WorldWideScience

Sample records for calcium receptor expression

  1. The functional expression of extracellular calcium-sensing receptor in rat pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Zhang Wei-hua

    2011-02-01

    Full Text Available Abstract Background The extracellular calcium-sensing receptor (CaSR belongs to family C of the G protein coupled receptors. Whether the CaSR is expressed in the pulmonary artery (PA is unknown. Methods The expression and distribution of CaSR were detected by RT-PCR, Western blotting and immunofluorescence. PA tension was detected by the pulmonary arterial ring technique, and the intracellular calcium concentration ([Ca2+]i was detected by a laser-scanning confocal microscope. Results The expressions of CaSR mRNA and protein were found in both rat pulmonary artery smooth muscle cells (PASMCs and PAs. Increased levels of [Ca2+]o (extracellular calcium concentration or Gd3+ (an agonist of CaSR induced an increase of [Ca2+]i and PAs constriction in a concentration-dependent manner. In addition, the above-mentioned effects of Ca2+ and Gd3+ were inhibited by U73122 (specific inhibitor of PLC, 2-APB (specific antagonist of IP3 receptor, and thapsigargin (blocker of sarcoplasmic reticulum calcium ATPase. Conclusions CaSR is expressed in rat PASMCs, and is involved in regulation of PA tension by increasing [Ca2+]i through G-PLC-IP3 pathway.

  2. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  3. Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat, and human kidney.

    Science.gov (United States)

    Graca, J A Z; Schepelmann, M; Brennan, S C; Reens, J; Chang, W; Yan, P; Toka, H; Riccardi, D; Price, S A

    2016-03-15

    The calcium-sensing receptor (CaSR) was cloned over 20 years ago and functionally demonstrated to regulate circulating levels of parathyroid hormone by maintaining physiological serum ionized calcium concentration ([Ca(2+)]). The receptor is highly expressed in the kidney; however, intrarenal and intraspecies distribution remains controversial. Recently, additional functions of the CaSR receptor in the kidney have emerged, including parathyroid hormone-independent effects. It is therefore critical to establish unequivocally the localization of the CaSR in the kidney to relate this to its proposed physiological roles. In this study, we determined CaSR expression in mouse, rat, and human kidneys using in situ hybridization, immunohistochemistry (using 8 different commercially available and custom-made antibodies), and proximity ligation assays. Negative results in mice with kidney-specific CaSR ablation confirmed the specificity of the immunohistochemistry signal. Both in situ hybridization and immunohistochemistry showed CaSR expression in the thick ascending limb, distal tubule, and collecting duct of all species, with the thick ascending limb showing the highest levels. Within the collecting ducts, there was significant heterogeneity of expression between cell types. In the proximal tubule, lower levels of immunoreactivity were detected by immunohistochemistry and proximity ligation assays. Proximity ligation assays were the only technique to demonstrate expression within glomeruli. This study demonstrated CaSR expression throughout the kidney with minimal discrepancy between species but with significant variation in the levels of expression between cell and tubule types. These findings clarify the intrarenal distribution of the CaSR and enable elucidation of the full physiological roles of the receptor within this organ.

  4. Calcium-sensing receptor expression and parathyroid hormone secretion in hyperplastic parathyroid glands from humans.

    Science.gov (United States)

    Cañadillas, Sagrario; Canalejo, Antonio; Santamaría, Rafael; Rodríguez, Maria E; Estepa, Jose C; Martín-Malo, Alejandro; Bravo, Juan; Ramos, Blanca; Aguilera-Tejero, Escolastico; Rodríguez, Mariano; Almadén, Yolanda

    2005-07-01

    In uremic patients, severe parathyroid hyperplasia is associated with reduced parathyroid calcium-sensing receptor (CaR) expression. Thus, in these patients, a high serum Ca concentration may be required to inhibit parathyroid hormone (PTH) secretion. This study compares the magnitude of reduction in CaR expression and the degree of the abnormality in Ca-regulated PTH release in vitro. A total of 50 glands from 23 hemodialysis patients with refractory hyperparathyroidism were studied. Tissue slices were incubated in vitro to evaluate (1) the PTH secretory output in a normal Ca concentration (1.25 mM) and (2) the PTH secretory response to high (1.5 mM) and low (0.6 mM) Ca concentration. Tissue aliquots were processed for determination of CaRmRNA expression. The results showed that, corrected for DNA, parathyroid tissue with lowest CaR expression secreted more PTH than that with relatively high CaR expression (146 +/- 23 versus 60 +/- 2 pg/microg DNA; P < 0.01). Furthermore, glands with low CaR expression demonstrated a blunted PTH secretory response to both the inhibitory effect of high Ca and the stimulatory effect of low Ca. The study also showed that the larger the gland, the lower the CaRmRNA expression. Thus, large parathyroid glands produce a large amount of PTH not only as a result of the increased gland size but also because the parathyroid tissue secretory output is increased. These abnormalities in PTH regulation are related to low CaR expression.

  5. Secretin-receptor and secretin-receptor-variant expression in gastrinomas: Correlation with clinical and tumoral features and secretin and calcium provocative test results.

    Science.gov (United States)

    Long, Scott H.; Berna, Marc J.; Thill, Michelle; Pace, Andrea; Pradhan, Tapas K.; Hoffmann, K. Martin; Serrano, Jose; Jensen, Robert T.

    2008-01-01

    Context/Objectives The diagnosis of Zollinger-Ellison syndrome (ZES) requires secretin testing in 60%. Even with secretin the diagnosis may be difficult because variable responses occur and 6–30% have negative testing. The basis for variability or negative responses is unclear. It is unknown if the tumor density of secretin receptors or the presence of a secretin-receptor-variant, which can act as a dominant-negative, are important. The aim of this study was to investigate these possibilities. Patients/Methods Secretin-receptor and variant mRNA expression was determined in gastrinomas using real-time-PCR from 54 ZES patients. Results were correlated with Western blotting, secretin-receptor immunohistochemistry, with gastrin-provocative-test results and tumoral/clinical/laboratory features. Results Secretin-receptor mRNA was detectible in all gastrinomas but varied 132-fold with a mean of 0.89±0.12 molecules/β-actin. Secretin-receptor PCR results correlated closely with Western blotting (r=0.95,p<0.0001) and receptor-immunohistochemistry (p=0.0015, r=0.71). The variant was detected in all gastrinomas but levels varied 102-fold and were 72-fold lower than the total. Secretin-receptor levels correlated with variant levels, Δsecretin, but not Δcalcium and with tumor location, but not growth, extent or clinical responses. Variant levels did not correlate with the Δsecretin. Detailed analysis provides no evidence variant expression modified the secretin-receptor response or accounted for negative tests. Conclusions Secretin-receptor and secretin-receptor-variant expression occur in all gastrinomas. Because the expression of the total but not variant correlated with the secretin results and no evidence for dominant negative activity of the variant was found, our results suggest the total-secretin-receptor density is an important determinant of the secretin test response. PMID:17711922

  6. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit;

    2011-01-01

    It is unknown whether extracellular calcium may regulate the expression of transient receptor potential canonical type 3 (TRPC3) channels in patients with chronic kidney disease. Using quantitative in-cell Western assay we compared the expression of TRPC3 channel protein in monocytes from 20...... patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression...... in patients with chronic kidney disease compared to healthy control subjects (normalized expression, 0.42±0.06 vs. 0.19±0.03; p...

  7. Expression of the calcium receptor CaR in the parathyroid of secondary hyperparathyroidism patients

    Institute of Scientific and Technical Information of China (English)

    王宁宁; 王笑云; 彭韬; 吴宏飞; 胡建明; 赵卫红; 俞香宝

    2004-01-01

    @@ The effects of calcium on parathyroid hormone (PTH) has further discovered in recent years. It has been known that calcium ion concentration in the extracellular fluid is a major determinant of PTH secretion. The relationship between serum intact PTH (iPTH) and calcium ion levels is described by a sigmoidal curve. The calcium concentration that produces half-maximal change in PTH release (the midpoint between maximal and minimal change in PTH release) represents the sensitivity of parathyroid cells to serum calcium. In secondary hyperparathyroidism (SHPT) patients, higher calcium concentrations are needed to suppress PTH secretion, as demonstrated by the PTH-calcium sigmoidal curve. The loss of physiological control over the secretory function and growth of parathyroid tissue in hyperparathyroid disease is still incompletely understood.

  8. 17β-Estradiol Regulation of the mRNA Expression of T-type Calcium Channel subunits: Role of Estrogen Receptor α and Estrogen Receptor β

    Science.gov (United States)

    Bosch, Martha A.; Hou, Jingwen; Fang, Yuan; Kelly, Martin J.; Rønnekleiv., Oline K.

    2009-01-01

    Low voltage-activated (T-type) calcium channels are responsible for burst firing and transmitter release in neurons and are important for exocytosis and hormone secretion in pituitary cells. T-type channels contain an α1 subunit, of which there are three subtypes, Cav3.1, 3.2 and 3.3, and each subtype has distinct kinetic characteristics. Although 17β-estradiol modulates T-type calcium channel expression and function, little is known about the molecular mechanisms involved. Presently, we used real-time PCR quantification of RNA extracted from hypothalamic nuclei and pituitary in vehicle and E2-treated C57BL/6 mice to elucidate E2-mediated regulation of Cav3.1, 3.2 and 3.3 subunits. The three subunits were expressed in both the hypothalamus and the pituitary. E2 treatment increased the mRNA expression of Cav3.1 and 3.2, but not Cav3.3, in the medial preoptic area and the arcuate nucleus. In the pituitary, Cav3.1 was increased with E2-treatment and Cav3.2 and 3.3 were decreased. In order to examine whether the classical estrogen receptors (ERs) were involved in the regulation, we used ERα- and ERβ-deficient C57BL/6 mice and explored the effects of E2 on T-type channel subtypes. Indeed, we found that the E2-induced increase in Cav3.1 in the hypothalamus was dependent on ERα, whereas the E2 effect on Cav3.2 was dependent on both ERα and ERβ. However, the E2-induced effects in the pituitary were dependent on only the expression of ERα. The robust E2-regulation of the T-type calcium channels could be an important mechanism by which E2 increases the excitability of hypothalamic neurons and modulates pituitary secretion. PMID:19003958

  9. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  10. Calcium-sensing receptor in breast physiology and cancer

    OpenAIRE

    Wonnam Kim; Wysolmerski, John J.

    2016-01-01

    The calcium-sensing receptor (CaSR) is expressed in normal breast epithelial cells and in breast cancer cells. During lactation, activation of the CaSR in mammary epithelial cells increases calcium transport into milk and inhibits parathyroid hormone-related protein (PTHrP) secretion into milk and into the circulation. The ability to sense changes in extracellular calcium allows the lactating breast to actively participate in the regulation of systemic calcium and bone metabolism, and to coor...

  11. Calcium and calcium sensing receptor modulates the expression of thymidylate synthase, NAD(P)H:quinone oxidoreductase 1 and survivin in human colon carcinoma cells: promotion of cytotoxic response to mitomycin C and fluorouracil

    OpenAIRE

    Liu, Guangming; Hu, Xin; Varani, James; Chakrabarty, Subhas

    2009-01-01

    Ca2+ and the cell-surface calcium sensing receptor (CaSR) constitute a novel and robust ligand/receptor system in regulating the proliferation and differentiation of colonic epithelial cells. Here we show that activation of CaSR by extracellular Ca2+ (or CaSR agonists) enhanced the sensitivity of human colon carcinoma cells to mitomycin C (MMC) and fluorouracil (5-FU). Activation of CaSR up-regulated the expression of MMC activating enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO-1) and down-re...

  12. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim

    2014-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...

  13. Investigation of free fatty acid associated recombinant membrane receptor protein expression in HEK293 cells using Raman spectroscopy, calcium imaging, and atomic force microscopy.

    Science.gov (United States)

    Lin, Juqiang; Xu, Han; Wu, Yangzhe; Tang, Mingjie; McEwen, Gerald D; Liu, Pin; Hansen, Dane R; Gilbertson, Timothy A; Zhou, Anhong

    2013-02-05

    G-protein-coupled receptor 120 (GPR120) is a previously orphaned G-protein-coupled receptor that apparently functions as a sensor for dietary fat in the gustatory and digestive systems. In this study, a cDNA sequence encoding a doxycycline (Dox)-inducible mature peptide of GPR120 was inserted into an expression vector and transfected in HEK293 cells. We measured Raman spectra of single HEK293 cells as well as GPR120-expressing HEK293-GPR120 cells at a 48 h period following the additions of Dox at several concentrations. We found that the spectral intensity of HEK293-GPR120 cells is dependent upon the dose of Dox, which correlates with the accumulation of GPR120 protein in the cells. However, the amount of the fatty acid activated changes in intracellular calcium (Ca(2+)) as measured by ratiometric calcium imaging was not correlated with Dox concentration. Principal components analysis (PCA) of Raman spectra reveals that the spectra from different treatments of HEK293-GPR120 cells form distinct, completely separated clusters with the receiver operating characteristic (ROC) area of 1, while those spectra for the HEK293 cells form small overlap clusters with the ROC area of 0.836. It was also found that expression of GPR120 altered the physiochemical and biomechanical properties of the parental cell membrane surface, which was quantitated by atomic force microscopy (AFM). These findings demonstrate that the combination of Raman spectroscopy, calcium imaging, and AFM may provide new tools in noninvasive and quantitative monitoring of membrane receptor expression induced alterations in the biophysical and signaling properties of single living cells.

  14. The calcium-sensing receptor regulates mammary gland parathyroid hormone–related protein production and calcium transport

    OpenAIRE

    VanHouten, Joshua; Dann, Pamela; McGeoch, Grace; Brown, Edward M.; Krapcho, Karen; Neville, Margaret; Wysolmerski, John J

    2004-01-01

    The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone–related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppre...

  15. Expression of calcium-sensing receptor in papillary thyroid carcinoma%钙敏感受体在甲状腺乳头状癌中的表达

    Institute of Scientific and Technical Information of China (English)

    游振辉; 陈刚; 张保根

    2013-01-01

    目的 探讨钙敏感受体在甲状腺乳头状癌、甲状腺良性肿瘤、正常甲状腺组织中的表达特点,分析其与甲状腺乳头状癌的的关系.方法 甲状腺手术后标本70例(甲状腺乳头状癌组织40例、甲状腺良性肿瘤20例、甲状腺正常组织10例),应用MaxvisionTM2/HRP免疫组化二步法染色对甲状腺乳头状癌组织、甲状腺良性肿瘤及甲状腺正常组织的钙敏感受体进行检测.所有资料均采用SPSS 17.0进行统计分析,采用非参数检验,P<0.05为差异有统计学意义.结果 钙敏感受体在甲状腺乳头状癌与甲状腺良性肿瘤、甲状腺正常组织间的表达差异有统计学意义(分别为90%,40%,0%;P<0.05).甲状腺乳头状癌钙化组中钙敏感受体的阳性表达高于甲状腺癌无钙化组,且高于甲状腺良性肿瘤钙化组,差异有统计学意义(P<0.05).结论 钙敏感受体与甲状腺乳头状癌有着密切的关系.钙敏感受体可能在甲状腺乳头状癌组织的钙化起到重要作用.%Objective To explore the relationship between calcium-sensing receptor's expression and papillary thyroid carcinoma.Methods Seventy cases of postoperative papillary thyroid carcinoma were selected.Immunohistochemical technique was used to detect expression of calcium-sensing receptor in papillary thyroid carcinoma,thyroid benign lesions,and normal thyroid tissue,respectively.SPSS 17.0 statistical analysis was used with non parametric test,P<0.05 indicated significant difference.Results The expression of calcium-sensing receptor in papillary thyroid carcinoma,benign thyroid,and normal thyroid were significantly different (90%,40%,0%,respectively; P < 0.05).The expression of the calcium-sensing receptor in the group of papillary thyroid carcinoma with calcification was significantly higher than that in thyroid cancer without calcification (P < 0.05).Conclusions This study suggests that the calcium-sensing receptor may be associated

  16. Calcium insensitivity of FA-6, a cell line derived from a pancreatic cancer associated with humoral hypercalcemia, is mediated by the significantly reduced expression of the Calcium Sensitive Receptor transduction component p38 MAPK

    Directory of Open Access Journals (Sweden)

    Fairfax Benjamin

    2006-11-01

    Full Text Available Abstract The Calcium-Sensing Receptor is a key component of Calcium/Parathyroid hormone homeostatic system that helps maintain appropriate plasma Ca2+ concentrations. It also has a number of non-homeostatic functions, including cell cycle regulation through the p38 MAPK pathway, and recent studies have indicated that it is required for Ca2+ mediated growth arrest in pancreatic carcinoma cells. Some pancreatic cancers produce pathogenic amounts of parathyroid like hormones, however, which significantly increase Ca2+ plasma concentrations and might be expected to block further cell growth. In this study we have investigated the expression and function of the p38 MAPK signaling pathway in Ca2+ sensitive (T3M-4 and insensitive (FA6 pancreatic cancer cell lines. FA-6 cells, which are derived from a pancreatic adenocarcinoma that secretes a parathyroid hormone related peptide, exhibit only very low levels of p38 MAPK expression, relative to T3M-4 cells. Transfecting FA-6 cells with a p38 MAPK expression construct greatly increases their sensitivity to Ca2+. Furthermore, the reduction of p38 MAPK in T3M-4 cells significantly reduces the extent to which high levels of Ca2+ inhibit proliferation. These results suggest that the low levels of p38 MAPK expression in FA-6 cells may serve to reduce their sensitivity to high concentrations of external Ca2+ that would otherwise block proliferation.

  17. Activation of the calcium sensing receptor with cinacalcet increases serum gastrin levels in healthy older subjects

    Science.gov (United States)

    Gastric acidity is postulated to enhance calcium absorption since calcium is better dissolved at low pH. Extracellular calcium stimulates gastrin and gastric acid secretion in humans. Ex vivo studies indicate that the calcium sensing receptor (CaR), which is expressed on the surface of human G cells...

  18. The 18 kDa translocator protein (peripheral benzodiazepine receptor) expression in the bone of normal, osteoprotegerin or low calcium diet treated mice.

    Science.gov (United States)

    Kam, Winnie Wai-Ying; Meikle, Steven R; Zhou, Hong; Zheng, Yu; Blair, Julie M; Seibel, Marcus; Dunstan, Colin R; Banati, Richard B

    2012-01-01

    The presence of the translocator protein (TSPO), previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195.In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells.In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [(3)H]PK11195 binding in the spongiosa (320±128 Bq x mg(-1), 499±106 Bq x mg(-1) in saline-treated controls). In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [(3)H]PK11195 binding in the spongiosa (615±90 Bq x mg(-1)). Further, our study includes technical feasibility data on [(18)F]fluoride microPET imaging of rodent bone with altered turnover. Despite [(18)F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [(18)F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone.

  19. The 18 kDa translocator protein (peripheral benzodiazepine receptor expression in the bone of normal, osteoprotegerin or low calcium diet treated mice.

    Directory of Open Access Journals (Sweden)

    Winnie Wai-Ying Kam

    Full Text Available The presence of the translocator protein (TSPO, previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195.In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells.In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [(3H]PK11195 binding in the spongiosa (320±128 Bq x mg(-1, 499±106 Bq x mg(-1 in saline-treated controls. In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [(3H]PK11195 binding in the spongiosa (615±90 Bq x mg(-1. Further, our study includes technical feasibility data on [(18F]fluoride microPET imaging of rodent bone with altered turnover. Despite [(18F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [(18F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone.

  20. How calcium makes endocytic receptors attractive

    DEFF Research Database (Denmark)

    Andersen, Christian B F; Moestrup, Søren K

    2014-01-01

    'lynchpin' that stabilizes favorable positioning of ligand-attractive receptor residues. In addition to explaining how calcium depletion can cause ligand-receptor dissociation, the new data add further insight into how acidification contributes to dissociation through structural changes that affect...

  1. Altered expression of stromal interaction molecule (STIM)-calcium release-activated calcium channel protein (ORAI) and inositol 1,4,5-trisphosphate receptors (IP Rs) in cancer:will they become a new battlefield for oncotherapy?

    Institute of Scientific and Technical Information of China (English)

    Jing Wen; Ying Cheng Huang; HuanHuan Xiu; ZhiMing Shan; KangQing Xu

    2016-01-01

    The stromal interaction molecule (STIM)‑calcium release‑activated calcium channel protein (ORAI) and inositol 1,4,5‑trisphosphate receptors (IP3Rs) play pivotal roles in the modulation of Ca2+‑regulated pathways from gene transcription to cell apoptosis by driving calcium‑dependent signaling processes. Increasing evidence has implicated the dysregulation of STIM–ORAI and IP3Rs in tumorigenesis and tumor progression. By controlling the activities, struc‑ture, and/or expression levels of these Ca2+‑transporting proteins, malignant cancer cells can hijack them to drive essential biological functions for tumor development. However, the molecular mechanisms underlying the participa‑tion of STIM–ORAI and IP3Rs in the biological behavior of cancer remain elusive. In this review, we summarize recent advances regarding STIM–ORAI and IP3Rs and discuss how they promote cell proliferation, apoptosis evasion, and cell migration through temporal and spatial rearrangements in certain types of malignant cells. An understanding of the essential roles of STIM–ORAI and IP3Rs may provide new pharmacologic targets that achieve a better therapeutic effect by inhibiting their actions in key intracellular signaling pathways.

  2. Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells.

    Directory of Open Access Journals (Sweden)

    Michelle R Rebello

    Full Text Available WE REPORTED THAT RYANODINE RECEPTORS ARE EXPRESSED IN TWO DIFFERENT TYPES OF MAMMALIAN PERIPHERAL TASTE RECEPTOR CELLS: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx.The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage.Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.

  3. Extracellular calcium sensing receptor in human pancreatic cells

    Science.gov (United States)

    Rácz, G Z; Kittel, Á; Riccardi, D; Case, R M; Elliott, A C; Varga, G

    2002-01-01

    Background and aims: The extracellular calcium sensing receptor (CaR) plays a key role in the calcium homeostatic system and is therefore widely expressed in tissues involved in calcium metabolism. However, the CaR has also been identified in other tissues where its role is less clear. We have investigated the presence of the CaR in the human pancreas. Methods: Messenger RNA for the CaR was detected by reverse transcription-polymerase chain reaction and the protein was localised by immunostaining. CaR function was assayed in Capan-1 cells by measuring intracellular calcium and [3H] thymidine incorporation. Results: The receptor was highly expressed in human pancreatic ducts. It was also expressed in exocrine acinar cells, in islets of Langerhans, and in intrapancreatic nerves and blood vessels. The CaR was expressed in both normal and neoplastic human tissue samples but was detected in only one of five ductal adenocarcinoma cells lines examined. Experiments on the CaR expressing adenocarcinoma cell line Capan-1 showed that the CaR was functional and was linked to mobilisation of intracellular calcium. Stimulation of the CaR reduced Capan-1 cell proliferation. Conclusions: We propose that the CaR may play multiple functional roles in the human pancreas. In particular, the CaR on the duct luminal membrane may monitor and regulate the Ca2+ concentration in pancreatic juice by triggering ductal electrolyte and fluid secretion. This could help to prevent precipitation of calcium salts in the duct lumen. The CaR may also help to regulate the proliferation of pancreatic ductal cells. PMID:12377811

  4. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.

  5. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    Science.gov (United States)

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  6. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice.

    Science.gov (United States)

    Cui, Min; Li, Qiang; Johnson, Robert; Fleet, James C

    2012-10-01

    Transient receptor potential cation channel, subfamily V, member 6 (TRPV6) is an apical membrane calcium (Ca) channel in the small intestine proposed to be essential for vitamin D-regulated intestinal Ca absorption. Recent studies have challenged the proposed role for TRPV6 in Ca absorption. We directly tested intestinal TRPV6 function in Ca and bone metabolism in wild-type (WT) and vitamin D receptor knockout (VDRKO) mice. TRPV6 transgenic mice (TG) were made with intestinal epithelium-specific expression of a 3X Flag-tagged human TRPV6 protein. TG and VDRKO mice were crossed to make TG-VDRKO mice. Ca and bone metabolism was examined in WT, TG, VDRKO, and TG-VDRKO mice. TG mice developed hypercalcemia and soft tissue calcification on a chow diet. In TG mice fed a 0.25% Ca diet, Ca absorption was more than three-fold higher and femur bone mineral density (BMD) was 26% higher than WT. Renal 1α hydroxylase (CYP27B1) mRNA and intestinal expression of the natural mouse TRPV6 gene were reduced to intestine calbindin-D(9k) expression was elevated >15 times in TG mice. TG-VDRKO mice had high Ca absorption that prevented the low serum Ca, high renal CYP27B1 mRNA, low BMD, and abnormal bone microarchitecture seen in VDRKO mice. In addition, small intestinal calbindin D(9K) mRNA and protein levels were elevated in TG-VDRKO. Transgenic TRPV6 expression in intestine is sufficient to increase Ca absorption and bone density, even in VDRKO mice. VDR-independent upregulation of intestinal calbindin D(9k) in TG-VDRKO suggests this protein may buffer intracellular Ca during Ca absorption. © 2012 American Society for Bone and Mineral Research.

  7. Calcium sensing receptors and calcium oscillations: calcium as a first messenger.

    Science.gov (United States)

    Breitwieser, Gerda E

    2006-01-01

    Calcium sensing receptors (CaR) are unique among G-protein-coupled receptors (GPCRs) since both the first (extracellular) and second (intracellular) messengers are Ca(2+). CaR serves to translate small fluctuations in extracellular Ca(2+) into intracellular Ca(2+) oscillations. In many cells and tissues, CaR also acts as a coincidence detector, sensing both changes in extracellular Ca(2+) plus the presence of various allosteric activators including amino acids, polyamines, and/or peptides. CaR oscillations are uniquely shaped by the activating agonist, that is, Ca(2+) triggers sinusoidal oscillations while Ca(2+) plus phenylalanine trigger transient oscillations of lower frequency. The distinct oscillation patterns generated by Ca(2+)versus Ca(2+) plus phenylalanine are the results of activation of distinct signal transduction pathways. CaR is a member of Family C GPCRs, having a large extracellular agonist binding domain, and functioning as a disulfide-linked dimer. The CaR dimer likely can be driven to distinct active conformations by various Ca(2+) plus modulator combinations, which can drive preferential coupling to divergent signaling pathways. Such plasticity with respect to both agonist and signaling outcomes allows CaR to uniquely contribute to the physiology of organs and tissues where it is expressed. This chapter will examine the structural features of CaR, which contribute to its unique properties, the nature of CaR-induced intracellular Ca(2+) signals and the potential role(s) for CaR in development and differentiation.

  8. Distribution of D1 and D2-dopamine receptors in calcium-binding-protein expressing interneurons in rat anterior cingulate cortex.

    Science.gov (United States)

    Xu, Lei; Zhang, Xue-Han

    2015-04-25

    Dopamine plays an important role in cognitive functions including decision making, attention, learning and memory in the anterior cingulate cortex (ACC). However, little is known about dopamine receptors (DAR) expression patterns in ACC neurons, especially GABAergic interneurons. The aim of the present study was to investigate the expression of the most abundant DAR subtypes, D1 receptors (D1Rs) and D2 receptors (D2Rs), in major types of GABAergic interneurons in rat ACC, including parvalbumin (PV)-, calretinin (CR)-, and calbindin D-28k (CB)-containing interneurons. Double immunofluorescence staining and confocal scanning were used to detect protein expression in rat brain sections. The results showed a high proportion of PV-containing interneurons express D1Rs and D2Rs, while a low proportion of CR-positive interneurons express D1Rs and D2Rs. D1R- and D2R-expressing PV interneurons are more prevalently distributed in deep layers than superficial layers of ACC. Moreover, we found the proportion of D2Rs expressed in CR cells is much greater than that of D1Rs. These regional and interneuron type-specific differences of D1Rs and D2Rs indicate functionally distinct roles for dopamine in modulating ACC activities via stimulating D1Rs and D2Rs.

  9. Calcium-sensing receptor in breast physiology and cancer

    Directory of Open Access Journals (Sweden)

    Wonnam Kim

    2016-09-01

    Full Text Available The calcium-sensing receptor (CaSR is expressed in normal breast epithelial cells and in breast cancer cells. During lactation, activation of the CaSR in mammary epithelial cells increases calcium transport into milk and inhibits parathyroid hormone-related protein (PTHrP secretion into milk and into the circulation. The ability to sense changes in extracellular calcium allows the lactating breast to actively participate in the regulation of systemic calcium and bone metabolism, and to coordinate calcium usage with calcium availability during milk production. Interestingly, as compared to normal breast cells, in breast cancer cells, the regulation of PTHrP secretion by the CaSR becomes rewired due to a switch in its G-protein usage such that activation of the CaSR increases instead of decreases PTHrP production. In normal cells the CaSR couples to Gi to inhibit cAMP and PTHrP production, whereas in breast cancer cells, it couples to Gs to stimulate cAMP and PTHrP production. Activation of the CaSR on breast cancer cells regulates breast cancer cell proliferation, death and migration, in part, by stimulating PTHrP production. In this article, we discuss the biology of the CaSR in the normal breast and in breast cancer, and review recent findings suggesting that the CaSR activates a nuclear pathway of PTHrP action that stimulates cellular proliferation and inhibits cell death, helping cancer cells adapt to elevated extracellular calcium levels. Understanding the diverse actions mediated by the CaSR may help us better understand lactation physiology, breast cancer progression and osteolytic bone metastases.

  10. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    OpenAIRE

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward; Wysolmerski, John

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate ...

  11. Muscarinic receptor-mediated calcium changes in a rat model of facial nerve nucleus injury

    Institute of Scientific and Technical Information of China (English)

    Dawei Sun; Huamin Liu; Fugao Zhu; Yanqing Wang; Junfeng Wen; Rui Zhou; Yanjun Wang; Banghua Liu

    2010-01-01

    The muscarinic receptor modulates intracellular free calcium ion levels in the facial nerve nucleus via different channels.In the present study,muscarinic receptor-mediated free calcium ions levels were detected by confocal laser microscopy in the facial nerve nucleus following facial nerve injury in rats.There was no significant difference in muscarinic receptor expression at the affected facial nerve nucleus compared with expression prior to injury,but muscarinic receptor-mediated free calcium ion levels increased in the affected side following facial nerve injury(P < 0.01).At day 30after facial nerve injury,50 μmol/L muscarinic-mediated free calcium ion levels were significantly inhibited at the affected facial nerve nucleus in calcium-free artificial cerebrospinal fluid,and the change range was 82% of artificial cerebrospinal fluid(P < 0.05).These results suggest that increased free calcium ion concentrations are achieved by intracellular calcium ion release,and that the transmembrane flow of calcium ions is also involved in this process.

  12. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Jian-xin SHEN; Jerrel L YAKEL

    2009-01-01

    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  13. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation.

    Science.gov (United States)

    Samanta, Krishna; Douglas, Sophie; Parekh, Anant B

    2014-01-01

    Ca2+ flux into mitochondria is an important regulator of cytoplasmic Ca2+ signals, energy production and cell death pathways. Ca2+ uptake can occur through the recently discovered mitochondrial uniporter channel (MCU) but whether the MCU is involved in shaping Ca2+ signals and downstream responses to physiological levels of receptor stimulation is unknown. Here, we show that modest stimulation of leukotriene receptors with the pro-inflammatory signal LTC4 evokes a series of cytoplasmic Ca2+ oscillations that are rapidly and faithfully propagated into mitochondrial matrix. Knockdown of MCU or mitochondrial depolarisation, to reduce the driving force for Ca2+ entry into the matrix, prevents the mitochondrial Ca2+ rise and accelerates run down of the oscillations. The loss of cytoplasmic Ca2+ oscillations appeared to be a consequence of enhanced Ca2+-dependent inactivation of InsP3 receptors, which arose from the loss of mitochondrial Ca2+ buffering. Ca2+ dependent gene expression in response to leukotriene receptor activation was suppressed following knockdown of the MCU. In addition to buffering Ca2+ release, mitochondria also sequestrated Ca2+ entry through store-operated Ca2+ channels and this too was prevented following loss of MCU. MCU is therefore an important regulator of physiological pulses of cytoplasmic Ca2+.

  14. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Krishna Samanta

    Full Text Available Ca2+ flux into mitochondria is an important regulator of cytoplasmic Ca2+ signals, energy production and cell death pathways. Ca2+ uptake can occur through the recently discovered mitochondrial uniporter channel (MCU but whether the MCU is involved in shaping Ca2+ signals and downstream responses to physiological levels of receptor stimulation is unknown. Here, we show that modest stimulation of leukotriene receptors with the pro-inflammatory signal LTC4 evokes a series of cytoplasmic Ca2+ oscillations that are rapidly and faithfully propagated into mitochondrial matrix. Knockdown of MCU or mitochondrial depolarisation, to reduce the driving force for Ca2+ entry into the matrix, prevents the mitochondrial Ca2+ rise and accelerates run down of the oscillations. The loss of cytoplasmic Ca2+ oscillations appeared to be a consequence of enhanced Ca2+-dependent inactivation of InsP3 receptors, which arose from the loss of mitochondrial Ca2+ buffering. Ca2+ dependent gene expression in response to leukotriene receptor activation was suppressed following knockdown of the MCU. In addition to buffering Ca2+ release, mitochondria also sequestrated Ca2+ entry through store-operated Ca2+ channels and this too was prevented following loss of MCU. MCU is therefore an important regulator of physiological pulses of cytoplasmic Ca2+.

  15. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R; Henriksen, Zanne; Sørensen, Ole;

    2002-01-01

    that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium signaling......Signaling between osteoblasts and osteoclasts is important in bone homeostasis. We previously showed that human osteoblasts propagate intercellular calcium signals via two mechanisms: autocrine activation of P2Y receptors, and gap junctional communication. In the current work we identified...... mechanically induced intercellular calcium signaling between osteoblasts and osteoclasts and among osteoclasts. Intercellular calcium responses in osteoclasts required P2 receptor activation but not gap junctional communication. Pharmacological studies and reverse transcriptase-PCR amplification demonstrated...

  16. Spreading depression induces expression of calcium-independent protein kinase C subspecies in ischaemia-sensitive cortical layers: regulation by N-methyl-D-aspartate receptors and glucocorticoids.

    Science.gov (United States)

    Koponen, S; Keinänen, R; Roivainen, R; Hirvonen, T; Närhi, M; Chan, P H; Koistinaho, J

    1999-01-01

    Spreading depression is a wave of sustained depolarization challenging the energy metabolism of the cells without causing irreversible damage. In the ischaemic brain, sreading depression-like depolarization contributes to the evolution of ischaemia to infarction. The depolarization is propagated by activation of N-methyl-D-aspartate receptors, but changes in signal transduction downstream of the receptors are not known. Because protein phosphorylation is a general mechanism whereby most cellular processes are regulated, and inhibition of N-methyl-D-aspartate receptors or protein kinase C is neuroprotective, the expression of protein kinase C subspecies in spreading depression was examined. Cortical treatment with KCl induced an upregulation of protein kinase Cdelta and zeta messenger RNA at 4 and 8 h, whereas protein kinase Calpha, beta, gamma and epsilon did not show significant changes. The gene induction was the strongest in layers 2 and 3, and was followed by an increased number of protein kinase Cdelta-immunoreactive neurons. Protein kinase Cdelta and zeta inductions were inhibited by pretreatment with an N-methyl-D-aspartate receptor antagonist, dizocilpine maleate, which also blocked spreading depression propagation, and with dexamethasone, which acted without blocking the propagation. Quinacrine, a phospholipase A2 inhibitor, reduced only protein kinase C5 induction. In addition, N(G)(-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, did not influence protein kinase Cdelta or zeta induction, whereas 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione, an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptor antagonist, and the cyclo-oxygenase inhibitors indomethacin and diclophenac tended to increase gene expression. The data show that cortical spreading depression induces Ca2(+)-independent protein kinase C subspecies delta and zeta, but not Ca(2+)-dependent subspecies, through activation of N-methyl-D-aspartate receptors and

  17. Nicotine alpha 4 beta 2 receptor-mediated free calcium in an animal model of facial nucleus injury

    Institute of Scientific and Technical Information of China (English)

    Dawei Sun; Wenhai Sun; Yanqing Wang; Fugao Zhu; Rui Zhou; Yanjun Wang; Banghua Liu; Xiuming Wan; Huamin Liu

    2010-01-01

    Previous studies have demonstrated that the cholinergic system,via nicotinic receptors,regulates intracellular free calcium levels in the facial nucleus under normal physiological conditions.However,the regulation of nicotinic receptors on free calcium levels following facial nerve injury remains unclear.In the present study,an animal model of facial nerve injury was established,and changes in nicotinic receptor expression following facial nerve injury in rats were detected using reverse transcription polymerase chain reaction.Nicotinic receptor-mediated changes of free calcium levels following facial nucleus injury were determined by laser confocal microscopy.Results showed no significant difference in nicotinic receptor expression between the normal group and the affected facial nerve nucleus.The nicotinic receptor α4β2 subtype increased free calcium levels following facial nerve injury by promoting calcium transmembrane influx,and L-type voltage-gated calcium channel-mediated influx of calcium ions played an important role in promoting calcium transmembrane influx.The nicotinic receptor-mediated increase of free calcium levels following facial nerve injury provides an important mechanism for the repair of facial nerve injury.

  18. Calcium-sensing receptor: a key target for extracellular calcium signaling in neurons

    Directory of Open Access Journals (Sweden)

    Brian L Jones

    2016-03-01

    Full Text Available Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations.

  19. Dependency of calcium alternans on ryanodine receptor refractoriness.

    Directory of Open Access Journals (Sweden)

    Enric Alvarez-Lacalle

    Full Text Available BACKGROUND: Rapid pacing rates induce alternations in the cytosolic calcium concentration caused by fluctuations in calcium released from the sarcoplasmic reticulum (SR. However, the relationship between calcium alternans and refractoriness of the SR calcium release channel (RyR2 remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: To investigate how ryanodine receptor (RyR2 refractoriness modulates calcium handling on a beat-to-beat basis using a numerical rabbit cardiomyocyte model. We used a mathematical rabbit cardiomyocyte model to study the beat-to-beat calcium response as a function of RyR2 activation and inactivation. Bi-dimensional maps were constructed depicting the beat-to-beat response. When alternans was observed, a novel numerical clamping protocol was used to determine whether alternans was caused by oscillations in SR calcium loading or by RyR2 refractoriness. Using this protocol, we identified regions of RyR2 gating parameters where SR calcium loading or RyR2 refractoriness underlie the induction of calcium alternans, and we found that at the onset of alternans both mechanisms contribute. At low inactivation rates of the RyR2, calcium alternans was caused by alternation in SR calcium loading, while at low activation rates it was caused by alternation in the level of available RyR2s. CONCLUSIONS/SIGNIFICANCE: We have mapped cardiomyocyte beat-to-beat responses as a function of RyR2 activation and inactivation, identifying domains where SR calcium load or RyR2 refractoriness underlie the induction of calcium alternans. A corollary of this work is that RyR2 refractoriness due to slow recovery from inactivation can be the cause of calcium alternans even when alternation in SR calcium load is present.

  20. Calcium intake and prostate cancer among African Americans: effect modification by vitamin D receptor calcium absorption genotype.

    Science.gov (United States)

    Rowland, Glovioell W; Schwartz, Gary G; John, Esther M; Ingles, Sue Ann

    2012-01-01

    High dietary intake of calcium has been classified as a probable cause of prostate cancer, although the mechanism underlying the association between dietary calcium and prostate cancer risk is unclear. The vitamin D receptor (VDR) is a key regulator of calcium absorption. In the small intestine, VDR expression is regulated by the CDX-2 transcription factor, which binds a polymorphic site in the VDR gene promoter. We examined VDR Cdx2 genotype and calcium intake, assessed by a food frequency questionnaire, in 533 African-American prostate cancer cases (256 with advanced stage at diagnosis, 277 with localized stage) and 250 African-American controls who participated in the California Collaborative Prostate Cancer Study. We examined the effects of genotype, calcium intake, and diet-gene interactions by conditional logistic regression. Compared with men in the lowest quartile of calcium intake, men in the highest quartile had an approximately twofold increased risk of localized and advanced prostate cancer (odds ratio [OR] = 2.20, 95% confidence interval [CI] = 1.40, 3.46), with a significant dose-response. Poor absorbers of calcium (VDR Cdx2 GG genotype) had a significantly lower risk of advanced prostate cancer (OR = 0.41, 95% CI = 0.19, 0.90). The gene-calcium interaction was statistically significant (p = 0.03). Among men with calcium intake below the median (680 mg/day), carriers of the G allele had an approximately 50% decreased risk compared with men with the AA genotype. These findings suggest a link between prostate cancer risk and high intestinal absorption of calcium.

  1. The calcium-sensing receptor and the reproductive system

    Directory of Open Access Journals (Sweden)

    Isabella Ellinger

    2016-08-01

    Full Text Available Active placental transport of maternal serum calcium (Ca2+ to the offspring is pivotal for proper development of the fetal skeleton as well as various organ systems. Moreover, extracellular Ca2+ levels impact on distinct processes in mammalian reproduction. The calcium-sensing receptor (CaSR translates changes in extracellular Ca2+-concentrations into cellular reactions. This review summarizes current knowledge on the expression of CaSR and its putative functions in reproductive organs. CaSR was detected in placental cells mediating materno-fetal Ca2+-transport such as the the murine intraplacental yolk sac and the human syncytiotrophoblast. As shown in casr knock-out mice, ablation of CaSR downregulates transplacental Ca2+-transport. Receptor expression was reported in human and rat ovarian surface epithelial cells, where CaSR activation stimulates cell proliferation. In follicles of various species a role of CaSR activation in oocyte maturation was suggested. Based on studies in avian follicles, the activation of CaSR expressed in granulosa cells may support the survival of follicles after their selection. CaSR in rat and equine sperms was functionally linked to sperm motility and sperm capacitation. Implantation involves complex interactions between the blastocyst and the uterine epithelium. During early pregnancy, CaSR expression at the implantation site as well as in decidual cells indicates that CaSR is important for blastocyst implantation and decidualization in the rat uterus. Localization of CaSR in human extravillous cytotrophoblasts suggests a role of CaSR in placentation. Overall, evidence for functional involvement of CaSR in physiologic mammalian reproductive processes exists. Moreover, several studies reported altered expression of CaSR in cells of reproductive tissues under pathologic conditions. However, in many tissues we still lack knowledge on physiological ligands activating CaSR, CaSR-linked G-proteins, activated

  2. Development of a homogeneous calcium mobilization assay for high throughput screening of mas-related gene receptor agonists

    Institute of Scientific and Technical Information of China (English)

    Rui ZHANG; Pang-ke YAN; Cai-hong ZHOU; Jia-yu LIAO; Ming-wei WANG

    2007-01-01

    Aim: To develop homogeneous calcium mobilization assay for high-throughput screening (HTS) of mas-related gene (Mrg) receptor agonists. Methods: CHO-K1 cells stably expressing the full-length MrgD receptor and a calcium-sensitive dye were used to develop an HTS assay based on intracellular calcium influx. This method was applied to large-scale screening of a library containing 8000 synthetic compounds and natural product extracts, cAMP measurements were camed out to verify the bioactivities of the hits found by the calcium mobilization assay. Similar approaches were also employed in the identification of the MrgA1 recep-tor agonists following HTS of 16 000 samples. Results: EC50 values of the positive control compounds (β-alanine for MrgD receptor and dynorphin A for MrgA1 receptor) determined by the calcium mobilization assay were consistent with those reported in the literature, and the Z' factors were 0.65 and 0.50 for MrgD and MrgA1 receptor assay, respectively. About 31 compounds for the MrgD receptor and 48 compounds for the MrgA1 receptor showing ≥20% of the maximal agonist activities found in the controls were initially identified as hits. Secondary screen- ing confirmed that 2 compounds for each receptor possessed specific agonist activities. Intracellular cAMP level measurements indicated that the 2 confirmed hits displayed the functionality of the MrgD receptor agonists. Conclusion: A series of validation studies demonstrated that the homogeneous calcium mobili-zation assay developed was highly efficient, amenable to automation and a robust tool to screen potential MrgD and MrgA1 receptor agonists. Its application may be expanded to other G-protein coupled receptors that mobilize calcium influx upon activation.

  3. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    Energy Technology Data Exchange (ETDEWEB)

    Magno, Aaron L. [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ingley, Evan [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Brown, Suzanne J. [Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Conigrave, Arthur D. [School of Molecular Bioscience, University of Sydney, New South Wales 2000 (Australia); Ratajczak, Thomas [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ward, Bryan K., E-mail: bryanw@cyllene.uwa.edu.au [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia)

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  4. Reduced Expression of the Extracellular Calcium-Sensing Receptor (CaSR Is Associated with Activation of the Renin-Angiotensin System (RAS to Promote Vascular Remodeling in the Pathogenesis of Essential Hypertension.

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Qu

    Full Text Available The proliferation of vascular smooth muscle cells (VSMCs, remodeling of the vasculature, and the renin-angiotensin system (RAS play important roles in the development of essential hypertension (EH, which is defined as high blood pressure (BP in which secondary causes, such as renovascular disease, are absent. The calcium-sensing receptor (CaSR is involved in the regulation of BP. However, the underlying mechanisms by which the CaSR regulates BP are poorly understood. In the present study, the role of the CaSR in EH was investigated using male spontaneously hypertensive rats (SHRs and rat and human plasma samples. The percentages of medial wall thickness to external diameter (WT%, total vessel wall cross-sectional area to the total area (WA% of thoracic arteries, as well as the percentage of wall area occupied by collagen to total vessel wall area (CA% were determined. Tissue protein expression and plasma concentrations of the CaSR, cyclic adenosine monophosphate (cAMP, renin, and angiotensin II (Ang II were additionally assessed. WT%, WA%, and CA% were found to increase with increasing BP, whereas the plasma concentration of CaSR was found to decrease. With increasing BP, the levels of smooth muscle actin and calponin decreased, whereas those of osteopontin and proliferating cell nuclear antigen increased. The CaSR level negatively correlated with the levels of cAMP and Ang II, but positively correlated with those of renin. Our data suggest that reduced expression of the CaSR is correlated with activation of the RAS, which induces increased vascular remodeling and VSMC proliferation, and thereby associated with EH in the SHR model and in the Han Chinese population. Our findings provide new insights into the pathogenesis of EH.

  5. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman;

    2011-01-01

    in vivo imaging of infrared fluorescent "Katushka" and erythropoietin evaluated by ELISA and hemoglobin. Histology was performed. Electrotransfer of Katushka and erythropoietin yielded significant expression. Maximal calcium uptake occurred after injection of Ca(2+) before electropulsing using eight high......Gene electrotransfer is expanding in clinical use, thus we have searched for an emergency procedure to stop transgene expression in case of serious adverse events. Calcium is cytotoxic at high intracellular levels, so we tested effects of calcium electrotransfer on transgene expression in muscle....... A clinical grade calcium solution (20 µl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...

  6. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    Science.gov (United States)

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  7. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    Science.gov (United States)

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2.

  8. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    . A clinical grade calcium solution (20 μl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...

  9. NFAT regulates calcium-sensing receptor-mediated TNF production

    Energy Technology Data Exchange (ETDEWEB)

    abdullah, huda ismail; Pedraza, Paulina L.; Hao, Shoujin; Rodland, Karin D.; McGiff, John C.; Ferreri, Nicholas R.

    2006-05-01

    Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca2+ (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca2+ were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.

  10. NFAT regulates calcium-sensing receptor-mediated TNF production.

    Science.gov (United States)

    Abdullah, Huda Ismail; Pedraza, Paulina L; Hao, Shoujin; Rodland, Karin D; McGiff, John C; Ferreri, Nicholas R

    2006-05-01

    Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca(2+) (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca(2+) were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.

  11. Calcium regulates caveolin-1 expression at the transcriptional level

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming [Laboratory of Tumor Biology and Glycobiology, Department of Life Sciences, Shenyang Pharmaceutical University, Shenyang 110016, People' s Republic of China (China); Li, Yan [Experimental Animal Center, Department of Life Sciences, Shenyang Pharmaceutical University, Shenyang 110016, People' s Republic of China (China); Liu, Dan; Zhang, Xue-Cheng [Laboratory of Tumor Biology and Glycobiology, Department of Life Sciences, Shenyang Pharmaceutical University, Shenyang 110016, People' s Republic of China (China); Sato, Toshinori [Department of Biosciences and Informatics, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Yamagata, Sadako [Laboratory of Tumor Biology and Glycobiology, Department of Life Sciences, Shenyang Pharmaceutical University, Shenyang 110016, People' s Republic of China (China); Yamagata, Tatsuya, E-mail: tcyamagata@gmail.com [Laboratory of Tumor Biology and Glycobiology, Department of Life Sciences, Shenyang Pharmaceutical University, Shenyang 110016, People' s Republic of China (China)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. Black-Right-Pointing-Pointer An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. Black-Right-Pointing-Pointer Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. Black-Right-Pointing-Pointer Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca{sup 2+}/calcineurin/NFAT.

  12. Activation of the MAP Kinase Cascade by Exogenous Calcium-Sensing Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, Susan A.; Wright, Jay W.; Lee, Fred; Mcneil, Scott; Bilderback, Tim R.; Rodland, Karin D.

    2003-02-01

    In Rat-1 fibroblasts and ovarian surface epithelial cells, extracellular calcium induces a proliferative response which appears to be mediated by the G-protein coupled Calcium-sensing Receptor (CaR), as expression of the non-functional CaR-R795W mutant inhibits both thymidine incorporation and activation of the extracellular-regulated kinase (ERK) in response to calcium. In this report we utilized CaR-transfected HEK293 cells to demonstrate that functional CaR is necessary and sufficient for calcium-induced ERK activation. CaR-dependent ERK activation was blocked by co-expression of the Ras dominant-negative mutant, Ras N17, and by exposure to the phosphatidyl inositol 3' kinase inhibitors wortmannin and LY294002. In contrast to Rat-1 fibroblasts, CaR-mediated in vitro kinase activity of ERK2 was unaffected by tyrosine kinase inhibitor herbimycin in CaR-transfected HEK293 cells. These results suggest that usage of distinct pathways downstream of the CaR varies in a cell-type specific manner, suggesting a potential mechanism by which activation of the CaR could couple to distinct calcium-dependent responses.

  13. Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.

    Science.gov (United States)

    Chen, Ken; Deng, Kun; Wang, Xiaoyan; Wang, Zhen; Zheng, Shuo; Ren, Hongmei; He, Duofen; Han, Yu; Asico, Laureano D; Jose, Pedro A; Zeng, Chunyu

    2015-01-01

    The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the D4 receptor regulation of AT1 receptor is aberrant in renal proximal tubule cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time- and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na(+)-K(+) ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na(+)-K(+) ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na(+)-K(+) ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na(+)-K(+) ATPase activity in SHR cells. This was confirmed in vivo; pretreatment with PD128077 for 1 week augmented the antihypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension.

  14. Cross-talk between the calcium-sensing receptor and the epidermal growth factor receptor in Rat-1 fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Tomlins, Scott A.; Bollinger, Nikki; Creim, Jeffrey A.; Rodland, Karin D.

    2005-08-15

    The calcium-sensing receptor (CaR) is a G-protein coupled receptor that is activated by extracellular calcium (Ca2+o). Rat-1 fibroblasts have been shown to proliferate and increase ERK activity in response to elevation of [Ca2+]o, and these responses are dependent on functional CaR expression. In this report, we examined the role of cross-talk between the CaR and the epidermal growth factor receptor (EGFR) in mediating these responses in Rat-1 cells. This report shows that AG1478, a specific inhibitor of the EGFR kinase, significantly inhibits the increase in proliferation induced by elevated Ca2+o. Further, we show that AG1478 acts downstream or separately from G-protein subunit activation of phospholipase C. AG1478 significantly inhibits Ca2+o-stimulated ERK phosphorylation and in vitro kinase activity. A similar inhibition of ERK phosphorylation was observed in response to the inhibitor AG494. In addition, treatment with inhibitors of metalloproteases involved in shedding of membrane anchored EGF family ligands substantially inhibited the increase in ERK activation in response to elevated Ca2+o. This is consistent with the known expression of TGFa by Rat-1 cells. These results indicate that EGFR transactivation is an important component of the CaR mediated response to increased Ca2+o in Rat-1 fibroblasts, and most likely involves CaR-mediated induction of regulated proteolysis and ligand shedding.

  15. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Samuel D Robinson

    2015-10-01

    Full Text Available NMDA receptors (NMDARs play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM but not high (50 μM concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-AP. Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and RAP, a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.

  16. Vitamin D Receptor and Calcium Sensing Receptor Polymorphisms and the Risk of Colorectal Cancer in European Populations

    NARCIS (Netherlands)

    Jenab, Mazda; McKay, James; Bueno-de-Mesquita, Hendrik B.; van Duijnhoven, Franzel J. B.; Ferrari, Pietro; Slimani, Nadia; Jansen, Eugene H. J. M.; Pischon, Tobias; Rinaldi, Sabina; Tjonneland, Anne; Olsen, Anja; Overvad, Kim; Boutron-Ruault, Marie-Christine; Clavel-Chapelon, Francoise; Engel, Pierre; Kaaks, Rudolf; Linseisen, Jakob; Boeing, Heiner; Fisher, Eva; Trichopoulou, Antonia; Dilis, Vardis; Oustoglou, Erifili; Berrino, Franco; Vineis, Paolo; Mattiello, Amalia; Masala, Giovanna; Tumino, Rosario; Vrieling, Alina; van Gils, Carla H.; Peeters, Petra H.; Brustad, Magritt; Lund, Eiliv; Chirlaque, Maria-Dolores; Barricarte, Aurelio; Rodriguez Suarez, Laudina; Molina, Esther; Dorronsoro, Miren; Sala, Nuria; Hallmans, Goran; Palmqvist, Richard; Roddam, Andrew; Key, Timothy J.; Khaw, Kay-Tee; Bingham, Sheila; Boffetta, Paolo; Autier, Philippe; Byrnes, Graham; Norat, Teresa; Riboli, Elio

    2009-01-01

    Increased levels of vitamin D and calcium may play a protective role in colorectal cancer (CRC) risk. It has been suggested that these effects may be mediated by genetic variants of the vitamin D receptor (VDR) and the calcium sensing receptor (CASR). However, current epidemiologic evidence from Eur

  17. Effects of modulation of calcium levels and calcium fluxes on ABA- induced gene expression in barley aleurone

    NARCIS (Netherlands)

    Meulen, R.M. van der; Visser, K.; Wang, M.

