the appearance of Mn toxicity symptoms than Mn concentration alone.

  2. Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function.

    Directory of Open Access Journals (Sweden)

    Alexandra F S Breitenkamp

    Full Text Available Autism Spectrum Disorders (ASD are complex neurodevelopmental diseases clinically defined by dysfunction of social interaction. Dysregulation of cellular calcium homeostasis might be involved in ASD pathogenesis, and genes coding for the L-type calcium channel subunits CaV1.2 (CACNA1C and CaVβ2 (CACNB2 were recently identified as risk loci for psychiatric diseases. Here, we present three rare missense mutations of CACNB2 (G167S, S197F, and F240L found in ASD-affected families, two of them described here for the first time (G167S and F240L. All these mutations affect highly conserved regions while being absent in a sample of ethnically matched controls. We suggest the mutations to be of physiological relevance since they modulate whole-cell Ba2+ currents through calcium channels when expressed in a recombinant system (HEK-293 cells. Two mutations displayed significantly decelerated time-dependent inactivation as well as increased sensitivity of voltage-dependent inactivation. In contrast, the third mutation (F240L showed significantly accelerated time-dependent inactivation. By altering the kinetic parameters, the mutations are reminiscent of the CACNA1C mutation causing Timothy Syndrome, a Mendelian disease presenting with ASD. In conclusion, the results of our first-time biophysical characterization of these three rare CACNB2 missense mutations identified in ASD patients support the hypothesis that calcium channel dysfunction may contribute to autism.

  3. L-Type Calcium Channels Do Not Play a Critical Role in Chest Blow Induced Ventricular Fibrillation: Commotio Cordis

    Directory of Open Access Journals (Sweden)

    Christopher Madias

    2016-01-01

    Full Text Available Background. In a commotio cordis swine model, ventricular fibrillation (VF can be induced by a ball blow to the chest believed secondary to activation of mechanosensitive ion channels. The purpose of the current study is to evaluate whether stretch induced activation of the L-type calcium channel may cause intracellular calcium overload and underlie the VF in commotio cordis. Method and Results. Anesthetized juvenile swine received 6 chest wall strikes with a 17.9 m/s lacrosse ball timed to the vulnerable period for VF induction. Animals were randomized to IV verapamil (n=6 or placebo (n=6. There was no difference in the observed frequency of VF between verapamil (19/26: 73% and placebo (20/36: 56% treated animals (p=0.16. There was also no significant difference in the combined endpoint of VF or nonsustained VF (21/26: 81% in verapamil versus 24/36: 67% in controls, p=0.22. Conclusions. In this experimental model of commotio cordis, verapamil did not prevent VF induction. Thus, in commotio cordis it is unlikely that stretch activation of the L-type calcium channel with resultant intracellular calcium overload plays a prominent role.

  4. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropy.

    OpenAIRE

    1993-01-01

    1. The effect of digoxin on rapid 45Ca2+ efflux from cardiac and skeletal sarcoplasmic reticulum (SR) vesicles was investigated. Additionally the interaction of digoxin with single cardiac and skeletal muscle SR Ca(2+)-release channels incorporated into planar phospholipid bilayers and held under voltage clamp was determined. 2. Digoxin (1 nM) increased the initial rate and amount of Ca(2+)-induced release of 45Ca2+ from cardiac SR vesicles, passively loaded with 45CaCl2, at an extravesicular...

  5. Comparative characterization of two intracellular Ca²⁺-release channels from the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Liu, Yaping; Li, Chengjun; Gao, Jingkun; Wang, Wenlong; Huang, Li; Guo, Xuezhu; Li, Bin; Wang, Jianjun

    2014-10-21

    Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) are members of a family of tetrameric intracellular Ca(2+)-release channels (CRCs). While it is well known in mammals that RyRs and IP3Rs modulate multiple physiological processes, the roles of these two CRCs in the development and physiology of insects remain poorly understood. In this study, we cloned and functionally characterized RyR and IP3R cDNAs (named TcRyR and TcIP3R) from the red flour beetle, Tribolium castaneum. The composite TcRyR gene contains an ORF of 15,285 bp encoding a protein of 5,094 amino acid residues. The TcIP3R contains an 8,175 bp ORF encoding a protein of 2,724 amino acids. Expression analysis of TcRyR and TcIP3R revealed significant differences in mRNA expression levels among T. castaneum during different developmental stages. When the transcript levels of TcRyR were suppressed by RNA interference (RNAi), an abnormal folding of the adult hind wings was observed, while the RNAi-mediated knockdown of TcIP3R resulted in defective larval-pupal and pupal-adult metamorphosis. These results suggested that TcRyR is required for muscle excitation-contraction (E-C) coupling in T. castaneum, and that calcium release via IP3R might play an important role in regulating ecdysone synthesis and release during molting and metamorphosis in insects.

  6. Niflumic acid differentially modulates two types of skeletal ryanodine-sensitive Ca(2+)-release channels.

    Science.gov (United States)

    Oba, T

    1997-11-01

    The effects of niflumic acid on ryanodine receptors (RyRs) of frog skeletal muscle were studied by incorporating sarcoplasmic reticulum (SR) vesicles into planar lipid bilayers. Frog muscle had two distinct types of RyRs in the SR: one showed a bell-shaped channel activation curve against cytoplasmic Ca2+ or niflumic acid, and its mean open probability (Po) was increased by perchlorate at 20-30 mM (termed "alpha-like" RyR); the other showed a sigmoidal activation curve against Ca2+ or niflumic acid, with no effect on perchlorate (termed "beta-like" RyR). The unitary conductance and reversal potential of both channel types were unaffected after exposure to niflumic acid when clamped at 0 mV. When clamped at more positive potentials, the beta-like RyR channel rectified this, increasing the unitary current. Treatment with niflumic acid did not inhibit the response of both channels to Ca2+ release channel modulators such as caffeine, ryanodine, and ruthenium red. The different effects of niflumic acid on Po and the unitary current amplitude in both types of channels may be attributable to the lack or the presence of inactivation sites and/or distinct responses to agonists.

  7. PIP2 in pancreatic β-cells regulates voltage-gated calcium channels by a voltage-independent pathway.

    Science.gov (United States)

    de la Cruz, Lizbeth; Puente, Erika I; Reyes-Vaca, Arturo; Arenas, Isabel; Garduño, Julieta; Bravo-Martínez, Jorge; Garcia, David E

    2016-10-01

    Phosphatidylinositol-4,5-bisphosphate (PIP2) is a membrane phosphoinositide that regulates the activity of many ion channels. Influx of calcium primarily through voltage-gated calcium (CaV) channels promotes insulin secretion in pancreatic β-cells. However, whether CaV channels are regulated by PIP2, as is the case for some non-insulin-secreting cells, is unknown. The purpose of this study was to investigate whether CaV channels are regulated by PIP2 depletion in pancreatic β-cells through activation of a muscarinic pathway induced by oxotremorine methiodide (Oxo-M). CaV channel currents were recorded by the patch-clamp technique. The CaV current amplitude was reduced by activation of the muscarinic receptor 1 (M1R) in the absence of kinetic changes. The Oxo-M-induced inhibition exhibited the hallmarks of voltage-independent regulation and did not involve PKC activation. A small fraction of the Oxo-M-induced CaV inhibition was diminished by a high concentration of Ca(2+) chelator, whereas ≥50% of this inhibition was prevented by diC8-PIP2 dialysis. Localization of PIP2 in the plasma membrane was examined by transfecting INS-1 cells with PH-PLCδ1, which revealed a close temporal association between PIP2 hydrolysis and CaV channel inhibition. Furthermore, the depletion of PIP2 by a voltage-sensitive phosphatase reduced CaV currents in a way similar to that observed following M1R activation. These results indicate that activation of the M1R pathway inhibits the CaV channel via PIP2 depletion by a Ca(2+)-dependent mechanism in pancreatic β- and INS-1 cells and thereby support the hypothesis that membrane phospholipids regulate ion channel activity by interacting with ion channels.

  8. ADVECTION AND DIFFUSION OF POISONOUS GAS CONTAMINANT RELEASED FROM BOTTOM SLUDGE IN OPEN CHANNEL

    Institute of Scientific and Technical Information of China (English)

    WU Zhou-hu

    2004-01-01

    In some cases, poisonous contaminants may be released from bottom sludge in open channels. The equation of advection and diffusion for the related problem was analyzed in this paper. The conditions for the definite solution to the equation were given. The analytic solution of poisonous gas concentration distribution was worked out. The reasonableness of this solution was discussed. The result is also of significance for other similar problems.

  9. Raised activity of L-type calcium channels renders neurons prone to form paroxysmal depolarization shifts.

    Science.gov (United States)

    Rubi, Lena; Schandl, Ulla; Lagler, Michael; Geier, Petra; Spies, Daniel; Gupta, Kuheli Das; Boehm, Stefan; Kubista, Helmut

    2013-09-01

    Neuronal L-type voltage-gated calcium channels (LTCCs) are involved in several physiological functions, but increased activity of LTCCs has been linked to pathology. Due to the coupling of LTCC-mediated Ca(2+) influx to Ca(2+)-dependent conductances, such as KCa or non-specific cation channels, LTCCs act as important regulators of neuronal excitability. Augmentation of after-hyperpolarizations may be one mechanism that shows how elevated LTCC activity can lead to neurological malfunctions. However, little is known about other impacts on electrical discharge activity. We used pharmacological up-regulation of LTCCs to address this issue on primary rat hippocampal neurons. Potentiation of LTCCs with Bay K8644 enhanced excitatory postsynaptic potentials to various degrees and eventually resulted in paroxysmal depolarization shifts (PDS). Under conditions of disturbed Ca(2+) homeostasis, PDS were evoked frequently upon LTCC potentiation. Exposing the neurons to oxidative stress using hydrogen peroxide also induced LTCC-dependent PDS. Hence, raising LTCC activity had unidirectional effects on brief electrical signals and increased the likeliness of epileptiform events. However, long-lasting seizure-like activity induced by various pharmacological means was affected by Bay K8644 in a bimodal manner, with increases in one group of neurons and decreases in another group. In each group, isradipine exerted the opposite effect. This suggests that therapeutic reduction in LTCC activity may have little beneficial or even adverse effects on long-lasting abnormal discharge activities. However, our data identify enhanced activity of LTCCs as one precipitating cause of PDS. Because evidence is continuously accumulating that PDS represent important elements in neuropathogenesis, LTCCs may provide valuable targets for neuroprophylactic therapy.

  10. Hypothyroid state reduces calcium channel function in 18-day pregnant rat uterus.

    Science.gov (United States)

    Parija, S C; Mishra, S K; Raviprakash, V

    2006-01-01

    Hypothyroidism significantly reduced the mean amplitude and increased the mean frequency of spontaneous rhythmic contractions in 18 day pregnant rat uterus. Nifedipine (10(-12)-10(-9) M) and diltiazem (10(-10)-10(-6) M) caused concentration related inhibition of the myogenic responses of the uterine strips obtained from both pregnant and hypothyroid state. However, nifedipine was less potent (IC50:2.11 x 10(-11) M) in pregnant hypothyroid state as compared to pregnant control (IC50: 3.1 x 10(-12) M). Similarly, diltiazem was less potent (IC50: 3.72 x 10(-9) M) in inhibiting the uterine spontaneous contractions in hypothyroid than in pregnant rat uterus (IC50:5.37 x 10(-10) M). A similar decrease in the sensitivity to nifedipine and diltiazem for reversal of K+ (100 mM)-induced tonic contraction and K(+)-stimulated 45Ca2+ influx was observed with these calcium channel antagonists in uterus obtained from hypothyroid pregnant rats compared to the controls. Nifedipine-sensitive influx of 45Ca(2+)-stimulated either by K+ (100 mM) or by Bay K8644 (1,4-dihydro-2,6-methyl-5-nitro-4-[2'-(trifluromethyl)phenyl]-3-pyridine carboxylic acid methyl ester) (10(-9) M) was significantly less in uterine strips from hypothyroid rats compared to controls. The results suggest that the inhibition of uterine rhythmic contractions may be attributable to a reduction in rat myometrial Ca2+ channel function in the hypothyroid state.

  11. The two-pore channel TPCN2 mediates NAADP-dependent Ca(2+)-release from lysosomal stores.

    Science.gov (United States)

    Zong, Xiangang; Schieder, Michael; Cuny, Hartmut; Fenske, Stefanie; Gruner, Christian; Rötzer, Katrin; Griesbeck, Oliver; Harz, Hartmann; Biel, Martin; Wahl-Schott, Christian

    2009-09-01

    Second messenger-induced Ca(2+)-release from intracellular stores plays a key role in a multitude of physiological processes. In addition to 1,4,5-inositol trisphosphate (IP(3)), Ca(2+), and cyclic ADP ribose (cADPR) that trigger Ca(2+)-release from the endoplasmatic reticulum (ER), nicotinic acid adenine dinucleotide phosphate (NAADP) has been identified as a cellular metabolite that mediates Ca(2+)-release from lysosomal stores. While NAADP-induced Ca(2+)-release has been found in many tissues and cell types, the molecular identity of the channel(s) conferring this release remained elusive so far. Here, we show that TPCN2, a novel member of the two-pore cation channel family, displays the basic properties of native NAADP-dependent Ca(2+)-release channels. TPCN2 transcripts are widely expressed in the body and encode a lysosomal protein forming homomers. TPCN2 mediates intracellular Ca(2+)-release after activation with low-nanomolar concentrations of NAADP while it is desensitized by micromolar concentrations of this second messenger and is insensitive to the NAADP analog nicotinamide adenine dinucleotide phosphate (NADP). Furthermore, TPCN2-mediated Ca(2+)-release is almost completely abolished when the capacity of lysosomes for storing Ca(2+) is pharmacologically blocked. By contrast, TPCN2-specific Ca(2+)-release is unaffected by emptying ER-based Ca(2+) stores. In conclusion, these findings indicate that TPCN2 is a major component of the long-sought lysosomal NAADP-dependent Ca(2+)-release channel.

  12. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice

    Directory of Open Access Journals (Sweden)

    Akito eNakao

    2015-06-01

    Full Text Available Calcium (Ca2+ influx through voltage-gated Ca2+ channels (VGCCs induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached study-wide significance. Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions.

  13. Cilnidipine, but not amlodipine, ameliorates osteoporosis in ovariectomized hypertensive rats through inhibition of the N-type calcium channel.

    Science.gov (United States)

    Shimizu, Hideo; Nakagami, Hironori; Yasumasa, Natsuki; Mariana, Osako Kiomy; Kyutoku, Mariko; Koriyama, Hiroshi; Nakagami, Futoshi; Shimamura, Munehisa; Rakugi, Hiromi; Morishita, Ryuichi

    2012-01-01

    Both osteoporosis and high blood pressure are major diseases in aging populations. Recent studies demonstrated that some antihypertensive drugs reduced the risk of bone fracture in elderly patients. Although calcium channel blockers (CCB) are widely used as first-line antihypertensive agents, there is no evidence that they prevent osteoporosis. In this study, we investigated the effects of two types of CCB on bone metabolism: cilnidipine (L-/N-type CCB), which suppresses norepinephrine release from the sympathetic nerve, and amlodipine (L-type CCB). In ovariectomized female spontaneous hypertensive rats, administration of cilnidipine, but not amlodipine, resulted in a significant increase in the ratio of alkaline phosphatase to tartrate-resistant acid phosphatase (TRAP) and a decrease in the number of osteoclasts, as assessed by TRAP staining in the proximal tibia. Bone mineral density, moreover, was significantly higher in the cilnidipine group as compared with the amlodipine group and was associated with a significant decrease in a urinary collagen degradation product (deoxypyridinoline). The degree of prevention of osteoporosis by cilnidipine was similar to that of carvedilol (a β-blocker) because β-blockers reduce fracture risks though the inhibition of osteoclast activation. Interestingly, these effects cannot be attributed to the reduction of blood pressure because all three drugs significantly decreased blood pressure. In contrast, both cilnidipine and carvedilol, but not amlodipine, significantly decreased heart rate, indicating that both cilnidipine and carvedilol suppressed sympathetic nervous activity. Overall, our present data showed that cilnidipine (L-/N-type CCB) ameliorated osteoporosis in ovariectomized hypertensive rats. These pleiotropic effects of antihypertensive drugs such as cilnidipine and carvedilol might provide additional benefits in the treatment of hypertensive postmenopausal women.

  14. Malignant hyperthermia domain in the regulation of ca(2+) release channel (ryanodine receptor).

    Science.gov (United States)

    Zorzato, F; Ronjat, M; Treves, S

    1997-11-01

    Malignant hyperthermia (MH) is a potentially lethal condition that is manifested in humans as an acute increase of body temperature in response to stress and exposure to volatile anaesthetics (halothane, enflurane) and muscle relaxants. To date, eight point mutations in the ryanodine receptor gene, the Ca(2+) release channel of the skeletal muscle sarcoplasmic reticulum, segregate with the MH phenotype, yet direct evidence linking altered [Ca(2+)](i) homeostasis to mutation in recombinant RYR has been obtained only for one such mutation. Most of these mutations appear in an "MH domain" that is localized at the NH(2) terminus of the skeletal muscle ryanodine receptor Ca(2+) channel. In this review, we summarize the available data concerning the role of the MH domain in the altered functions of the ryanodine receptor Ca(2+) channel. (Trends Cardiovasc Med 1997;7:312-316). © 1997, Elsevier Science Inc.

  15. The role of calcium, calcium-activated K+ channels, and tyrosine/kinase in psoralen-evoked responses in human melanoma cells

    Directory of Open Access Journals (Sweden)

    Isoldi M.C.

    2004-01-01

    Full Text Available 8-Methoxy psoralen (8-MOP exerts a short-term (24 h mitogenic action, and a long-term (48-72 h anti-proliferative and melanogenic action on two human melanoma cell lines, SK-Mel 28 and C32TG. An increase of intracellular calcium concentration was observed by spectrofluorometry immediately after the addition of 0.1 mM 8-MOP to both cell lines, previously incubated with calcium probe fluo-3 AM (5 µM. The intracellular Ca2+ chelator BAPTA/AM (1 µM blocked both early (mitogenic and late (anti-proliferative and melanogenic 8-MOP effects on both cell lines, thus revealing the importance of the calcium signal in both short- and long-term 8-MOP-evoked responses. Long-term biological assays with 5 and 10 mM tetraethylammonium chloride (TEA, an inhibitor of Ca2+-dependent K+ channels did not affect the responses to psoralen; however, in 24-h assays 10 mM TEA blocked the proliferative peak, indicating a modulation of Ca2+-dependent K+ channels by 8-MOP. No alteration of cAMP basal levels or forskolin-stimulated cAMP levels was promoted by 8-MOP in SK-Mel 28 cells, as determined by radioimmunoassay. However, in C32TG cells forskolin-stimulated cAMP levels were further increased in the presence of 8-MOP. In addition, assays with 1 µM protein kinase C and calcium/calmodulin-dependent kinase inhibitors, Ro 31-8220 and KN-93, respectively, excluded the participation of these kinases in the responses evoked by 8-MOP. Western blot with antibodies anti-phosphotyrosine indicated a 92% increase of the phosphorylated state of a 43-kDa band, suggesting that the phosphorylation of this protein is a component of the cascade that leads to the increase of tyrosinase activity.

  16. Comparing Titanium Release from Ceramic Tiles using a waste material characterization test - Influence of Calcium and Organic Matter concentrations

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard

    2015-01-01

    Nanomaterials are beneficial in the building industry to enhance or add certain features to commonly used materials. One example is the use of nano-titanium dioxide in the surface coating of ceramic tiles, to make the tiles surface self-cleaning. At the end of life stage, ceramic tiles might...... to assess if nano-titanium dioxide coated ceramic tiles are suitable for depositing in a landfill or not. Specifically, we used compliance batch test method, which is a simple test evaluating the release from a solid material to an aqueous media during 24 hrs. If nano-Ti particles are released from solid...... of the organic matter to fully cover the surface of the particles. We evaluated the titanium release from identical ceramic tiles - with and without a nano-titanium dioxide coating - and varied the concentrations of calcium chloride (100-500 mg/l) and humic acid (25-100 mg/l). The titanium release was quantified...

  17. Degradation kinetics and pathways of three calcium channel blockers under UV irradiation.

    Science.gov (United States)

    Zhu, Bing; Zonja, Bozo; Gonzalez, Oscar; Sans, Carme; Pérez, Sandra; Barceló, Damia; Esplugas, Santiago; Xu, Ke; Qiang, Zhimin

    2015-12-01

    Calcium channel blockers (CCBs) are a group of pharmaceuticals widely prescribed to lower blood pressure and treat heart diseases. They have been frequently detected in wastewater treatment plant (WWTP) effluents and downstream river waters, thus inducing a potential risk to aquatic ecosystems. However, little is known about the behavior and fate of CCBs under UV irradiation, which has been adopted as a primary disinfection method for WWTP effluents. This study investigated the degradation kinetics and pathways of three commonly-used CCBs, including amlodipine (AML), diltiazem (DIL), and verapamil (VER), under UV (254 nm) irradiation. The chemical structures of transformation byproducts (TBPs) were first identified to assess the potential ecological hazards. On that basis, a generic solid-phase extraction method, which simultaneously used four different cartridges, was adopted to extract and enrich the TBPs. Thereafter, the photo-degradation of target CCBs was performed under UV fluences typical for WWTP effluent disinfection. The degradation of all three CCBs conformed to the pseudo-first-order kinetics, with rate constants of 0.031, 0.044 and 0.011 min(-1) for AML, DIL and VER, respectively. By comparing the MS(2) fragments and the evolution (i.e., formation or decay) trends of identified TBPs, the degradation pathways were proposed. In the WWTP effluent, although the target CCBs could be degraded, several TBPs still contained the functional pharmacophores and reached peak concentrations under UV fluences of 40-100 mJ cm(-2).

  18. Efficacy and safety of calcium channel blockers in hypertensive patients with concomitant left ventricular dysfunction.

    Science.gov (United States)

    Parmley, W W

    1992-04-01

    The use of calcium channel blockers (CCBs) in the treatment of hypertension and concomitant left ventricular dysfunction is reviewed. Some CCBs, particularly second-generation dihydropyridine agents such as felodipine, isradipine, nicardipine, nimodipine, and nitrendipine, have properties that enhance their usefulness in these patients. All CCBs have a similar mechanism of action. Differences in their selective action at various tissue sites determine which are most appropriate for patients with concomitant hypertension and left ventricular dysfunction. Most CCBs do not produce reflex stimulation of the heart or induce intravascular expansion. While all CCBs produce arteriolar dilation, all local beds and regional circulations in target organs are not affected equally. Most CCBs can decrease cardiac mass, and second-generation CCBs tend to have little or no negative inotropic effects at therapeutic dosages. In addition, they increase blood flow and reduce myocardial oxygen requirements. Because of differences in functional and electrophysiologic effects, specific CCBs may not be appropriate for all patients. Since second-generation dihydropyridine CCBs lack clinically relevant negative inotropic effects, and have been shown to improve exercise tolerance and coronary artery perfusion, they are appropriate for hypertensive patients with left ventricular dysfunction, angina, and coronary heart disease. Second-generation CCBs tend to lack cardiodepressant side effects and are less likely to react with digoxin than are first-generation CCBs.