    1996-01-01

    We present data to elucidate the involvement of calcium ions in abscisic acid (ABA)-induced gene expression. Modulation of external calcium concentrations was able to affect ABA-induced specific RAB gene expression. At a constant ABA level with increasing extracellular calcium level, an increasing R

  18. Biased agonism of the calcium-sensing receptor

    DEFF Research Database (Denmark)

    Thomsen, Alex Rojas Bie; Hvidtfeldt, Maja; Bräuner-Osborne, Hans

    2012-01-01

    After the discovery of molecules modulating G protein-coupled receptors (GPCRs) that are able to selectively affect one signaling pathway over others for a specific GPCR, thereby "biasing" the signaling, it has become obvious that the original model of GPCRs existing in either an "on" or "off...... of the calcium-sensing receptor (CaSR), by looking at 12 well-known orthosteric CaSR agonists in 3 different CaSR signaling pathways: G(q/11) protein, G(i/o) protein, and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Here we show that apart from G(q/11) and G(i/o) signaling, ERK1/2 is activated...

  19. Calcium-Sensing Receptor: Trafficking, Endocytosis, Recycling, and Importance of Interacting Proteins.

    Science.gov (United States)

    Ray, Kausik

    2015-01-01

    The cloning of the extracellular calcium-sensing receptor (CaSR) provided a new paradigm in G-protein-coupled receptor (GPCR) signaling in which principal physiological ligand is a cation, namely, extracellular calcium (Ca(o)(2+)). A wealth of information has accumulated in the past two decades about the CaSR's structure and function, its contribution to pathology in disorders of calcium in humans, and CaSR-based therapeutics. The CaSR unlike many other GPCRs must function in the presence of its ligand, thus understanding the mechanisms such as anterograde trafficking and endocytic pathways of this receptor are complex and fallen behind other classical GPCRs. Factors controlling CaSR signaling include various proteins affecting the expression of the CaSR as well as modulation of its trafficking to and from the cell surface. The dimeric cell-surface CaSR links to various heterotrimeric G-proteins (G(q/11), G(i/o), G(12/13), and G(s)) to regulate intracellular second messengers, lipid kinases, various protein kinases, and transcription factors that are part of the machinery enabling the receptor to modulate the functions of the wide variety of cells in which it is expressed. This chapter describes key features of CaSR structure and function and discusses novel mechanisms by which the level of cell-surface receptor expression can be regulated including forward trafficking during biosynthesis, desensitization, internalization and recycling from the cell surface, and degradation. These processes are impacted by its interactions with several proteins in addition to signaling molecules per se (i.e., G-proteins, protein kinases, inositol phosphates, etc.) and include small molecular weight G-proteins (Sar1, Rabs, ARF, P24A, RAMPs, filamin A, 14-3-3 proteins, calmodulin, and caveolin-1). Moreover, CaSR signaling seems compartmentalized in cell-type-specific manner, and caveolin and filamin A likely act as scaffolds that bind signaling components and other key cellular

  20. In vivo immunotoxicity of perfluorooctane sulfonate in BALB/c mice: Identification of T-cell receptor and calcium-mediated signaling pathway disruption through gene expression profiling of the spleen.

    Science.gov (United States)

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Yang, Yu; Ren, Xiao-Min; Zhang, Hui

    2015-10-05

    Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that is used worldwide and is continuously being detected in biota and the environment, thus presenting potential threats to the ecosystem and human health. Although PFOS is highly immunotoxic, its underlying molecular mechanisms remain largely unknown. The present study examined PFOS-induced immunotoxicity in the mouse spleen and explored its underlying mechanisms by gene expression profiling. Oral exposure of male BALB/c mice for three weeks followed by one-week recovery showed that a 10 mg/kg/day PFOS exposure damaged the splenic architecture, inhibited T-cell proliferation in response to mitogen, and increased the percentages of T helper (CD3(+)CD4(+)) and cytotoxic T (CD3(+)CD8(+)) cells, despite the decrease in the absolute number of these cells. A delayed type of PFOS immunotoxicity was observed, which mainly occurred during the recovery period. Global gene expression profiling of mouse spleens and QRT-PCR analyses suggest that PFOS inhibited the expression of genes involved in cell cycle regulation and NRF2-mediated oxidative stress response, and upregulated those in TCR signaling, calcium signaling, and p38/MAPK signaling pathways. Western blot analysis confirmed that the expressions of CAMK4, THEMIS, and CD3G, which were involved in the upregulated pathways, were induced upon PFOS exposure. Acute PFOS exposure modulated calcium homoeostasis in splenocytes. These results indicate that PFOS exposure can activate TCR signaling and calcium ion influx, which provides a clue for the potential mechanism of PFOS immunotoxicity. The altered signaling pathways by PFOS treatment as revealed in the present study might facilitate in better understanding PFOS immunotoxicity and explain the association between immune disease and PFOS exposure.

  1. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects.

    NARCIS (Netherlands)

    Cromphaut, S.J. van; Dewerchin, M.; Hoenderop, J.G.J.; Stockmans, I.; Herck, E. van; Kato, S.; Bindels, R.J.M.; Collen, D.; Carmeliet, P.; Bouillon, R.; Carmeliet, G.

    2001-01-01

    Rickets and hyperparathyroidism caused by a defective vitamin D receptor (VDR) can be prevented in humans and animals by high calcium intake, suggesting that intestinal calcium absorption is critical for 1,25(OH)(2) vitamin D [1,25(OH)(2)D(3)] action on calcium homeostasis. We assessed the rate of s

  2. Calcium-acting drugs modulate expression and development of chronic tolerance to nicotine-induced antinociception in mice.

    Science.gov (United States)

    Damaj, M I

    2005-11-01

    Initial studies in our laboratory suggested that tolerance to nicotine is thought to involve neuronal adaptation not only at the level of the drug-receptor interaction but at postreceptor events such as calcium-dependent second messengers. The present study was undertaken to investigate the hypothesis that L-type calcium channels and calcium-dependent calmodulin protein kinase II are involved in the development and expression of nicotine tolerance. To that end, the effects of modulation of L-type calcium channels (through the use of inhibitors or activators) as well as calcium-dependent calmodulin protein kinase II inactivation were studied in a mouse model of tolerance where mice were infused with nicotine in minipumps (24 mg/kg/day) for 14 days. In addition, the activity of calcium-dependent calmodulin protein kinase II in the lumbar spinal cord region obtained from nicotine-tolerant mice was measured. Our data showed that chronic administration of L-type calcium channel antagonists nimodipine (1 and 5 mg/kg) and verapamil (10 mg/kg) prevented the development of tolerance to nicotine-induced antinociception. In contrast, chronic exposure of BAYK8644 [(+/-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)-phenyl]-3-pyridine carboxylic acid methyl ester], a calcium channel activator, enhanced nicotine's tolerance. Moreover, a significant increase in both dependent and independent calcium-dependent calmodulin protein kinase II activity was seen in the spinal cord in nicotine-tolerant mice. Finally, spinal administration of 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-phenylpiperazine (KN-62), a calcium-dependent calmodulin protein kinase II antagonist, reduced the expression of tolerance to nicotine-induced antinociception in mice. In conclusion, our data indicate that calcium-dependent mechanisms such as L-type calcium channels and calcium-dependent calmodulin protein kinase II activation are involved in the expression and development of nicotine

  3. Chronic elevated calcium blocks AMPK-induced GLUT-4 expression in skeletal muscle.

    Science.gov (United States)

    Park, S; Scheffler, T L; Gunawan, A M; Shi, H; Zeng, C; Hannon, K M; Grant, A L; Gerrard, D E

    2009-01-01

    Muscle contraction stimulates glucose transport independent of insulin. Glucose uptake into muscle cells is positively related to skeletal muscle-specific glucose transporter (GLUT-4) expression. Therefore, our objective was to determine the effects of the contraction-mediated signals, calcium and AMP-activated protein kinase (AMPK), on glucose uptake and GLUT-4 expression under acute and chronic conditions. To accomplish this, we used pharmacological agents, cell culture, and pigs possessing genetic mutations for increased cytosolic calcium and constitutively active AMPK. In C2C12 myotubes, caffeine, a sarcoplasmic reticulum calcium-releasing agent, had a biphasic effect on GLUT-4 expression and glucose uptake. Low-concentration (1.25 to 2 mM) or short-term (4 h) caffeine treatment together with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), had an additive effect on GLUT-4 expression. However, high-concentration (2.5 to 5 mM) or long-term (4 to 30 h) caffeine treatment decreased AMPK-induced GLUT-4 expression without affecting cell viability. The negative effect of caffeine on AICAR-induced GLUT-4 expression was reduced by dantrolene, which desensitizes the ryanodine receptor. Consistent with cell culture data, increases in GLUT-4 mRNA and protein expression induced by AMPK were blunted in pigs possessing genetic mutations for both increased cytosolic calcium and constitutively active AMPK. Altogether, these data suggest that chronic exposure to elevated cytosolic calcium concentration blocks AMPK-induced GLUT-4 expression in skeletal muscle.

  4. Expression patterns of intestinal calcium transport factors and ex-vivo absorption of calcium in horses

    Directory of Open Access Journals (Sweden)

    Sprekeler Nele

    2011-10-01

    Full Text Available Abstract Background In many species, the small intestine is the major site of calcium (Ca2+ absorption. The horse differs considerably from most other species with regard to the physiology of its Ca2+ metabolism and digestion. Thus, this study was performed to get more information about the transcellular Ca2+ absorption in the horse. Two mechanisms of intestinal Ca2+ absorption are described: the passive paracellular pathway and the active, vitamin D-dependent transcellular pathway. The latter involves the following elements: vitamin D receptors (VDR, transient receptor potential vanilloid channel members 5 and 6 (TRPV5/6, calbindin-D9k (CB, the Na/Ca exchanger (NCX1 and the plasma membrane Ca-ATPase (PMCA. The aim of the present study was to investigate the protein and mRNA expression patterns of VDR, CB and TRPV6 and the ex-vivo Ca2+ absorption in horses, assessed by qualitative and quantitative RT-PCR, western blot, immunohistochemistry and the Ussing chamber technique. Results Highest CB and TRPV6 mRNA levels were detected in the duodenum as compared to the middle parts of the jejunum and ileum and several sites of the large intestine. VDR mRNA levels did not change significantly throughout the intestine. TRPV5 mRNA was not detectable in the horse intestine. The highest VDR and CB protein levels were measured in the duodenum. Ussing chamber studies revealed ex-vivo Ca2+ absorption only in the duodenum, but not in cecum and specific sites of the colon. Conclusion The present findings suggest that TRPV6, CB and VDR may be involved in active intestinal Ca2+ absorption in horses, as described for other mammals. TRPV5 may not play a major role in this process. Furthermore, the expression patterns of these Ca2+ transport elements and the results of the Ussing chamber procedure indicate that a significant part of active intestinal Ca2+ absorption occurs in the duodenum in this species.

  5. Extracellular calcium-sensing receptor: structural and functional features and association with diseases

    Directory of Open Access Journals (Sweden)

    Hauache O.M.

    2001-01-01

    Full Text Available The recently cloned extracellular calcium-sensing receptor (CaR is a G protein-coupled receptor that plays an essential role in the regulation of extracellular calcium homeostasis. This receptor is expressed in all tissues related to this control (parathyroid glands, thyroid C-cells, kidneys, intestine and bones and also in tissues with apparently no role in the maintenance of extracellular calcium levels, such as brain, skin and pancreas. The CaR amino acid sequence is compatible with three major domains: a long and hydrophilic aminoterminal extracellular domain, where most of the activating and inactivating mutations described to date are located and where the dimerization process occurs, and the agonist-binding site is located, a hydrophobic transmembrane domain involved in the signal transduction mechanism from the extracellular domain to its respective G protein, and a carboxyterminal intracellular tail, with a well-established role for cell surface CaR expression and for signal transduction. CaR cloning was immediately followed by the association of genetic human diseases with inactivating and activating CaR mutations: familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism are caused by CaR-inactivating mutations, whereas autosomal dominant hypoparathyroidism is secondary to CaR-activating mutations. Finally, we will comment on the development of drugs that modulate CaR function by either activating (calcimimetic drugs or antagonizing it (calcilytic drugs, and on their potential therapeutic implications, such as medical control of specific cases of primary and uremic hyperparathyroidism with calcimimetic drugs and a potential treatment for osteoporosis with a calcilytic drug.

  6. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina;

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  7. Functional bitter taste receptors are expressed in brain cells.

    Science.gov (United States)

    Singh, Nisha; Vrontakis, Maria; Parkinson, Fiona; Chelikani, Prashen

    2011-03-04

    Humans are capable of sensing five basic tastes which are sweet, sour, salt, umami and bitter. Of these, bitter taste perception provides protection against ingestion of potentially toxic substances. Bitter taste is sensed by bitter taste receptors (T2Rs) that belong to the G-protein coupled receptors (GPCRs) superfamily. Humans have 25 T2Rs that are expressed in the oral cavity, gastrointestinal (GI) neuroendocrine cells and airway cells. Electrophysiological studies of the brain neurons show that the neurons are able to respond to different tastants. However, the presence of bitter taste receptors in brain cells has not been elucidated. In this report using RT-PCR, and immunohistochemistry analysis we show that T2Rs are expressed in multiple regions of the rat brain. RT-PCR analysis revealed the presence of T2R4, T2R107 and T2R38 transcripts in the brain stem, cerebellum, cortex and nucleus accumbens. The bitter receptor T2R4 was selected for further analysis at the transcript level by quantitative real time PCR and at the protein level by immunohistochemistry. To elucidate if the T2R4 expressed in these cells is functional, assays involving G-protein mediated calcium signaling were carried out. The functional assays showed an increase in intracellular calcium levels after the application of exogenous ligands for T2R4, denatonium benzoate and quinine to these cultured cells, suggesting that endogenous T2R4 expressed in these cells is functional. We discuss our results in terms of the physiological relevance of bitter receptor expression in the brain.

  8. BDNF Reduces Toxic Extrasynaptic NMDA Receptor Signaling via Synaptic NMDA Receptors and Nuclear-Calcium-Induced Transcription of inhba/Activin A

    Directory of Open Access Journals (Sweden)

    David Lau

    2015-08-01

    Full Text Available The health of neurons is critically dependent on the relative signaling intensities of survival-promoting synaptic and death-inducing extrasynaptic NMDA receptors. Here, we show that BDNF is a regulator of this balance and promotes neuroprotection by reducing toxic NMDA receptor signaling. BDNF acts by initiating synaptic NMDA-receptor/nuclear-calcium-driven adaptogenomics, leading to increased expression of inhibin β-A (inhba. Inhibin β-A (its homodimer is known as activin A in turn reduces neurotoxic extrasynaptic NMDA-receptor-mediated calcium influx, thereby shielding neurons against mitochondrial dysfunction, a major cause of excitotoxicity. Thus, BDNF induces acquired neuroprotection by enhancing synaptic activity and lowering extrasynaptic NMDA receptor death signaling through a nuclear calcium-inhibin β-A pathway. This process, which confers protection against ischemic brain damage in a mouse stroke model, may be compromised in Huntington’s disease, Alzheimer’s disease, or aging-related neurodegenerative conditions that are associated with reduced BDNF levels and/or enhanced extrasynaptic NMDA receptor signaling.

  9. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    NARCIS (Netherlands)

    Chameau, P.J.P.; Qin, Y.J.; Smit, G.; Joëls, M.

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover,

  10. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  11. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  12. P12 - PTHC1: A Continuing Cell Line Expressing PTH and Genes Involved in Calcium Homeostasis

    OpenAIRE

    Fabbri, S.; Mazzotta, C.; Ciuffi, S.; Mavilia, C; Galli, G; Zonefrati, R.; Strigoli, D.; Cavalli, L.; Cavalli, T.; Brandi, M L

    2010-01-01

    The main organs regulating serum levels of ionised calcium (Ca2+) are the parathyroids, which are composed of two different cell types: chief cells and oxyphil cells. Chief cells, through the calcium sensing receptor (CaSR), are affected by changes in calcium concentration, modifying PTH secretion in proportion to calcium levels. Current understanding of calcium regulation mechanisms connected to PTH and of the signalling pathways involved derive from in vitro studies carried out on primary c...

  13. Upregulation of parathyroid VDR expression by extracellular calcium is mediated by ERK1/2-MAPK signaling pathway.

    Science.gov (United States)

    Cañadillas, Sagrario; Canalejo, Rocio; Rodriguez-Ortiz, Maria Encarnacion; Martinez-Moreno, Julio Manuel; Estepa, Jose Carlos; Zafra, Rafael; Perez, Jose; Muñoz-Castañeda, Juan Rafael; Canalejo, Antonio; Rodriguez, Mariano; Almaden, Yolanda

    2010-05-01

    We have previously demonstrated that the activation of rat parathyroid calcium-sensing receptor (CaSR) upregulates VDR expression in vivo (Garfia B, Cañadillas S, Luque F, Siendones E, Quesada M, Almadén Y, Aguilera-Tejero E, Rodríguez M. J Am Soc Nephrol 13: 2945-2952, 2002; Rodriguez ME, Almaden Y, Cañadillas S, Canalejo A, Siendones E, Lopez I, Aguilera-Tejero E, Martin D, Rodriguez M. Am J Physiol Renal Physiol 292: F1390-F1395, 2007). The present study was designed to characterize the signaling system that mediates the stimulation of parathyroid VDR gene expression by extracellular calcium. Experiments were performed in vitro by the incubation of rat parathyroid glands and in vivo with normal and uremic (Nx) rats receiving injections of CaCl(2) or EDTA to obtain hypercalcemic or hypocalcemic clamps. A high calcium concentration increased VDR expression. The addition of arachidonic acid (AA) to the low-calcium medium produced an increase in VDR mRNA of the same magnitude as that observed with high calcium. The addition of ionophore to the low-calcium medium also increased VDR mRNA expression. High calcium or the addition of AA to the low-calcium medium induced the activation (phosphorylation) of ERK1/2-MAPK. The specific inhibition of the ERK1/2-MAPK activity prevented the stimulation of VDR expression by high calcium or AA. These results suggest that AA regulates parathyroid VDR gene expression through the activation of the ERK1/2-MAPK. CaSR activation induced the activation of transcription factor Sp1, but not of NF-κB p50 or p65 or activator protein-1. The addition of AA to the low-calcium medium increased specific DNA-binding activity of Sp1 to almost the same level as high calcium, which was prevented by the inhibition of ERK1/2. Furthermore, mithramycin A (a Sp1 inhibitor) prevented the upregulation of VDR mRNA by high calcium. Finally, both sham and Nx hypercalcemic rats showed similar increased levels of VDR mRNA compared with sham and Nx

  14. Characterisation of the expression of NMDA receptors in human astrocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Chak Lee

    Full Text Available Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS. However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN. Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.

  15. Androgen receptor expression in gastrointestinal stromal tumor.

    Science.gov (United States)

    Lopes, Lisandro F; Bacchi, Carlos E

    2009-03-01

    The aim of this study was to evaluate the expression of estrogen, progesterone, and androgen receptors in a large series of gastrointestinal stromal tumors. Clinical and pathologic data were reviewed in 427 cases of gastrointestinal stromal tumor and the expression of such hormone receptors was investigated by immunohistochemistry using tissue microarray technique. All tumors were negative for estrogen receptor expression. Progesterone and androgen receptors expression was observed in 5.4% and 17.6% of tumors, respectively. We found the higher average age at diagnosis, the lower frequency of tumors located in the small intestine, and the higher frequency of extragastrointestinal tumors to be statistically significant in the group of tumors with androgen receptor expression in contrast to the group showing no androgen receptor expression. There was no statistic difference between such groups regarding sex, tumor size, mitotic count, cell morphology, and risk of aggressive behavior. Considering that the expression of androgen receptors in gastrointestinal stromal tumors is not negligible, further studies are encouraged to establish the role of androgen deprivation therapy for gastrointestinal stromal tumors.

  16. GABA B receptor subunit expression in glia.

    Science.gov (United States)

    Charles, K J; Deuchars, J; Davies, C H; Pangalos, M N

    2003-09-01

    GABA(B) receptor subunits are widely expressed on neurons throughout the CNS, at both pre- and postsynaptic sites, where they mediate the late, slow component of the inhibitory response to the major inhibitory neurotransmitter GABA. The existence of functional GABA(B) receptors on nonneuronal cells has been reported previously, although the molecular composition of these receptors has not yet been described. Here we demonstrate for the first time, using immunohistochemistry the expression of GABA(B1a), GABA(B1b), and GABA(B2) on nonneuronal cells of the rat CNS. All three principle GABA(B) receptor subunits were expressed on these cells irrespective of whether they had been cultured or found within brain tissue sections. At the ultrastructural level GABA(B) receptor subunits were expressed on astrocytic processes surrounding both symmetrical and assymetrical synapses in the CA1 subregion of the hippocampus. In addition, GABA(B1a), GABA(B1b), and GABA(B2) receptor subunits were expressed on activated microglia in culture but were not found on myelin forming oligodendrocytes in the white matter of rat spinal cord. Together these data demonstrate that the obligate subunits of functional GABA(B) receptors are expressed in astrocytes and microglia in the rat CNS.

  17. Protein intake and calcium absorption – Potential role of the calcium sensor receptor

    Science.gov (United States)

    Dietary protein induces calcium excretion but the source of this calcium is unclear. Evidence from short-term studies indicates that protein promotes bone resorption, but many epidemiologic studies do not corroborate this. Evidence is also mixed on weather protein promotes calcium absorption. Stud...

  18. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells.

    Science.gov (United States)

    Zhang, Mei; Hu, Huiling; Zhang, Xiulan; Lu, Wennan; Lim, Jason; Eysteinsson, Thor; Jacobson, Kenneth A; Laties, Alan M; Mitchell, Claire H

    2010-01-01

    The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.

  19. [Olfactory esthesioneuroblastoma: scintigraphic expression of somatostatin receptors].

    Science.gov (United States)

    García Vicente, A; García Del Castillo, E; Soriano Castrejón, A; Alonso Farto, J

    1999-10-01

    Esthesioneuroblastoma is an uncommon tumor originating in the upper nasal cavity and constitutes 3% of all intranasal neoplasms. Few references exist about the expression of somatostatin receptors in these tumors. Our case demonstrates a good correlation between the somatostatin receptor scintigraphy and magnetic resonance imaging.

  20. In vivo experimental stroke and in vitro organ culture induce similar changes in vasoconstrictor receptors and intracellular calcium handling in rat cerebral arteries

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Waldsee, Roya; Ahnstedt, Hilda;

    2012-01-01

    after stroke. Here, we evaluate changes of ET(B) and 5-HT(1B) receptors, intracellular calcium levels, and calcium channel expression in rat middle cerebral artery (MCA) after focal cerebral ischemia and in vitro organ culture, a proposed model of vasoconstrictor receptor changes after stroke. Rats were...... subjected to 2 h MCA occlusion followed by reperfusion for 1 or 24 h. Alternatively, MCAs from naïve rats were cultured for 1 or 24 h. ET(B) and 5-HT(1B) receptor-mediated contractions were evaluated by wire myography. Receptor and channel expressions were measured by real-time PCR and immunohistochemistry....... Intracellular calcium was measured by FURA-2. Expression and contractile functions of ET(B) and 5-HT(1B) receptors were strongly upregulated and slightly downregulated, respectively, 24 h after experimental stroke or organ culture. ET(B) receptor-mediated contraction was mediated by calcium from intracellular...

  1. Effects of gamma-aminobutyric acid receptors on muscarinic receptor-mediated free calcium ion levels in the facial nucleus following facial nerve injury

    Institute of Scientific and Technical Information of China (English)

    Guangfeng Jiang; Dawei Sun; Rui Zhou; Fugao Zhu; Yanqing Wang; Xiuming Wan; Banghua Liu

    2011-01-01

    Muscarinic receptors and nicotine receptors can increase free calcium ion levels in the facial nucleus via different channels following facial nerve injury. In addition, γ-aminobutyric acid A (GABAA) receptors have been shown to negatively regulate free calcium ion levels in the facial nucleus by inhibiting nicotine receptors. The present study investigated the influence of GABAA, γ-aminobutyric acid B (GABAB) and C (GABAC) receptors on muscarinic receptors in rats with facial nerve injury by confocal laser microscopy. GABAA and GABAB receptors exhibited significant dose-dependent inhibitory effects on increased muscarinic receptor-mediated free calcium ion levels following facial nerve injury. Results showed that GABAA and GABAB receptors negatively regulate muscarinic receptor effects and interplay with cholinergic receptors to regulate free calcium ion levels for facial neural regeneration.

  2. Expression of the apoptotic calcium channel P2X7 in the glandular epithelium.

    Science.gov (United States)

    Slater, Michael; Danieletto, Suzanne; Barden, Julian A

    2005-03-01

    In the current study, expression of the apoptotic calcium channel receptor P2X(7) and prostate-specific antigen (PSA) levels were studied in biopsy cores from 174 patients as well as 20 radical prostatectomy cases. In clinical biopsies, we have previously demonstrated that P2X(1 )and P2X(2) calcium channel receptors are absent from normal prostate epithelium that does not progress to prostate cancer within 5 years. In cases that did progress to prostate cancer however, P2X(1 )and P2X(2) labeling was observed in a stage-specific manner first in the nucleus, then the cytoplasm and finally on the apical epithelium, as prostate cancer developed. These markers were present up to 5 years before cancer was detectable by the usual morphological criteria (Gleason grading) as determined by H and E staining. In the current study, the apoptotic calcium channel receptor P2X(7) yielded similar results to that of P2X(1) and P2X(2). Using radical prostatectomy tissue sections as well as biopsies, these changes in calcium channel metabolism were noted throughout the prostate, indicating a field effect. This finding suggests that the presence of a prostate tumor could be detected without the need for direct sampling of tumor tissue, leading to detection of false negative cases missed by H or E stain. The reliability of PSA levels as a prognostic indicator has been questioned in recent years. In the current study, PSA levels were correlated with the P2X(7) labeling results. All patients who exhibited no P2X(7) labeling had a prostatic serum antigen (PSA) level of 2. This finding suggests that increasing PSA may be an accurate indicator of cancer development.

  3. Expression of Caenorhabditis elegans neurotransmitter receptors and ion channels in Xenopus oocytes

    Science.gov (United States)

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2006-01-01

    Injection of Caenorhabditis elegans polyA RNA into Xenopus laevis oocytes led to the expression of neurotransmitter receptors that generated some unique responses, including ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as well as receptors that coupled to G proteins, such as those to octopamine, norepinephrine, and angiotensin, which activated the oocyte’s own phosphatidylinositol system and calcium-gated chloride channels. The oocytes also expressed chloride-conducting glutamate receptors, muscarinic acetylcholine receptors, and voltage-operated calcium channels. Unexpectedly, serotonin (5-hydroxytryptamine), dopamine, GABA, and kainate did not generate ionic currents, suggesting that the corresponding receptors were not expressed or were not functional in the oocytes. The use of X. laevis oocytes for expressing worm RNA demonstrates that there are many molecular components whose role remains to be clarified in the nematode. Among them are the nature of the endogenous agonists for the octopamine and angiotensin receptors and the subunits that compose the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and the norepinephrine receptors that couple to the phosphoinositide cascade. PMID:16549772

  4. Modulation of Calcium Signaling of Angiotensin AT1, Endothelin ETA, and ETB Receptors by Silibinin, Quercetin, Crocin, Diallyl Sulfides, and Ginsenoside Rb1.

    Science.gov (United States)

    Bahem, Ruba; Hoffmann, Anja; Azonpi, Arnaud; Caballero-George, Catherina; Vanderheyden, Patrick

    2015-06-01

    Angiotensin II and endothelin-1 are potent vasoconstrictive peptides that play a central role in blood pressure regulation. Both peptides exert their pleiotropic effects via binding to their respective G-protein-coupled receptors, i.e., angiotensin AT1 and endothelin type A and type B receptors. In the present study, we have selected six structurally different plant-derived compounds with known cardioprotective properties to evaluate their ability to modulate calcium signaling of the above-mentioned receptors. For this purpose, we used and validated a cellular luminescence-based read-out system in which we measured intracellular calcium signaling in Chinese hamster ovary cells that express the calcium sensitive apo-aequorin protein. Firstly, silibinin, a flavanolignan that occurs in milk thistle (Silybum marianum), was investigated and found to be an antagonist for the human angiotensin AT1 receptor with an affinity constant of about 9 µM, while it had no effect on endothelin type A or type B receptor activation. Quercetin and crocin partially impeded intracellular calcium signaling resulting in a non-receptor-related reduction of the responses recorded for the three investigated G-protein-coupled receptors. Two organosulfur compounds, diallyl disulfide and diallyl trisulfide, as well as the triterpene saponin ginsenoside Rb1 did not affect the activation of the angiotensin AT1 and endothelin type A and type B receptors. In conclusion, we were able, by using a nonradioactive cellular read-out system, to identify a novel pharmacological property of the flavanolignan silibinin.

  5. Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4

    OpenAIRE

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora; Sheng, Morgan; Kaminker, Joshua S.

    2014-01-01

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagoni...

  6. Cytoskeletal changes induced by allosteric modulators of calcium-sensing receptor in esophageal epithelial cells.

    Science.gov (United States)

    Abdulnour-Nakhoul, Solange; Brown, Karen L; Rabon, Edd C; Al-Tawil, Youhanna; Islam, Mohammed T; Schmieg, John J; Nakhoul, Nazih L

    2015-11-01

    The calcium-sensing receptor (CaSR), a G-protein-coupled receptor, plays a role in glandular and fluid secretion in the gastrointestinal tract, and regulates differentiation and proliferation of epithelial cells. We examined the expression of CaSR in normal and pathological conditions of human esophagus and investigated the effect of a CaSR agonist, cinacalcet (CCT), and antagonist, calhex (CHX), on cell growth and cell-cell junctional proteins in primary cultures of porcine stratified squamous esophageal epithelium. We used immunohistochemistry and Western analysis to monitor expression of CaSR and cell-cell adhesion molecules, and MTT assay to monitor cell proliferation in cultured esophageal cells. CCT treatment significantly reduced proliferation, changed the cell shape from polygonal to spindle-like, and caused redistribution of E-cadherin and β-catenin from the cell membrane to the cytoplasm. Furthermore, it reduced expression of β-catenin by 35% (P < 0.02) and increased expression of a proteolysis cleavage fragment of E-cadherin, Ecad/CFT2, by 2.3 folds (P < 0.01). On the other hand, CHX treatment enhanced cell proliferation by 27% (P < 0.01), increased the expression of p120-catenin by 24% (P < 0.04), and of Rho, a GTPase involved in cytoskeleton remodeling, by 18% (P < 0.03). In conclusion, CaSR is expressed in normal esophagus as well as in Barrett's, esophageal adenocarcinoma, squamous cell carcinoma, and eosinophilic esophagitis. Long-term activation of CaSR with CCT disrupted the cadherin-catenin complex, induced cytoskeletal remodeling, actin fiber formation, and redistribution of CaSR to the nuclear area. These changes indicate a significant and complex role of CaSR in epithelial remodeling and barrier function of esophageal cells.

  7. Effect of dietary calcium and 1,25-(OH)2D3 on the expression of calcium transport genes in calbindin-D9k and -D28k double knockout mice.

    Science.gov (United States)

    Ko, Sang-Hwan; Choi, Kyung-Chul; Oh, Goo Taeg; Jeung, Eui-Bae

    2009-02-01

    The phenotypes of calbindin-D9k (CaBP-9k) and -28k (CaBP-28k) single knockout (KO) mice are similar to wild-type (WT) mice due to the compensatory action of other calcium transport proteins. In this study, we generated CaBP-9k/CaBP-28k double knockout (DKO) mice in order to investigate the importance of CaBP-9k and CaBP-28k in active calcium processing. Under normal dietary conditions, DKO mice did not exhibit any changes in phenotype or the expression of active calcium transport genes as compared to WT or CaBP-28k KO mice. Under calcium-deficient dietary conditions, the phenotype and expression of calcium transport genes in CaBP-28k KO mice were similar to WT, whereas in DKO mice, serum calcium levels and bone length were decreased. The intestinal and renal expression of transient receptor potential vanilloid member 6 (TRPV6) mRNA was significantly decreased in DKO mice fed a calcium-deficient diet as compared to CaBP-28k KO or WT mice, and DKO mice died after 4 weeks on a calcium-deficient diet. Body weight, bone mineral density (BMD) and bone length were significantly reduced in all mice fed a calcium and 1,25-(OH)(2)D(3)-deficient diet, as compared to a normal diet, and none of the mice survived more than 4 weeks. These results indicate that deletion of CaBP-28k alone does not affect body calcium homeostasis, but that deletion of CaBP-9k and CaBP-28k has a significant effect on calcium processing under calcium-deficient conditions, confirming the importance of dietary calcium and 1,25-(OH)(2)D(3) during growth and development.

  8. Interaction of CPCCOEt with a chimeric mGlu1b and calcium sensing receptor

    DEFF Research Database (Denmark)

    Bräuner-Osborne, H; Jensen, Anders A.; Krogsgaard-Larsen, P

    1999-01-01

    7-Hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt) has previously been shown to be a selective non-competitive antagonist at the metabotropic glutamate (mGlu) receptor subtype 1. In this study we have tested the effect of CPCCOEt on mGlu1b, the calcium sensing receptor (...

  9. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    Science.gov (United States)

    Chameau, Pascal; Qin, Yongjun; Spijker, Sabine; Smit, August Benjamin; Smit, Guus; Joëls, Marian

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover, we addressed the putative gene targets that eventually lead to the enhanced calcium currents. Electrophysiological recordings were performed in nucleated patches that allow excellent voltage control. Calcium currents in these patches almost exclusively involve N- and L-type channels. We found that L- but not N-type calcium currents were largely enhanced after treatment with a high dose of corticosterone sufficient to activate glucocorticoid receptors. Voltage dependency and kinetic properties of the currents were unaffected by the hormone. Nonstationary noise analysis suggests that the increased current is not caused by a larger unitary conductance, but rather to a doubling of the number of functional channels. Quantitative real-time PCR revealed that transcripts of the Ca(v)1 subunits encoding for the N- or L-type calcium channels are not upregulated in the mouse CA1 area; instead, a strong, direct, and consistent upregulation of the beta4 subunit was observed. This indicates that the corticosteroid-induced increase in number of L-type calcium channels is not caused by a simple transcriptional regulation of the pore-forming subunit of the channels.

  10. The Calcium-Sensing Receptor Is Necessary for the Rapid Development of Hypercalcemia in Human Lung Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Gwendolen Lorch

    2011-05-01

    Full Text Available The calcium-sensing receptor (CaR is responsible for the regulation of extracellular calcium (Ca2+o homeostasis. CaR activation has been shown to increase proliferation in several cancer cell lines; however, its presence or function has never been documented in lung cancer. We report that Ca2+o-activated CaR results in MAPK-mediated stimulation of parathyroid hormone-related protein (PTHrP production in human lung squamous cell carcinoma (SCC lines and humoral hypercalcemia of malignancy (HHM in vivo. Furthermore, a single nucleotide polymorphism in CaR identified from a hypercalcemia-inducing lung SCC reduced the receptor's activation threshold leading to increased PTHrP expression and secretion. Increasing the expression of either wild-type CaR or a CaR variant with a single nucleotide polymorphism in the cytoplasmic domain was both necessary and sufficient for lung SCC to induce HHM. Because lung cancer patients who frequently develop HHM and PTHrP expression in lung cancer has been only partially explained, the significance of our findings indicates that CaR variants may provide a positive feedback between PTHrP and calcium and result in the syndrome of HHM.

  11. Sustained calcium entry through P2X nucleotide receptor channels in human airway epithelial cells.

    Science.gov (United States)

    Zsembery, Akos; Boyce, Amanda T; Liang, Lihua; Peti-Peterdi, János; Bell, P Darwin; Schwiebert, Erik M

    2003-04-11

    Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.

  12. Analysis of potassium and calcium imaging to assay the function of opioid receptors.

    Science.gov (United States)

    Spahn, Viola; Nockemann, Dinah; Machelska, Halina

    2015-01-01

    As the activation of opioid receptors leads to the modulation of potassium and calcium channels, the ion imaging represents an attractive method to analyze the function of the receptors. Here, we describe the imaging of potassium using the FluxOR™ potassium ion channel assay, and of calcium using Fura-2 acetoxymethyl ester. Specifically, we (1) characterize the activation of the G-protein-coupled inwardly rectifying potassium 2 channel by agonists of μ- and δ-opioid receptors with the aid of the FluxOR™ assay in cultured mouse dorsal root ganglion neurons, and (2) describe calcium imaging protocols to measure capsaicin-induced transient receptor potential vanilloid 1 channel activity during opioid withdrawal in transfected human embryonic kidney 293 cells.

  13. High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway

    DEFF Research Database (Denmark)

    Liu, Daoyan; Maier, Alexandra; Scholze, Alexandra;

    2008-01-01

    Transient receptor potential canonical type 6 (TRPC6) channels mediating 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced calcium entry have been identified on human platelets. In the present study we tested the hypothesis that hyperglycemia increases the expression of TRPC6 channels....

  14. Adenosine Receptors: Expression, Function and Regulation

    Directory of Open Access Journals (Sweden)

    Sandeep Sheth

    2014-01-01

    Full Text Available Adenosine receptors (ARs comprise a group of G protein-coupled receptors (GPCR which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.

  15. The calcium-sensing receptor and calcimimetics in blood pressure modulation

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Yano, Shozo; Jabbari, Reza;

    2011-01-01

    Calcium is a crucial second messenger in the cardiovascular system. However, calcium may also be an extracellular first messenger through a G-protein-coupled receptor that senses extracellular concentration (Ca(2+)(o)), the calcium-sensing receptor (CaR). The most prominent physiological function......R (calcimimetics) are the first drugs in their class to become available for clinical use and have been shown to successfully treat certain forms of primary and secondary hyperparathyroidism. In addition, several studies suggest beneficial effects of calcimimetics on cardiovascular risk factors associated...... with hyperparathyroidism. Although a plethora of studies demonstrated the CaR in heart and blood vessels, exact roles of the receptor in the cardiovascular system still remain to be elucidated. However, several studies point toward a possibility that the CaR might be involved in the regulation of vascular tone...

  16. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-09-01

    Full Text Available Ca2+-sensing receptors (CaSRs play a central role in regulating extracellular calcium concentration ([Ca2+]o homeostasis and many (pathophysiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR’s cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.

  17. Reversible block of the calcium release channel/ryanodine receptor by protamine, a heparin antidote.

    Science.gov (United States)

    Koulen, P; Ehrlich, B E

    2000-07-01

    Channel activity of the calcium release channel from skeletal muscle, ryanodine receptor type 1, was measured in the presence and absence of protamine sulfate on the cytoplasmic side of the channel. Single-channel activity was measured after incorporating channels into planar lipid bilayers. Optimally and suboptimally calcium-activated calcium release channels were inactivated by the application of protamine to the cytoplasmic side of the channel. Recovery of channel activity was not observed while protamine was present. The addition of protamine bound to agarose beads did not change channel activity, implying that the mechanism of action involves an interaction with the ryanodine receptor rather than changes in the bulk calcium concentration of the medium. The block of channel activity by protamine could be reversed either by removal by perfusion with buffer or by the addition of heparin to the cytoplasmic side of the channel. Microinjection of protamine into differentiated C(2)C(12) mouse muscle cells prevented caffeine-induced intracellular calcium release. The results suggest that protamine acts on the ryanodine receptor in a similar but opposite manner from heparin and that protamine can be used as a potent, reversible inhibitor of ryanodine receptor activity.

  18. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...... studies of vitamin D's effect on TCC cells in vitro are necessary before the efficacy of treatment with vitamin D analogues in TCC can be evaluated in patients....

  19. The calcium-sensing receptor participates in testicular damage in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kong, Wei-Yuan; Tong, Li-Quan; Zhang, Hai-Jun; Cao, Yong-Gang; Wang, Gong-Chen; Zhu, Jin-Zhi; Zhang, Feng; Sun, Xue-Ying; Zhang, Tie-Hui; Zhang, Lin-Lin

    2016-01-01

    Male infertility caused by testicular damage is one of the complications of diabetes mellitus. The calcium-sensing receptor (CaSR) is expressed in testicular tissues and plays a pivotal role in calcium homeostasis by activating cellular signaling pathways, but its role in testicular damage induced by diabetes remains unclear. A diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ, 40 mg kg-1 ) in Wistar rats. Animals then received GdCl 3 (an agonist of CaSR, 8.67 mg kg-1 ), NPS-2390 (an antagonist of CaSR, 0.20 g kg-1 ), or a combination of both 2 months after STZ injection. Diabetic rats had significantly lower testes weights and serum levels of testosterone compared to healthy rats, indicating testicular damage and dysfunction in STZ-induced diabetic rats. Compared with healthy controls, the testicular tissues of diabetic rats overexpressed the CaSR protein and had higher levels of malondialdehyde (MDA), lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and higher numbers of apoptotic germ cells. The testicular tissues from diabetic rats also expressed lower levels of Bcl-2 and higher levels of Bax and cleaved caspase-3 in addition to higher phosphorylation rates of c-Jun NH 2 -terminal protein kinase (JNK), p38, and extracellular signaling-regulated kinase (ERK) 1/2. The above parameters could be further increased or aggravated by the administration of GdCl 3 , but could be attenuated by injection of NPS-2390. In conclusion, the present results indicate that CaSR activation participates in diabetes-induced testicular damage, implying CaSR may be a potential target for protective strategies against diabetes-induced testicular damage and could help to prevent infertility in diabetic men.

  20. The calcium-sensing receptor participates in testicular damage in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Wei-Yuan Kong

    2016-01-01

    Full Text Available Male infertility caused by testicular damage is one of the complications of diabetes mellitus. The calcium-sensing receptor (CaSR is expressed in testicular tissues and plays a pivotal role in calcium homeostasis by activating cellular signaling pathways, but its role in testicular damage induced by diabetes remains unclear. A diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ, 40 mg kg−1 in Wistar rats. Animals then received GdCl 3 (an agonist of CaSR, 8.67 mg kg−1 , NPS-2390 (an antagonist of CaSR, 0.20 g kg−1 , or a combination of both 2 months after STZ injection. Diabetic rats had significantly lower testes weights and serum levels of testosterone compared to healthy rats, indicating testicular damage and dysfunction in STZ-induced diabetic rats. Compared with healthy controls, the testicular tissues of diabetic rats overexpressed the CaSR protein and had higher levels of malondialdehyde (MDA, lower superoxide dismutase (SOD and glutathione peroxidase (GSH-Px activity, and higher numbers of apoptotic germ cells. The testicular tissues from diabetic rats also expressed lower levels of Bcl-2 and higher levels of Bax and cleaved caspase-3 in addition to higher phosphorylation rates of c-Jun NH 2 -terminal protein kinase (JNK, p38, and extracellular signaling-regulated kinase (ERK 1/2. The above parameters could be further increased or aggravated by the administration of GdCl 3 , but could be attenuated by injection of NPS-2390. In conclusion, the present results indicate that CaSR activation participates in diabetes-induced testicular damage, implying CaSR may be a potential target for protective strategies against diabetes-induced testicular damage and could help to prevent infertility in diabetic men.

  1. Calcium, calcium-sensing receptor and growth control in the colonic mucosa

    OpenAIRE

    Varani, James

    2011-01-01

    A role for calcium in epithelial growth control is well-established in the colon and other tissues. In the colon, Ca2+ “drives” the differentiation process. This results in sequestration of ß-catenin in the cell surface / cytoskeletal complex, leaving ß-catenin unavailable to serve as a growth-promoting transcription enhancer in the nucleus. The signaling events that lead from Ca2+ stimulation to differentiation are not fully understood. A critical role for the extracellular calcium-sensing r...

  2. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins.

    NARCIS (Netherlands)

    Hsu, Y.J.; Dimke, H.; Schoeber, J.P.H.; Hsu, S.C.; Lin, S.H.; Chu, P.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    Although gender differences in the renal handling of calcium have been reported, the overall contribution of androgens to these differences remains uncertain. We determined here whether testosterone affects active renal calcium reabsorption by regulating calcium transport proteins. Male mice had hig

  3. Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jingjing Ye

    2016-01-01

    Full Text Available Porcine bone marrow mesenchymal stem cells (pBMSCs have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium (Ca2+o on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mM Ca2+o significantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly, Ca2+o stimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition, Ca2+o resulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR by its antagonist NPS2143 abolished the aforementioned effects of Ca2+o. Moreover, Ca2+o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response to Ca2+o was associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair.

  4. Crambescidin 816 induces calcium influx though glutamate receptors in primary cultures of cortical neurons

    Directory of Open Access Journals (Sweden)

    Víctor Martín Vázquez

    2014-06-01

    In summary, our data suggest that the cytotoxic effect of 10 μM Cramb816 in cortical neurons may be related to an increase in the cytosolic calcium concentration elicited by the toxin, which is shown to be mediated by glutamate receptor activation. Further studies analyzing the effect of glutamate receptor blockers on the cytotoxic effect of Cramb816 are needed to confirm this hypothesis.

  5. Estrogen receptor beta-selective agonists stimulate calcium oscillations in human and mouse embryonic stem cell-derived neurons.

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    Full Text Available Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERalpha and ERbeta on calcium oscillations in neurons derived from human (hES and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERbeta, but not ERalpha. The non-selective ER agonist 17beta-estradiol (E(2 rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERalpha agonist 4,4',4''-(4-Propyl-[1H]-pyrazole-1,3,5-triyltrisphenol (PPT. In contrast, the selective ERbeta agonists, 2,3-bis(4-Hydroxyphenyl-propionitrile (DPN, MF101, and 2-(3-fluoro-4-hydroxyphenyl-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041 stimulated calcium oscillations similar to E(2. The ERbeta agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERbeta activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERbeta signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds.

  6. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis.

    NARCIS (Netherlands)

    Renkema, K.Y.; Velic, A.; Dijkman, H.B.; Verkaart, S.A.J.; Kemp, J.W.C.M. van der; Nowik, M.; Timmermans, K.; Doucet, A.; Wagner, C.A.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2009-01-01

    Hypercalciuria increases the risk for urolithiasis, but renal adaptive mechanisms reduce this risk. For example, transient receptor potential vanilloid 5 knockout (TPRV5(-/-)) mice lack kidney stones despite urinary calcium (Ca(2+)) wasting and hyperphosphaturia, perhaps as a result of their signifi

  7. Cross talk between the calcium-sensing receptor and the vitamin D system in prevention of cancer

    Directory of Open Access Journals (Sweden)

    Enikö Kallay

    2016-10-01

    Full Text Available There is epidemiological evidence for the cancer preventive effect of dietary calcium (Ca2+ and vitamin D. This effect is strongest in colorectal cancer (CRC. The active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D3, bound to its receptor, the vitamin D receptor (VDR regulates the expression of hundreds of different genes in a cell- and tissue-specific manner. While Ca2+ acts through multiple mechanisms and pathways, some of its effects are mediated by the calcium-sensing receptor (CaSR. The joint action of Ca2+ and 1,25D3 is due to the fact that both regulate some of the main processes involved in the development of various cancers, such as proliferation, differentiation, apoptosis, migration, and inflammation. Moreover, 1,25D3, bound to VDR can induce translation of the CaSR, while the amount and activity of the CaSR affects 1,25D3 signalling. However, the complexity of the cross-talk between the CaSR and the vitamin D system goes beyond regulating similar pathways and affecting each other’s expression. Our aim was to review some of the mechanisms that drive the cross-talk between the vitamin D system and the CaSR with a special focus on the interaction in colorectal cancer cells. We evaluated the molecular evidence that supports the epidemiological observation that both vitamin D and calcium are needed for protection against malignant transformation of the colon and that their effect is modulated by the presence of a functional CaSR.

  8. Novel strategies in drug discovery of the calcium-sensing receptor based on biased signaling

    DEFF Research Database (Denmark)

    Thomsen, Alex Rojas Bie; Smajilovic, Sanela; Bräuner-Osborne, Hans

    2012-01-01

    A hallmark of chronic kidney disease is hyperphosphatemia due to renal phosphate retention. Prolonged parathyroid gland exposure to hyperphosphatemia leads to secondary hyperparathyroidism characterized by hyperplasia of the glands and excessive secretion of parathyroid hormone (PTH), which causes...... renal osteodystrophy. PTH secretion from the parathyroid glands is controlled by the calcium-sensing receptor (CaSR) that senses extracellular calcium. High extracellular calcium activates the CaSR causing inhibition of PTH secretion through multiple signaling pathways. Cinacalcet is the first drug...... targeting the CaSR and can be used to effectively control and reduce PTH secretion in PTH-related diseases. Cinacalcet is a positive allosteric modulator of the CaSR and affects PTH secretion from parathyroid glands by shifting the calcium-PTH concentration-response curve to the left. One major disadvantage...

  9. The expression of the ACTH receptor

    Directory of Open Access Journals (Sweden)

    L.L.K. Elias

    2000-10-01

    Full Text Available Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH acting through a specific cell membrane receptor (ACTH-R. The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.

  10. Association of Vitamin D Receptor Gene Polymorphisms with Calcium Oxalate Calcul us Disease

    Institute of Scientific and Technical Information of China (English)

    王少刚; 刘继红; 胡少群; 叶章群

    2003-01-01

    To study the relationship between polymorphism of vitamin D receptor (VDR) allele with formation of calcium oxalate calculus and find the predisposing genes of calcium oxalate calculus, we screened out 150 patients who suffered from calcium oxalate calculus. 36 of them had idiopathic hypercalciuria according to analysis of calculus component and assay of urine calcium. The polymorphisms of VDR gene Taq1, Apa1 and Fok1 were detected using PCR-RFLP technique and the correlation were analyzed between the polymorphism and urinary calculus or between the polymorphism and hypercalciuria. The difference in each genotypic frequency of the allele of promoter Fok1 between calculus group and healthy group or between idiopathic hypercalciuria calculus group and health group was significant. The content of 24-h urine calcium of those who had genotype ff was obviously higher than that of those who have other genotypes in the same group. There was no significant difference in the polymorphism of gene Apa1 and Taq1 between each two groups. It is concluded that hypercalciuria and calcium oxalate calculus were related to the polymorphism of VDR gene's promoter Fok1 allele, but it had nothing to do with the polymorphism of gene Apa1 and Taq1. The genotype ff was a candidate heredity marker of calcium calculus disease.

  11. Expression of orexin receptors in the pituitary.

    Science.gov (United States)

    Kaminski, Tadeusz; Smolinska, Nina

    2012-01-01

    Orexin receptors type 1 (OX1R) and type 2 (OX2R) are G protein-coupled receptors whose structure is highly conserved in mammals. OX1R is selective for orexin A, and OX2R binds orexin A and orexin B with similar affinity. Orexin receptor expression was observed in human, rat, porcine, sheep as well as Xenopus laevis pituitaries, both in the adenohypophysis and in the neurohypophysis. The expression level is regulated by gonadal steroid hormones and GnRH. The majority of orexins reaching the pituitary originate from the lateral hypothalamus, but due to the presence of the receptors and the local production of orexins in the pituitary, orexins could deliver an auto/paracrine effect within the gland. Cumulative data indicate that orexins are involved in the regulation of LH, GH, PRL, ACTH, and TSH secretion by pituitary cells, pointing to orexins' effect on the functioning of the endocrine axes. Those hormones may also serve as a signal linking metabolic status with endocrine control of sleep, arousal, and reproduction processes.

  12. MicroRNA signatures predict dysregulated vitamin D receptor and calcium pathways status in limb girdle muscle dystrophies (LGMD) 2A/2B.

    Science.gov (United States)

    Aguennouz, M; Lo Giudice, C; Licata, N; Rodolico, C; Musumeci, O; Fanin, M; Migliorato, A; Ragusa, M; Macaione, V; Di Giorgio, R M; Angelini, C; Toscano, A

    2016-08-01

    miRNA expression profile and predicted pathways involved in selected limb-girdle muscular dystrophy (LGMD)2A/2B patients were investigated. A total of 187 miRNAs were dysregulated in all patients, with six miRNAs showing opposite regulation in LGMD2A versus LGMD2B patients. Silico analysis evidence: (1) a cluster of the dysregulated miRNAs resulted primarily involved in inflammation and calcium metabolism, and (2) two genes predicted as controlled by calcium-assigned miRNAs (Vitamin D Receptor gene and Guanine Nucleotide Binding protein beta polypeptide 1gene) showed an evident upregulation in LGMD2B patients, in accordance with miRNA levels. Our data support alterations in calcium pathway status in LGMD 2A/B, suggesting myofibre calcium imbalance as a potential therapeutic target. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Induction of Increased Intraceilular Calcium in Astrocytes by Glutamate through Activating NMDA and AMPA Receptors

    Institute of Scientific and Technical Information of China (English)

    张蕲; 胡波; 孙圣刚; 童萼塘

    2003-01-01

    To study the effect of glutamate on the intracellular calcium signal of pure cultured ratastrocytes and the role of NMDA and AMPA receptors in the procedure, the change of calcium sig-nal was investigated by monitoring the fluctuation of intracellular Ca2+ concentration ([Ca2+]i) onthe basis of Fura-2 single cell fluorescent ratio (F345/F380). The changes in the effect of glutamateon the intracellular calcium signal were observed after blockage of NMDA and(or) AMPA recep-tors. It was found that L-glutamate could induce an increased [Ca2+]i in most of the cells in concen-tration- and time-dependent manner. D-(-)-2-amino-5-phosphonopentanoic acid (D-AP-5, a selec-tive antagonist of the NMDA receptor) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, a selec-tive antagonist of the AMPA receptor) could abolish the effects of NMDA and AMPA respectively.Th.e treatment of D-AP-5 and CNQX simultaneously or respectively could attenuate the effect of L-glutamate at varying degrees. All these indicated that glutamate could modulate intracellular Ca2+of pure cultured rat astrocytes through different pathways. The activation of NMDA and AMPA re-ceptors took part in the complex mechanisms.

  14. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors.

    Science.gov (United States)

    Hamby, Mary E; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H; Khakh, Baljit S; Sofroniew, Michael V

    2012-10-17

    Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2ry1, Gnao1, Gng7), but some up (for example, P2ry14, P2ry6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs.

  15. Active vitamin D potentiates the anti-neoplastic effects of calcium in the colon: A cross talk through the calcium-sensing receptor.

    Science.gov (United States)

    Aggarwal, Abhishek; Höbaus, Julia; Tennakoon, Samawansha; Prinz-Wohlgenannt, Maximilian; Graça, João; Price, Sally A; Heffeter, Petra; Berger, Walter; Baumgartner-Parzer, Sabina; Kállay, Enikö

    2016-01-01

    Epidemiological studies suggest an inverse correlation between dietary calcium (Ca(2+)) and vitamin D intake and the risk of colorectal cancer (CRC). It has been shown in vitro that the active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25-D3) can upregulate expression of the calcium-sensing receptor (CaSR). In the colon, CaSR has been suggested to regulate proliferation of colonocytes. However, during tumorigenesis colonic CaSR expression is downregulated and we hypothesized that the loss of CaSR could influence the anti-tumorigenic effects of Ca(2+) and vitamin D. Our aim was to assess the impact of CaSR expression and function on the anti-neoplastic effects of 1,25-D3 in colon cancer cell lines. We demonstrated that in the healthy colon of mice, high vitamin D diet (2500 IU/kg diet) increased expression of differentiation and apoptosis markers, decreased expression of proliferation markers and significantly upregulated CaSR mRNA expression, compared with low vitamin D diet (100 IU/kg diet). To determine the role of CaSR in this process, we transfected Caco2-15 and HT29 CRC cells with wild type CaSR (CaSR-WT) or a dominant negative CaSR mutant (CaSR-DN) and treated them with 1,25-D3 alone, or in combination with CaSR activators (Ca(2+) and NPS R-568). 1,25-D3 enhanced the anti-proliferative effects of Ca(2+) and induced differentiation and apoptosis only in cells with a functional CaSR, which were further enhanced in the presence of NPS R-568, a positive allosteric modulator of CaSR. The mutant CaSR inhibited the anti-tumorigenic effects of 1,25-D3 suggesting that the anti-neoplastic effects of 1,25-D3 are, at least in part, mediated by the CaSR. Taken together, our data provides molecular evidence to support the epidemiological observation that both, vitamin D and calcium are needed for protection against malignant transformation of the colon and that their effect is modulated by the presence of a functional CaSR. This article is part of a Special Issue

  16. Herpesviral G protein-coupled receptors activate NFAT to induce tumor formation via inhibiting the SERCA calcium ATPase.

    Directory of Open Access Journals (Sweden)

    Junjie Zhang

    2015-03-01

    Full Text Available G protein-coupled receptors (GPCRs constitute the largest family of proteins that transmit signal to regulate an array of fundamental biological processes. Viruses deploy diverse tactics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular GPCRs are primarily regulated by their cognate ligands, while herpesviral GPCRs constitutively activate downstream signaling cascades, including the nuclear factor of activated T cells (NFAT pathway. However, the roles of NFAT activation and mechanism thereof in viral GPCR tumorigenesis remain unknown. Here we report that GPCRs of human Kaposi's sarcoma-associated herpesvirus (kGPCR and cytomegalovirus (US28 shortcut NFAT activation by inhibiting the sarcoplasmic reticulum calcium ATPase (SERCA, which is necessary for viral GPCR tumorigenesis. Biochemical approaches, entailing pharmacological inhibitors and protein purification, demonstrate that viral GPCRs target SERCA2 to increase cytosolic calcium concentration. As such, NFAT activation induced by vGPCRs was exceedingly sensitive to cyclosporine A that targets calcineurin, but resistant to inhibition upstream of ER calcium release. Gene expression profiling identified a signature of NFAT activation in endothelial cells expressing viral GPCRs. The expression of NFAT-dependent genes was up-regulated in tumors derived from tva-kGPCR mouse and human KS. Employing recombinant kGPCR-deficient KSHV, we showed that kGPCR was critical for NFAT-dependent gene expression in KSHV lytic replication. Finally, cyclosporine A treatment diminished NFAT-dependent gene expression and tumor formation induced by viral GPCRs. These findings reveal essential roles of NFAT activation in viral GPCR tumorigenesis and a mechanism of "constitutive" NFAT activation by viral GPCRs.

  17. Association of vitamin D receptor gene polymorphism with the urine calcium level in nephrolithiasis patients.

    Science.gov (United States)

    Zhou, Tian-Biao; Jiang, Zong-Pei; Huang, Miao-Fang; Zhang, Rui

    2015-04-01

    Association of vitamin D receptor (VDR) gene polymorphism with the urine calcium level in nephrolithiasis patients from the published reports are still conflicting. This study was conducted to evaluate the relationship between VDR BsmI (rs1544410), Fok1 (rs2228570), TaqI (rs731236) and ApaI (rs7975232) gene polymorphism and urine calcium level in nephrolithiasis patients using meta-analysis method. The association studies were identified from PubMed, and Cochrane Library on 1 April 2014, and eligible investigations were included and synthesized using meta-analysis method. Four reports were recruited into this meta-analysis for the association of VDR BsmI, Fok1, TaqI and ApaI gene polymorphism with urine calcium level in nephrolithiasis patients. In this meta-analysis, VDR BsmI B allele and BB genotype, Fok1 f allele and ff genotype, TaqI, and ApaI gene polymorphism were not associated with urine calcium level in nephrolithiasis patients. However, the BsmI bb genotype and Fok1 FF genotype were associated with the urine calcium level in nephrolithiasis patients. In conclusion, VDR BsmI bb genotype and Fok1 FF genotype were associated with the urine calcium level in nephrolithiasis patients. However, more studies should be conducted to confirm it.

  18. Role of Ryanodine Receptor Subtypes in Initiation and Formation of Calcium Sparks in Arterial Smooth Muscle: Comparison with Striated Muscle

    Directory of Open Access Journals (Sweden)

    Maik Gollasch

    2009-01-01

    Full Text Available Calcium sparks represent local, rapid, and transient calcium release events from a cluster of ryanodine receptors (RyRs in the sarcoplasmic reticulum. In arterial smooth muscle cells (SMCs, calcium sparks activate calcium-dependent potassium channels causing decrease in the global intracellular [Ca2+] and oppose vasoconstriction. This is in contrast to cardiac and skeletal muscle, where spatial and temporal summation of calcium sparks leads to global increases in intracellular [Ca2+] and myocyte contraction. We summarize the present data on local RyR calcium signaling in arterial SMCs in comparison to striated muscle and muscle-specific differences in coupling between L-type calcium channels and RyRs. Accordingly, arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux though RyRs. Downregulation of RyR2 up to a certain degree is compensated by increased SR calcium content to normalize calcium sparks. This indirect coupling between Cav1.2 and RyR in arterial SMCs is opposite to striated muscle, where triggering of calcium sparks is controlled by rapid and direct cross-talk between Cav1.1/Cav1.2 L-type channels and RyRs. We discuss the role of RyR isoforms in initiation and formation of calcium sparks in SMCs and their possible molecular binding partners and regulators, which differ compared to striated muscle.

  19. Induction of calcium sensing receptor in human colon cancer cells by calcium, vitamin D and aquamin: Promotion of a more differentiated, less malignant and indolent phenotype.

    Science.gov (United States)

    Singh, Navneet; Aslam, Muhammad N; Varani, James; Chakrabarty, Subhas

    2015-07-01

    The calcium sensing receptor (CaSR) is a robust promoter of differentiation in colonic epithelial cells and functions as a tumor suppressor. Cancer cells that do not express CaSR (termed CaSR null) are highly malignant while acquisition of CaSR expression in these cells circumvents the malignant phenotype. We hypothesize that chemopreventive agents mediate their action through the induction of CaSR. Here, we compare the effectiveness of Ca(2+), vitamin D, and Aquamin (a marine algae product containing Ca(2+), magnesium and detectable levels of 72 additional minerals) on the induction of CaSR in the CBS and HCT116 human colon carcinoma cell lines and the corresponding CaSR null cells isolated from these lines. All three agonists induced CaSR mRNA and protein expression and inhibited cellular proliferation in the parental and CaSR null cells. Aquamin was found to be most potent in this regard. Induction of CaSR expression by these agonists resulted in demethylation of the CaSR gene promoter with a concurrent increase in CaSR promoter reporter activity. However, demethylation per se did not induce CaSR transcription. Induction of CaSR expression resulted in a down-regulated expression of tumor inducers and up-regulated expression of tumor suppressors. Again, Aquamin was found to be most potent in these biologic effects. This study provides a rationale for the use of a multi-mineral approach in the chemoprevention of colon cancer and suggests that induction of CaSR may be a measure of the effectiveness of chemopreventive agents.

  20. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  1. Calcium measurements in living filamentous fungi expressing codon-optimized aequorin

    NARCIS (Netherlands)

    Nelson, G.; Kozlova-Zwinderman, O.; Collis, A.J.; Knight, M.R.; Fincham, J.R.S.; Stanger, C.P.; Renwick, A.; Hessing, J.G.M.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Read, N.D.

    2004-01-01

    Calcium signalling is little understood in filamentous fungi largely because easy and routine methods for calcium measurement in living hyphae have previously been unavailable. We have developed the recombinant aequorin method for this purpose. High levels of aequorin expression were obtained in Neu

  2. Increased Calcium-Sensing Receptor Immunoreactivity in the Hippocampus of a Triple Transgenic Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Gardenal, Emanuela; Chiarini, Anna; Armato, Ubaldo; Dal Prà, Ilaria; Verkhratsky, Alexei; Rodríguez, José J.

    2017-01-01

    The Calcium-Sensing Receptor (CaSR) is a G-protein coupled, 7-transmembrane domain receptor ubiquitously expressed throughout the body, brain including. The role of CaSR in the CNS is not well understood; its expression is increasing during development, which has been implicated in memory formation and consolidation, and CaSR localization in nerve terminals has been related to synaptic plasticity and neurotransmission. There is an emerging evidence of CaSR involvement in neurodegenerative disorders and Alzheimer's disease (AD) in particular, where the over-production of β-amyloid peptides was reported to activate CaSR. In the present study, we performed CaSR immunohistochemical and densitometry analysis in the triple transgenic mouse model of AD (3xTg-AD). We found an increase in the expression of CaSR in hippocampal CA1 area and in dentate gyrus in the 3xTg-AD mice when compared to non-transgenic control animals. This increase was significant at 9 months of age and further increased at 12 and 18 months of age. This increase paralleled the accumulation of β-amyloid plaques with age. Increased expression of CaSR favors β-amyloidogenic pathway following direct interactions between β-amyloid and CaSR and hence may contribute to the pathological evolution of the AD. In the framework of this paradigm CaSR may represent a novel therapeutic target.

  3. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis

    Science.gov (United States)

    Hannan, Fadil M; Babinsky, Valerie N

    2016-01-01

    The extracellular calcium (Ca2+o)-sensing receptor (CaSR) is a family C G protein-coupled receptor, which detects alterations in Ca2+o concentrations and modulates parathyroid hormone secretion and urinary calcium excretion. The central role of the CaSR in Ca2+o homeostasis has been highlighted by the identification of mutations affecting the CASR gene on chromosome 3q21.1. Loss-of-function CASR mutations cause familial hypocalciuric hypercalcaemia (FHH), whereas gain-of-function mutations lead to autosomal dominant hypocalcaemia (ADH). However, CASR mutations are only detected in ≤70% of FHH and ADH cases, referred to as FHH type 1 and ADH type 1, respectively, and studies in other FHH and ADH kindreds have revealed these disorders to be genetically heterogeneous. Thus, loss- and gain-of-function mutations of the GNA11 gene on chromosome 19p13.3, which encodes the G-protein α-11 (Gα11) subunit, lead to FHH type 2 and ADH type 2, respectively; whilst loss-of-function mutations of AP2S1 on chromosome 19q13.3, which encodes the adaptor-related protein complex 2 sigma (AP2σ) subunit, cause FHH type 3. These studies have demonstrated Gα11 to be a key mediator of downstream CaSR signal transduction, and also revealed a role for AP2σ, which is involved in clathrin-mediated endocytosis, in CaSR signalling and trafficking. Moreover, FHH type 3 has been demonstrated to represent a more severe FHH variant that may lead to symptomatic hypercalcaemia, low bone mineral density and cognitive dysfunction. In addition, calcimimetic and calcilytic drugs, which are positive and negative CaSR allosteric modulators, respectively, have been shown to be of potential benefit for these FHH and ADH disorders. PMID:27647839

  4. Role of calcium in the regulation of acetylcholine receptor synthese in cultured muscle cells*.

    Science.gov (United States)

    Birnbaum, M; Reis, M A; Shainberg, A

    1980-05-01

    Embroyonic muscles differentiated in vitro were used to study the effects of intracellular Ca2+ ([Ca2+1]i) variations on the amount of acetylcholine receptors ([AChR]) in the cell membrane. 2. Increased Ca2+ concentration in the growth medium ([Ca2+]o) caused a marked elevation of AChR levels, apparently through de novo synthesis. 3. Agents known to increase [Ca2+]i and its accumulation in the sarcoplasmic reticulum (SR), such as ionophore A23187, sodium dantrolene (DaNa), or high [Mg2+]o all enhanced alpha-bungarotoxin (alpha-BGT) binding after 48 h of treatment. 4. Electrical stimulation or caffeine, both affectors of SR calcium release, brought about a decrease in [AChR] probably by suppressing its synthesis. 5. The effects of simultaneous treatment with two AChR-inducing agents, namely, high [Ca2+]o in the presence of tetrodotoxin (TTX) or high [Mg2+]o were not additive, thus suggesting action via a common saturable mediator. 6. Intermediate AChR levels obtained following simultaneous treatments with opposing effects, e.g., electrical stimulation in the presence of high [Ca2+]o or DaNa, suggest contradictory actions on a common mediator. 7. All these observations indicate a strong correlation between SR calcium levels and [AChR] on myotubes; while calcium accumulation in the Sr was followed by increased AChR synthesis, calcium release was accompanied by suppression of receptor synthesis.

  5. Development of calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured neocortical neurons visualized by cobalt staining

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S

    1998-01-01

    The developmental expression of calcium (Ca2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in cultured neocortical neurons was evaluated by using cobalt uptake, a histochemical method that identifies cells expressing Ca2+-permeable, non-N-methyl......The developmental expression of calcium (Ca2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in cultured neocortical neurons was evaluated by using cobalt uptake, a histochemical method that identifies cells expressing Ca2+-permeable, non......-N-methyl-D-aspartate (non-NMDA) receptors. At a concentration of 500 microM, AMPA was found to stimulate cobalt uptake only late in development, resulting in staining of 2.7%+/-0.3% of the neurons maintained in culture for 12 days in vitro (DIV). When AMPA receptor desensitization was blocked with 50 microM cyclothiazide......, the developmental profile of cobalt uptake mediated by 25 microM AMPA changed dramatically. The cobalt staining now appeared in young cultures (5 DIV), and the percentage of stained cells increased from 3.4%+/-0.2% at 5 DIV to 21.7%+/-1.6% at 12 DIV. The effect of 200 microM kainate was similar to that seen with 25...

  6. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A;

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated...

  7. Ontogeny of AMPA and NMDA receptor gene expression in the developing sheep white matter and cerebral cortex.

    Science.gov (United States)

    Dean, Justin M; Fraser, Mhoyra; Shelling, Andrew N; Bennet, Laura; George, Sherly; Shaikh, Shamim; Scheepens, Arjan; Gunn, Alistair J

    2005-10-03

    This study examined the hypothesis that the high prevalence of white matter injury in premature infants is associated with increased expression of calcium-permeable forms of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptors in pre-myelinating white matter. We characterized expression of subunits of the AMPA, and for reference, the N-methyl-d-aspartate (NMDA), glutamate receptors at 0.5, 0.65, 0.85, and term gestation in the ovine fetal white matter and cerebral cortex. There was a low expression of the critical calcium-impermeable AMPA receptor GluR2 subunit in subcortical white matter both absolutely and relative to other AMPA subunits throughout gestation. In contrast, GluR2 subunit mRNA expression fell in the cerebral cortex with increasing gestation whereas protein expression increased. These findings suggest a vulnerability of subcortical white matter to AMPA receptor-mediated calcium toxicity throughout the second half of gestation. Thus, the hypothesis that AMPA receptor-mediated glutamate toxicity contributes to brain damage in premature infants needs to be revised.

  8. Purinergic receptors and calcium signalling in human pancreatic duct cell lines

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Novak, Ivana

    2008-01-01

    Purinergic receptors regulate various processes including epithelial transport. There are several studies on P2 receptors in pancreatic ducts of various species, but relatively little is known about these receptors in human tissue. The aim of this study was to identify purinergic receptors in human......ATP, commonly used to stimulate P2X7 receptors, elicited non-oscillatory and transient Ca(2+) responses. Ivermectin, a potentiator of P2X4 receptors, increased Ca(2+) signals evoked by ATP. The single cell Ca(2+) measurements indicated functional expression of P2Y2 and other P2Y receptors, and notably...... expression of P2X4 and P2X7 receptors. Expression of P2Y2, P2X4 and P2X7 receptors was confirmed by immunocytochemistry. This fingerprint of P2 receptors in human pancreatic duct models forms the basis for studying effect of nucleotides on ion and fluid secretion, as well as on Ca(2+) and tissue homeostasis...

  9. Expression of Androgen Receptor in Meningiomas

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the expression of androgen receptor (AR) in meningiomas and its relation to tumor proliferative potential, we examined the expression of AR and proliferating cell nuclear antigen (PCNA) by avidine-biotin complex immunohistochemistry in 39 cases of meningiomas. Of the 39 cases of meningiomas, 20(51 %) showed positive AR immunoreactivity. The AR expression positivity rates were 31 % (6/19) in benign meningiomas, 58 % (7/12) in atypical meningiomas, 87.5 % (7/8) in malignant meningiomas, respectively. In addition to the tumor cells, cells of microvascular endothelial proliferation were frequently AR positive. Malignant meningiomas had a significantly higher percentage of AR positive cells compared with atypical and benign meningiomas (P<0.05). The mean proliferating cell nuclear antigen labeling index (PCNA LI) was significantly higher in the malignant meningiomas when compared with atypical meningiomas (P<0.05) and benign meningiomas (P<0.05). AR positive meningiomas had higher PCNA LI than AR negative meningiomas (P<0.05). The expression of AR in tumor tissues was significantly related with PCNA LI. These data indicated that AR in the meningiomas was correlated with histological grade and AR might participate in the growth of these tumors and tumor angiogenesis. The measurement of AR in these tumors may indirectly represent tumor growth potential.

  10. Hierarchical clustering of ryanodine receptors enables emergence of a calcium clock in sinoatrial node cells.

    Science.gov (United States)

    Stern, Michael D; Maltseva, Larissa A; Juhaszova, Magdalena; Sollott, Steven J; Lakatta, Edward G; Maltsev, Victor A

    2014-05-01

    The sinoatrial node, whose cells (sinoatrial node cells [SANCs]) generate rhythmic action potentials, is the primary pacemaker of the heart. During diastole, calcium released from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) interacts with membrane currents to control the rate of the heartbeat. This "calcium clock" takes the form of stochastic, partially periodic, localized calcium release (LCR) events that propagate, wave-like, for limited distances. The detailed mechanisms controlling the calcium clock are not understood. We constructed a computational model of SANCs, including three-dimensional diffusion and buffering of calcium in the cytosol and SR; explicit, stochastic gating of individual RyRs and L-type calcium channels; and a full complement of voltage- and calcium-dependent membrane currents. We did not include an anatomical submembrane space or inactivation of RyRs, the two heuristic components that have been used in prior models but are not observed experimentally. When RyRs were distributed in discrete clusters separated by >1 µm, only isolated sparks were produced in this model and LCR events did not form. However, immunofluorescent staining of SANCs for RyR revealed the presence of bridging RyR groups between large clusters, forming an irregular network. Incorporation of this architecture into the model led to the generation of propagating LCR events. Partial periodicity emerged from the interaction of LCR events, as observed experimentally. This calcium clock becomes entrained with membrane currents to accelerate the beating rate, which therefore was controlled by the activity of the SERCA pump, RyR sensitivity, and L-type current amplitude, all of which are targets of β-adrenergic-mediated phosphorylation. Unexpectedly, simulations revealed the existence of a pathological mode at high RyR sensitivity to calcium, in which the calcium clock loses synchronization with the membrane, resulting in a paradoxical decrease in beating

  11. [Chronic hypocalcemia due to anti-calcium sensing receptor antibodies].

    Science.gov (United States)

    Marques, Pedro; Santos, Rita; Cavaco, Branca; Leite, Valeriano

    2014-01-01

    Introdução: O hipoparatiroidismo cursa com hipocalcemia e é mais frequentemente registado após cirurgia cervical. A etiologia autoimune é mais rara e difícil de diagnosticar. Caso clínico: Mulher, 52 anos, sem antecedentes pessoais, medicamentosos ou familiares relevantes, referenciada por hipocalcemia e calcificação dos núcleos da base, detetados no decurso de investigação de quadro de mialgias. Além de hipocalcemia (4,6 mg/dL), foi verificada hiperfosfatemia (8,7 mg/dL), hormona paratiroideia indetetável, calciúria, fosfatúria e magnesúria baixas. A análise molecular do gene CaSR excluiu mutações germinais. A pesquisa de anticorpos anti-receptor sensível do cálcio (anti-CaSR) foi positiva. Atualmente está assintomática e normocalcémica sob terapêutica com cálcio e vitamina D. Discussão: Embora rara, a hipocalcemia por hipoparatiroidismo autoimune deve ponderar-se em adultos sem antecedentes de cirurgia cervical, medicação hipocalcemiante, história familiar ou fenótipo sugestivo de doença genética. Hormona paratiroideia diminuída ou indetetável exclui pseudohipoparatiroidismo e a positividade para anti-CaSR confirma o diagnóstico.

  12. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  13. Human basophils express interleukin-4 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Valent, P.; Besemer, J.; Kishi, K.; Di Padova, F.; Geissler, K.; Lechner, K.; Bettelheim, P. (Univ. of Vienna (Austria))

    1990-11-01

    Interleukin-4 (IL-4), a multipotential lymphokine reputed to play an important role in the regulation of immune responses, interacts with a variety of hemopoietic target cells through specific cell surface membrane receptors. The present study was designed to investigate whether human basophils express IL-4 binding sites. For this purpose, basophils were enriched to homogeneity (93% and 98% purity, respectively) from the peripheral blood of two chronic granulocytic leukemia (CGL) donors using a cocktail of monoclonal antibodies (MoAbs) and complement. Purified basophils bound 125I-radiolabeled recombinant human (rh) IL-4 in a specific manner. Quantitative binding studies and Scatchard plot analysis revealed the presence of a single class of high affinity IL-4 binding sites (280 +/- 40 sites per cell in donor 1 and 640 +/- 45 sites per cell in donor 2) with an apparent dissociation constant, kd, of 7.12 x 10(-11) +/- 2.29 x 10(-11) and 9.55 +/- 3.5 x 10(-11) mol/L, respectively. KU812-F, a human basophil precursor cell line, was found to express a single class of 810 to 1,500 high affinity IL-4 binding sites with a kd of 2.63 to 5.54 x 10(-10) mol/L. No change in the numbers or binding constants of IL-4 receptors was found after exposure of KU812-F cells to rhIL-3 (a potent activator of basophils) for 60 minutes. No effect of rhIL-4 on 3H-thymidine uptake, release or synthesis of histamine, or expression of basophil differentiation antigens (Bsp-1, CD11b, CD25, CD40, CD54) on primary human CGL basophils or KU812-F cells was observed.

  14. Genome-wide meta-analysis for serum calcium identifies significantly associated SNPs near the calcium-sensing receptor (CASR gene.

    Directory of Open Access Journals (Sweden)

    Karen Kapur

    2010-07-01

    Full Text Available Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR gene on 3q13. The top hit with a p-value of 6.3 x 10(-37 is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21, a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4. This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.

  15. Extracellular ATP activates NFAT-dependent gene expression in neuronal PC12 cells via P2X receptors

    Directory of Open Access Journals (Sweden)

    Becker Walter

    2011-09-01

    Full Text Available Abstract Background Treatment of neuronal PC12 cells with ATP induces depolarisation and increases intracellular calcium levels via purinergic receptors. In many cell types, sustained elevation of intracellular calcium levels cause changes in gene expression via activation of the transcription factor NFAT (nuclear factor of activated T cells. We have therefore characterised the signalling pathway by which ATP regulates NFAT-dependent gene expression in PC12 cells. Results The activation of NFAT transcriptional activity by extracellular ATP was characterised with the help of reporter gene assays. Treatment of PC12 cells with ATP elicited a dose-dependent increase in luciferase activity (EC50 = 78 μM. UTP, 4-benzoylbenzoyl ATP and α,β-methylene ATP did not mimic the effect of ATP, which was abolished by treatment with the P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS. This pharmacological characterisation provides evidence for a critical role of ionotropic P2X receptors. Blockade of L-type voltage-dependent calcium channels by nifedipine reduced the response of NFAT to ATP, indicating that a depolarisation-mediated calcium influx was required for maximal NFAT activation. Inhibition of store-operated calcium entry by the pyrazole derivative BTP2 also diminished ATP-dependent NFAT activation. Furthermore, ATP-induced NFAT activation was associated with the activation of the mitogen-activated protein kinases ERK1/2. Finally, treatment with ATP increased the levels of the NFAT target transcripts, RCAN1-4 (regulator of calcineurin and BDNF (brain derived neurotrophic factor. Conclusion The present data show that ATP induces NFAT-dependent changes in gene expression in PC12 cells by acting on P2X receptors. Maximal NFAT activation depends on both depolarisation-induced calcium influx and store-operated calcium entry and requires the activity of the protein phosphatase calcineurin and the mitogen-activated protein

  16. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  17. Increased expression of fatty-acid and calcium metabolism genes in failing human heart.

    Directory of Open Access Journals (Sweden)

    Vanessa García-Rúa

    Full Text Available BACKGROUND: Heart failure (HF involves alterations in metabolism, but little is known about cardiomyopathy-(CM-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA uptake and oxidation or in calcium-(Ca(2+-handling in the human heart. METHODS: RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36 without diabetes mellitus of ischaemic (ICM, n = 16 or dilated (DCM, n = 20 cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6. RESULTS: Significant increases in mRNA of genes regulating FA uptake (CD36 and intracellular transport (Heart-FA-Binding Protein (HFABP were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA, PPAR-gamma coactivator-1-alpha (PGC1A and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca(2+-handling genes (Two-Pore-Channel 1 (TPCN1, Two-Pore-Channel 2 (TPCN2, and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1 increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca(2+-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL: three were common to and three distinct from ICM. CONCLUSION: DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca(2+-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca(2

  18. Association of estrogen receptor-alpha and vitamin D receptor genotypes with therapeutic response to calcium in postmenopausal Chinese women

    Institute of Scientific and Technical Information of China (English)

    Zhen-lin ZHANG; Yue-juan QIN; Qi-ren HUANG; Jin-wei HE; Miao LI; Qi ZHOU; Yun-qiu HU; Yu-juan LIU

    2004-01-01

    AIM: To investigate the correlation between calcium treatment in postmenopausal women and estrogen receptoralpha (ER-alpha) Xba Ⅰ and Pvu Ⅱ genotype and vitamin D receptor (VDR) Apa Ⅰ genotype. METHODS: One hundred fifteen postmenopausal Chinese women of Han population were enrolled and treated with calcichew-D3(1000 mg calcium and 400 U vitamin D3) daily for 1 year. At entry and after 1 year treatment, the bone mineral density (BMD), serum and urinary bone turnover biochemical markers were evaluated. ER-alpha and VDR genotype were analyzed using PCR-restriction fragment length polymorphism. RESULTS: After 1 year of calcium supplementation, a significant increase of BMD and a marked reduction in serum ALP and PTH levels, and a significant increase of serum 25-(OH) vitamin D level were observed (P<0.01 or P<0.05). At entry and after 1 year of treatment, no significant association was found between Xba Ⅰ, Pvu Ⅱ, and Apa Ⅰ genotypes and BMD in L1-4,Neck, and Troch, and all bone turnover marker levels. However, the percentage of change (median, QR) in Neck BMD was significantly different in homozygous XX [-4.14 (from -6.54 to -1.34)] in comparison with Xx [1.72(from -1.12 to 3.20)] (P<0.001) or xx [1.22 (from -1.74 to 3.06)] Xba Ⅰ ER-alpha genotype (P=0.001).CONCLUSION: Women with ER-α Xba Ⅰ genotype XX may have a higher risk of relatively fast bone mass loss in femoral neck after menopause and that they may have a poor responsiveness to calcium supplementation. The changes in BMD are not associated with ER-alpha Pvu Ⅱ genotype and VDR Apa Ⅰ genotype after 1 year of calcium supplementation.

  19. NMDA and AMPA receptors mediate intracellular calcium increase in rat cortical astrocytes

    Institute of Scientific and Technical Information of China (English)

    Bo HU; Sheng-gang SUN; E-tang TONG

    2004-01-01

    AIM: To study the effect of glutamate on the intracellular calcium signal of pure cultured rat astrocytes and the role of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in the procedure. METHODS: The fluorescence of calcium was measured by Fura-2/AM (F345/F380).RESULTS: L-Glutamate induced [Ca2+]i increase in most of the cells in concentration- and time-dependent manner.NMDA 50 mmol/L induced the fluorescence increase by almost three to four times, while the effect of AMPA 50mmol/L was just half of that of D-(-)-2-amino-5-phosphonopentanoic acid (D-AP-5; a selective antagonist of the NMDA receptor). 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX, a selective antagonist of the AMPA receptor)abolished the effects of NMDA and AMPA, respectively. D-AP-5 and CNQX simultaneously or respectively attenuated the effect of L-glutamate at different degrees, but could not abolish it entirely. CONCLUSION: Glutamate modulated intracellular Ca2+ of pure cultured rat astrocytes through different pathways. The activation of NMDA and AMPA receptors took part in the complex mechanisms.

  20. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current

    OpenAIRE

    Lauckner, Jane E.; Jensen, Jill B.; Chen, Huei-Ying; Lu, Hui-Chen; Hille, Bertil; Mackie, Ken

    2008-01-01

    The CB1 cannabinoid receptor mediates many of the psychoactive effects of Δ9THC, the principal active component of cannabis. However, ample evidence suggests that additional non-CB1/CB2 receptors may contribute to the behavioral, vascular, and immunological actions of Δ9THC and endogenous cannabinoids. Here, we provide further evidence that GPR55, a G protein-coupled receptor, is a cannabinoid receptor. GPR55 is highly expressed in large dorsal root ganglion neurons and, upon activation by va...

  1. Normalization of serum calcium by cinacalcet in a patient with hypercalcaemia due to a de novo inactivating mutation of the calcium-sensing receptor.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Karperien, M.; Hamdy, N.A.; Boer, H. de; Hermus, A.R.M.M.

    2006-01-01

    Familial benign hypocalciuric hypercalcaemia (FHH) results from a heterozygous inactivating mutation of the calcium-sensing receptor (CaR) and is characterized by hypercalcaemia, hypocalciuria and inappropriately normal plasma levels of parathyroid hormone. In a minority of patients, a loss of funct

  2. Heterodimerization of ORL1 and Opioid Receptors and Its Consequences for N-type Calcium Channel Regulation*

    OpenAIRE

    Evans, Rhian M; You, Haitao; Hameed, Shahid; Altier, Christophe; Mezghrani, Alexandre; Bourinet, Emmanuel; Zamponi, Gerald W.

    2009-01-01

    We have investigated the heterodimerization of ORL1 receptors and classical members of the opioid receptor family. All three classes of opioid receptors could be co-immunoprecipitated with ORL1 receptors from both transfected tsA-201 cell lysate and rat dorsal root ganglia lysate, suggesting that these receptors can form heterodimers. Consistent with this hypothesis, in cells expressing either one of the opioid receptors together with ORL1, prolonged ORL1 receptor activation via nociceptin ap...

  3. Fibronectin-induced VEGF receptor and calcium channel transactivation stimulate GLUT-1 synthesis and trafficking through PPARγ and TC10 in mouse embryonic stem cells.

    Science.gov (United States)

    Suh, Han Na; Han, Ho Jae

    2013-05-01

    Extracellular matrix (ECM) mediates interactions between integrin and growth factor receptor (GFR) or ion channel. Although this crosstalk promotes integration of the downstream signal pathways and then regulates cellular function, the effect of ECM on glucose transporter (GLUT) in stem cells has not been elucidated. Therefore, we examined the effect of fibronectin on GLUT-1 expression, trafficking, and its related signal pathways in mouse embryonic stem cells (mESCs). Fibronectin increased 2-deoxyglucose (DG) uptake and GLUT-1 protein expression that were blocked by transcription or translation inhibitors. Integrin α5β1-bound fibronectin increased 2-DG uptake through cluster formation with vascular endothelial growth factor receptor (VEGFR) 2, and then activated Ras and PI3K/Akt. In another pathway, integrin α5β1 displayed structural and functional interactions with calcium channels, and stimulated 2-DG uptake through calcium influx and PKC activation. Akt and PKC-induced PPARγ phosphorylation enhanced the decreased expression of PPARγ protein, and subsequently increased GLUT-1 protein synthesis and 2-DG uptake. Fibronectin stimulated TC10 activity and cytoskeleton (F-actin) rearrangement, followed by GLUT-1 trafficking. In conclusion, integrin-bound fibronectin stimulates GLUT-1 synthesis through VEGFR2/Ras/PI3K/Akt and calcium channel/Ca(2+)/PKC, which are merged at PPARγ and GLUT-1 trafficking through TC10 and F-actin.

  4. Estrogen receptor expression in adrenocortical carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-cao SHEN; Cai-xiao GU; Yi-qing QIU; Chuan-jun DU; Yan-biao FU; Jian-jun WU

    2009-01-01

    Objective: Adrenocortical carcinoma (ACC) is a rare but highly malignant tumor, and its diagnosis is mostly delayed and prognosis is poor. We report estrogen receptor (ER) expression in this tumor and our clinical experiences with 17 ACC cases. Methods: The data of the 17 patients (9 females and 8 males, age range from 16 to 69 years, mean age of 42.6 years) with ACC were reviewed, and symptoms, diagnostic procedures, treatment, and results of follow-up were evaluated. Immunohistochemistry was used to detect ER expression in tumor samples from the 17 patients. Results: At the time of diagnosis, 4 tumors were classified as Stage Ⅰ, 4 as Stage Ⅱ, 3 as Stage Ⅲ, and 6 as Stage Ⅳ. Eight patients demonstrated positive nuclear immunostaining of ER. The prognosis of patients with ER positive was significantly better (P<0.05) than that of patients with ER negative, with 1- and 5-year survival rates at 86% and 60% for ER-positive patients, and 38% and 0% for ER-negative patients, respectively. Conclusion: ER-positivity may be one of the factors associated with a worse prognosis of ACC.

  5. Calcium regulates the expression of a Dictyostelium discoideum asparaginyl tRNA synthetase gene

    Indian Academy of Sciences (India)

    Jyoti K Jaiswal; Vidyanand Nanjundiah

    2003-12-01

    In a screen for calcium-regulated gene expression during growth and development of Dictyostelium discoideum we have identified an asparaginyl tRNA synthetase (ddAsnRS) gene, the second tRNA synthetase gene identified in this organism. The ddAsnRS gene shows many unique features. One, it is repressed by lowering cellular calcium, making it the first known calcium-regulated tRNA synthetase. Two, despite the calcium-dependence, its expression is unaltered during the cell cycle, making this the first D. discoideum gene to show a calcium-dependent but cell cycle phase-independent expression. Finally, the N-terminal domain of the predicted ddAsnRS protein shows higher sequence similarity to Glutaminyl tRNA synthetases than to other Asn tRNA synthetases. These unique features of the AsnRS from this primitive eukaryote not only point to a novel mechanism regulating the components of translation machinery and gene expression by calcium, but also hint at a link between the evolution of GlnRS and AsnRS in eukaryotes.

  6. Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium

    Science.gov (United States)

    Fan, Hanlu; Du, Xiaohong; Zhang, Jingyuan; Zheng, Han; Lu, Xiaohui; Wu, Qihui; Li, Haifeng; Wang, Han; Shi, Yi; Gao, George; Zhou, Zhuan; Tan, Dun-Xian; Li, Xiangdong

    2017-01-01

    The Ebola crisis occurred in West-Africa highlights the urgency for its clinical treatments. Currently, no Food and Drug Administration (FDA)-approved therapeutics are available. Several FDA-approved drugs, including selective estrogen receptor modulators (SERMs), possess selective anti-Ebola activities. However, the inhibitory mechanisms of these drugs remain elusive. By analyzing the structures of SERMs and their incidental biological activity (cholesterol accumulation), we hypothesized that this incidental biological activity induced by SERMs could be a plausible mechanism as to their inhibitory effects on Ebola infection. Herein, we demonstrated that the same dosages of SERMs which induced cholesterol accumulation also inhibited Ebola infection. SERMs reduced the cellular sphingosine and subsequently caused endolysosomal calcium accumulation, which in turn led to blocking the Ebola entry. Our study clarified the specific anti-Ebola mechanism of SERMs, even the cationic amphiphilic drugs (CADs), this mechanism led to the endolysosomal calcium as a critical target for development of anti-Ebola drugs. PMID:28117364

  7. A combined role of calcium channel blockers and angiotensin receptor blockers in stroke prevention

    Directory of Open Access Journals (Sweden)

    Ji-Guang Wang

    2009-07-01

    Full Text Available Ji-Guang WangCentre for Epidemiological Studies and Clinical Trials, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, ChinaAbstract: Stroke is a leading cause of death and disability worldwide. The importance of lowering blood pressure for reducing the risk of stroke is well established. However, not all the benefits of antihypertensive treatments in stroke can be accounted for by reductions in BP and there may be differences between antihypertensive classes as to which provides optimal protection. Dihydropyridine calcium channel blockers, such as amlodipine, and angiotensin receptor blockers, such as valsartan, represent the two antihypertensive drug classes with the strongest supportive data for the prevention of stroke. Therefore, when combination therapy is required, a combination of these two antihypertensive classes represents a logical approach.Keywords: stroke, angiotensin, calcium channel, cerebrovascular, hypertension, blood pressure

  8. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis.

    Science.gov (United States)

    Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C; Goltzman, David; Kronenberg, Henry M

    2015-08-01

    The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level.

  9. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yi-hua [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Li, Yong-quan [Harbin Medical University, Harbin 150086 (China); Feng, Shan-li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Li, Bao-xin; Pan, Zhen-wei [Department of Pharmacology, Harbin Medical University, Harbin 150086 (China); Xu, Chang-qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Li, Ting-ting [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Yang, Bao-feng, E-mail: syh200415@yahoo.com.cn [Department of Pharmacology, Harbin Medical University, Harbin 150086 (China)

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  10. Integration of gene expression and GWAS results supports involvement of calcium signaling in Schizophrenia.

    Science.gov (United States)

    Hertzberg, L; Katsel, P; Roussos, P; Haroutunian, V; Domany, E

    2015-05-01

    The number of Genome Wide Association Studies (GWAS) of schizophrenia is rapidly growing. However, the small effect of individual genes limits the number of reliably implicated genes, which are too few and too diverse to perform reliable pathway analysis; hence the biological roles of the genes implicated in schizophrenia are unclear. To overcome these limitations we combine GWAS with genome-wide expression data from human post-mortem brain samples of schizophrenia patients and controls, taking these steps: 1) Identify 36 GWAS-based genes which are expressed in our dataset. 2) Find a cluster of 19 genes with highly correlated expression. We show that this correlation pattern is robust and statistically significant. 3) GO-enrichment analysis of these 19 genes reveals significant enrichment of ion channels and calcium-related processes. This finding (based on analyzing a small number of coherently expressed genes) is validated and enhanced in two ways: First, the emergence of calcium channels and calcium signaling is corroborated by identifying proteins that interact with those encoded by the cluster of 19. Second, extend the 19 cluster genes into 1028 genes, whose expression is highly correlated with the cluster's average profile. When GO-enrichment analysis is performed on this extended set, many schizophrenia related pathways appear, with calcium-related processes enriched with high statistical significance. Our results give further, expression-based validation to GWAS results, support a central role of calcium-signaling in the pathogenesis of schizophrenia, and point to additional pathways potentially related to the disease.

  11. T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels.

    Directory of Open Access Journals (Sweden)

    Didi Matza

    Full Text Available The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1 α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling.

  12. Involvement of the calcium-sensing receptor in human taste perception.

    Science.gov (United States)

    Ohsu, Takeaki; Amino, Yusuke; Nagasaki, Hiroaki; Yamanaka, Tomohiko; Takeshita, Sen; Hatanaka, Toshihiro; Maruyama, Yutaka; Miyamura, Naohiro; Eto, Yuzuru

    2010-01-08

    By human sensory analyses, we found that various extracellular calcium-sensing receptor (CaSR) agonists enhance sweet, salty, and umami tastes, although they have no taste themselves. These characteristics are known as "kokumi taste" and often appear in traditional Japanese cuisine. Although GSH is a typical kokumi taste substance (taste enhancer), its mode of action is poorly understood. Here, we demonstrate how the kokumi taste is enhanced by the CaSR, a close relative of the class C G-protein-coupled receptors T1R1, T1R2, and T1R3 (sweet and umami receptors). We identified a large number of CaSR agonist gamma-glutamyl peptides, including GSH (gamma-Glu-Cys-Gly) and gamma-Glu-Val-Gly, and showed that these peptides elicit the kokumi taste. Further analyses revealed that some known CaSR agonists such as Ca(2+), protamine, polylysine, L-histidine, and cinacalcet (a calcium-mimetic drug) also elicit the kokumi taste and that the CaSR-specific antagonist, NPS-2143, significantly suppresses the kokumi taste. This is the first report indicating a distinct function of the CaSR in human taste perception.

  13. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan;

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  14. Role of receptor activity modifying protein 1 in function of the calcium sensing receptor in the human TT thyroid carcinoma cell line.

    Directory of Open Access Journals (Sweden)

    Aditya J Desai

    Full Text Available The Calcium Sensing Receptor (CaSR plays a role in calcium homeostasis by sensing minute changes in serum Ca(2+ and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs, specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has

  15. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis.

    Science.gov (United States)

    Yuste, R; Majewska, A; Cash, S S; Denk, W

    1999-03-15

    Dendritic spines receive most excitatory inputs in the vertebrate brain, but their function is still poorly understood. Using two-photon calcium imaging of CA1 pyramidal neurons in rat hippocampal slices, we investigated the mechanisms by which calcium enters into individual spines in the stratum radiatum. We find three different pathways for calcium influx: high-threshold voltage-sensitive calcium channels, NMDA receptors, and an APV-resistant influx consistent with calcium-permeable AMPA or kainate receptors. These pathways vary among different populations of spines and are engaged under different stimulation conditions, with peak calcium concentrations reaching >10 microM. Furthermore, as a result of the biophysical properties of the NMDA receptor, the calcium dynamics of spines are exquisitely sensitive to the temporal coincidence of the input and output of the neuron. Our results confirm that individual spines are chemical compartments that can perform coincidence detection. Finally, we demonstrate that functional studies and optical quantal analysis of single, identified synapses is feasible in mammalian CNS neurons in brain slices.

  16. Expression of histamine receptors in the human endolymphatic sac

    DEFF Research Database (Denmark)

    Møller, M Nue; Kirkeby, S; Vikeså, J.

    2016-01-01

    in 2012. This leaves betahistine (Betaserc) as the only drug for potential prevention of the incapacitating attacks of dizziness, tinnitus and hearing loss. However, the histamine receptors targeted by betahistine have never been demonstrated in the human ES. Accordingly, this study aims to investigate...... the expression of histamine receptors of the human ES epithelium and sub-epithelial stroma. Following sampling of human endolymphatic sac tissue during translabyrinthine surgery, the expression of histamine receptor genes was determined by cDNA microarray analysis. Results were subsequently verified by immuno......-histochemistry. The combined results of microarrays and immuno-histochemistry showed expression of the histamine receptor HRH1 in the epithelial lining of the ES, whereas HRH3 was expressed exclusively in the sub-epithelial capillary network. Receptors HRH2 and -4 were not expressed. The present data provide the first direct...

  17. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2016-12-15

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  18. Isolation and characterization of calcium sensing receptor null cells: a highly malignant and drug resistant phenotype of colon cancer.

    Science.gov (United States)

    Singh, Navneet; Liu, Guangming; Chakrabarty, Subhas

    2013-05-01

    The expression of calcium sensing receptor (CaSR) in the human colonic crypt epithelium is linked to cellular differentiation while its lack of expression is associated with undifferentiated and invasive colon carcinoma. Human colon carcinoma cell lines contain small subpopulations (10-20%) that do not express CaSR (termed CaSR null cells). Here, we report on the isolation, propagation, maintenance and characterization of CaSR null cells from the CBS and HCT116 human colon carcinoma cell lines. CaSR null cells grew as three-dimensional non-adherent spherical clusters with increased propensity for anchorage independent growth, cellular proliferation and invasion of matrigels. CaSR null cells were highly resistant to fluorouracil and expressed abundant amount of thymidylate synthase and survivin. Molecular profiling by real time reverse transcription-polymerase chain reaction (RT-PCR) and Western blots showed a high level of expression of the previously reported cancer stem cell markers CD133, CD44 and Nanog in CaSR null cells. A significant increase in the expression of epithelial-mesenchymal transitional molecules and transcription factors was also observed. These include N-cadherin, β-catenin, vimentin, fibronectin, Snail1, Snail2, Twist and FOXC2. The expression of the tumor suppressive E-cadherin and miR145, on the other hand, was greatly reduced while expression of the oncogenic microRNAs: miR21, miR135a and miR135b was significantly up-regulated. CaSR null cells possess a myriad of cellular and molecular features that drive and sustain the malignant phenotype. We conclude that CaSR null constitutes a highly malignant and drug resistant phenotype of colon cancer.

  19. Steroid hormone regulation of the voltage-gated, calcium-activated potassium channel expression in developing muscular and neural systems.

    Science.gov (United States)

    Garrison, Sheldon L; Witten, Jane L

    2010-11-01

    A precise organization of gene expression is required for developing neural and muscular systems. Steroid hormones can control the expression of genes that are critical for development. In this study we test the hypothesis that the steroid hormone ecdysone regulates gene expression of the voltage-gated calcium-activated potassium ion channel, Slowpoke or KCNMA1. Late in adult development of the tobacco hawkmoth Manduca sexta, slowpoke (msslo) levels increased contributing to the maturation of the dorsal longitudinal flight muscles (DLMs) and CNS. We show that critical components of ecdysteroid gene regulation were present during upreglation of msslo in late adult DLM and CNS development. Ecdysteroid receptor complex heterodimeric partner proteins, the ecdysteroid receptor (EcR) and ultraspiracle (USP), and the ecdysone-induced early gene, msE75B, were expressed at key developmental time points, suggesting that ecdysteroids direct aspects of gene expression in the DLMs during these late developmental stages. We provide evidence that ecdysteroids suppress msslo transcription in the DLMs; when titers decline msslo transcript levels increase. These results are consistent with msslo being a downstream gene in an ecdysteroid-mediated gene cascade during DLM development. We also show that the ecdysteroids regulate msslo transcript levels in the developing CNS. These results will contribute to our understanding of how the spatiotemporal regulation of slowpoke transcription contributes to tailoring cell excitability to the differing physiological and behavioral demands during development.

  20. The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release*

    Science.gov (United States)

    Hedgepeth, Serena C.; Garcia, M. Iveth; Wagner, Larry E.; Rodriguez, Ana M.; Chintapalli, Sree V.; Snyder, Russell R.; Hankins, Gary D. V.; Henderson, Beric R.; Brodie, Kirsty M.; Yule, David I.; van Rossum, Damian B.; Boehning, Darren

    2015-01-01

    The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. PMID:25645916

  1. Structural mechanism of ligand activation in human calcium-sensing receptor

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P.; Brennan, Sarah C.; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X.; Cao, Baohua; Chang, Donald D.; Quick, Matthias; Conigrave, Arthur D.; Colecraft, Henry M.; McDonald, Patricia; Fan, Qing R.

    2016-07-19

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+and PO43-ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ions stabilize the active state, PO43-ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.

  2. Exploring the Potential of Transient Receptor Potential: Troubleshooting Troublesome Calcium Thoroughfares in Biomedicine

    Directory of Open Access Journals (Sweden)

    Ammad Ahmad Farooqi

    2010-12-01

    Full Text Available Transient Receptor Potential-Canonical (TRPC channels are the border guards residing in the supra-molecular assembly of plasma membrane. TRPCs represent a family of channels that have dual functions of store-operated and second messenger-operated channels in a diversity of cell types. Any disruption in the spatio-temporal organization drastically influences the calcium homeostasis. This review summarizes current interpretations on the infrastructure and characteristic divalent ions regulation in molecular anomalies. A specific targeting of these channels will enable us to get a step closer to personalized medicines.

  3. Differential expression of genes involved in the calcium homeostasis in masticatory muscles of MDX mice.

    Science.gov (United States)

    Kunert-Keil, C H; Gredes, T; Lucke, S; Botzenhart, U; Dominiak, M; Gedrange, T

    2014-04-01

    Duchenne Muscular Dystrophy (DMD) and its murine model, mdx, are characterized by Ca(2+) induced muscle damage and muscle weakness followed by distorted dentofacial morphology. In both, DMD patients and in mdx mice, could be proven so far that only the extraocular muscles (EOM) are not affected by muscular dystrophy. The EOMs are protected against calcium overload by enhanced expression of genes involved in the Ca(2+) homeostasis. We could recently demonstrate that masticatory muscles of mdx mice are differentially affected by muscle dystrophy. The dystrophic masseter and temporalis shows muscle histology comparable to all other skeletal muscles in this animal model, whereas dystrophic tongue muscles seem to develop a milder phenotype. Due to this fact it is to hypothesize that an altered Ca(2+) homeostasis seems to underlie the mdx masticatory muscle pathology. Aim of this study was to examine the mRNA and protein levels of the sarcoplasmic reticulum Ca(2+) ATPases SERCA1 and SERCA2, the plasma membrane Ca(2+) ATPases Atp2b1 and Atp2b4, the sodium/calcium exchanger NCX1, the ryanodine receptor 1, parvalbumin, sarcolipin, phospholamban and the L-type Ca(2+) channel alpha-1 subunit (Cacna1s) in Musculus masseter, temporalis, and tongue of 100 day old control and mdx mice. In mdx masseter muscle significant increased mRNA levels of NCX1 and Cacna1s were found compared to control mice. In contrast, the mRNA amount of RYR1 was significant reduced in mdx temporalis muscle, whereas ATP2b4 was significant increased. In mdx tongue a down-regulation of the ATP2b1, sarcolipin and parvalbumin mRNA expression was found, whereas the phospholamban mRNA level was significantly increased compared to controls. These data were verified by western blot analyses. Our findings revealed that mdx masticatory muscles showed an unequally altered expression of genes involved in the Ca(2+) homeostasis that can support the differences in masticatory muscles response to dystrophin deficiency.

  4. Vergleichende Studie zur Expression von Neuropeptiden und von Calcium-bindenden Proteinen im Hippocampus von BDNF Knock-out Mäusen und den entsprechenden Wildtyp Geschwistertieren

    OpenAIRE

    Herrmann-Schwartzkopff, Katharina Helene

    2010-01-01

    Brain derived neurotrophic factor (BDNF) is well known for its positive effects on survival, development and differentiation of neurons in the central nervous system. It exerts its action through binding to its high (TrkB) and low (p75) affinity receptors. This work examines the expression of neuropeptides and calcium-binding proteins in the hippocampus of BDNF knockout mice (BDNF -/-) and their corresponding wild type littermates. With the use of highly specific antibodies the hippoca...

  5. Developmental expression of calcium transport proteins in extraembryonic membranes of oviparous and viviparous Zootoca vivipara (Lacertilia, Lacertidae).

    Science.gov (United States)

    Stewart, James R; Ecay, Tom W; Heulin, Benoit; Fregoso, Santiago P; Linville, Brent J

    2011-09-15

    The eggshell of oviparous lizards is a significant source of calcium for embryos, whereas the eggshell of viviparous lizards, when present, contains little calcium. In view of the potential cost to embryonic nutrition occasioned by the loss of eggshell calcium, the large number of independent origins of viviparity among lizards is surprising. Concomitant evolution of viviparity and calcium placentotrophy would ameliorate the loss of eggshell calcium, but a mechanism linking these events has yet to be discovered. Zootoca vivipara, a lizard with geographic variation in its mode of parity, is an excellent model for studying mechanisms of calcium transport to oviparous and viviparous embryos because each is highly dependent on calcium secreted by the uterus (eggshell or placenta) and ontogenetic patterns of embryonic calcium mobilization are similar. We compared developmental expression of the calcium transport protein calbindin-D(28K) in yolk splanchnopleure and chorioallantoic membranes of oviparous and viviparous embryos to test the hypothesis that the mechanism of calcium transport does not differ between modes of parity. We found that the ontogenetic pattern of protein expression is similar between reproductive modes and is correlated with calcium uptake from yolk and either eggshell or placenta. Calbindin-D(28K) is localized in the chorionic epithelium of embryos of both reproductive modes. These findings suggest that the embryonic calcium transport machinery is conserved in the transition between reproductive modes and that an adaptation of oviparous embryos for calcium uptake from eggshells functions similarly to transport calcium directly from uterine secretions.