  19. Eugenol dilates rat cerebral arteries by inhibiting smooth muscle cell voltage-dependent calcium channels.

    Science.gov (United States)

    Peixoto-Neves, Dieniffer; Leal-Cardoso, Jose Henrique; Jaggar, Jonathan H

    2014-11-01

    Plants high in eugenol, a phenylpropanoid compound, are used as folk medicines to alleviate diseases including hypertension. Eugenol has been demonstrated to relax conduit and ear arteries and reduce systemic blood pressure, but mechanisms involved are unclear. Here, we studied eugenol regulation of resistance-size cerebral arteries that control regional brain blood pressure and flow and investigated mechanisms involved. We demonstrate that eugenol dilates arteries constricted by either pressure or membrane depolarization (60 mM K) in a concentration-dependent manner. Experiments performed using patch-clamp electrophysiology demonstrated that eugenol inhibited voltage-dependent calcium (Ca) currents, when using Ba as a charge carrier, in isolated cerebral artery smooth muscle cells. Eugenol inhibition of voltage-dependent Ca currents involved pore block, a hyperpolarizing shift (∼-10 mV) in voltage-dependent inactivation, an increase in the proportion of steady-state inactivating current, and acceleration of inactivation rate. In summary, our data indicate that eugenol dilates cerebral arteries by means of multimodal inhibition of voltage-dependent Ca channels.

  20. The Low-Threshold Calcium Channel Cav3.2 Determines Low-Threshold Mechanoreceptor Function

    Directory of Open Access Journals (Sweden)

    Amaury François

    2015-01-01

    Full Text Available The T-type calcium channel Cav3.2 emerges as a key regulator of sensory functions, but its expression pattern within primary afferent neurons and its contribution to modality-specific signaling remain obscure. Here, we elucidate this issue using a unique knockin/flox mouse strain wherein Cav3.2 is replaced by a functional Cav3.2-surface-ecliptic GFP fusion. We demonstrate that Cav3.2 is a selective marker of two major low-threshold mechanoreceptors (LTMRs, Aδ- and C-LTMRs, innervating the most abundant skin hair follicles. The presence of Cav3.2 along LTMR-fiber trajectories is consistent with critical roles at multiple sites, setting their strong excitability. Strikingly, the C-LTMR-specific knockout uncovers that Cav3.2 regulates light-touch perception and noxious mechanical cold and chemical sensations and is essential to build up that debilitates allodynic symptoms of neuropathic pain, a mechanism thought to be entirely A-LTMR specific. Collectively, our findings support a fundamental role for Cav3.2 in touch/pain pathophysiology, validating their critic pharmacological relevance to relieve mechanical and cold allodynia.

  1. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK channels

    Directory of Open Access Journals (Sweden)

    Michael J Shipston

    2014-08-01

    Full Text Available Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK channels are important determinants of their (pathophysiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs and acyl thioesterases. (APTs. S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signalling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease.

  2. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    Science.gov (United States)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  3. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2016-07-01

    Full Text Available Recessive osteogenesis imperfecta (OI is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  4. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    DEFF Research Database (Denmark)

    Jo, Andrew O; Ryskamp, Daniel A; Phuong, Tam T T

    2015-01-01

    and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume...... through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4-AQP4 interactions constitute a molecular system that fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated...... set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes...

  5. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit;

    2011-01-01

    It is unknown whether extracellular calcium may regulate the expression of transient receptor potential canonical type 3 (TRPC3) channels in patients with chronic kidney disease. Using quantitative in-cell Western assay we compared the expression of TRPC3 channel protein in monocytes from 20...... patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression...... in patients with chronic kidney disease compared to healthy control subjects (normalized expression, 0.42±0.06 vs. 0.19±0.03; p...

  6. Effect of cutter type on sediment pollutants release in channel dredging

    Science.gov (United States)

    Yu, Y. R.; Chen, Y.; Dong, M. M.; Yang, B. L.

    2016-08-01

    Dredging activities are often used to maintain existing navigation channels. However’ traditional dredging equipment inevitably leads to sediment resuspension and nutrient loading in water. In this work’ the existing cutter used for dredging was transformed environmentally to reduce the release amount of sediment pollutants’ and to avoid the formation of secondary pollution to water bodies. Simulated tests with a general cutter’ a spiral cutter’ along with a general and spiral cutter equipped with the anti-diffusion device were conducted respectively in this study. The change of pollutants concentration in overlying water was examined. The environmental performance of each different structure cutter was comparatively analysed as well. The result revealed that in channel dredging with a spiral cutter’ the release amount of sediment pollutants was less than with a general cutter’ and that a general/spiral cutter equipped with the anti-diffusion device could effectively reduce the release amount of sediment contaminants’ particularly the release of the nitrogen nutrient during the 1h after the dredging treatment. The best transformation scheme for a cutter suction dredger (CSD) in its environmental-protection function may be: a spiral cutter equipped with the anti-diffusion device.

  7. Atypical properties of a conventional calcium channel β subunit from the platyhelminth Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Schneider Toni

    2008-03-01

    Full Text Available Abstract Background The function of voltage-gated calcium (Cav channels greatly depends on coupling to cytoplasmic accessory β subunits, which not only promote surface expression, but also modulate gating and kinetic properties of the α1 subunit. Schistosomes, parasitic platyhelminths that cause schistosomiasis, express two β subunit subtypes: a structurally conventional β subunit and a variant β subunit with unusual functional properties. We have previously characterized the functional properties of the variant Cavβ subunit. Here, we focus on the modulatory phenotype of the conventional Cavβ subunit (SmCavβ using the human Cav2.3 channel as the substrate for SmCavβ and the whole-cell patch-clamp technique. Results The conventional Schistosoma mansoni Cavβ subunit markedly increases Cav2.3 currents, slows macroscopic inactivation and shifts steady state inactivation in the hyperpolarizing direction. However, currents produced by Cav2.3 in the presence of SmCavβ run-down to approximately 75% of their initial amplitudes within two minutes of establishing the whole-cell configuration. This suppressive effect was independent of Ca2+, but dependent on intracellular Mg2+-ATP. Additional experiments revealed that SmCavβ lends the Cav2.3/SmCavβ complex sensitivity to Na+ ions. A mutant version of the Cavβ subunit lacking the first forty-six amino acids, including a string of twenty-two acidic residues, no longer conferred sensitivity to intracellular Mg2+-ATP and Na+ ions, while continuing to show wild type modulation of current amplitude and inactivation of Cav2.3. Conclusion The data presented in this article provide insights into novel mechanisms employed by platyhelminth Cavβ subunits to modulate voltage-gated Ca2+ currents that indicate interactions between the Ca2+ channel complex and chelated forms of ATP as well as Na+ ions. These results have potentially important implications for understanding previously unknown mechanisms by

  8. Calcium Channel Blockade and Peroxisome Proliferator Activated Receptor γ Agonism Diminish Cognitive Loss and Preserve Endothelial Function During Diabetes Mellitus.

    Science.gov (United States)

    Jain, Swati; Sharma, B M; Sharma, Bhupesh

    2016-01-01

    Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia (VaD) by experimental diabetes. This study investigates the efficacy of a nifedipine, a calcium channel blocker and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent VaD in rats. Attentional set shifting (ASST) and Morris water-maze (MWM) test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of nifedipine and pioglitazone significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that nifedipine, a calcium channel blocker may be considered as a potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent VaD.

  9. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    Science.gov (United States)

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  10. Renin release from permeabilized juxtaglomerular cells is stimulated by chloride but not by low calcium

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1994-01-01

    technique, superfused, and permeabilized by 20 microM digitonin for 12 min. The calcium concentration was varied with Ca ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) buffers [0 (5 MM EGTA without calcium), 17, 73, 170, 440, or 700 nM and 1.5, 15 or 150 micro...

  11. Synthesis and Calcium Channel Blocking Activity of 1, 4-Dihydropyridine Derivatives Containing Ester Substitute and Phenyl Carbamoyl Group

    Directory of Open Access Journals (Sweden)

    Bassem Sadek

    2011-01-01

    Full Text Available Problem statement: Several studies on the synthesis of new nifedipine analogs have been carried out, but the literature reveled that no study on the synthesis and calcium channel blocking activity of the substituted ester with an amide (5-phenylcarbamoyl moiety has been reported. Approach: Six new derivatives of m-nifedipine have been successfully synthesized by substituting an ester moiety with an amide (5-phenylcarbamoyl moiety, using a modified Hantzsch reactions and tested for their pharmacological activities. The nifedipine analogs 1-6 were characterized and confirmed using elemental analysis, Infrared spectroscopy (IR, Nuclear Magnetic Resonance (1H NMR and Mass spectroscopy. The purity of the compounds was ascertained by melting point and TLC. The in vitro calcium channel blocking activities were evaluated using the high K+ concentration of Porcine Coronary Artery Smooth Muscles (PCASM assay. Results: The compounds (1-2 failed to exhibit any blocking activity (IC50 = 10−7 to 10−5 M range, while the compounds 3-6 relaxed precontracted porcine coronary artery smooth muscles with pEC50 values ranging between 4.37±0.10 (compound 3 and 6.46±0.07 (compound 5, indicating that compounds 3-6 exhibit comparable potencies in blocking calcium channels to reference drug varapamil (6.97±0.15 and m-nifedipine (6.48±0.05. Conclusion: The results of this study showed that some of the developed new compounds possess maximal calcium channel blocking effects comparable to m-nifedipine. The developed compounds in the present study will predicatively show an increased metabolic stability and consequently longer duration of actions compared to m-nifedipine and could be, therefore, suitable candidates for further optimization to be evaluated as a new class of antihypertensive drugs.

  12. Synthesis and Effects of Novel Dihydropyridines as Dual Calcium Channel Blocker and Angiotensin Antagonist on Isolated Rat Aorta

    Directory of Open Access Journals (Sweden)

    Farzin Hadizadeh

    2010-01-01

    Full Text Available Four novel losartan analogues 5a-d were synthesized by connecting a dihydropyridine nucleus to imidazole ring. The effects of 5a and 5b on angiotensin receptors (AT1 and L-type calcium channels were investigated on isolated rat aorta. Materials and MethodsAortic rings were pre-contracted with 1 µM Angiotensin II or 80 mM KCl and relaxant effects of losartan, nifedipine, 5a and 5b were evaluated by cumulative addition of these drugs to the bath solution.ResultsThe results showed that compounds 5a and 5b have both L-type calcium channel and AT1 receptor blocking activity. Their effects on AT1 receptors are 1000 and 100,000 times more than losartan respectively. The activity of compound 5b on L-type calcium channel is significantly less than nifedipine but compound 5a has comparable effect with nifedipine. ConclusionFinally we concluded that these two new Compounds can be potential candidates to be used as effective antihypertensive agents.

  13. Effects of calcium channel antagonists on the induction of nitric oxide synthase in cultured cells by immunostimulants.

    Science.gov (United States)

    Hattori, Y; Kasai, K; So, S; Hattori, S; Banba, N; Shimoda, S

    1995-01-01

    We investigated whether calcium channel antagonists would alter the induction of nitric oxide (NO) synthesis by bacterial lipopolysaccharide (LPS) alone or in combination with interferon-gamma (IFN gamma) in cultured J774 macrophages, rat vascular smooth muscle cells, rat renal mesangial cells, and rat cardiac myocytes. The induction of NO synthesis was determined by measuring nitrite, the stable end-product. The dihydropyridine calcium channel antagonists, nifedipine, manidipine, nitrendipine, benidipine, barnidipine, perdipine, and nilvadipine all reduced the LPS-induced nitrite production in a dose-dependent manner, each with a differing half-maximal inhibitory concentration, in cultured J774 macrophages. Nifedipine also inhibited nitrite production in vascular smooth muscle cells, mesangial cells, and cardiac myocytes. The half-maximal inhibitory concentrations of nifedipine were ranked as follows: smooth muscle cells < mesangial cells < cardiac myocytes. Diltiazem, at nontoxic concentrations, had no effect on the nitrite formation in the three cell types. Verapamil markedly increased the formation of nitrite in cardiac myocytes in response to LPS and IFN gamma, but not in vascular smooth muscle or mesangial cells. Exposure of cardiac myocytes to LPS and IFN gamma caused the expression of NO synthase mRNA that was significantly increased by verapamil. Thus, certain calcium channel antagonists modulate NO synthesis by altering the induction of NO synthase.

  14. Clinical features of neuromuscular disorders in patients with N-type voltage-gated calcium channel antibodies

    Directory of Open Access Journals (Sweden)

    Andreas Totzeck

    2016-09-01

    Full Text Available Neuromuscular junction disorders affect the pre- or postsynaptic nerve to muscle transmission due to autoimmune antibodies. Members of the group like myasthenia gravis and Lambert-Eaton syndrome have pathophysiologically distinct characteristics. However, in practice, distinction may be difficult. We present a series of three patients with a myasthenic syndrome, dropped-head syndrome, bulbar and respiratory muscle weakness and positive testing for anti-N-type voltage-gated calcium channel antibodies. In two cases anti-acetylcholin receptor antibodies were elevated, anti-P/Q-type voltage-gated calcium channel antibodies were negative. All patients initially responded to pyridostigmine with a non-response in the course of the disease. While one patient recovered well after treatment with intravenous immunoglobulins, 3,4-diaminopyridine, steroids and later on immunosuppression with mycophenolate mofetil, a second died after restriction of treatment due to unfavorable cancer diagnosis, the third patient declined treatment. Although new antibodies causing neuromuscular disorders were discovered, clinical distinction has not yet been made. Our patients showed features of pre- and postsynaptic myasthenic syndrome as well as severe dropped-head syndrome and bulbar and axial muscle weakness, but only anti-N-type voltage-gated calcium channel antibodies were positive. When administered, one patient benefited from 3,4-diaminopyridine. We suggest that this overlap-syndrome should be considered especially in patients with assumed seronegative myasthenia gravis and lack of improvement under standard therapy.

  15. Amino acid substitutions in the FXYD motif enhance phospholemman-induced modulation of cardiac L-type calcium channels.

    Science.gov (United States)

    Guo, Kai; Wang, Xianming; Gao, Guofeng; Huang, Congxin; Elmslie, Keith S; Peterson, Blaise Z

    2010-11-01

    We have found that phospholemman (PLM) associates with and modulates the gating of cardiac L-type calcium channels (Wang et al., Biophys J 98: 1149-1159, 2010). The short 17 amino acid extracellular NH(2)-terminal domain of PLM contains a highly conserved PFTYD sequence that defines it as a member of the FXYD family of ion transport regulators. Although we have learned a great deal about PLM-dependent changes in calcium channel gating, little is known regarding the molecular mechanisms underlying the observed changes. Therefore, we investigated the role of the PFTYD segment in the modulation of cardiac calcium channels by individually replacing Pro-8, Phe-9, Thr-10, Tyr-11, and Asp-12 with alanine (P8A, F9A, T10A, Y11A, D12A). In addition, Asp-12 was changed to lysine (D12K) and cysteine (D12C). As expected, wild-type PLM significantly slows channel activation and deactivation and enhances voltage-dependent inactivation (VDI). We were surprised to find that amino acid substitutions at Thr-10 and Asp-12 significantly enhanced the ability of PLM to modulate Ca(V)1.2 gating. T10A exhibited a twofold enhancement of PLM-induced slowing of activation, whereas D12K and D12C dramatically enhanced PLM-induced increase of VDI. The PLM-induced slowing of channel closing was abrogated by D12A and D12C, whereas D12K and T10A failed to impact this effect. These studies demonstrate that the PFXYD motif is not necessary for the association of PLM with Ca(V)1.2. Instead, since altering the chemical and/or physical properties of the PFXYD segment alters the relative magnitudes of opposing PLM-induced effects on Ca(V)1.2 channel gating, PLM appears to play an important role in fine tuning the gating kinetics of cardiac calcium channels and likely plays an important role in shaping the cardiac action potential and regulating Ca(2+) dynamics in the heart.

  16. Voltage-gated potassium channel Kvl.3 in rabbit ciliary epithelium regulates the membrane potential via coupling intracellular calcium

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; ZHUO Ye-hong; BI Wei-na; BAI Yu-jing; LI Yan-na; WANG Zhi-jian

    2008-01-01

    Background The cell layer of the ciliary epithelium is responsible for aqueous humor secretion and maintenance.Ion channels play an important role in these processes.The main aim of this study was to determine whether the well-characterized members of the Kvl family (Kv1.3) contribute to the Kv currents in ciliary epithelium.Methods New Zealand White rabbits were maintained in a 12 hours light/dark cycle.Ciliary epithelium samples were isolated from the rabbits.We used Western blotting and immunocytochemistry to identify the expression and location of a voltage-gated potassium channel Kvl.3 in ciliary body epithelium.Membrane potential change after adding of Kv1.3 inhibitor margatoxin (MgTX) was observed with a fluorescence method.Results Western blotting and immunocytochemical studies showed that the Kv1.3 protein expressed in pigment ciliary epithelium and nonpigment ciliary epithelium,however it seemed to express more in the apical membrane of the nonpigmented epithelial cells.One nmol/L margatoxin,a specific inhibitor of Kv1.3 channels caused depolarization of the cultured nonpigmented epithelium (NPE) membrane potential.The cytosotic calcium increased after NPE cell depolarization,this increase of cytosolic calcium was partially blocked by 12.5 μmol/L dantrolene and 10 μmol/L nifedipine.These observations suggest that Kv1.3 channels modulate ciliary epithelium potential and effect calcium dependent mechanisms.Conclusion Kv1.3 channels contribute to K+ efflux at the membrane of rabbit ciliary epithelium.

  17. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system

    DEFF Research Database (Denmark)

    Hansen, Pernille B L

    2015-01-01

    Over the years, it has been discussed whether T-type calcium channels Cav3 play a role in the cardiovascular and renal system. T-type channels have been reported to play an important role in renal hemodynamics, contractility of resistance vessels, and pacemaker activity in the heart. However...... to the conclusion that Cav3.1 and Cav3.2 channels have important, but different, functions in mice. T-type Cav3.1 channels affect heart rate, whereas Cav3.2 channels are involved in cardiac hypertrophy. In the vascular system, Cav3.2 activation leads to dilation of blood vessels, whereas Cav3.1 channels are mainly.......2, are expressed in blood vessels, the kidney, and the heart. Studies with gene-deficient mice have provided a way to investigate the Cav3.1 and Cav3.2 channels and their role in the cardiovascular system. This review discusses the results from these knockout mice. Evaluation of the literature leads...

  18. Calcium Transients in Dendrites of Neocortical Neurons Evoked by Single Subthreshold Excitatory Postsynaptic Potentials via Low-Voltage-Activated Calcium Channels

    Science.gov (United States)

    Markram, Henry; Sakmann, Bert

    1994-05-01

    Simultaneous recordings of membrane voltage and concentration of intracellular Ca2+ ([Ca2+]_i) were made in apical dendrites of layer 5 pyramidal cells of rat neocortex after filling dendrites with the fluorescent Ca2+ indicator Calcium Green-1. Subthreshold excitatory postsynaptic potentials (EPSPs), mediated by the activation of glutamate receptor channels, caused a brief increase in dendritic [Ca2+]_i. This rise in dendritic [Ca2+]_i was mediated by the opening of low-voltage-activated Ca2+ channels in the dendritic membrane. The results provide direct evidence that dendrites do not function as passive cables even at low-frequency synaptic activity; rather, a single subthreshold EPSP changes the dendritic membrane conductance by opening Ca2+ channels and generating a [Ca2+]_i transient that may propagate towards the soma. The activation of these Ca2+ channels at a low-voltage threshold is likely to influence the way in which dendritic EPSPs contribute to the electrical activity of the neuron.

  19. T-type calcium channels promote predictive homeostasis of input-output relations in thalamocortical neurons of lateral geniculate nucleus.

    Science.gov (United States)

    Hong, Su Z; Kim, Haram R; Fiorillo, Christopher D

    2014-01-01

    A general theory views the function of all neurons as prediction, and one component of this theory is that of "predictive homeostasis" or "prediction error." It is well established that sensory systems adapt so that neuronal output maintains sensitivity to sensory input, in accord with information theory. Predictive homeostasis applies the same principle at the cellular level, where the challenge is to maintain membrane excitability at the optimal homeostatic level so that spike generation is maximally sensitive to small gradations in synaptic drive. Negative feedback is a hallmark of homeostatic mechanisms, as exemplified by depolarization-activated potassium channels. In contrast, T-type calcium channels exhibit positive feedback that appears at odds with the theory. In thalamocortical neurons of lateral geniculate nucleus (LGN), T-type channels are capable of causing bursts of spikes with an all-or-none character in response to excitation from a hyperpolarized potential. This "burst mode" would partially uncouple visual input from spike output and reduce the information spikes convey about gradations in visual input. However, past observations of T-type-driven bursts may have resulted from unnaturally high membrane excitability. Here we have mimicked within rat brain slices the patterns of synaptic conductance that occur naturally during vision. In support of the theory of predictive homeostasis, we found that T-type channels restored excitability toward its homeostatic level during periods of hyperpolarization. Thus, activation of T-type channels allowed two retinal input spikes to cause one output spike on average, and we observed almost no instances in which output count exceeded input count (a "burst"). T-type calcium channels therefore help to maintain a single optimal mode of transmission rather than creating a second mode. More fundamentally our results support the general theory, which seeks to predict the properties of a neuron's ion channels and

  20. Comparative evaluation of the calcium release from mineral trioxide aggregate and its mixture with glass ionomer cement in different proportions and time intervals – An in vitro study

    Directory of Open Access Journals (Sweden)

    Surbhi Sawhney

    2015-10-01

    Conclusions: Adding GIC to improve the setting time and handling properties of the MTA powder can be detrimental to the calcium-releasing ability of the resultant mixture, depending on the proportion of GIC added. Adding MTA and GIC at a proportion of 2:1 by volume did not impact calcium release from the mixture. These findings should be verified through further clinical studies.

  1. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    Science.gov (United States)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  2. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    Science.gov (United States)

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p ACM produced a significant increase in BKα1 and BKβ3 expression (p  0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons.

  3. Endothelin-1 induces intracellular [Ca2+] increase via Ca2+ influx through the L-type Ca2+ channel, Ca2+-induced Ca2+ release and a pathway involving ETA receptors, PKC, PKA and AT1 receptors in cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    ZENG QingHua; LI XingTing; ZHONG GuoGan; ZHANG WenJie; SUN ChengWen

    2009-01-01

    Using fura-2-acetoxymethyl eater (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]1) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats.The effect of ET-1 on [Ca2+]1 elevation was abolished in the presence of the ETA receptor blocker BQ123,but was not affected by the ETa receptor blocker BQ788. ET-1-induced an increase in [Ca2+]1, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibltors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an Increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETa receptors, PKC, PKA and AT1 receptors may also contribute to this pathway.

  4. Endothelin-1 induces intracellular [Ca2+] increase via Ca2+ influx through the L-type Ca2+ channel, Ca2+-induced Ca2+ release and a pathway involving ETA receptors, PKC, PKA and AT1 receptors in cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway.