  6. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor, a calcium release channel, through non-enzymatic posttranslational modification by nitric oxide

    Directory of Open Access Journals (Sweden)

    Sho eKakizawa

    2013-10-01

    Full Text Available Nitric oxide (NO is a typical gaseous messenger involved in a wide range of biological processes. In our classical knowledge, effects of NO are largely achieved by activation of soluble guanylyl cyclase to form cyclic guanosine-3’, 5’-monophosphate. However, emerging evidences have suggested another signaling mechanism mediated by NO: S-nitrosylation of target proteins.S-nitrosylation is a covalent addition of an NO group to a cysteine thiol/sulfhydryl (RSH, and categorized into non-enzymatic posttranslational modification of proteins, contrasted to enzymatic posttranslational modification of proteins, such as phosphorylation mediated by various protein kinases.Very recently, we found novel intracellular calcium (Ca2+ mobilizing mechanism, NO-induced Ca2+ release (NICR in cerebellar Purkinje cells. NICR is mediated by type 1 ryanodine receptor (RyR1, a Ca2+ release channel expressed in endoplasmic-reticular membrane. Furthermore, NICR is indicated to be dependent on S-nitrosylation of RyR1, and involved in synaptic plasticity in the cerebellum. In this review, molecular mechanisms and functional significance of NICR, as well as non-enzymatic posttranslational modification of proteins by gaseous signals, are described.

  7. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins

    DEFF Research Database (Denmark)

    Hsu, Yu-Juei; Dimke, Henrik Anthony; Schoeber, Joost P H

    2010-01-01

    . Androgen deficiency increased the abundance of the renal mRNA and protein of both the luminal transient receptor potential vanilloid-subtype 5 (TRPV5) and intracellular calbindin-D(28K) transporters, which in turn were suppressed by testosterone treatment. There were no significant differences in serum...

  8. Expression of Transient Receptor Potential Vanilloid (TRPV Channels in Different Passages of Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Richard Barrett-Jolley

    2012-04-01

    Full Text Available Ion channels play important roles in chondrocyte mechanotransduction. The transient receptor potential vanilloid (TRPV subfamily of ion channels consists of six members. TRPV1-4 are temperature sensitive calcium-permeable, relatively non-selective cation channels whereas TRPV5 and TRPV6 show high selectivity for calcium over other cations. In this study we investigated the effect of time in culture and passage number on the expression of TRPV4, TRPV5 and TRPV6 in articular chondrocytes isolated from equine metacarpophalangeal joints. Polyclonal antibodies raised against TRPV4, TRPV5 and TRPV6 were used to compare the expression of these channels in lysates from first expansion chondrocytes (P0 and cells from passages 1–3 (P1, P2 and P3 by western blotting. TRPV4, TRPV5 and TRPV6 were expressed in all passages examined. Immunohistochemistry and immunofluorescence confirmed the presence of these channels in sections of formalin fixed articular cartilage and monolayer cultures of methanol fixed P2 chondrocytes. TRPV5 and TRPV6 were upregulated with time and passage in culture suggesting that a shift in the phenotype of the cells in monolayer culture alters the expression of these channels. In conclusion, several TRPV channels are likely to be involved in calcium signaling and homeostasis in chondrocytes.

  9. Expression of the endocannabinoid receptors in human fascial tissue

    Directory of Open Access Journals (Sweden)

    C. Fede

    2016-06-01

    Full Text Available Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1 and CB2 (cannabinoid receptor 2 in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation.

  10. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora;

    2012-01-01

    Activation of the NLRP3 inflammasome enables monocytes and macrophages to release high levels of interleukin-1ß during inflammatory responses. Concentrations of extracellular calcium can increase at sites of infection, inflammation or cell activation. Here we show that increased extracellular cal......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  11. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  12. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  13. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  14. Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes.

    Science.gov (United States)

    Devi, Sulochana; Markandeya, Yogananda; Maddodi, Nityanand; Dhingra, Anuradha; Vardi, Noga; Balijepalli, Ravi C; Setaluri, Vijayasaradhi

    2013-05-01

    Mutations in TRPM1, a calcium channel expressed in retinal bipolar cells and epidermal melanocytes, cause complete congenital stationary night blindness with no discernible skin phenotype. In the retina, TRPM1 activity is negatively coupled to metabotropic glutamate receptor 6 (mGluR6) signaling through Gαo and TRPM1 mutations result in the loss of responsiveness of TRPM1 to mGluR6 signaling. Here, we show that human melanocytes express mGluR6, and treatment of melanocytes with L-AP4, a type III mGluR-selective agonist, enhances Ca(2+) uptake. Knockdown of TRPM1 or mGluR6 by shRNA abolished L-AP4-induced Ca(2+) influx and TRPM1 currents, showing that TRPM1 activity in melanocytes is positively coupled to mGluR6 signaling. Gαo protein is absent in melanocytes. However, forced expression of Gαo restored negative coupling of TRPM1 to mGluR6 signaling, but treatment with pertussis toxin, an inhibitor of Gi /Go proteins, did not affect basal or mGluR6-induced Ca(2+) uptake. Additionally, chronic stimulation of mGluR6 altered melanocyte morphology and increased melanin content. These data suggest differences in coupling of TRPM1 function to mGluR6 signaling explain different cellular responses to glutamate in the retina and the skin.

  15. T-type calcium channel expression in cultured human neuroblastoma cells

    Institute of Scientific and Technical Information of China (English)

    Xianjie Wen; Shiyuan Xu; Lingling Wang; Hua Liang; Chengxiang Yang; Hanbing Wang; Hongzhen Liu

    2011-01-01

    Human neuroblastoma cells (SH-SY5Y) have similar structures and functions as neural cells and have been frequently used for cell culture studies of neural cell functions. Previous studies have revealed Land N-type calcium channels in SH-SY5Y cells. However, the distribution of the low -voltage activated calcium channel (namely called T-type calcium channel, including Cav3.1, Cav3.2, and Cav3.3) in SH-SY5Y cells remains poorly understood. The present study detected mRNA and protein expression of the T-type calcium channel (Cav3.1, Cav3.2, and Cav3.3) in cultured SH-SY5Y cells using real-time polymerase chain reaction (PCR) and western blot analysis. Results revealed mRNA and protein expression from all three T-type calcium channel subtypes in SH-SY5Y cells. Moreover,Cav3.1 was the predominant T-type calcium channel subtype in SH-SY5Y cells.

  16. Domain architecture of a calcium-permeable AMPA receptor in a ligand-free conformation

    Directory of Open Access Journals (Sweden)

    Charles R. Midgett

    2012-01-01

    Full Text Available Ligand-gated ion channels couple the free energy of agonist binding to the gating of selective transmembrane ion pores, permitting cells to regulate ion flux in response to external chemical stimuli. However, the stereochemical mechanisms responsible for this coupling remain obscure. In the case of the ionotropic glutamate receptors (iGluRs, the modular nature of receptor subunits has facilitated structural analysis of the N-terminal domain (NTD, and of multiple conformations of the ligand-binding domain (LBD. Recently, the crystallographic structure of an antagonist-bound form of the receptor was determined. However, disulfide trapping of this conformation blocks channel opening, suggesting that channel activation involves additional quaternary packing arrangements. To explore the conformational space available to iGluR channels, we report here a second, clearly distinct domain architecture of homotetrameric, calcium-permeable AMPARs, determined by single-particle electron microscopy of untagged and fluorescently tagged constructs in a ligand-free state. It reveals a novel packing of NTD dimers, and a separation of LBD dimers across a central vestibule. In this arrangement, which reconciles diverse functional observations, agonist-induced cleft closure across LBD dimers can be converted into a twisting motion that provides a basis for receptor activation.

  17. Formaldehyde increases intracellular calcium concentration in primary cultured hippocampal neurons partly through NMDA receptors and T-type calcium channels

    Institute of Scientific and Technical Information of China (English)

    Ye-Nan Chi; Xu Zhang; Jie Cai; Feng-Yu Liu; Guo-Gang Xing; You Wan

    2012-01-01

    Objective Formaldehyde at high concentrations is a contributor to air pollution.It is also an endogenous metabolic product in cells,and when beyond physiological concentrations,has pathological effects on neurons.Formaldehyde induces mis-folding and aggregation of neuronal tau protein,hippocampal neuronal apoptosis,cognitive impairment and loss of memory functions,as well as excitation of peripheral nociceptive neurons in cancer pain models.Intracellular calcium ([Ca2+]i) is an important intracellular messenger,and plays a key role in many pathological processes.The present study aimed to investigate the effect of formaldehyde on [Ca2+]i and the possible involvement of N-methyl-D-aspartate receptors (NMDARs) and T-type Ca2+ channels on the cell membrane.Methods Using primary cultured hippocampal neurons as a model,changes of [Ca2+]i in the presence of formaldehyde at a low concentration were detected by confocal laser scanning microscopy.Results Formaldehyde at 1 mmol/L approximately doubled [Ca2+]i.(2R)-amino-5-phosphonopentanoate (AP5,25 μtmol/L,an NMDAR antagonist) and mibefradil (MIB,1 μtmol/L,a T-type Ca2+ channel blocker),given 5 min after formaldehyde perfusion,each partly inhibited the formaldehyde-induced increase of [Ca2+]i,and this inhibitory effect was reinforced by combined application of AP5 and MIB.When applied 3 min before formaldehyde perfusion,AP5 (even at 50 μmol/L) did not inhibit the formaldehyde-induced increase of [Ca2+]i,but MIB (1 μmol/L) significantly inhibited this increase by 70%.Conclusion These results suggest that formaldehyde at a low concentration increases [Ca2+]i in cultured hippocampal neurons; NMDARs and T-type Ca2+ channels may be involved in this process.

  18. Uterine and placental expression of TRPV6 gene is regulated via progesterone receptor- or estrogen receptor-mediated pathways during pregnancy in rodents

    Directory of Open Access Journals (Sweden)

    Choi Kyung-Chul

    2009-05-01

    Full Text Available Abstract Transient receptor potential cation channel, subfamily V, member 6 (TRPV6 is an epithelial Ca2+ channel protein expressed in calcium absorbing organs. In the present study, we investigated the expression and regulation of uterine and placental TRPV6 during gestation in rodents. Uterine TRPV6 peaked at pregnancy day (P 0.5, P5.5 and, P13.5 and was detected in uterine epithelium and glands of rats, while placental TRPV6 mRNA levels increased in mid-gestation. Uterine and placental TRPV6 mRNA levels in rats appear to cyclically change during pregnancy, suggesting that TRPV6 may participate in the implantation process. In addition, uterine TRPV6 mRNA is only expressed in placenta-unattached areas of the uterus, and uterine TRPV6 immunoreactivity was observed in luminal and glandular epithelial cells. In the placenta, TRPV6 was detected in the labyrinth and spongy zone. These results may indicate that TRPV6 has at least two functions: implantation of the embryo and maintenance of pregnancy. To investigate the pathway(s mediating TRPV6 expression in rodents, anti-steroid hormone antagonists were injected prior to maximal TRPV6 expression. In rats, TRPV6 expression was reduced by RU486 (an anti-progesterone through progesterone receptors, and ICI 182,780 (an anti-estrogen blocked TRPV6 expression via estrogen receptors in mice. The juxtaposition of uterine and placental TRPV6 expressed in these tissues supports the notion that TRPV6 participates in transferring calcium ions between the maternal and fetal compartments. Taken together, TRPV6 gene may function as a key element in controlling calcium transport in the uterus between the embryo and the placenta during pregnancy.

  19. [Pharmacological characteristics of drugs targeted on calcium-sensing receptor.-properties of cinacalcet hydrochloride as allosteric modulator].

    Science.gov (United States)

    Nagano, Nobuo; Tsutsui, Takaaki

    2016-06-01

    Calcimimetics act as positive allosteric modulators of the calcium-sensing receptor (CaSR), thereby decreasing parathyroid hormone (PTH) secretion from the parathyroid glands. On the other hand, negative allosteric modulators of the CaSR with stimulatory effect on PTH secretion are termed calcilytics. The calcimimetic cinacalcet hydrochloride (cinacalcet) is the world's first allosteric modulator of G protein-coupled receptor to enter the clinical market. Cinacalcet just tunes the physiological effects of Ca(2+), an endogenous ligand, therefore, shows high selectivity and low side effects. Calcimimetics also increase cell surface CaSR expression by acting as pharmacological chaperones (pharmacoperones). It is considered that the cinacalcet-induced upper gastrointestinal problems are resulted from enhanced physiological responses to Ca(2+) and amino acids via increased sensitivity of digestive tract CaSR by cinacalcet. While clinical developments of calcilytics for osteoporosis were unfortunately halted or terminated due to paucity of efficacy, it is expected that calcilytics may be useful for the treatment of patients with activating CaSR mutations, asthma, and idiopathic pulmonary artery hypertension.

  20. Regulation of gonadotropin receptor gene expression

    NARCIS (Netherlands)

    A.P.N. Themmen (Axel); R. Kraaij (Robert); J.A. Grootegoed (Anton)

    1994-01-01

    textabstractThe receptors for the gonadotropins differ from the other G protein-coupled receptors by having a large extracellular hormone-binding domain, encoded by nine or ten exons. Alternative splicing of the large pre-mRNA of approximately 100 kb can result in mRNA species that encode truncated

  1. Human olfactory receptors: recombinant expression in the baculovirus/Sf9 insect cell system, functional characterization, and odorant identification.

    Science.gov (United States)

    Matarazzo, Valéry; Ronin, Catherine

    2013-01-01

    Cell surface expression of recombinant olfactory receptors (ORs) is a major limitation in characterizing their functional nature. We have shown that the recombinant expression of a human OR, OR 17-210, in the baculovirus/Sf9 insect cell system allows this protein to be expressed at the cell surface. We used Ca(2+) imaging to demonstrate that recombinant OR 17-210 produces cellular activities upon odorant stimulation with ketones. Furthermore, this expression and functional system has been used to show that the preincubation of Human Odorant Binding Protein 2A decrease the calcium response of OR 17-210 following stimulation by acetophenone and beta ionone.

  2. Naegleria fowleri amoebae express a membrane-associated calcium-independent phospholipase A(2).

    Science.gov (United States)

    Barbour, S E; Marciano-Cabral, F

    2001-02-26

    Naegleria fowleri, a free-living amoeba, is the causative agent of primary amoebic meningoencephalitis. Previous reports have demonstrated that N. fowleri expresses one or more forms of phospholipase A(2) (PLA(2)) and that a secreted form of this enzyme is involved in pathogenesis. However, the molecular nature of these phospholipases remains largely unknown. This study was initiated to determine whether N. fowleri expresses analogs of the well-characterized PLA(2)s that are expressed by mammalian macrophages. Amoeba cell homogenates contain a PLA(2) activity that hydrolyzes the substrate that is preferred by the 85 kDa calcium-dependent cytosolic PLA(2), cPLA(2). However, unlike the cPLA(2) enzyme in macrophages, this activity is largely calcium-independent, is constitutively associated with membranes and shows only a modest preference for phospholipids that contain arachidonate. The amoeba PLA(2) activity is sensitive to inhibitors that block the activities of cPLA(2)-alpha and the 80 kDa calcium-independent PLA(2), iPLA(2), that are expressed by mammalian cells. One of these compounds, methylarachidonyl fluorophosphonate, partially inhibits the constitutive release of [(3)H]arachidonic acid from pre-labeled amoebae. Together, these data suggest that N. fowleri expresses a constitutively active calcium-independent PLA(2) that may play a role in the basal phospholipid metabolism of these cells.

  3. Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan.

    Science.gov (United States)

    Pokinko, Matthew; Grant, Alanna; Shahabi, Florence; Dumont, Yvan; Manitt, Colleen; Flores, Cecilia

    2017-03-27

    Adolescence is a period during which the medial prefrontal cortex (mPFC) undergoes significant remodeling. The netrin-1 receptor, deleted in colorectal cancer (DCC), controls the extent and organization of mPFC dopamine connectivity during adolescence and in turn directs mPFC functional and structural maturation. Dcc haploinsufficiency leads to increased mPFC dopamine input, which causes improved cognitive processing and resilience to behavioral effects of stimulant drugs of abuse. Here we examine the effects of Dcc haploinsufficiency on the dynamic expression of dopamine receptors in forebrain targets of C57BL6 mice. We conducted quantitative receptor autoradiography experiments with [(3)H]SCH-23390 or [(3)H]raclopride to characterize D1 and D2 receptor expression in mPFC and striatal regions in male Dcc haploinsufficient and wild-type mice. We generated autoradiograms at early adolescence (PND21±1), mid-adolescence (PND35±2), and adulthood (PND75±15). C57BL6 mice exhibit overexpression and pruning of D1, but not D2, receptors in striatal regions, and a lack of dopamine receptor pruning in the mPFC. We observed age- and region-specific differences in D1 and D2 receptor density between Dcc haploinsufficient and wild-type mice. Notably, neither group shows the typical pattern of mPFC dopamine receptor pruning in adolescence, but adult haploinsufficient mice show increased D2 receptor density in the mPFC. These results show that DCC receptors contribute to the dynamic refinement of D1 and D2 receptor expression in striatal regions across adolescence. The age-dependent expression of dopamine receptor in C57BL6 mice shows marked differences from previous characterizations in rats.

  4. Bone mass and breast milk calcium concentration are associated with vitamin D receptor gene polymorphisms in adolescent mothers.

    Science.gov (United States)

    Bezerra, Flávia F; Cabello, Giselda M K; Mendonça, Laura M C; Donangelo, Carmen M

    2008-02-01

    Lactation-associated bone loss has been reported in adolescent mothers. Polymorphisms in the vitamin D receptor (VDR) gene may contribute to differences in the physiologic skeletal response to lactation in these mothers. We evaluated the influence of VDR gene polymorphisms ApaI, BsmI, and TaqI on bone mass, bone and calcium-related hormones, and breast milk calcium of lactating adolescents with habitually low calcium intake. Total body bone mineral content (TBMC), total body bone mineral density (TBMD), lumbar spine BMD (LSBMD), serum hormones [intact parathyroid hormone (iPTH), 25-hydroxyvitamin D, insulin-like growth factor-I (IGF1), prolactin, and estradiol), and breast milk calcium were measured in 40 lactating Brazilian adolescents (15-18 y), and compared by VDR genotype subgroups after adjustment for calcium intake and postmenarcheal and lactational periods. TBMD and LSBMD Z scores were -0.55 +/- 1.01 and -1.15 +/- 1.48, respectively. LSBMD was higher (21%; P milk calcium and serum iPTH were higher (24 and 80%, respectively; P milk calcium are significantly associated with VDR genotypes in lactating Brazilian adolescents. Those with aa and tt genotypes had a better bone status and those with bb genotype had greater breast milk calcium.

  5. VSNL1 Co-expression networks in aging include calcium signaling, synaptic plasticity, and Alzheimer’s disease pathways

    Directory of Open Access Journals (Sweden)

    C W Lin

    2015-03-01

    Full Text Available The Visinin-like 1 (VSNL1 gene encodes Visinin-like protein 1, a peripheral biomarker for Alzheimer disease (AD. Little is known, however, about normal VSNL1 expression in brain and the biologic networks in which it participates. Frontal cortex gray matter from 209 subjects without neurodegenerative or psychiatric illness, ranging in age from 16–91, were processed on Affymetrix GeneChip 1.1 ST and Human SNP Array 6.0. VSNL1 expression was unaffected by age and sex, and not significantly associated with SNPs in cis or trans. VSNL1 was significantly co-expressed with genes in pathways for Calcium Signaling, AD, Long Term Potentiation, Long Term Depression, and Trafficking of AMPA Receptors. The association with AD was driven, in part, by correlation with amyloid precursor protein (APP expression. These findings provide an unbiased link between VSNL1 and molecular mechanisms of AD, including pathways implicated in synaptic pathology in AD. Whether APP may drive increased VSNL1 expression, VSNL1 drives increased APP expression, or both are downstream of common pathogenic regulators will need to be evaluated in model systems.

  6. Expression and activation of the oxytocin receptor in airway smooth muscle cells: Regulation by TNFα and IL-13

    Directory of Open Access Journals (Sweden)

    Siddiqui Salman

    2010-07-01

    Full Text Available Abstract Background During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma. Method Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL samples from healthy subjects and those with asthma. Results PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL-13 and tumor necrosis factor (TNFα stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL fluid derived from healthy subjects as well as from those with asthma. Conclusion Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a

  7. Purinergic signaling in the cerebellum: Bergmann glial cells express functional ionotropic P2X7 receptors.

    Science.gov (United States)

    Habbas, Samia; Ango, Fabrice; Daniel, Hervé; Galante, Micaela

    2011-12-01

    Astrocytes constitute active networks of intercommunicating cells that support the metabolism and the development of neurons and affect synaptic functions via multiple pathways. ATP is one of the major neurotransmitters mediating signaling between neurons and astrocytes. Potentially acting through both purinergic metabotropic P2Y receptors (P2YRs) and ionotropic P2X receptors (P2XRs), up until now ATP has only been shown to activate P2YRs in Bergmann cells, the radial glia of the cerebellar cortex that envelopes Purkinje cell afferent synapses. In this study, using multiple experimental approaches in acute cerebellar slices we demonstrate the existence of functional P2XRs on Bergmann cells. In particular, we show here that Bergmann cells express uniquely P2X7R subtypes: (i) immunohistochemical analysis revealed the presence of P2X7Rs on Bergmann cell processes, (ii) in whole cell recordings P2XR pharmacological agonists induced depolarizing currents that were blocked by specific antagonists of P2X7Rs, and could not be elicited in slices from P2X₇R-deficient mice and finally, (iii) calcium imaging experiments revealed two distinct calcium signals triggered by application of exogenous ATP: a transient signal deriving from release of calcium from intracellular stores, and a persistent one following activation of P2X7Rs. Our data thus reveal a new pathway by which extracellular ATP may affect glial cell function, thus broadening our knowledge on purinergic signaling in the cerebellum.

  8. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells.

    Science.gov (United States)

    Wang, Yajing; Wang, Zhaoxia; Zhou, Ying; Liu, Liming; Zhao, Yangxing; Yao, Chenjiang; Wang, Lianyun; Qiao, Zhongdong

    2006-02-01

    To evaluate the effect of nicotine on endothelium dysfunction and development of vascular diseases, we investigated the influence on adhesion molecular expression mediated by nicotine and the mechanism of this effect in human umbilical vein endothelial cells (HUVECs). The result showed that nicotine could induce surface/soluble vascular cell adhesion molecule (VCAM-1) and endothelial selectin (E-selectin) expression in a time-response decline manner and the peak appeared at 15 min. This action could be mediated by mitogen-activated protein kinase/extracellular signal regulated kinase 1/2 (MAPK/ERK1/2) and MAPK/p38 because their activation could be distinctly blocked by MAPK inhibitors, PD098059 or SB203580. Mecamylamine (non-selective nicotinic receptor inhibitor), alpha-bungarotoxin (alpha7 nicotinic receptor inhibitor) could block Ca2+ accumulation, and then, prevented the phosphorylation on ERK1/2 and p38. They also inhibited the surface/soluble VCAM-1, E-selectin production of HUVECs modulated by nicotine. Therefore, we concluded that: (i) nicotine obviously up-regulates VCAM-1 and E-selectin expression at 15 min in HUVECs, (ii) nicotine activates HUVECs triggered by the ERK1/2 and p38 phosphorylation with an involvement of intracellular calcium mobilization chiefly mediated by alpha7 nicotinic receptor, (iii) intracellular Ca2+ activates a sequential pathway from alpha7 nicotinic receptor to the phosphorylation of ERK1/2, p38. These elucidate that nicotine activates HUVECs through fast signal transduction pathway and arguments their capacity of adhesion molecular production. Further more nicotine may contribute its influence to the progression of vascular disease such as atherosclerotic lesion.

  9. Review article: loss of the calcium-sensing receptor in colonic epithelium is a key event in the pathogenesis of colon cancer.

    LENUS (Irish Health Repository)

    Rogers, Ailín C

    2012-03-01

    The calcium-sensing receptor (CaSR) is expressed abundantly in normal colonic epithelium and lost in colon cancer, but its exact role on a molecular level and within the carcinogenesis pathway is yet to be described. Epidemiologic studies show that inadequate dietary calcium predisposes to colon cancer; this may be due to the ability of calcium to bind and upregulate the CaSR. Loss of CaSR expression does not seem to be an early event in carcinogenesis; indeed it is associated with late stage, poorly differentiated, chemo-resistant tumors. Induction of CaSR expression in neoplastic colonocytes arrests tumor progression and deems tumors more sensitive to chemotherapy; hence CaSR may be an important target in colon cancer treatment. The CaSR has a complex role in colon cancer; however, more investigation is required on a molecular level to clarify its exact function in carcinogenesis. This review describes the mechanisms by which the CaSR is currently implicated in colon cancer and identifies areas where further study is needed.

  10. High expression of NPY receptors in the human testis.

    Science.gov (United States)

    Körner, Meike; Waser, Beatriche; Thalmann, George N; Reubii, Jean Claude

    2011-04-30

    NPY receptors represent novel molecular therapeutic targets in cancer and obesity. However, the extent of NPY receptor expression in normal human tissues is poorly investigated. Based on the role of NPY in reproductive functions, the NPY receptor expression was studied in 25 normal human testes and, additionally, 24 testicular tumors using NPY receptor autoradiography. In the normal testis, Leydig cells strongly expressed NPY receptor subtype Y2, and small arterial blood vessels Y1. Y2 receptors were found to be functional with agonist-stimulated [(35)S]GTPγS binding autoradiography. Full functional integrity of the NPY system was further suggested by the immunohistochemical detection of NPY peptide in nerve fibers directly adjacent to Leydig cells and arteries. Germ cell tumors expressed Y1 and Y2 on tumor cells in 33% and Y1 on intratumoral blood vessels in 50%. Based on its strong NPY receptor expression in Leydig cells and blood vessels, the normal human testis represents a potentially important physiological and pharmalogical NPY target.

  11. Expression of luteinizing hormone receptors in the mouse penis.

    Science.gov (United States)

    Kokk, Kersti; Kuuslahti, Marianne; Keisala, Tiina; Purmonen, Sami; Kaipia, Antti; Tammela, Teuvo; Orro, Helen; Simovart, Helle-Evi; Pöllänen, Pasi

    2011-01-01

    The role of luteinizing hormone (LH) in the regulation of normal reproductive functions in males and females is quite well established. Besides the expression of LH receptors in the target cells in gonads, it has been found in several extragonadal organs. There is no information about the expression of LH receptors in the penis up to now. The aim of the present study is to investigate the expression of the LH receptor in the mouse penis to see if LH effects are possible in the penis. BALB/c mice were used as donors of normal penis and testis tissue. Immunocytochemistry, Western blotting, and quantitative reverse transcriptase polymerase chain reactions (RT-PCRs) were used for the detection of the LH receptor. Positive immunoreaction for LH receptors was present in the nuclei of urethral epithelium and endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis. Western blotting experiments demonstrated the presence of LH antigen at M(r) = 97.4 and 78 kd. Quantitative RT-PCRs confirmed the expression of LH receptor in the penis. Our results show that LH receptor is expressed in the body of the mouse penis; thus, it may directly regulate functions of penile tissue.

  12. Gene Expression Responses to Mechanical Stimulation of Mesenchymal Stem Cells Seeded on Calcium Phosphate Cement

    Science.gov (United States)

    Gharibi, Borzo; Cama, Giuseppe; Capurro, Marco; Thompson, Ian; Deb, Sanjukta; Di Silvio, Lucy

    2013-01-01

    Introduction The aim of the study reported here was to investigate the molecular responses of human mesenchymal stem cells (MSC) to loading with a model that attempts to closely mimic the physiological mechanical loading of bone, using monetite calcium phosphate (CaP) scaffolds to mimic the biomechanical properties of bone and a bioreactor to induce appropriate load and strain. Methods Human MSCs were seeded onto CaP scaffolds and subjected to a pulsating compressive force of 5.5±4.5 N at a frequency of 0.1 Hz. Early molecular responses to mechanical loading were assessed by microarray and quantitative reverse transcription-polymerase chain reaction and activation of signal transduction cascades was evaluated by western blotting analysis. Results The maximum mechanical strain on cell/scaffolds was calculated at around 0.4%. After 2 h of loading, a total of 100 genes were differentially expressed. The largest cluster of genes activated with 2 h stimulation was the regulator of transcription, and it included FOSB. There were also changes in genes involved in cell cycle and regulation of protein kinase cascades. When cells were rested for 6 h after mechanical stimulation, gene expression returned to normal. Further resting for a total of 22 h induced upregulation of 63 totally distinct genes that were mainly involved in cell surface receptor signal transduction and regulation of metabolic and cell division processes. In addition, the osteogenic transcription factor RUNX-2 was upregulated. Twenty-four hours of persistent loading also markedly induced osterix expression. Mechanical loading resulted in upregulation of Erk1/2 phosphorylation and the gene expression study identified a number of possible genes (SPRY2, RIPK1, SPRED2, SERTAD1, TRIB1, and RAPGEF2) that may regulate this process. Conclusion The results suggest that mechanical loading activates a small number of immediate-early response genes that are mainly associated with transcriptional

  13. Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway.

    Science.gov (United States)

    Tang, Bo; Chow, Jimmy Y C; Dong, Tobias Xiao; Yang, Shi-Ming; Lu, De-Sheng; Carethers, John M; Dong, Hui

    2016-07-10

    The calcium sensing receptor (CaSR) is functionally expressed in normal human pancreases, but its pathological role in pancreatic tumorigenesis is currently unknown. We sought to investigate the role of CaSR in pancreatic cancer (PC) and the underlying molecular mechanisms. We revealed that the expression of CaSR was consistently downregulated in the primary cancer tissues from PC patients, which was correlated with tumor size, differentiation and poor survival of the patients. CaSR activation markedly suppressed pancreatic tumorigenesis in vitro and in vivo likely through the Ca(2+) entry mode of Na(+)/Ca(2+) exchanger 1 (NCX1) to induce Ca(2+) entry into PC cells. Moreover, NCX1-mediated Ca(2+) entry resulted in Ca(2+)-dependent inhibition of β-catenin signaling in PC cells, eventually leading to the inhibition of pancreatic tumorigenesis. Collectively, we demonstrate for the first time that CaSR exerts a suppressive function in pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway. Targeting this specific signaling pathway could be a potential therapeutic strategy for PC.

  14. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells.

    Science.gov (United States)

    Liou, Alice P; Sei, Yoshitatsu; Zhao, Xilin; Feng, Jianying; Lu, Xinping; Thomas, Craig; Pechhold, Susanne; Raybould, Helen E; Wank, Stephen A

    2011-04-01

    The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an L-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of L-phenylalanine (L-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for L-Phe over D-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to L-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of L-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca(2+), evoked an unexpected 20-30% decrease in CCK secretion compared with basal secretion in CaSR(-/-) CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to L-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR.

  15. Inhibition of Receptor Activator of NF-κB Ligand by Denosumab Attenuates Vascular Calcium Deposition in Mice

    Science.gov (United States)

    Helas, Susann; Goettsch, Claudia; Schoppet, Michael; Zeitz, Ute; Hempel, Ute; Morawietz, Henning; Kostenuik, Paul J.; Erben, Reinhold G.; Hofbauer, Lorenz C.

    2009-01-01

    Osteoporosis and vascular calcification frequently coincide. A potential mediator of bone metabolism and vascular homeostasis is the triad cytokine system, which consists of receptor activator of nuclear factor-κB (RANK) ligand (RANKL), its receptor RANK, and the decoy receptor osteoprotegerin. Unopposed RANKL activity in osteoprotegerin-deficient mice resulted in osteoporosis and vascular calcification. We therefore analyzed the effects of RANKL inhibition by denosumab, a human monoclonal antibody against RANKL, on vascular calcium deposition following glucocorticoid exposure. Prednisolone pellets were implanted into human RANKL knock-in (huRANKL-KI) mice, which unlike wild-type mice are responsive to denosumab. No histomorphological abnormalities or differences in aortic wall thickness were detected between wild-type and huRANKL-KI mice, regardless of treatment with prednisolone, denosumab, or both. However, concurrent treatment with denosumab reduced aortic calcium deposition of prednisolone-treated huRANKL-KI mice by up to 50%, based on calcium measurement. Of note, aortic calcium deposition in huRANKL-KI mice was correlated negatively with bone mineral density at the lumbar spine (P = 0.04) and positively with urinary excretion of deoxypyridinoline, a marker of bone resorption (P = 0.01). In summary, RANKL inhibition by denosumab reduced vascular calcium deposition in glucocorticoid-induced osteoporosis in mice, which is further evidence for the link between the bone and vascular systems. Therefore, the prevention of bone loss by denosumab might also be associated with reduced vascular calcification in certain conditions. PMID:19590040

  16. Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice.

    Science.gov (United States)

    Helas, Susann; Goettsch, Claudia; Schoppet, Michael; Zeitz, Ute; Hempel, Ute; Morawietz, Henning; Kostenuik, Paul J; Erben, Reinhold G; Hofbauer, Lorenz C

    2009-08-01

    Osteoporosis and vascular calcification frequently coincide. A potential mediator of bone metabolism and vascular homeostasis is the triad cytokine system, which consists of receptor activator of nuclear factor-kappaB (RANK) ligand (RANKL), its receptor RANK, and the decoy receptor osteoprotegerin. Unopposed RANKL activity in osteoprotegerin-deficient mice resulted in osteoporosis and vascular calcification. We therefore analyzed the effects of RANKL inhibition by denosumab, a human monoclonal antibody against RANKL, on vascular calcium deposition following glucocorticoid exposure. Prednisolone pellets were implanted into human RANKL knock-in (huRANKL-KI) mice, which unlike wild-type mice are responsive to denosumab. No histomorphological abnormalities or differences in aortic wall thickness were detected between wild-type and huRANKL-KI mice, regardless of treatment with prednisolone, denosumab, or both. However, concurrent treatment with denosumab reduced aortic calcium deposition of prednisolone-treated huRANKL-KI mice by up to 50%, based on calcium measurement. Of note, aortic calcium deposition in huRANKL-KI mice was correlated negatively with bone mineral density at the lumbar spine (P = 0.04) and positively with urinary excretion of deoxypyridinoline, a marker of bone resorption (P = 0.01). In summary, RANKL inhibition by denosumab reduced vascular calcium deposition in glucocorticoid-induced osteoporosis in mice, which is further evidence for the link between the bone and vascular systems. Therefore, the prevention of bone loss by denosumab might also be associated with reduced vascular calcification in certain conditions.

  17. NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory.

    Science.gov (United States)

    Mukherjee, Bandhan; Yuan, Qi

    2016-10-14

    The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.

  18. Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia

    Science.gov (United States)

    Ikebara, Juliane Midori; Takada, Silvia Honda; Cardoso, Débora Sterzeck; Dias, Natália Myuki Moralles; de Campos, Beatriz Crossiol Vicente; Bretherick, Talitha Amanda Sanches; Higa, Guilherme Shigueto Vilar; Ferraz, Mariana Sacrini Ayres

    2017-01-01

    Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of

  19. Cloning and expression of the rabbit prostaglandin EP2 receptor

    OpenAIRE

    Guan, Youfei; Stillman, Brett A.; Zhang, Yahua; Schneider, André; Saito, Osamu; Davis, Linda S.; Redha, Reyadh; Breyer, Richard M.; Breyer, Matthew D.

    2002-01-01

    Background Prostaglandin E2 (PGE2) has multiple physiologic roles mediated by G protein coupled receptors designated E-prostanoid, or "EP" receptors. Evidence supports an important role for the EP2 receptor in regulating fertility, vascular tone and renal function. Results The full-length rabbit EP2 receptor cDNA was cloned. The encoded polypeptide contains 361 amino acid residues with seven hydrophobic domains. COS-1 cells expressing the cloned rabbit EP2 exhibited specific [3H]PGE2 binding ...

  20. Duodenal calcium transporter mRNA expression in stressed male rats treated with diazepam, fluoxetine, reboxetine, or venlafaxine.

    Science.gov (United States)

    Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Lapmanee, Sarawut; Krishnamra, Nateetip; Charoenphandhu, Jantarima

    2012-10-01

    Chronic stress has been reported to decrease bone density and intestinal calcium absorption, but its underlying mechanism remains elusive. Since long-term exposure to glucocorticoids, major stress hormones from adrenal gland, is known to downregulate the mRNA expression of intestinal calcium transporter TRPV6, the present study aimed to demonstrate whether decreases in mRNA expressions of duodenal calcium transporter genes were observed in male rats subjected to restraint stress for 4 weeks. The results from quantitative real-time PCR showed that restraint stress significantly downregulated the mRNA expressions of apical calcium channels (TRPV6 and Ca(v)1.3), cytoplasmic calcium-binding protein (calbindin-D(9k)), and basolateral calcium pump (PMCA(1b)), but not the expression of TRPV5 or NCX1. The mRNA expressions of paracellular genes, ZO-1, occludin, and claudin-3, were not altered by restraint stress. Since several antidepressant or anxiolytic drugs effectively alleviate stress-induced depressive and anxiety symptoms, we further hypothesized that these drugs may also enhance calcium transporter gene expression in stressed rats. As expected, 4-week daily administration of 10 mg/kg fluoxetine, 10 mg/kg reboxetine, or 10 mg/kg venlafaxine differentially increased calcium transporter mRNA expression in stressed rats, whereas 2 mg/kg diazepam had no such effect. It could, therefore, be concluded that 4-week restraint stress downregulated some important calcium transporter mRNA expression in the duodenal epithelial cells of male rats, which could be prevented by oral administration of fluoxetine, reboxetine, and venlafaxine. The present findings may be applied to help alleviate the stress-induced bone loss and osteoporosis by restoring intestinal calcium absorption to provide calcium for bone formation.

  1. 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components.

    Science.gov (United States)

    Lee, Seong Min; Riley, Erin M; Meyer, Mark B; Benkusky, Nancy A; Plum, Lori A; DeLuca, Hector F; Pike, J Wesley

    2015-07-17

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption.

  2. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T;

    2012-01-01

    Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... and sarcolemma. P2Y(4) receptors were present in sarcolemma. P2Y(11) receptors were abundantly and diffusely expressed intracellularly and were more explicitly expressed in type I than in type II fibres, whereas P2X(1) and P2Y(4) showed no fibre-type specificity. Both diabetic patients and healthy controls...... distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells....

  3. Lead Poisoning Disturbs Oligodendrocytes Differentiation Involved in Decreased Expression of NCX3 Inducing Intracellular Calcium Overload

    Directory of Open Access Journals (Sweden)

    Teng Ma

    2015-08-01

    Full Text Available Lead (Pb poisoning has always been a serious health concern, as it permanently damages the central nervous system. Chronic Pb accumulation in the human body disturbs oligodendrocytes (OLs differentiation, resulting in dysmyelination, but the molecular mechanism remains unknown. In this study, Pb at 1 μM inhibits OLs precursor cells (OPCs differentiation via decreasing the expression of Olig 2, CNPase proteins in vitro. Moreover, Pb treatment inhibits the sodium/calcium exchanger 3 (NCX3 mRNA expression, one of the major means of calcium (Ca2+ extrusion at the plasma membrane during OPCs differentiation. Also addition of KB-R7943, NCX3 inhibitor, to simulate Pb toxicity, resulted in decreased myelin basic protein (MBP expression and cell branching. Ca2+ response trace with Pb and KB-R7943 treatment did not drop down in the same recovery time as the control, which elevated intracellular Ca2+ concentration reducing MBP expression. In contrast, over-expression of NCX3 in Pb exposed OPCs displayed significant increase MBP fluorescence signal in positive regions and CNPase expression, which recovered OPCs differentiation to counterbalance Pb toxicity. In conclusion, Pb exposure disturbs OLs differentiation via affecting the function of NCX3 by inducing intracellular calcium overload.

  4. Penta-substituted benzimidazoles as potent antagonists of the calcium-sensing receptor (CaSR-antagonists).

    Science.gov (United States)

    Gerspacher, Marc; Altmann, Eva; Beerli, René; Buhl, Thomas; Endres, Ralf; Gamse, Rainer; Kameni-Tcheudji, Jacques; Kneissel, Michaela; Krawinkler, Karl Heinz; Missbach, Martin; Schmidt, Alfred; Seuwen, Klaus; Weiler, Sven; Widler, Leo

    2010-09-01

    A series of novel benzimidazole derivatives has been designed via a scaffold morphing approach based on known calcilytics chemotypes. Subsequent lead optimisation led to the discovery of penta-substituted benzimidazoles that exhibit attractive in vitro and in vivo calcium-sensing receptor (CaSR) inhibitory profiles. In addition, synthesis and structure-activity relationship data are provided.

  5. Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts.

    Science.gov (United States)

    Certal, Mariana; Vinhas, Adriana; Pinheiro, Ana Rita; Ferreirinha, Fátima; Barros-Barbosa, Aurora Raquel; Silva, Isabel; Costa, Maria Adelina; Correia-de-Sá, Paulo

    2015-11-01

    During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and α-smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca(2+)]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca(2+)]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca(2+) in the extracellular fluid. The biphasic [Ca(2+)]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11 receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca(2+)]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.

  6. Prostaglandin F receptor expression in intrauterine tissues of pregnant rats

    Science.gov (United States)

    Kanca, Halit; Yar, Atiye Seda; Helvacioğlu, Fatma; Menevşe, Sevda; Çalgüner, Engin; Erdoğan, Deniz

    2014-01-01

    In this investigation, we studied the expression and localization of rat prostaglandin F (FP) receptor in uterine tissues of rats on gestational Days 10, 15, 18, 20, 21, 21.5 and postpartal Days 1 and 3 using Western blotting analysis, real-time PCR, and immunohistochemistry. A high level of immunoreactivity was observed on gestational Days 20, 21, and 21.5 with the most significant signals found on Day 20. FP receptor protein was expressed starting on gestational Day 15, and a fluctuating unsteady increase was observed until delivery. Uterine FP receptor mRNA levels were low between Days 10 and 18 of gestation (p < 0.05). The transcript level increased significantly on Day 20 and peaked on Day 21.5 just before labor (p < 0.05). There was a positive correlation between FP receptor mRNA expression and serum estradiol levels (rs = 0.78; p < 0.01) along with serum estradiol/progesterone ratios (rs = 0.79; p < 0.01). In summary, we observed an increase FP receptor expression in rat uterus with advancing gestation, a marked elevation of expression at term, and a concominant decrease during the postpartum period. These findings indicate a role for uterine FP receptors in the mediation of uterine contractility at term. PMID:24136214

  7. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  8. Endurance Exercise Training Reduces Cardiac Sodium/Calcium Exchanger Expression in Animals Susceptible to Ventricular Fibrillation

    Directory of Open Access Journals (Sweden)

    Monica eKukielka

    2011-02-01

    Full Text Available Aim: Increased sodium/calcium exchanger activity (NCX1, an important regulator of cardiomyocyte cystolic calcium may provoke arrhythmias. Exercise training can decrease NCX1 expression in animals with heart failure improving cytosolic calcium regulation, and could thereby reduce the risk for ventricular fibrillation (VF. Methods: To test this hypothesis, a 2-min coronary occlusion was made during the last min. of exercise in dogs with healed myocardial infarctions; 23 had VF (S, susceptible and 13 did not (R, resistant. The animals were randomly assigned to either 10-wk exercise training (progressively increasing treadmill running (S n = 9; R n = 8 or 10-wk sedentary (S n = 14; R n = 5 groups. At the end of the 10-wk period, the exercise + ischemia test provoked VF in sedentary but not trained susceptible dogs. On a subsequent day, cardiac tissue was harvested and NCX1 protein expression was determined by Western blot. Results: In the sedentary group, NCX1 expression was significantly (ANOVA, P<0.05 higher in susceptible compared to resistant dogs. In contrast, NCX1 levels were similar in the exercise trained resistant and susceptible animals. Conclusion: These data suggest that exercise training can restore a more normal NCX1 level in dogs susceptible to ventricular fibrillation, improving cystolic calcium regulation and could thereby reduce the risk for sudden death following myocardial infarction.

  9. Beta-adrenergic receptors are differentially expressed in distinct interneuron subtypes in the rat hippocampus.

    Science.gov (United States)

    Cox, David J; Racca, Claudia; LeBeau, Fiona E N

    2008-08-20

    Noradrenaline (NA) acting via beta-adrenergic receptors (betaARs) plays an important role in the modulation of memory in the hippocampus. betaARs have been shown to be expressed in principal cells, but their distribution across different interneuron classes is unknown. We have used specific interneuron markers including calcium binding proteins (parvalbumin, calbindin, and calretinin) and neuropeptides (somatostatin, neuropeptide Y, and cholecystokinin) together with either beta1AR or beta2AR to determine the distribution of these receptors in all major subfields of the hippocampus. We found that beta1AR-expressing interneurons were more prevalent in the CA3 and CA1 regions of the hippocampus than in the dentate gyrus, where they were relatively sparse. beta2AR-expressing interneurons were more uniformly distributed between all three regions of the hippocampus. A high proportion of neuropeptide Y-containing interneurons in the dentate gyrus co-expressed beta2AR. beta1AR labeling was common in interneurons expressing somatostatin and parvalbumin in the CA3 and CA1 regions, particularly in the stratum oriens of these regions. beta2AR labeling was more likely to be found than beta1AR labeling in cholecystokinin-expressing interneurons. In contrast, calretinin-containing interneurons were virtually devoid of beta1AR or beta2AR labeling. These regional and interneuron type-specific differences suggest functionally distinct roles for NA in modulating hippocampal activity via activation of betaARs.

  10. Intestinal mucosal changes and upregulated calcium transporter and FGF-23 expression during lactation: Contribution of lactogenic hormone prolactin.

    Science.gov (United States)

    Wongdee, Kannikar; Teerapornpuntakit, Jarinthorn; Sripong, Chanakarn; Longkunan, Asma; Chankamngoen, Wasutorn; Keadsai, Chutiya; Kraidith, Kamonshanok; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2016-01-15

    As the principal lactogenic hormone, prolactin (PRL) not only induces lactogenesis but also enhances intestinal calcium absorption to supply calcium for milk production. How the intestinal epithelium res-ponses to PRL is poorly understood, but it is hypothesized to increase mucosal absorptive surface area and calcium transporter expression. Herein, lactating rats were found to have greater duodenal, jejunal and ileal villous heights as well as cecal crypt depths than age-matched nulliparous rats. Morphometric analyses in the duodenum and cecum showed that their mucosal adaptations were diminished by bromocriptine, an inhibitor of pituitary PRL release. PRL also upregulated calcium transporter expression (e.g., TRPV6 and PMCA1b) in the duodenum of lactating rats. Since excessive calcium absorption could be detrimental to lactating rats, local negative regulator of calcium absorption, e.g., fibroblast growth factor (FGF)-23, should be increased. Immunohistochemistry confirmed the upregulation of FGF-23 protein expression in the duodenal and cecal mucosae of lactating rats, consistent with the enhanced FGF-23 mRNA expression in Caco-2 cells. Bromocriptine abolished this lactation-induced FGF-23 expression. Additionally, FGF-23 could negate PRL-stimulated calcium transport across Caco-2 monolayer. In conclusion, PRL was responsible for the lactation-induced mucosal adaptations, which were associated with compensatory increase in FGF-23 expression probably to prevent calcium hyperabsorption.

  11. Vascular endothelial growth factor receptor-3 expression in mycosis fungoides

    DEFF Research Database (Denmark)

    Pedersen, Ida Holst; Willerslev-Olsen, Andreas; Vetter-Kauczok, Claudia;

    2012-01-01

    Here, we have studied vascular endothelial growth factor receptor-3 (VEGFR-3) expression in mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma (CTCL). Immunohistochemistry revealed that in two-thirds of 34 patients, VEGFR-3 was expressed in situ by both tumor and stromal...

  12. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  13. Inhibition of potassium and calcium currents in neurones by molecularly-defined P2Y receptors.

    Science.gov (United States)

    Brown, D A; Filippov, A K; Barnard, E A

    2000-07-01

    Messenger RNAs and cDNAs for individual cloned P2Y(1), P2Y2 and P2Y(6) nucleotide receptors have been expressed by micro-injection into dissociated rat superior cervical sympathetic neurones and the effects of stimulating the expressed receptors on voltage-activated N-type Ca(2+) currents and M-type K(+) currents recorded. Both currents were reduced by stimulating all three receptors, with the following mean IC(50) values: P2Y(1) (agonist: ADP) - I(K(M)) 6.9 nM, I(Ca) 8.2 nM; P2Y(2) (agonist: UTP) - I(K(M)) 1.5 microM, I(Ca) 0.5 microM; P2Y(6) (agonist: UDP) - I(K(M)) 30 nM, I(Ca) 5.9 nM. Inhibition of I(K(M)) was voltage-independent and insensitive to Pertussis toxin; inhibition of I(Ca) showed both voltage-sensitive and insensitive, and Pertussis toxin-sensitive and insensitive components. It is concluded that these P2Y receptors can couple to more than one G protein and thereby modulate more than one ion channel. It is suggested that these effects on K(M) and Ca(N) channels may induce both postsynaptic excitory and presynaptic inhibitory responses.

  14. Purinergic receptors have different effects in rat exocrine pancreas. Calcium signals monitored by fura-2 using confocal microscopy

    DEFF Research Database (Denmark)

    Novak, Ivana; Nitschke, Roland; Amstrup, Jan

    2002-01-01

    Pancreatic ducts have several types of purinergic P2 receptors, however, nothing is known about P2 receptors in acini. The aim was to establish whether acini express functional P2 receptors coupled to intracellular Ca2+ signals and to measure the signals ratiometrically in a confocal laser scanni...

  15. Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion.

    Science.gov (United States)

    Rubí, Blanca; Ljubicic, Sanda; Pournourmohammadi, Shirin; Carobbio, Stefania; Armanet, Mathieu; Bartley, Clarissa; Maechler, Pierre

    2005-11-04

    Dopamine signaling is mediated by five cloned receptors, grouped into D1-like (D1 and D5) and D2-like (D2, D3 and D4) families. We identified by reverse transcription-PCR the presence of dopamine receptors from both families in INS-1E insulin-secreting cells as well as in rodent and human isolated islets. D2 receptor expression was confirmed by immunodetection revealing localization on insulin secretory granules of INS-1E and primary rodent and human beta cells. We then tested potential effects mediated by the identified receptors on beta cell function. Dopamine (10 microM) and the D2-like receptor agonist quinpirole (5 microM) inhibited glucose-stimulated insulin secretion tested in several models, i.e. INS-1E beta cells, fluorescence-activated cell-sorted primary rat beta cells, and pancreatic islets of rat, mouse, and human origin. Insulin exocytosis is controlled by metabolism coupled to cytosolic calcium changes. Measurements of glucose-induced mitochondrial hyperpolarization and ATP generation showed that dopamine and D2-like agonists did not inhibit glucose metabolism. On the other hand, dopamine decreased cell membrane depolarization as well as cytosolic calcium increases evoked by glucose stimulation in INS-1E beta cells. These results show for the first time that dopamine receptors are expressed in pancreatic beta cells. Dopamine inhibited glucose-stimulated insulin secretion, an effect that could be ascribed to D2-like receptors. Regarding the molecular mechanisms implicated in dopamine-mediated inhibition of insulin release, our results point to distal steps in metabolism-secretion coupling. Thus, the role played by dopamine in glucose homeostasis might involve dopamine receptors, expressed in pancreatic beta cells, modulating insulin release.

  16. Regulation of fibrinogen receptor expression on human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Shattil, S.J.; Motulsky, H.J.; Insel, P.A.; Brass, L.F.

    1986-03-01

    Platelet aggregation requires the binding of fibrinogen to specific receptors on the plasma membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The authors have developed a monoclonal anti-IIb-IIIa antibody (PAC-1) that binds only to stimulated platelets and only in the presence of Ca. In order to better understand the steps leading to platelet aggregation, the authors used radiolabeled PAC-1 and fibrinogen to examine the effect of the ..cap alpha../sub 2/-adrenergic agonist, epinephrine, on the expression and function of the fibrinogen receptor. The addition of epinephrine to unstirred platelets caused and immediate increase in PAC-1 and fibrinogen binding that was associated with platelet aggregation once the platelets were stirred. Even after prolonged incubation of the platelets with epinephrine, fibrinogen receptor expression could be reversed by adding EGTA, PGl/sub 2/, or the ..cap alpha../sub 2/-adrenergic antagonist, phentolamine. When unstirred platelets were exposed to epinephrine for more than 10 min, the extent of aggregation caused by subsequent stirring was decreased by 70%. Surprisingly, these desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due to a decrease in fibrinogen receptor expression or function. These studies demonstrate that: (1) fibrinogen receptor expression is dependent on extracellular CA; (2) induction of the fibrinogen receptor by epinephrine requires the continued presence of the agonist; and (3) prolonged stimulation of the platelet by epinephrine can lead to a reduced aggregation response by a mechanism that does not involve a loss of either fibrinogen recepor expression or fibrinogen binding.

  17. Calcium Channel Expression and Applicability as Targeted Therapies in Melanoma

    Directory of Open Access Journals (Sweden)

    A. Macià

    2015-01-01

    Full Text Available The remodeling of Ca2+ signaling is a common finding in cancer pathophysiology serving the purpose of facilitating proliferation, migration, or survival of cancer cells subjected to stressful conditions. One particular facet of these adaptive changes is the alteration of Ca2+ fluxes through the plasma membrane, as described in several studies. In this review, we summarize the current knowledge about the expression of different Ca2+ channels in the plasma membrane of melanoma cells and its impact on oncogenic Ca2+ signaling. In the last few years, new molecular components of Ca2+ influx pathways have been identified in melanoma cells. In addition, new links between Ca2+ homeostasis and specific cell processes important in melanoma tumor progression have been unveiled. Thus, not only do Ca2+ channels appear to have a potential as prognostic markers, but their pharmacological blockade or gene silencing is hinted as interesting therapeutic approaches.