  5. Potential L-Type Voltage-Operated Calcium Channel Blocking Effect of Drotaverine on Functional Models.

    Science.gov (United States)

    Patai, Zoltán; Guttman, András; Mikus, Endre G

    2016-12-01

    Drotaverine is considered an inhibitor of cyclic-3',5'-nucleotide-phophodiesterase (PDE) enzymes; however, published receptor binding data also support the potential L-type voltage- operated calcium channel (L-VOCC) blocking effect of drotaverine. Hence, in this work, we focus on the potential L-VOCC blocking effect of drotaverine by using L-VOCC-associated functional in vitro models. Accordingly, drotaverine and reference agents were tested on KCl-induced guinea pig tracheal contraction. Drotaverine, like the L-VOCC blockers nifedipine or diltiazem, inhibited the KCl-induced inward Ca(2+)- induced contraction in a concentration- dependent fashion. The PDE inhibitor theophylline had no effect on the KCl-evoked contractions, indicating its lack of inhibition on inward Ca(2+) flow. Drotaverine was also tested on the L-VOCC-mediated resting Ca(2+) refill model. In this model, the extracellular Ca(2+) enters the cells to replenish the emptied intracellular Ca(2+) stores. Drotaverine and L-VOCC blocker reference molecules inhibited Ca(2+) replenishment of Ca(2+)-depleted preparations detected by agonist-induced contractions in post-Ca(2+) replenishment Ca(2+)-free medium. Theophylline did not modify the Ca(2+) store replenishment after contraction. It seems that drotaverine, but not theophylline, inhibits inward Ca(2+) flux. The addition of CaCl2 to Ca(2+)-free medium containing the agonist induced inward Ca(2+) flow and subsequent contraction of Ca(2+)-depleted tracheal preparations. Drotaverine, similar to the L-VOCC blockers, inhibited inward Ca(2+) flow and blunted the slope of CaCl2-induced contraction in agonist containing Ca(2+)-free medium with Ca(2+)-depleted tracheal preparations. These results show that drotaverine behaves like L-VOCC blockers but, unlike PDE inhibitors using L-VOCC associated in vitro experimental models.

  6. Effects of calcium channel blockers on proteinuria in patients with diabetic nephropathy.

    Science.gov (United States)

    Toto, Robert D; Tian, Min; Fakouhi, Kaffa; Champion, Annette; Bacher, Peter

    2008-10-01

    Diabetic nephropathy management should include the use of an angiotensin-converting enzyme inhibitor (ACEI) or an angiotensin receptor blocker with additional antihypertensive medications to reduce proteinuria and cardiovascular events. Some studies suggest that adding a nondihydropyridine rather than a dihydropyridine calcium channel blocker (CCB) may more effectively lower proteinuria. We hypothesized that a trandolapril/verapamil SR (T/V) fixed-dose combination (FDC) was superior to a benazepril/amlodipine (B/A) FDC for reducing albuminuria in 304 hypertensive diabetic nephropathy patients when treated for 36 weeks. No statistically significant differences were observed between groups in the primary end point; adjusted percentage change in urinary albumin/creatinine ratio (UACR), which increased (mean T/V, 29.29%; mean B/A, 8.49%; difference, 20.80%; P=.34); or in change in absolute UACR, which decreased (mean [g/g] T/V, -0.11; mean [g/g] B/A, -0.08; difference -0.03; P=.78). There were significant reductions in log UACR (mean change in T/V, -0.28; P<.01; mean change in B/A, -0.31; P<.001) and diastolic blood pressure in both groups and in systolic blood pressure in the B/A group. T/V was not superior to B/A for reducing UACR. Both ACEI/CCB FDCs may reduce albuminuria; in the case of T/V, this appears to be independent of systolic blood pressure reduction in patients who had previously been treated and had baseline blood pressure levels of 142/77 mm Hg.

  7. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    Science.gov (United States)

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior.

  8. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  9. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling.

    Directory of Open Access Journals (Sweden)

    Katharine L Dobson

    Full Text Available Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites-a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission.Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20 Wistar rats.Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine--intracellular calcium release, and cAMP signalling--had no impact on these effects.We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections.

  10. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2010-10-01

    Full Text Available Abstract Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone at 10 pM (representing pre-development levels, and 1 nM (representing higher cycle-dependent and pregnancy levels in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2 phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively. Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are

  11. G protein modulation of recombinant P/Q-type calcium channels by regulators of G protein signalling proteins.

    Science.gov (United States)

    Mark, M D; Wittemann, S; Herlitze, S

    2000-10-01

    1. Fast synaptic transmission is triggered by the activation of presynaptic Ca2+ channels which can be inhibited by Gbetagamma subunits via G protein-coupled receptors (GPCR). Regulators of G protein signalling (RGS) proteins are GTPase-accelerating proteins (GAPs), which are responsible for >100-fold increases in the GTPase activity of G proteins and might be involved in the regulation of presynaptic Ca2+ channels. In this study we investigated the effects of RGS2 on G protein modulation of recombinant P/Q-type channels expressed in a human embryonic kidney (HEK293) cell line using whole-cell recordings. 2. RGS2 markedly accelerates transmitter-mediated inhibition and recovery from inhibition of Ba2+ currents (IBa) through P/Q-type channels heterologously expressed with the muscarinic acetylcholine receptor M2 (mAChR M2). 3. Both RGS2 and RGS4 modulate the prepulse facilitation properties of P/Q-type Ca2+ channels. G protein reinhibition is accelerated, while release from inhibition is slowed. These kinetics depend on the availability of G protein alpha and betagamma subunits which is altered by RGS proteins. 4. RGS proteins unmask the Ca2+ channel beta subunit modulation of Ca2+ channel G protein inhibition. In the presence of RGS2, P/Q-type channels containing the beta2a and beta3 subunits reveal significantly altered kinetics of G protein modulation and increased facilitation compared to Ca2+ channels coexpressed with the beta1b or beta4 subunit.

  12. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yi-hua [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Li, Yong-quan [Harbin Medical University, Harbin 150086 (China); Feng, Shan-li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Li, Bao-xin; Pan, Zhen-wei [Department of Pharmacology, Harbin Medical University, Harbin 150086 (China); Xu, Chang-qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Li, Ting-ting [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Yang, Bao-feng, E-mail: syh200415@yahoo.com.cn [Department of Pharmacology, Harbin Medical University, Harbin 150086 (China)

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  13. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    Directory of Open Access Journals (Sweden)

    Seok-Kyu Kwon

    2016-07-01

    Full Text Available Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.

  14. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons

    Science.gov (United States)

    Kwon, Seok-Kyu; Sando, Richard; Maximov, Anton; Polleux, Franck

    2016-01-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance. PMID:27429220

  15. EDRF (endothelium-derived relaxing factor)-release and Ca sup ++ -channel blockage by Magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Cheming; Yu, Sheumeei; Chen, Chienchih; Huang, Yulin; Huang, Turfu (National Taiwan Univ., Taipei (Taiwan) National Research Institute of Chinese Medicine, Taipei (Taiwan))

    1990-01-01

    Magnolol is an antiplatelet agent isolated from Chinese herb Magnolia officinalis. It inhibited norepinephrine-induced phasic and tonic contractions in rat thoracic aorta. At the plateau of the NE-induced tonic contraction, addition of magnolol caused two phases (fast and slow) of relaxation. These two relaxations were concentration-dependent, and were not inhibited by indomethacin. The fast relaxation was completely antagonized by hemoglobin and methylene blue, and disappeared in de-endothelialized aorta while the slow relaxation was not affected by the above treatments. Magnolol also inhibited high potassium-induced, calcium-dependent contraction of rat aorta in a concentration-dependent manner. {sup 45}Ca{sup ++} influx induced by high potassium or NE was markedly inhibited by magnolol. Cyclic GMP, but not PGI{sub 2}, was increased by magnolol in intact, but not in de-endothelialized aorta. It is concluded that magnolol relaxed vascular smooth muscle by releasing endothelium-derived relaxing factor (EDRF) and by inhibiting calcium influx through voltage-gated calcium channels.

  16. Investigation of the Potential Hazard in Releasing Scrap Steel Contaminated with Uranium to Commercial Channels

    Energy Technology Data Exchange (ETDEWEB)

    Blatz, Hanson; Harley, John H.; Eisenbud, Merril

    1951-06-15

    Tests were conducted on a laboratory and semi-plant scale to determine the effect of permitting scrap grossly contaminated with uranium to be used in steel manufacture. It was found the most of the uranium is removed with the slag. Steel made with this scrap would have a uranium constituent so little above that made with uncontaminated scrap as to be hardly significant. The slag itself would not present any hazard in handling or normal use. It is recommended, therefore, that in the future steel with only surface uranium contamination be released through normal scrap channels.

  17. The effects of a sodium and a calcium channel blocker on lethality of mice injected with the yellow scorpion (Leiurus quinquestriatus venom

    Directory of Open Access Journals (Sweden)

    A. R. Al-Shanawani

    2005-06-01

    Full Text Available Scorpion venom toxins generally produce similar effects by mainly acting on sodium channels, and to a lesser extent, on potassium, calcium, and chloride channels. This leads to increased release of neurotransmitters and mediators, resulting in a cascade of pathological events, involving the central nervous system, the autonomic nervous system, the cardiovascular and the respiratory system, eventually leading to death. The objective of this paper was to discover whether a sodium channel blocker, lidocaine, or a calcium channel blocker, verapamil, would prolong the survival of mice injected with the venom from the common yellow scorpion Leiurus quinquestriatus quinquestriatus (LQQ. For this purpose, mice were divided into 2 groups, each injected with a different venom dose (250 or 300 µg.kg-1, s.c.. Subgroups (n=10 from each group were given venom alone; different doses of lidocaine (4, 10, 15, or 20 mg.kg-1; or several doses of verapamil (0.01, 0.03, 0.1, 0.3, or 1 mg.kg-1. All doses of lidocaine and verapamil were intravenously administered 3 minutes before, 1, 5, and 15 minutes after venom injection. Percent surviving after 24 hours was recorded in addition to the time of death. In general, lidocaine significantly prolonged survival at the dose of 10 mg.kg-1 (P<0.05 and P<0.01, versus low and high dose of venom, respectively or 15 mg.kg-1 (P<0.01 and P<0.001, versus low and high dose of venom, respectively; Covariance Wilcoxon survival statistics, especially when injected before the venom or in the early stages of envenomation. On the other hand, in all doses administered, verapamil was either toxic or showed non-significant results. Lidocaine, the sodium channel blocker, appears to play an important role in the protection from lethality of mice injected with LQQ venom, and significantly prolonged the survival time of mice whether injected before or in the early stages of envenomation.

  18. Seeing the forest through the trees: towards a unified view on physiological calcium regulation of voltage-gated sodium channels.

    Science.gov (United States)

    Van Petegem, Filip; Lobo, Paolo A; Ahern, Christopher A

    2012-12-05

    Voltage-gated sodium channels (Na(V)s) underlie the upstroke of the action potential in the excitable tissues of nerve and muscle. After opening, Na(V)s rapidly undergo inactivation, a crucial process through which sodium conductance is negatively regulated. Disruption of inactivation by inherited mutations is an established cause of lethal cardiac arrhythmia, epilepsy, or painful syndromes. Intracellular calcium ions (Ca(2+)) modulate sodium channel inactivation, and multiple players have been suggested in this process, including the cytoplasmic Na(V) C-terminal region including two EF-hands and an IQ motif, the Na(V) domain III-IV linker, and calmodulin. Calmodulin can bind to the IQ domain in both Ca(2+)-bound and Ca(2+)-free conditions, but only to the DIII-IV linker in a Ca(2+)-loaded state. The mechanism of Ca(2+) regulation, and its composite effect(s) on channel gating, has been shrouded in much controversy owing to numerous apparent experimental inconsistencies. Herein, we attempt to summarize these disparate data and propose a novel, to our knowledge, physiological mechanism whereby calcium ions promote sodium current facilitation due to Ca(2+) memory at high-action-potential frequencies where Ca(2+) levels may accumulate. The available data suggest that this phenomenon may be disrupted in diseases where cytoplasmic calcium ion levels are chronically high and where targeted phosphorylation may decouple the Ca(2+) regulatory machinery. Many Na(V) disease mutations associated with electrical dysfunction are located in the Ca(2+)-sensing machinery and misregulation of Ca(2+)-dependent channel modulation is likely to contribute to disease phenotypes.

  19. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    Directory of Open Access Journals (Sweden)

    Ong John M

    2007-03-01

    Full Text Available Abstract Background The blood-brain tumor barrier (BTB impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB permeability in brain tumors, but not in normal brain. Iberiotoxin, a KCa channel antagonist, significantly attenuated NS1619-induced BTB permeability increase. We found KCa channels and bradykinin type 2 receptors (B2R expressed in cultured human metastatic brain tumor cells (CRL-5904, non-small cell lung cancer, metastasized to brain, human brain microvessel endothelial cells (HBMEC and human lung cancer brain metastasis tissues. Potentiometric assays demonstrated the activity of KCa channels in metastatic brain tumor cells and HBMEC. Furthermore, we detected higher expression of KCa channels in the metastatic brain tumor tissue and tumor capillary endothelia as compared to normal brain tissue. Co-culture of metastatic brain tumor cells and brain microvessel endothelial cells showed an upregulation of KCa channels, which may contribute to the overexpression of KCa channels in tumor microvessels and selectivity of BTB opening. Conclusion These findings suggest that KCa channels in metastatic brain tumors may serve as an effective target for biochemical modulation of BTB permeability to enhance selective delivery of chemotherapeutic drugs to metastatic brain tumors.

  20. Physiology and evolution of voltage-gated calcium channels in early diverging animal phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    2016-11-01

    Full Text Available Voltage-gated calcium (Cav channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling, gene expression (excitation-transcription coupling, pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling, regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when many of these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.

  1. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    Science.gov (United States)

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it. PMID:27867359

  2. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    OpenAIRE

    Fengping He; Xin Xu; Shuguo Yuan; Liangqiu Tan; Lingjun Gao; Shaochun Ma; Shebin Zhang; Zhanzhong Ma; Wei Jiang; Fenglian Liu; Baofeng Chen; Beibei Zhang; Jungang Pang; Xiuyan Huang; Jiaqiang Weng

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. ...

  3. Effects of low-dose ionising radiation on pituitary adenoma: is there a role for L-type calcium channel?

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marcella Araugio; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia]. E-mail: santosr@cdtn.br

    2005-10-15

    Pituitary adenomas constitute about 6-18% of brain tumours in adults. Activation of voltage gated calcium currents can account for growth hormone over secretion in some GH-secreting pituitary adenomas that produce an acromegaly appearance and increase mortality. Ca{sup 2+} ions, as mediators of intracellular signalling, are crucial for the development of apoptosis. However, the role of [Ca{sup 2+}] in the development of apoptosis is ambiguous. In this study, the effects of low-dose ionising gamma radiation ({sup 60} Co) on rat pituitary adenoma cells survival and proliferation and the role of calcium channels on the apoptosis radio-induced were evaluated. Doses as low as 3 Gy were found to inhibit GH3 cell proliferation. Even though there was a significant number of live cells,168 hours following irradiation, they were not able to proliferate. The results indicate that the blockade of extracellular calcium influx through these channels does not interfere in the radiation-induced apoptosis in GH3 cells. (author)

  4. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Devkanya Dutta

    2000-12-01

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.

  5. Excitability in a stochastic differential equation model for calcium puffs.

    Science.gov (United States)

    Rüdiger, S

    2014-06-01

    Calcium dynamics are essential to a multitude of cellular processes. For many cell types, localized discharges of calcium through small clusters of intracellular channels are building blocks for all spatially extended calcium signals. Because of the large noise amplitude, the validity of noise-approximating model equations for this system has been questioned. Here we revisit the master equations for local calcium release, examine the multiple scales of calcium concentrations in the cluster domain, and derive adapted stochastic differential equations. We show by comparison of discrete and continuous trajectories that the Langevin equations can be made consistent with the master equations even for very small channel numbers. In its deterministic limit, the model reveals that excitability, a dynamical phenomenon observed in many natural systems, is at the core of calcium puffs. The model also predicts a bifurcation from transient to sustained release which may link local and global calcium signals in cells.

  6. [Clinical efficacy of calcium channel blockers slow the third generation of lercanidipine in the treatment of patients with arterial hypertension and metabolic disorders (review)].

    Science.gov (United States)

    Tabidze, G A; Gezeli, T D; Tsibadze, T A; Dolidze, N M

    2015-02-01

    Arterial hypertension is the most common risk factor in patients with metabolic disorders. In the selection of antihypertensive therapy it is necessary to consider not only the anti-hypertensive and organoprotective effects of drugs and their metabolic effects, which has prognostic value. Calcium antaginists, along. Lercanidipine related to the third generation dihydripyridine calcium antagonist, has been much more selective for the so-called slow calcium channels of vascular smooth muscle cells, which is associated with a good hypertensive, organo and metabolic action. Combination therapy with an ACE inhibitor and a calcium channel blocker is also a justified tactic for the management of patients with high-risk cardiovascular and metabolic disorders. Attention is paid new fixed combinations, including angiotensin converting enzyme inhibitors and calcium antagonists.

  7. Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses

    DEFF Research Database (Denmark)

    Haugaard, Maria Mathilde; Hesselkilde, Eva Zander; Pehrson, Steen Michael

    2015-01-01

    BACKGROUND: Small-conductance calcium-activated potassium (SK) channels have been found to play an important role in atrial repolarization and atrial fibrillation (AF). OBJECTIVE: The purpose of this study was to investigate the existence and functional role of SK channels in the equine heart...

  8. Aberrant Splicing Promotes Proteasomal Degradation of L-type Ca v 1.2 Calcium Channels by Competitive Binding for CaV β Subunits in Cardiac Hypertrophy

    NARCIS (Netherlands)

    Hu, Zhenyu; Wang, Jiong Wei; Yu, Dejie; Soon, Jia Lin; De Kleijn, Dominique P V; Foo, Roger; Liao, Ping; Colecraft, Henry M.; Soong, Tuck Wah

    2016-01-01

    Decreased expression and activity of Ca V1.2 calcium channels has been reported in pressure overload-induced cardiac hypertrophy and heart failure. However, the underlying mechanisms remain unknown. Here we identified in rodents a splice variant of Ca V1.2 channel, named Ca V1.2 e21+22, that contain

  9. Modulatory effects of the fruits of Tribulus terrestris L. on the function of atopic dermatitis-related calcium channels, Orai1 and TRPV3

    Directory of Open Access Journals (Sweden)

    Joo Hyun Nam

    2016-07-01

    Conclusions: Our results suggest that T. terrestris extract may have a therapeutic potential for recovery of abnormal skin barrier pathologies in atopic dermatitis through modulating the activities of calcium ion channels, Orai1 and TRPV3. This is the first study to report the modulatory effect of a medicinal plant on the function of ion channels in skin barrier.

  10. High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway

    DEFF Research Database (Denmark)

    Liu, Daoyan; Maier, Alexandra; Scholze, Alexandra;

    2008-01-01

    Transient receptor potential canonical type 6 (TRPC6) channels mediating 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced calcium entry have been identified on human platelets. In the present study we tested the hypothesis that hyperglycemia increases the expression of TRPC6 channels....

  11. Binding and release of brain calcium by low-level electromagnetic fields: A review

    Science.gov (United States)

    Adey, W. R.; Bawin, S. M.

    Evidence has accumulated that sensitivity of brain tissue to specific weak oscillating electromagnetic fields occurs in the absence of significant tissue heating (less than 0.1°C). This review focuses on the ‘windowed’ character of sensitivities of calcium binding and electrical activity in brain tissue to low-frequency modulation and intensity characteristics of impressed RF fields. ELF fields decrease calcium efflux from isolated chick and cat cerebral tissue by about 15% only in narrow amplitude and frequency ‘windows,’ between 6 and 20 Hz and between 10 and 100 V/m (approximate tissue gradient, 10-7 V/cm). VHF (147 MHz) and UHF (450 MHz) fields increase calcium efflux from isolated chick brain by about 15% when amplitude modulated between 6 and 20 Hz, but only for incident fields in the vicinity of 1.0 mW/cm2. We have now shown that this increased efflux in response to 16-Hz amplitude-modulated 450-MHz, 0.75-mW/cm2 field exposure is insensitive to variations in calcium concentration from 0 to 4.16 mM in the testing solution but is enhanced by addition of hydrogen ions (0.108 mM 0.1 N HCl) and inhibited in the absence of normal bicarbonate ion levels (2.4 mM). In the presence of lanthanum ions (2.0 mM), which block transmembrane movement of calcium, exposure to these EM fields decreases the 45Ca2 + efflux. Low-frequency gradients may be transduced in a specific class of extracellular binding sites, normally occupied by calcium ions and susceptible to competitive hydrogen ion binding. Transductive coupling may involve coherent charge states between anionic sites on membrane surface glycoproteins, with longrange cooperative interactions triggered by weak extracellular electric fields. Proton ‘tunneling’ may occur at boundaries between coherent and noncoherent charge zones.

  12. Quality by design of curcumin-loaded calcium alginate emulsion beads as an oral controlled release delivery system

    Directory of Open Access Journals (Sweden)

    Mayyas Al-Remawi

    2015-03-01

    Full Text Available The aim of the study was to prepare a curcumin floating bead system to act as an oral controlled release delivery system. The methodology includes the use of calcium alginate emulsion beads which contains two important ingredients oleic acid and Tween® 80. The ingredient effect was assessed in terms of curcumin release and gel stability. The formulations with higher concentrations of oleic acid were found to be more stable and selected for further analysis. The drug release mechanism was also evaluated in simulated gastric fluid. Response surface methodology was used to determine the optimum conditions for preparation in terms of floating time and curcumin release. Two factors were assessed i.e. the crosslinking time and Tween 80 concentration. It was found that both factors were affecting the floating time and drug release. The optimum conditions for the preparation of curcumin beads were determined and tested. The observed and predicted responses of the optimum curcumin bead formulation were almost the same

  13. Potentiation of Opioid-Induced Analgesia by L-Type Calcium Channel Blockers: Need for Clinical Trial in Cancer Pain

    Directory of Open Access Journals (Sweden)

    S Basu Ray

    2008-01-01

    Full Text Available Previous reports indicate that the analgesic effect of opioids is due to both closure of specific voltage-gated calcium channels (N- and P/Q-types and opening of G protein-coupled inwardly rectifying potassium channels (GIRKs in neurons concerned with transmission of pain. However, administration of opioids leads to unacceptable levels of side effects, particularly at high doses. Thus, current research is directed towards simultaneously targeting other voltage-gated calcium channels (VGCCs like the L-type VGCCs or even other cell signaling mechanisms, which would aug-ment opioid-mediated analgesic effect without a concurrent increase in the side effects. Unfortunately, the results of these studies are often conflicting considering the different experimental paradigms (variable drug selection and their doses and also the specific pain test used for studying analgesia adopted by researchers. The present review focuses on some of the interesting findings regarding the analgesic effect of Opioids + L-VGCC blockers and suggests that time has come for a clinical trial of this combination of drugs in the treatment of cancer pain.

  14. Science Signaling Podcast for 24 January 2017: Tissue-specific regulation of L-type calcium channels.

    Science.gov (United States)

    Hell, Johannes W; Navedo, Manuel F; VanHook, Annalisa M

    2017-01-24

    This Podcast features an interview with Johannes Hell and Manuel Navedo, senior authors of two Research Articles that appear in the 24 January 2017 issue of Science Signaling, about tissue-specific regulation of the L-type calcium channel CaV1.2. This channel is present in many tissues, including the heart, vasculature, and brain, and allows calcium to flow into cells when it is activated. Signaling through the β-adrenergic receptor (βAR) stimulates CaV1.2 activity in heart cells and neurons to accelerate heart rate and increase neuronal excitability, respectively. Using mouse models, Qian et al found that βAR-mediated enhancement of CaV1.2 activity in the brain required phosphorylation of Ser(1928), whereas βAR-mediated enhancement of CaV1.2 activity in the heart did not require phosphorylation of this residue. In a related study, Nystoriak et al demonstrated that phosphorylation of Ser(1928) in arterial myocytes was required for vasoconstriction during acute hyperglycemia and in diabetic mice. These findings demonstrate tissue-specific differences in CaV1.2 regulation and suggest that it may be possible to design therapies to target this channel in specific tissues.Listen to Podcast.

  15. Antihypertensive and vasorelaxant activities of Laelia autumnalis are mainly through calcium channel blockade.

    Science.gov (United States)

    Vergara-Galicia, Jorge; Ortiz-Andrade, Rolffy; Castillo-España, Patricia; Ibarra-Barajas, Maximiliano; Gallardo-Ortiz, Itzell; Villalobos-Molina, Rafael; Estrada-Soto, Samuel

    2008-07-01

    The aim of the present study was to evaluate the possible mechanism of the vasorelaxant action of methanol extract from Laelia autumnalis (MELa) in isolated rat aortic rings, and to establish its antihypertensive activity in vivo. MELa (0.15-->50 microg/mL) induced relaxation in aortic rings pre-contracted with KCl (80 mM), showing an IC50 value of 34.61+/-1.41 microg/mL and E max value of 85.0+/-4.38% (in endothelium-intact rings) and an IC50 value of 45.11+/-4.17 microg/mL and E max value of 80.0+/-12.1% (in endothelium-denuded rings). Serotonin (5-HT, 1 x 10(-4) M) provoked sustained contraction, which was markedly inhibited by MELa (0.15-->50 microg/mL) in a concentration-dependent and endothelium-independent manner. Pretreatment with MELa (15, 46, 150, 300 and 1500 microg/mL) also inhibited contractile responses to norepinephrine (NE 1 x 10(-11) M to 1 x 10(-5.5) M). In endothelium-denuded rings, the vasorelaxant effect of MELa was reduced partially by ODQ (1 microM), but not by tetraethylammonium (5 microM), glibenclamide (10 microM), and 2-aminopyridine (100 microM). The extract also reduced NE-induced transient contraction in Ca2+-free solution, and inhibited contraction induced by increasing external calcium in Ca2+-free medium plus high KCl (80 mM). The antihypertensive effect of MELa was determined in spontaneously hypertensive rats (SHR). A single oral administration of the extract (100 mg/kg) exhibited a significant decrease in systolic and diastolic blood pressure and heart rate (p<0.05) in SHR rats. Our results suggest that MELa induces relaxation in rat aortic rings through an endothelium-independent pathway, involving blockade of Ca2+ channels and a possible cGMP enhanced concentrations and also causes an antihypertensive effect.

  16. Effects of calcium channel antagonists on the motivational effects of nicotine and morphine in conditioned place aversion paradigm.

    Science.gov (United States)

    Budzynska, Barbara; Polak, Piotr; Biala, Grazyna

    2012-03-01

    The motivational component of drug withdrawal may contribute to drug seeking and relapse through the negative reinforcement-related process; thus, it is important to understand the mechanisms that mediate affective withdrawal behaviors. The present study was undertaken to examine the calcium-dependent mechanism of negative motivational symptoms of nicotine and morphine withdrawal using the conditioned place aversion (CPA) paradigm. Rats were chronically treated with nicotine (1.168 mg/kg, free base, s.c., 11 days, three times daily) or morphine (10 mg/kg,s.c., 11 days, twice daily). Then, during conditioning, rats pre-treated with nicotine or morphine received a nicotinic receptor antagonist mecamylamine (3.5 mg/kg) or an opioid receptor antagonist naloxone (1 mg/kg) to precipitate withdrawal in their initially preferred compartment, or saline in their non-preferred compartment. Our results demonstrated that after three conditioning sessions, mecamylamine induced a clear place aversion in rats that had previously received nicotine injections, and naloxone induced a significant place aversion in rats that had previously received morphine injections. Further, the major findings showed that calcium channel antagonists, i.e., nimodipine, verapamil and flunarizine (5 and 10 mg/kg, i.p.), injected before the administration of mecamylamine or naloxone, attenuated nicotine or morphine place aversion. As an outcome, these findings support the hypothesis that similar calcium-dependent mechanisms are involved in aversive motivational component associated with nicotine a morphine withdrawal. We can suggest that calcium channel blockers have potential for alleviating nicotine and morphine addiction by selectively decreasing the incentive motivational properties of both drugs, and may be beneficial as smoking cessation or opioid dependence pharmacotherapies.

  17. Calcium signaling in taste cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  18. New insights into the activation mechanism of store-operated calcium channels:roles of STIM and Orai

    Institute of Scientific and Technical Information of China (English)

    Rui-wei GUO; Lan HUANG

    2008-01-01

    The activation of Ca2+ entry through store-operated channels by agonists that deplete Ca2+ from the endoplasmic reticulum (ER)is a ubiquitous signaling mechanism,the molecular basis of which has remained elusive for the past two decades.Store-operated Ca2+-release-activated Ca2+(CRAC)channels constitute the sole pathway for Ca2+ entry following antigen-receptor engagement.In a set of breakthrough studies over the past two years,stromal interaction molecule l(STIM1,tbe ER Ca2+ sensor) and Orail(a pore-forming subunit of the CRAC channel)have been identified.Here we review these recent studies and the insights they provide into the mechanism of store-operated Ca2+ channels(SOCCs).

  19. Lung adenocarcinoma with Lambert–Eaton myasthenic syndrome indicated by voltage-gated calcium channel: a case report

    Directory of Open Access Journals (Sweden)

    Arai Hiromasa

    2012-09-01

    Full Text Available Abstract Introduction Lambert–Eaton myasthenic syndrome is a rare disorder and it is known as a paraneoplastic neurological syndrome. Small cell lung cancer often accompanies this syndrome. Lambert–Eaton myasthenic syndrome associated with lung adenocarcinoma is extremely rare; there are only a few reported cases worldwide. Case presentation A 75-year-old Japanese man with a past history of chronic rheumatoid arthritis and Sjögren syndrome was diagnosed with Lambert–Eaton myasthenic syndrome by electromyography and serum anti-P/Q-type voltage-gated calcium channel antibody level preceding the diagnosis of lung cancer. A chest computed tomography to screen for malignant lesions revealed an abnormal shadow in the lung. Although a histopathological examination by bronchoscopic study could not reveal the malignancy, lung cancer was mostly suspected after the results of a chest computed tomography and [18F]-fluorodeoxyglucose positron emission tomography. An intraoperative diagnosis based on the frozen section obtained by tumor biopsy was adenocarcinoma so the patient underwent a lobectomy of the right lower lobe and lymph node dissection with video-assisted thoracoscopic surgery. The permanent pathological examination was the same as the frozen diagnosis (pT2aN1M0: Stage IIa: TNM staging 7th edition. Immunohistochemistry revealed that most of the cancer cells were positive for P/Q-type voltage-gated calcium channel. Conclusions Our case is a rare combination of Lambert–Eaton myasthenic syndrome associated with lung adenocarcinoma, rheumatoid arthritis and Sjögren syndrome, and to the best of our knowledge it is the first report that indicates the presence of voltage-gated calcium channel in lung adenocarcinoma by immunostaining.

  20. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients

    DEFF Research Database (Denmark)

    Thuesen, A D; Lyngsø, K S; Rasmussen, L

    2017-01-01

    AIM: Calcium channel blockers are widely used in cardiovascular diseases. Besides L-type channels, T- and P/Q-type calcium channels are involved in the contraction of human renal blood vessels. It was hypothesized that T- and P/Q-type channels are involved in the contraction of human brain...... and mammary blood vessels. METHODS: Internal mammary arteries from bypass surgery patients and cerebral arterioles from patients with brain tumours with and without hypertension were tested in a myograph and perfusion set-up. PCR and immunohistochemistry were performed on isolated blood vessels. RESULTS......: The P/Q-type antagonist ω-agatoxin IVA (10(-8) mol L(-1) ) and the T-type calcium blocker mibefradil (10(-7) mol L(-1) ) inhibited KCl depolarization-induced contraction in mammary arteries from hypertensive patients with no effect on blood vessels from normotensive patients. ω-Agatoxin IVA decreased...

  1. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct

    DEFF Research Database (Denmark)

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the ...

  2. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation

    OpenAIRE

    Felmy, F.; Neher, E.; Schneggenburger, R

    2003-01-01

    In nerve terminals, residual Ca2+ remaining from previous activity can cause facilitation of transmitter release by a mechanism that is still under debate. Here we show that the intracellular Ca2+ sensitivity of transmitter release at the calyx of Held is largely unchanged during facilitation, which leaves an increased microdomain Ca2+ signal as a possible mechanism for facilitation. We measured the Ca2+ dependencies of facilitation, as well as of transmitter release, to estimate the required...

  3. Ion Channels in Leukocytes

    Science.gov (United States)

    1991-07-01

    muscle k142), heart muscle (80), bo- are released. In recent years much has been learned vine pulmonar arter endothelial cells (251), and rat about the...channel analysbib of Lt. Potassium permeability in HeLa cancer BioL Chem. 265: 142416-141263, 1990. cells. evidence for a calcium-a’tivated potassium

  4. Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse

    DEFF Research Database (Denmark)

    Simonsen, Ulf; Wandall-Frostholm, Christine; Oliván-Viguera, Aida;

    2016-01-01

    endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl(-) and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure......, fluid extravasation, hemorrhage, pulmonary circulatory collapse, and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4-signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation...

  5. The mystery is solved-CatSper is the principal calcium channel activated by progesterone in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    Christopher LR Barratt

    2011-01-01

    @@ Aremarkable advance in sperm physiology has recently been published in Nature.Two groups using patch clamping techniques on human sperm have solved a mystery about the sperm cell that has puzzled both andrologists and those involved in non-genomic cellular signalling for over 20 years.In these papers, Lishko1 and Strunker2 independently demonstrate that the universal characteristic effect of progesterone on sperm-a rapid influx of calcium-is via a sperm-specific channel CatSper.

  6. Effects of low-level laser exposure on calcium channels and intracellular release in cultured astrocytes

    Science.gov (United States)

    Mang, Thomas S.; Maneshi, Mohammed M.; Shucard, David W.; Hua, Susan; Sachs, Frederick

    2016-03-01

    Prompted by a study of traumatic brain injury (TBI) in a model system of cultured astrocytes, we discovered that low level laser illumination (LLL) at 660nm elevates the level of intracellular Ca2+. The coherence of the illumination was not essential since incoherent red light also worked. For cells bathed in low Ca2+ saline so that influx was suppressed, the Ca2+ level rose with no significant latency following illumination and consistent with a slow leak of Ca2+ from storage such as from the endoplasmic reticulum and/or mitochondria. When the cells were bathed in normal Ca2+ saline, the internal Ca2+ rose, but with a latency of about 17 seconds from the beginning of illumination. Pharmacologic studies with ryanodine inhibited the light effect. Testing the cells with fluid shear stress as used in the TBI model showed that mechanically induced elevation of cell Ca2+ was unaffected by illumination.

  7. Niflumic acid hyperpolarizes the smooth muscle cells by opening BK(Ca) channels through ryanodine-sensitive Ca(2+) release in spiral modiolar artery.

    Science.gov (United States)

    Li, Li; Ma, Ke-Tao; Zhao, Lei; Si, Jun-Qiang

    2008-12-25

    The mechanism by which niflumic acid (NFA), a Cl(-) channel antagonist, hyperpolarizes the smooth muscle cells (SMCs) of cochlear spiral modiolar artery (SMA) was explored. Guinea pigs were used as subjects and perforated patch clamp and intracellular recording technique were used to observe NFA-induced response of SMC in the acutely isolated SMA preparation. The results showed that bath application of NFA, indanyloxyacetic acid 94 (IAA-94) and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) caused hyperpolarization and evoked outward currents in all cells at low resting potential (RP), but had no effects in cells at high RP. In the low RP SMCs, the average RP was about (-42.47+/-1.38) mV (n=24). Application of NFA (100 mumol/L), IAA-94 (10 mumol/L) and DIDS (200 mumol/L) shifted the RP to (13.7+/-4.3) mV (n=9, P<0.01), (11.4+/-4.2) mV (n=7, P<0.01) and (12.3+/-3.7) mV (n=8, P<0.01), respectively. These drug-induced responses were in a concentration-dependent manner. NFA-induced hyperpolarization and outward current were almost blocked by charybdotoxin (100 nmol/L), iberiotoxin (100 nmol/L), tetraethylammonium (10 mmol/L), BAPTA-AM (50 mumol/L), ryanodine (10 mumol/L) and caffeine (0.1-10 mmol/L), respectively, but not by nifedipine (100 mumol/L), CdCl2 (100 mumol/L) and Ca(2+)-free medium. It is concluded that NFA induces a release of intracellular calcium from the Ca(2+) stores and the released intracellular calcium in turn causes concentration-dependent and reversible hyperpolarization and evokes outward currents in the SMCs of the cochlear SMA via activation of the Ca(2+)-activated potassium channels.

  8. The response of a human bronchial epithelial cell line to histamine: Intracellular calcium changes and extracellular release of inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Noah, T.L.; Paradiso, A.M.; Madden, M.C.; McKinnon, K.P.; Devlin, R.B. (Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill (United States))

    1991-11-01

    Epithelial cells are likely to modulate inflammation and tissue repair in the airways, but the factors responsible for these processes remain unclear. Because human airway epithelia are infrequently available for in vitro studies, transformed epithelial cell lines are of interest as models. The authors therefore investigated the response of an SV-40/adenovirus-transformed human bronchial epithelial cell line (BEAS-2B) to histamine, a mediator with relevance for airway diseases. The intracellular calcium response to histamine (10(-4) M) was measured, using Fura-2 and microspectrofluorimetry. Histamine induced a transient increase in intracellular calcium that originated from intracellular sources; this effect was inhibited by the H1 receptor antagonist diphenhydramine, suggesting that BEAS cells retain functioning histamine receptors. BEAS cells were grown to confluence on microporous, collagen-coated filters, allowing measurement of vectorial release of soluble mediators. Monolayers exposed to histamine for 30 min released interleukin-6 and fibronectin in the apical direction, in a dose-dependent manner. Little eicosanoid production was induced by histamine, either in the apical or the basolateral direction, although BEAS cells constitutively produced small amounts of prostaglandin E2 and 15-HETE. However, these cells formed large amounts of eicosanoids in response to ozone exposure as a positive control. Comparison of their data with published reports for human airway epithelia in primary culture suggests that the BEAS cell line is, in a number of respects, a relevant model for the study of airway epithelial responses to a variety of stimuli.

  9. Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells

    Science.gov (United States)

    Guéguinou, Maxime; Chourpa, Igor; Fromont, Gaëlle; Bouchet, Ana Maria; Burlaud-Gaillard, Julien; Potier-Cartereau, Marie; Roger, Sébastien; Aucagne, Vincent; Chevalier, Stéphan; Vandier, Christophe

    2016-01-01

    Expression of the antimicrobial peptide hCAP18/LL-37 is associated to malignancy in various cancer forms, stimulating cell migration and metastasis. We report that LL-37 induces migration of three cancer cell lines by activating the TRPV2 calcium-permeable channel and recruiting it to pseudopodia through activation of the PI3K/AKT pathway. Ca2+ entry through TRPV2 cooperated with a K+ efflux through the BKCa channel. In a panel of human breast tumors, the expression of TRPV2 and LL-37 was found to be positively correlated. The D-enantiomer of LL-37 showed identical effects as the L-peptide, suggesting that no binding to a specific receptor was involved. LL-37 attached to caveolae and pseudopodia membranes and decreased membrane fluidity, suggesting that a modification of the physical properties of the lipid membrane bilayer was the underlying mechanism of its effects. PMID:26993604

  10. Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, P; Leite, M Fatima [Department of Physiology and Biophysics, Federal University of Minas Gerais (Brazil); Pereira, M M [Department of Metallurgical Engineering, Federal University of Minas Gerais (Brazil); Goes, A M, E-mail: patricia.valerio@terra.com.b, E-mail: leitemd@dedalus.lcc.ufmg.b, E-mail: mpereira@demet.ufmg.b, E-mail: goes@icb.ufmg.b [Department of Biochemistry and Immunology, Federal University of Minas Gerais (Brazil)

    2009-08-15

    Glutamate released by osteoblasts sharing similarities with its role in neuronal transmission is a very new scientific concept which actually changed the understanding of bone physiology. Since glutamate release is a calcium (Ca{sup 2+})-dependent process and considering that we have previously demonstrated that the dissolution of bioactive glass with 60% of silicon (BG60S) can alter osteoblast Ca{sup 2+}-signaling machinery, we investigated whether BG60S induces glutamate secretion in osteoblasts and whether it requires an increase in intracellular Ca{sup 2+}. Here we showed that the extracellular Ca{sup 2+} increase due to BG60S dissolution leads to an intracellular Ca{sup 2+} increase in the osteoblast, through the activation of an inositol 1,4,5-triphosphate receptor (InsP{sub 3}R) and a ryanodine receptor (RyR). Additionally, we also demonstrated that glutamate released by osteoblasts can be profoundly altered by BG60S. The modulation of osteoblast glutamate released by the extracellular Ca{sup 2+} concentration opens a new window in the field of tissue engineering, since many biomaterials used for bone repair are able to increase the extracellular Ca{sup 2+} concentration due to their dissolution products.

  11. Sensitization of voltage activated calcium channel currents for capsaicin in nociceptive neurons by tumor-necrosis-factor-alpha.

    Science.gov (United States)

    Hagenacker, T; Czeschik, J C; Schäfers, M; Büsselberg, D

    2010-01-15

    It is known that application of tumor-necrosis-factor-alpha (TNF-alpha) sensitizes neuronal calcium channels for heat stimuli in rat models of neuropathic pain. This study examines whether TNF-alpha modulates the capsaicin-induced effects after transient receptor potential vanilloid (TRPV)-1 receptor activation on voltage activated calcium channel currents (I(Ca(V))). TRPV-1 receptors are activated by heat and play an important role in the pathogenesis of thermal hyperalgesia in neuropathic pain syndromes, while voltage activated channels are essential for transmission of neuronal signals. Eliciting I(Ca(V)) in DRG neurons of rats by a depolarization from the resting potential to 0 mV, TNF-alpha (100 ng/ml) reduces I(Ca(V)) by 16.9+/-2.2%, while capsaicin (0.1 microM) decreases currents by 27+/-4.3%. Pre-application of TNF-alpha (100 ng/ml) for 24h results in a sensitization of I(Ca(V)) to capsaicin (0.1 microM) with a reduction of 42.8+/-4.4% mediated by TRPV-1. While L-type (36.6+/-5.2%) and P/Q-type currents (35.6+/-4.1%) are also sensitized by TRPV-1 activation, N-type channel currents are most sensitive (74.5+/-7.3%). The capsaicin-induced shift towards the hyperpolarizing voltage range does not occur when TNF-alpha is applied. Summarizing, TNF-alpha sensitizes nociceptive neurons for capsaicin.

  12. GABAA increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels

    Directory of Open Access Journals (Sweden)

    Stephanie Z Young

    2010-04-01

    Full Text Available In the adult neurogenic subventricular zone (SVZ, the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca2+ levels and tonic GABAA receptor activation. However, it is unknown whether, and if so how, GABAA receptor activity regulates intracellular Ca2+ dynamics in SVZ astrocytes. To monitor Ca2+ activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP promoter. GABAA receptor activation induced Ca2+ increases in 40-50% of SVZ astrocytes. GABAA-induced Ca2+ increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC. The L-type Ca2+ channel activator BayK 8644 increased the percentage of GABAA-responding astrocyte-like cells to 75%, suggesting that the majority of SVZ astrocytes express functional VGCCs. SVZ astrocytes also displayed spontaneous Ca2+ activity, the frequency of which was regulated by tonic GABAA receptor activation. These data support a role for ambient GABA in tonically regulating intracellular Ca2+ dynamics through GABAA receptors and VGCC in a subpopulation of astrocyte-like cells in the postnatal SVZ.

  13. Types of voltage—dependent calcium channels involved in high potassium depolarization—induced amylase secretion in the exocrine pancreatic tumour cell line AR4—2J

    Institute of Scientific and Technical Information of China (English)

    CUIZONGJIE

    1998-01-01

    In the perifused fura-2 loaded exocrine pancreatic acinar cell line AR4-2J pulses of high potassium induced repetitive increases in intracellular calcium,Attached cells when stimulated with high potassium secreted large amount of amylase.High potassium-induced secretion was dependent both on the concentration of potassium and duration of stimulation.High potassium induced increases in intracellular calcium were inhibited by voltage-dependent calcium channel anatagonists with an order of potency as follows:nifedipine>ω-agatoxin IVA>ω-conotoxin GVIA.In contrast,the L-type calcium channel anatagonist nifedipine almost completely inhibited potassium-induced amylase secretion,whereas the N-type channel antagonist ω-conotoxin GVIA was without effect.The P-type channel antagonist ω-agatoxin IVA had a small inhibitory effect,but this inhibition was not significant at the level of amylase secretion.In conclusion,the AR4-2J cell line posesses different voltage-dependent calcium channels(L,P,N)with the L-type predominantly involved in depolarization induced amylase secretion.

  14. Negative inotropic action of denbufylline through interfering with the calcium channel independently of its PDE IV inhibitory activity in guinea pig ventricle papillary muscles.

    Science.gov (United States)

    Sanae, F; Ohmae, S; Kobayashi, D; Takag, K; Miyamoto, K

    1996-04-01

    The inotropic actions of xanthine derivatives with long alkyl chains were investigated in guinea pig ventricular papillary muscle. A potent and nonselective phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine, elicited a positive inotropy and inhibited the negative inotropic effects of calcium channel inhibitors, as did a selective PDE III inhibitor, amrinone, and these effects were canceled by a protein kinase inhibitor, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89). However, 1,3-di-n-butyl-7-(2'oxopropyl)xanthine (denbufylline) and 1-n-butyl-3-n-propylxanthine (XT-044), which have potent and selective PDE IV-inhibitory activities, showed negative inotropic actions that became more potent in the presence of H-89. Denbufylline abolished the late restoration phase induced by ryanodine. This xanthine derivative attenuated the effects of both the calcium channel acting agents Bay K 8644 and verapamil, without interaction with caffeine and dihydropyridine calcium channel inhibitors, and denbufylline had little direct influence on the specific binding of [(3)H]azidopine and [(3)H]desmethoxyverapamil to cardiac membranes. A nonxanthine PDE IV inhibitor, Ro 20-1724, did not affect the inotropic actions of calcium channel inhibitors. The attenuation by denbufylline or XT-044 of the negative inotropic action of verapamil was not influenced by treatment with H-89. These results suggest that in the ventricular papillary muscle, these xanthine derivatives elicit negative inotropy by acting on a verapamil-sensitive site of the calcium channel without involving their PDE-inhibitory activity.