  18. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    Science.gov (United States)

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  19. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D;

    1990-01-01

    antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  20. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    Science.gov (United States)

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  1. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells.

    Science.gov (United States)

    Singh, Nisha; Chakraborty, Raja; Bhullar, Rajinder Pal; Chelikani, Prashen

    2014-04-04

    The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40-70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.

  2. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how and why?

    Directory of Open Access Journals (Sweden)

    Marina E Wolf

    2012-06-01

    Full Text Available In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs in two brain regions that are critical for motivation and reward - the ventral tegmental area (VTA and the nucleus accumbens (NAc. This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs. This plasticity is rapid (hours, GluA2-dependent, and can be observed with a single cocaine injection. In addition to strengthening synapses and altering Ca2+ signaling, CP-AMPAR insertion affects subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased dopamine cell activity that occurs during early withdrawal from cocaine exposure. Within the VTA, the group I metabotropic glutamate receptor mGluR1 exerts a negative influence on CP-AMPAR accumulation. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as a treatment for cocaine addiction.

  3. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect...... immunogold labelling using a monoclonal antibody specific for phenylalkylamine and dihydropyridine sensitive Ca2+ channels. Using the same technique and a monoclonal antibody (bd-17) to the beta 2/beta 3-subunit of the GABAA-receptor, double labelling of Ca2+ channels and GABAA-receptors with gold particles...... of THIP-treated cultures. This suggests that primarily low affinity GABAA-receptors are closely associated with Ca2+ channels and this may be important for the ability of these receptors to mediate an inhibitory action on transmitter release even under extreme depolarizing conditions....

  4. Cholera Toxin Inhibits the T-Cell Antigen Receptor-Mediated Increases in Inositol Trisphosphate and Cytoplasmic Free Calcium

    Science.gov (United States)

    Imboden, John B.; Shoback, Dolores M.; Pattison, Gregory; Stobo, John D.

    1986-08-01

    The addition of monoclonal antibodies to the antigen receptor complex on the malignant human T-cell line Jurkat generates increases in inositol trisphosphate and in the concentration of cytoplasmic free calcium. Exposure of Jurkat cells to cholera toxin for 3 hr inhibited these receptor-mediated events and led to a selective, partial loss of the antigen receptor complex from the cellular surface. None of the effects of cholera toxin on the antigen receptor complex were mimicked by the B subunit of cholera toxin or by increasing intracellular cAMP levels with either forskolin or 8-bromo cAMP. These results suggest that a cholera toxin substrate can regulate signal transduction by the T-cell antigen receptor.

  5. Expression of AT2 receptors in the developing rat fetus.

    OpenAIRE

    Grady, E F; Sechi, L. A.; Griffin, C A; Schambelan, M.; Kalinyak, J E

    1991-01-01

    Angiotensin II is known primarily for its effects on blood pressure and electrolyte homeostasis, but recent studies suggest that angiotensin II may play a role in the regulation of cellular growth. This study was undertaken to identify the angiotensin II receptor subtypes expressed during fetal and neonatal development and to characterize their cellular localization. Using an in situ receptor binding assay on sagittal frozen sections of fetal and neonatal rats, bound 125I-[Sar1,Ile8]-angioten...

  6. Elevation of extracellular Ca2+ induces store-operated calcium entry via calcium-sensing receptors: a pathway contributes to the proliferation of osteoblasts.

    Directory of Open Access Journals (Sweden)

    Fen Hu

    Full Text Available AIMS: The local concentration of extracellular Ca(2+ ([Ca(2+]o in bone microenvironment is accumulated during bone remodeling. In the present study we investigated whether elevating [Ca(2+]o induced store-operated calcium entry (SOCE in primary rat calvarial osteoblasts and further examined the contribution of elevating [Ca(2+]o to osteoblastic proliferation. METHODS: Cytosolic Ca(2+ concentration ([Ca(2+]c of primary cultured rat osteoblasts was detected by fluorescence imaging using calcium-sensitive probe fura-2/AM. Osteoblastic proliferation was estimated by cell counting, MTS assay and ATP assay. Agonists and antagonists of calcium-sensing receptors (CaSR as well as inhibitors of phospholipase C (PLC, SOCE and voltage-gated calcium (Cav channels were applied to study the mechanism in detail. RESULTS: Our data showed that elevating [Ca(2+]o evoked a sustained increase of [Ca(2+]c in a dose-dependent manner. This [Ca(2+]c increase was blocked by TMB-8 (Ca(2+ release inhibitor, 2-APB and BTP-2 (both SOCE blockers, respectively, whereas not affected by Cav channels blockers nifedipine and verapamil. Furthermore, NPS2143 (a CaSR antagonist or U73122 (a PLC inhibitor strongly reduced the [Ca(2+]o-induced [Ca(2+]c increase. The similar responses were observed when cells were stimulated with CaSR agonist spermine. These data indicated that elevating [Ca(2+]o resulted in SOCE depending on the activation of CaSR and PLC in osteoblasts. In addition, high [Ca(2+]o significantly promoted osteoblastic proliferation, which was notably reversed by BAPTA-AM (an intracellular calcium chelator, 2-APB, BTP-2, TMB-8, NPS2143 and U73122, respectively, but not affected by Cav channels antagonists. CONCLUSIONS: Elevating [Ca(2+]o induced SOCE by triggering the activation of CaSR and PLC. This process was involved in osteoblastic proliferation induced by high level of extracellular Ca(2+ concentration.

  7. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  8. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed...... whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays...

  9. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne;

    2015-01-01

    BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival...... in epithelial ovarian cancer. METHODS: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer...... in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer....

  10. Cytoplasmic calcium measurement in rotavirus enterotoxin-enhanced green fluorescent protein (NSP4-EGFP) expressing cells loaded with Fura-2.

    Science.gov (United States)

    Berkova, Z; Morris, A P; Estes, M K

    2003-07-01

    The green fluorescent protein (GFP) and its analogs are standard markers of protein expression and intracellular localization of proteins. The fluorescent properties of GFP complicate accurate measurement of intracellular calcium using calcium sensitive fluorophores, which show a great degree of spectral overlap with GFP, or their K(d) values are too high for accurate measurement of subtle changes in cytoplasmic calcium concentrations. Here we describe a simple modification of the standard microscope-based Fura-2 calcium-imaging technique which permits the quantitative measurement of intracellular calcium levels in cells expressing enhanced green fluorescent protein (EGFP) fusion proteins. Longpass emission filtering of the Fura-2 signal in cells expressing an EGFP fusion protein is sufficient to eliminate the EGFP-Fura-2 emission spectra overlap and allows quantitative calibration of intracellular calcium. To validate this technique, we investigated the ability of rotavirus enterotoxin NSP4-EGFP to elevate intracellular calcium levels in mammalian HEK 293 cells. We show here that inducible intracellular expression of NSP4-EGFP fusion protein elevates basal intracellular calcium more than two-fold by a phospholipase C (PLC) independent mechanism.

  11. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  12. GABA-A receptor inhibition of local calcium signaling in spines and dendrites.

    Science.gov (United States)

    Marlin, Joseph J; Carter, Adam G

    2014-11-26

    Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these interneurons to inhibit Ca(2+) signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-photon microscopy, GABA uncaging and optogenetics to study dendritic inhibition at layer 5 (L5) pyramidal neurons in slices of mouse PFC. We first show that GABA-A receptors strongly inhibit action potential (AP)-evoked Ca(2+) signals at both spines and dendrites. We find robust inhibition over tens of milliseconds that spreads along the dendritic branch. However, we observe no difference in the amount of inhibition at neighboring spines and dendrites. We then examine the influence of interneurons expressing parvalbumin (PV), somatostatin (SOM), or 5HT3a receptors. We determine that these populations of interneurons make unique contacts onto the apical and basal dendrites of L5 pyramidal neurons. We also show that SOM and 5HT3a but not PV interneurons potently inhibit AP Ca(2+) signals via GABA-A receptors at both spines and dendrites. These findings reveal how multiple interneurons regulate local Ca(2+) signaling in pyramidal neurons, with implications for cortical function and disease.

  13. Heterologous Expression of Rat Testis GABAA Receptor β3t Splicing Variant in CHO Cells

    Institute of Scientific and Technical Information of China (English)

    Shi-feng LI; Yu-guang CHEN; Yuan-chang YAN; Yi-ping LI

    2004-01-01

    Objective To characterize a possible retention function of unique sequence in the 5'end of rat testis GABAA receptor β3t splicing variantMethods Rat testis GABAA receptor β3t splicing variant cDNA was cloned and two eukaryotic expression recombinant plasmids of pEGFP-N1 and pEGFP-C1 were constructed respectively by fusing green fluorescent protein to the N or C-terminus of β3t isoform. The recombinant plasmids were transfected into CHO cells by calcium phosphate co-precipitation method. Fluorescence microscope and laser confocal microscope were used to analyze localization of β3t in the transfected cells. ConA-Texas-Red was used to label cell ER and the localization of rat testis β3t splicing variant in CHO cells was determined.Results When rat testis β3t splicing variant was expressed in CHO cells, two expression patterns were delineated, the distributions of uniform and mainly discrete intracellular compartments respectively. The chimera product failed to be translocated into the cell surface when expressed in CHO cells; whereas the β3 subunit of rat brain was incorporated into the plasma membrane.Conclusion The inability of β3t to target into the ER may be a consequence of the unique 25 specific amino acid segments in the N terminus.

  14. Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Ramachandran, Rithwik; Mihara, Koichiro; Mathur, Maneesh; Rochdi, Moulay Driss; Bouvier, Michel; Defea, Kathryn; Hollenberg, Morley D

    2009-10-01

    We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR(2)) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR(2) and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR(2)-Leu(37)Ser(38), rPAR(2)-Ala(37-38), and rPAR(2)-Ala(39-42) were compared with the trypsin-revealed wild-type rPAR(2) TL sequence, S(37)LIGRL(42)-. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR(2) and rPAR(2)-Ala(39-42) triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR(2)-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR(2)-Ala(37-38) nor rPAR(2)-Leu(37)Ser(38) constructs recruited beta-arrestins-1 or -2 in response to trypsin stimulation, whereas both beta-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered beta-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Galpha(i) (pertussis toxin), Galpha(q) [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the

  15. Modulation of intracellular calcium mobilization and GABAergic currents through subtype-specific metabotropic glutamate receptors in neonatal rat hippocampus.

    Science.gov (United States)

    Taketo, M; Matsuda, H

    2010-01-15

    Group I metabotropic glutamate receptors (mGluRs) are coupled to phosphoinositide hydrolysis, and are thought to modulate neuronal excitability, by mobilizing intracellular Ca(2+). Difference in Ca(2+) mobilization among subclasses of the receptors has been reported, and regarded as a possible cause of variant neuronal modifications. In hippocampal interneurons, several subclasses of mGluRs including mGluR1 and mGluR5 have been immunohistochemically identified. The subclass-specific physiological effects of mGluRs on neuronal transmission in hippocampus, however, have not been fully elucidated. In the present study, effects of group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (DHPG) on intracellular calcium concentration were examined in hippocampal interneurons. Application of DHPG increased fluorescence ratio in neonatal CA3 stratum oriens/alveus interneurons. The DHPG-induced calcium mobilization was markedly inhibited by mGluR1-specific antagonist, cyclopropan[b]chromen-1a-carboxylate (CPCCOEt). Inhibition of the calcium elevation by mGluR5-specific antagonist, 6-methyl-2-(phenylazo)-3-pyrindol (MPEP), was weaker than that of CPCCOEt. The fluorescence ratio was not significantly changed by application of mGluR5-specific agonist, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG). DHPG induced calcium responses in CA1 interneurons as in CA3, and the responses were partially inhibited by MPEP treatment. Effects of group I mGluR agonist and antagonist were also investigated, on GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in CA3 pyramidal neurons. The GABAergic sIPSCs were facilitated by DHPG perfusion, and the potentiation was reduced by CPCCOEt, and less distinctly by MPEP. The sIPSCs were not significantly potentiated by CHPG application. These results indicate that mGluR1 is functional in hippocampal interneurons, and DHPG exerts its effect mainly through this receptor at early developmental period.

  16. Genes involved in Drosophila glutamate receptor expression and localization

    Directory of Open Access Journals (Sweden)

    Featherstone David E

    2005-06-01

    Full Text Available Abstract Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the

  17. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  18. A novel mutation in the calcium-sensing receptor gene in an Irish pedigree showing familial hypocalciuric hypercalcemia: a case report.

    LENUS (Irish Health Repository)

    Elamin, Wael F

    2010-01-01

    Familial hypocalciuric hypercalcemia is a rare autosomal dominant disorder characterized by asymptomatic and non-progressive hypercalcemia due to mutations of the calcium-sensing receptor gene. Disorders of calcium metabolism are very common in the elderly, and they can coexist with familial hypocalciuric hypercalcemia in affected families.

  19. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    Science.gov (United States)

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  20. Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells.

    Science.gov (United States)

    Ewald, Andrea; Helmschrott, Kerstin; Knebl, Georg; Mehrban, Nazia; Grover, Liam M; Gbureck, Uwe

    2011-02-01

    Bone loss due to accidents or tissue diseases requires replacement of the structure by either autografts, allografts, or artificial materials. Reactive cements, which are based on calcium phosphate chemistry, are commonly used in nonload bearing areas such as the craniofacial region. Some of these materials are resorbed by the host under physiological conditions and replaced by bone. The aim of this study was to test different calcium and magnesium cement composites in vitro for their use as bone substitution material. Phase composition of calcium deficient hydroxyapatite (Ca(9) (PO(4) )(5) HPO(4) OH), brushite (CaHPO(4) ·2H(2) O), and struvite (MgNH(4) PO(4) ·6H(2) O) specimens has been determined by means of X-ray diffraction, and compressive strength was measured. Cell growth and activity of osteoblastic cells (MG 63) on the different surfaces was determined, and the expression of bone marker proteins was analyzed by western blotting. Cell activity normalized to cell number revealed higher activity of the osteoblasts on brushite and struvite when compared to hydroxyapatite and also the expression of osteoblastic marker proteins was highest on brushite scaffolds. While brushite sets under acidic conditions, formation of struvite occurs under physiological pH, similar to hydroxyapatite cements, providing the possibility of additional modifications with proteins or other active components.

  1. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Meyer Rebecca C

    2010-05-01

    Full Text Available Abstract Background Excitatory amino acid release and subsequent biochemical cascades following traumatic brain injury (TBI have been well documented, especially glutamate-related excitotoxicity. The effects of TBI on the essential functions of inhibitory GABA-A receptors, however, are poorly understood. Methods We used Western blot procedures to test whether in vivo TBI in rat altered the protein expression of hippocampal GABA-A receptor subunits α1, α2, α3, α5, β3, and γ2 at 3 h, 6 h, 24 h, and 7 days post-injuy. We then used pre-injury injections of MK-801 to block calcium influx through the NMDA receptor, diltiazem to block L-type voltage-gated calcium influx, or diazepam to enhance chloride conductance, and re-examined the protein expressions of α1, α2, α3, and γ2, all of which were altered by TBI in the first study and all of which are important constituents in benzodiazepine-sensitive GABA-A receptors. Results Western blot analysis revealed no injury-induced alterations in protein expression for GABA-A receptor α2 or α5 subunits at any time point post-injury. Significant time-dependent changes in α1, α3, β3, and γ2 protein expression. The pattern of alterations to GABA-A subunits was nearly identical after diltiazem and diazepam treatment, and MK-801 normalized expression of all subunits 24 hours post-TBI. Conclusions These studies are the first to demonstrate that GABA-A receptor subunit expression is altered by TBI in vivo, and these alterations may be driven by calcium-mediated cascades in hippocampal neurons. Changes in GABA-A receptors in the hippocampus after TBI may have far-reaching consequences considering their essential importance in maintaining inhibitory balance and their extensive impact on neuronal function.

  2. [Bone and Nutrition. Vitamin D independent calcium absorption].

    Science.gov (United States)

    Masuyama, Ritsuko

    2015-07-01

    Vitamin D endocrine system is required for normal calcium and bone homeostasis. Trans-epithelial calcium absorption is initiated with calcium entry into the intestinal epithelial cells from luminal fluid through calcium permeable channels, and those expressions are strongly supported by vitamin D action. On the other hands, dietary treatment, mineral supplementation or restriction, successfully improves intestinal calcium absorption in global vitamin D receptor knock-out (VDR KO) mice, though vitamin D dependent active transport pathway is lacking. Dietary rescue of intestinal calcium absorption provided a positive calcium balance in this mouse model, and suggested that the major role of vitamin D function on calcium homeostasis was considered to be intestinal active absorption. To elucidate the entire process of intestinal calcium absorption, vitamin D independent calcium transport system was characterized into either trans-cellular or para-cellular process.

  3. Expression of estrogen and progesterone receptors in papillary thyroid carcinoma

    Science.gov (United States)

    Jalali-Nadoushan, Mohammad-Reza; Amirtouri, Reza; Davati, Ali; Askari, Samaneh; Siadati, Sepideh

    2016-01-01

    Background: Papillary thyroid carcinoma (PTC), occurs mostly in women and sex hormones may play a role in the pathogenesis and clinical course. The objective of this study was to determine the status and prevalence of estrogen and progesterone receptors in PTC with regard to age, gender, tumor size and lymph node involvement. Methods: Immunohistochemical stains were performed on 92 tissue blocks of PTC for estrogen receptor (ER) and progesterone receptor (PR) expression in tumor cells. Chi-square test and Mann-Whitney U test were used to determine statistical difference using statistical software SPSS. Results: The mean age of patients was 39.32±1.7 years (range 13-80) with 79(85.9%) women and 13 (14.1%) men. Lymph node involvement was seen in 76.1% of patients. The average tumor size was 3.6±2.21 cm. The rate of ER and PR expression were 46.75% and 5.6%, respectively. ER expression for females was higher than males (P=0.014), but no relation was found between males and females in PR expression (P=0.7). Also there was no statistical difference between ER and PR expression with respect to age, lymph node involvement and tumor size. Conclusion: Our study showed higher ER expression in females than males with PTC. No relation was found between the expression of these receptors and age of presentation, lymph node involvement and tumor size. Further investigation is required to determine the prognostic importance of ER and PR in PTC.

  4. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells

    OpenAIRE

    Basu, Sreyashi; Srivastava, Pramod

    2005-01-01

    Capsaicin (CP), the pungent component of chili pepper, acts on sensory neurons to convey the sensation of pain. The CP receptor, vanilloid receptor 1 (VR1), has been shown to be highly expressed by nociceptive neurons in dorsal root and trigeminal ganglia. We demonstrate here that the dendritic cell (DC), a key cell type of the vertebrate immune system, expresses VR1. Engagement of VR1 on immature DCs such as by treatment with CP leads to maturation of DCs as measured by up-regulation of anti...

  5. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  6. Expression of serotonin receptors in human lower esophageal sphincter

    OpenAIRE

    Li, He-Fei; Liu, Jun-Feng; Zhang, Ke; Feng, Yong

    2014-01-01

    Serotonin (5-HT) is a neurotransmitter and vasoactive amine that is involved in the regulation of a large number of physiological functions. The wide variety of 5-HT-mediated functions is due to the existence of different classes of serotonergic receptors in the mammalian gastrointestinal tract and nervous system. The aim of this study was to explore the expression of multiple types of 5-HT receptor (5-HT1AR, 5-HT2AR, 5-HT3AR, 5-HT4R, 5-HT5AR, 5-HT6R and 5-HT7R) in sling and clasp fibers from...

  7. Negative regulation of gamma-aminobutyric acid type A receptor on free calcium ion levels following facial nerve injury

    Institute of Scientific and Technical Information of China (English)

    Fugao Zhu; Dawei Sun; Yanqing Wang; Rui Zhou; Junfeng Wen; Xiuming Wan; Yanjun Wang; Banghua Liu

    2010-01-01

    Previous studies have demonstrated that muscarinic, and nicotinic receptors increase free Ca2+ levels in the facial nerve nucleus via various channels following facial nerve injury. However, intracellular Ca2+ overload can trigger either necrotic or apoptotic cell death. Gamma-aminobutyric acid (GABA), an important inhibitory neurotransmitter in the central nervous system, exists in the facial nerve nucleus. It is assumed that GABA negatively regulates free Ca2+ levels in the facial nerve nucleus. The present study investigated GABA type A (GABAA) receptor expression in the facial nerve nucleus in a rat model of facial nerve injury using immunohistochemistry and laser confocal microscopy, as well as the regulatory effects of GABAA receptor on nicotinic receptor response following facial nerve injury. Subunits α1, α3, α5, β1, β2, δ, and γ3 of GABAA receptors were expressed in the facial nerve nucleus following facial nerve injury. In addition, GABAA receptor expression significantly inhibited the increase in nicotinic receptor-mediated free Ca2+ levels in the facial nerve nucleus following facial nerve injury in a concentration-dependent fashion. These results suggest that GABAA receptors exhibit negative effects on nicotinic receptor responses following facial nerve injury.

  8. APPLICATION OF WESTERN BLOTTING TECHNIQUE FOR EVALUATING THE EXPRESSION OF VASOPRESSIN RECEPTORS IN THE HEART CELLS; IMPORTANCE IN THE CARDIOVASCULAR SYSTEM

    Directory of Open Access Journals (Sweden)

    Manoj G Tyagi

    2012-08-01

    Full Text Available Vasopressin, a posterior pituitary hormone is responsible for water reabsorption by the kidneys and maintenance of cardio-vascular homeostasis. Vasopressin receptors are characterized as VR 1 (V1a, VR2 (V2, and VR3 (V1b. VR1, which is abundant in vascular smooth muscles, causes vasoconstriction by increasing intracellular calcium via the phosphatidylinositol bisphosphonate pathway and a positive inotropic effect in cardiac muscle. VR2 has also been shown to be expressed in the heart. There is emerging role for vasopressin receptors in health and disease. This study describes the application of Western blotting to elucidate the importance of vasopressin receptors in the heart cells.

  9. The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse.

    Science.gov (United States)

    Fu, YuHong; Sengul, Gulgun; Paxinos, George; Watson, Charles

    2012-06-19

    We have localized the spinocerebellar neuron groups in C57BL/6J mice by injecting the retrograde neuronal tracer Fluoro-Gold into the cerebellum and examined the distribution of SMI 32 and the calcium-binding proteins (CBPs), calbindin-D-28K (Cb), calretinin (Cr), and parvalbumin (Pv) in the spinal precerebellar nuclei. The spinal precerebellar neuron clusters identified were the dorsal nucleus, central cervical nucleus, lumbar border precerebellar nucleus, lumbar precerebellar nucleus, and sacral precerebellar nucleus. Some dispersed neurons in the deep dorsal horn and spinal laminae 6-8 also projected to the cerebellum. Cb, Cr, Pv, and SMI 32 were present in all major spinal precerebellar nuclei and Pv was the most commonly observed CBP. A number of genes expressed in hindbrain precerebellar nuclei are also expressed in spinal precerebellar groups, but there were some differences in gene expression profile between the different spinal precerebellar nuclei, pointing to functional diversity amongst them.

  10. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    Science.gov (United States)

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  11. Antagonistic Regulation of Parvalbumin Expression and Mitochondrial Calcium Handling Capacity in Renal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Thomas Henzi

    Full Text Available Parvalbumin (PV is a cytosolic Ca2+-binding protein acting as a slow-onset Ca2+ buffer modulating the shape of Ca2+ transients in fast-twitch muscles and a subpopulation of neurons. PV is also expressed in non-excitable cells including distal convoluted tubule (DCT cells of the kidney, where it might act as an intracellular Ca2+ shuttle facilitating transcellular Ca2+ resorption. In excitable cells, upregulation of mitochondria in "PV-ergic" cells in PV-/- mice appears to be a general hallmark, evidenced in fast-twitch muscles and cerebellar Purkinje cells. Using Gene Chip Arrays and qRT-PCR, we identified differentially expressed genes in the DCT of PV-/- mice. With a focus on genes implicated in mitochondrial Ca2+ transport and membrane potential, uncoupling protein 2 (Ucp2, mitocalcin (Efhd1, mitochondrial calcium uptake 1 (Micu1, mitochondrial calcium uniporter (Mcu, mitochondrial calcium uniporter regulator 1 (Mcur1, cytochrome c oxidase subunit 1 (COX1, and ATP synthase subunit β (Atp5b were found to be up-upregulated. At the protein level, COX1 was increased by 31 ± 7%, while ATP-synthase subunit β was unchanged. This suggested that these mitochondria were better suited to uphold the electrochemical potential across the mitochondrial membrane, necessary for mitochondrial Ca2+ uptake. Ectopic expression of PV in PV-negative Madin-Darby canine kidney (MDCK cells decreased COX1 and concomitantly mitochondrial volume, while ATP synthase subunit β levels remained unaffected. Suppression of PV by shRNA in PV-expressing MDCK cells led subsequently to an increase in COX1 expression. The collapsing of the mitochondrial membrane potential by the uncoupler CCCP occurred at lower concentrations in PV-expressing MDCK cells than in control cells. In support, a reduction of the relative mitochondrial mass was observed in PV-expressing MDCK cells. Deregulation of the cytoplasmic Ca2+ buffer PV in kidney cells was counterbalanced in vivo and in vitro

  12. Regulation of neuronal gene expression and survival by basal NMDA receptor activity: a role for histone deacetylase 4.

    Science.gov (United States)

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora; Sheng, Morgan; Kaminker, Joshua S

    2014-11-12

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity.

  13. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster

    Science.gov (United States)

    Cheung, Samantha K.

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation. PMID:28362856

  14. Cloning, expression, and functional analysis of human dopamine D1 receptors

    Institute of Scientific and Technical Information of China (English)

    Wan-chun SUN; Lei JIN; Yan CAO; Li-zhen WANG; Fan MENG; Xing-zu ZHU

    2005-01-01

    Aim: To construct an HEK293 cell line stably expressing human dopamine D1 receptor (D1R). Methods: cDNA was amplified by RT-PCR using total RNA from human embryo brain tissue as the template. The PCR products were subcloned into the plasmid pcDNA3 and cloned into the plasmid pcDNA3.1. The cloned D1R cDNA was sequenced and stably expressed in HEK293 cells. Expression of D1R in HEK293 cells was monitored by the [3H]SCH23390 binding assay. The function of D1R was studied by the cAMP accumulation assay, CRE-SEAP reporter gene activity assay, and intracellular calcium assay. Results: An HEK293 cell line stably expressing human D1R was obtained. A saturation radioligand binding experiment with [3H]SCH23390 demonstrated that the Kd and Bmax values were 1.5±0.2 nmol/L and 2.94±0.15 nmol/g of protein, respectively. In the[3H]SCH23390 competition assay, D1R agonist SKF38393 displaced[3H]SCH23390 with an IC50 value of 2.0 (1.5-2.8) μmol/L. SKF38393 increased the intracellular cAMP level and CRE-SEAP activity through D1R expressed in HEK293 cells in a concentration-dependent manner with an EC50 value of 0.25(0.12-0.53) μmol/L and 0.39 (0.27-0.57) μmol/L at 6 h/0.59 (0.22-1.58) μmol/L at 12 h, respectively. SKF38393 also increased the intracellular calcium level in a concentration-dependent manner with EC50 value of 27 (8.6-70) nmol/L.Conclusion: An HEK293 cell line stably expressing human D1R was obtained successfuly. The study also demonstrated that the CRE-SEAP activity assay could be substituted for the cAMP accumulation assay for measuring increase in cAMP levels. Thus, both intracellular calcium measurements and the CRE-SEAP activity assay are suitable for high-throughput screening in drug research.

  15. Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma

    Directory of Open Access Journals (Sweden)

    John Davies

    2012-01-01

    Full Text Available Canine osteosarcoma (OS is an aggressive malignant bone tumor. Prognosis is primarily determined by clinical parameters. Vitamin D has been postulated as a novel therapeutic option for many malignancies. Upon activation, vitamin D receptors (VDRs combine with retinoid receptor (RXR forming a heterodimer initiating a cascade of events. Vitamin D's antineoplastic activity and its mechanism of action in OS remain to be clearly established. Expression of VDR, RXR, Ki-67, survivin, and ezrin was studied in 33 archived, canine OS specimens. VDR, RXR, survivin, and ezrin were expressed in the majority of cases. There was no statistically significant difference in VDR expression in relationship with tumor grade, type, or locations or animal breed, age, and/or sex. No significant association (p=0.316 between tumor grade and Ki-67 expression was found; in particular, no difference in Ki-67 expression between grades 2 and 3 OSs was found, while a negative correlation was noted between Ki-67 and VDR expression (ρ=−0.466, a positive correlation between survivin and RXR expression was found (p=0.374. A significant relationship exists between VDR and RXR expression in OSs and proliferative/apoptosis markers. These results establish a foundation for elucidating mechanisms by which vitamin D induces antineoplastic activity in OS.

  16. Induction of renal senescence marker protein-30 (SMP30) expression by testosterone and its contribution to urinary calcium absorption in male rats

    Science.gov (United States)

    Lin, Po-Han; Jian, Cai-Yun; Chou, Jou-Chun; Chen, Chien-Wei; Chen, Chih-Chieh; Soong, Christina; Hu, Sindy; Lieu, Fu-Kong; Wang, Paulus S.; Wang, Shyi-Wu

    2016-01-01

    The aim of this study was to investigate the involvement of androgen, mainly testosterone, in the expression of renal senescence marker protein-30 (SMP30) in male rats. We found that the renal SMP30 expression was up-regulated by endogenous testosterone stimulation during puberty. Interestingly, androgen-deficient orchidectomized (ORX) rats exhibited lower SMP30 mRNA and protein expression in the kidney, and that was restored by testosterone propionate (TP) replacement. Abrogation of androgen receptor (AR) activity by co-treatment with flutamide abolished testosterone-induced SMP30 expression in the kidney as well as in the NRK52E cells. However, SMP30 expression was unaltered in the liver of ORX rats. We also showed a positive correlation between renal SMP30 expression and plasma testosterone level during the aging process. TP-induced SMP30 expression in ovariectomized (OVX) rats was observed and was an evidence to explain the gender difference of SMP30 levels. Immunofluorescence assay showed that renal SMP30 was specifically expressed in the proximal tubular segments of the kidney. The urinary Ca2+ level was increased in both ORX and male aging rats. Taken together, our results indicate a novel role of testosterone in regulating SMP30 expression specifically in the kidney to contribute to urinary calcium absorption. PMID:27553527

  17. Effects of simvastatin on cardiac performance and expression of sarcoplasmic reticular calcium regulatory proteins in rat heart

    Institute of Scientific and Technical Information of China (English)

    Xia ZHENG; Shen-jiang HU

    2005-01-01

    Aim: To investigate the effect of simvastatin on the cardiac contractile function and the alteration of gene and protein expression of the sarcoplasmic calcium regulatory proteins, including sarcoplasmic reticulum Ca2+-ATPase (SERCA),phospholamban (PLB), and ryanodine receptor 2 (RyR2) in rat hearts. Methods:Langendorff-perfused rat hearts were subjected to 60-min perfusion with different concentrations of simvastatin (1, 3, 10, 30, or 100 μmol/L), and the parameters of cardiac function such as left ventricular developed pressure (LVDP), +dp/dtmax,and -dp/dtmax were determined. The cultured neonatal rat ventricular cardiomyocytes were incubated with simvastatin (1, 3, 10, 30, and 100 μmol/L) for 1 h or 24 h.The levels of SERCA, PLB, and RyR2 expression were measured by reverse transcription-polymerase chain reaction and Western blot. Cytotoxic effect of simvastatin on ventricular cardiomyocytes was assessed by the MTT colorimetric assay.Results: LVDP, +dp/dtmax, and -dp/dtmax of hearts were increased significantly after treatment with simvastatin 3, 10, and 30 μmol/L. In simvastatin-treated isolated hearts, the levels of mRNA expression of SERCA and RyR2 were elevated compared with the control (P<0.05), while the mRNA expression of PLB did not change. After the cultured neonatal rat ventricular cardiomyocytes were incubated with 3, 10, 30, and 100 μmol/L simvastatin for 1 h, SERCA and RyR2 mRNA expressions of cardiomyocytes rose, but there was no alteration in protein expressions. However, with the elongation of simvastatin treatment to 24 h, the protein expression of SERCA and RyR2 were also elevated. Additionally,simvastatin (1-30 μmol/L) had no influence on cell viability of cultured cardiac myocytes, but simvastatin 100 μmol/L inhibited the cell viability. Conclusion:Simvastatin improved cardiac performance accompanied by the elevation of SERCA and RyR2 gene and protein expression.

  18. Short-term exposure to L-type calcium channel blocker, verapamil, alters the expression pattern of calcium-binding proteins in the brain of goldfish, Carassius auratus.

    Science.gov (United States)

    Palande, Nikhil V; Bhoyar, Rahul C; Biswas, Saikat P; Jadhao, Arun G

    2015-01-01

    The influx of calcium ions (Ca(2+)) is responsible for various physiological events including neurotransmitter release and synaptic modulation. The L-type voltage dependent calcium channels (L-type VDCCs) transport Ca(2+) across the membrane. Calcium-binding proteins (CaBPs) bind free cytosolic Ca(2+) and prevent excitotoxicity caused by sudden increase in cytoplasmic Ca(2+). The present study was aimed to understand the regulation of expression of neuronal CaBPs, namely, calretinin (CR) and parvalbumin (PV) following blockade of L-type VDCCs in the CNS of Carassius auratus. Verapamil (VRP), a potent L-type VDCC blocker, selectively blocks Ca(2+) entry at the plasma membrane level. VRP present in the aquatic environment at a very low residual concentration has shown ecotoxicological effects on aquatic animals. Following acute exposure for 96h, median lethal concentration (LC50) for VRP was found to be 1.22mg/L for goldfish. At various doses of VRP, the behavioral alterations were observed in the form of respiratory difficulty and loss of body balance confirming the cardiovascular toxicity caused by VRP at higher doses. In addition to affecting the cardiovascular system, VRP also showed effects on the nervous system in the form of altered expression of PV. When compared with controls, the pattern of CR expression did not show any variations, while PV expression showed significant alterations in few neuronal populations such as the pretectal nucleus, inferior lobes, and the rostral corpus cerebellum. Our result suggests possible regulatory effect of calcium channel blockers on the expression of PV.

  19. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    Science.gov (United States)

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  20. Analysis of α-Klotho, Fibroblast Growth Factor-, Vitamin-D and Calcium-Sensing Receptor in 70 Patients with Secondary Hyperparathyroidism

    Directory of Open Access Journals (Sweden)

    Joerg Latus

    2013-03-01

    Full Text Available Background/Aims: Secondary hyperparathyroidism (sHPT is known as a very common complication in patients with chronic kidney disease, and G-protein-coupled calcium-sensing receptor (CaSR, Vitamin D receptor (VDR and Fibroblast growth factor receptor (FGFR/Klotho complexes seem to be involved in its development. Methods: Hyperplastic parathyroid glands from 70 sHPT patients and normal parathyroid tissue from 7 patients were obtained during parathyroidectomy. Conventional morphological and immunohistochemical analysis of parathyroid glands was performed after dividing each slide in a 3x3 array. Results: The presence of lipocytes in the normal parathyroid gland and tissue architecture (nodal in patients with sHPT allows for discrimination between normal parathyroid glands and parathyroid glands of patients with sHPT. Protein expression of Klotho, FGFR, CaSR and VDR was higher in the normal parathyroid glands compared to the sHPT group (p0.05. Conclusions: CaSR, VDR and an impaired Klotho-FGFR-axis seem to be the major players in the development of sHPT. Whether the detected correlation between FGFR and VDR and the shift to a more mixed nuclear/cytoplasmic staining of VDR will yield new insights into the pathogenesis of the disease has to be evaluated in further studies.

  1. Expression of androgen receptor target genes in skeletal muscle

    OpenAIRE

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 ) versus w...

  2. Increased Expression of the Calcium-Activated Chloride Channel in Hclca1 in Airways of Patients with Obstructive Chronic Bronchitis

    Directory of Open Access Journals (Sweden)

    Hans-Peter Hauber

    2005-01-01

    Full Text Available BACKGROUND: Interleukin (IL-9 and its effect on enhancing the human calcium-activated chloride channel 1 (hCLCA1 expression have been shown to induce mucin production. Increased expression of hCLCA1 may, in turn, contribute to mucus overproduction in chronic obstructive pulmonary disease (COPD with a chronic bronchitis (CB phenotype.

  3. Chemokine receptor expression by inflammatory T cells in EAE.

    Science.gov (United States)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 1% of CD4(+) T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8(+) T cells. CD8(+) T cells expressed CXCR3, which was also expressed by CD4(+) T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6(+) and CXCR3(+) CD4(+) T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8(+) T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  4. Differential expression of canonical (classical) transient receptor potential channels in guinea pig enteric nervous system.

    Science.gov (United States)

    Liu, Sumei; Qu, Mei-Hua; Ren, Wei; Hu, Hong-Zhen; Gao, Na; Wang, Guo-Du; Wang, Xi-Yu; Fei, Guijun; Zuo, Fei; Xia, Yun; Wood, Jackie D

    2008-12-20

    The canonical transient receptor potential (TRPC) family of ion channels is implicated in many neuronal processes including calcium homeostasis, membrane excitability, synaptic transmission, and axon guidance. TRPC channels are postulated to be important in the functional neurobiology of the enteric nervous system (ENS); nevertheless, details for expression in the ENS are lacking. Reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry were used to study the expression and localization of TRPC channels. We found mRNA transcripts, protein on Western blots, and immunoreactivity (IR) for TRPC1/3/4/6 expressed in the small intestinal ENS of adult guinea pigs. TRPC1/3/4/6-IR was localized to distinct subpopulations of enteric neurons and was differentially distributed between the myenteric and submucosal divisions of the ENS. TRPC1-IR was widely distributed and localized to neurons with cholinergic, calretinin, and nitrergic neuronal immunochemical codes in the myenteric plexus. It was localized to both cholinergic and noncholinergic secretomotor neurons in the submucosal plexus. TRPC3-IR was found only in the submucosal plexus and was expressed exclusively by neuropeptide Y-IR neurons. TRPC4/6-IR was expressed in only a small population of myenteric neurons, but was abundantly expressed in the submucosal plexus. TRPC4/6-IR was coexpressed with both cholinergic and nitrergic neurochemical codes in the myenteric plexus. In the submucosal plexus, TRPC4/6-IR was expressed exclusively in noncholinergic secretomotor neurons. No TRPC1/3/4/6-IR was found in calbindin-IR neurons. TRPC3/4/6-IR was widely expressed along varicose nerve fibers and colocalized with synaptophysin-IR at putative neurotransmitter release sites. Our results suggest important roles for TRPC channels in ENS physiology and neuronal regulation of gut function.

  5. Spatiotemporal expression of Nogo-66 receptor after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yue Cao; Ya-xian Dong; Jie Xu; Guo-liang Chu; Zhi-hua Yang; Yan-ming Liu

    2016-01-01

    NgR, the receptor for the neurite outgrowth inhibitor Nogo-66, plays a critical role in the plasticity and regeneration of the nervous system after injury such as ischemic stroke. In the present study, we used immunohistochemistry to investigate the regional expression of NgR in rat brain following middle cerebral artery occlusion (MCAO). NgR protein expression was not observed in the center of the lesion, but was elevated in the marginal zone compared with control and sham-operated rats. The cerebral cortex and hippocampus (CA1, CA2, and CA3) showed the greatest expression of NgR. Furthermore, NgR expression was higher in the ipsilesional hemisphere than on the control side in the same coronal section. Although time-dependent changes in NgR expression across brain regions had their own characteristics, the overall trend complied with the following rules: NgR expression changes with time showed two peaks and one trough; the ifrst peak in expression appeared between 1 and 3 days after MCAO; expression declined at 5 days; and the second peak occurred at 28 days.

  6. Differential distribution of the expression of neuropeptides and calcium-binding proteins in the hippocampus of BDNF knock-out mice and the corresponding wild type brother and sister animals

    OpenAIRE

    Herrmann-Schwartzkopff, Katharina Helene

    2010-01-01

    Brain derived neurotrophic factor (BDNF) is well known for its positive effects on survival, development and differentiation of neurons in the central nervous system. It exerts its action through binding to its high (TrkB) and low (p75) affinity receptors. This work examines the expression of neuropeptides and calcium-binding proteins in the hippocampus of BDNF knockout mice (BDNF -/-) and their corresponding wild type littermates. With the use of highly specific antibodies the hippoca...

  7. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  8. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  9. Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors

    Science.gov (United States)

    Méndez-López, Luis Fernando; Zavala-Pompa, Angel; Cortés-Gutiérrez, Elva I.; Cerda-Flores, Ricardo M.

    2016-01-01

    Introduction The hormone leptin, which is produced in the adipose tissue, may influence tumorigenesis directly via its receptor (Ob-R). Thus, a role for Ob-R in endometrial carcinogenesis has been proposed. However, most studies neither included samples of the entire histological progression of endometrial carcinoma nor examined Ob-R jointly with the estrogen and progesterone receptors (ER and PR, respectively). Material and methods To determine the fluctuations of Ob-R, ER, and PR during the histological progression of endometrial carcinoma, we assessed their expression via immunohistochemistry (IHC) in six histological types of endometrium (proliferative, secretory, nonatypical and atypical hyperplasia, and endometrioid and nonendometrioid endometrial carcinoma), in which we performed histopathological and digital scoring for the quantification of receptors. Results We found that Ob-R expression was positively correlated with that of ER and PR (r = 1, p hyperplasias, and carcinomas, according to their relative digitally scored Ob-R expression (p endometrial carcinogenesis in correlation with ER and PR, suggesting that Ob-R expression in vivo is highly dependent on estrogen and progesterone activities in the endometrium and on its ER and PR status, as suggested previously by in vitro studies. PMID:28144276

  10. Expression of oestrogen receptor-α and oestrogen receptor-β in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-sheng; WANG Ying; WANG Ping; CHEN Zhao-dian

    2007-01-01

    Background Recent studies have suggested that estrogens are involved in normal and abnormal prostate growth,though their exact role is still controversial. Oestrogens exert inhibitory and stimulatory effects on prostate gland, but the expression of oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) in malignant prostate tissue remains unresolved. We determined ERα and ERβ in prostate cancer and investigated the relationship between expression of ER and pathological features of prostate carcinoma.Methods Thirty-two cases of prostate cancer, 12 cases of normal prostate tissue and 32 cases of benign prostate hyperplasia were analyzed for the expression of ERα and ERβ using semiquantitative, reverse transcription polymerase chain reaction (RT-PCR) and the products sequenced.Results Comparisons of the normal, hyperplastic and tumour prostate tissues indicated an overexpression of ERα in tumour specimens (P<0.01). However, the expression of ERβ significantly reduced in tumour tissues compared with normal and hyperplastic specimens (P<0.01), suggesting that severe pathological features of prostate cancer were associated with lower ERβ expression. Spearman analysis showed negative correlation between ERβ expression and tumour stage, grade (-0.67, -0.43, respectively, both P<0.05), and a positive correlation between ERα expression and tumour stage, grade (0.51, 0.57, respectively, both P<0.01). Our analysis also showed that hormone refractory, prostate cancer, compared with hormone dependent, prostate cancer, displayed a decreased expression of ERβ (P<0.01) and an increased expression of ERα.Conclusions ERa and ERβ may play important roles in the development of prostate cancer. The decrease in ERβ expression is associated with higher Gleason grade tumours and prostate cancer with higher metastatic potential. The loss of ERβ could be one of the key processes leading to uncontrolled growth of prostate epithelial cells.

  11. Release of glutamate and CGRP from trigeminal ganglion neurons: Role of calcium channels and 5-HT1 receptor signaling

    Directory of Open Access Journals (Sweden)

    Hurley Joyce H

    2008-04-01

    Full Text Available Abstract Background The aberrant release of the neurotransmitters, glutamate and calcitonin-gene related peptide (CGRP, from trigeminal neurons has been implicated in migraine. The voltage-gated P/Q-type calcium channel has a critical role in controlling neurotransmitter release and has been linked to Familial Hemiplegic Migraine. Therefore, we examined the importance of voltage-dependent calcium channels in controlling release of glutamate and CGRP from trigeminal ganglion neurons isolated from male and female rats and grown in culture. Serotonergic pathways are likely involved in migraine, as triptans, a class of 5-HT1 receptor agonists, are effective in the treatment of migraine and their effectiveness may be due to inhibiting neurotransmitter release from trigeminal neurons. We also studied the effect of serotonin receptor activation on release of glutamate and CGRP from trigeminal neurons grown in culture. Results P/Q-, N- and L-type channels each mediate a significant fraction of potassium-stimulated release of glutamate and CGRP. We determined that 5-HT significantly inhibits potassium-stimulated release of both glutamate and CGRP. Serotonergic inhibition of both CGRP and glutamate release can be blocked by pertussis toxin and NAS-181, a 5-HT1B/1D antagonist. Stimulated release of CGRP is unaffected by Y-25130, a 5-HT3 antagonist and SB 200646, a 5-HT2B/2C antagonist. Conclusion These data suggest that release of both glutamate and CGRP from trigeminal neurons is controlled by calcium channels and modulated by 5-HT signaling in a pertussis-toxin dependent manner and probably via 5-HT1 receptor signaling. This is the first characterization of glutamate release from trigeminal neurons grown in culture.

  12. Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system.

    Science.gov (United States)

    Gymnopoulos, Marco; Cingolani, Lorenzo A; Pedarzani, Paola; Stocker, Martin

    2014-04-01

    Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up- or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development.

  13. Expression profile of frizzled receptors in human medulloblastomas.

    Science.gov (United States)

    Salsano, Ettore; Paterra, Rosina; Figus, Miriam; Menghi, Francesca; Maderna, Emanuela; Pollo, Bianca; Solero, Carlo Lazzaro; Massimi, Luca; Finocchiaro, Gaetano

    2012-01-01

    Secreted WNT proteins signal through ten receptors of the frizzled (FZD) family. Because of the relevance of the WNT/β-catenin (CTNNB1) signaling pathway in medulloblastomas (MBs), we investigated the expression of all ten members of the FZD gene family (FZD1-10) in 17 human MBs, four MB cell lines and in normal human cerebellum, using real-time PCR. We found that FZD2 transcript was over-expressed in all MBs and MB cell lines. Western blot analysis confirmed the expression of FZD2 at the protein level. Moreover, the levels of FZD2 transcript were found to correlate with those of ASPM transcript, a marker of mitosis essential for mitotic spindle function. Accordingly, ASPM mRNA was expressed at a very low level in the adult, post-mitotic, human cerebellum, at higher levels in fetal cerebellum and at highest levels in MB tissues and cell lines. Unlike FZD2, the other FZDs were overexpressed (e.g., FZD1, FZD3 and FZD8) or underexpressed (e.g., FZD7, FZD9 and FZD10) in a case-restricted manner. Interestingly, we did not find any nuclear immuno-reactivity to CTNNB1 in four MBs over-expressing both FZD2 and other FZD receptors, confirming the lack of nuclear CTNNB1 staining in the presence of increased FZD expression, as in other tumor types. Overall, our results indicate that altered expression of FZD2 might be associated with a proliferative status, thus playing a role in the biology of human MBs, and possibly of cerebellar progenitors from which these malignancies arise.

  14. The Intron 4 Polymorphism in the Calcium-Sensing Receptor Gene in Diabetes Mellitus and its Chronic Complications, Diabetic Nephropathy and Non-Diabetic Renal Disease

    Directory of Open Access Journals (Sweden)

    Viera Železníková

    2014-10-01

    Full Text Available Background/Aims: Calcium-Sensing Receptor (CaSR significantly affects calcium-phosphate metabolism in kidneys, and it is implicated in the pathogenesis of diabetes mellitus (DM due to its expression in pancreatic F-cells. The role of CaSR as one of the players in pathogenesis of chronic kidney disease (CKD has been speculated. Methods: 158 Type 2 diabetic patients divided into three groups according to occurrence and type of kidney complications, 66 nondiabetic patients CKD, and 93 healthy subjects were enrolled into the study to analyze the role of two CaSR polymorphisms (in the codon 990 and in the intron 4 in ethiopathogenesis of DM and CKD. The Type 2 diabetic groups consisted of 48 patients without any kidney abnormalities, 58 patients with diabetic nephropathy (DN, and 52 patients with nondiabetic renal disease (NDRD. The distribution of genotype and allele frequencies was studied using PCR with the TaqMan Discrimination Assay or followed by the Restriction Fragment Length Polymorphism method, respectively. Results: We have found that the intron 4 polymorphism is a risk factor for the development of DM and CKD, except DN, while the codon 990 does not show any disease association. Conclusion: We conclude that CaSR is a general factor in pancreas and kidney pathologies. i 2014 S. Karger AG, Basel

  15. Differential rescue of spatial memory deficits in aged rats by L-type voltage-dependent calcium channel and ryanodine receptor antagonism.

    Science.gov (United States)

    Hopp, S C; D'Angelo, H M; Royer, S E; Kaercher, R M; Adzovic, L; Wenk, G L

    2014-11-01

    Age-associated memory impairments may result as a consequence of neuroinflammatory induction of intracellular calcium (Ca(+2)) dysregulation. Altered L-type voltage-dependent calcium channel (L-VDCC) and ryanodine receptor (RyR) activity may underlie age-associated learning and memory impairments. Various neuroinflammatory markers are associated with increased activity of both L-VDCCs and RyRs, and increased neuroinflammation is associated with normal aging. In vitro, pharmacological blockade of L-VDCCs and RyRs has been shown to be anti-inflammatory. Here, we examined whether pharmacological blockade of L-VDCCs or RyRs with the drugs nimodipine and dantrolene, respectively, could improve spatial memory and reduce age-associated increases in microglia activation. Dantrolene and nimodipine differentially attenuated age-associated spatial memory deficits but were not anti-inflammatory in vivo. Furthermore, RyR gene expression was inversely correlated with spatial memory, highlighting the central role of Ca(+2) dysregulation in age-associated memory deficits.

  16. TEMPORAL EXPRESSION OF NOTCH RECEPTORS DURING LUNG DEVELOPMENT IN RAT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian-shen; CHANG Li-wen; LIU Han-chu; RONG Zhi-hu; CHEN Hong-bing

    2005-01-01

    Objective To investigate the temporal expression of Notch receptors in developing lungs of rats and to explore the regulating role of Notch in lung development. Methods We studied the expression of Notch1,2,3 isforms in embryonic days 18,20,21 and postnatal days 1,4,7,14, 21 rat lungs. Six rats of each group were used to assess lung histologic changes by HE staining and expression of Notch in lungs by immunohistochemistry. Total RNA was extracted by Trizol reagent from the frozen lung tissues. mRNA levels of Notch were measured by reverse transcription polymerase chain reaction (RT-PCR). Results It is showed that Notch1-3 mainly localized in the airway surface epithelium、alveolar epithelium during the psdueoglandular stage, and reached the peaks at canalicular period. The expression patterns of Notch1-3 were changed with the fetal age. Conclusion These results support multiple roles for Notch1,2,and 3 receptor activation during lung development, probably not only modulating the process of branching morphogenesis but also involved in determining the cell differentiation fate in fetal alveolar epithelium.

  17. CALCIUM-SENSING RECEPTORS OF HUMAN NEURAL CELLS PLAY CRUCIAL ROLES IN ALZHEIMER’S DISEASE

    Directory of Open Access Journals (Sweden)

    Anna eChiarini

    2016-04-01

    Full Text Available In aged subjects, late-onset Alzheimer’s disease (LOAD starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation neurotoxic of amyloid-β42 oligomers (Aβ42-os. In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs activating a set of intracellular signalling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-osCaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression towards upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-osCaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics, like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-osCaSR signalling

  18. Nuclear receptor complement of the cnidarian Nematostella vectensis: phylogenetic relationships and developmental expression patterns

    Directory of Open Access Journals (Sweden)

    Tarrant Ann M

    2009-09-01

    Full Text Available Abstract Background Nuclear receptors are a superfamily of metazoan transcription factors that regulate diverse developmental and physiological processes. Sequenced genomes from an increasing number of bilaterians have provided a more complete picture of duplication and loss of nuclear receptors in protostomes and deuterostomes but have left open the question of which nuclear receptors were present in the cnidarian-bilaterian ancestor. In addition, nuclear receptor expression and function are largely uncharacterized within cnidarians, preventing determination of conserved and novel nuclear receptor functions in the context of animal evolution. Results Here we report the first complete set of nuclear receptors from a cnidarian, the starlet sea anemone Nematostella vectensis. Genomic searches using conserved DNA- and ligand-binding domains revealed seventeen nuclear receptors in N. vectensis. Phylogenetic analyses support N. vectensis orthologs of bilaterian nuclear receptors in four nuclear receptor subfamilies within nuclear receptor family 2 (COUP-TF, TLL, HNF4, TR2/4 and one putative ortholog of GCNF (nuclear receptor family 6. Other N. vectensis genes grouped well with nuclear receptor family 2 but represented lineage-specific duplications somewhere within the cnidarian lineage and were not clear orthologs of bilaterian genes. Three nuclear receptors were not well-supported within any particular nuclear receptor family. The seventeen nuclear receptors exhibited distinct developmental expression patterns, with expression of several nuclear receptors limited to a subset of developmental stages. Conclusion N. vectensis contains a diverse complement of nuclear receptors including orthologs of several bilaterian nuclear receptors. Novel nuclear receptors in N. vectensis may be ancient genes lost from triploblastic lineages or may represent cnidarian-specific radiations. Nuclear receptors exhibited distinct developmental expression patterns, which

  19. Expression of genes encoding the calcium signalosome in cellular and transgenic models of Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Magdalena eCzeredys

    2013-11-01

    Full Text Available Huntington’s disease (HD is a hereditary neurodegenerative disease caused by the expansion of a polyglutamine stretch in the huntingtin (HTT protein and characterized by dysregulated calcium homeostasis. We investigated whether these disturbances are correlated with changes in the mRNA level of the genes that encode proteins involved in calcium homeostasis and signaling (i.e., the calciosome. Using custom-made TaqMan low-density arrays containing probes for 96 genes, we quantified mRNA in the striatum in YAC128 mice, a model of HD, and wildtype mice. HTT mutation caused the increased expression of some components of the calcium signalosome, including calretinin, presenilin 2, and calmyrin 1, and the increased expression of genes indirectly involved in calcium homeostasis, such as huntingtin-associated protein 1 and calcyclin-binding protein. To verify these findings in a different model, we used PC12 cells with an inducible expression of mutated full-length HTT. Using single-cell imaging with Fura-2AM, we found that store-operated Ca2+ entry but not endoplasmic reticulum store content was changed as a result of the expression of mutant HTT. Statistically significant downregulation of the Orai calcium channel subunit 2, calmodulin, and septin 4 was detected in cells that expressed mutated HTT. Our data indicate that the dysregulation of calcium homeostasis correlates with changes in the gene expression of members of the calciosome. These changes, however, differed in the two models of HD used in this study. Our results indicate that each HD model exhibits distinct features that may only partially resemble the human disease.

  20. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation.

    Science.gov (United States)

    Xu, Wenping; Peng, Hui; Yang, Tianbao; Whitaker, Bruce; Huang, Luhong; Sun, Jianghao; Chen, Pei

    2014-09-01

    Two diploid woodland strawberry (Fragaria vesca) inbred lines, Ruegen F7-4 (red fruit-bearing) and YW5AF7 (yellow fruit-bearing) were used to study the regulation of anthocyanin biosynthesis in fruit. Ruegen F7-4 fruit had similar total phenolics and anthocyanin contents to commercial octoploid (F. × ananassa) cultivar Seascape, while YW5AF7 exhibited relatively low total phenolics content and no anthocyanin accumulation. Foliar spray of CaCl2 boosted fruit total phenolics content, especially anthocyanins, by more than 20% in both Seascape and RF7-4. Expression levels of almost all the flavonoid pathway genes were comparable in Ruegen F7-4 and YW5AF7 green-stage fruit. However, at the turning and ripe stages, key anthocyanin structural genes, including flavanone 3-hydroxylase (F3H1), dihydroflavonol 4-reductase (DFR2), anthocyanidin synthase (ANS1), and UDP-glucosyltransferase (UGT1), were highly expressed in Ruegen F7-4 compared with YW5AF7 fruit. Calcium treatment further stimulated the expression of those genes in Ruegen F7-4 fruit. Anthocyanins isolated from petioles of YW5AF7 and Ruegen F-7 had the same HPLC-DAD profile, which differed from that of Ruegen F-7 fruit anthocyanins. All the anthocyanin structural genes except FvUGT1 were detected in petioles of YW5AF7 and Ruegen F-7. Taken together, these results indicate that the "yellow" gene in YW5AF7 is a fruit specific regulatory gene(s) for anthocyanin biosynthesis. Calcium can enhance accumulation of anthocyanins and total phenolics in fruit possibly via upregulation of anthocyanin structural genes. Our results also suggest that the anthocyanin biosynthesis machinery in petioles is different from that in fruit.

  1. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    Directory of Open Access Journals (Sweden)

    Dam Phuongan

    2011-06-01

    Full Text Available Abstract Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH receptor (LHR expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours. Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are

  2. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    Science.gov (United States)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  3. Calcium-dependent protein kinases in plants: evolution, expression and function.

    Science.gov (United States)

    Valmonte, Gardette R; Arthur, Kieren; Higgins, Colleen M; MacDiarmid, Robin M

    2014-03-01

    Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.

  4. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    Science.gov (United States)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  5. Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain.

    Science.gov (United States)

    Matsunaga, Eiji; Okanoya, Kazuo

    2008-05-01

    The androgen receptor is a steroid hormone receptor widely expressed in the vocal control nuclei in songbirds. Here, we analysed androgen receptor expression in the brains of juvenile and adult budgerigars. With a species-specific probe for budgerigar androgen receptor mRNA, we found that the androgen receptor was expressed in the vocal areas, such as the central nucleus of the lateral nidopallium, the anterior arcopallium, the oval nucleus of the mesopallium, the oval nucleus of the anterior nidopallium and the tracheosyringeal hypoglossal nucleus. With the present data, together with previous reports, it turned out that the androgen receptor expression in telencephalic vocal control areas is similar amongst three groups of vocal learners--songbirds, hummingbirds and parrots, suggesting the possibility that the androgen receptor might play a role in vocal development and that the molecular mechanism regulating the androgen receptor expression in the vocal areas might be important in the evolution of vocal learning.

  6. Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation.

    Science.gov (United States)

    Nelson, Piper; Ngoc Tran, Tran Doan; Zhang, Hanjie; Zolochevska, Olga; Figueiredo, Marxa; Feng, Ji-Ming; Gutierrez, Dina L; Xiao, Rui; Yao, Shaomian; Penn, Arthur; Yang, Li-Jun; Cheng, Henrique

    2013-01-01

    Elevations in the intracellular Ca(2+) concentration are a phenomena commonly observed during stem cell differentiation but cease after the process is complete. The transient receptor potential melastatin 4 (TRPM4) is an ion channel that controls Ca(2+) signals in excitable and nonexcitable cells. However, its role in stem cells remains unknown. The aim of this study was to characterize TRPM4 in rat dental follicle stem cells (DFSCs) and to determine its impact on Ca(2+) signaling and the differentiation process. We identified TRPM4 gene expression in DFSCs, but not TRPM5, a closely related channel with similar function. Perfusion of cells with increasing buffered Ca(2+) resulted in a concentration-dependent activation of currents typical for TRPM4, which were also voltage-dependent and had Na(+) conductivity. Molecular suppression with shRNA decreased channel activity and cell proliferation during osteogenesis but not adipogenesis. As a result, enhanced mineralization and phosphatase enzyme activity were observed during osteoblast formation, although DFSCs failed to differentiate into adipocytes. Furthermore, the normal agonist-induced first and secondary phases of Ca(2+) signals were transformed into a gradual and sustained increase which confirmed the channels' ability to control Ca(2+) signaling. Using whole genome microarray analysis, we identified several genes impacted by TRPM4 during DFSC differentiation. These findings suggest an inhibitory role for TRPM4 on osteogenesis while it appears to be required for adipogenesis. The data also provide a potential link between the Ca(2+) signaling pattern and gene expression during stem cell differentiation.

  7. Homer regulates calcium signalling in growth cone turning

    Directory of Open Access Journals (Sweden)

    Thompson Michael JW

    2009-08-01

    Full Text Available Abstract Background Homer proteins are post-synaptic density proteins with known functions in receptor trafficking and calcium homeostasis. While they are key mediators of synaptic plasticity, they are also known to function in axon guidance, albeit by mechanisms that are yet to be elucidated. Homer proteins couple extracellular receptors – such as metabotropic glutamate receptors and the transient receptor potential canonical family of cation channels – to intracellular receptors such as inositol triphosphate and ryanodine receptors on intracellular calcium stores and, therefore, are well placed to regulate calcium dynamics within the neural growth cone. Here we used growth cones from dorsal root ganglia, a well established model in the field of axon guidance, and a growth cone turning assay to examine Homer1 function in axon guidance. Results Homer1 knockdown reversed growth cone turning from attraction to repulsion in response to the calcium-dependent guidance cues brain derived neurotrophic factor and netrin-1. Conversely, Homer1 knockdown had no effect on repulsion to the calcium-independent guidance cue Semaphorin-3A. This reversal of attractive turning suggested a requirement for Homer1 in a molecular switch. Pharmacological experiments confirmed that the operational state of a calcium-calmodulin dependent protein kinase II/calcineurin phosphatase molecular switch was dependent on Homer1 expression. Calcium imaging of motile growth cones revealed that Homer1 is required for guidance-cue-induced rise of cytosolic calcium and the attenuation of spontaneous cytosolic calcium transients. Homer1 knockdown-induced calcium transients and turning were inhibited by antagonists of store-operated channels. In addition, immunocytochemistry revealed the close association of Homer1 with the store-operated proteins TRPC1 and STIM1 within dorsal root ganglia growth cones. Conclusion These experiments provide evidence that Homer1 is an essential

  8. Low Density Lipoproteins Promote Unstable Calcium Handling Accompanied by Reduced SERCA2 and Connexin-40 Expression in Cardiomyocytes

    Science.gov (United States)

    Cabello, Nuria; Llach, Anna; Vallmitjana, Alexander; Benítez, Raúl; Badimon, Lina; Cinca, Juan; Llorente-Cortés, Vicenta; Hove-Madsen, Leif

    2013-01-01

    The damaging effects of high plasma levels of cholesterol in the cardiovascular system are widely known, but little attention has been paid to direct effects on cardiomyocyte function. We therefore aimed at testing the hypothesis that Low Density Lipoprotein (LDL) cholesterol affects calcium dynamics and signal propagation in cultured atrial myocytes. For this purpose, mRNA and protein expression levels were determined by real time PCR and western blot analysis, respectively, and intracellular calcium was visualized in fluo-4 loaded atrial HL-1 myocyte cultures subjected to field stimulation. At low stimulation frequencies all cultures had uniform calcium transients at all tested LDL concentrations. However, 500 µg LDL/mL maximally reduced the calcium transient amplitude by 43% from 0.30±0.04 to 0.17±0.02 (p<0.05). Moreover, LDL-cholesterol dose-dependently increased the fraction of alternating and irregular beat-to-beat responses observed when the stimulation interval was shortened. This effect was linked to a concurrent reduction in SERCA2, RyR2, IP3RI and IP3RII mRNA levels. SERCA2 protein levels were also reduced by 43% at 200 µg LDL/mL (p<0.05) and SR calcium loading was reduced by 38±6% (p<0.001). By contrast, HDL-cholesterol had no significant effect on SERCA expression or SR calcium loading. LDL-cholesterol also slowed the conduction velocity of the calcium signal from 3.2+0.2 mm/s without LDL to 1.7±0.1 mm/s with 500 µg LDL/mL (p<0.05). This coincided with a reduction in Cx40 expression (by 44±3%; p<0.05 for mRNA and by 79±2%; p<0.05 for Cx40 protein at 200 µg/ml LDL) whereas the Cx-43 expression did not significantly change. In conclusion, LDL-cholesterol destabilizes calcium handling in cultured atrial myocytes subjected to rapid pacing by reducing SERCA2 and Cx40 expression and by slowing the conduction velocity of the calcium signal. PMID:23516438

  9. The collagen receptor DDR2 is expressed during early cardiac development.

    Science.gov (United States)

    Goldsmith, Edie C; Zhang, Xiadong; Watson, James; Hastings, Josh; Potts, Jay D

    2010-05-01

    Discoidin Domain Receptor 2 (DDR2) is a receptor tyrosine kinase which has been shown to regulate cell migration upon binding its ligand, collagen. Expression studies determined that DDR2 mRNA and protein are present in the atrioventricular canal during epithelial-mesenchymal transformation (EMT) and the receptor is expressed in both activated endothelial and migrating mesenchymal cells in vivo.

  10. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population

    DEFF Research Database (Denmark)

    Nissen, Peter H; Christensen, Signe E; Heickendorff, Lene

    2007-01-01

    hyperparathyroidism and is caused by inactivating mutations in the calcium sensing receptor (CASR) gene. OBJECTIVE: We sought to define the mutation spectrum of the CASR gene in a Danish FHH population and to establish genotype-phenotype relationships regarding the different mutations. DESIGN AND PARTICIPANTS...... calcium concentrations moderately above the upper reference limit, to calcium levels more than 20% above the upper reference limit. Furthermore, the mean plasma PTH concentration was within the normal range in eight of 11 studied mutations, but mild to moderately elevated in families with the mutations p...

  11. Reciprocal regulation of reactive oxygen species and phospho-CREB regulates voltage gated calcium channel expression during Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Arti Selvakumar

    Full Text Available Our previous work has demonstrated the roles played by L-type Voltage Gated Calcium Channels (VGCC in regulating Mycobacterium tuberculosis (M. tb survival and pathogenesis. Here we decipher mechanisms and pathways engaged by the pathogen to regulate VGCC expression in macrophages. We show that M. tb and its antigen Rv3416 use phospho-CREB (pCREB, Reactive Oxygen Species (ROS, Protein Kinase C (PKC and Mitogen Activated Protein Kinase (MAPK to modulate VGCC expression in macrophages. siRNA mediated knockdown of MyD88, IRAK1, IRAK2 or TRAF6 significantly inhibited antigen mediated VGCC expression. Inhibiting Protein Kinase C (PKC or MEK-ERK1/2 further increased VGCC expression. Interestingly, inhibiting intracellular calcium release upregulated antigen mediated VGCC expression, while inhibiting extracellular calcium influx had no significant effect. siRNA mediated knockdown of transcription factors c-Jun, SOX5 and CREB significantly inhibited Rv3416 mediated VGCC expression. A dynamic reciprocal cross-regulation between ROS and pCREB was observed that in turn governed VGCC expression with ROS playing a limiting role in the process. Further dissection of the mechanisms such as the interplay between ROS and pCREB would improve our understanding of the regulation of VGCC expression during M. tb infection.

  12. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure

    Science.gov (United States)

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-06-01

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion-reaction equations presented by Izu et al (2001 Biophys. J. 80 103-20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca2+ pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca2+ leak in the form of Ca2+ quarks, increase the probability of occurrence of spontaneous Ca2+ waves even with smaller SR Ca2+ stores, accelerate Ca2+ wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca2+ wave model under HF conditions provides a new view of Ca2+ dynamics that could not be mimicked by adjusting traditional parameters involved in Ca2+ release units and other ion channels, and contributes to understanding the underlying mechanism of HF.

  13. Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival.

    Science.gov (United States)

    Kang, Sang Soo; Han, Kyung-Seok; Ku, Bo Mi; Lee, Yeon Kyung; Hong, Jinpyo; Shin, Hye Young; Almonte, Antoine G; Woo, Dong Ho; Brat, Daniel J; Hwang, Eun Mi; Yoo, Seung Hyun; Chung, Chun Kee; Park, Sung-Hye; Paek, Sun Ha; Roh, Eun Joo; Lee, Sung Joong; Park, Jae-Yong; Traynelis, Stephen F; Lee, C Justin

    2010-02-01

    Calcium signaling is important in many signaling processes in cancer cell proliferation and motility including in deadly glioblastomas of the brain that aggressively invade neighboring tissue. We hypothesized that disturbing Ca(2+) signaling pathways might decrease the invasive behavior of giloblastoma, extending survival. Evaluating a panel of small-molecule modulators of Ca(2+) signaling, we identified caffeine as an inhibitor of glioblastoma cell motility. Caffeine, which is known to activate ryanodine receptors, paradoxically inhibits Ca(2+) increase by inositol 1,4,5-trisphospate receptor subtype 3 (IP(3)R3), the expression of which is increased in glioblastoma cells. Consequently, by inhibiting IP(3)R3-mediated Ca(2+) release, caffeine inhibited migration of glioblastoma cells in various in vitro assays. Consistent with these effects, caffeine greatly increased mean survival in a mouse xenograft model of glioblastoma. These findings suggest IP(3)R3 as a novel therapeutic target and identify caffeine as a possible adjunct therapy to slow invasive growth of glioblastoma.

  14. Red blood cells of sickle cell disease patients exhibit abnormally high abundance of N-methyl D-aspartate receptors mediating excessive calcium uptake.

    Science.gov (United States)

    Hänggi, Pascal; Makhro, Asya; Gassmann, Max; Schmugge, Markus; Goede, Jeroen S; Speer, Oliver; Bogdanova, Anna

    2014-10-01

    Recently we showed that N-methyl D-aspartate receptors (NMDARs) are expressed in erythroid precursors (EPCs) and present in the circulating red blood cells (RBCs) of healthy humans, regulating intracellular Ca(2+) in these cells. This study focuses on investigating the possible role of NMDARs in abnormally high Ca(2+) permeability in the RBCs of patients with sickle cell disease (SCD). Protein levels of the NMDAR subunits in the EPCs of SCD patients did not differ from those in EPCs of healthy humans. However, the number and activity of the NMDARs in circulating SCD-RBCs was substantially up-regulated, being particularly high during haemolytic crises. The number of active NMDARs correlated negatively with haematocrit and haemoglobin levels in the blood of SCD patients. Calcium uptake via these non-selective cation channels was induced by RBC treatment with glycine, glutamate and homocysteine and was facilitated by de-oxygenation of SCD-RBCs. Oxidative stress and RBC dehydration followed receptor stimulation and Ca(2+) uptake. Inhibition of the NMDARs with an antagonist memantine caused re-hydration and largely prevented hypoxia-induced sickling. The EPCs of SCD patients showed higher tolerance to memantine than those of healthy subjects. Consequently, NMDARs in the RBCs of SCD patients appear to be an attractive target for pharmacological intervention.

  15. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent....../inactive endometria and seven of 13 (54%) endometria with adenomatous hyperplasia were EGF-R positive, with an immunostaining pattern rather similar to that of the carcinomas....

  16. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1......) in the endothelia of Apoe(-/-) mice (Irs1/Apoe(-/-)) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE(-/-) mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin's enhanced antiatherogenic actions in EC was related to remarkable...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  17. Vitamin D-enhanced duodenal calcium transport.

    Science.gov (United States)

    Wongdee, Kannikar; Charoenphandhu, Narattaphol

    2015-01-01

    For humans and rodents, duodenum is a very important site of calcium absorption since it is exposed to ionized calcium released from dietary complexes by gastric acid. Calcium traverses the duodenal epithelium via both transcellular and paracellular pathways in a vitamin D-dependent manner. After binding to the nuclear vitamin D receptor, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] upregulates the expression of several calcium transporter genes, e.g., TRPV5/6, calbindin-D9k, plasma membrane Ca(2+)-ATPase1b, and NCX1, thereby enhancing the transcellular calcium transport. This action has been reported to be under the regulation of parathyroid-kidney-intestinal and bone-kidney-intestinal axes, in which the plasma calcium and fibroblast growth factor-23 act as negative feedback regulators, respectively. 1,25(OH)2D3 also modulates the expression of tight junction-related genes and convective water flow, presumably to increase the paracellular calcium permeability and solvent drag-induced calcium transport. However, vitamin D-independent calcium absorption does exist and plays an important role in calcium homeostasis under certain conditions, particularly in neonatal period, pregnancy, and lactation as well as in naturally vitamin D-impoverished subterranean mammals.

  18. Toll-like receptor 2 ligands regulate monocyte Fcγ receptor expression and function.

    Science.gov (United States)

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P

    2013-04-26

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy.

  19. Toll-like Receptor 2 Ligands Regulate Monocyte Fcγ Receptor Expression and Function*

    Science.gov (United States)

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E.; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P.

    2013-01-01

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy. PMID:23504312

  20. Expression of CysLT2 receptors in asthma lung, and their possible role in bronchoconstriction

    Directory of Open Access Journals (Sweden)

    Tomohiko Sekioka

    2015-10-01

    Conclusions: CysLT2 receptors were expressed in lung specimens isolated from asthma subjects. Activation of CysLT2 receptors may contribute to antigen-induced bronchoconstriction in certain asthma population.

  1. Decreased expression of serum and microvascular vascular endothelial growth factor receptor-2 in meningococcal sepsis*.

    NARCIS (Netherlands)

    Flier, M. van der; Baerveldt, E.M.; Miedema, A.; Hartwig, N.G.; Hazelzet, J.A.; Emonts, M.; Groot, R. de; Prens, E.P.; Vught, A.J. van; Jansen, N.J.

    2013-01-01

    OBJECTIVES: To determine the skin microvessel expression of vascular endothelial growth factor receptor 2 and serum-soluble vascular endothelial growth factor receptor 2 levels in children with meningococcal sepsis. DESIGN: Observational study. SETTING: Two tertiary academic children hospital PICUs.

  2. Development of a universal high-throughput calcium assay for G-protein-coupled receptors with promiscuous G-protein Gα15/16

    Institute of Scientific and Technical Information of China (English)

    Ting ZHU; Li-yan FANG; Xin XIE

    2008-01-01

    Aim:To develop a universal high-throughput screening assay based on Gα15/16-mediated calcium mobilization for the identification of novel modulators of G-protein-coupled receptors (GPCR). Methods:In the present study, CHO-K1 or HEK293 cells were co-transfected with plasmids encoding promiscuous G-protein Cα15/16 and various receptors originally coupled to Gαs, Gαi, or Gαq pathways. Intracellular calcium change was monitored with fluorescent dye Fluo-4. Results:We found out for all the receptors tested, Gα15/16 could shift the receptors' coupling to the calcium mobilization pathway, and the EC50 values of the ligands generated with this method were comparable with reported values that were ob-tained using traditional methods. This assay was validated and optimized with the δ-opioid receptor, which originally coupled to God and was recently found to play important roles in neurodegenerative and autoimmune diseases. A large-scale screening of 48 000 compounds was performed based on this system. Sev-eral new modulators were identified and confirmed with the traditional GTPγS binding assay. Conclusion:This cell-based calcium assay was proved to be robust and easy to automate, and could be used as a universal method in search-ing for GPCR modulators.

  3. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  4. Expression of androgen receptor target genes in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kesha Rana; Nicole KL Lee; Jeffrey D Zajac; Helen E MacLean

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor(AR)‑regulated genes ininvitroandinvivomodels. The expression of the myogenic regulatory factormyogenin was signiifcantly decreased in skeletal muscle from testosterone‑treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity(ARΔZF2) versus wildtype mice, demonstrating thatmyogenin is repressed by the androgen/AR pathway. The ubiquitin ligaseFbxo32 was repressed by 12h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, andc‑Myc expression was decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, Igf2 andcalcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all butp57Kip2was also decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase‑mediated atrophy pathways to preserve muscle mass in adult muscle.

  5. The Estrogen ReceptorExpression in De Quervain's Disease.

    Science.gov (United States)

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-11-04

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy.

  6. Expression of androgen receptor target genes in skeletal muscle.

    Science.gov (United States)

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  7. Expression of estrogen receptor alpha in preimplantation mice embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To study the expression of estrogen receptor alpha (ERα) in preimplantation mice embryos.Methods:Mice zygotes were collected from superovulated Kunming mice and cultured in vitro.Embryos at different developmental stages were collected at 0,24,36,48,72 and 96hours after cultivation.The expression of ERα in early mice embryos was detected by reverse transcription-PCR (RT-PCR) and immunocytochemistry.Results:The expression of ERα mRNA was detected in all of the examined embryonic stages.The relative amount of ERα mRNA showed no significant difference between 1-cell stage embryos and 4-cell stage embryos (P>0.05).However,the relative level of ERα mRNA significantly decreased (P<0.05) at 2-cell stage and was the lowest at this stage.Over 2-cell stage,the ERα mRNA relative level would increase and achieve the peak level at blastocyst stage.The location of immunocytochemistry showed that ERα immunopositive cells could be firstly detected at 8-cell stage,after which they are consistently detected until blastocyst stage.In addition,the intensity of ERα positive staining was higher at blastocyst stage compared with that at 8-cell stage and morula stage.Conclusion:ERα is expressed in preimplantation mice embryos in a temporal and spatial pattern and may be involved in regulating the development of early mice embryos,which probably plays crucial roles in early embryonic development.

  8. Effect of rapidly resorbable calcium phosphates and a calcium phosphate bone cement on the expression of bone-related genes and proteins in vitro.

    Science.gov (United States)

    Knabe, C; Berger, G; Gildenhaar, R; Meyer, J; Howlett, C R; Markovic, B; Zreiqat, H

    2004-04-01

    The use of biodegradable bone substitutes is advantageous for alveolar ridge augmentation because it avoids second-site surgery for autograft harvesting. This study examines the effect of novel, rapidly resorbable calcium phosphates and a calcium phosphate bone cement on the expression of bone-related genes and proteins by human bone-derived cells (HBDCs) and compares this behavior to that of tricalciumphosphate (TCP). Test materials were alpha-TCP, two materials with a crystalline phase Ca(2)KNa(PO(4))(2) and with a small amorphous portion containing either magnesium potassium phosphate (material denominated GB14) or silica phosphate (material denominated GB9), and a calcium phosphate bone cement (material denominated Biocement D). HBDCs were grown on the substrata for 3, 7, 14, and 21 days, counted, and probed for various mRNAs and proteins (type I collagen, osteocalcin, osteopontin, osteonectin, alkaline phosphatase, and bone sialoprotein). All substrates supported continuous cellular growth for 21 days. In the presence of GB14 and Biocement D specimens cell proliferation was reduced and cell differentiation increased. At day 21, the greatest number of cells was found on GB9 expressing significantly higher levels of bone-related proteins than cells grown on all other surfaces. Because all novel materials facilitated the expression of the osteoblastic phenotype at least as much as TCP and the polystyrene control, these biomaterials can be regarded as excellent candidate bone substitute materials. GB9 induced the highest proliferation and cellular differentiation after 21 days of incubation, suggesting that this material may possess a higher potency for enhancing osteogenesis than TCP.

  9. Glomerular Glucocorticoid Receptors Expression and Clinicopathological Types of Childhood Nephrotic Syndrome.

    Science.gov (United States)

    Gamal, Yasser; Badawy, Ahlam; Swelam, Salwa; Tawfeek, Mostafa S K; Gad, Eman Fathalla

    2017-02-01

    Glucocorticoids are primary therapy of idiopathic nephrotic syndrome (INS). However, not all children respond to steroid therapy. We assessed glomerular glucocorticoid receptor expression in fifty-one children with INS and its relation to response to steroid therapy and to histopathological type. Clinical, laboratory and glomerular expression of glucocorticoid receptors were compared between groups with different steroid response. Glomerular glucocorticoid expression was slightly higher in controls than in minimal change early responders, which in turn was significantly higher than in minimal change late responders. There was significantly lower glomerular glucocorticoid receptor expression in steroid-resistance compared to early responders, late responders and controls. Glomerular glucocorticoid expression was significantly higher in all minimal change disease (MCD) compared to focal segmental glomerulosclerosis. In INS, response to glucocorticoid is dependent on glomerular expression of receptors and peripheral expression. Evaluation of glomerular glucocorticoid receptor expression at time of diagnosis of NS can predict response to steroid therapy.

  10. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers

    NARCIS (Netherlands)

    Navarro, G.; Aguinaga, D.; Hradsky, J.; Moreno, E.; Reddy, P.P.; Cortés, A.; Mallol, J.; Casadó, V.; Mikhaylova, Marina; Kreutz, M.R.; Lluís, C.; Canela, E.I.; McCormick, P.J.; Ferreira, S.; Ferré, S.

    2014-01-01

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that cont

  11. Time-resolved quantitative analysis of CCK1 receptor-induced intracellular calcium increase.

    NARCIS (Netherlands)

    Staljanssens, D.; Vos, W.H. De; Willems, P.H.; Camp, J. Van; Smagghe, G.

    2012-01-01

    Cholecystokinin (CCK) is a gastrointestinal hormone, which regulates many physiological functions such as satiety by binding to the CCK receptor (CCKR). Molecules, which recognize this receptor can mimic or block CCK signaling and thereby influence CCKR-mediated processes. We have set up a quantitat

  12. Expression of retinoic acid receptors in human endometrial carcinoma.

    Science.gov (United States)

    Tanabe, Kojiro; Utsunomiya, Hiroki; Tamura, Mitsutoshi; Niikura, Hitoshi; Takano, Tadao; Yoshinaga, Kohsuke; Nagase, Satoru; Suzuki, Takashi; Ito, Kiyoshi; Matsumoto, Mitsuyo; Hayashi, Shin-ichi; Yaegashi, Nobuo

    2008-02-01

    The retinoids (vitamin A and its biologically active derivatives) are essential for the health and survival of the individual. Several studies have reported a strong rationale for the use of retinoids in cancer treatment and chemoprevention. It has been discovered that expression of retinoic acid receptor (RAR) beta is frequently silenced in epithelial carcinogenesis, which has led to the hypothesis that RAR beta could act as a tumor suppressor. However, the status of RAR beta in human endometrial carcinoma has not been examined. In the present study, we initially studied the effects of retinoic acid on cell proliferation and the expression of RAR alpha, RAR beta, and RAR gamma using AM580 (a RAR-specific agonist) in the Ishikawa endometrial cancer cell line. We also examined the expression of RAR in human eutopic endometrium (30 cases), endometrial hyperplasia (28 cases), and endometrial carcinoma (103 cases) using immunohistochemistry. Finally, we correlated these findings with the clinicopathological parameters. In vitro, cell growth was inhibited and RAR beta and RAR gamma mRNA was significantly induced by AM580, compared with vehicle controls, whereas RAR alpha mRNA was significantly attenuated by AM580, compared with vehicle. RAR beta was detected predominantly in endometrial hyperplasia, compared with endometrial carcinoma. No statistically significant correlation was obtained between the expression of any other RAR subtypes and clinicopathological parameters in human endometrial carcinoma. The results of our study demonstrate that AM580 inhibits cell growth and induces RAR beta mRNA expression in the Ishikawa cell line, and the expression level of RAR beta in endometrial carcinoma is significantly lower than that in endometrial hyperplasia. AM580 might therefore be considered as a potential treatment for endometrial carcinoma.

  13. Expression of estrogen receptor β in human colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Qun Xie; Jie-Ping Yu; He-Sheng Luo

    2004-01-01

    AIM: To determine the expression of estrogen receptor (ER)β in Chinese colorectal carcinoma (CRC) patients.METHODS: Erβ expression in CRC was investigated by immunohistochemical staining of formalin-fixed, paraffin-embedded tissue sections from 40 CRCs, 10 colonic adenomas,and 10 normal colon mucosa biopsies. The percentage of positive cells was recorded, mRNA expression of Erα and Erβ in 12 CRC tissues and paired normal colon tissues were detected by RT-PCR.RESULTS: Positive ER immunoreactivity was present in part of normal epithelium of biopsy (2/10), adenomas (3/10),and the sections of CRC tissue, most of them were nuclear positive. In CRCs, nuclear Erβ immunoreactivity was detected in over 10% of the cancer cells in 57.5% of the cases and was always associated with cytoplasmic immunoreactivity.There was no statistical significance between Erβ positive and negative groups in regard to depth of invasion and nodal metastases. Of the 12 CRC tissues and paired normal colon tissues, the expression rate of Erα mRNA in CRC tissue and corresponding normal colon tissue was 25% and 16.6%,respectively. Erβ mRNA was expressed in 83.3% CRC tissue and 91.7% paired normal colon tissue, respectively. Therewas no significant difference in Erβ mRNA level between CRC tissues and paired normal colon tissues.CONCLUSION: A large number of CRCs are positive for Erβ, which can also be detected in normal colonic epithelia.There is a different localization of Erβ immunoreactivity among normal colon mucosae, adenomas and CRCs. Erαand Erβ mRNA can be detected both in CRC tissue and in corresponding normal colon tissue. A post-transcriptional mechanism may account for the decrease of Erβ protein expression in CRC tissues.

  14. Disease causing mutations of calcium channels.

    Science.gov (United States)

    Lorenzon, Nancy M; Beam, Kurt G

    2008-01-01

    Calcium ions play an important role in the electrical excitability of nerve and muscle, as well as serving as a critical second messenger for diverse cellular functions. As a result, mutations of genes encoding calcium channels may have subtle affects on channel function yet strongly perturb cellular behavior. This review discusses the effects of calcium channel mutations on channel function, the pathological consequences for cellular physiology, and possible links between altered channel function and disease. Many cellular functions are directly or indirectly regulated by the free cytosolic calcium concentration. Thus, calcium levels must be very tightly regulated in time and space. Intracellular calcium ions are essential second messengers and play a role in many functions including, action potential generation, neurotransmitter and hormone release, muscle contraction, neurite outgrowth, synaptogenesis, calcium-dependent gene expression, synaptic plasticity and cell death. Calcium ions that control cell activity can be supplied to the cell cytosol from two major sources: the extracellular space or intracellular stores. Voltage-gated and ligand-gated channels are the primary way in which Ca(2+) ions enter from the extracellular space. The sarcoplasm reticulum (SR) in muscle and the endoplasmic reticulum in non-muscle cells are the main intracellular Ca(2+) stores: the ryanodine receptor (RyR) and inositol-triphosphate receptor channels are the major contributors of calcium release from internal stores.

  15. Distinct signalling pathways of murine histamine H1- and H4-receptors expressed at comparable levels in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Silke Beermann

    Full Text Available Histamine (HA is recognized by its target cells via four G-protein-coupled receptors, referred to as histamine H1-receptor (H1R, H2R, H3R, and H4R. Both H1R and H4R exert pro-inflammatory functions. However, their signal transduction pathways have never been analyzed in a directly comparable manner side by side. Moreover, the analysis of pharmacological properties of the murine orthologs, representing the main targets of pre-clinical research, is very important. Therefore, we engineered recombinant HEK293 cells expressing either mouse (mH1R or mH4R at similar levels and analyzed HA-induced signalling in these cells. HA induced intracellular calcium mobilization via both mH1R and mH4R, with the mH1R being much more effective. Whereas cAMP accumulation was potentiated via the mH1R, it was reduced via the mH4R. The regulation of both second messengers via the H4R, but not the H1R, was sensitive to pertussis toxin (PTX. The mitogen-activated protein kinases (MAPKs ERK 1/2 were massively activated downstream of both receptors and demonstrated a functional involvement in HA-induced EGR-1 gene expression. The p38 MAPK was moderately activated via both receptors as well, but was functionally involved in HA-induced EGR-1 gene expression only in H4R-expressing cells. Surprisingly, in this system p38 MAPK activity reduced the HA-induced gene expression. In summary, using this system which allows a direct comparison of mH1R- and mH4R-induced signalling, qualitative and quantitative differences on the levels of second messenger generation and also in terms of p38 MAPK function became evident.

  16. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Bräuner-Osborne, Hans

    2004-01-01

    with a significant homology to the human calcium-sensing receptor (CaR, 34% aa sequence identity), the taste receptor 1 (T1R1, 28%), and the metabotropic glutamate receptor 1 (mGluR1, 24%), places GPRC6A in family C of the GPCRs. Interestingly, GPRC6A bears the highest resemblance with an odorant goldfish 5...

  17. Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin.

    Science.gov (United States)

    Bouilleret, V; Schwaller, B; Schurmans, S; Celio, M R; Fritschy, J M

    2000-01-01

    The functional role of the calcium-binding proteins parvalbumin, calretinin, and calbindin D-28k for epileptogenesis and long-term seizure-related alterations of the hippocampal formation was assessed in single- and double-knockout mice, using a kainate model of mesial temporal lobe epilepsy. The effects of a unilateral intrahippocampal injection of kainic acid were assessed at one day, 30 days, and four months post-injection, using various markers of GABAergic interneurons (GABA-transporter type 1, GABA(A)-receptor alpha1 subunit, calretinin, calbindin D-28k, somatostatin, and neuropeptide Y). Parvalbumin-deficient, parvalbumin/calbindin-deficient, and parvalbumin/calretinin-deficient mice exhibited no difference in cytoarchitecture of the hippocampal formation and in the number, distribution, or morphology of interneurons compared to wild-type mice. Likewise, mutant mice were not more vulnerable to acute kainate-induced excitotoxicity or to long-term effects of recurrent focal seizures, and exhibited the same pattern of neurochemical alterations (e.g., bilateral induction of neuropeptide Y in granule cells) and morphogenic changes (enlargement and dispersion of dentate gyrus granule cells) as wild-type animals. Quantification of interneurons revealed no significant difference in neuronal vulnerability among the genotypes.These results indicate that the calcium-binding proteins investigated here are not essential for determining the neurochemical phenotype of interneurons. Furthermore, they are not protective against kainate-induced excitotoxicity in this model, and do not appear to modulate the overall level of excitability of the hippocampus. Finally, seizure-induced changes in gene expression in granule cells, which normally express high levels of calcium-binding proteins, apparently were not affected by the gene deletions analysed.

  18. Expression of tumor necrosis factor related apoptosis inducing ligand receptor in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Dongling Gao; Zhongwei Zhao; Hongxin Zhang; Lan Zhang; Kuisheng Chen; Yunhan Zhang

    2008-01-01

    BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells.OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR and to compare this expression to that in normal brain tissue.DESIGN: Observational analysis.SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory.PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P>0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee.METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase

  19. Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like behaviors in the chronic neuropathic pain state.

    Science.gov (United States)

    Goffer, Yossef; Xu, Duo; Eberle, Sarah E; D'amour, James; Lee, Michelle; Tukey, David; Froemke, Robert C; Ziff, Edward B; Wang, Jing

    2013-11-27

    Depression is a salient emotional feature of chronic pain. Depression alters the pain threshold and impairs functional recovery. To date, however, there has been limited understanding of synaptic or circuit mechanisms that regulate depression in the pain state. Here, we demonstrate that depression-like behaviors are induced in a rat model of chronic neuropathic pain. Using this model, we show that chronic pain selectively increases the level of GluA1 subunits of AMPA-type glutamate receptors at the synapses of the nucleus accumbens (NAc), a key component of the brain reward system. We find, in addition, that this increase in GluA1 levels leads to the formation of calcium-permeable AMPA receptors (CPARs). Surprisingly, pharmacologic blockade of these CPARs in the NAc increases depression-like behaviors associated with pain. Consistent with these findings, an AMPA receptor potentiator delivered into the NAc decreases pain-induced depression. These results show that transmission through CPARs in the NAc represents a novel molecular mechanism modulating the depressive symptoms of pain, and thus CPARs may be a promising therapeutic target for the treatment of pain-induced depression. More generally, these findings highlight the role of central glutamate signaling in pain states and define the brain reward system as an important region for the regulation of depressive symptoms of pain.

  20. Activation of muscarinic receptors increases the activity of the granule neurones of the rat dorsal cochlear nucleus--a calcium imaging study.

    Science.gov (United States)

    Kőszeghy, Áron; Vincze, János; Rusznák, Zoltán; Fu, Yuhong; Paxinos, George; Csernoch, László; Szücs, Géza

    2012-06-01

    Acetylcholine modulates the function of the cochlear nucleus via several pathways. In this study, the effects of cholinergic stimulation were studied on the cytoplasmic Ca(2+) concentration of granule neurones of the rat dorsal cochlear nucleus (DCN). Ca(2+) transients were recorded in Oregon-Green-BAPTA 1-loaded brain slices using a calcium imaging technique. For the detection, identification and characterisation of the Ca(2+) transients, a wavelet analysis-based method was developed. Granule cells were identified on the basis of their size and localisation. The action potential-coupled character of the Ca(2+) transients of the granule cells was established by recording fluorescence changes and electrical activity simultaneously. Application of the cholinergic agonist carbamyl-choline (CCh) significantly increased the frequency of the Ca(2+) transients (from 0.37 to 6.31 min(-1), corresponding to a 17.1-fold increase; n = 89). This effect was antagonised by atropine, whereas CCh could still evoke an 8.3-fold increase of the frequency of the Ca(2+) transients when hexamethonium was present. Using immunolabelling, the expression of both type 1 and type 3 muscarinic receptors (M1 and M3 receptors, respectively) was demonstrated in the granule cells. Application of 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (an M3-specific antagonist) prevented the onset of the CCh effect, whereas an M1-specific antagonist (pirenzepine) was less effective. We conclude that cholinergic stimulation increases the activity of granule cells, mainly by acting on their M3 receptors. The modulation of the firing activity of the granule cells, in turn, may modify the firing of projection neurones and may adjust signal processing in the entire DCN.

  1. Regulation of voltage gated calcium channels by GPCRs and post-translational modification.

    Science.gov (United States)

    Huang, Junting; Zamponi, Gerald W

    2016-10-18

    Calcium entry via voltage gated calcium channels mediates a wide range of physiological functions, whereas calcium channel dysregulation has been associated with numerous pathophysiological conditions. There are myriad cell signaling pathways that act on voltage gated calcium channels to fine tune their activities and to regulate their cell surface expression. These regulatory mechanisms include the activation of G protein-coupled receptors and downstream phosphorylation events, and their control over calcium channel trafficking through direct physical interactions. Calcium channels also undergo post-translational modifications that alter both function and density of the channels in the plasma membrane. Here we focus on select aspects of these regulatory mechanisms and highlight recent developments.

  2. L—type calcium channel blockers inhibit the development but not the expression of sensitization to morphine in mice

    Institute of Scientific and Technical Information of China (English)

    ZhanQ; ZhenJW

    2002-01-01

    The relationship between opioid actions and L-type calcium channel blockers has been well documented.However,there is no report relevant to L-type calcium channel blockers and morphinesensitization,which is suggested to be an analog of behaviors that are the characteristics of drug addiction.Here the effects of three L-type calcium channel blockers,nimodipine,nifedipine and verapamil,on morphine-induced locomotor activity,the development and the expression of sensitization to morphine were studied systematically.The results showed that both nimodipine and verapamil attenuated,while nifedipine had only a tendency to decrease morphine-induced locomotor activity.All the three drugs inhibited the development of sensitization to morphine.However,none of them showed any effects on the expression of morphine sensitization.These results indicate that blocking L-tpye calcium channel attenuates the locomotor stimulating effects of morphine and inhibits the development but not the expression of morphine-sensitization.

  3. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Hong Zhu; Zhi-Bin Yang

    2009-01-01

    BACKGROUND: The mda-7/IL-24 receptor belongs to the typeⅡ cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. METHODS: With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were ampliifed by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. RESULTS: PLC/PRF/5 and SMMC-7721 expressed IL-20R1;BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. CONCLUSION: Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  4. CHARACTERIZATION OF THE OLFACTORY RECEPTORS EXPRESSED IN HUMAN SPERMATOZOA

    Directory of Open Access Journals (Sweden)

    Caroline eFlegel

    2016-01-01

    Full Text Available The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicated that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa and demonstrates that ORs are involved in the physiological processes.

  5. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System.

    Science.gov (United States)

    Schneider, Erich H; Seifert, Roland

    2017-02-24

    A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [(35)S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li(+), Na(+), K(+)) and anions (Cl(-), Br(-), I(-)) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high

  6. Analysis of TRAIL receptor expression using anti-TRAIL death receptor-5 monoclonal antibodies

    Institute of Scientific and Technical Information of China (English)

    马远方; 杨东亮; 陈有海

    2003-01-01

    ObjectiveTo establish hybridomas that produce anti-death receptor-5 (DR5) monoclonal antibodies (mAbs) and check the surface expression of DR5 (sDR5) on cell lines.MethodsThe cDNA of human DR5 was cloned into pGAPZα. Recombinant Pichia pastoris clones generated via homologous recombination secreted high levels of sDR5. The sDR5 was purified using a nickel ion column. BALB/c mice were immunized with sDR5 and spleen cells were fused with the SP2/0-Ag 14. Monoclonal antibodies were tested by ELISA for their abilities binding to sDR5 and by flow cytometry for thereactivities to surface DR5 of Jurkat cells. Surface expression of the TRAIL receptor was determined by flow cytometric analysis measuring the binding of anti-DR5 mAb. Resultse to sDR5 as observed through ELISA. It was discovered using flow cytometry that only IgG was able to bind to DR5 on the plasma membrane of Jurkat cells. sDR5was found to completely inhibit anti-DR5 mAb binding to Jurkat cells. Pproximately 95% of Jurkat cells, 98% SW480, 99% U937, 100% U87, 86% HCT116, 64% HL-60, 47% HeLa and 13% K562 cells express membrane DR5. ConclusionsThese results demonstrate that anti-DR5 mAb is able to specifically bind to DR5and that DR5 is expressed at high levels on Jurkat, SW480, U87, U937 and HCT116cell lines, and at medium levels on HL-60 and HeLa cell lines. The expressionof DR5 on K562 cell line is low.

  7. Serotonin 1A receptors alter expression of movement representations.

    Science.gov (United States)

    Scullion, Kathleen; Boychuk, Jeffery A; Yamakawa, Glenn R; Rodych, Justin T G; Nakanishi, Stan T; Seto, Angela; Smith, Victoria M; McCarthy, Ryan W; Whelan, Patrick J; Antle, Michael C; Pittman, Quentin J; Teskey, G Campbell

    2013-03-13

    Serotonin has a myriad of central functions involving mood, appetite, sleep, and memory and while its release within the spinal cord is particularly important for generating movement, the corresponding role on cortical movement representations (motor maps) is unknown. Using adult rats we determined that pharmacological depletion of serotonin (5-HT) via intracerebroventricular administration of 5,7 dihydroxytryptamine resulted in altered movements of the forelimb in a skilled reaching task as well as higher movement thresholds and smaller maps derived using high-resolution intracortical microstimulation (ICMS). We ruled out the possibility that reduced spinal cord excitability could account for the serotonin depletion-induced changes as we observed an enhanced Hoffman reflex (H-reflex), indicating a hyperexcitable spinal cord. Motor maps derived in 5-HT1A receptor knock-out mice also showed higher movement thresholds and smaller maps compared with wild-type controls. Direct cortical application of the 5-HT1A/7 agonist 8-OH-DPAT lowered movement thresholds in vivo and increased map size in 5-HT-depleted rats. In rats, electrical stimulation of the dorsal raphe lowered movement thresholds and this effect could be blocked by direct cortical application of the 5-HT1A antagonist WAY-100135, indicating that serotonin is primarily acting through the 5-HT1A receptor. Next we developed a novel in vitro ICMS preparation that allowed us to track layer V pyramidal cell excitability. Bath application of WAY-100135 raised the ICMS current intensity to induce action potential firing whereas the agonist 8-OH-DPAT had the opposite effect. Together our results demonstrate that serotonin, acting through 5-HT1A receptors, plays an excitatory role in forelimb motor map expression.

  8. The role of L-type calcium channels in the development and expression of behavioral sensitization to ethanol.

    Science.gov (United States)

    Broadbent, Julie

    2013-10-11

    Behavioral sensitization is thought to play a significant role in drug addiction. L-type calcium channels have been implicated in sensitization to stimulant and opiate drugs but it is unclear if these channels also contribute to sensitization to ethanol. The effects of three L-type calcium channel blockers, nifedipine (1-7.5 mg/kg), diltiazem (12.5-50 mg/kg), and verapamil (12.5 and 25 mg/kg), on sensitization to ethanol (2 g/kg) were examined in DBA/2J mice. All three blockers reduced but did not prevent expression of sensitization. Only nifedipine blocked acquisition of sensitization. Nifedipine and verapamil decreased blood ethanol levels. The current findings suggest L-type calcium channels do not play a substantial role in sensitization to ethanol and that the neural mechanisms underlying sensitization to ethanol are distinct from those mediating sensitization to stimulants and opiates.

  9. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D;

    2001-01-01

    .2 protein was demonstrated by immunochemical labeling of rat preglomerular vasculature and juxtamedullary efferent arterioles and vasa recta. Cortical efferent arterioles were not immunopositive. Recordings of intracellular calcium concentration with digital fluorescence imaging microscopy showed......The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells...... showed coexpression of mRNAs for T-type subunits (Ca(V)3.1, Ca(V)3.2) and for an L-type subunit (Ca(V)1.2). The same expression pattern was observed in juxtamedullary efferent arterioles and outer medullary vasa recta. No calcium channel messages were detected in cortical efferent arterioles. Ca(V)1...

  10. A novel gene delivery system targeting cells expressing VEGF receptors

    Institute of Scientific and Technical Information of China (English)

    LIJUNMIN; JINGCHULUO; 等

    1999-01-01

    Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors.GV1,GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex.Using pSV2-β-galactosidase as a reporter gene,it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) and human malignant melanoma cell lines (A375) in vitro.In vivo experiments,exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO,human malignant melanoma A375 and human hepatoma graft in nude mice.This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice.These results are correlated with the relevant receptors(flt-1,flk-1/KDR) expression on the targeted cells and tissues.

  11. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors.

    Science.gov (United States)

    Hamada, Kozo; Terauchi, Akiko; Nakamura, Kyoko; Higo, Takayasu; Nukina, Nobuyuki; Matsumoto, Nagisa; Hisatsune, Chihiro; Nakamura, Takeshi; Mikoshiba, Katsuhiko

    2014-09-23

    The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.

  12. Expression of estrogen receptor and estrogen receptor messenger RNA in gastric carcinoma tissues

    Institute of Scientific and Technical Information of China (English)

    Xin-Han Zhao; Shan-Zhi Gu; Shan-Xi Liu; Bo-Rong Pan

    2003-01-01

    AIM: To study estrogen receptor (ER) and estrogen receptor messenger RNA (ERmRNA) expression in gastric carcinoma tissues and to investigate their association with the pathologic types of gastric carcinoma.METHODS: The expression of ER and ERmRNA in gastric carcinoma tissues (15 males and 15 females, 42-70 years old) was detected by immunohistochemistry and in situ hybridization, respectively.RESULTS: The positive rate of ER (immunohistochemistry)was 33.3% in males and 46.7% in females. In Borrmann Ⅳ gastric carcinoma ER positive rate was greater than that in other pathologic types, and in poorly differentiated adenocarcinoma and signet ring cell carcinoma the positive rates were greater than those in other histological types of both males and females (P<0.05). The ER was more highly expressed in diffused gastric carcinoma than in non-diffused gastric carcinoma (P<0.05). The ER positive rate was also related to regional lymph nodes metastases (P<0.05), and was significantly higher in females above 55 years old, and higher in males under 55 years old (P<0.05). The ERmRNA (in situ hybridization) positive rate was 73.3% in males and 86.7% in females. The ERmRNA positive rates were almost the same in Borrmann Ⅰ, Ⅱ, Ⅲ and Ⅳ gastric carcinoma (P>0.05). ERmRNA was expressed in all tubular adenocarcinoma, poorly differentiated adenocarcinoma and signet ring cell carcinoma (P<0.05). The ERmRNA positive rate was related to both regional lymph nodes metastases and gastric carcinoma growth patterns, and was higher in both sexes above 55 years old but without statistical significance (P>0.05). The positive rate of ERmRNA expression by in situ hybridization was higher than that of ER expression by immunohistochemistry (P<0.05).CONCLUSION: ERmRNA expression is related to the pathological behaviors of gastric carcinoma, which might help to predict the prognosis and predict the effectiveness of endocrine therapy for gastric carcinoma.

  13. Anti free radical action of calcium antagonists and H1 and H2 receptors antagonists in neoplastic disease.

    Science.gov (United States)

    della Rovere, F; Broccio, M; Granata, A; Zirilli, A; Brugnano, L; Artemisia, A; Broccio, G

    1996-01-01

    The blood of the subjects suffering from Neoplastic Disease (ND) shows phenomena of membrane peroxidation due to the presence of Free Radicals (FRs), in a quantity much greater than the one observed in the blood of healthy subjects. This can be detected either by calculating the time necessary for the formation of "Heinz bodies" (Hbs), (p < 0.00001) after oxidative stress of the blood in vitro with acetylphenylidrazine (APH), or by calculating the methemoglobin (metHb) quantity that forms after the same treatment (P < 0.00001). The statistical analyses we carried out showed that metHb formation was not affected by age, sex, smoking habits, red blood cell number, Hb, Ht or tumor staging. In this study, by using equal parameters of investigation, we noted that the blood of the subjects with ND who were previously treated with calcium-antagonists drugs and with antagonists of H1 and H2 receptors, gave results completely superimposable on the results obtained from healthy subjects, implying that the treatment had avoided the increase of FRs. Therefore we concluded that calcium-antagonists and the antagonists of the H1 and H2 receptors behave as antioxidant substances, having decreased the FRs damaging activity on the cellular membranes, thus controlling, although to a limited degree, the pejorative evolution of the disease. It is also important to remember that investigations into the ND, even possible screenings, must take into account the above said data, submitting the subjects under investigation to a pharmacological wash out, particularly with those substances which, are considered to be scavengers of FRs. Some of these substances are investigated in this work.

  14. Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation

    Directory of Open Access Journals (Sweden)

    Lu Fang-hao

    2010-06-01

    Full Text Available Abstract Communication between the SR (sarcoplasmic reticulum, SR and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM. Although it has been demonstrated that CaR (calcium sensing receptor activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re, the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.

  15. Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation.

    Science.gov (United States)

    Lu, Fang-hao; Tian, Zhiliang; Zhang, Wei-hua; Zhao, Ya-jun; Li, Hu-lun; Ren, Huan; Zheng, Hui-shuang; Liu, Chong; Hu, Guang-xia; Tian, Ye; Yang, Bao-feng; Wang, Rui; Xu, Chang-qing

    2010-06-17

    Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.

  16. A complex pattern of chemokine receptor expression is seen in osteosarcoma

    Directory of Open Access Journals (Sweden)

    Nathrath Michaela

    2008-01-01

    Full Text Available Abstract Background Osteosarcoma is the most frequent bone tumor in childhood and adolescence. Patients with primary metastatic disease have a poor prognosis. It is therefore important to better characterize the biology of this tumor to define new prognostic markers or therapeutic targets for tailored therapy. Chemokines and their receptors have been shown to be involved in the development and progression of malignant tumors. They are thought to be active participants in the biology of osteosarcoma. The function of specific chemokines and their receptors is strongly associated with the biological context and microenvironment of their expression. In this report we characterized the expression of a series of chemokine receptors in the complex environment that defines osteosarcoma. Methods The overall level of chemokine receptor mRNA expression was determined using TaqMan RT-PCR of microdissected archival patient biopsy samples. Expression was then verified at the protein level by immunohistochemistry using a series of receptor specific antibody reagents to elucidate the cellular association of expression. Results Expression at the RNA level was found for most of the tested receptors. CCR1 expression was found on infiltrating mononuclear and polynuclear giant cells in the tumor. Cells associated with the lining of intratumoral vessels were shown to express CCR4. Infiltrating mononuclear cells and tumor cells both showed expression of the receptor CCR5, while CCR7 was predominantly expressed by the mononuclear infiltrate. CCR10 was only very rarely detected in few scattered infiltrating cells. Conclusion Our data elucidate for the first time the cellular context of chemokine receptor expression in osteosarcoma. This is an important issue for better understanding potential chemokine/chemokine receptor function in the complex biologic processes that underlie the development and progression of osteosarcoma. Our data support the suggested involvement of

  17. Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein-Potential Crosstalk Between Sterol and Glycerophospholipid Mediators.

    Science.gov (United States)

    Chew, Wee-Siong; Ong, Wei-Yi

    2016-01-01

    Calcium-independent phospholipase A2 (iPLA2) is an 85-kDa enzyme that releases docosahexaenoic acid (DHA) from glycerophospholipids. DHA can be metabolized to resolvins and neuroprotectins that have anti-inflammatory properties and effects on neural plasticity. Recent studies show an important role of prefrontal cortical iPLA2 in hippocampo-prefrontal cortical LTP and antidepressant-like effect of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline. In this study, we elucidated the cellular mechanisms through which stimulation of adrenergic receptors could lead to increased iPLA2 expression. Treatment of SH-SY5Y neuroblastoma cells with maprotiline, another tricyclic antidepressant with noradrenaline reuptake inhibiting properties, nortriptyline, and the adrenergic receptor agonist, phenylephrine, resulted in increased iPLA2β mRNA expression. This increase was blocked by inhibitors to alpha-1 adrenergic receptor, mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK) 1/2, and sterol regulatory element-binding protein (SREBP). Maprotiline and phenylephrine induced binding of SREBP-2 to sterol regulatory element (SRE) region on the iPLA2 promoter, as determined by electrophoretic mobility shift assay (EMSA). Together, results indicate that stimulation of adrenoreceptors causes increased iPLA2 expression via MAP kinase/ERK 1/2 and SREBP, and suggest a possible mechanism for effect of CNS noradrenaline on neural plasticity and crosstalk between sterol and glycerophospholipid mediators, that may play a role in physiological or pathophysiological processes in the brain and other organs.

  18. Mapping transmembrane residues of proteinase activated receptor 2 (PAR2) that influence ligand-modulated calcium signaling.

    Science.gov (United States)

    Suen, J Y; Adams, M N; Lim, J; Madala, P K; Xu, W; Cotterell, A J; He, Y; Yau, M K; Hooper, J D; Fairlie, D P

    2017-03-01

    Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor involved in metabolism, inflammation, and cancers. It is activated by proteolysis, which exposes a nascent N-terminal sequence that becomes a tethered agonist. Short synthetic peptides corresponding to this sequence also activate PAR2, while small organic molecules show promising PAR2 antagonism. Developing PAR2 ligands into pharmaceuticals is hindered by a lack of knowledge of how synthetic ligands interact with and differentially modulate PAR2. Guided by PAR2 homology modeling and ligand docking based on bovine rhodopsin, followed by cross-checking with newer PAR2 models based on ORL-1 and PAR1, site-directed mutagenesis of PAR2 was used to investigate the pharmacology of three agonists (two synthetic agonists and trypsin-exposed tethered ligand) and one antagonist for modulation of PAR2 signaling. Effects of 28 PAR2 mutations were examined for PAR2-mediated calcium mobilization and key mutants were selected for measuring ligand binding. Nineteen of twenty-eight PAR2 mutations reduced the potency of at least one ligand by >10-fold. Key residues mapped predominantly to a cluster in the transmembrane (TM) domains of PAR2, differentially influence intracellular Ca(2+) induced by synthetic agonists versus a native agonist, and highlight subtly different TM residues involved in receptor activation. This is the first evidence highlighting the importance of the PAR2 TM regions for receptor activation by synthetic PAR2 agonists and antagonists. The trypsin-cleaved N-terminus that activates PAR2 was unaffected by residues that affected synthetic peptides, challenging the widespread practice of substituting peptides for proteases to characterize PAR2 physiology.

  19. Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation.

    Science.gov (United States)

    Choi, Yura; Park, Jeong-Eun; Jeong, Jong Seob; Park, Jung-Keug; Kim, Jongpil; Jeon, Songhee

    2016-10-01

    Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.

  20. The Characteristics of Gastrin Receptor Expression in Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    HUANGGuangjian; ZHANGYanling; LEZhuqin; YUFen; ZHANGGuangming; DENShouzhen; NIQuanxing

    2003-01-01

    Objective: To investigate the characteristics and significance of gastrin receptor (GR) expression in gastric cancer. Methods: The content and affinity of GR were determined in 34 specimens of gastric cancer using radioligand binding assay. The correlation was analyzed between GR expression in tumors and tumor sites, stages, grades, DNA of gastric cancer cells, GR of adjacent normal gastric mucosa, survival time. Results: Among the 34 cases of gastric cancer, 16 patients (47.1%) had positive GR in specimens of gastric cancer, with high-affinity GR in 14 cases (41.2%) and low-affinity GR in 2 cases. Of high-affinity GR, 9 cases had cancers with GR>10 fmol/mg.protein (39.5±14.4 fmol/mg.protein), 5 cases with GR≤10fmol/mg.protein (6.0±2.8 fmol/mg.protein). High-affinity GR was easier to be expressed in cancers ofgastric body (7/9) and cardia (3/6) than in gastric antrum (4/19). The expression of GR in gastric cancer accorded well with that in normal gastric mucosa at the same sites, but with more high-special binding sites than the latter (39.5±14.4 vs 26.1±16.6 fmol/mg.protein). A significantly greater proportion of patients withⅢ+Ⅳ stages (13/24) had high-affinity GR compared with I+II stages (1/10) of gastric cancers. During a follow-up of 23-61 months, 11 of 13 cases with high-affinity GR were dead, whereas 4 of 11 cases with low-affinity or negative GR were dead in Ⅲ+Ⅳ stages of gastric cancer. Conclusion: GR is an important factor in the autocrine growth of gastric cancer cells, and helpful in the prediction of prognosis and guidance of treatment with GR antagonists.

  1. Subpopulations of neurokinin 1 receptor-expressing neurons in the rat lateral amygdala display a differential pattern of innervation from distinct glutamatergic afferents

    Science.gov (United States)

    Sreepathi, H.K.; Ferraguti, F.

    2012-01-01

    Substance P by acting on its preferred receptor neurokinin 1 (NK1) in the amygdala appears to be critically involved in the modulation of fear and anxiety. The present study was undertaken to identify neurochemically specific subpopulations of neuron expressing NK1 receptors in the lateral amygdaloid nucleus (LA), a key site for regulating these behaviors. We also analyzed the sources of glutamatergic inputs to these neurons. Immunofluorescence analysis of the co-expression of NK1 with calcium binding proteins in LA revealed that ∼35% of NK1-containing neurons co-expressed parvalbumin (PV), whereas no co-localization was detected in the basal amygdaloid nucleus. We also show that neurons expressing NK1 receptors in LA did not contain detectable levels of calcium/calmodulin kinase IIα, thus suggesting that NK1 receptors are expressed by interneurons. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, we found that in LA ∼75% of glutamatergic synapses onto NK1-expressing neurons were labeled for the vesicular glutamate transporter 1 indicating that they most likely are of cortical, hippocampal, or intrinsic origin. The remaining ∼25% were immunoreactive for the vesicular glutamate transporter 2 (VGluT2), and may then originate from subcortical areas. On the other hand, we could not detect VGluT2-containing inputs onto NK1/PV immunopositive neurons. Our data add to previous localization studies by describing an unexpected variation between LA and basal nucleus of the amygdala (BA) in the neurochemical phenotype of NK1-expressing neurons and reveal the relative source of glutamatergic inputs that may activate these neurons, which in turn regulate fear and anxiety responses. PMID:22210508

  2. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function.

    Directory of Open Access Journals (Sweden)

    Fernando Aprile-Garcia

    Full Text Available The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln by arginine (Arg substitution at codon 460 of the purinergic P2X7 receptor (P2X7R has been associated with mood disorders. No change in function (loss or gain has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations.

  3. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  4. PLEIOTROPIC EFFECTS OF PARATHYROIDECTOMY AND AGONIST CALCIUM-SENSITIVE RECEPTOR, CINACALCET

    Directory of Open Access Journals (Sweden)

    L. V. Egshatyan

    2015-09-01

    Full Text Available Aim. To evaluate the effect of parathyroidectomy and cinacalcet on anemia, lipid profile and blood pressure (BP in uremic hyperparathyroidism.Material and methods. Uremic patients (n=39 treated with hemodialysis and having secondary hyperparathyroidism were included into the study. Radical parathyroidectomy was performed in 21 patients, 18 patients were treated with cinacalcet. BP measurement, determination of blood levels of albumin, total calcium, phosphorus, total cholesterol (TC, low (LDL and high density lipoproteins, triglycerides, intact parathyroid hormone, and hemoglobin were performed in all patients initially and during treatment. Doses of antihypertensive and erythropoiesis-stimulating agents were also assessed.Results. Calcium-phosphorus metabolism indices improved after 6 months of cinacalcet therapy and parathyroidectomy (p<0.05. BP reduction not requiring antihypertensive drugs dose adjustment was found in patients treated with cinacalcet. Significant BP reduction (p<0.05 was observed after parathyroidectomy and it required antihypertensive drugs cancellation or dose lowering. Cinacalcet therapy and parathyroidectomy led to increase in hemoglobin level by 2.02% (p=0.143 and 7.6% (p=0.029, respectively, as well as reduction in weekly dose of erythropoiesis-stimulating drugs by 2.7% (p=0.875 and 8.9% (p=0.751, respectively. Significant (p<0.05 decrease in LDL (5.6%, and triglycerides (23.7% levels was found in patients treated with cinacalcet. Reduction (p<0.05 in total cholesterol (1.4% and LDL (4.3% levels was observed after parathyroidectomy.Conclusion. The pleiotropic effects (reduction in BP and atherogenic lipids levels, as well as decrease in anemia resistant to the action of erythropoiesis-stimulating agents were found after parathyroidectomy and cinacalcet therapy additionally to calcium-phosphorus metabolism improvement.

  5. PLEIOTROPIC EFFECTS OF PARATHYROIDECTOMY AND AGONIST CALCIUM-SENSITIVE RECEPTOR, CINACALCET

    Directory of Open Access Journals (Sweden)

    L. V. Egshatyan

    2013-01-01

    Full Text Available Aim. To evaluate the effect of parathyroidectomy and cinacalcet on anemia, lipid profile and blood pressure (BP in uremic hyperparathyroidism.Material and methods. Uremic patients (n=39 treated with hemodialysis and having secondary hyperparathyroidism were included into the study. Radical parathyroidectomy was performed in 21 patients, 18 patients were treated with cinacalcet. BP measurement, determination of blood levels of albumin, total calcium, phosphorus, total cholesterol (TC, low (LDL and high density lipoproteins, triglycerides, intact parathyroid hormone, and hemoglobin were performed in all patients initially and during treatment. Doses of antihypertensive and erythropoiesis-stimulating agents were also assessed.Results. Calcium-phosphorus metabolism indices improved after 6 months of cinacalcet therapy and parathyroidectomy (p<0.05. BP reduction not requiring antihypertensive drugs dose adjustment was found in patients treated with cinacalcet. Significant BP reduction (p<0.05 was observed after parathyroidectomy and it required antihypertensive drugs cancellation or dose lowering. Cinacalcet therapy and parathyroidectomy led to increase in hemoglobin level by 2.02% (p=0.143 and 7.6% (p=0.029, respectively, as well as reduction in weekly dose of erythropoiesis-stimulating drugs by 2.7% (p=0.875 and 8.9% (p=0.751, respectively. Significant (p<0.05 decrease in LDL (5.6%, and triglycerides (23.7% levels was found in patients treated with cinacalcet. Reduction (p<0.05 in total cholesterol (1.4% and LDL (4.3% levels was observed after parathyroidectomy.Conclusion. The pleiotropic effects (reduction in BP and atherogenic lipids levels, as well as decrease in anemia resistant to the action of erythropoiesis-stimulating agents were found after parathyroidectomy and cinacalcet therapy additionally to calcium-phosphorus metabolism improvement.

  6. Regulation of NKG2D-ligand cell surface expression by intracellular calcium after HDAC-inhibitor treatment

    DEFF Research Database (Denmark)

    Jensen, Helle; Hagemann-Jensen, Michael Henrik; Lauridsen, Felicia Kathrine Bratt;

    2013-01-01

    -cells. We further show that secretion and cell surface binding of the calcium-regulating protein galectin-1 is enhanced upon HDAC-inhibitor treatment of melanoma cells. However, binding of galectin-1 to cell surface glycoproteins was not critical for constitutive or HDAC-inhibitor induced MICA/B and ULBP2......In this study we demonstrate that histone deacetylase (HDAC)-inhibitor mediated cell surface expression of the structural different NKG2D-ligands MICA/B and ULBP2 is calcium-dependent. Treatment with the calcium chelator EGTA inhibited constitutive as well as HDAC-inhibitor induced MICA/B and ULBP2...... cell surface expression on melanoma cells and Jurkat T-cells. A NKG2D-dependent cytolytic assay and staining with a recombinant NKG2D-Fc fusion protein showed that calcium chelation impaired the functional ability of NKG2D-ligands induced by HDAC-inhibitor treatment. The HDAC-inhibitor induced cell...

  7. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    Directory of Open Access Journals (Sweden)

    Shogo Sato

    2011-01-01

    Full Text Available We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented by the downregulation of the receptor. Endurance training improves oxidative performance partly by increasing β2-adrenergic receptor density in exercise-recruited slow-twitch muscles. However, excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although the preventive effects of β2-adrenergic receptor stimulation on atrophy induced by muscle disuse and catabolic hormones or drugs are observed, these catabolic conditions decrease β2-adrenergic receptor expression in slow-twitch muscles. These findings present evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal muscles play an important physiological role in the regulation of protein and energy balance.

  8. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25

    Directory of Open Access Journals (Sweden)

    Medler Kathryn F

    2006-03-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca2+ channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP from two taste-specific promoters to examine Ca2+ signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca2+ currents were assessed with Ca2+ imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. Results Depolarization with high K+ resulted in an increase in intracellular Ca2+ in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca2+ responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na+ and K+ currents, but no evidence of Ca2+ currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na+ and K+ currents and a high threshold voltage-gated Ca2+ current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells

  9. Defective expression of scavenger receptors in celiac disease mucosa.

    Directory of Open Access Journals (Sweden)

    Maria Laura Cupi

    Full Text Available Celiac disease (CD is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder.

  10. Defective expression of scavenger receptors in celiac disease mucosa.

    Science.gov (United States)

    Cupi, Maria Laura; Sarra, Massimiliano; De Nitto, Daniela; Franzè, Eleonora; Marafini, Irene; Monteleone, Ivan; Del Vecchio Blanco, Giovanna; Paoluzi, Omero Alessandro; Di Fusco, Davide; Gentileschi, Paolo; Ortenzi, Angela; Colantoni, Alfredo; Pallone, Francesco; Monteleone, Giovanni

    2014-01-01

    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder.

  11. Expression of leptin and leptin receptor isoforms in the human stomach

    OpenAIRE

    Mix, H.; Widjaja, A; Jandl, O.; Cornberg, M; Kaul, A; Goke, M; Beil, W.; Kuske, M.; Brabant, G; Manns, M; Wagner, S.

    2000-01-01

    BACKGROUND—Leptin is an important regulator of food intake and energy expenditure. Initially it was thought to be expressed exclusively in and secreted by adipocytes. Recently, leptin expression was also noted in other tissues, including rat gastric mucosa. Information on leptin and leptin receptor expression in the human stomach is lacking.
AIM—To investigate expression of leptin and its corresponding receptors in human gastric epithelial cells.
METHODS—Fundic and antral gastric mucosal biop...

  12. Cytokine receptor expression in human lymphoid tissue: analysis by fluorescence microscopy.

    Science.gov (United States)

    Zola, H; Ridings, J; Weedon, H; Fusco, M; Byard, R W; Macardle, P J

    1995-08-01

    A highly-sensitive flourescence method, capable of detecting cytokine receptors present at low concentrations (around 100 molecules per cell) by flow cytometry, was adapted for use on tissue sections. This method was used to examine the expression of several cytokine receptors in lymphoid tissues. IL-2 receptors were distributed broadly, with higher concentrations in T cell areas. IL-1 receptor Type 1 was detected in T cell areas and in the follicular mantle, and was strongly expressed on vascular endothelium. IL-6 receptor was found at very low concentration, both within and outside germinal centres. The gp 130 molecule, which is involved in the functional receptor complex for IL-6 and several other cytokines, was present at higher concentrations, particularly in the germinal centre. Analysis of receptor expression in secondary lymphoid tissue provides evidence bearing on the physiological roles of cytokines, as these tissues contain cells at various stages of physiological activation located in well-defined functional zones.

  13. Gene expression signature of estrogen receptor α status in breast cancer

    Directory of Open Access Journals (Sweden)

    Baggerly Keith

    2005-03-01

    Full Text Available Abstract Background Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE profiles of 26 human breast carcinomas based on their estrogen receptor α (ER status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. Results We identified 520 transcripts differentially expressed between ERα-positive (+ and ERα-negative (- primary breast tumors (Fold change ≥ 2; p Estrogen Responsive Elements (EREs distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERα (+ breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011, calcium ion binding related transcripts (p = 0.033 and steroid hormone receptor activity related transcripts (p = 0.031. SAGE data associated with ERα status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERα associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERα (+ invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. Conclusion The integration of the breast cancer comparative transcriptome analysis based on ERα status coupled to

  14. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers

    Directory of Open Access Journals (Sweden)

    McMillan Catherine R

    2004-10-01

    Full Text Available Abstract Background In order to optimize the potential benefits of neural stem cell (NSC transplantation for the treatment of neurodegenerative disorders, it is necessary to understand their biological characteristics. Although neurotrophin transduction strategies are promising, alternative approaches such as the modulation of intrinsic neurotrophin expression by NSCs, could also be beneficial. Therefore, utilizing the C17.2 neural stem cell line, we have examined the expression of selected neurotrophic factors under different in vitro conditions. In view of recent evidence suggesting a role for the pineal hormone melatonin in vertebrate development, it was also of interest to determine whether its G protein-coupled MT1 and MT2 receptors are expressed in NSCs. Results RT-PCR analysis revealed robust expression of glial cell-line derived neurotrophic factor (GDNF, brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in undifferentiated cells maintained for two days in culture. After one week, differentiating cells continued to exhibit high expression of BDNF and NGF, but GDNF expression was lower or absent, depending on the culture conditions utilized. Melatonin MT1 receptor mRNA was detected in NSCs maintained for two days in culture, but the MT2 receptor was not seen. An immature MT1 receptor of about 30 kDa was detected by western blotting in NSCs cultured for two days, whereas a mature receptor of about 40 – 45 kDa was present in cells maintained for longer periods. Immunocytochemical studies demonstrated that the MT1 receptor is expressed in both neural (β-tubulin III positive and glial (GFAP positive progenitor cells. An examination of the effects of melatonin on neurotrophin expression revealed that low physiological concentrations of this hormone caused a significant induction of GDNF mRNA expression in NSCs following treatment for 24 hours. Conclusions The phenotypic characteristics of C17.2 cells suggest that they are

  15. Expression of a novel D4 dopamine receptor in the lamprey brain. Evolutionary considerations about dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Juan ePérez-Fernández

    2016-01-01

    Full Text Available Numerous data reported in lampreys, which belong to the phylogenetically oldest branch of vertebrates, show that the dopaminergic system was already well developed at the dawn of vertebrate evolution. The expression of dopamine in the lamprey brain is well conserved when compared to other vertebrates, and this is also true for the D2 receptor. Additionally, the key role of dopamine in the striatum, modulating the excitability in the direct and indirect pathways through the D1 and D2 receptors, has also been recently reported in these animals. The moment of divergence regarding the two whole genome duplications occurred in vertebrates suggests that additional receptors, apart from the D1 and D2 previously reported, could be present in lampreys. We used in situ hybridization to characterize the expression of a novel dopamine receptor, which we have identified as a D4 receptor according to the phylogenetic analysis. The D4 receptor shows in the sea lamprey a more restricted expression pattern than the D2 subtype, as reported in mammals. Its main expression areas are the striatum, lateral and ventral pallial sectors, several hypothalamic regions, habenula, and mesencephalic and rhombencephalic motoneurons. Some expression areas are well conserved through vertebrate evolution, as is the case of the striatum or the habenula, but the controversies regarding the D4 receptor expression in other vertebrates hampers for a complete comparison, especially in rhombencephalic regions. Our results further support that the dopaminergic system in vertebrates is well conserved and suggest that at least some functions of the D4 receptor were already present before the divergence of lampreys.

  16. Calcium wave of tubuloglomerular feedback.

    Science.gov (United States)

    Peti-Peterdi, János

    2006-08-01

    ATP release from macula densa (MD) cells into the interstitium of the juxtaglomerular (JG) apparatus (JGA) is an integral component of the tubuloglomerular feedback (TGF) mechanism that controls the glomerular filtration rate. Because the cells of the JGA express a number of calcium-coupled purinergic receptors, these studies tested the hypothesis that TGF activation triggers a calcium wave that spreads from the MD toward distant cells of the JGA and glomerulus. Ratiometric calcium imaging of in vitro microperfused isolated JGA-glomerulus complex dissected from rabbits was performed with fluo-4/fura red and confocal fluorescence microscopy. Activation of TGF by increasing tubular flow rate at the MD rapidly produced a significant elevation in intracellular Ca(2+) concentration ([Ca(2+)](i)) in extraglomerular mesangial cells (by 187.6 +/- 45.1 nM) and JG renin granular cells (by 281.4 +/- 66.6 nM). Subsequently, cell-to-cell propagation of the calcium signal at a rate of 12.6 +/- 1.1 microm/s was observed upstream toward proximal segments of the afferent arteriole and adjacent glomeruli, as well as toward intraglomerular elements including the most distant podocytes (5.9 +/- 0.4 microm/s). The same calcium wave was observed in nonperfusing glomeruli, causing vasoconstriction and contractions of the glomerular tuft. Gap junction uncoupling, an ATP scavenger enzyme cocktail, and pharmacological inhibition of P(2) purinergic receptors, but not adenosine A(1) receptor blockade, abolished the changes in [Ca(2+)](i) and propagation of the calcium wave. These studies provided evidence that both gap junctional communication and extracellular ATP are integral components of the TGF calcium wave.

  17. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, E.; Clerc, R.G.

    1988-06-01

    The cellular mechanisms involved in chronic inflammatory processes are poorly understood. This is especially true for the role of macrophages, which figure prominently in the inflammatory response. Two proteins, MRP8 and MRP14, which are expressed in infiltrate macrophages during inflammatory reactions but not in normal tissue macrophages, which have been characterized. Here the authors report that MRP8 and MRP14 mRNAs are specially expressed in human cells of myeloid origin and that their expression is regulated during monocycle-macrophage and granulocyte differentiation. To initiate the analysis of cis-acting elements governing the tissue-specific expression of the MRP genes, the authors cloned the human genes encoding MRP8 and MRP14. Both genes contain three exons, are single copy, and have a strikingly similar organization. They belong to a novel subfamily of highly homologous calcium-binding proteins which includes S100..cap alpha.., S100BETA, intestinal calcium-binding protein, P11, and calcyclin (2A9). A transient expression assay was devised to investigate the tissue-specific regulatory elements responsible for MRP gene expression after differentiation in leukemia HL60 cells. The results of this investigation demonstrated that the cis-acting element responsible for MRP expression are present on the cloned DNA fragment containing the MRP gene loci.

  18. Regulation of TRAIL receptor expression by β-catenin in colorectal tumours

    NARCIS (Netherlands)

    Jalving, M.; Heijink, D. M.; Koornstra, J. J.; Boersma-van Ek, W.; Zwart, N.; Wesseling, Johannes; Sluiter, W. J.; de Vries, E.G.E.; Kleibeuker, J. H.; de Jong, S.

    2014-01-01

    Expression of the pro-apoptotic TRAIL receptors is regulated, at least in part, by beta-catenin. We show that beta-catenin co-localizes with DR4/5 in human and mouse colorectal tumours and that downregulation of beta-catenin in cell line models reduces TRAIL receptor expression and TRAIL sensitivity

  19. Potential roles for calcium-sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin).

    Science.gov (United States)

    Wu, Wenda; Zhou, Hui-Ren; Pestka, James J

    2017-01-01

    Food contamination by the trichothecene mycotoxin deoxynivalenol (DON, vomitoxin) has the potential to adversely affect animal and human health by suppressing food intake and impairing growth. In mice, the DON-induced anorectic response results from aberrant satiety hormone secretion by enteroendocrine cells (EECs) of the gastrointestinal tract. Recent in vitro studies in the murine STC-1 EEC model have linked DON-induced satiety hormone secretion to activation of calcium-sensing receptor (CaSR), a G-coupled protein receptor, and transient receptor potential ankyrin-1 (TRPA1), a TRP channel. However, it is unknown whether similar mechanisms mediate DON's anorectic effects in vivo. Here, we tested the hypothesis that DON-induced food refusal and satiety hormone release in the mouse are linked to activation of CaSR and TRPA1. Oral treatment with selective agonists for CaSR (R-568) or TRPA1 (allyl isothiocyanate (AITC)) suppressed food intake in mice, and the agonist's effects were suppressed by pretreatment with corresponding antagonists NPS-2143 or ruthenium red (RR), respectively. Importantly, NPS-2143 or RR inhibited both DON-induced food refusal and plasma elevations of the satiety hormones cholecystokinin (CCK) and peptide YY3-36 (PYY3-36); cotreatment with both antagonists additively suppressed both anorectic and hormone responses to DON. Taken together, these in vivo data along with prior in vitro findings support the contention that activation of CaSR and TRPA1 contributes to DON-induced food refusal by mediating satiety hormone exocytosis from EEC.

  20. TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Bisgin Atil

    2010-08-01

    Full Text Available Abstract Background Rheumatoid Arthritis (RA is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28 using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4 and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis.

  1. Alcohol Consumption and Risk of Breast Cancer by Tumor Receptor Expression

    OpenAIRE

    Wang, Jun; Zhang, Xuehong; Beck, Andrew H.; Collins, Laura C.; Chen, Wendy Y.; Tamimi, Rulla M.; Hazra, Aditi; Brown, Myles; Rosner, Bernard; Hankinson, Susan E.

    2015-01-01

    In epidemiologic studies, alcohol consumption appears more strongly associated with risk of estrogen receptor (ER)-positive than ER-negative breast cancer. However, this association has not been assessed by other potentially relevant tumor markers, such as androgen receptor (AR) or insulin receptor (IR). In the prospective Nurses’ Health Study cohort, we evaluated alcohol consumption and breast cancer risk by individual tumor marker expression (i.e. ER, Progesterone Receptor [PR], AR and IR) ...

  2. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B

    2000-01-01

    -induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use...... for studies of excitotoxic, glutamate receptor-induced neuronal cell death, receptor modulation and related neuroprotection....

  3. Activation profiles of opioid ligands in HEK cells expressing δ opioid receptors

    OpenAIRE

    Clark J; Demirci Hasan; Gharagozlou Parham; Lameh Jelveh

    2002-01-01

    Abstract Background The aim of the present study was to characterize the activation profiles of 15 opioid ligands in transfected human embryonic kidney cells expressing only δ opioid receptors. Activation profiles of most of these ligands at δ opioid receptors had not been previously characterized in vitro. Receptor activation was assessed by measuring the inhibition of forskolin-stimulated cAMP production. Results Naltrexone and nalorphine were classified as antagonists at δ opioid receptor....

  4. Increased resting intracellular calcium modulates NF-κB-dependent inducible nitric-oxide synthase gene expression in dystrophic mdx skeletal myotubes.

    Science.gov (United States)

    Altamirano, Francisco; López, Jose R; Henríquez, Carlos; Molinski, Tadeusz; Allen, Paul D; Jaimovich, Enrique

    2012-06-15

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca(2+)](rest)) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca(2+)](rest) was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca(2+) entry (low Ca(2+) solution, Ca(2+)-free solution, and Gd(3+)) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca(2+)](rest). Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca(2+)](rest) was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca(2+)](rest) using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca(2+)](rest), is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells.

  5. Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells.

    Science.gov (United States)

    Cherkashin, Alexander P; Kolesnikova, Alisa S; Tarasov, Michail V; Romanov, Roman A; Rogachevskaja, Olga A; Bystrova, Marina F; Kolesnikov, Stanislav S

    2016-02-01

    Specialized Ca(2+)-dependent ion channels ubiquitously couple intracellular Ca(2+) signals to a change in cell polarization. The existing physiological evidence suggests that Ca(2+)-activated Cl(-) channels (CaCCs) are functional in taste cells. Because Ano1 and Ano2 encode channel proteins that form CaCCs in a variety of cells, we analyzed their expression in mouse taste cells. Transcripts for Ano1 and Ano2 were detected in circumvallate (CV) papillae, and their expression in taste cells was confirmed using immunohistochemistry. When dialyzed with CsCl, taste cells of the type III exhibited no ion currents dependent on cytosolic Ca(2+). Large Ca(2+)-gated currents mediated by TRPM5 were elicited in type II cells by Ca(2+) uncaging. When TRPM5 was inhibited by triphenylphosphine oxide (TPPO), ionomycin stimulated a small but resolvable inward current that was eliminated by anion channel blockers, including T16Ainh-A01 (T16), a specific Ano1 antagonist. This suggests that CaCCs, including Ano1-like channels, are functional in type II cells. In type I cells, CaCCs were prominently active, blockable with the CaCC antagonist CaCCinh-A01 but insensitive to T16. By profiling Ano1 and Ano2 expressions in individual taste cells, we revealed Ano1 transcripts in type II cells only, while Ano2 transcripts were detected in both type I and type II cells. P2Y agonists stimulated Ca(2+)-gated Cl(-) currents in type I cells. Thus, CaCCs, possibly formed by Ano2, serve as effectors downstream of P2Y receptors in type I cells. While the role for TRPM5 in taste transduction is well established, the physiological significance of expression of CaCCs in type II cells remains to be elucidated.

  6. Expression of soluble Toll-like receptors in pleural effusions

    Institute of Scientific and Technical Information of China (English)

    YANG Hai-bo; XIE Kai-qing; DENG Jing-min; QIN Shou-ming

    2010-01-01

    Background The Toll-like receptors (TLRs) represent a group of single-pass transmembrane receptors expressed on sentinel cells that are central to innate immune responses.The aim of this study was to investigate the presence of soluble TLRs in pleural effusions, and the diagnostic values of TLRs for pleural effusion with various etiologies.Methods Pleural effusion and serum samples were collected from 102 patients (36 with malignant pleural effusion, 36with tuberculous pleural effusion, 18 with bacterial pleural effusion, and 12 with transudative pleural effusion).The concentrations of TLR1 to TLR10 were determined in effusion and serum samples by enzyme linked immunosorbent assay.Four classical parameters (protein, lactate dehydrogenase, glucose and C-reactive protein (CRP)) in the pleural fluid were also assessed.Receiver-operating characteristic curves were used to assess the sensitivity and specificity of pleural fluid TLRs and biochemical parameters for differentiating bacterial pleural effusion.Results The concentrations of TLR1, TLR3, TLR4, TLR7 and TLR9 in bacterial pleural effusion were significantly higher than those in malignant, tuberculous, and transudative groups, respectively.Analysis of receiver operating characteristic curves revealed that the area under the curves of TLR1, TLR3, TLR4, TLR7 and TLR9 were 0.831, 0.843,0.842, 0.883 and 0.786, respectively, suggesting that these TLRs play a role in the diagnosis of bacterial pleural effusion.Also, the diagnostic value of TLRs for bacterial pleural effusions was much better than that of biochemical parameters (protein, lactate dehydrogenase, glucose and CRP).Conclusions The concentrations of TLR1, TLR3, TLR4, TLR7 and TLR9 appeared to be increased in bacterial pleural effusion compared to non-bacterial pleural effusions.Determination of these pleural TLRs may improve the ability of clinicians to differentiate pleural effusion patients of bacterial origin from those with other etiologies.

  7. Prenatal nicotine is associated with reduced AMPA and NMDA receptor-mediated rises in calcium within the laterodorsal tegmentum: a pontine nucleus involved in addiction processes.

    Science.gov (United States)

    McNair, L F; Kohlmeier, K A

    2015-06-01

    Despite huge efforts from public sectors to educate society as to the deleterious physiological consequences of smoking while pregnant, 12-25% of all babies worldwide are born to mothers who smoked during their pregnancies. Chief among the negative legacies bestowed to the exposed individual is an enhanced proclivity postnatally to addict to drugs of abuse, which suggests that the drug exposure during gestation changed the developing brain in such a way that biased it towards addiction. Glutamate signalling has been shown to be altered by prenatal nicotine exposure (PNE) and glutamate is the major excitatory neurotransmitter within the laterodorsal tegmental nucleus (LDT), which is a brainstem region importantly involved in responding to motivational stimuli and critical in development of drug addiction-associated behaviours, however, it is unknown whether PNE alters glutamate signalling within this nucleus. Accordingly, we used calcium imaging, to evaluate AMPA and NMDA receptor-mediated calcium responses in LDT brain slices from control and PNE mice. We also investigated whether the positive AMPA receptor modulator cyclothiazide (CYZ) had differential actions on calcium in the LDT following PNE. Our data indicated that PNE significantly decreased AMPA receptor-mediated calcium responses, and altered the neuronal calcium response to consecutive NMDA applications within the LDT. Furthermore, CYZ strongly potentiated AMPA-induced responses, however, this action was significantly reduced in the LDT of PNE mice when compared with enhancements in responses in control LDT cells. Immunohistochemical processing confirmed that calcium imaging recordings were obtained from the LDT nucleus as determined by presence of cholinergic neurons. Our results contribute to the body of evidence suggesting that neurobiological changes are induced if gestation is accompanied by nicotine exposure. We conclude that in light of the role played by the LDT in motivated behaviour, the

  8. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy.

    Directory of Open Access Journals (Sweden)

    Evonne eChin-Smith

    2014-05-01

    Full Text Available Store-operated calcium (Ca2+ entry (SOCE can be mediated by two novel proteins, STIM/Orai. We have previously demonstrated that members of the TRPC family, putative basal and store operated calcium entry channels, are present in human myometrium and regulated by labor associated stimuli IL-1β and mechanical stretch. Although STIM and Orai isoforms (1-3 have been reported in other smooth muscle cell types, there is little known about the expression or gestational regulation of STIM and Orai expression in human myometrium. Total RNA was isolated from lower segment human myometrial biopsies obtained at caesarean section from women at the time of preterm no labor (PTNL, preterm labor (PTL, term non-labor (TNL and term with labor (TL; primary cultured human uterine smooth muscle cells, and a human myometrial cell line (hTERT-HM. STIM1-2, and Orai1-3 mRNA expression was assessed by quantitative real-time PCR. All five genes were expressed in myometrial tissue and cultured cells. Orai2 was the most abundant Orai isoform in human myometrium. Expression of STIM1-2/Orai1-3 did not alter with the onset of labor. Orai1 mRNA expression in cultured cells was enhanced by IL-1β treatment. This novel report of STIM1-2 and Orai1-3 mRNA expression in pregnant human myometrium and Orai1 regulation by IL-1β indicates a potential role for these proteins in calcium signaling in human myometrium during pregnancy.

  9. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus.

    Science.gov (United States)

    Erbs, E; Faget, L; Ceredig, R A; Matifas, A; Vonesch, J-L; Kieffer, B L; Massotte, D

    2016-01-28

    Delta opioid (DOP) receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. To better appreciate the impact of repeated drug exposure on their modulatory activity, we used fluorescent knock-in mice that express a functional delta receptor fused at its carboxy-terminus with the green fluorescent protein in place of the native receptor. We then tested the impact of chronic morphine treatment on the density and distribution of delta receptor-expressing cells in the hippocampus. A decrease in delta receptor-positive cell density was observed in the CA1, CA3 and dentate gyrus without alteration of the distribution across the different GABAergic populations that mainly express delta receptors. This effect partly persisted after four weeks of morphine abstinence. In addition, we observed increased DOP receptor expression at the cell surface compared to saline-treated animals. In the hippocampus, chronic morphine administration thus induces DOP receptor cellular redistribution and durably decreases delta receptor-expressing cell density. Such modifications are likely to alter hippocampal physiology, and to contribute to long-term cognitive deficits.

  10. Differential expression of functional Fc-receptors and additional immune complex receptors on mouse kidney cells.

    Science.gov (United States)

    Suwanichkul, Adisak; Wenderfer, Scott E

    2013-12-01

    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Ig binding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury.

  11. Vitamin D receptor deficiency and low vitamin D diet stimulate aortic calcification and osteogenic key factor expression in mice.

    Directory of Open Access Journals (Sweden)

    Nadine Schmidt

    Full Text Available Low levels of 25-hydroxy vitamin D (25(OHD are associated with cardiovascular diseases. Herein, we tested the hypothesis that vitamin D deficiency could be a causal factor in atherosclerotic vascular changes and vascular calcification. Aortic root sections of vitamin D receptor knockout (VDR(-/- mice that were stained for vascular calcification and immunostained for osteoblastic differentiation factors showed more calcified areas and a higher expression of the osteogenic key factors Msx2, Bmp2, and Runx2 than the wild-type mice (P<0.01. Data from LDL receptor knockout (LDLR(-/- mice that were fed western diet with either low (50 IU/kg, recommended (1,000 IU/kg, or high (10,000 IU/kg amounts of vitamin D(3 over 16 weeks revealed increasing plasma concentrations of 25(OHD (P<0.001 with increasing intake of vitamin D, whereas levels of calcium and phosphorus in plasma and femur were not influenced by the dietary treatment. Mice treated with the low vitamin D diet had more calcified lesions and a higher expression of Msx2, Bmp2, and Runx2 in aortic roots than mice fed recommended or high amounts of vitamin D (P<0.001. Taken together, these findings indicate vitamin D deficiency as a risk factor for aortic valve and aortic vessel calcification and a stimulator of osteogenic key factor expression in these vascular areas.

  12. Fyn kinase controls Fc{epsilon}RI receptor-operated calcium entry necessary for full degranulation in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Miranda, Elizabeth; Ibarra-Sanchez, Alfredo [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico); Gonzalez-Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico)

    2010-01-22

    IgE-antigen-dependent crosslinking of the high affinity IgE receptor (Fc{epsilon}RI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca{sup 2+}) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls Fc{epsilon}RI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed Fc{epsilon}RI-dependent Ca{sup 2+} mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn -/- knock out mice. Fyn -/- BMMCs showed a marked defect in extracellular Ca{sup 2+} influx after Fc{epsilon}RI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd{sup 3+}) partially blocked Fc{epsilon}RI-induced Ca{sup 2+} influx in WT cells but, in contrast, completely inhibited Ca{sup 2+} mobilization in Fyn -/- cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca{sup 2+} channels (2-aminoethoxyphenyl-borane, 2-APB) blocked Fc{epsilon}RI-induced maximal Ca{sup 2+} rise in WT but not in Fyn -/- cells. Ca{sup 2+} entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in Fc{epsilon}RI-stimulated mast cells.

  13. Aryl hydrocarbon receptor-independent up-regulation of intracellular calcium concentration by environmental polycyclic aromatic hydrocarbons in human endothelial HMEC-1 cells.

    Science.gov (United States)

    Mayati, Abdullah; Le Ferrec, Eric; Lagadic-Gossmann, Dominique; Fardel, Olivier

    2012-09-01

    Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (B(a)P) constitute a major family of widely-distributed environmental toxic contaminants, known as potent ligands of the aryl hydrocarbon receptor (AhR). B(a)P has been recently shown to trigger an early and transient increase of intracellular calcium concentration ([Ca(2+)](i)), involved in AhR-related up-regulation of target genes by B(a)P. This study was designed to determine whether AhR may play a role in [Ca(2+)](i) induction provoked by B(a)P. We demonstrated that, in addition to B(a)P, various PAHs, including pyrene and benzo(e)pyrene, known to not or only very poorly interact with AhR, similarly up-regulated [Ca(2+)](i) in human endothelial HMEC-1 cells. Moreover, α-naphthoflavone, a flavonoïd antagonist of AhR, was also able to induce [Ca(2+)](i). Knocking-down AhR expression in HMEC-1 cells through transfection of siRNAs, was finally demonstrated to not prevent B(a)P-mediated induction of [Ca(2+)](i), whereas it efficiently counteracted B(a)P-mediated induction of the referent AhR target gene cytochrome P-450 1B1. Taken together, these data demonstrate that environmental PAHs trigger [Ca(2+)](i) induction in an AhR-independent manner.

  14. Effects of paeonol on intracellular calcium concentration and expression of RUNX3 in LoVo human colon cancer cells.

    Science.gov (United States)

    Li, Ming; Tan, Shi-Yun; Zhang, Jun; You, Hong-Xia

    2013-05-01

    Paeonol, a major phenolic component of the root bark of Paeonia moutan, is known to exhibit antitumor effects. However, the underlying mechanisms remain unknown. In the present study, the effects of paeonol on cell viability, intracellular calcium concentration and the expression of runt‑related transcription factor 3 (RUNX3) were analyzed in LoVo human colon cancer cells. Results revealed that paeonol markedly reduced LoVo cell viability in a time‑ and dose‑dependent manner. Flow cytometry assays demonstrated that paeonol blocked the cell cycle at the G1 to S transition and significantly induced apoptosis in LoVo cells. Intracellular calcium accumulation occurred following a 48 h treatment with paeonol. Furthermore, RUNX3 gene expression was increased in paeonol‑treated cells. These observations indicate that paeonol possesses antiproliferative properties and apoptosis‑inducing activity. One of the antitumor mechanisms of paeonol may be its apoptosis‑inducing activity through an increased intracellular calcium concentration and the upregulation of RUNX3 expression. Paeonol may be a promising antitumor agent for colon carcinoma treatment.

  15. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    Science.gov (United States)

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  16. Signaling components of the 1α,25(OH)2D3-dependent Pdia3 receptor complex are required for Wnt5a calcium-dependent signaling.

    Science.gov (United States)

    Doroudi, Maryam; Olivares-Navarrete, Rene; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi

    2014-11-01

    Wnt5a and 1α,25(OH)2D3 are important regulators of endochondral ossification. In osteoblasts and growth plate chondrocytes, 1α,25(OH)2D3 initiates rapid effects via its membrane-associated receptor protein disulfide isomerase A3 (Pdia3) in caveolae, activating phospholipase A2 (PLA2)-activating protein (PLAA), calcium/calmodulin-dependent protein kinase II (CaMKII), and PLA2, resulting in protein kinase C (PKC) activation. Wnt5a initiates its calcium-dependent effects via intracellular calcium release, activating PKC and CaMKII. We investigated the requirement for components of the Pdia3 receptor complex in Wnt5a calcium-dependent signaling. We determined that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC cascade. Silencing or blocking Pdia3, PLAA, or vitamin D receptor (VDR), and inhibition of calmodulin (CaM), CaMKII, or PLA2 inhibited Wnt5a-induced PKC activity. Wnt5a activated PKC in caveolin-1-silenced cells, but methyl-beta-cyclodextrin reduced its stimulatory effect. 1α,25(OH)2D3 reduced stimulatory effects of Wnt5a on PKC in a dose-dependent manner. In contrast, Wnt5a had a biphasic effect on 1α,25(OH)2D3-stimulated PKC activation; 50ng/ml Wnt5a caused a 2-fold increase in 1α,25(OH)2D3-stimulated PKC but higher Wnt5a concentrations reduced 1α,25(OH)2D3-stimulated PKC activation. Western blots showed that Wnt receptors Frizzled2 (FZD2) and Frizzled5 (FZD5), and receptor tyrosine kinase-like orphan receptor 2 (ROR2) were localized to caveolae. Blocking ROR2, but not FZD2 or FZD5, abolished the stimulatory effects of 1α,25(OH)2D3 on PKC and CaMKII. 1α,25(OH)2D3 membrane receptor complex components (Pdia3, PLAA, caveolin-1, CaM) interacted with Wnt5a receptors/co-receptors (ROR2, FZD2, FZD5) in immunoprecipitation studies, interactions that changed with either 1α,25(OH)2D3 or Wnt5a treatment. This study demonstrates that 1α,25(OH)2D3 and Wnt5a mediate their effects via similar receptor components and suggests that these pathways may interact.

  17. Enterotoxin preconditioning restores calcium-sensing receptor-mediated cytostasis in colon cancer cells

    OpenAIRE

    Pitari, Giovanni M.; Lin, Jieru E.; Shah, Fawad J.; Lubbe, Wilhelm J.; Zuzga, David S.; Li, Peng; Schulz, Stephanie; Waldman, Scott A.

    2008-01-01

    Guanylyl cyclase C (GCC), the receptor for diarrheagenic bacterial heat-stable enterotoxins (STs), inhibits colorectal cancer cell proliferation by co-opting Ca2+ as the intracellular messenger. Similarly, extracellular Ca2+ (Ca2+o) opposes proliferation and induces terminal differentiation in intestinal epithelial cells. In that context, human colon cancer cells develop a phenotype characterized by insensitivity to cytostasis imposed by Ca2+o. Here, preconditioning with ST, mediated by GCC s...

  18. An increase in intracelluar free calcium ions modulated by cholinergic receptors in rat facial nucleus

    Institute of Scientific and Technical Information of China (English)

    SUN Da-wei; ZHOU Rui; LI Na; ZHANG Qiu-gui; ZHU Fu-gao

    2009-01-01

    Background Ca2+in the central nervous system plays important roles in brain physiology, including neuronal survival and regeneration in rats with injured facial motoneurons. The present research was to study the modulations of intracellular free Ca2+ concentrations by cholinergic receptors in rat facial nucleus, and the mechanisms of the modulations. Methods The fluorescence intensity of facial nucleus in Fluo-3 AM loaded acute brainstem slices was detected by applying intracellular free Ca2+ measurement technique via confocal laser scanning microscope. The changes of fluorescence intensity of facial nucleus indicate the average changes of intracellular free Ca2+ levels of the neurons. Results Acetylcholine was effective at increasing the fluorescence intensity of facial nucleus. Muscarine chlorlde induced a marked increase of fluorescence intensity in a concentration dependent fashion. The enhancement of fluorescence intensity by muscarine chloride was significantly reduced by thapsigargin (depletor of intracellular Ca2+ store; P0.05). And the increase of fluorescence intensity was also significantly inhibited by pirenzepine (M1 subtype selective antagonist; P0.05).Conclusions The data provide the evidence that muscarinic receptors may induce the increase of intracellular free Ca2+ levels through the Ca2+ release of intracellular Ca2+ stores, in a manner related to M1 and M3 subtypes of muscarinic receptors in rat facial nucleus. Nicotine may increase intracellular free Ca2+ concentrations via the influx of extracellular Ca2+ mainly across L-type voltage-gated Ca2+ channels, in a manner related to the α4β2 subtype of nicotinic receptors.

  19. Lymphocyte Cc Chemokine Receptor 9 and Epithelial Thymus-Expressed Chemokine (Teck) Expression Distinguish the Small Intestinal Immune Compartment

    OpenAIRE

    2000-01-01

    The immune system has evolved specialized cellular and molecular mechanisms for targeting and regulating immune responses at epithelial surfaces. Here we show that small intestinal intraepithelial lymphocytes and lamina propria lymphocytes migrate to thymus-expressed chemokine (TECK). This attraction is mediated by CC chemokine receptor (CCR)9, a chemoattractant receptor expressed at high levels by essentially all CD4+ and CD8+ T lymphocytes in the small intestine. Only a small subset of lymp...

  20. Activation of β-Adrenoceptors by Dobutamine May Induce a Higher Expression of Peroxisome Proliferator-Activated Receptors δ (PPARδ in Neonatal Rat Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Ming-Ting Chou

    2012-01-01

    Full Text Available Recent evidence showed the role of peroxisome proliferator-activated receptors (PPARs in cardiac function. Cardiac contraction induced by various agents is critical in restoring the activity of peroxisome proliferator-activated receptors δ (PPARδ in cardiac myopathy. Because dobutamine is an agent widely used to treat heart failure in emergency setting, this study is aimed to investigate the change of PPARδ in response to dobutamine. Neonatal rat cardiomyocytes were used to examine the effects of dobutamine on PPARδ expression levels and cardiac troponin I (cTnI phosphorylation via Western blotting analysis. We show that treatment with dobutamine increased PPARδ expression and cTnI phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. These increases were blocked by the antagonist of β1-adrenoceptors. Also, the action of dobutamine was related to the increase of calcium ions and diminished by chelating intracellular calcium. Additionally, dobutamine-induced action was reduced by the inhibition of downstream messengers involved in this calcium-related pathway. Moreover, deletion of PPARδ using siRNA generated the reduction of cTnI phosphorylation in cardiomyocytes treated with dobutamine. Thus, we concluded that PPARδ is increased by dobutamine in cardiac cells.

  1. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  2. Inflammatory cytokine signaling in insulin producing beta-cells enhances the colocalization correlation coefficient between L-type voltage-dependent calcium channel and calcium-sensing receptor.

    Science.gov (United States)

    Parkash, Jai

    2008-08-01

    The immunological processes in type 1 diabetes and metabolic/inflammatory disorder in type 2 diabetes converge on common signaling pathway(s) leading to beta-cell death in these two diseases. The cytokine-mediated beta-cell death seems to be dependent on voltage-dependent calcium channel (VDCC)-mediated Ca2+ entry. The Ca2+ handling molecular networks control the homeostasis of [Ca2+]i in the beta-cell. The activity and membrane density of VDCC are regulated by several mechanisms including G protein-coupled receptors (GPCRs). CaR is a 123-kDa seven transmembrane extracellular Ca2+ sensing protein that belongs to GPCR family C. Tumor necrosis factor-alpha (TNF-alpha), is a cytokine widely known to activate nuclear factor-kappaB (NF-kappaB) transcription in beta-cells. To obtain a better understanding of TNF-alpha-induced molecular interactions between CaR and VDCC, confocal fluorescence measurements were performed on insulin-producing beta-cells exposed to varying concentrations of TNF-alpha and the results are discussed in the light of increased colocalization correlation coefficient. The insulin producing beta-cells were exposed to 5, 10, 20, 30, and 50 ng/ml TNF-alpha for 24 h at 37 degrees . The cells were then immunolabelled with antibodies directed against CaR, VDCC, and NF-kappaB. The confocal fluorescence imaging data showed enhancement in the colocalization correlation coefficient between CaR and VDCC in beta-cells exposed to TNF-alpha thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. TNF-alpha-induced colocalization of VDCC with CaR was inhibited by nimodipine, an inhibitor of L-type VDCC thereby suggesting that VDCC activity is required for spatial interactions with CaR. The 3-D confocal fluorescence imaging data also demonstrated that addition of TNF-alpha to RIN cells led to the translocation of NF-kappaB from the cytoplasm to the nucleus. Such molecular interactions between CaR and VDCC in tissues

  3. Fas mRNA expression and calcium influx change in H2O2-induced apoptotic hepatocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    Qi-Ping Lu; Lei Tian

    2005-01-01

    AIM: To investigate the relationship between Fas gene expression and calcium influx change in peroxide-induced apoptotic hepatocytes and the possible molecular mechanism of Rxa in protecting hepatocytes.METHODS: Single-cell Fas mRNA expression in H2O2-exposed L02 hepatocytes with or without treatment of Rxa,an extract from an anti-peroxidant, Radix Salviae Miltiorrhizae,was determined by all-cell patch clamp and single-cell reverse transcriptase polymerase chain reaction (RT-PCR). Transient calcium influx change ([Ca2+]i) in the cells was evaluated with all-cell patch clamp micro-fluorescence single-cytosolic free Ca2+ concentration technique. Fas protein expression, early apoptotic index (annexin-V+) and cell membrane change inthe cells were evaluated by immunohistochemistry, flow cytometry (FCM) and scan electron microscopy respectively.RESULTS: In cells exposed to H2O2 for 2 h, the specific lane for Fas mRNA was vivid on electrophoresis, with increased Fas protein expression, [Ca2+]i (from 143.66±34.21 to 1115.28±227.16), annexin-V+ index (from 4.00±0.79 to 16.18±0.72) and membrane vesicle formation. However, in cells exposed to H2O2 but pre-treated with Rxa, there was no increase in Fas mRNA or protein expression and [Ca2+]i (103.56±28.92). Annexin-V+ index (8.92±1.44) was lower than the controls (P<0.01), and the cell membrane was intact.CONCLUSION: H2O2 induces apoptosis of L02 cells by increasing cytosolic [Ca2+]i, and inducing Fas mRNA and protein expression. Rxa protects the L02 cells from apoptosis through anti-peroxidation, inhibition of calcium overloading and prevention of the activation of cytosolic Fas signal pathway.

  4. Characterization and expression analysis of EF hand domain-containing calcium-regulatory gene from disk abalone: calcium homeostasis and its role in immunity.

    Science.gov (United States)

    Nikapitiya, Chamilani; De Zoysa, Mahanama; Whang, Ilson; Kim, Se-Jae; Choi, Cheol Young; Lee, Jae-Seong; Lee, Jehee

    2010-08-01

    The complete amino acid sequence of a calcium-regulatory gene (denoted as Ab-CaReg I) was identified from the disk abalone Haliotis discus discus cDNA library. The Ab-CaReg I is composed of 176 amino acids and the calculated molecular mass and isoelectric point were 20 and 4.2, respectively. The sequence homology of Ab-CaReg I was 28-30 and 18-27% of known calmodulin and troponin C, respectively. Four characteristic calcium-binding EF hand motifs with some modifications at conserved positions of known homologous calmodulin genes were observed in the sequence. The tissue-specific transcription analysis and variation of mRNA transcription level of Ab-CaReg I in gills and mantle after animals were immersed in seawater containing 2000 ppm CaCl(2) was quantified by SYBR Green real-time PCR analysis. Transcription variation of Ab-CaReg I in hemocytes and gills followed by bacteria challenge (Vibrio alginolyticus, Vibrio parahaemolyticus and Listeria monocytogenes) was used to investigate Ab-CaReg I in immune responses. Transcripts of Ab-CaReg I mRNA were mainly detected in hemocytes, mantle, muscle, gills, digestive tract and hepatopancreas with highest expression in hemocytes. The CaCl(2) immersion significantly altered the Ab-CaReg I mRNA transcription level by 3 h, compared to animals in normal seawater (control). The mRNA expression of Ab-CaReg I in gills and hemocytes was upregulated significantly to 11-fold and 4-fold in 3 h compared to control (uninfected), respectively, in bacteria-challenged abalones. The results suggest that Ab-CaReg I could be effectively induced to maintain internal Ca(2+) homeostasis of the animal due to influx of Ca(2+) in the cells by external stimuli such as a high dose of Ca(2+) and pathogens like bacteria.

  5. Role of sphingosine 1-phosphate receptor expression in eosinophils of patients with allergic rhinitis, and effect of topical nasal steroid treatment on this receptor expression.

    LENUS (Irish Health Repository)

    Mackle, T

    2008-12-01

    Recent research has indicated that sphingosine 1-phosphate plays a role in allergy. This study examined the effect of allergen challenge on the expression of sphingosine 1-phosphate receptors on the eosinophils of allergic rhinitis patients, and the effect of steroid treatment on this expression.

  6. Molecular imaging of in vivo calcium ion expression in area postrema of total sleep deprived rats: Implications for cardiovascular regulation by TOF-SIMS analysis

    Science.gov (United States)

    Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming

    2010-05-01

    Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.

  7. Changes in calcium-binding protein expression in human cortical contusion tissue.

    Science.gov (United States)

    Buriticá, Efraín; Villamil, Liliana; Guzmán, Francisco; Escobar, Martha I; García-Cairasco, Norberto; Pimienta, Hernán J

    2009-12-01

    Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.

  8. Effects of ambient cadmium with calcium on mRNA expressions of calcium uptake related transporters in zebrafish (Danio rerio) larvae.

    Science.gov (United States)

    Liu, Chih-Tsen; Chou, Ming-Yi; Lin, Chia-Hao; Wu, Su Mei

    2012-08-01

    The mRNA expression levels of Ca²⁺ transporter genes including the epithelial calcium channel (ECaC), sodium/calcium exchanger 1b (NCX1b), and plasma membrane calcium ATPase 2 (PMCA2) were measured in zebrafish larvae after exposure to 0.08 μM Cd²⁺ in either water mixed with 0.2 mM Ca²⁺ (lCa) or 2 mM Ca²⁺ (hCa). The ECaC and NCX1b expression decreased at the 48 and 72 h mark, respectively; however, PMCA2 transcripts decreased at 96 h after exposure to Cd²⁺ in lCa environment. On the other hand, the ECaC transcripts were not affected; however, the PMCA2 transcripts were increased at 72 h, while the NCX1b transcripts significantly decreased at 48 and 96 h after exposure to Cd²⁺ in a hCa environment. The Ca²⁺ contents of larvae significantly decreased after Cd²⁺ exposure in a lCa environment; however, the Ca²⁺ contents were evidently higher after exposure to Cd²⁺ in a hCa environment, except for 48th h mark. In addition, ECaC morphants showed lower Ca²⁺ contents of whole-body, and there were higher levels of mortality after exposure to the same condition compared to the wild-type groups. In contrast, injection of ECaC cRNA resulted in an increase in Ca²⁺ content and the rate of Ca²⁺ influx in zebrafish embryos. Summary, the results showed that the Ca²⁺ transporters of zebrafish larvae were impacted after exposures of 0.08 μM Cd. However, in the exposure condition, the ECaC and PMCA2 transcripts could be restored to control levels after the fish were treated in an environment with hCa.

  9. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, HongYi; Kantekure, Kanchan;

    2011-01-01

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression via......RNA and protein. Stimulation of the ICOS receptor with anti-ICOS antibody or ICOS ligand-expressing B cells markedly enhanced proliferation of the ALK(+) TCL cells. These results demonstrate that NPM-ALK, acting through STAT3 as the gene transcriptional activator, induces the expression of ICOS, a cell growth...

  10. Optical isomers of dihydropyridine calcium channel blockers display enantiospecific effects on the expression and enzyme activities of human xenobiotics-metabolizing cytochromes P450.

    Science.gov (United States)

    Štěpánková, Martina; Krasulová, Kristýna; Dořičáková, Aneta; Kurka, Ondřej; Anzenbacher, Pavel; Dvořák, Zdeněk

    2016-11-16

    Dihydropyridine calcium channel blockers (CCBs) are used as anti-hypertensives and in the treatment of angina pectoris. Structurally, CCBs have at least one chiral center in the molecule, thereby existing in two or more different enantiomers. In the current paper we examined effects of benidipine, felodipine and isradipine enantiomers on the expression and enzyme activities of human xenobiotics-metabolizing cytochromes P450. All CCBs dose-dependently activated aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR), as revealed by gene reporter assays. Activation of AhR, but not PXR, was enantiospecific. Consistently, CCBs induced CYP1A1 and CYP1A2 mRNAs, but not protein, in human hepatocytes and HepG2 cells, with following pattern: benidipine (-)>(+), isradipine (-)>(+) and felodipine (+)>(-). All CCBs induced CYP2A6, CYP2B6 and CYP3A4 mRNA and protein in human hepatocytes, and there were not differences between the enantiomers. All CCBs transformed AhR in its DNA-binding form, as revealed by electromobility shift assay. Tested CCBs inhibited enzyme activities of CYP3A4 (benidipine (+)>(-); felodipine (-)>(+); isradipine (-)-(+)) and CYP2C9 (benidipine (-)>(+); felodipine (+)>(-); isradipine (-)>(+)). The data presented here might be of toxicological and clinical importance.

  11. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    Science.gov (United States)

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  12. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat's Hippocampus during Morphine Withdrawal

    OpenAIRE

    Ahmadi, Shamseddin; Amiri, Shahin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2013-01-01

    Introduction Calcium/calmodulin-dependent protein kinase II (CaMKII) which is highly expressed in the hippocampus is known to play a pivotal role in reward-related memories and morphine dependence. Methods In the present study, repeated morphine injections once daily for 7 days was done to induce morphine tolerance in male Wistar rats, after which gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hippocampus was evaluated upon discontinuation of morphine injection over 21 days o...

  13. A model of calcium-mediated coupling between membrane activity and clock gene expression in neurons of the suprachiasmatic nucleus

    CERN Document Server

    Casado, J M

    2015-01-01

    Rhythms in electrical activity in the membrane of cells in the suprachiasmatic nucleus (SCN) are crucial for the function of the circadian timing system, which is characterized by the expression of the so-called clock genes. Intracellular Ca$^{2+}$ ions seem to connect, at least in part, the electrical activity of SCN neurons with the expression of clock genes. In this paper, we introduce a simple mathematical model describing the linking of membrane activity to the transcription of one gene by means of a feedback mechanism based on the dynamics of intracellular calcium ions.

  14. [Research Progress on Expression and Function of P2 Purinergic Receptor in Blood Cells].

    Science.gov (United States)

    Feng, Wen-Li; Wang, Li-Na; Zheng, Guo-Guang

    2015-10-01

    Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind a class of plasma membrane receptors, P2 purinergic receptors, to trigger intercellular signaling. P2 receptors can be further divided into two structurally and functionally different sub-famlies, the P2X and P2Y receptors. Different blood cells express diverse spectrum of P2 receptors at different levels. Extracellular adenosine triphosphate (ATP) exerts different effects on blood cells, regulating cell proliferation, differentiation, migration, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptors and human diseases attracts more and more attention. This review briefly discusses the expression and function of P2 receptors in hematopoietic system.

  15. Urotensin II is a new chemotactic factor for UT receptor-expressing monocytes.

    Science.gov (United States)

    Segain, Jean-Pierre; Rolli-Derkinderen, Malvyne; Gervois, Nadine; Raingeard de la Blétière, Diane; Loirand, Gervaise; Pacaud, Pierre

    2007-07-15

    Urotensin II (U-II), a vasoactive cyclic neuropeptide which activates the G protein-coupled receptor UT receptor, exerts various cardiovascular effects and may play a role in the pathophysiology of atherosclerosis. In this study, we report that the UT receptor is expressed and functional on human PBMC and rat splenocytes. PBMC surface expression of the UT receptor was mainly found in monocytes and NK cells, also in a minority of B cells, but not in T cells. Stimulation of monocytes with LPS increased UT receptor mRNA and protein expression. Cloning and functional characterization of the human UT receptor gene promoter revealed the presence of NF-kappaB-binding sites involved in the stimulation of UT receptor gene expression by LPS. Activation of the UT receptor by U-II induced chemotaxis with maximal activity at 10 and 100 nM. This U-II effect was restricted to monocytes. Analysis of the signaling pathway involved indicated that U-II-mediated chemotaxis was related to RhoA and Rho kinase activation and actin cytoskeleton reorganization. The present results thus identify U-II as a chemoattractant for UT receptor-expressing monocytes and indicate a pivotal role of the RhoA-Rho kinase signaling cascade in the chemotaxis induced by U-II.

  16. Spinal cord interneurons expressing the gastrin releasing peptide receptor convey itch through VGLUT2-mediated signaling.

    Science.gov (United States)

    Aresh, Bejan; Freitag, Fabio B; Perry, Sharn; Blümel, Edda; Lau, Joey; Franck, Marina C M; Lagerström, Malin C

    2017-02-01

    Itch is a sensation that promotes the desire to scratch, which can be evoked by mechanical and chemical stimuli. In the spinal cord, neurons expressing the gastrin releasing peptide receptor (GRPR) have been identified as specific mediators of itch. However, our understanding of the GRPR-population in the spinal cord, and thus how these neurons exercise their functions, is limited. For this purpose, we constructed a Cre line designed to target the GRPR population of neurons (Grpr-Cre). Our analysis revealed that Grpr-Cre cells in the spinal cord are predominantly excitatory interneurons that are found in the dorsal lamina, especially in lamina II-IV. Application of the specific agonist gastrin releasing peptide (GRP) induced spike responses in 43.3% of the patched Grpr-Cre neurons, where the majority of the cells displayed a tonic firing property. Additionally, our analysis showed that the Grpr-Cre population expresses Vglut2 mRNA and mice ablated of Vglut2 in Grpr-Cre cells (Vglut2-lox;Grpr-Cre mice) displayed less spontaneous itch, and attenuated responses to both histaminergic and non-histaminergic agents. We could also show that application of the itch-inducing peptide natriuretic polypeptide b (NPPB) induces calcium influx in a sub-population of Grpr-Cre neurons. To summarize, our data indicate that the Grpr-Cre spinal cord neural population is composed of interneurons that use VGLUT2-mediated signaling for transmitting chemical and spontaneous itch stimuli to the next, currently unknown, neurons in the labeled line of itch.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  17. Cloning and expression of the mouse histamine H3 receptor: evidence for multiple isoforms.

    Science.gov (United States)

    Rouleau, Agnès; Héron, Anne; Cochois, Véronique; Pillot, Catherine; Schwartz, Jean-Charles; Arrang, Jean-Michel

    2004-09-01

    The existence of mouse H3-receptor isoforms was investigated by PCR analysis and cDNA cloning. Splicing mechanisms previously reported in various species are conserved in the mouse. The retention/deletion of a fragment in the third intracellular loop of the mouse receptor leads to the existence of three isoforms designated mH(3(445)), mH(3(413)) and mH(3(397)) according to the length of their deduced amino acid sequence. PCR analysis showed that mouse H3-receptor isoforms display different expression patterns in the brain. Following expression in Cos-1 cells, [125I]iodoproxyfan binding indicated similar pharmacological profiles of the mH(3(445)), mH(3(413)) and mH(3(397)) isoforms. The pharmacological profile of the mouse H3 receptor is more similar to the rat receptor than to the human receptor, although some differences were also observed between the mouse and rat receptors. For example, the potency of thioperamide and ciproxifan is slightly higher at the mouse receptor than at the rat receptor but 40-100-fold higher than at the human receptor. In situ hybridization histochemistry showed that the distribution of H3-receptor mRNAs in the mouse brain is rather similar to that previously reported in the rat brain. However, the autoradiographic and cellular expression patterns observed in several brain areas such as the thalamus or hippocampus reveal important differences between the two species.

  18. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus.

    Science.gov (United States)

    Hájos, N; Papp, E C; Acsády, L; Levey, A I; Freund, T F

    1998-01-01

    In previous studies m2 muscarinic acetylcholine receptor-immunoreactive interneurons and various types of m2-positive axon terminals have been described in the hippocampal formation. The aim of the present study was to identify the types of interneurons expressing m2 receptor and to examine whether the somadendritic and axonal m2 immunostaining labels the same or distinct cell populations. In the CA1 subfield, neurons immunoreactive for m2 have horizontal dendrites, they are located at the stratum oriens/alveus border and have an axon that project to the dendritic region of pyramidal cells. In the CA3 subfield and the hilus, m2-positive neurons are multipolar and are scattered in all layers except stratum lacunosum-moleculare. In stratum pyramidale of the CA1 and CA3 regions, striking axon terminal staining for m2 was observed, surrounding the somata and axon initial segments of pyramidal cells in a basket-like manner. The co-localization of m2 with neurochemical markers and GABA was studied using the "mirror" technique and fluorescent double-immunostaining at the light microscopic level and with double-labelling using colloidal gold-conjugated antisera and immunoperoxidase reaction (diaminobenzidine) at the electron microscopic level. GABA was shown to be present in the somata of most m2-immunoreactive interneurons, as well as in the majority of m2-positive terminals in all layers. The calcium-binding protein parvalbumin was absent from practically all m2-immunoreactive cell bodies and dendrites. In contrast, many of the terminals synapsing on pyramidal cell somata and axon initial segments co-localized parvalbumin and m2, suggesting a differential distribution of m2 receptor immunoreactivity on the axonal and somadendritic membrane of parvalbumin-containing basket and axo-axonic cells. The co-existence of m2 receptors with the calcium-binding protein calbindin and the neuropeptides cholecystokinin and vasoactive intestinal polypeptide was rare throughout the

  19. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  20. Modifications of 5-HT4 receptor expression in rat brain during memory consolidation.

    Science.gov (United States)

    Manuel-Apolinar, L; Rocha, L; Pascoe, D; Castillo, E; Castillo, C; Meneses, A

    2005-04-25

    Pharmacological evidence indicates a specific role of 5-HT(4) receptors on memory function. These receptors are members of G-protein-coupled 7-transmembrane domain receptor superfamily, are positively coupled to adenylyl cyclase, and are heterogeneously located in some structures important for memory, such as the hippocampus and cortical regions. To further clarify 5-HT(4) receptors' role in memory, the expression of these receptors in passive (P3) untrained and autoshaping (A3) trained (3 sessions) adult (3 months) and old (P9 or A9; 9 months) male rats was determined by autoradiography. Adult trained (A3) rats showed a better memory respect to old trained (A9). Using [(3)H] GR113808 as ligand (0.2 nM specific activity 81 Ci/mmol) for 5-HT(4) receptor expression, 29 brain areas were analyzed, 16 areas of A3 and 17 of A9 animals displayed significant changes. The medial mammillary nucleus of A3 group showed diminished 5-HT(4) receptor expression, and in other 15 brain areas of A3 or 10 of A9 animals, 5-HT(4) receptors were increased. Thus, for A3 rats, 5-HT(4) receptors were augmented in olfactory lobule, caudate putamen, fundus striatum, CA2, retrosplenial, frontal, temporal, occipital, and cingulate cortex. Also, 5-HT(4) receptors were increased in olfactory tubercule, hippocampal CA1, parietal, piriform, and cingulate cortex of A9. However, hippocampal CA2 and CA3 areas, and frontal, parietal, and temporal cortex of A9 rats, expressed less 5-HT(4) receptors. These findings suggest that serotonergic activity, via 5-HT(4) receptors in hippocampal, striatum, and cortical areas, mediates memory function and provides further evidence for a complex and regionally specific regulation over 5-HT receptor expression during memory formation.

  1. Effects of octreotide on expression of L-type voltage-operated calcium channels and on intracellular Ca2+ in activated hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    丁惠国; 王宝恩; 贾继东; 夏华向; 王振宇; 赵春惠; 徐燕琳

    2004-01-01

    Background The contractility of hepatic stellate cells (HSCs) may play an important role in the pathogenesis of cirrhosis with portal hypertension. The aim of this study was to research the effects of octreotide, an analogue of somatostatin, on intracellular Ca2+ and on the expression of L-type voltage-operated calcium channels (L-VOCCs) in activated HSCs, and to try to survey the use of octreotide in treatment and prevention of cirrhosis with portal hypertension complications. Methods HSC-T6, an activated HSCs line, was plated on small glass coverslips in 35-mm culture dishes at a density of 1×105/ml, and incubated in DMEM media for 24 hours. After the cells were loaded with Fluo-3/AM, intracellular Ca2+ was measured by Laser Scanning Confocal Microscopy (LSCM). The dynamic changes in activated HSCs of intracellular Ca2+, stimulated by octreotide, endothelin-1, and KCl, respectively, were also determined by LSCM. Each experiment was repeated six times. L-VOCC expression in HSCs was estimated by immunocytochemistry. Results After octreotide stimulation, a signifcant decrease in the intracellular Ca2+ of activated HSCs was observed. However, octreotide did not inhibit the increases in intracellular Ca2+ after stimulation by KCl and endothelin-1. Moreover, octreotide did not significantly affect L-VOCC expression. These results suggest that neither L-VOCC nor endothelin-1 receptors in activated HSCs are inhibited by octreotide. Conclusions Octreotide may decrease portal hypertension and intrahepatic vascular tension by inhibiting activated HSCs contractility through decreases in intracellular Ca2+. The somatostatin receptors in activated HSCs may be inhibited by octreotide.

  2. Expression of serotonin receptors in the colonic tissue of chronic diarrhea rats

    Directory of Open Access Journals (Sweden)

    Tong Zhu

    2016-01-01

    Full Text Available Background/Aims: This study aimed to investigate the difference among the expression of serotonin receptors (5-HT3, 5-HT4, and 5-HT7 receptors in colonic tissue of chronic diarrhea rats. Materials and Methods: A rat model of chronic diarrhea was established by lactose diet. The expression of 5-HT3, 5-HT4, and 5-HT7 receptors in the colonic tissue was detected using immunohistochemistry, real-time PCR and Western blotting techniques. Results: There is no significant difference on the protein expression of 5-HT3receptor between the normal group and the chronic diarrhea model group. The mRNA expression of 5-HT3 receptor in the chronic diarrhea model group was significantly lower than that in the normal group (n = 10; P< 0.01. The protein and mRNA expression of 5-HT4 receptor in the chronic diarrhea model group were significantly higher than those in the normal group (n = 10; P< 0.05, P< 0.01. On the contrary, the protein and mRNA expressions of 5-HT7 receptor in the chronic diarrhea model group were significantly decreased compared with the normal group (n = 10; P< 0.01, P< 0.01. Conclusions: The results suggested the receptors of 5-HT4and 5-HT7 may be involved in inducing diarrhea by lactose diet.

  3. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Pangburn Heather A

    2005-09-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  4. Transient Receptor Potential Melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation

    OpenAIRE

    2013-01-01

    Elevations in the intracellular Ca2+ concentration are a phenomena commonly observed during stem cell differentiation but cease after the process is complete. The Transient Receptor Potential Melastatin 4 (TRPM4) is an ion channel that controls Ca2+ signals in excitable and non-excitable cells. However, its role in stem cells remains unknown. The aim of this study was to characterize TRPM4 in rat dental follicle stem cells (DFSCs) and to determine its impact on Ca2+ signaling and the differen...

  5. Calcium-stores mediate adaptation in axon terminals of Olfactory Receptor Neurons in Drosophila

    Directory of Open Access Journals (Sweden)

    Murmu Meena S

    2011-10-01

    Full Text Available Abstract Background In vertebrates and invertebrates, sensory neurons adapt to variable ambient conditions, such as the duration or repetition of a stimulus, a physiological mechanism considered as a simple form of non-associative learning and neuronal plasticity. Although various signaling pathways, as cAMP, cGMP, and the inositol 1,4,5-triphosphate receptor (InsP3R play a role in adaptation, their precise mechanisms of action at the cellular level remain incompletely understood. Recently, in Drosophila, we reported that odor-induced Ca2+-response in axon terminals of olfactory receptor neurons (ORNs is related to odor duration. In particular, a relatively long odor stimulus (such as 5 s triggers the induction of a second component involving intracellular Ca2+-stores. Results We used a recently developed in-vivo bioluminescence imaging approach to quantify the odor-induced Ca2+-activity in the axon terminals of ORNs. Using either a genetic approach to target specific RNAs, or a pharmacological approach, we show that the second component, relying on the intracellular Ca2+-stores, is responsible for the adaptation to repetitive stimuli. In the antennal lobes (a region analogous to the vertebrate olfactory bulb ORNs make synaptic contacts with second-order neurons, the projection neurons (PNs. These synapses are modulated by GABA, through either GABAergic local interneurons (LNs and/or some GABAergic PNs. Application of GABAergic receptor antagonists, both GABAA or GABAB, abolishes the adaptation, while RNAi targeting the GABABR (a metabotropic receptor within the ORNs, blocks the Ca2+-store dependent component, and consequently disrupts the adaptation. These results indicate that GABA exerts a feedback control. Finally, at the behavioral level, using an olfactory test, genetically impairing the GABABR or its signaling pathway specifically in the ORNs disrupts olfactory adapted behavior. Conclusion Taken together, our results indicate that a

  6. Fluoxetine alters mu opioid receptor expression in obese Zucker rat extrahypothalamic regions.

    Science.gov (United States)

    Churruca, Itziar; Portillo, María P; Zumalabe, José María; Macarulla, María T; Sáenz Del Burgo, Laura; Zarate, Jon; Echevarría, Enrique

    2006-03-01

    The aim of this article was to describe the effects of chronic fluoxetine on mu opioid receptor expression in obese Zucker rat extrahypothalamic regions. Male obese Zucker (fa/fa) rats were administered with fluoxetine (10 mg/kg; i.p.) daily for two weeks. Brain regional immunostaining for mu opioid receptor was carried out. An increase in the numbers of neural cells immunostained for mu opioid receptor in caudatus-putamen, dentate gyrus, lateral septum, amygdala, and frontal, parietal, and piriform cortices was observed. Increased mu opioid receptor expression in the central amygdaloid nuclei suggests a decreased opioidergic tone at this level that could be involved in fluoxetine anorectic action.

  7. Expression of functional growth hormone receptor in a mouse L cell line infected with recombinant vaccinia virus

    NARCIS (Netherlands)

    Strous, G J; van Kerkhof, P; Verheijen, C; Rossen, J W; Liou, W; Slot, J W; Roelen, C A; Schwartz, A L

    1994-01-01

    The growth hormone receptor is a member of a large family of receptors including the receptors for prolactin and interleukins. Upon binding to one molecule of growth hormone two growth hormone receptor polypeptides dimerize. We have expressed the rabbit growth hormone receptor DNA in transfected mou

  8. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    Science.gov (United States)

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism.

  9. Association of CD147 and Calcium Exporter PMCA4 Uncouples IL-2 Expression from Early TCR Signaling.

    Science.gov (United States)

    Supper, Verena; Schiller, Herbert B; Paster, Wolfgang; Forster, Florian; Boulègue, Cyril; Mitulovic, Goran; Leksa, Vladimir; Ohradanova-Repic, Anna; Machacek, Christian; Schatzlmaier, Philipp; Zlabinger, Gerhard J; Stockinger, Hannes

    2016-02-01

    The Ig superfamily member CD147 is upregulated following T cell activation and was shown to serve as a negative regulator of T cell proliferation. Thus, Abs targeting CD147 are being tested as new treatment strategies for cancer and autoimmune diseases. How CD147 mediates immunosuppression and whether association with other coreceptor complexes is needed have remained unknown. In the current study, we show that silencing of CD147 in human T cells increases IL-2 production without affecting the TCR proximal signaling components. We mapped the immunosuppressive moieties of CD147 to its transmembrane domain and Ig-like domain II. Using affinity purification combined with mass spectrometry, we determined the domain specificity of CD147 interaction partners and identified the calcium exporter plasma membrane calcium ATPase isoform 4 (PMCA4) as the interaction partner of the immunosuppressive moieties of CD147. CD147 does not control the proper membrane localization of PMCA4, but PMCA4 is essential for the CD147-dependent inhibition of IL-2 expression via a calcium-independent mechanism. In summary, our data show that CD147 interacts via its immunomodulatory domains with PMCA4 to bypass TCR proximal signaling and inhibit IL-2 expression.

  10. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats

    Science.gov (United States)

    Gowen, Maxine; Stroup, George B.; Dodds, Robert A.; James, Ian E.; Votta, Bart J.; Smith, Brian R.; Bhatnagar, Pradip K.; Lago, Amparo M.; Callahan, James F.; DelMar, Eric G.; Miller, Michael A.; Nemeth, Edward F.; Fox, John

    2000-01-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a “calcilytic”) of the parathyroid cell Ca2+ receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bone mineral density. Concurrent oral administration of NPS 2143 and subcutaneous infusion of 17β-estradiol also resulted in increased bone turnover. However, the antiresorptive action of estrogen decreased the extent of bone resorption stimulated by the elevated PTH levels, leading to an increase in bone mass compared with OVX controls or to either treatment alone. Despite the sustained stimulation to the parathyroid gland, parathyroid cells did not undergo hyperplasia. These data demonstrate that an increase in endogenous PTH secretion, induced by antagonism of the parathyroid cell Ca2+ receptor with a small molecule, leads to a dramatic increase in bone turnover, and they suggest a novel approach to the treatment of osteoporosis. PMID:10841518

  11. Relationship between expression of somatostatin receptors subtype 2 mRNA and estrogen and progesterone receptors in breast cancer

    Institute of Scientific and Technical Information of China (English)

    曾希志; 姚榛祥

    2003-01-01

    Objectives To observe the expression of somatostatin receptor subtype 2 (SSTR2) mRNA, and investigate the relationship between the expression of SSTR2 mRNA and the expressions of estrogen and progesterone receptors (ERs and PRs) in benign and malignant breast tissues.Methods Samples from a total of 23 breast carcinomas, 16 mammary hyperplasias, and 9 mammary fibroadenomas were analyzed. SSTR2 mRNA expression was examined by in situ hybridization using multiphase oligoprobes. ER and PR expressions were detected by immunohistochemical staining. A computerized image analysis system was utilized to estimate the relative content of SSTR2 mRNA.Results The rate of expression (87.0%) and relative content (0.47) of SSTR2 mRNA in breast cancer were higher than those in benign breast tissue (64%,0.26) (P<0.05). SSTR2 mRNA expression was closely correlated with ER and PR expressions in breast cancer (P<0.05). SSTR2 mRNA was also positively correlated with ER expression in benign breast tissues.Conclusions SSTR2 mRNA expression is higher or in benign breast tissues than in malignant ones. There is a significant positive correlation between SSTR2 mRNA and ER and PR expressions. Combined antiestrogen and somatostatin analogue in treatment of ER-positive breast cancers should be further investigated.

  12. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    Science.gov (United States)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  13. Cardiovascular risk factors regulate the expression of vascular endothelin receptors

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Sun, Yang; Edvinsson, Lars

    2010-01-01

    , cigarette smoking and hypertension (both strongly related to arterial wall injury), inflammation and atherosclerosis. The vascular endothelin receptors are a protein family that belongs to the larger family of G-protein coupled receptors. They mediate vascular smooth muscle contraction, proliferation......-activated protein kinase pathways and downstream transcription factors such as nuclear factor-kappaB. Understanding the mechanisms involved in vascular endothelin receptor upregulation during cardiovascular disease may provide novel therapeutic approaches....

  14. CB1 cannabinoid receptor expression in the striatum: Association with corticostriatal circuits and developmental regulation

    Directory of Open Access Journals (Sweden)

    Vincent eVan Waes

    2012-03-01

    Full Text Available Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains. We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25 and then progressively decreases towards adolescent (P40 and adult (P70 levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors receive inputs from cortical regions with higher expression (medial prefrontal cortex. In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important.

  15. The role of P2X7 receptor in ATP-mediated human leukemia cell death:calcium influx-independent

    Institute of Scientific and Technical Information of China (English)

    Xiujun Zhang; Lijun Meng; Baoling He; Jing Chen; Peng Liu; Jie Zhao; Yufen Zhang; Ming Li; Dong An

    2009-01-01

    Activation of the P2X7 receptor leads to a rapid,bidirectional flux of cations, causing broad range of hiological responses including cytotoxicity.However,the mechanism of P2X7-mediated cytotoxicity remains largely unexplored.In our previous study,the lack of P2X7-mediated calcium response under normal conditions was found in P2X7+ hematopoietic cell lines.In this study, the P2X7-mediated cytotoxicity in different type of cells(P2X7-,P2X7+ with calcium response,and P2X7+ without calcium response)was investigated.Our results showed that P2X7 agonists, adenosine 5'-triphosphate(ATP)or 2'+3'-O-(4 benzoylbenzoyl)ATP,dose-dependently reduced the cell viability in all P2X7+ cells tested,including J6-1,LCL,and Namalva cells which are negative for P2X7-mediated calcium response, although these effects were lower than those observed in KG1a cells which has normal P2X7 functions.The cytotoxic effect could be blocked by P2X7antagonists, oxidized ATP and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine.In addition,externalization of phosphatidylserine could be detected in a time-dependent manner and apoptotic morphological changes Could be observed after the activation of P2X7 receptor in J6-1 cells.Furthermore,P2X7-mediated pore formation could be detected in KG1a and J6-1 cells under low-ionic conditions,but not under low-divalent conditions.These effects could not be observed in P2X7-Ramos cells.These results suggested that P2X7 receptor-mediated cytotoxic effects may occur independent of calcium response.

  16. Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor.

    Science.gov (United States)

    Nissen, Wiebke; Szabo, Andras; Somogyi, Jozsef; Somogyi, Peter; Lamsa, Karri P

    2010-01-27

    Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic interneuron types might underlie this heterogeneity. We show that long-term potentiation (LTP) and depression (LTD), two common forms of synaptic plasticity, are expressed in a highly cell type-specific manner at glutamatergic synapses onto hippocampal GABAergic neurons. Both LTP and LTD are generated in interneurons expressing parvalbumin (PV+), whereas interneurons with similar axon distributions but expressing cannabinoid receptor-1 show no lasting plasticity in response to the same protocol. In addition, LTP or LTD occurs in PV+ interneurons with different efferent target domains. Perisomatic-targeting PV+ basket and axo-axonic interneurons express LTP, whereas glutamatergic synapses onto PV+ bistratified cells display LTD. Both LTP and LTD are pathway specific, independent of NMDA receptors, and occur at synapses with calcium-permeable (CP) AMPA receptors. Plasticity in interneurons with CP-AMPA receptors strongly modulates disynaptic GABAergic transmission onto CA1 pyramidal cells. We propose that long-term plasticity adjusts the synaptic strength between pyramidal cells and interneurons in a cell type-specific manner and, in the defined CA1 interneurons, shifts the spatial pattern of inhibitory weight from pyramidal cell dendrites to the perisomatic region.

  17. Involvement of inositol 1,4,5-trisphosphate in nicotinic calcium responses in dystrophic myotubes assessed by near-plasma membrane calcium measurement.

    Science.gov (United States)

    Basset, Olivier; Boittin, François-Xavier; Dorchies, Olivier M; Chatton, Jean-Yves; van Breemen, Cornelis; Ruegg, Urs T

    2004-11-05

    In skeletal muscle cells, plasma membrane depolarization causes a rapid calcium release from the sarcoplasmic reticulum through ryanodine receptors triggering contraction. In Duchenne muscular dystrophy (DMD), a lethal disease that is caused by the lack of the cytoskeletal protein dystrophin, the cytosolic calcium concentration is known to be increased, and this increase may lead to cell necrosis. Here, we used myotubes derived from control and mdx mice, the murine model of DMD, to study the calcium responses induced by nicotinic acetylcholine receptor stimulation. The photoprotein aequorin was expressed in the cytosol or targeted to the plasma membrane as a fusion protein with the synaptosome-associated protein SNAP-25, thus allowing calcium measurements in a restricted area localized just below the plasma membrane. The carbachol-induced calcium responses were 4.5 times bigger in dystrophic myotubes than in control myotubes. Moreover, in dystrophic myotubes the carbachol-mediated calcium responses measured in the subsarcolemmal area were at least 10 times bigger than in the bulk cytosol. The initial calcium responses were due to calcium influx into the cells followed by a fast refilling/release phase from the sarcoplasmic reticulum. In addition and unexpectedly, the inositol 1,4,5-trisphosphate receptor pathway was involved in these calcium signals only in the dystrophic myotubes. This surprising involvement of this calcium release channel in the excitation-contraction coupling could open new ways for understanding exercise-induced calcium increases and downstream muscle degeneration in mdx mice and, therefore, in DMD.

  18. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity

    DEFF Research Database (Denmark)

    Lund, Trine Meldgaard; Ploug, K.B.; Iversen, Anne

    2015-01-01

    -hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown...... an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β...... to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release....

  19. Genetic Variations in the Human G Protein-coupled Receptor Class C, Group 6, Member A (GPRC6A) Control Cell Surface Expression and Function.

    Science.gov (United States)

    Jørgensen, Stine; Have, Christian Theil; Underwood, Christina Rye; Johansen, Lars Dan; Wellendorph, Petrine; Gjesing, Anette Prior; Jørgensen, Christinna V; Quan, Shi; Rui, Gao; Inoue, Asuka; Linneberg, Allan; Grarup, Niels; Jun, Wang; Pedersen, Oluf; Hansen, Torben; Bräuner-Osborne, Hans

    2017-01-27

    GPRC6A is a G protein-coupled receptor activated by l-amino acids, which, based on analyses of knock-out mice, has been suggested to have physiological functions in metabolism and testicular function. The human ortholog is, however, mostly retained intracellularly in contrast to the cell surface-expressed murine and goldfish orthologs. The latter orthologs are Gq-coupled and lead to intracellular accumulation of inositol phosphates and calcium release. In the present study we cloned the bonobo chimpanzee GPRC6A receptor, which is 99% identical to the human receptor, and show that it is cell surface-expressed and functional. By analyses of chimeric human/mouse and human/bonobo receptors, bonobo receptor mutants, and the single nucleotide polymorphism database at NCBI, we identify an insertion/deletion variation in the third intracellular loop responsible for the intracellular retention and lack of function of the human ortholog. Genetic analyses of the 1000 genome database and the Inter99 cohort of 6,000 Danes establish the distribution of genotypes among ethnic groups, showing that the cell surface-expressed and functional variant is much more prevalent in the African population than in European and Asian populations and that this variant is partly linked with a stop codon early in the receptor sequence (rs6907580, amino acid position 57). In conclusion, our data solve a more than decade-old question of why the cloned human GPRC6A receptor is not cell surface-expressed and functional and provide a genetic framework to study human phenotypic traits in large genome sequencing projects linked with physiological measurement and biomarkers.

  20. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression,

  1. Aquaporin 2 and apical calcium-sensing receptor: new players in polyuric disorders associated with hypercalciuria.

    NARCIS (Netherlands)

    Procino, G.; Mastrofrancesco, L.; Mira, A.; Tamma, G.; Carmosino, M.; Emma, F.; Svelto, M.; Valenti, G.

    2008-01-01

    The kidney plays a critical role in regulating water homeostasis through specific proteins highly expressed in the kidney, called aquaporins, allowing water permeation at a high rate. This brief review focuses on some nephropathies associated with impaired urinary concentrating ability and in partic

  2. Expression of thyroid stimulating hormone receptor in differentiated thyroid carcinoma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    李清怀

    2013-01-01

    Objective To explore the expression of thyroid stimulating hormone (TSH) receptor in differentiated thyroid carcinoma and its clinical significance.Methods Seventy-four patients with differentiated thyroid carcinoma treated in our department from January 2009 to January 2011were selected as the observation group,and 28 patients with nodular goiter were selected as the control group.Expression of TSH receptor in the two groups were detected by immunohistochemistry.Results The positive rate of TSH receptor expression in the observation group was55.4 (41/74) ,significantly lower than that of the control

  3. Investigation of the role of sigma1-receptors in inositol 1,4,5-trisphosphate dependent calcium signaling in hepatocytes.

    Science.gov (United States)

    Abou-Lovergne, A; Collado-Hilly, M; Monnet, F P; Koukoui, O; Prigent, S; Coquil, J F; Dupont, G; Combettes, L

    2011-07-01

    In hepatocytes, as in other cell types, Ca(2+) signaling is subject to complex regulations, which result largely from the intrinsic characteristics of the different inositol 1,4,5-trisphosphate receptor (InsP(3)R) isoforms and from their interactions with other proteins. Although sigma1 receptors (Sig-1Rs) are widely expressed in the liver, their involvement in hepatic Ca(2+) signaling remains unknown. We here report that in this cell type Sig-1R interact with type 1 isoforms of the InsP(3) receptors (InsP(3)R-1). These results obtained by immunoprecipitation experiments are confirmed by the observation that Sig-1R proteins and InsP(3)R-1 colocalize in hepatocytes. However, Sig-1R ligands have no effect on InsP(3)-induced Ca(2+) release in hepatocytes. This can be explained by the rather low expression level expression of InsP(3)R-1. In contrast, we find that Sig-1R ligands can inhibit agonist-induced Ca(2+) signaling via an inhibitory effect on InsP(3) synthesis. We show that this inhibition is due to the stimulation of PKC activity by Sig-1R, resulting in the well-known down-regulation of the signaling pathway responsible for the transduction of the extracellular stimulus into InsP(3) synthesis. The PKC sensitive to Sig-1R activity belongs to the family of conventional PKC, but the precise molecular mechanism of this regulation remains to be elucidated.

  4. Expression of heregulin and ErbB receptors in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    GUI Chun; WANG Jian-an; HE Ai-na; CHEN Tie-long; LIU Xian-bao; LUO Rong-hua; JIANG Jun

    2008-01-01

    Background Mesenchymal stem cells are a promising cell type for cell transplantation in myocardial infarction.Type Ⅰ neuregulins-1,also known as heregulin,can promote the survival of cardiomyocytes and stimulate angiogenesis.The purpose of this study was to investigate the expression of heregulin and ErbB receptors in mesenchymaI stem cells,then further detect the secretion of heregulin and the changes in expression of heregulin and ErbB receptors under conditions of serum deprivation and hypoxia.Methods Mesenchymal stem cells lsolated frOm bone marrow of 180 g male Sprague-Dawley rats were cultured.Passage 3 cells were detected experimentally by regular reverse transcriptase-polymerase chain reaction(RT-PCR),quantitative real time PCR and Western blotting.Results Heregulin and ErbB receptors were expressed in mesenchymal stem cells,and all three ErbB receptors mRNA expressions were significantly down-regulated by serum deprivation and hypoxia,but serum deprivation and hypoxia significantly increased the protein expression of heregulin.Serum deprivation and hypoxia more than 12 hours could induce the secretion of heregulin.Conclusions Mesenchymal stem cells can express all three ErbB receptors and heregulin.Serum deprivation and hypoxia decrease the mRNA expression of ErbB receptors,increase the expression of heregulin,and activate the secretion of heregulin.

  5. Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor

    Science.gov (United States)

    Fong-Ngern, Kedsarin; Thongboonkerd, Visith

    2016-10-01

    To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.

  6. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Science.gov (United States)

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  7. Alginates induce differentiation and expression of CXCR7 and CXCL12/SDF-1 in human keratinocytes--the role of calcium.

    Science.gov (United States)

    Stenvik, Jørgen; Sletta, Håvard; Grimstad, Øystein; Pukstad, Brita; Ryan, Liv; Aune, Randi; Strand, Wenche; Tøndervik, Anne; Torp, Sverre Helge; Skjåk-Braek, Gudmund; Espevik, Terje

    2012-10-01

    Alginates from seaweed are used in chronic wound management, though the molecular and cellular effects of various alginate dressings are not well documented. We have developed ultrapure sodium-alginates from Pseudomonas fluorescens with different content and distribution of single guluronic acid (G) residues (0-45% G), and tested their biological activities on human primary keratinocytes (KCs). The alginates inhibited KC migration and induced expression of differentiation markers. The potency of the alginates correlated with the increasing percentage of single G residues. These findings were explained by different binding and release of ionic calcium (Ca++) from the alginates which subsequently triggered differentiation. Ca-free alginates had no effect on KC migration and differentiation, but the chemokine receptor CXCR7 was upregulated. Q-PCR revealed that also CXCL12/SDF-1, one of two known CXCR7-ligands, was induced by the alginates. Both CXCR7 and CXCL12-induction was dependent on the alginate G-content, and highest upregulation was induced by an alginate with 19% single G residues. In the epidermis, CXCR7 expression was restricted to the basal layer. This study defines two biological effects of ultrapure alginates on KCs, both being dependent on the alginate structure, and being either dependent or independent of Ca.

  8. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    Directory of Open Access Journals (Sweden)

    Christophe Verbeurgt

    Full Text Available Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems, containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men. Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were

  9. Unilateral lesion of the nigrostriatal pathway decreases the response of fast-spiking interneurons in the medial prefrontal cortex to 5-HT1A receptor agonist and expression of the receptor in parvalbumin-positive neurons in the rat.

    Science.gov (United States)

    Gui, Z H; Zhang, Q J; Liu, J; Zhang, L; Ali, U; Hou, C; Fan, L L; Sun, Y N; Wu, Z H; Hui, Y P

    2011-10-01

    5-Hydroxytryptamine(1A) (5-HT(1A)) receptors are expressed in the prefrontal cortical interneurons. Among these interneurons, calcium-binding protein parvalbumin (PV)-positive fast spiking (FS) interneurons play an important role in regulatory function of the prefrontal cortex. In the present study, the response of medial prefrontal cortex (mPFC) FS interneurons to the selective 5-HT(1A) receptor agonist 8-OH-DPAT and change in expression of 5-HT(1A) receptor on PV-positive neurons were examined in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) by using extracellular recording and double-labeling immunofluorescence histochemistry. Systemic administration of 8-OH-DPAT (1-243 μg/kg, i.v.) dose-dependently inhibited the mean firing rate of the FS interneurons in sham-operated and the lesioned rats, respectively. The cumulative doses producing inhibition in the lesioned rats (243 μg/kg) was significantly higher than that of sham-operated rats (27 μg/kg). Furthermore, the local application of 8-OH-DPAT (0.01 μg) in the mPFC inhibited the FS interneurons in sham-operated rats, while having no effect on firing rate of the FS interneurons in the lesioned rats. In contrast to sham-operated rats, the lesion of the SNc in rats did not cause the change of PV-positive neurons in the prelimbic prefrontal cortex, a subregion of the mPFC, whereas the lesion of the SNc markedly reduced in percentage of PV-positive neurons expressing 5-HT(1A) receptors. Our results indicate that degeneration of the nigrostriatal pathway results in the decreased response of FS interneurons in the mPFC to 5-HT(1A) receptor stimulation, which attributes to down-regulation of 5-HT(1A) receptor expression in these interneurons.

  10. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    Science.gov (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.

  11. High-level expression of a full-length Eph receptor.

    Science.gov (United States)

    Paavilainen, Sari; Grandy, David; Karelehto, Eveliina; Chang, Elizabeth; Susi, Petri; Erdjument-Bromage, Hediye; Nikolov, Dimitar; Himanen, Juha

    2013-11-01

    Eph receptors are the largest family of Receptor Tyrosine Kinases containing a single membrane-spanning segment. They are involved in a various developmental and cell-cell communication events. Although there is extensive structural information available on both the extra- and intracellular regions of Eph's in isolation, no structures are available for the entire receptor. To facilitate structural studies on functionally relevant Eph/ephrin complexes, we have developed an expression system for producing the full-length human EphA2 receptor. We successfully expressed milligram amounts of the receptor using baculovirus-based vector and insect cells. We were also able to extract the protein from the cell membranes and purify it to near homogeneity in two simple steps. The purified receptor was shown to retain its biological activity in terms of both binding to its functional ligands and being able to auto-phosphorylate the key tyrosine residues of the cytoplasmic kinase domain.

  12. THE EXPRESSION OF RECEPTORS FOR VASOACTIVE INTESTINAL PEPTIDE AND SECRETIN IN COLON NEOPLASMS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To investigate the expression of the receptors for vasoactive intestinal peptide (VIP) and secretin in colon cancer. Methods: This study visualized and characterized the receptors for VIP and secretin in the sequence of human tumor-free colon, adenoma, carcinoma, liver metastasis using storage phosphor autoradiography. Results: Receptors for VIP and secretin were demonstrated in tumor-free colon and colon tumors. A decrease in affinity of VIP receptors was shown in the colonic liver metastasis (Kd = 3.30 nmol) when compared with tumor-free colon (Kd = 0.82 nmol). An up-regulation of receptors for secretin was found in colonic liver metastases. Conclusions: VIP and secretin were both expressed on normal colon tissues. Binding of VIP decreased while secretin increased in colonic liver metastasis. A down-regulation of receptors for VIP in colonic liver metastases may helpful to understand the migration of colon cancer.

  13. Expression and function of P2 receptors in hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Feng, Wenli; Wang, Lina; Zheng, Guoguang

    2015-01-01

    Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind to a class of plasma membrane receptors, P2 receptors, to trigger intercellular signaling. P2 receptors can be further divided into P2X and P2Y subfamilies based on structure and function. Different hematopoietic cells express diverse spectrums of P2 receptors at different levels, including hematopoietic stem and progenitor cells (HSPCs). Extracellular adenosine triphosphate (ATP) exerts different effects on HSPCs, regulating cell proliferation, differentiation, migration, and chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptor function and human diseases attracts more and more attention. This review summarizes the expression and function of P2 receptors in HSPCs and the relationship to hematopoietic diseases.

  14. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency.

    Science.gov (United States)

    Partiseti, M; Le Deist, F; Hivroz, C; Fischer, A; Korn, H; Choquet, D

    1994-12-23

    Stimulation of antigen receptors of lymphocytes triggers a transitory release of Ca2+ from internal stores and the opening of a transmembrane Ca2+ conductive pathway. The latter underlies the sustained increase of intracellular free calcium concentration, and it seems to be a key event in the Ca(2+)-dependent biochemical cascade leading to T cell proliferation. Alternatively, pharmacological depletion of internal stores by itself activates Ca2+ influx. This has led to the hypothesis that antigen-triggered Ca2+ influx is secondary to Ca2+ release from internal stores. However, the precise relationship between antigen and Ca2+ release-activated Ca2+ currents remains unclear, particularly since neither of them has been electrophysiologically recorded in normal lymphocytes. Using the whole-cell and the perforated configurations of the patch clamp technique on peripheral blood lymphocytes, we found that a low amplitude Ca(2+)-selective current was triggered when intracellular stores were depleted by stimuli such as the intracellular perfusion of inositol triphosphate or thapsigargin and the extracellular perfusion of ionomycin. A similar current was elicited by the cross-linking of the T cell receptor-CD3 complex. This current displayed an inward rectification below 0 mV and was completely blocked by the divalent cation Cd2+. It was very selective for Ca2+ over Na+ and insensitive to changes in chloride concentration. The physiological relevance of this conductance was investigated with the analysis of abnormal Ca2+ signaling in lymphocytes from a patient suffering from a primary immunodeficiency associated with a defective T cell proliferation. Using fura-2 video imaging, an absence of Ca2+ influx was established in the patient's lymphocytes, whereas the Ca2+ release from internal stores was normal. This was the case whether cells were stimulated physiologically through their antigen receptors or with store depleting pharmacological agents. Most importantly, no Ca(2

  15. Expression of oestrogen receptor α and oestrogen receptor β in the uterus of the pregnant swine.

    Science.gov (United States)

    Knapczyk-Stwora, K; Durlej, M; Duda, M; Czernichowska-Ferreira, K; Tabecka-Lonczynska, A; Slomczynska, M

    2011-02-01

    The uterus is a well-known target of endocrine, paracrine and autocrine acting molecules among which steroid hormones are of special importance. The objective of our work was to localize oestrogen receptors (ERα and ERβ) mRNA and protein in the pig uterus throughout pregnancy (10, 18, 32, 50, 71, 90 days post coitum) using RT-PCR, Western-blot and immunohistochemistry. The present study is the first one to demonstrate the presence of ERs protein in the porcine uterus not only at the beginning but also at mid- and late pregnancy. In the pregnant swine, ERα was immunolocalized in the luminal epithelium (LE) and glandular epithelium (GE) and the myometrium of the uterus with differences in the intensity of staining at different stages of pregnancy studied. The LE and GE of pregnant swine stained for ERβ regardless of the day of pregnancy examined, whereas only a few cells within the myometrium showed a weak immunoreactivity. Western blot analysis confirmed the presence of ERα and ERβ proteins on all investigated days of gestation. The expression of ERα and ERβ mRNA was detected by RT-PCR in all examined samples corresponding to each of the consecutive stages of pregnancy. The obtained results show that ERα is more abundant in comparison to ERβ within the porcine pregnant uterus. The presence of ERα and ERβ in all compartments of the pig uterus during pregnancy may indicate direct action of oestrogens on proliferation and differentiation of these cells.

  16. In adult female hamsters hypothyroidism stimulates D1 receptor-mediated breathing without altering D1 receptor expression.

    Science.gov (United States)

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2015-11-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH 23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors.

  17. Expression of soluble triggering receptor expression on myeloid cells-1 in pleural effusion

    Institute of Scientific and Technical Information of China (English)

    HUANG Lu-ying; SHI Huan-zhong; LIANG Qiu-li; WU Yan-bin; QIN Xue-jun; CHEN Yi-qiang

    2008-01-01

    Background Tdggedng receptors expressed on myeloid cells(TREM)proteins are a family of cell surface receptors expressed broadly by cells of the myeloid lineage.The aim of this study was to investigate the clinical significance of soluble TREM-1(sTREM-1)in pleural effusions,and to determine the effects of pneumonia on pleural sTREM-1 concentrations.Methods PleuraI fluid was collected from 109 patients who presented to the respiratory institute (35 with malignant pleural effusion,31 with tuberculous pleural effusion,21 with bacteriaI pleural effusion,and 22 with transudate).The concentrations of sTREM-1,tumor necrosis factor-o(TNF-α)and interleukin-1β(IL-1β)were determined jn effusion and serum samples by enzyme Iinked immunosorbent assay(ELISA).Results The concentrations of sTREM-1 in bacterial pleural effusion were significantly higher than those in malignant.tuberculous,and transudative groups(all P<0.001).An sTREM-1 cutoff value of 768.1 ng/L had a sensitivity of 86%and a specificity of 93%.Pleural sTREM-1 Ievels were positively correlated with Ievels of TNF-α and IL-1β.Patients with complicating bacterial pneumonia did not have elevated concentration of STREM-1 jn pleural effusion when compared with patients without pneumonia.Conclusions Determination of pleural sTREM-1 may improve the ability of clinicians to differentiate pleural effusion patients of bacterial origin from those with other etiologies.The occurrence of bacterial pneumonia did not affect pleural sTREM-1 concentrations.

  18. The histaminergic system in human thalamus: correlation of innervation to receptor expression.

    Science.gov (United States)

    Jin, C Y; Kalimo, H; Panula, Pertti

    2002-04-01

    The mRNA expression of three histamine receptors (H1, H2 and H3) and H1 and H3 receptor binding were mapped and quantified in normal human thalamus by in situ hybridization and receptor binding autoradiography, respectively. Immunohistochemistry was applied to study the distribution of histaminergic fibres and terminals in the normal human thalamus. mRNAs for all three histamine receptors were detected mainly in the dorsal thalamus, but the expression intensities were different. Briefly, H1 and H3 receptor mRNAs were relatively enriched in the anterior, medial, and part of the lateral nuclei regions; whereas the expression level was much lower in the ventral and posterior parts of the thalamus, and the reticular nucleus. H2 receptor mRNA displayed in general very low expression intensity with slightly higher expression level in the anterior and lateropolar regions. H1 receptor binding was mainly detected in the mediodorsal, ventroposterolateral nuclei, and the pulvinar. H3 receptor binding was detected mainly in the dorsal thalamus, predominantly the periventricular, mediodorsal, and posterior regions. Very high or high histaminergic fibre densities were observed in the midline nuclear region and other nuclei next to the third ventricle, ventroposterior lateral nucleus and medial geniculate nucleus. In most of the core structures of the thalamus, the fibre density was very low or absent. The results suggest that histamine in human brain regulates tactile and proprioceptory thalamocortical functions through multiple receptors. Also, other, e.g. visual areas and those not making cortical connections expressed histamine receptors and contained histaminergic nerve fibres.

  19. Expression of growth hormone and growth hormone receptor in fibroadenomas of the breast.

    Science.gov (United States)

    Lenicek, Tanja; Kasumović, Dino; Stajduhar, Emil; Dzombeta, Tihana; Jukić, Zoran; Kruslin, Bozo

    2013-06-01

    Fibroadenoma is the most prevalent benign breast tumor. It consists of epithelial and stromal components. In general, breast tumors are highly hormonally dependent and growth hormone by its physiology may have a possible oncogenic potential. Therefore, the aim of this study was to determine the expression of growth hormone and growth hormone receptor in epithelial and stromal components of fibroadenomas. Study group included 30 randomly chosen fibroadenomas from female patients aged between 18 and 69 years. The expression of growth hormone and growth hormone receptor was defined in both histologic components of fibroadenomas. Growth hormone was expressed in 96.7% of both epithelial and stromal components of fibroadenomas, with stronger expression in the stromal component. The same percentage of positive reaction (96.7%) was obtained in the epithelial component of fibroadenomas for growth hormone receptor expression. Only 6.7% of stromal components tested for growth hormone receptor were positive. The high expression of growth hormone and growth hormone receptor in fibroadenoma tissue indicates their possible role in the pathogenesis of this tumor. Follow up of patients with high expression of growth hormone and growth hormone receptor may be suggested.

  20. Interleukin-1 receptors are differentially expressed in normal and psoriatic T cells.

    Science.gov (United States)

    Bebes, Attila; Kovács-Sólyom, Ferenc; Prihoda, Judit; Kui, Róbert; Kemény, Lajos; Gyulai, Rolland

    2014-01-01

    This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4(+)CD25(-) effector and CD4(+)CD25(+)CD127(low) regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor