WorldWideScience

Sample records for calcium phosphate cement

  1. Calcium phosphate cements properties with polymers addition

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers

  2. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration

    International Nuclear Information System (INIS)

    Novel injectable and degradable calcium-magnesium phosphate cement (CMPC) with rapid-setting characteristic was developed by the introduction of magnesium phosphate cement (MPC) into calcium phosphate cement (CPC). The calcium-magnesium phosphate cement prepared under the optimum P/L ratio exhibited good injectability and desired workability. It could set within 10 min at 37 0C in 100% relative humidity and the compressive strength could reach 47 MPa after setting for 48 h, indicating that the prepared cement has relatively high initial mechanical strength. The results of in vitro degradation experiments demonstrated the good degradability of the injectable CMPC, and its degradation rate occurred significantly faster than that of pure CPC in simulated body fluid (SBF) solution. It can be concluded that the novel injectable calcium-magnesium phosphate cement is highly promising for a wide variety of clinical applications, especially for the development of minimally invasive techniques.

  3. Molecular mechanisms of crystallization impacting calcium phosphate cements

    Science.gov (United States)

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  4. Prediction of the Setting Properties of Calcium Phosphate Bone Cement

    Directory of Open Access Journals (Sweden)

    Seyed Mahmud Rabiee

    2012-01-01

    Full Text Available Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties.

  5. Prediction of the setting properties of calcium phosphate bone cement.

    Science.gov (United States)

    Rabiee, Seyed Mahmud; Baseri, Hamid

    2012-01-01

    Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs) for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties. PMID:22919372

  6. On the development of an apatitic calcium phosphate bone cement

    Indian Academy of Sciences (India)

    Manoj Komath; H K Varma; R Sivakumar

    2000-04-01

    Development of an apatitic calcium phosphate bone cement is reported. 100 Particles of tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD) were mixed in equimolar ratio to form the cement powder. The wetting medium used was distilled water with Na2HPO4 as accelerator to manipulate the setting time. The cement powder, on wetting with the medium, formed a workable putty. The setting times of the putty were measured using a Vicat type apparatus and the compressive strength was determined with a Universal Testing Machine. The nature of the precipitated cement was analyzed through X-ray diffraction (XRD), fourier transform infrared spectrometry (FTIR) and energy dispersive electron microprobe (EDAX). The results showed the phase to be apatitic with a calcium–to–phosphorous ratio close to that of hydroxyapatite. The microstructure analysis using scanning electron microscopy (SEM) showed hydroxyapatite nanocrystallite growth over particulate matrix surface. The structure has an apparent porosity of ∼ 52%. There were no appreciable dimensional or thermal changes during setting. The cement passed the in vitro toxicological screening (cytotoxicity and haemolysis) tests. Optimization of the cement was done by manipulating the accelerator concentration so that the setting time, hardening time and the compressive strength had clinically relevant values.

  7. Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties

    Science.gov (United States)

    Rau, J. V.; Fosca, M.; Graziani, V.; Egorov, A. A.; Zobkov, Yu. V.; Fedotov, A. Yu.; Ortenzi, M.; Caminiti, R.; Baranchikov, A. E.; Komlev, V. S.

    2016-01-01

    Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt %) was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP) phase into the dicalcium phosphate dihydrate (DCPD) took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO3)3 was detected and Ag (met.) was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt %) the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content. PMID:27096874

  8. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials. PMID:24090874

  9. New developments in calcium phosphate bone cements: approaching spinal applications

    OpenAIRE

    Vlad, Maria Daniela

    2009-01-01

    La presente tesis doctoral (i.e., “New developments in calcium phosphate bone cements: approaching spinal applications”) aporta nuevos conocimientos en el campo de los cementos óseos de fosfato de calcio (CPBCs) en relación a su aplicación clínica en el campo de la cirugía vertebral mínimamente invasiva. La hipótesis central de esta investigación fue formulada en los siguientes términos: “Los cementos apatíticos pueden ser (si se optimizan) una alternativa mejor (debido a sus propiedades d...

  10. Structure, properties and animal study of a calcium phosphate/calcium sulfate composite cement.

    Science.gov (United States)

    Chen, Wei-Luen; Chen, Chang-Keng; Lee, Jing-Wei; Lee, Yu-Ling; Ju, Chien-Ping; Lin, Jiin-Huey Chern

    2014-04-01

    In-vitro and in-vivo studies have been conducted on an in-house-developed tetracalcium phosphate (TTCP)/dicalcium phosphate anhydrous (DCPA)/calcium sulfate hemihydrate (CSH)-derived composite cement. Unlike most commercial calcium-based cement pastes, the investigated cement paste can be directly injected into water and harden without dispersion. The viability value of cells incubated with a conditioned medium of cement extraction is >90% that of Al2O3 control and >80% that of blank medium. Histological examination reveals excellent bonding between host bone and cement without interposition of fibrous tissues. At 12 weeks-post implantation, significant remodeling activities are found and a new bone network is developed within the femoral defect. The 26-week samples show that the newly formed bone becomes more mature, while the interface between residual cement and the new bone appears less identifiable. Image analysis indicates that the resorption rate of the present cement is much higher than that of TTCP or TTCP/DCPA-derived cement under similar implantation conditions.

  11. Augmentation of Pedicle Screw Fixation with Calcium Phosphate Cement

    Institute of Scientific and Technical Information of China (English)

    YANG Shu-hua; FU De-hao; LI Jin; XU Wei-hua; YANG Cao; YE Zhe-wei; ZUO Xiao-yan

    2004-01-01

    To determine whether a biodegradable calcium phosphate cement(CPC) provides significant augmentation of pedicle screw fixation or not,an in vitro biomechanical study was carried out to evaluate the biomechanical effect of CPC in the restoration and augmentation of pedicle screw fixation.Axial pullout test and cyclic bending resistance test were employed in the experiment,and polymethylmethacrylate (PMMA) was chosen as control.The results demonstrate that the pullout strengths following CPC restoration and augmentation are 74% greater on an average than those of the control group,but less than those of PMMA restoration group and augmentation group respectively (increased by 126% versus control).In cyclic bending resistance test,the CPC augmented screws are found to withstand a greater number of cycles or greater loading with less displacement before loosening,but the augmentation effect of PMMA is greater than that of CPC.

  12. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.

    Science.gov (United States)

    Combes, C; Bareille, R; Rey, C

    2006-11-01

    The feasibility of making calcium carbonate-calcium phosphate (CaCO(3)-CaP) mixed cements, comprising at least 40% (w/w) CaCO(3) in the dry powder ingredients, has been demonstrated. Several original cement compositions were obtained by mixing metastable crystalline CaCO(3) phases with metastable amorphous or crystalline CaP powders in aqueous medium. The cements set within at most 1 h at 37 degrees C in atmosphere saturated with water. The hardened cement is microporous and exhibits weak compressive strength. The setting reaction appeared to be essentially related to the formation of a highly carbonated nanocrystalline apatite phase by reaction of the metastable CaP phase with part or almost all of the metastable CaCO(3) phase. The recrystallization of metastable CaP varieties led to a final cement consisting of a highly carbonated poorly crystalline apatite analogous to bone mineral associated with various amounts of vaterite and/or aragonite. The presence of controlled amounts of CaCO(3) with a higher solubility than that of the apatite formed in the well-developed CaP cements might be of interest to increase resorption rates in biomedical cement and favors its replacement by bone tissue. Cytotoxicity testing revealed excellent cytocompatibility of CaCO(3)-CaP mixed cement compositions.

  13. Balloon vetebroplasty with calcium phosphate cement augmentation for direct restoration of traumatic thoracolumbar vertebral fractures

    NARCIS (Netherlands)

    Verlaan, JJ; van Helden, WH; Oner, FC; Verbout, AJ; Dhert, WJA

    2002-01-01

    Study Design. A human cadaveric model was used to evaluate balloon vertebroplasty in traumatic vertebral fractures. Objectives. To assess the feasibility and safety of balloon vertebroplasty followed by calcium phosphate cement augmentation to prevent recurrent kyphosis. Summary of Background Data.

  14. In vitro aging of a calcium phosphate cement.

    Science.gov (United States)

    Bohner, M; Merkle, H P; Lemaître, J

    2000-03-01

    Cement samples made of beta-tricalcium phoshate (beta-TCP), phosphoric acid (PA) and water mixtures were incubated in several aqueous solutions to determine their stability over time. The effects of the cement composition and the incubating temperature were investigated in more detail. The cement samples contained mostly dicalcium phosphate dihydrate (DCPD) and remnants of beta-TCP crystals. Depending on the initial cement composition, a certain amount of dicalcium phosphate (DCP) crystals were formed. The larger the initial PA concentration, the larger the DCP amount. After setting, the cement composition was stable for at least 16 days up to 60 degrees C. Above that temperature, the DCPD crystals decomposed into DCP crystals. The latter reaction provoked a decrease of the pH of the incubation solution, phenomenon expected for a cement sample containing an excess of PA. As the cement samples contained an excess of beta-TCP, it was postulated that beta-TCP crystals became so covered by DCP or DCPD crystals during setting that the setting reaction was stopped prematurely. The latter phenomenon gave a good explanation for the low pH values measured in the incubation solutions.

  15. Characterization of cement calcium phosphate for use dental

    International Nuclear Information System (INIS)

    Calcium phosphates are interesting biological and medical attention due to its occurrence in different animal species and humans. Ceramics based on calcium phosphate in the form of implants or porous particulate materials, have proven to be suitable replacements for bone tissue when they are only subjected to small mechanical stresses. Was obtained research laboratory DEMA/UFCG a calcium phosphate phase. The goal is to characterize the material by X-ray diffraction (XRD) in order to analyze what the phases and infrared spectroscopy (FTIR) to identify the absorption bands of the bonding characteristic. Was identified by XRD phase present in the sample is hydroxyapatite Ca/P 1.67. In infrared spectroscopy has absorption bands characteristic of the phosphate group at 1032 cm1 region. (author)

  16. Evaluation of Calcium Phosphate Cement As a Root Canal Sealer Filling Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Calcium phosphate cement for root end sealing was obtained by mixing α-tricalcium phosphate and additives with an aqueous solution of citric. Powder and liquid were mixed at a ratio of 1.25g/mL. The biocompatibility of this material was investigated primarily by subcutaneous implantation tests. Then calcium phosphate cement was used to fill three adult dogs' root canal, both calcium hydroxide paste and hydroxyapatite paste as control. The animals were killed at 4,12,20 weeks postoperatively respectively. The effects of different materials on the apical closure, restoration of periapical tissues and adaptability to the dentinal surface were examined by optical and electronic microscope. The observation at 20 weeks shows that the calcium phosphate cement has the potentialities of being a root canal sealer filling material available for pulpless teeth with open-apex and destructive periapical tissue.

  17. Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system.

    Science.gov (United States)

    Mirtchi, A A; Lemaitre, J; Terao, N

    1989-09-01

    The possibility of making cements based on beta-tricalcium phosphate (beta-TCP), a promising bone graft material, was investigated. Upon admixture with water, beta-TCP/monocalcium phosphate monohydrate (MCPM) mixtures were found to set and harden like conventional hydraulic cements. Beta-TCP powders with larger particle size, obtained by sintering at higher temperatures, increased the ultimate strength of the cement. Results show that setting occurs after dissolution of MCPM, as a result of the precipitation of dicalcium phosphate dihydrate (DCPD) in the paste. The ultimate tensile strength of the hardened cement is proportional to the amount of DCPD formed. Upon ageing above 40 degrees C, DCPD transforms progressively into anhydrous dicalcium phosphate (DCP), thereby decreasing the strength. Ageing of the pastes in 100% r.h. results in a decay of the mechanical properties. This can be ascribed to an intergranular dissolution of the beta-TCP aggregates as a result of the pH lowering brought about by the MCPM to DCPD conversion.

  18. An injectable calcium phosphate cement for the local delivery of paclitaxel to bone

    NARCIS (Netherlands)

    Lopez-Heredia, M.A.; Kamphuis, G.J.; Thune, P.C.; Oner, F.C.; Jansen, J.A.; Walboomers, X.F.

    2011-01-01

    Bone metastases are usually treated by surgical removal, fixation and chemotherapeutic treatment. Bone cement is used to fill the resection voids. The aim of this study was to develop a local drug delivery system using a calcium phosphate cement (CPC) as carrier for chemotherapeutic agents. CPC cons

  19. The effects of citric acid on the hydration of calcium phosphate cement

    Institute of Scientific and Technical Information of China (English)

    DAI Hong-lian; YAN Yu-hua; WANG You-fa; LI Shi-pu

    2001-01-01

    @@ INTRODUCTION Calcium phosphate cements (CPC) overcome the practical disadvantages of blocks or granulesl can be handled as a paste and sit in situ. Their structure and composition close to that of HAP make them biocompatible materials. 2 The conventional calcium phosphate cement had some problems such as long setting time (30~60 min) and low compressive strength, etc. In our system, an α-TCP/TTCP powder mixture was mixed with water containing citric acid to control the setting time and compressive strength. In this paper, the effects of various concentration citric acid solutions on the properties of the cement are reported.

  20. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  1. Investigating calcium polyphosphate addition to a conventional calcium phosphate cement for bone-interfacing applications

    Science.gov (United States)

    Krausher, Jennifer Lynn

    Calcium phosphate cements (CPCs) are of great interest in bone regeneration applications because of their biocompatibility and osteoconductivity, and as delivery vehicles for therapeutics; however, delivery applications have been limited by adverse interactions between therapeutics and the cement setting reaction. Amorphous calcium polyphosphate (CPP) yields a biodegradable material with a demonstrated drug delivery capacity following appropriate processing. The incorporation of drug-loaded CPP into a CPC is under consideration as a method of minimizing adverse interactions and extending drug release. This thesis represents the first investigation into the effects of CPP addition on the properties, setting and antibiotic release profile of a conventional apatitic calcium phosphate cement. As-made, gelled and vancomycin-loaded CPP particulate were added to the powder component of a conventional dicalcium phosphate/tetracalcium phosphate CPC. The setting behaviour, set properties and microstructure of the resulting CPP-CPCs were evaluated with setting time testing (Gilmore needle method), pH testing, mechanical testing, SEM imaging, XRD and FTIR analysis. In vitro degradation and elution behaviour were evaluated by monitoring calcium release (atomic absorbance spectroscopy), mechanical strength and vancomycin release (UV-visual spectrophotometry). CPP addition was found to increase the setting time, reduce the mechanical strength and inhibit the conversion of the CPC starting powders to the set apatitic phase. The most likely mechanism for the observed effect of CPP addition was the adsorption of polyphosphate chains on the particle surfaces, which would inhibit the dissolution of the starting powders and the conversion of apatite precursor phases to apatite, leading to reduced mechanical properties. The detrimental effects of CPP were reduced by limiting the CPP fraction to less than a few weight per cent and increasing the size of the CPP particulate. CPP

  2. In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements.

    Science.gov (United States)

    Hesaraki, Saeed; Nezafati, Nader

    2014-08-01

    The need for bone repair has increased as the population ages. In this research, calcium phosphate cements, with and without chitosan (CS) and hyaluronic acid (HA), were synthesized. The composition and morphological properties of cements were evaluated by X-ray diffraction and scanning electron microscopy. The acellular in vitro bioactivity revealed that different apatite morphologies were formed on the surfaces of cements after soaking in simulated body fluid. The in vitro osteoblastic cell biocompatibility of in situ forming cements was evaluated and compared with those of conventional calcium phosphate cements (CPCs). The viability and growth rate of the cells were similar for all CPCs, but better alkaline phosphatase activity was observed for CPC with CS and HA. Calcium phosphate cements supported attachment of osteoblastic cells on their surfaces. Spindle-shaped osteoblasts with developed cytoplasmic membrane were found on the surfaces of cement samples after 7 days of culture. These results reveal the potential of the CPC-CS/HA composites to be used in bone tissue engineering. PMID:24399509

  3. Incorporation of a controlled-release glass into a calcium phosphate cement.

    Science.gov (United States)

    Khairoun, I; Boltong, M G; Gil, F J; Driessens, F C; Planell, J A; Seijas, M M; Martínez, S

    1999-04-01

    A so-called controlled-release glass was synthesized occurring in the system CaO-Na2O-P2O5. A certain sieve fraction of this glass was incorporated in a calcium phosphate cement, of which the powder contained alpha-tricalcium phosphate (alpha-TCP), dicalcium phosphate (DCP) and precipitated hydroxyapatite (HA). The glass appeared to retard the cement setting slightly and it reduced considerably the compressive strength after aging in aqueous solutions which were continuously refreshed. Scanning electron microscope (SEM) pictures and X-ray diffraction (XRD) patterns of the samples after 5 weeks of aging showed that the glass was not dissolved but that large brushite crystals were formed. Thereby, aging in CaCl2 solutions resulted in more brushite formation than aging in NaCl solutions. The brushite crystals did not reinforce the cement. Neither was the aged glass-containing cement weaker than it was before the brushite formation right after complete setting. In conclusion, the incorporation of controlled-release glasses into a calcium phosphate cement and subsequent aging in aqueous solutions did not result in the formation of macropores in the cement structure, but that of brushite crystals. This incorporation reduced the compressive strength of the cement considerably.

  4. Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement.

    Science.gov (United States)

    Ko, Chia-Ling; Chen, Jian-Chih; Tien, Yin-Chun; Hung, Chun-Cheng; Wang, Jen-Chyan; Chen, Wen-Cheng

    2015-01-01

    Calcium phosphate cement (CPC) is a widely used bone substitute. However, CPC application is limited by poor bioresorption, which is attributed to apatite, the stable product. This study aims to systematically survey the biological performance of dicalcium phosphate (DCP)-rich CPC. DCP-rich CPC exhibited a twofold, surface-modified DCP anhydrous (DCPA)-to-tetracalcium phosphate (TTCP) molar ratio, whereas conventional CPC (c-CPC) showed a onefold, surface unmodified DCPA-to-TTCP molar ratio. Cell adhesion, morphology, viability, and alkaline phosphatase (ALP) activity in the two CPCs were examined with bone cell progenitor D1 cultured in vitro. Microcomputed tomography and histological observation were conducted after CPC implantation in vivo to analyze the residual implant ratio and new bone formation rate. D1 cells cultured on DCP-rich CPC surfaces exhibited higher cell viability, ALP activity, and ALP quantity than c-CPC. Histological evaluation indicated that DCP-rich CPC showed lesser residual implant and higher new bone formation rate than c-CPC. Therefore, DCP-rich CPC can improve bioresorption. The newly developed DCP-rich CPC exhibited potential therapeutic applications for bone reconstruction.

  5. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles.

    NARCIS (Netherlands)

    Link, D.P.; Dolder, J. van den; Jurgens, W.J.; Wolke, J.G.C.; Jansen, J.A.

    2006-01-01

    In this study, the mechanical properties of an implanted calcium phosphate (CaP) cement incorporated with 20wt% poly (dl-lactic-co-glycolic acid) (PLGA) microparticles were investigated in a rat cranial defect. After 2, 4 and 8 weeks of implantation, implants were evaluated mechanically (push-out te

  6. Preparation and Compressive Strength of Calcium Phosphate Bone Cement Containing N, O-carboxymethyl Chitosan

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    N, O-carboxymethyl chitosan ( CMCTS ), a kind of biodegradable organic substance, was added to calcium phosphate bone cement (CPC) to produce a composite more similar in composition to human bone. The compressive strength of the new material was increased by 10 times compared with conventional CPC.

  7. Biocompatibility and degradation of poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites

    NARCIS (Netherlands)

    Ruhe, P.Q.; Hedberg, E.L.; Padron, N.T.; Spauwen, P.H.M.; Jansen, J.A.; Mikos, A.G.

    2005-01-01

    Injectable calcium phosphate (Ca-P) cement materials exhibit favorable osteocompatible behavior but are resorbed slowly because of a lack of a bone ingrowth-enabling macroporosity. In this study, poly(DL-lactic-co-glycolic acid) (PLGA) microparticles (average size 66 +/- 25 microm) were incorporated

  8. An experimental approach to the study of the rheology behaviour of synthetic bone calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Friberg, J.; Fernandez, E.; Sarda, S.; Nilsson, M.; Ginebra, M.P.; Planell, J.A. [Universidad Politecnica de Catalunya, Barcelona (Spain). Dept. of Materials Science and Metallurgical Engineering; Martinez, S. [Barcelona Univ. (Spain). Mineralogia i Recursos Minerals

    2001-07-01

    Calcium phosphate cements were developed to fit surgical needs in biomedical fields such as odontology or traumatology. Nowadays, a broad field of new applications have been found for this kind of materials. Drug delivery systems, tissue-engineering scaffolds and osteoporotic bone filling applications are some of the new fields that are being benefited with these materials. Looking at both, commercial and new experimental calcium phosphate cements it is found that {alpha}-tricalcium phosphate is the main reactive powder responsible for the setting and the hardening of the cement. Thus, it is important to know how {alpha}-tricalcium phosphate affects injectability of these cements. The aim of this study was to investigate the rheological behaviour of {alpha}-tricalcium phosphate slurries in order to know how the cement injectability should be modified. Factors such as liquid to powder ratio, particle size of the main reactive powder and the addition of dispersants have been considered. The results showed that viscosity decreased when particle size of reactant was increased and when liquid to powder ratio was increased. It was also found that a minimum of viscosity exists at an optimum value of the weight percentage of dispersant. (orig.)

  9. Polymeric-Calcium Phosphate Cement Composites-Material Properties: In Vitro and In Vivo Investigations

    Science.gov (United States)

    Khashaba, Rania M.; Moussa, Mervet M.; Mettenburg, Donald J.; Rueggeberg, Frederick A.; Chutkan, Norman B.; Borke, James L.

    2010-01-01

    New polymeric calcium phosphate cement composites (CPCs) were developed. Cement powder consisting of 60 wt% tetracalcium phosphate, 30 wt% dicalcium phosphate dihydrate, and 10 wt% tricalcium phosphate was combined with either 35% w/w poly methyl vinyl ether maleic acid or polyacrylic acid to obtain CPC-1 and CPC-2. The setting time and compressive and diametral tensile strength of the CPCs were evaluated and compared with that of a commercial hydroxyapatite cement. In vitro cytotoxicity and in vivo biocompatibility of the two CPCs and hydroxyapatite cement were assessed. The setting time of the cements was 5–15 min. CPC-1 and CPC-2 showed significantly higher compressive and diametral strength values compared to hydroxyapatite cement. CPC-1 and CPC-2 were equivalent to Teflon controls after 1 week. CPC-1, CPC-2, and hydroxyapatite cement elicited a moderate to intense inflammatory reaction at 7 days which decreased over time. CPC-1 and CPC-2 show promise for orthopedic applications. PMID:20811498

  10. Development of a fully injectable calcium phosphate cement for orthopedic and dental applications

    Indian Academy of Sciences (India)

    Manoj Komath; H K Varma

    2003-06-01

    A study on the development of a fully injectable calcium phosphate cement for orthopedic and dental applications is presented. The paper describes its characteristic properties including results of bio- compatibility studies. A conventional two-component calcium phosphate cement formulation (having a powder part containing dry mixture of acidic and basic calcium phosphate particles and a liquid part containing phosphate solution) is modified with a biocompatible gelling agent, to induce flow properties and cohesion. The quantity of the gelling agent is optimized to get a viscous paste, which is smoothly injectable through an 18-gauge needle, with clinically relevant setting parameters. The new formulation has a setting time of 20 min and a compressive strength of 11 MPa. The X-ray diffraction, Fourier transform infrared spectrometry, and energy dispersive electron microprobe analyses showed the phase to be hydroxyapatite, the basic bone mineral. Scanning electron microscopy revealed a porous structure with particle sizes of a few micrometers. The cement did not show any appreciable dimensional or thermal change during setting. The injectability is estimated by extruding through needle and the cohesive property is assessed by water contact method. The cement passed the in vitro biocompatibility screening (cytotoxicity and haemolysis) tests.

  11. In-situ observation on the transformation of calcium phosphate cement into hydroxyapatite

    International Nuclear Information System (INIS)

    In the present study, the in-situ transformation of calcium phosphate cement into hydroxyapatite (HAp) within the first hour is monitored with a synchrotron X-ray beam. A disodium hydrogen phosphate solution is used as cement liquid to activate the reaction between dicalcium phosphate anhydrous (DCPA) and calcium hydroxide (Ca(OH)2). The XRD analysis indicates that the amounts of DCPA and Ca(OH)2 first decrease within the first min of the reaction. Then, the intensity of DCPA's XRD peaks starts to increase instead in the period of 5 to 20 min. After 20 min, the DCPA particles are consumed slowly to form fine HAp particles. Large pores are evident upon the completion of reaction.

  12. Solid-state P-31 MR studies of bone mineral and calcium phosphate bone cements

    International Nuclear Information System (INIS)

    Calcium phosphate bone cements have recently been used to promote bone healing and remodeling, but little is known of their bioabsorption. The purpose of this paper to characterize and quantitate bone mineral and calcium phosphate bone cements with the use of solid-state P-31 NMR imaging to establish a model for bioabsorption studies. Pulverized cortical rabbit bone, octacalcium phosphate spherulites, and two synthetic apatite formulations (A and B, Norian, Mountain View, Calif) were evaluated in vitro. A 9.4-T Varian VXR-400S spectrometer operating at 161.9 MHz for P-31 was used to obtain NMR imaging spectra with the magic-angel spinning technique at a sample spin frequency of 6-7.5 kHz, utilizing an external 85% phosphoric acid reference. T1 was determined in a static 90 degrees τ 90 degrees experiment. Quantitation was attempted in mixed samples

  13. Calcium phosphate holmium-166 ceramic to addition in bone cement: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Donanzam, Blanda A.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade do Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Nuclear; Dalmazio, Ilza; Valente, Eduardo S., E-mail: id@cdtn.b, E-mail: valente@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Spine metastases are a common and painful complication of cancer. The treatment often consists of bone cement injection (vertebroplasty or kyphoplasty) within vertebral body for vertebrae stabilization, followed by external beam radiation therapy. Recently, researchers introduced the concept of radioactive bone cement for spine tumors therapy. Then, investigations about bioactive and radioactive materials became interesting. In this study, we present the synthesis of calcium phosphate incorporated holmium (CaP-Ho) via sol-gel technique, and its characterization by XRD, FT-IR, NA and SEM. Results showed a multiphasic bioceramic composed mainly of hydroxyapatite, {beta}-tricalcium phosphate, holmium phosphate and traces of calcium pyrophosphate. Furthermore, the nuclide Ho-166 was the major radioisotope produced. Despite that, the radioactive bioceramic CaP-{sup 166}Ho must be investigated in clinical trials to assure its efficacy and safety on spine tumors treatment (author)

  14. Molecular mechanism of crystallization impacting calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  15. Kinetic study of the setting reaction of a calcium phosphate bone cement.

    Science.gov (United States)

    Fernández, E; Ginebra, M P; Boltong, M G; Driessens, F C; Ginebra, J; De Maeyer, E A; Verbeeck, R M; Planell, J A

    1996-11-01

    The setting reaction of a calcium phosphate bone cement consisting of a mixture of 63.2 wt % alpha-tertiary calcium phosphate (TCP)[alpha-Ca3(PO4)2], 27.7 wt % dicalcium phosphate (DCP) (CaHPO4), and 9.1 wt % of precipitated hydroxyapatite [(PHA) used as seed material] was investigated. The cement samples were prepared at a liquid-to-powder ratio of: L/P = 0.30 ml/g. Bi-distilled water was used as liquid solution. After mixing the powder and liquid, some samples were molded and aged in Ringer's solution at 37 degrees C. At fixed time intervals they were unmolded and then immediately frozen in liquid nitrogen at a temperature of TN = -196 degrees C, lyofilized, and examined by X-ray diffraction as powder samples. The compressive strength versus time was also measured in setting samples of this calcium phosphate bone cement. The crystal entanglement morphology was examined by scanning electron microscopy. The results showed that: 1) alpha-TCP reacted to a calcium-deficient hydroxyapatite (CDHA), Ca9(HPO4)(PO4)5O H, whereas DCP did not react significantly; 2) the reaction was nearly finished within 32 h, during which both the reaction percentage and the compressive strength increased versus time, with a strong correlation between them; and 3) the calcium phosphate bone cement showed in general a structure of groups of interconnected large plates distributed among agglomerations of small crystal plates arranged in very dense packings.

  16. An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement.

    Science.gov (United States)

    Rajzer, Izabella; Piekarczyk, Wojciech; Castaño, Oscar

    2016-10-01

    An ultrasound through-transmission method to monitor the setting process of injectable calcium phosphate bone cements in body fluids is presented. This method can be used to determine the acoustic properties of the bone cement as it sets, which are linked to its material properties and provide some information about changes occurring within the cement. The development of the methodology of ultrasonic testing and execution of velocity measurements of the longitudinal and transverse waves using the through-transmission method made it possible to determine the material constants of samples during the setting and hardening process of an injectable cement paste in physiological fluids (i.e. the Young's modulus (E), the Poisson ratio (ν) and the shear modulus (G)), and to determine the degree of anisotropy of wave velocity in the samples. A strong advantage of the proposed method is that it is non-destructive, and the same sample can be used to monitor the whole process of the cement setting. The testing was performed on premixed and injectable calcium phosphate (CPC)/chitosan blend, where glycerol was used as a liquid phase. Comparisons between ultrasonic velocity and empirical tests such as compressive strength, porosity measurement, FTIR, SEM and XRD analysis at different days of immersion in Ringer's solutions showed that the ultrasonic velocity can be very useful to provide in situ information about changes occurring within the cement. PMID:27287094

  17. The In-situ Reinforcement of Calcium Phosphate Cement and Its Micro-structural Analysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Carbon nanotubes ( CNTs ) and polyacrylic acid were employed to modify the setting process and hydration products of β- TCP/ TTCP calcium phosphate cement. The micro-structure of hydration product and the fashion of how additives and hydration particles interconnected were investigated. With the modification effect of CNTs, the setting particles and CNTs got winded and interconnected and thus made the composite more compact and denser.

  18. Basic properties of calcium phosphate cement containing different concentrations of citric acid solution

    Institute of Scientific and Technical Information of China (English)

    戴红莲; 闫玉华; 冯凌云; 李世普; 贺建华

    2002-01-01

    The properties of calcium phosphate cement consisting of α-tricalcium phosphate (α-TCP) and tetracalcium phosphate (TTCP) have been investigated by using a cement liquid that contained citric acid with concentration of 0.05 mol/L or higher. The relationship between the setting time of the system cement and the concentration of citric acid solution shows concave type curve. When solution concentration was 0.2 mol/L, the setting time was 8 min, which was the shortest. While the relationship between 24 h compressive strength of the cement and the citric acid concentration shows convex type curve. When solution concentration was 0.2 mol/L, the compressive strength was 39.0 MPa, which was the highest. Afterwards, the microstructure of the hardening product was observed by SEM, the effect of citric acid on the exothermic rate of hydrate reaction was studied by microcalorimeter, and the crushed specimens were subjected to X-ray diffraction. The results verified that the low citric acid concentration can accelerate the hydrate reaction rate of the α-TCP/TTCP system. However, the high citric acid concentration inhibited hydroxyapatite formation and retarded the rate of hydrate reaction of the α-TCP/TTCP cement.

  19. A New Type of Biphasic Calcium Phosphate Cement as a Gentamicin Carrier for Osteomyelitis

    Directory of Open Access Journals (Sweden)

    Wen-Yu Su

    2013-01-01

    Full Text Available Osteomyelitis therapy is a long-term and inconvenient procedure for a patient. Antibiotic-loaded bone cements are both a complementary and alternative treatment option to intravenous antibiotic therapy for the treatment of osteomyelitis. In the current study, the biphasic calcium phosphate cement (CPC, called α-TCP/HAP (α-tricalcium phosphate/hydroxyapatite biphasic cement, was prepared as an antibiotics carrier for osteomyelitis. The developed biphasic cement with a microstructure of α-TCP surrounding the HAP has a fast setting time which will fulfill the clinical demand. The X-ray diffraction and Fourier transform infrared spectrometry analyses showed the final phase to be HAP, the basic bone mineral, after setting for a period of time. Scanning electron microscopy revealed a porous structure with particle sizes of a few micrometers. The addition of gentamicin in α-TCP/HAP would delay the transition of α-TCP but would not change the final-phase HAP. The gentamicin-loaded α-TCP/HAP supplies high doses of the antibiotic during the initial 24 hours when they are soaked in phosphate buffer solution (PBS. Thereafter, a slower drug release is produced, supplying minimum inhibitory concentration until the end of the experiment (30 days. Studies of growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa in culture indicated that gentamicin released after 30 days from α-TCP/HAP biphasic cement retained antibacterial activity.

  20. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    Directory of Open Access Journals (Sweden)

    Rania M. Khashaba

    2011-01-01

    Full Text Available Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control. Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications.

  1. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    Science.gov (United States)

    Khashaba, Rania M.; Moussa, Mervet; Koch, Christopher; Jurgensen, Arthur R.; Missimer, David M.; Rutherford, Ronny L.; Chutkan, Norman B.; Borke, James L.

    2011-01-01

    Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications. PMID:21941551

  2. The progress of early phase bone healing using porous granules produced from calcium phosphate cement

    Directory of Open Access Journals (Sweden)

    Jungbluth P

    2010-05-01

    Full Text Available Abstract Objective Bone grafting is a vital component in many surgical procedures to facilitate the repair of bone defects or fusions. Autologous bone has been the gold standard to date in spite of associated donor-site morbidity and the limited amount of available donor bone. The aim of this study was to investigate the progress of bone regeneration and material degradation of calcium phosphate granules (CPG produced from a calcium phosphate self-setting cement powder compared to the use of autologous bone grafting in the treatment of "critical size defects" on load-bearing long bones of minipigs. Methods A critical size defect in the tibial metaphysis of 16 mini-pigs was filled either with autologous cancellous graft or with micro- and macroporous carbonated, apatic calcium phosphate granules (CPG produced from a calcium phosphate self-setting cement powder. After 6 weeks, the specimens were assessed by X-ray and histological evaluation. The amount of new bone formation was analysed histomorphometrically. Results The semi-quantitative analysis of the radiological results showed a complete osseous bridging of the defect in three cases for the autograft group. In the same group five animals showed a beginning, but still incomplete bridging of the defect, whereas in the CPG group just two animals developed this. All other animals of the CPG group showed only a still discontinuous new bone formation. Altogether, radiologically a better osseous bridging was observed in the autograft group compared to the CPG group. Histomorphometrical analysis after six weeks of healing revealed that the area of new bone was significantly greater in the autograft group concerning the central area of the defect zone (p Conclusions Within the limits of the present study it could be demonstrated that autologous cancellous grafts lead to a significantly better bone regeneration compared to the application of calcium phosphate granules (CPG produced from a calcium

  3. CITRIC ACID AS A SET RETARDER FOR CALCIUM ALUMINATE PHOSPHATE CEMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; BROTHERS, L.E.

    2005-01-01

    Citric acid added as set retarder significantly contributed to enhancing the setting temperature and to extending the thickening time of a calcium aluminate phosphate (CaP) geothermal cement slurry consisting of calcium aluminate cement (CAC) as the base reactant and sodium polyphosphate (NaP) solution as the acid reactant. The set-retarding activity of citric acid was due to the uptake of Ca{sup 2+} ions from the CAC by carboxylic acid groups within the citric acid. This uptake led to the precipitation of a Ca-complexed carboxylate compound as a set-retarding barrier layer on the CAC grains' surfaces. However, this barrier layer was vulnerable to disintegration by the attack of free Ca{sup 2+} ions from CAC, and also to degradation at elevated temperature, thereby promoting the generation of exothermic energy from acid-base reactions between the CAC and NaP after the barrier was broken. The exothermic reaction energy that was promoted in this way minimized the loss in strength of the citric acid-retarded cement. The phase composition assembled in both retarded and non-retarded cements after autoclaving at 180 C encompassed three reaction products, hydroxyapatite (HOAp), hydrogrossular and boehmite, which are responsible for strengthening the autoclaved cement. The first two reaction products were susceptible to reactions with sulfuric acid and sodium sulfate to form crystalline bassanite scale as the corrosion product. The boehmite phase possessed a great resistance to acid and sulfate. Although the bassanite scales clinging to the cement's surfaces were the major factor governing the loss in weight, they served in protecting the cement from further acid- and sulfate-corrosion until their spallation eventually occurred. Nevertheless, the repetitive processes of HOAp and hydrogrossular {yields} bassanite {yields} spallation played an important role in extending the useful lifetime of CaP cement in a low pH environment at 180 C.

  4. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement.

    Science.gov (United States)

    Stankewich, C J; Swiontkowski, M F; Tencer, A F; Yetkinler, D N; Poser, R D

    1996-09-01

    The first goal of this study was to determine if augmentation with an injectable, in situ setting, calcium-phosphate cement that is capable of being remodeled and was designed to mimic bone mineral significantly improved the strength and stiffness of fixation in a cadaveric femoral neck fracture model. The second goal was to determine if greater increases in fixation strength were achieved as the bone density of the specimen decreased. Sixteen pairs of fresh cadaveric human femora with a mean age of 70.9 years (SD = 17.2 years) were utilized. The bone density of the femoral neck was measured with dual-energy x-ray absorptiometry. The femoral head was impacted vertically with the femoral shaft fixed in 12 degrees of adduction using a materials testing machine to create a fully displaced fracture. Following fracture, 30% inferior comminution was created in each specimen. One randomly chosen femur from each pair underwent anatomic reduction and fixation with three cannulated cancellous bone screws, 7 mm in diameter, in an inverted triangle configuration. The contralateral femur underwent the same fixation augmented with calcium-phosphate cement. Specimens were preconditioned followed by 1.000 cycles to one body weight (611.6 N) at 0.5 Hz to simulate single-limb stance loading. The stiffness in the first cycle was observed to be significantly greater in cement-augmented specimens compared with unaugmented controls (p bone mineral cement failed at a mean of 4,573 N (SD = 1,243 N); this was significantly greater (p bone density (p = 0.25, R2 = 0.09), was weakly correlated to the volume of cement injected (p = 0.07, R2 = 0.22), and was inversely related to the fixation failure load of the control specimen (p = 0.001, R2 = 0.54). There was a mean relative improvement in fixation strength of 169.6% (SD = 77.5). These findings suggest that calcium-phosphate cement provides initial beneficial augmentation to fixation of femoral neck fractures. PMID:8893773

  5. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles

    OpenAIRE

    Link, Dennis P.; VAN DEN DOLDER, Juliette; Jurgens, J. F. M.; Wolke, Joop G.; Jansen, John A.

    2006-01-01

    In this study, the mechanical properties of an implanted calcium phosphate (CaP) cement incorporated with 20wt% poly (DL-lactic-coglycolic acid) (PLGA) microparticles were investigated in a rat cranial defect. After 2, 4 and 8 weeks of implantation, implants were evaluated mechanically (push-out test) and morphologically (Scanning Electron Microscopy (SEM) and histology). The results of the push-out test showed that after 2 weeks the shear strength of the implants was 0.4470.44MPa (a...

  6. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.

    Science.gov (United States)

    Vecbiskena, Linda; Gross, Karlis Agris; Riekstina, Una; Yang, Thomas Chung-Kuang

    2015-04-01

    New insight on the conversion of amorphous calcium phosphate (ACP) to nano-sized alpha tricalcium phosphate (α-TCP) provides a faster pathway to calcium phosphate bone cements. In this work, synthesized ACP powders were treated with either water or ethanol, dried, crystallized between 700 and 800 °C, and then cooled at different cooling rates. Particle size was measured in a scanning electron microscope, but crystallite size calculated by Rietveld analysis. Phase composition and bonding in the crystallized powder was assessed by x-ray diffraction and Fourier-transform infrared spectroscopy. Results showed that 50 nm sized α-TCP formed after crystallization of lyophilized powders. Water treated ACP retained an unstable state that may allow ordering to nanoapatite, and further transition to β-TCP after crystallization and subsequent decomposition. Powders treated with ethanol, favoured the formation of pure α-TCP. Faster cooling limited the growth of β-TCP. Both the initial contact with water and the cooling rate after crystallization dictated β-TCP formation. Nano-sized α-TCP reacted faster with water to an apatite bone cement than conventionally prepared α-TCP. Water treated and freeze-dried powders showed faster apatite cement formation compared to ethanol treated powders. Good biocompatibility was found in pure α-TCP nanoparticles made from ethanol treatment and with a larger crystallite size. This is the first report of pure α-TCP nanoparticles with a reactivity that has not required additional milling to cause cementation. PMID:25886478

  7. Modifications on the properties of a calcium phosphate cement by additions of sodium alginate

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A., E-mail: trajano@ufrgs.br, E-mail: julianafernandes2@yahoo.com.br, E-mail: rsvieira.eng@gmail.com, E-mail: monicathurmer@yahoo.com.br, E-mail: luis.santos@ufrgs.br [Universidade Federal do Rio Grande do Sul (PPG/LABIOMAT/UFRGS), RS (Brazil)

    2012-07-01

    The Calcium Phosphate Cement (CPC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry due to its biocompatibility, bioactivity and osteoconductivity, and form a paste that can be easily shaped and placed into the surgical site. However, CPCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. In order to assess the strength and time to handle a CPC composed primarily of alpha phase, were added sodium alginate (1%, 2% and 3% wt) and an accelerator in an aqueous solution. The cement powder was mixed with liquid of setting, shaped into specimens and evaluated for apparent density and porosity by Archimedes method, X-ray diffraction and compressive strength. A significant increase in compressive strength by adding sodium alginate was verified. (author)

  8. Modifications on the properties of a calcium phosphate cement by additions of sodium alginate

    International Nuclear Information System (INIS)

    The Calcium Phosphate Cement (CPC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry due to its biocompatibility, bioactivity and osteoconductivity, and form a paste that can be easily shaped and placed into the surgical site. However, CPCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. In order to assess the strength and time to handle a CPC composed primarily of alpha phase, were added sodium alginate (1%, 2% and 3% wt) and an accelerator in an aqueous solution. The cement powder was mixed with liquid of setting, shaped into specimens and evaluated for apparent density and porosity by Archimedes method, X-ray diffraction and compressive strength. A significant increase in compressive strength by adding sodium alginate was verified. (author)

  9. In vivo resorption behavior of a high strength injectable calcium-phosphate cement

    Energy Technology Data Exchange (ETDEWEB)

    Wolke, J.G.C.; Ooms, E.M.; Jansen, J.A. [Univ. Medical Center, Nijmegen (Netherlands). Dept. Biomaterials

    2001-07-01

    A high strength calcium-phosphate-cement powder was prepared from a composition comprising of {alpha}-TCP, CaHPO{sub 4} (monetite), CaCO{sub 3} and some seeds of precipitated apatite. An aqueous solution of 4% Na{sub 2}HPO{sub 4} was used as liquid to start the setting reaction. The powder was mixed with cement liquid in three different liquid/powder ratios respectively 0.3, 0.35 and 0.4. Observation of the setting reaction versus time revealed that the maximum of compressive strength was achieved after 3 days reaching the value of 81 MPa. The X-ray diffraction pattern of the Ca-P cement measured 3 days after mixing and storage in Ringer's solution at 37 C showed that the {alpha}-TCP was transformed to hydroxylapatite with superposition of the peaks for monetite. XRD showed that after eight weeks of implantation the monetite peaks had disappeared. Further, the clinical handling properties of all three types of Ca-P cement appeared to be excellent. No problems in setting time or cavity filling were met during the application. The histological evaluation after two weeks of implantation showed abundant bone apposition on the cement surface without inflammatory reaction. At later time points the Ca-P cements were totally covered by a thin layer of bone and osteoclast-like cells in remodeling lacunae at the interface were resorbing the cement. At all implantation periods the PMMA controls showed the presence of a thin fibrous membrane. (orig.)

  10. A histological evaluation on osteogenesis and resorption of methotrexate-loaded calcium phosphate cement in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li Dong; Yang Zhiping; Li Xin; Li Zhenfeng; Li Jianmin [Department of Orthopedics, Qilu Hospital of Shandong University, Shandong (China); Yang Jingyan, E-mail: yangzhiping@medmail.com.c [Department of Pathology, 2nd Affiliated Hospital of Shandong University, Shandong (China)

    2010-04-15

    In this study, we investigated the resorption of in vivo methotrexate-loaded calcium phosphate cement (MTX-CPC) implants and their effect on osteogenesis. MTX-CPC implants containing 1% methotrexate (MTX) (weight/weight) were preset and implanted into the femoral condyle of rabbits. Calcium phosphate cement (CPC) without MTX was used as the control. The femurs were harvested at day 1 and at 1, 3 and 6 months after implantation and radiological examination were performed. Decalcified sections were examined by hematoxylin and eosin (HE) staining, alkaline phosphatase (ALPase) immunohistochemistry and tartrate-resistant acid phosphatase (TRAPase) enzyme histochemistry. Then, we performed histomorphometric analysis, including determination of the percentage of newly formed bone and osteoblast and osteoclast counts. The results indicated that MTX-CPC implants were biocompatible, biodegradable and osteoconducive. However, MTX release from the implantation site inhibited osteogenesis in the initial period; this inhibition weakened with time, and no difference was observed between CPC and MTX-CPC at 6 months after implantation. Hence, MTX-CPC is an excellent material for filling defects and can be used for preparing effective drug delivery systems to achieve local control of invasive bone tumors.

  11. A histological evaluation on osteogenesis and resorption of methotrexate-loaded calcium phosphate cement in vivo

    International Nuclear Information System (INIS)

    In this study, we investigated the resorption of in vivo methotrexate-loaded calcium phosphate cement (MTX-CPC) implants and their effect on osteogenesis. MTX-CPC implants containing 1% methotrexate (MTX) (weight/weight) were preset and implanted into the femoral condyle of rabbits. Calcium phosphate cement (CPC) without MTX was used as the control. The femurs were harvested at day 1 and at 1, 3 and 6 months after implantation and radiological examination were performed. Decalcified sections were examined by hematoxylin and eosin (HE) staining, alkaline phosphatase (ALPase) immunohistochemistry and tartrate-resistant acid phosphatase (TRAPase) enzyme histochemistry. Then, we performed histomorphometric analysis, including determination of the percentage of newly formed bone and osteoblast and osteoclast counts. The results indicated that MTX-CPC implants were biocompatible, biodegradable and osteoconducive. However, MTX release from the implantation site inhibited osteogenesis in the initial period; this inhibition weakened with time, and no difference was observed between CPC and MTX-CPC at 6 months after implantation. Hence, MTX-CPC is an excellent material for filling defects and can be used for preparing effective drug delivery systems to achieve local control of invasive bone tumors.

  12. Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guangyong [Department of Orthopaedics, Taizhou Hospital of Zhejiang Province, Linhai Zhejiang, 317000 (China); Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, 325000 (China); Liu, Jianli [Trauma Center, Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570206 (China); Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201 (China); Li, Fan; Pan, Zongyou; Ni, Xiao; Shen, Yue [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, 325000 (China); Xu, Huazi, E-mail: spinexu@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, 325000 (China); Huang, Qing, E-mail: huangqing@nimte.ac.cn [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201 (China)

    2014-02-01

    A novel calcium sulfate/magnesium phosphate cement (CSMPC) composite was prepared and studied in the present work. The physical properties including the phases, the microstructures, the setting properties and the compressive strengths of the CSMPCs were studied. The bio-performances of the CSMPCs were comprehensively evaluated using in vitro simulated body fluid (SBF) method and in vitro cell culture. The dependence of the physical and chemical properties of the CSMPC on its composition and microstructure was studied in detail. It is found that the CSMPC composites exhibited mediate setting times (6–12 min) compared to the calcium sulfate (CS) and the magnesium phosphate cement (MPC). They showed an encapsulation structure in which the unconverted hexagonal prism CSH particles were embedded in the xerogel-like MPC matrix. The phase compositions and the mechanical properties of the CSMPCs were closely related to the content of MPC and the hardening process. The CSMPCs exhibited excellent bioactivity and good biocompatibility to support the cells to attach and proliferate on the surface. The CSMPC composite has the potential to serve as bone grafts for the bone regeneration. - Highlights: • The mechanical strength and degradation rate of CSMPC composites are discussed. • The CSMPC composites exhibited good bioactivity to form bone-like apatite. • The CSMPC composites also show good biocompatibility.

  13. Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications

    International Nuclear Information System (INIS)

    A novel calcium sulfate/magnesium phosphate cement (CSMPC) composite was prepared and studied in the present work. The physical properties including the phases, the microstructures, the setting properties and the compressive strengths of the CSMPCs were studied. The bio-performances of the CSMPCs were comprehensively evaluated using in vitro simulated body fluid (SBF) method and in vitro cell culture. The dependence of the physical and chemical properties of the CSMPC on its composition and microstructure was studied in detail. It is found that the CSMPC composites exhibited mediate setting times (6–12 min) compared to the calcium sulfate (CS) and the magnesium phosphate cement (MPC). They showed an encapsulation structure in which the unconverted hexagonal prism CSH particles were embedded in the xerogel-like MPC matrix. The phase compositions and the mechanical properties of the CSMPCs were closely related to the content of MPC and the hardening process. The CSMPCs exhibited excellent bioactivity and good biocompatibility to support the cells to attach and proliferate on the surface. The CSMPC composite has the potential to serve as bone grafts for the bone regeneration. - Highlights: • The mechanical strength and degradation rate of CSMPC composites are discussed. • The CSMPC composites exhibited good bioactivity to form bone-like apatite. • The CSMPC composites also show good biocompatibility

  14. Microstructure and Mechanical Properties of Calcium Phosphate Cement/Gelatine Composite Scaffold with Oriented Pore Structure for Bone Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    QI Xiaopeng; HE Fupo; YE Jiandong

    2012-01-01

    The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction.The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle.XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement.To improve the mechanical properties of the CPC scaffold,the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds.After reinforced with gelatine,the compressive strength of CPC/gelatine composite increased to 5.12 MPa,around fifty times greater than that of the unreinforced macroporous CPC scaffold,which was only 0.1 MPa.And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain.SEM examination of the specimens indicated good bonding between the cement and gelatine.Participating the external load by the deformable gelatine,patching the defects of the CPC pores wall,and crack deflection were supposed to be the reinforcement mechanisms.In conclusion,the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering.

  15. Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive.

    Science.gov (United States)

    Hesaraki, S; Moztarzadeh, F; Sharifi, D

    2007-10-01

    Calcium phosphate cements (CPCs) can be considered as good candidate for bone tissue engineering because they can be resorbed and take part in the bone remodeling process. Several efforts have been made into improve the resorption rate of the calcium phosphate cement by introducing macropores to the cement matrix. In this investigation a simple and effective method has been presented based on the addition of various amounts of an effervescent agent to the calcium phosphate cement components. The effervescent agent was a mixture of sodium hydrogen carbonate, NaHCO(3) (that was added to the powder phase), and citric acid monohydrate, C(6)H(8)O(7).H(2)O (that was dissolved in the liquid phase). The obtained macroporous samples were characterized by Fourier transform infrared spectrometer, X-ray diffraction, and scanning electron microscopy techniques at 4 h after setting and 3 days after soaking in a special simulated body fluid solution named Hank's balanced salt solution. Mercury intrusion porosimetry was also employed for characterizing the pore volume and pore size distribution in the cement structure. Results showed that the rate of conversion of staring reactant to the apatite phase and the apatite chemistry were significantly changed by using the additive in the cement components. Also both the pore volume and pore size were changed by varying both the amount of effervescent additive and the powder to liquid ratio. PMID:17380498

  16. External bone remodeling after injectable calcium-phosphate cement in benign bone tumor: two cases in the hand.

    Science.gov (United States)

    Ichihara, S; Vaiss, L; Acciaro, A L; Facca, S; Liverneaux, P

    2015-12-01

    Bone remodeling commonly occurred after fracture and curettage benign bone tumor. A lot of previous articles reported "internal" trabecular bone remodeling. There were no previous clinical reports about "external" cortical bone remodeling. We present here 2 clinical cases of "external" bone remodeling after injectable calcium-phosphate in benign bone tumor in the hand. In two cases of benign bone tumor, we performed complete removal of the tumor and immediate filling of the metacarpal bone with injectable calcium-phosphate cement Arexbone(®) from the mechanical viewpoint. With respect to the shape of the calcium-phosphate, by using an injection-type, calcium-phosphate is adhered uniformly to the bone cortex by injecting, remodeling has been promoted. After 5 and 8years, both cases were no recurrences, and the shape of the metacarpal looked close to the contralateral side. These findings supposed to be concerned with potential self-healing and self-protection mechanism in human body.

  17. Development of strong and bioactive calcium phosphate cement as a light-cure organic-inorganic hybrid.

    Science.gov (United States)

    Barounian, M; Hesaraki, S; Kazemzadeh, A

    2012-07-01

    In this research, light cured calcium phosphate cements (LCCPCs) were developed by mixing a powder phase (P) consisting of tetracalcium phosphate and dicalcium phosphate and a photo-curable resin phase (L), mixture of hydroxyethylmethacrylate (HEMA)/poly acrylic-maleic acid at various P/L ratios of 2.0, 2.4 and 2.8 g/mL. Mechanical strength, phase composition, chemical groups and microstructure of the cured cements were evaluated at pre-set times, i.e. before and after soaking in simulated body fluid (SBF). The proliferation of Rat-derived osteoblastic cells onto the LCCPCs as well as cytotoxicity of cement extracts were determined by cell counting and 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyl-2H-tetrazolium bromide assay after different culture times. It was estimated from Fourier transforming infrared spectra of cured cements that the setting process is ruled by polymerization of HEMA monomers as well as formation of calcium poly-carboxylate salts. Microstructure of the cured cements consisted of calcium phosphate particles surrounded by polymerized resin phase. Formation of nano-sized needlelike calcium phosphate phase on surfaces of cements with P/L ratios of 2.4 and 2.8 g/mL was confirmed by scanning electron microscope images and X-ray diffractometry (XRD) of the cured specimen soaked in SBF for 21 days. Also, XRD patterns revealed that the formed calcium phosphate layer was apatite phase in a poor crystalline form. Biodegradation of the cements was confirmed by weight loss, change in molecular weight of polymer and morphology of the samples after different soaking periods. The maximum compressive strength of LCCPCs governed by resin polymerization and calcium polycarboxylate salts formation was about 80 MPa for cement with P/L ratio of 2.8 g/mL, after incubation for 24 h. The strength of all cements decreased by decreasing P/L ratio as well as increasing soaking time. The preliminary cell studies revealed that LCCPCs could support proliferation of

  18. Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects.

    NARCIS (Netherlands)

    Ruhe, P.Q.; Hedberg, E.L.; Padron, N.T.; Spauwen, P.H.M.; Jansen, J.A.; Mikos, A.G.

    2006-01-01

    Calcium phosphate (Ca-P) cements are injectable, self-setting ceramic pastes generally known for their favorable bone response. Ingrowth of bone and subsequent degradation rates can be enhanced by the inclusion of macropores. Initial porosity can be induced by CO(2) foaming during setting of the cem

  19. A Comprehensive Study of Osteogenic Calcium Phosphate Silicate Cement: Material Characterization and In Vitro/In Vivo Testing.

    Science.gov (United States)

    Gong, Tianxing; Wang, Zhiqin; Zhang, Yixi; Zhang, Yubiao; Hou, Mingxiao; Liu, Xinwei; Wang, Yu; Zhao, Lejun; Ruse, N Dorin; Troczynski, Tom; Häfeli, Urs O

    2016-02-18

    Vertebral compression fractures can be successfully restored by injectable bone cements. Here the as-yet unexplored in vitro cytotoxicity, in vivo biodegradation, and osteoconductivity of a new calcium phosphate silicate cements (CPSC) are studied, where monocalcium phosphate (MCP; 5, 10, and 15 wt%) is added to calcium silicate cement (CSC). Setting rate and compressive strength of CPSC decrease with the addition of MCP. The crystallinity, microstructure, and porosity of hardened CPSC are evaluated by X-ray diffractometer, Fourier transform infrared spectroscopy, and microcomputed tomography (CT). It is found that MCP reacts with calcium hydroxide, one of CSC hydration products, to precipitate apatite. While the reaction accelerates the hydration of CSC, the formation of calcium silicate hydrate gel is disturbed and highly porous microstructures form, resulting in weaker compressive strength. In vitro studies demonstrate that CPSC is noncytotoxic to osteoblast cells and promotes their proliferation. In the rabbit tibia implantation model, clinical X-ray and CT scans demonstrate that CPSC biodegrades slower and osseointegrates better than clinically used calcium phosphate cement (CPC). Histological studies demonstrate that CPSC is osteoconductive and induces higher bone formation than CPC, a finding that might warrant future clinical studies. PMID:26677175

  20. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro

    International Nuclear Information System (INIS)

    Inspired by the excellent adhesive property of mussel adhesive protein, we added polydopamine (PDA) to calcium phosphate cement (PDA–CPC) to enhance its compressive strength previously. The mineralization and mechanism on PDA–CPC were investigated by soaking it in simulated body fluid in this study. The results indicated that PDA promoted the conversion of dicalcium phosphate dihydrate and α-tricalcium phosphate to hydroxyapatite (HA) in the early stage but inhibited this conversion subsequently. PDA promoted the rapid mineralization on PDA–CPC to form a layer of nanoscale calcium phosphate (CaP) whereas there was no CaP formation on the control-CPC after 1 d of soaking. This layer of nanoscale CaP was similar to that of natural bone, which was always observed during soaking. X-ray photoelectron spectroscopy showed that the peak of C=O of PDA existed in the newly formed CaP on PDA–CPC, indicating the co-precipitation of CaP with PDA. Furthermore, the newly formed CaP on PDA–CPC was HA confirmed by transmission electron microscopy, which the newly formed HA was in association with PDA. Therefore, PDA increased the capacity of mineralization of CPC and induced the formation of nanoscale bone-like apatite on PDA–CPC. Thus, this provides the feasible route for surface modification on CPC. - Highlights: • Effect of polydopamine (PDA) on the in vitro mineralization of PDA-CPC was studied. • PDA promoted the rapid mineralization on PDA-CPC to form a nanoscale HA layer. • The precipitation of the nanoscale HA layer on PDA-CPC accompanied with PDA. • Polydopamine induced mineralization is feasible for surface modification of CaP

  1. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zongguang [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Qu, Shuxin, E-mail: qushuxin@swjtu.edu.cn [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zheng, Xiaotong; Xiong, Xiong [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Fu, Rong; Tang, Kuangyun; Zhong, Zhendong [Department of Plastic Surgery, Academy of Medical Sciences and Sichuan Provincial People' s Hospital, Chengdu 610041 (China); Weng, Jie [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-11-01

    Inspired by the excellent adhesive property of mussel adhesive protein, we added polydopamine (PDA) to calcium phosphate cement (PDA–CPC) to enhance its compressive strength previously. The mineralization and mechanism on PDA–CPC were investigated by soaking it in simulated body fluid in this study. The results indicated that PDA promoted the conversion of dicalcium phosphate dihydrate and α-tricalcium phosphate to hydroxyapatite (HA) in the early stage but inhibited this conversion subsequently. PDA promoted the rapid mineralization on PDA–CPC to form a layer of nanoscale calcium phosphate (CaP) whereas there was no CaP formation on the control-CPC after 1 d of soaking. This layer of nanoscale CaP was similar to that of natural bone, which was always observed during soaking. X-ray photoelectron spectroscopy showed that the peak of C=O of PDA existed in the newly formed CaP on PDA–CPC, indicating the co-precipitation of CaP with PDA. Furthermore, the newly formed CaP on PDA–CPC was HA confirmed by transmission electron microscopy, which the newly formed HA was in association with PDA. Therefore, PDA increased the capacity of mineralization of CPC and induced the formation of nanoscale bone-like apatite on PDA–CPC. Thus, this provides the feasible route for surface modification on CPC. - Highlights: • Effect of polydopamine (PDA) on the in vitro mineralization of PDA-CPC was studied. • PDA promoted the rapid mineralization on PDA-CPC to form a nanoscale HA layer. • The precipitation of the nanoscale HA layer on PDA-CPC accompanied with PDA. • Polydopamine induced mineralization is feasible for surface modification of CaP.

  2. Calcium phosphate cements properties with polymers addition; Propriedades do cimento de fosfato de calcio com adicao de polimeros

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.M.; Trajano, W.T.; Escobar, C.F.; Santos, L.A., E-mail: julianafernandes2@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil)

    2012-07-01

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers.

  3. Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration

    Directory of Open Access Journals (Sweden)

    Guo H

    2012-07-01

    Full Text Available Han Guo,1,2 Jie Wei,2 Wenhua Song,2 Shan Zhang,2 Yonggang Yan,3 Changsheng Liu,2 Tiqiao Xiao11Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China; 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; 3School of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of ChinaAbstract: The purpose of this study was to synthesize a self-setting bioactive cement by incorporation of wollastonite nanofibers (WNFs into calcium phosphate cement (CPC. The composition, morphology, setting time, compressive strength, hydrophilicity, and degradation of WNF-doped CPC (wnf-CPC were investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy were utilized. Additionally, methyl-thiazolyl-tetrazolium bromide assay, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and histological evaluation were used to study the cell and tissue responses to wnf-CPC, both in vitro and in vivo. The results confirmed that the addition of WNFs into CPC had no obvious effect on the setting time or the compressive strength of wnf-CPC, provided the WNF amount was not more than 10 wt%. However, the hydrophilicity and degradability of wnf-CPC were significantly improved by the addition of WNFs – this was because of the change of microstructure caused by the WNFs. The preferred dissolution of WNFs caused the formation of microporosity in wnf-CPC when soaked in tris hydrochloride solution. The microporosity enlarged the surface area of the wnf-CPC and so promoted degradation of the wnf-CPC when in contact with liquid. In addition, MG-63 cell attachment and proliferation on the wnf-CPC were superior to that on the CPC, indicating that

  4. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Dan [Department of Prosthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050 (China); Dong, Limin [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Energy Science Building, Beijing 100084 (China); Wen, Ying [Department of Prosthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050 (China); Xie, Qiufei, E-mail: xieqiuf@163.com [Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081 (China)

    2015-02-01

    Calcium phosphate cements (CPCs) have been widely used as bone graft substitutes. However, the undesirable osteoinductivity and slow degradability of CPCs greatly hamper their clinical application. The aim of this study was to synthesize a type of injectable, bioactive cement. This was accomplished by incorporating chitosan microspheres into CPC. CPC containing chitosan microspheres was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD showed that the hardened chitosan microsphere/CPC with different proportions of microspheres contained diffraction peaks of hydroxyapatite and chitosan. Compressive strength and dissolution in simulated body fluid were measured. The chitosan microsphere/CPC containing 10% (w/w) chitosan microspheres had a compressive strength of 14.78 ± 0.67 MPa. Cavity defects were created in both femoral condylar regions of New Zealand White rabbits. Chitosan microsphere/CPC (composite group) and α-TCP/CPC (control group) were implanted separately into the bone defects of both femurs. X-ray analysis was performed to observe the filling of these bone defects 3 days after surgery. The extent of bone substitute degradation and new bone formation were evaluated by SEM and histological examination at 8, 16, and 24 weeks after implantation. These results showed far more new bone formation and degradation of the chitosan microsphere/CPC composite in the bone defects. These data indicate that a chitosan microsphere/CPC composite might be considered as a promising injectable material for the generation of new bone tissue. - Highlights: • We synthesized an injectable, bioactive chitosan microsphere/CPC for the first time. • 100–400 μm chitosan microspheres were incorporated into the cement solid phase. • XRD showed the construct contained diffraction peaks of hydroxyapatite and chitosan. • Compressive strength of the composite was about 15 MPa comparable to cancellous bone. • The new construct shows better bone

  5. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPCs) have been widely used as bone graft substitutes. However, the undesirable osteoinductivity and slow degradability of CPCs greatly hamper their clinical application. The aim of this study was to synthesize a type of injectable, bioactive cement. This was accomplished by incorporating chitosan microspheres into CPC. CPC containing chitosan microspheres was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD showed that the hardened chitosan microsphere/CPC with different proportions of microspheres contained diffraction peaks of hydroxyapatite and chitosan. Compressive strength and dissolution in simulated body fluid were measured. The chitosan microsphere/CPC containing 10% (w/w) chitosan microspheres had a compressive strength of 14.78 ± 0.67 MPa. Cavity defects were created in both femoral condylar regions of New Zealand White rabbits. Chitosan microsphere/CPC (composite group) and α-TCP/CPC (control group) were implanted separately into the bone defects of both femurs. X-ray analysis was performed to observe the filling of these bone defects 3 days after surgery. The extent of bone substitute degradation and new bone formation were evaluated by SEM and histological examination at 8, 16, and 24 weeks after implantation. These results showed far more new bone formation and degradation of the chitosan microsphere/CPC composite in the bone defects. These data indicate that a chitosan microsphere/CPC composite might be considered as a promising injectable material for the generation of new bone tissue. - Highlights: • We synthesized an injectable, bioactive chitosan microsphere/CPC for the first time. • 100–400 μm chitosan microspheres were incorporated into the cement solid phase. • XRD showed the construct contained diffraction peaks of hydroxyapatite and chitosan. • Compressive strength of the composite was about 15 MPa comparable to cancellous bone. • The new construct shows better bone

  6. Self-Setting Calcium Phosphate Cements with Tunable Antibiotic Release Rates for Advanced Antimicrobial Applications.

    Science.gov (United States)

    Ghosh, Shreya; Wu, Victoria; Pernal, Sebastian; Uskoković, Vuk

    2016-03-01

    Osteomyelitis, an infectious disease predominantly tied to poor sanitary conditions in underdeveloped regions of the world, is in need of inexpensive, easily in situ synthesizable and administrable materials for its treatment. The results of this study stem from the attempt to create one such affordable and minimally invasive therapeutic platform in the form of a self-setting, injectable cement with a tunable drug release profile, composed of only nanoparticulate hydroxyapatite, the synthetic version of the bone mineral. Cements comprised two separately synthesized hydroxyapatite powders, one of which, HAP2, was precipitated abruptly, retaining the amorphous nature longer, and the other one of which, HAP1, was precipitated at a slower rate, more rapidly transitioning to the crystalline structure. Cements were made with four different weight ratios of the two hydroxyapatite components: 100/0, 85/15, 50/50, and 0/100 with respect to HAP1 and HAP2. Both the setting and the release rates measured on two different antibiotics, vancomycin and ciprofloxacin, were controlled using the weight ratio of the two hydroxyapatite components. Various inorganic powder properties were formerly used to control drug release, but here we demonstrate for the first time that the kinetics of the mechanism of formation of a solid compound can be controlled to produce tunable drug release profiles. Specifically, it was found that the longer the precursor calcium phosphate component of the cement retains the amorphous nature of the primary precipitate, the more active it was in terms of speeding up the diffusional release of the adsorbed drug. The setting rate was, in contrast, inversely proportional to the release rate and to the content of this active hydroxyapatite component, HAP2. The empirical release profiles were fitted to a set of equations that could be used to tune the release rate to the therapeutic occasion. All of the cements loaded with vancomycin or ciprofloxacin inhibited the

  7. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Changsheng [Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Chen, C.-W.; Ducheyne, Paul [Center for Bioactive Materials and Tissue Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: liucs@ecust.edu.cn, E-mail: ducheyne@seas.upenn.edu

    2008-09-01

    Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 deg. C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO{sub 4} and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 {mu}m and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue

  8. Low-pressure plasma treatment of polylactide fibers for enhanced mechanical performance of fiber-reinforced calcium phosphate cements

    OpenAIRE

    Canal Barnils, Cristina; Gallinetti, Sara; Ginebra Molins, Maria Pau

    2014-01-01

    Calcium phosphate cements (CPCs) are extensively used as synthetic bone grafts, but their poor mechanical properties limit their applicability to non-stress-bearing applications. The aim of the present work is to evaluate the potential of plasma surface modification of polylactide (PLA) fibers for reinforcement of CPCs. Oxygen low-pressure plasma was employed at different treatment times and the surface properties of the untreated and plasma-treated PLA were evaluated. Plasma treatment on the...

  9. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    Science.gov (United States)

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres. PMID:26652353

  10. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    Science.gov (United States)

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres.

  11. Enhancement of pedicle screw stability using calcium phosphate cement in osteoporotic vertebrae: in vivo biomechanical study.

    Science.gov (United States)

    Taniwaki, Yoshimichi; Takemasa, Ryuichi; Tani, Toshikazu; Mizobuchi, Hiroo; Yamamoto, Hiroshi

    2003-01-01

    We conducted an experimental study using female beagles with and without ovariectomy-induced osteoporosis to determine the effect of calcium phosphate cement (CPC) on the mechanical stability of inserted pedicle screws. A drill hole was created from the base of the transverse process to the vertebral body; CPC was injected into the hole, and then a screw was inserted into the same hole. In the presence of osteoporosis evidenced by dual X-ray absorptiometry, the stability of the inserted screw augmented by CPC against pull-out and cephalocaudal forces were significantly greater by 28% and 54% at 1 week after operation, 48% and 71% at 2 weeks, and 56% and 68% at 4 weeks compared with those without CPC. The pull-out strength increased progressively with time after surgery, probably reflecting new-bone growth from the surrounding cancellous bone, which was in direct contact with the CPC, as shown in the histologic study. At each time point the cephalocaudal rigidity was similar and the pull-out strength greater than that for the screws inserted without CPC in nonporotic dogs. These findings suggest that CPC augments the stability of the inserted pedicle screws and increases the stiffness of fixed osteoporotic motion segments using instrumentation. PMID:12768486

  12. Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement.

    Science.gov (United States)

    Bohner, M; Merkle, H P; Landuyt, P V; Trophardy, G; Lemaitre, J

    2000-02-01

    Combinations of citrate (C6H5O(7)3-), pyrophosphate (P2O(7)4-) and sulfate (SO(4)2-) ions were used to modify the physico-chemical properties of a calcium phosphate cement (CPC) composed of beta-tricalcium phosphate (beta-TCP) and phosphoric acid (PA) solution. The results obtained with only one additive at a time are similar to those previously published. New facts are: the positive effect of C6H5O(7)3- ions on cement failure strain and their negative effect on cement pH. The position of the setting time maximum measured at an SO(4)2- concentration of 0.09 M was not displaced by the addition of C6H5O(7)3- and P2O(7)4- ions. However, the effect of SO(4)2- ions on the setting time was depressed by C6H5O(7)3- ions. Moreover, no increase in tensile strength was observed when increasing amounts of SO(4)2- were added into a C6H5O(7)3--containing cement. The latter results suggest a competitive effect of C6H5O(7)3- and SO(4)2- on setting time and tensile strength. Anhydrous dicalcium phosphate (DCP; CaHPO4) appeared in cement samples dried just after setting, but not in cement samples incubated for 24 h in deionized water before the drying step. It is believed that the setting reaction is stopped by the drying step, leaving a low internal pH in the sample, hence providing favorable conditions for the transformation of dicalcium phosphate dihydrate (DCPD) into DCP. Interestingly, even though C6H5O(7)3- ions dramatically lowered the equilibrium pH of the cement with 5 ml of deionized water, they still prevented the occurrence of the transformation of DCPD into DCP.

  13. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  14. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats.

    Science.gov (United States)

    Wu, Chang-Chin; Wang, Chen-Chie; Lu, Dai-Hua; Hsu, Li-Ho; Yang, Kai-Chiang; Lin, Feng-Huei

    2012-06-01

    Patients sustaining bony fractures frequently require the application of bone graft substitutes to fill the bone defects. In the meantime, anti-osteoporosis drugs may be added in bone fillers to treat osteoporosis, especially in postmenopausal women and the elderly. The effects of zoledronate-impregnated calcium phosphate cement (ZLN/CPC) on ovariectomized (OVX) rats were evaluated. OVX rats were implanted with ZLN/CPC, containing 0.025 mg ZLN in the greater omentum. Afterward the clinical sign of toxicity was recorded for eight weeks. The rats were sacrificed and blood samples were collected for hematology and serum bone turnover markers analyses. The four limbs of the rats were harvested and micro-computer tomography (micro-CT) scanning and bone ash analyses were performed. No clinical toxicity was observed in the treated rats. Compared to the OVX rats, levels of bone resorption markers (fragments of C-telopeptides of type I collagen) and bone formation markers (alkaline phosphatase and osteocalcin) decreased significantly in the treated rats. Osteopontin, which mediates the anchoring of osteoclasts to the mineral matrix of bones, also decreased significantly. Micro-CT scanning and histologic examinations of the distal femoral metaphyses showed that the cancellous bone architectures were restored, with a concomitant decrease in bone porosity. The bone mineral content in the bone ashes also increased significantly. This study indicates that ZLN-impregnated CPC reduces bone turnover rate and restores bone architecture in OVX rats. CPC may be an appropriate carrier to deliver drugs to treat osteoporosis, and this approach may also reduce rates of post-dosing symptoms for intravenous ZLN delivery.

  15. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats

    International Nuclear Information System (INIS)

    Patients sustaining bony fractures frequently require the application of bone graft substitutes to fill the bone defects. In the meantime, anti-osteoporosis drugs may be added in bone fillers to treat osteoporosis, especially in postmenopausal women and the elderly. The effects of zoledronate-impregnated calcium phosphate cement (ZLN/CPC) on ovariectomized (OVX) rats were evaluated. OVX rats were implanted with ZLN/CPC, containing 0.025 mg ZLN in the greater omentum. Afterward the clinical sign of toxicity was recorded for eight weeks. The rats were sacrificed and blood samples were collected for hematology and serum bone turnover markers analyses. The four limbs of the rats were harvested and micro-computer tomography (micro-CT) scanning and bone ash analyses were performed. No clinical toxicity was observed in the treated rats. Compared to the OVX rats, levels of bone resorption markers (fragments of C-telopeptides of type I collagen) and bone formation markers (alkaline phosphatase and osteocalcin) decreased significantly in the treated rats. Osteopontin, which mediates the anchoring of osteoclasts to the mineral matrix of bones, also decreased significantly. Micro-CT scanning and histologic examinations of the distal femoral metaphyses showed that the cancellous bone architectures were restored, with a concomitant decrease in bone porosity. The bone mineral content in the bone ashes also increased significantly. This study indicates that ZLN-impregnated CPC reduces bone turnover rate and restores bone architecture in OVX rats. CPC may be an appropriate carrier to deliver drugs to treat osteoporosis, and this approach may also reduce rates of post-dosing symptoms for intravenous ZLN delivery. (paper)

  16. Tissue-engineered calcium phosphate cement in rabbit femoral condylar bone defects

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-rong; MIAO Jun; XIA Qun; HUANG Hong-chao; GONG Chen; YANG Qiang; LI Lan-ying

    2012-01-01

    Background Calcium phosphate cement (CPC) is a favorable bone-graft substitute,with excellent biocompatibility and osteoconductivity.However,its reduced osteoinductive ability may limit the utility of CPC.To increase its osteoinductive potential,this study aimed to prepare tissue-engineered CPC and evaluate its use in the repair of bone defects.The fate of transplanted seed cells in vivo was observed at the same time.Methods Tissue-engineered CPC was prepared by seeding CPC with encapsulated bone mesenchymal stem cells (BMSCs) expressing recombinant human bone morphogenetic protein-2 (rhBMP-2) and green fluorescent protein (GFP).Tissue-engineered CPC and pure CPC were implanted into rabbit femoral condyle bone defects respectively.Twelve weeks later,radiographs,morphological observations,histomorphometrical evaluations,and in vivo tracing were performed.Results The radiographs revealed better absorption and faster new bone formation for tissue-engineered CPC than pure CPC.Morphological and histomorphometrical evaluations indicated that tissue-engineered CPC separated into numerous small blocks,with active absorption and recorstruction noted,whereas the residual CPC area was larger in the group treated with pure CPC.In the tissue-engineered CPC group,in vivo tracing revealed numerous cells expressing both GFP and rhBMP-2 that were distributed in the medullar cavity and on the surface of bony trabeculae.Conclusion Tissue-engineered CPC can effectively repair bone defects,with allogenic seeded cells able to grow and differentiate in vivo after transplantation.

  17. Vascularization of plastic calcium phosphate cement in vivo induced by in-situ-generated hollow channels.

    Science.gov (United States)

    Yu, Tao; Dong, Chao; Shen, Zhonghua; Chen, Yan; Yu, Bo; Shi, Haishan; Zhou, Changren; Ye, Jiandong

    2016-11-01

    Despite calcium phosphate cement (CPC) is promising for bone repair therapy, slow biodegradation and insufficient vascularization in constructs negatively impacts its clinical application. A self-setting CPC composited with gelatin fiber is investigated to test the utility of this tissue engineering strategy to support rapid and extensive vascularization process. The interconnected hollow channels in CPC are formed after dissolution of gelatin fibers in vivo. The CPC-gelatin samples exhibit relatively decent/enhanced mechanical property, compared to the control. When implanted in vivo, the pre-established vascular networks in material anastomose with host vessels and accelerate vascular infiltration throughout the whole tissue construct. Different channel sizes induce different vascularization behaviors in vivo. Results indicate that the channel with the size of 250μm increases the expression of the representative angiogenic factors HIF1α, PLGF and migration factor CXCR4, which benefit the formation of small vessels. On the other hand, the channel with the size of 500μm enhances VEGF-A expression, which benefit the development of large vessels. Notably, the intersection area of channels has high invasive, sprouting and vasculogenesis potential under hypoxic condition, because more HIF1α-positive cells are observed there. Observation of the CD31-positive lumen in the border of scaffold indicates the ingrowth of blood vessels from its host into material through channel, benefited from gradually increased HIF1α expression. This kind of material was suggested to promote the effective application of bone regeneration through the combination of in situ self-setting, plasticity, angiogenesis, and osteoconductivity. PMID:27524007

  18. Induced Pluripotent Stem Cell-derived Mesenchymal Stem Cell Seeding on Biofunctionalized Calcium Phosphate Cements

    Institute of Scientific and Technical Information of China (English)

    WahWah TheinHan; Jun Liu; Minghui Tang; Wenchuan Chen; Linzhao Cheng; Hockin H. K. Xu

    2013-01-01

    Induced pluripotent stem cells (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferation and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector. iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC:RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate. iPSC-MSCs were seeded on five biofunctionalized CPCs:CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and collagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering. iPSC-MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/orthopedic repairs.

  19. Biphasic calcium sulfate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, M D; Lopez, J; Torres, R; Barraco, M; Fernandez, E [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda Diagonal 647, E-08028-Barcelona (Spain); Valle, L J [Centre of Molecular Biotechnology (CEBIM), Department of Agri-Food Engineering and Biotechnology, ESAB, UPC, Avda Canal Olimpico 15, E-08860-Castelldefels (Spain); Poeata, I, E-mail: enrique.fernandez@upc.ed [Faculty of Medical Bioengineering, ' Gr T Popa' University of Medicine and Pharmacy, Str. Kogalniceanu 9-13, 700454 Iasi (Romania)

    2010-04-15

    In this study, the cytocompatibility of new 'iron-modified/alpha-tricalcium phosphate (IM/alpha-TCP) and calcium sulfate dihydrate (CSD)' bone cement (IM/alpha-TCP/CSD-BC) intended for spinal applications has been approached. The objective was to investigate by direct-contact osteoblast-like cell cultures (from 1 to 14 days) the in vitro cell adhesion, proliferation, morphology and cytoskeleton organization of MG-63 cells seeded onto the new cements. The results were as follows: (a) quantitative MTT-assay and scanning electron microscopy (SEM) showed that cell adhesion, proliferation and viability were not affected with time by the presence of iron in the cements; (b) double immunofluorescent labeling of F-actin and alpha-tubulin showed a dynamic interaction between the cell and its porous substrates sustaining the locomotion phenomenon on the cements' surface, which favored the colonization, and confirming the biocompatibility of the experimental cements; (c) SEM-cell morphology and cytoskeleton observations also evidenced that MG-63 cells were able to adhere, to spread and to attain normal morphology on the new IM/alpha-TCP/CSD-BC which offered favorable substratum properties for osteoblast-like cells proliferation and differentiation in vitro. The results showed that these new iron-modified cement-like biomaterials have cytocompatible features of interest not only as possible spinal cancellous bone replacement biomaterial but also as bone tissue engineering scaffolds.

  20. Effect of Additives on the Morphology of the Hydrated Product and Physical Properties of a Calcium Phosphate Cement

    Institute of Scientific and Technical Information of China (English)

    Xiupeng WANG; Jiandong YE; Yingjun WANG

    2008-01-01

    The morphology of a hydrated calcium phosphate cement (CPC) doped with several normally used additives was investigated by scanning electron microscopy (SEM) and the compressive strength of the cement was determined in this study. The hydrated products of CPC without additives was rod-like hydroxyapatite (HA) grains with around 2-5 μm in length and 100 nm in width. The addition of Sr obviously decreased the crystal size of the rod-like grains. CPCs containing carbonate, collagen and gelatin showed flake-like crystal morphology. Crylic acid-containing CPC presented flocculus-like structure. And malic acid-containing CPC exhibited oriented flake-like structure. The X-ray diffraction (XRD) analysis showed that the additives used in this study did not alter the hydration products of the cement. The compressive strength tests indicated that the compressive strength of the cement with rod-like morphology HA crystals was much higher than that of the cement with flake-like morphology HA crystals, and the cement with oriented flake-like morphology HA crystals .exhibited the poorest compressive strength.

  1. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: Early fluorapatite formation in a phosphate-containing solution

    OpenAIRE

    Gandolfi, M.G.; Taddei, P.; Siboni, F.; Modena, E.; Ginebra Molins, Maria Pau; Prati, Claudio

    2011-01-01

    Gandolfi MG, Taddei P, Siboni F, Modena E, Ginebra MP, Prati C. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. International Endodontic Journal, 44, 938–949, 2011. Aim To test the chemical–physical properties and apatite-forming ability of experimental fluoride-doped calcium silicate cements designed to create novel bioactive materials for use in endodontics ...

  2. Combined Percutaneous Iliosacral Screw Fixation With Sacroplasty Using Resorbable Calcium Phosphate Cement for Osteoporotic Pelvic Fractures Requiring Surgery.

    Science.gov (United States)

    Collinge, Cory A; Crist, Brett D

    2016-06-01

    Osteoporotic sacral fractures, including acute and chronic insufficiency fractures, are increasing in frequency and present a number of management problem. Many of these patients are treated nonoperatively with relative immobility (eg, bedrest, wheelchair, or weight-bearing restrictions) and analgesics, which likely make the osteoporotic component worse. Surgery in this patient population may be desirable in some cases with the goals of improving mobility, relieving pain, and healing in an aligned position while minimizing deformity progression. However, internal fixation of the osteoporotic pelvis can be difficult. Large unicortical lag screws are the workhorse of posterior pelvic fixation, and yet fixation in cancellous bone corridors of an osteoporotic sacrum seems unlikely to achieve optimal fixation. As a result, the operative management and clinical results of these difficult injuries may not be uniformly successful. The authors present a technique for treating osteoporotic patients with a sacral fracture when operative treatment is indicated using percutaneous screw fixation combined with screw augmentation using a resorbable calcium phosphate bone substitute or "cement." The guide wire for a 7.3-mm or other large cannulated lag screw is fully inserted along the desired bony sacral corridor as is standard. The lag screw is then inserted over the wire to the depth where cement is desired. The guide wire is removed, and the aqueous calcium phosphate is injected through the screw's cannulation. For acute fractures, cement was applied to the areas distant to the fracture; whereas in insufficiency fractures, the cement was inserted along most of the screw path. The guide wire then can be reinserted and the lag screw fully inserted. The rationale for using these 2 modalities is their synergistic effect: the cannulated screw provides typical screw fixation and also a conduit for cement application. The cement augments the lag screw's purchase in osteoporotic bone

  3. Different Angiogenic Abilities of Self-Setting Calcium Phosphate Cement Scaffolds Consisting of Different Proportions of Fibrin Glue

    OpenAIRE

    Jintao Xiu; Junjun Fan; Jie Li; Geng Cui; Wei Lei

    2014-01-01

    To investigate the different angiogenic abilities of the self-setting calcium phosphate cement (CPC) consisting of different proportions of fibrin glue (FG), the CPC powder and the FG solution were mixed at the powder/liquid (P/L) ratios of 1 : 0.5, 1 : 1, and 1 : 2 (g/mL), respectively, and pure CPC was used as a control. After being implanted into the lumbar dorsal fascia of the rabbit, the angiogenic process was evaluated by histological examination and CD31 immunohistochemistry to detect ...

  4. CT volumetry of intravertebral cement after kyphoplasty. Comparison of polymethylmethacrylate and calcium phosphate in a 12-month follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Libicher, M.; Noeldge, G.; Kauffmann, G.W. [University of Heidelberg, Department of Diagnostic Radiology, Heidelberg (Germany); Vetter, M.; Wolf, I.; Meinzer, H.P. [Deutsches Krebsforschungszentrum, Departments of Medical and Biological Informatics, Heidelberg (Germany); Kasperk, C.; Grafe, I. [University of Heidelberg, Department of Internal Medicine, Heidelberg (Germany); Fonseca, K.D.; Meeder, P.J. [University of Heidelberg, Department of Trauma Surgery, Heidelberg (Germany); Hillmeier, J. [St. Vincenz Hospital, Department of Trauma Surgery, Limburg (Germany)

    2005-08-01

    This study was intended to measure the volume of intravertebral cement after balloon kyphoplasty with high resolution computed tomography (CT) and dedicated software. Volume changes of biocompatible calcium phosphate cement (CPC) were detected during a follow-up of 12 months. Measurements were compared with a control group of patients treated with polymethylmethacrylate (PMMA). Twenty-three vertebrae (14 CPC, 9 PMMA) of 12 patients were examined with CT using an identical imaging protocol. Dedicated software was used to quantify intravertebral cement volume in subvoxel resolution by analyzing each cement implant with a density-weighted algorithm. The mean volume reduction of CPC was 0.08 ml after 12 months, which corresponds to an absorption rate of 2 vol%. However, the difference did not reach significance level (P>0.05). The mean error estimate was 0.005 ml, indicating excellent precision of the method. CT volumetry appears a precise tool for measurement of intravertebral cement volume. CT volumetry offers the possibility of in vivo measurement of CPC resorption. (orig.)

  5. Production and characterization of setting hydraulic cements based on calcium phosphate; Obtencao e caracterizacao de cimentos de fosfato de calcio de pega hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luci C. de; Rigo, Eliana C.S.; Santos, Luis A dos; Boschi, Anselmo Ortega [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais; Carrodeguas, Raul G. [Universidad de La Habana, Habana (Cuba). Centro de Biomateriales

    1997-12-31

    Setting hydraulic cements based on calcium phosphate has risen great interest in scientific literature during recent years due to their total bio compatibility and to the fact that they harden `in situ`, providing easy handling and adaptation to the shape and dimensions of the defect which requires correction, differently from the predecessors, the calcium phosphate ceramics (Hydroxy apatite, {beta}-tri calcium phosphate, biphasic, etc) in the shape of dense or porous blocks and grains. In the work, three calcium-phosphate cement compositions were studied. The resulting compositions were characterized according to the following aspects: setting times, pH, mechanical resistance, crystalline phases, microstructure and solubility in SBF (Simulated Body Fluid). The results show a potential use for the compositions. (author) 6 figs., 4 tabs.

  6. Local treatment of osteoporosis with alendronate-loaded calcium phosphate cement

    Institute of Scientific and Technical Information of China (English)

    Zhao Jindong; Tang Hai; Wang Jiayang; Li Gang

    2014-01-01

    Background A new treatment strategy is to target specific areas of the skeletal system that are prone to clinically significant osteoporotic fractures.We term this strategy as the "local treatment of osteoporosis".The study was performed to investigate the effect of alendronate-loaded calcium phosphate cement (CPC) as a novel drug delivery system for local treatment of osteoorosis.Methods An in vitro study was performed using CPC fabricated with different concentrations of alendronate (ALE,0,2,5,10 weight percent (wt%)).The microstructure,setting time,infrared spectrum,biomechanics,drug release,and biocompatibility of the composite were measured in order to detect changes when mixing CPC with ALE.An in vivo study was also performed using 30 Sprague-Dawley rats randomly divided into six groups:normal,Sham (ovariectomized (OVX) + Sham),CPC with 2% ALE,5%ALE,and 10% ALE groups.At 4 months after the implantation of the composite,animals were sacrificed and the caudal vertebrae (levels 4-7) were harvested for micro-CT examination and biomechanical testing.Results The setting time and strength of CPC was significantly faster and greater than the other groups.The ALE release was sustained over 21 days,and the composite showed good biocompatibility.In micro-CT analysis,compared with the Sham group,there was a significant increase with regard to volumetric bone mineral density (BMD) and trabecular number (Tb.N) in the treated groups (P <0.05).Trabecular spacing (Tb.Sp) showed a significant increase in the Sham group compared to other groups (P <0.01).However,trabecular thickness (Tb.Th) showed no significant difference among the groups.In biomechanical testing,the maximum compression strength and stiffness of trabecular bone in the Sham group were lower than those in the experimental groups.Conclusions The ALE-loaded CPC displayed satisfactory properties in vitro,which can reverse the OVX rat vertebral trabecular bone microarchitecture and biomechanical

  7. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways.

    Science.gov (United States)

    Lee, Sang-Im; Lee, Eui-Suk; El-Fiqi, Ahmed; Lee, So-Youn; Eun-Cheol Kim; Kim, Hae-Won

    2016-05-01

    Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes. In comparison to pure CPCs, nanocomposite cements exhibit a significantly improved proliferation of HDPSCs, and the improvement is more significant as the BGN content increases. The nanocomposite cements substantially enhance the adhesion of cells, and significantly up-regulate odontogenic differentiation, including alkaline phosphatase (ALP) activity and the expressions of odontogenic genes (sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin). Furthermore, the use of nanocomposite cements result in stimulation of angiogenic gene expression (VEGF, FGF-2, VEGFRs, PECAM-1, and VE-cadherin) and protein production (VEGF, VEGFR-1). The angiogenic stimulation by the HDPSCs significantly affects the endothelial cell behaviors, that is, the endothelial cell migration and the tubular network formation are substantially improved when treated with HDPSC-conditioned medium, particularly with the help of nanocomposite cements. The integrin and VEGF signaling pathways are reasoned for the stimulation of the odontogenesis and angiogenesis of cells, where the nanocomposite cements up-regulate the integrin subsets α1, α2, α3, and β1, and activate the integrin downstream signal pathways, such as p-FAK, p-Akt, p-paxillin, JNK, EK, and NF-κB, as well as other nuclear transcriptional factors, including CREB, STAT-3, and ELK-1. The current results indicate that the new formulation of the nanocomposite self-setting cements might provide some

  8. Effect of ultrafine poly(ε-caprolactone fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration

    Directory of Open Access Journals (Sweden)

    Yang BY

    2016-01-01

    Full Text Available Boyuan Yang,1 Yi Zuo,1 Qin Zou,1 Limei Li,1 Jidong Li,1 Yi Man,2 Yubao Li1 1Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China; 2State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China Abstract: We incorporated ultrafine polymer fibers into calcium phosphate cement (CPC to improve the resorption rate of CPC with fiber degradation. Different weight percentages of electrospun poly(ε-caprolactone fibers (0%, 3%, and 7%, named as ultrafine fiber-incorporated CPC0 [UFICPC0], UFICPC3, and UFICPC7 were included into preset CPC specimens for in vitro immersion in lipase phosphate-buffered solution and long-term in vivo implantation in the femoral condyle of rabbits. The effect of the ultrafine poly(ε-caprolactone fibers with a diameter ranging from nanometer to micrometer on CPC degradation was evaluated by measuring the pH of the medium, mass loss, porosity, and physiochemical properties. For the in vivo evaluation, histomorphometrical analysis as well as three-dimensional (3D reconstruction was applied to assess the osteogenic properties of the CPC composite. After in vitro immersion and in vivo implantation, the total porosity and macroporosity as well as the bone formation and ingrowth increased significantly during time in the fiber-incorporated CPC specimens. After 24 weeks of implantation, the degraded space was occupied by newly formed bone, and the UFICPC3 and UFICPC7 composites showed a ~3.5 times higher fraction of bone volume than that of the pristine CPC (UFICPC0. In vitro and in vivo results proved that the introduction of ultrafine degradable fibers within a CPC matrix can be used to improve macroporosity efficiently and enhance CPC degradation and bone ingrowth largely. Keywords: ultrafine fibers, calcium phosphate cement, macroporosity, degraded space, bone ingrowth

  9. Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats.

    Science.gov (United States)

    Thormann, Ulrich; Ray, Seemun; Sommer, Ursula; Elkhassawna, Thaqif; Rehling, Tanja; Hundgeburth, Marvin; Henß, Anja; Rohnke, Marcus; Janek, Jürgen; Lips, Katrin S; Heiss, Christian; Schlewitz, Gudrun; Szalay, Gabor; Schumacher, Matthias; Gelinsky, Michael; Schnettler, Reinhard; Alt, Volker

    2013-11-01

    The first objective was to investigate new bone formation in a critical-size metaphyseal defect in the femur of ovariectomized rats filled with a strontium modified calcium phosphate cement (SrCPC) compared to calcium phosphate cement (CPC) and empty defects. Second, detection of strontium release from the materials as well as calcium and collagen mass distribution in the fracture defect should be targeted by time of flight secondary ion mass spectrometry (TOF-SIMS). 45 female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) SrCPC (n = 15), (2) CPC (n = 15), and (3) empty defect (n = 15). Bilateral ovariectomy was performed and three months after multi-deficient diet, the left femur of all animals underwent a 4 mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with SrCPC or CPC or was left empty. After 6 weeks, histomorphometric analysis showed a statistically significant increase in bone formation of SrCPC compared to CPC (p = 0.005) and the empty defect (p = 0.002) in the former fracture defect zone. Furthermore, there was a statistically significant higher bone formation at the tissue-implant interface in the SrCPC group compared to the CPC group (p < 0.0001). These data were confirmed by immunohistochemistry revealing an increase in bone-morphogenic protein 2, osteocalcin and osteoprotegerin expression and a statistically significant higher gene expression of alkaline phosphatase, collagen10a1 and osteocalcin in the SrCPC group compared to CPC. TOF-SIMS analysis showed a high release of Sr from the SrCPC into the interface region in this area compared to CPC suggesting that improved bone formation is attributable to the released Sr from the SrCPC.

  10. Tuning the Degradation Rate of Calcium Phosphate Cements by Incorporating Mixtures of Polylactic-co-Glycolic Acid Microspheres and Glucono-Delta-Lactone Microparticles

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; An, J.; Oirschot, B.A.J.A. van; Nijhuis, A.W.G.; Eman, R.M.; Alblas, J.; Wolke, J.G.C.; Beucken, J.J.J.P van den; Leeuwenburgh, S.C.G.; Jansen, J.A.

    2014-01-01

    Calcium phosphate cements (CPCs) are frequently used as synthetic bone graft materials in view of their excellent osteocompatibility and clinical handling behavior. Hydroxyapatite-forming CPCs, however, degrade at very low rates, thereby limiting complete bone regeneration. The current study has inv

  11. Effect of curing conditions on the dimensional and thermal stability of calcium phosphate cement for elevated temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Johan [Vrije Universiteit Brussel, Department of Mechanics of Materials and Constructions, Pleinlaan 2, Brussels 1050 (Belgium); Rahier, Hubert [Vrije Universiteit Brussel, Research Group of Physical Chemistry and Polymer Sciences, Pleinlaan 2, Brussels 1050 (Belgium); Wastiels, Jan, E-mail: Jan.Wastiels@vub.ac.be [Vrije Universiteit Brussel, Department of Mechanics of Materials and Constructions, Pleinlaan 2, Brussels 1050 (Belgium)

    2014-12-15

    Calcium phosphate cements (CPCs) are attractive materials for elevated temperature applications, like moulds to process thermoplastics up to 300 °C. The CPC resulting from the reaction of wollastonite with phosphoric acid cured at room temperature however contains hydrated phases like brushite, and is thus not stable when exposed to temperatures above 200 °C. A non-contact method based on digital image correlation demonstrated that isothermal curing at 60 °C reduces the thermal shrinkage up to 300 °C by 25%. This curing method results in the direct formation of the more stable monetite in a shorter curing time. The correlated results of TGA, pH of the filtration water, and DSC analysis on partially cured material indicate this. XRD diffractograms and SEM images in combination with EDX show the evolution of the transformation of wollastonite into monetite, and the structure and morphology of the formed material.

  12. Histological and mechanical evaluation of self-setting calcium phosphate cements in a sheep vertebral bone void model.

    Science.gov (United States)

    Kobayashi, Naomi; Ong, Kevin; Villarraga, Marta; Schwardt, Jeffrey; Wenz, Robert; Togawa, Daisuke; Fujishiro, Takaaki; Turner, A Simon; Seim, Howard B; Bauer, Thomas W

    2007-06-15

    We investigated the histological and compressive properties of three different calcium phosphate cements (CPCs) using a sheep vertebral bone void model. One of the CPCs contained barium sulfate to enhance its radiopacity. Bone voids were surgically created in the lumbar region of 23 ovine spines - L3, L4, and L5 (n = 69 total vertebral bodies) - and the voids were filled with one of the three CPCs. A fourth group consisted of whole intact vertebrae. Histologic evaluation was performed for 30 of the 69 vertebrae 2 or 4 months after surgery along with radiographic evaluation. Compressive testing was performed on 39 vertebrae 4 months after surgery along with micro-CT analysis. All three CPCs were biocompatible and extremely osteoconductive. Osteoclasts associated with adjacent bone formation suggest that each cement can undergo slow resorption and replacement by bone and bone marrow. Compressive testing did not reveal a significant difference in the ultimate strength, ultimate strain, and structural modulus, among the three CPCs and intact whole vertebrae. Micro-CT analysis revealed good osseointegration between all three CPCs and adjacent bone. The barium sulfate did not affect the CPCs biocompatibility or mechanical properties. These results suggest that CPC might be a good alternative to polymethylmethacrylate for selected indications.

  13. Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration.

    Science.gov (United States)

    Yang, Boyuan; Zuo, Yi; Zou, Qin; Li, Limei; Li, Jidong; Man, Yi; Li, Yubao

    2016-01-01

    We incorporated ultrafine polymer fibers into calcium phosphate cement (CPC) to improve the resorption rate of CPC with fiber degradation. Different weight percentages of electrospun poly(ε-caprolactone) fibers (0%, 3%, and 7%, named as ultrafine fiber-incorporated CPC0 [UFICPC0], UFICPC3, and UFICPC7) were included into preset CPC specimens for in vitro immersion in lipase phosphate-buffered solution and long-term in vivo implantation in the femoral condyle of rabbits. The effect of the ultrafine poly(ε-caprolactone) fibers with a diameter ranging from nanometer to micrometer on CPC degradation was evaluated by measuring the pH of the medium, mass loss, porosity, and physiochemical properties. For the in vivo evaluation, histomorphometrical analysis as well as three-dimensional (3D) reconstruction was applied to assess the osteogenic properties of the CPC composite. After in vitro immersion and in vivo implantation, the total porosity and macroporosity as well as the bone formation and ingrowth increased significantly during time in the fiber-incorporated CPC specimens. After 24 weeks of implantation, the degraded space was occupied by newly formed bone, and the UFICPC3 and UFICPC7 composites showed ~3.5 times higher fraction of bone volume than that of the pristine CPC (UFICPC0). In vitro and in vivo results proved that the introduction of ultrafine degradable fibers within a CPC matrix can be used to improve macroporosity efficiently and enhance CPC degradation and bone ingrowth largely. PMID:26792992

  14. Bone healing response to an injectable calcium phosphate cement with enhanced radiopacity.

    Science.gov (United States)

    Acarturk, Oguz; Lehmicke, Michael; Aberman, Harold; Toms, Derek; Hollinger, Jeffrey O; Fulmer, Mark

    2008-07-01

    The aim of this study was to determine the impact of barium sulfate on remodeling and regeneration in standard tibial defects in rabbits treated with the Norian skeletal repair system (SRS). Two formulations of SRS (with and without barium sulfate) were injected into the medullary canal of the tibia of New Zealand white rabbits. Animals were sacrificed at 6 weeks, 6 months, 1 year, and 2 years. Over the 2-year duration of the study, standard SRS and SRS with barium sulfate appeared to be biocompatible and osteoconductive with no evidence of either inflammation or fibrous tissue around the implant materials or at the bone-material interfaces. This outcome underscores the osteophilic property of the SRS. A difference we observed between the standard SRS and the SRS with barium sulfate was the appearance of acellular material contiguous to the SRS with barium sulfate. Energy dispersive X-ray spectroscopy (EDX) analysis was conducted and confirmed that the acellular material was barium sulfate. Pathological examination of additional tissues including regional lymph nodes revealed neither dissemination of calcium phosphate nor barium sulfate. We concluded that the residual barium sulfate detected by EDX was localized to the intramedullary canal of the tibia. PMID:18098201

  15. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects

    Directory of Open Access Journals (Sweden)

    Dong J

    2013-03-01

    Full Text Available Jingjing Dong,1,* Geng Cui,2,* Long Bi,1,* Jie Li,3 Wei Lei11Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China; 2Institute of Orthopedics, General Hospital of PLA, Beijing, People’s Republic of China; 3Institute of Gynecology and Obstetrics, General Hospital of PLA, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L ratios (g/mL of 1:1, 3:1, and 5:1 (g/mL, and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC–FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05. The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation

  16. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    International Nuclear Information System (INIS)

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration

  17. Whisker-reinforced bioactive composites containing calcium phosphate cement fillers: effects of filler ratio and surface treatments on mechanical properties.

    Science.gov (United States)

    Xu, H H; Quinn, J B

    2001-11-01

    Calcium phosphate cement (CPC) sets to form microporous solid hydroxyapatite with excellent osteoconductivity, but its brittleness and low strength prohibit use in stress-bearing locations. The aim of this study was to incorporate prehardened CPC particles and ceramic whiskers in a resin matrix to improve the strength and fracture resistance, and to investigate the effects of key microstructural variables on composite mechanical properties. Two types of whiskers were used: silicon nitride, and silicon carbide. The whiskers were surface-treated by fusing with silica and by silanization. The CPC particle fillers were either silanized or not silanized. Seven mass ratios of whisker-silica/CPC were mixed: 0:1 (no whisker-silica), 1:5, 1:2, 1:1, 2:1, 5:1, and 1:0 (no CPC). Each powder was blended with a bisphenol-a-glycidyl methacrylate-based resin to harden in 2 x 2 x 25 mm molds by two-part chemical curing. The specimens were tested in three-point flexure to measure strength, work-of-fracture (toughness), and elastic modulus. Two-way analysis of variance was used to analyze the data, and scanning electron microscopy was used to examine specimen fracture surfaces. The whisker-silica/CPC ratio had significant effects on composite properties (p particles without whiskers. The composite properties were determined by whisker-to-CPC ratio and filler surface treatments. PMID:11484178

  18. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi; Hou, Juan; Yin, ManLi [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, ChangSheng, E-mail: csliu@sh163.net [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-01

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration.

  19. In vitro study of using calcium phosphate cement as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas.

    Science.gov (United States)

    Kai-Chiang, Yang; Ching-Yao, Yang; Chang-Chin, Wu; Tzong-Fu, Kuo; Feng-Huei, Lin

    2007-12-15

    In this study, the feasibility of using calcium phosphate cement (CPC) as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas was evaluated. We fabricated a chamber by CPC and utilized X-ray diffraction, Scanning electron microscope and Mercury intrusion porosimetry to identify the characters of the CPC chamber. The nominal molecular weight cut-off and cytotoxicity of CPC chamber were also evaluated. An insulinoma cell line (RIN-m5F) was chosen as insulin source and encapsulated in agarose microspheres and then enclosed in preformed CPC chamber. Insulin secretion was analyzed by Enzyme-linked immunosorbant assay to evaluate the function of insulinoma enclosed in CPC chamber. Results showed that the CPC chamber was non-cytotoxicity to insulinoma and can block the penetration of molecules which molecular weight larger than 12.4 kDa. Insulinoma inside the CPC chamber can secrete insulin in stable level for 30 days. This study indicated that we may use CPC as immunoisolative material to enclose insulinoma/agarose microspheres as bioartificial pancreas. PMID:17514757

  20. Different Angiogenic Abilities of Self-Setting Calcium Phosphate Cement Scaffolds Consisting of Different Proportions of Fibrin Glue

    Directory of Open Access Journals (Sweden)

    Jintao Xiu

    2014-01-01

    Full Text Available To investigate the different angiogenic abilities of the self-setting calcium phosphate cement (CPC consisting of different proportions of fibrin glue (FG, the CPC powder and the FG solution were mixed at the powder/liquid (P/L ratios of 1 : 0.5, 1 : 1, and 1 : 2 (g/mL, respectively, and pure CPC was used as a control. After being implanted into the lumbar dorsal fascia of the rabbit, the angiogenic process was evaluated by histological examination and CD31 immunohistochemistry to detect the new blood vessels. The result of the new blood vessel showed that the P/L ratio of 1 : 1 group indicated the largest quantity of new blood vessel at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. The histological evaluation also showed the best vascular morphology in the 1 : 1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. Our study indicated that the CPC-FG composite scaffold at the P/L ratio of 1 : 1  (g/mL stimulated angiopoiesis better than any other P/L ratios and has significant potential as the bioactive material for the treatment of bone defects.

  1. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Chia-Tze; Huang, Tsui-Hsien [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China)

    2014-10-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Regarding the formation of bone-like apatite, the diametral tensile strength as well as the ion release and weight loss of composites were compared both before and after immersions in simulated body fluid (SBF). In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on β-TCP/CS composites. The results show that the apatite deposition ability of the β-TCP/CS composites improves as the CS content is increased. For composites with more than a 60% CS content, the samples become completely covered by a dense bone-like apatite layer. At the end of the immersion period, weight losses of 24%, 32%, 34%, 38%, 41%, and 45% were observed for the composites containing 0%, 20%, 40%, 80%, 80% and 100% β-TCP cements, respectively. In addition, the antibacterial activity of CS/β-TCP composite improves as the CS-content is increased. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 60%, the quantity of cells and osteogenesis protein of hDPCs is stimulated by Si released from the β-TCP/CS composites. The degradation of β-TCP and the osteogenesis of CS give strong reason to believe that these calcium-based composite cements will prove to be effective bone repair materials. - Highlights: • CS improved the physicochemical properties and osteogenic activity of β-TCP. • Higher CS in the composite, the shorter setting time and the higher DTS was found. • With a CS more than 40%, the osteogenesis and angiogenesis proteins were promoted by

  2. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement

    International Nuclear Information System (INIS)

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Regarding the formation of bone-like apatite, the diametral tensile strength as well as the ion release and weight loss of composites were compared both before and after immersions in simulated body fluid (SBF). In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on β-TCP/CS composites. The results show that the apatite deposition ability of the β-TCP/CS composites improves as the CS content is increased. For composites with more than a 60% CS content, the samples become completely covered by a dense bone-like apatite layer. At the end of the immersion period, weight losses of 24%, 32%, 34%, 38%, 41%, and 45% were observed for the composites containing 0%, 20%, 40%, 80%, 80% and 100% β-TCP cements, respectively. In addition, the antibacterial activity of CS/β-TCP composite improves as the CS-content is increased. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 60%, the quantity of cells and osteogenesis protein of hDPCs is stimulated by Si released from the β-TCP/CS composites. The degradation of β-TCP and the osteogenesis of CS give strong reason to believe that these calcium-based composite cements will prove to be effective bone repair materials. - Highlights: • CS improved the physicochemical properties and osteogenic activity of β-TCP. • Higher CS in the composite, the shorter setting time and the higher DTS was found. • With a CS more than 40%, the osteogenesis and angiogenesis proteins were promoted by

  3. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Science.gov (United States)

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  4. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms

    Science.gov (United States)

    Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E. A.; Huq, N. Laila; Reynolds, Eric C.

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  5. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  6. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-beta1.

    OpenAIRE

    W. Zhang; Walboomers, X.F.; Jansen, J. A.

    2008-01-01

    The aim of the current study was to evaluate the effect of a calcium phosphate material equipped with poly (lactic-co-glycolic acid) microspheres for pulp capping, and to measure the dentin bridge formation, when using various concentrations of transforming growth factor (TGF) beta1. Preset samples were made (2 mm diameter; 2 mm height), containing 0 (controls), 20, or 400 ng TGF-beta1. These were placed in goat incisors. Incisors capped with glass-ionomer cement only were used as negative co...

  7. Polyelectrolyte addition effect on the properties of setting hydraulic cements based on calcium phosphate; Efeito da adicao de polieletrolitos sobre as propriedades de cimentos de fosfato de calcio de pega hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis A. dos; Oliveira, Luci C. de; Rigo, Eliana C.S.; Boschi, Anselmo Ortega [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais; Carrodeguas, Raul Gracia [Universidad de La Habana, Habana, (Cuba). Centro de Biomateriales

    1997-12-31

    In the present work the effects of the addition of some poly electrolytes (sodium alginate and poly acrylic acid) on the solubility, crystalline phases, pH and mechanical strength under compression of three calcium phosphate cements were studied. (author) 10 refs., 2 figs., 4 tabs.

  8. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  9. Preparation of a Novel Calcium Phosphate Cement Using N-methylene Phosphonic Chitosan as a Gelling Agent

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A modified chitosan ( N-methylene phosphonic Chitosan, NMPC ) was synthesized to improve solubility and ability to bind calcium ion. The properties of the raw material chitosan and its derivative NMPC were characterized using FTIR, 1 H-NMR. The aim of this study was to enhance the compressive CPC by reinforcing with NMPC. A formulation consisting of CPC powder, buffer solution and gelling agent was used for preparation of the CPC. CPC powder consisted of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous ( DCPA ). NMPC which acted as the gelling agent was dissolved iuto KH2 PO4 -Na2 HPO4 buffer solution. Each specimen in the mold was sandwiched between two fritted glass sides and kept for 24 hours. Compressive strengths were determined, the setting product was identified using X-ray diffraction and scanning electron microscopy was used to investigate the hydroxyapatite particles size and porosity. The experimental results showed that the dominating influence on the compressive strengths of CPC-NMPC was the HA particle size, its uniformity and appropriate porosity.

  10. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration.

    Science.gov (United States)

    Sadiasa, Alexander; Sarkar, Swapan Kumar; Franco, Rose Ann; Min, Young Ki; Lee, Byong Taek

    2014-01-01

    In this work, we fabricated injectable bone substitutes modified with the addition of bioactive glass powders synthesized via ultrasonic energy-assisted hydrothermal method to the calcium phosphate-based bone cement to improve its biocompatibility. The injectable bone substitutes was initially composed of a powder component (tetracalcium phosphate, dicalcium phosphate dihydrate and calcium sulfate dehydrate) and a liquid component (citric acid, chitosan and hydroxyl-propyl-methyl-cellulose) upon which various concentrations of bioactive glass were added: 0%, 10%, 20% and 30%. Setting time and compressive strength of the injectable bone substitutes were evaluated and observed to improve with the increase of bioactive glass content. Surface morphologies were observed via scanning electron microscope before and after submersion of the samples to simulated body fluid and increase in apatite formation was detected using x-ray diffraction machine. In vitro biocompatibility of the injectable bone substitutes was observed to improve with the addition of bioactive glass as the proliferation/adhesion behavior of cells on the material increased. Human gene markers were successfully expressed using real time-polymerase chain reaction and the samples were found to promote cell viability and be more biocompatible as the concentration of bioactive glass increases. In vivo biocompatibility of the samples containing 0% and 30% bioactive glass were evaluated using Micro-CT and histological staining after 3 months of implantation in male rabbits' femurs. No inflammatory reaction was observed and significant bone formation was promoted by the addition of bioactive glass to the injectable bone substitute system.

  11. Light weight phosphate cements

    Science.gov (United States)

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  12. Tuning the degradation rate of calcium phosphate cements by incorporating mixtures of polylactic-co-glycolic acid microspheres and glucono-delta-lactone microparticles.

    Science.gov (United States)

    Sariibrahimoglu, Kemal; An, Jie; van Oirschot, Bart A J A; Nijhuis, Arnold W G; Eman, Rhandy M; Alblas, Jacqueline; Wolke, Joop G C; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Jansen, John A

    2014-11-01

    Calcium phosphate cements (CPCs) are frequently used as synthetic bone graft materials in view of their excellent osteocompatibility and clinical handling behavior. Hydroxyapatite-forming CPCs, however, degrade at very low rates, thereby limiting complete bone regeneration. The current study has investigated whether degradation of apatite-forming cements can be tuned by incorporating acid-producing slow-resorbing poly(D,L-lactic-co-glycolic) acid (PLGA) porogens, fast-resorbing glucono-delta-lactone (GDL) porogens, or mixtures thereof. The physicochemical, mechanical, and degradation characteristics of these CPC formulations were systematically analyzed upon soaking in phosphate-buffered saline (PBS). In parallel, various CPC formulations were implanted intramuscularly and orthotopically on top of the transverse process of goats followed by analysis of the soft tissue response and bone ingrowth after 12 weeks. In vitro degradation of GDL was almost completed after 2 weeks, as evidenced by characterization of the release of gluconic acid, while PLGA-containing CPCs released glycolic acid throughout the entire study (12 weeks), resulting in a decrease in compression strength of CPC. Extensive in vitro degradation of the CPC matrix was observed upon simultaneous incorporation of 30% PLGA-10% GDL. Histomorphometrical evaluation of the intramuscularly implanted samples revealed that all CPCs exhibited degradation, accompanied by an increase in capsule thickness. In the in vivo goat transverse process model, incorporation of 43% PLGA, 30% PLGA-5% GDL, and 30% PLGA-10% GDL in CPC significantly increased bone formation and resulted in higher bone height compared with both 10% GDL and 20% GDL-containing CPC samples.

  13. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ching-Chuan [Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan (China); Kao, Chia-Tze; Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Huang, Tsui-Hsien, E-mail: thh@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China)

    2014-04-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  14. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    International Nuclear Information System (INIS)

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  15. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    Science.gov (United States)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  16. Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion.

    Science.gov (United States)

    Gu, Yong; Chen, Liang; Yang, Hui-Lin; Luo, Zong-Ping; Tang, Tian-Si

    2011-05-01

    The objective of this study was to investigate the efficacy of an injectable calcium phosphate cement/silk fibroin/human recombinant bone morphogenetic protein-2 composite (CPC/SF/rhBMP-2) in an ovine interbody fusion model. Twenty-four mature sheep underwent anterior lumbar interbody fusion at the levels of L1/2, L3/4, and L5/6 with random implantation of CPC/SF, CPC/rhBMP-2, CPC/SF/rhBMP-2, or autogenous iliac bone. After the sheep were sacrificed, the fusion segments were evaluated by manual palpation, CT scan, undestructive biomechanical testing, undecalcified histology, and histomorphology. The fusion rates of CPC/SF/rhBMP-2 were 55.56% and 77.78% at 6 and 12 months, respectively. The fusion was superior to all the biomaterial grafts in stiffness, and reached the same stiffness as the autograft at 12 months. The new bone formation was less than autograft at 6 months, but similar with that at 12 months. However, the ceramic residue volume of CPC/SF/rhBMP-2 was significantly decreased compared with CPC/SF and CPC/rhBMP-2 at both times. The results indicated that CPC/SF/rhBMP-2 composite had excellent osteoconduction and osteoinduction, and balanced degradation and osteogenesis.

  17. Could percutaneous femoral head arthroplasty using calcium phosphate cement be a novel therapeutic method for late-stage Legg-Calvé-Perthes disease?

    Directory of Open Access Journals (Sweden)

    Jun Wan

    2009-05-01

    Full Text Available "nLegg-Calvé-Perthes disease (LCPD belongs to the category of aseptic osteochondroses of childhood which is characterized by idiopathic avascular osteonecrosis of the femoral head which can cause severe deformity of hip joint such as coxa plana and ‘flattening femoral head'. As the harmonious structural relation of hip joint was broken, osteoarthritis of hip joint could be always observed in patients about 50 years old which finally needs to be treated with total hip replacement. In present most methods yield markedly to achieve good clinical results when dealing with late-stage of LCPD mainly because of inability of reconstruction of spherical shape of femoral head. So the direct urgent thing should be to find one way out to completely reconstruct the spherical shape of femoral head. By the enlightenment of percutaneous vertebroplasty (PKP and biological properties of calcium phosphate cement (CPC, we hypothesize that percutaneous femoral head arthroplasty using CPC can solve the problem of reconstruction of spherical framework of femoral head in late-stage LCPD and pave a brand-new way to achieve excellent clinical results in patients of late-stage LCPD.  

  18. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 407, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng; Wang, Jen-Chyan [Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Tien, Yin-Chun [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 407, Taiwan (China)

    2014-06-01

    In this study, a calcium phosphate cement was developed using tetracalcium phosphate and surface-modified dicalcium phosphate anhydrous (DCPA). This developed injectable bone graft substitute can be molded to the shape of the bone cavity and set in situ through the piping system that has an adequate mechanical strength, non-dispersibility, and biocompatibility. The materials were based on the modified DCPA compositions of calcium phosphate cement (CPC), where the phase ratio of the surface-modified DCPA is higher than that of the conventional CPC for forming dicalcium phosphate (DCP)-rich cement. The composition and morphology of several calcium phosphate cement specimens during setting were analyzed via X-ray diffractometry and transmission electron microscopy coupled with an energy dispersive spectroscopy system. The compressive strength of DCP-rich CPCs was greater than 30 MPa after 24 h of immersion in vitro. The reaction of the CPCs produced steady final biphasic products of DCPs with apatite. The composites of calcium phosphate cements derived from tetracalcium phosphate mixed with surface-modified DCPA exhibited excellent mechanical properties, injectability, and interlocking forces between particles, and they also featured nondispersive behavior when immersed in a physiological solution. - Highlights: • Bone cement precursor with nanocrystals is characterized. • DCP-rich CPCs with nanocrystals exhibited biphasic product phases. • Nanocrystals in cement significantly affected the interlocking ability. • Nanocrystals in cement exhibited higher strength and anti-dispersion. • DCP-rich CPCs increase the potential of bioresorption after reaction.

  19. Enhanced dentin-like mineralized tissue formation by AdShh-transfected human dental pulp cells and porous calcium phosphate cement.

    Directory of Open Access Journals (Sweden)

    Lunguo Xia

    Full Text Available The aim of the present study was to investigate the effect of Sonic hedgehog (Shh on human dental pulp cells (hDPCs and the potential of complexes with Shh gene modified hDPCs and porous calcium phosphate cement (CPC for mineralized tissue formation. hDPCs were cultured and transfected with adenoviral mediated human Shh gene (AdShh. Overexpression of Shh and cell proliferation was tested by real-time PCR analysis, western blotting analysis, and MTT analysis, respectively. The odontoblastic differentiation was assessed by alkaline phosphatase (ALP activity and real-time PCR analysis on markers of Patched-1 (Ptc-1, Smoothened (Smo, Gli 1, Gli 2, Gli 3, osteocalcin (OCN, dentin matrix protein-1 (DMP-1, and dentin sialophosphoprotein (DSPP. Finally, AdShh-transfected hDPCs were combined with porous CPC and placed subcutaneously in nude mice for 8 and 12 weeks, while AdEGFP-transfected and untransfected hDPCs were treated as control groups. Results indicated that Shh could promote proliferation and odontoblastic differentiation of hDPCs, while Shh/Gli 1 signaling pathway played a key role in this process. Importantly, more mineralized tissue formation was observed in combination with AdShh transfected hDPCs and porous CPC, moreover, the mineralized tissue exhibited dentin-like features such as structures similar to dentin-pulp complex and the positive staining for DSPP protein similar to the tooth tissue. These results suggested that the constructs with AdShh-transfected hDPCs and porous CPC might be a better alternative for dental tissue regeneration.

  20. Influence of Dopamine on Physicochemical Properties of Calcium Phosphate Cement%多巴胺对磷酸钙骨水泥性能影响的研究

    Institute of Scientific and Technical Information of China (English)

    刘宗光; 屈树新; 赵军胜; 刘宇; 翁杰

    2013-01-01

    The aim of this study is to investigate effects of dopamine (DA) on physiochemical properties of calcium phosphate cement (CPC) and in vitro degradation of DA from CPC. DA was dissolved in Tris (Hydroxymethyl) aminomethane-hydrochloric acid buffer solution and mixed the solution with CPC powders after oxidized for 2 d in air. Orthogonal test was used to optimize the preparation of CPC with respect to the DA concentration, ratio of liquid to solid and pH values. Compressive tests, Gilmore needle tests, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) were used to characterize the physiochemical properties of CPC. Scanning electron microscope (SEM) and UV-Vis spectrophotometry were used to observe the micro-morphology of CPC and ire vitro degradation of DA from CPC, respectively. Compressive test and orthogonal analysis indicated that the optimal combination CPC was DA concentration 40 rng·mL-1, ratio of liquid to solid 0.3 mL·g-1 and pH value 8.5, which had the highest compressive strength with significant difference (p<0.01) compared with that of CPC-Blank. Setting time of the optimal combination CPC decreased slight but no significant difference compared to that of CPC-Blank, which could satisfied with the clinical demands. XRD and FTIR demonstrated that the addition of DA promoted the conversion of dicalcium phosphate dehydrate (DCPD).SEM found that there were more platy structure, lots of nubbly crystals and less porosity in optimal combination CPC compared with CPC-Blank. Cumulative release of DA from CPC was 29.7% and the pH values of immersion solution were safe for human body during in vitro degradation.%本论文研究含儿茶酚的多巴胺对磷酸钙骨水泥(calcium phosphate cement,CPC)的理化性能和体外降解的影响.将多巴胺溶于Tris-HCl缓冲液于空气中氧化2d,作为液相与固相粉末混合成型.选取多巴胺浓度、液固比、pH值三因素,通过正交试验选取最

  1. 21 CFR 582.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  2. 21 CFR 182.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  3. 21 CFR 582.5217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  4. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility.

    Science.gov (United States)

    Ko, Chia-Ling; Chen, Jian-Chih; Hung, Chun-Cheng; Wang, Jen-Chyan; Tien, Yin-Chun; Chen, Wen-Cheng

    2014-06-01

    In this study, a calcium phosphate cement was developed using tetracalcium phosphate and surface-modified dicalcium phosphate anhydrous (DCPA). This developed injectable bone graft substitute can be molded to the shape of the bone cavity and set in situ through the piping system that has an adequate mechanical strength, non-dispersibility, and biocompatibility. The materials were based on the modified DCPA compositions of calcium phosphate cement (CPC), where the phase ratio of the surface-modified DCPA is higher than that of the conventional CPC for forming dicalcium phosphate (DCP)-rich cement. The composition and morphology of several calcium phosphate cement specimens during setting were analyzed via X-ray diffractometry and transmission electron microscopy coupled with an energy dispersive spectroscopy system. The compressive strength of DCP-rich CPCs was greater than 30MPa after 24h of immersion in vitro. The reaction of the CPCs produced steady final biphasic products of DCPs with apatite. The composites of calcium phosphate cements derived from tetracalcium phosphate mixed with surface-modified DCPA exhibited excellent mechanical properties, injectability, and interlocking forces between particles, and they also featured nondispersive behavior when immersed in a physiological solution.

  5. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; R N Yadav

    2000-02-01

    The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  6. Premixed calcium silicate cement for endodontic applications

    OpenAIRE

    Persson, Cecilia; Engqvist, Håkan

    2011-01-01

    Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and am...

  7. Gelatin combined with chitosan fiber affects the mechanical properties of calcium phosphate cement%明胶联合壳聚糖纤维对磷酸钙骨水泥力学性能的影响*☆

    Institute of Scientific and Technical Information of China (English)

    潘朝晖; 赵玉祥; 张俊国; 王大伟

    2013-01-01

      背景:已有多种纤维被用于提高磷酸钙骨水泥的强度及抗断裂性能。目的:了解明胶联合壳聚糖纤维对磷酸钙骨水泥力学性能的影响,寻找较为合适的配比。方法:采用2×4析因设计,将质量比为0(蒸馏水),5%的明胶,体积比为0,10%,30%和50%的壳聚糖纤维分别混入磷酸钙骨水泥,检测复合物的抗弯曲强度,扫描电子显微镜观察各组试样断口形态并进行电子能谱分析。结果与结论:各明胶组间抗弯强度差异有非常显著性意义(P <0.001);各体积比纤维间抗弯强度差异有非常显著性意义(P <0.001),其中5%明胶和30%壳聚糖纤维构成的复合物抗弯曲强度最大,达12.31 MPa。以蒸馏水为液相的磷酸钙骨水泥固化后,表面可见不规则颗粒,平均微孔直径小于5μm,添加明胶后颗粒似乎黏在一起,微孔直径与前者相似,但是数目少于前者。磷酸钙骨水泥-5%明胶-30%纤维复合物的断口扫描可见拔出纤维的表面黏附有大量颗粒,磷酸钙骨水泥-蒸馏水-30%纤维复合物拔出纤维表面的颗粒明显减少。表明明胶与壳聚糖纤维可提高磷酸钙骨水泥的抗弯曲强度,5%明胶和30%壳聚糖纤维为这种增强模式较为合适的比例。%BACKGROUND: A few of fibers have been used to reinforce the strength and fracture resistance of calcium phosphate cement.OBJECTIVE: To investigate the influence of gelatin combined with chitosan fiber on the mechanical properties of calcium phosphate cement and to look for a more appropriate ratio. METHODS: Comparisons and to look of chitosan fibers at volume fractions of 0, 10%, 30% and 50% together with distil ed water or gelatin at mass fraction of 5% respectively in their effects on flexural strength of cement were performed. 2×4 factorial design was adopted. Flexural strength of cement composite fractures was detected, and fractured surface morphology was observed by

  8. Study on rapid-setting calcium phosphate bone cement%快速固化型磷酸钙骨水泥的研究

    Institute of Scientific and Technical Information of China (English)

    杨洪; 王凯; 师明旭; 刘晓娜; 邓亚美

    2011-01-01

    The physical and chemical properties of tetracalcium phosphate ( TTCP)-Monocalcium phosphate monohydrate ( MCPM ) -β-Tricalaium phosphate (β-TCP) based bone cement are studied using simulated body fluid (SBF) as a chemical liquid. The results show that the compressive strength increases at first and then decreases with the increasing of liquid-solid ratio. When the liquid-solid ratio is 0. 445,it can reach the maximum strength(15. 23 Mpa). The setting reaction of CPC is rapid. When the liquid-solid ratio is 0. 594,the final time is 12 minites. The compressive strength gradually decreases with the increasing of soaking time. The obtained bone cements are characterized by XRD and SEM. The results find the occurrence of hydroxyapatite(HA) in all obtained crystals of setting reaction. However, there is no new crystal phase generated after soaking.%用模拟体液(simulated body fluid,SBF)作为固化液,对磷酸四钙(TTCP)+一水磷酸二氢钙(MCPM)+β-磷酸三钙(β -TCP)系骨水泥理化性质进行研究.结果表明,随液固比增大,抗压强度先增加后降低,当液固比为0.445时,抗压强度达到最大值15.23 MPa;骨水泥固化较快,液固比为0.594时,t_f为12 min;随着浸泡时间的增加抗压强度逐渐减小;X射线(XRD)和扫描电镜(SEM)分析结果显示,随液固比改变,固化反应结晶物均有羟基磷灰石(HA)相出现;浸泡后的骨水泥没有新物相产生.

  9. Biphasic calcium phosphate in periapical surgery

    OpenAIRE

    Suneelkumar, Chinni; Datta, Krithika; Manali R Srinivasan; Kumar, Sampath T

    2008-01-01

    Calcium phosphate ceramics like hydroxyapatite and β -tricalcium phosphate (β -TCP) possess mineral composition that closely resembles that of the bone. They can be good bone substitutes due to their excellent biocompatibility. Biphasic calcium phosphate is a bone substitute which is a mixture of hydroxyapatite and β -tricalcium phosphate in fixed ratios. Studies have demonstrated the osteoconductive potential of this composition. This paper highlights the clinical use of biphasic calcium pho...

  10. 可注射磷酸钙骨水泥的流变性能研究%Study on the Rheological Properties of Injectable Calcium Phosphate Cement

    Institute of Scientific and Technical Information of China (English)

    陈芳萍; 刘昌胜

    2012-01-01

    The influence of additives on the theological properties of injectable calcium phosphate cement (ICPC) was investigated with an advanced expansion system rheometer. During the measurement of steady rheological properties, the viscosity, shear stress, and thixotropy were detected. During dynamic oscillation testing, the viscoelastic response of the ICPC under forced oscillation and the internal structure were unvailled. The results indicated that the ICPC showed both plastic and thixotropic behavior with little effect by additives. The introduction of these water-soluble polymers improved the viscosity and thixotropy of the ICPC, which are conducive to the stability of the whole system. These additives improve the recoverability and stability of the ICPC network after being sheared, in which xanthan gum and chitosan were the most obvious. On this basis, the time to form a gel was assessed to be in the range of 2 563 ~ 2 600 s for xanthan gum-ICPC system. In addition, with the increasing of xanthan gum contents, the thixotropic loop area of ICPC enlarged, but the for- mation of network structure was not stable under high shear condition.%采用高级流变扩展系统研究了添加剂种类及其含量对可注射磷酸钙骨水泥(ICPC)流变特性的影响。采用稳态流动实验表征浆体的静态粘度,用触变环面积、应力降低率和屈服应力表征ICPC浆体的触变性,并进行动态频率扫描和动态时间扫描实验动态监测ICPC的粘、弹、塑性变化规律以及水化反应过程流变参数的依时性。结果表明:添加剂并不改变ICPC的粘弹性。水溶性高分子化合物的加入提高了ICPC的粘度和触变性,利于整个体系的稳定;添加剂不同程度上提高了ICPC剪切后的网络结构恢复能力和稳定性,尤其以黄原胶和几丁糖最为明显。在此基础上,评估了加入黄原胶后ICPC形成凝胶的时间,约为2563~2600s。此外,随着黄原胶含量的增加

  11. Sintering of calcium phosphate bioceramics.

    Science.gov (United States)

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful. PMID:23212081

  12. Reinforcement Strategies for Load-Bearing Calcium Phosphate Biocements

    Directory of Open Access Journals (Sweden)

    Martha Geffers

    2015-05-01

    Full Text Available Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement–hydrogel composites with largely unaffected application properties.

  13. Reaction kinetics of dual setting α-tricalcium phosphate cements.

    Science.gov (United States)

    Hurle, Katrin; Christel, Theresa; Gbureck, Uwe; Moseke, Claus; Neubauer, Juergen; Goetz-Neunhoeffer, Friedlinde

    2016-01-01

    Addition of ductile polymers to calcium-deficient hydroxyapatite (CDHA)-forming bone cements based on α-tricalcium phosphate (α-TCP) is a promising approach to improve the mechanical performance of α-TCP cements and extend their application to load-bearing defects, which is else impeded by the brittleness of the hardened cement. One suitable polymer is poly-(2-hydroxyethylmethacrylate) (p-HEMA), which forms during cement setting by radical polymerisation of the monomer. In this study the hydration kinetics and the mechanical performance of α-TCP cements modified with addition of different HEMA concentrations (0-50 wt% in the cement liquid) was investigated by quantitative in situ XRD and four-point bending tests. Morphology of CDHA crystals was monitored by scanning electron microscopy. The hydration of α-TCP to CDHA was increasingly impeded and the visible crystal size of CDHA increasingly reduced with increasing HEMA concentration. Modification of the cements by adding 50 wt% HEMA to the cement liquid changed the brittle performance of the hardened cement to a pseudoplastic behaviour, reduced the flexural modulus and increased the work of fracture, while lower HEMA concentrations had no significant effect on these parameters. In such a composite, the extent of CDHA formation was considerably reduced (34.0 ± 1.8 wt% CDHA with 50 % HEMA compared to 54.1 ± 2.4 wt% CDHA in the reference formed after 48 h), while the general reaction kinetics were not changed. In conclusion, while the extent of CDHA formation was decreased, the mechanical properties were noticeably improved by addition of HEMA. Hence, α-TCP/HEMA composites might be suitable for application in some load-bearing defects and have adequate properties for mechanical treatment after implantation, like insertion of screws. PMID:26610924

  14. 21 CFR 182.8217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  15. Effects of Nickel on Calcium Phosphate Formation

    Science.gov (United States)

    Guerra-López, J.; González, R.; Gómez, A.; Pomés, R.; Punte, G.; Della Védova, C. O.

    2000-05-01

    We have investigated the effect of nickel on calcium phosphate formation from aqueous solutions. The calcium phosphates prepared under different reaction conditions (pH, temperature, and nickel concentration) were characterized by X-ray diffraction, FTIR spectroscopy, and chemical analysis. The apatite compounds were also studied thermogravimetrically. From the combined results of the techniques employed we have determined that nickel favors the formation of brushite and amorphous calcium phosphate. We have found, as well, that the presence of nickel in the solution inhibits calcium hydroxyapatite (CaHAP) and octacalcium phosphate formation. However in the synthesis performed at basic pH and 95°C the apatitic phase (HAP) could be obtained. The present results suggest that the presence of nickel may modify the precipitation of oral calcium phosphate.

  16. Calcium phosphate bone cement containing ABK and PLLA. Sustained release of ABK, the BMD of the femur in rats, and histological examination

    Energy Technology Data Exchange (ETDEWEB)

    Kusaka, T.; Tanaka, A.; Sasaki, S.; Takano, I.; Tahara, Y.; Ishii, Y. [Kyorin Univ., Tokyo (Japan). Dept. of Orhtopaedic Surgery

    2001-07-01

    Bone cement was prepared by mixing CPC95 (Mitsubishi Material Co., Ltd.), ABK, and PLLA at a ratio of 14 : 1 : 2. In vitro, Antibiotic sustained release tests were performed by the total amount exchange method. In animal experiments, the bone cement was infused into the right femur of 18-month-old female SD rats. After 1, 2, 4, or 6 months, the BMD was determined by DXA in the bilateral femoral bones. In addition, hard tissue specimens were prepared, and the state of bone formation was observed. The release of the antibiotic was 1.73 {mu}g/ml until 18 days after administration, maintaining a concentration over the MIC80 for MRSA. In the animal experiments, the BMD significantly increased after 2 - 4 months. In the hard tissue specimens, direct binding on the bone-cement interface and bone formation in the cement were observed after 1 month. (orig.)

  17. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids

    Science.gov (United States)

    Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna

    2011-05-01

    Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.

  18. A safer disposal of hazardous phosphate coating sludge by formation of an amorphous calcium phosphate matrix.

    Science.gov (United States)

    Navarro-Blasco, I; Duran, A; Pérez-Nicolás, M; Fernández, J M; Sirera, R; Alvarez, J I

    2015-08-15

    Phosphate coating hazardous wastes originated from the automotive industry were efficiently encapsulated by an acid-base reaction between phosphates present in the sludge and calcium aluminate cement, yielding very inert and stable monolithic blocks of amorphous calcium phosphate (ACP). Two different compositions of industrial sludge were characterized and loaded in ratios ranging from 10 to 50 wt.%. Setting times and compressive strengths were recorded to establish the feasibility of this method to achieve a good handling and a safe landfilling of these samples. Short solidification periods were found and leaching tests showed an excellent retention for toxic metals (Zn, Ni, Cu, Cr and Mn) and for organic matter. Retentions over 99.9% for Zn and Mn were observed even for loadings as high as 50 wt.% of the wastes. The formation of ACP phase of low porosity and high stability accounted for the effective immobilization of the hazardous components of the wastes. PMID:26024992

  19. Study on silicate-calcium phosphate composite bone cement modified by sodium carbonate solution%碳酸钠液相改性硅-磷酸钙复合骨水泥研究

    Institute of Scientific and Technical Information of China (English)

    李青林; 杨帮成

    2014-01-01

    以质量分数70%的硅酸三钙(Ca3 SiO5,C3 S)和30%磷酸氢钙(CaHPO4·2H2 O,DCPD)复合得到的 DCP30粉体材料为固相,以不同浓度碳酸钠溶液为液相,得到碳酸钠改性骨水泥材料。使用 X 射线衍射(XRD)、扫描电镜(SEM)、万能材料试验机等手段对不同浓度改性材料进行表征。结果显示:添加碳酸钠液相,骨水泥初、终凝时间分别缩短至16和55 min;调控碳酸钠液相浓度,可以实现短期抗压强度优化;使用碳酸钠后,固化自发生成羟基磷灰石(HA)。浸泡模拟体液(SBF)7天,材料表面覆盖 HA 沉积层,生物活性优越。碳酸钠液相改性硅-磷酸钙复合骨水泥体系的水化性能、短期力学性能以及生物活性均优于Ca3 SiO5水泥和未改性硅-磷酸钙复合骨水泥,是一种良好的生物活性骨修复材料。%Sodium carbonate solution modified bone cement materials have been prepared using sodium carbonate solution with dif-ferent concentration as liquid phase and DCP30 powder material obtained by 70% mass fraction tricalcium silicate (Ca3 SiO5 ,C3 S) and 30% dicalcium phosphate (CaHPO4 ·2H2 O,DCPD)as the solid phase.The materials were characterized by the means of X-ray diffraction (XRD),scanning electron microscope (SEM)and mechanical test.The results show that the initial and final set-ting time of bone cement is reduced to 16 and 55 min by the addition of sodium carbonate solution.The short-term mechanical strength can be optimized by controlling the concentration of sodium carbonate solution.Hydroxyapatite (HA)can spontaneously form after the use of sodium carbonate solution.HA forms on the surface of bone-cement after immersion in SBF for 7 days,indi-cating its good bioactivity.The modified system shows better hydraulic property,bioactivity and mechanical strength than Ca3 SiO5 cement and unmodifiled silicate-calcium phosphate composite bone cement,suggesting the new system is a

  20. Use of a strontium-enriched calcium phosphate cement in accelerating the healing of soft-tissue tendon graft within the bone tunnel in a rabbit model of anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Kuang, G M; Yau, W P; Lu, W W; Chiu, K Y

    2013-07-01

    We investigated whether strontium-enriched calcium phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results in accelerated healing within the bone tunnel in reconstruction of the anterior cruciate ligament (ACL). A total of 30 single-bundle ACL reconstructions using tendo Achillis allograft were performed in 15 rabbits. The graft on the tested limb was treated with Sr-CPC, whereas that on the contralateral limb was untreated and served as a control. At timepoints three, six, nine, 12 and 24 weeks after surgery, three animals were killed for histological examination. At six weeks, the graft-bone interface in the control group was filled in with fibrovascular tissue. However, the gap in the Sr-CPC group had already been completely filled in with new bone, and there was evidence of the early formation of Sharpey fibres. At 24 weeks, remodelling into a normal ACL-bone-like insertion was found in the Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft leads to accelerated graft healing within the bone tunnel in a rabbit model of ACL reconstruction using Achilles tendon allograft.

  1. Raloxifene combined with calcium phosphate cement for repair of rabbit mandibular defects%磷酸钙人工骨联合雷洛昔芬修复兔下颌骨缺损

    Institute of Scientific and Technical Information of China (English)

    关键; 徐峰

    2014-01-01

    背景:雷洛昔芬是第3代选择性雌激素受体调节剂,可减少骨量的丢失,增加骨组织中的矿物质含量,降低骨折风险。目的:观察雷洛昔芬结合自固化磷酸钙人工骨修复兔下颌骨缺损的效果。方法:在36只新西兰大白兔左侧下颌骨制作8 mm×4 mm×3 mm的缺损模型,随机分组,实验组12只植入自固化磷酸钙人工骨,并给予雷洛昔芬7.5 mg/(kg•d);药物组12只给予雷洛昔芬7.5 mg/(kg•d);人工骨组12只植入自固化磷酸钙人工骨。分别于治疗4,8,12周取下颌骨标本,免疫组织化学法观察骨形态发生蛋白2的表达,激光共聚焦显微镜观察转化生长因子β的表达。结果与结论:实验组治疗后4,8周时的骨形态发生蛋白2免疫组织化学染色阳性细胞数明显高于药物组与人工骨组,治疗后12周时实验组骨改建基本完成,骨形态发生蛋白2免疫组织化学染色阳性细胞数目低于其他两组。实验组转化生长因子β免疫荧光染色表达为逐步升高,到第8周时达到峰值,而药物组和人工骨组的转化生长因子β免疫荧光表达从4-12周一直呈上升状态,趋近于最高峰。说明雷洛昔芬能够促进自固化磷酸钙人工骨在骨缺损过程中骨形态发生蛋白的早期表达及早期骨痂的形成,加快骨缺损修复。%BACKGROUND:Raloxifene is the third generation of selective estrogen receptor modulators, which can decrease bone loss, increase bone mineral content, and reduce fracture risk. OBJECTIVE: To study the effects of raloxifene combined with self-setting calcium phosphate cement on the repair of rabbit mandibular defects. METHODS:Totaly 36 New Zealand white rabbits were selected to prepare 8 mm×4 mm×3 mm mandibular defect models, and then randomized equaly into experimental group (raloxifene, 7.5 mg/kg per day, combined with self-setting calcium phosphate cement), drug group (raloxifene, 7.5 mg/kg per

  2. [An experimental study on a slow-release complex with rifampicin-polylactic-co-glycolic acid-calciumphosphate cement].

    Science.gov (United States)

    Wu, Jianhuang; Ding, Zhou; Lei, Qing; Li, Miao; Liang, Yan; Lu, Tao

    2016-09-28

    目的:制备利福平(rifampicin,RFP)-聚乳酸-羟基乙酸(polylactic-co-glycolic acid,PLGA)-磷酸钙骨水泥(calcium phosphate cement,CPC)缓释复合体(RFP-PLGA-CPC复合体),并研究其理化性质及体外释药性能。方法:采用乳化-溶剂挥发法制备RFP-PLGA缓释微球。实验分为CPC组、包埋了RFP的CPC组(RFP-CPC组)、载有RFP的PLGA缓释微球与自固化CPC复合体组(RFP-PLGA-CPC复合体组)。测定3组材料的凝固时间﹑孔隙率。通过体外药物释放实验观察释药前后的抗压强度、断面形态的变化以及体外释药情况。结果:CPC组的凝固时间最短,RFP-PLGA-CPC复合体组的凝固时间最长。CPC组的孔隙率同RFP-CPC组比较,差异有统计学意义(P<0.05);CPC组和RFP-CPC组的孔隙率与RFP-PLGA-CPC复合体组比较,差异均有统计学意义(均P<0.01)。RFP-PLGA-CPC复合体组的抗压强度与CPC组比较,差异有统计学意义(P<0.01);而RFP-CPC组和CPC组之间的抗压强度随着时间的变化逐渐表现出显著性差异(3 d: P<0.05;30和60 d:P<0.01)。CPC组在降解过程中的抗压强度的变化不大。PLGA微球的大小均一,粒径基本在100~150 μm之间,微球的形态呈现出球体或是类球体,微球的表面圆润光滑,无杂质附着; CPC组的断面空隙在浸泡3 d直至60 d都没有明显变化;而RFP-CPC组的微结构变化亦不大,其断面均是小的微粒形成的;RFP-PLGA-CPC复合体组断面的孔隙明显增多,一直到60 d时PLGA微球逐渐消失,剩下空洞。RFP-PLGA-CPC复合体组无明显短时间内药物大量释放现象,60 d累计释药率达到近95%,将该复合体释药行为进行线性拟合,发现药物以恒速进行局部释放,符合零级动力学方程F=0.168×t。结论:RFP-PLGA-CPC复合体孔隙率显著高于CPC,能够持续缓慢释放有效抗结核药物,并能较长时间维持一定的力学强度。.

  3. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  4. The comparison between sulfate salt weathering of portland cement paste and calcium sulfoaluminate cement paste

    OpenAIRE

    Liu, Zanqun; Deng, Dehua; De Schutter, Geert

    2015-01-01

    In this paper, the damage performances of sulfate salt weathering of Portland cement paste and calcium sulfoaluminate (CSA) cement paste were compared according to authors' previous studies. It was found that the evaporation zone of speciments partially immersed in 10% Na2SO4 solution were both severely deteriorated for Portland cement and CSA cement. However, the differences were more significant: (1) the CSA cement paste were damaged just after 7 days exposure compared to the 5 months expos...

  5. 活性CPC/BMSCs用于牙槽嵴保存的实验研究%Active Porous Calcium Phosphate Cement with Bone Marrow Stromal Cells in Alveolar Ridge Preservation

    Institute of Scientific and Technical Information of China (English)

    谭鸾君; 王磊; 黄远亮

    2011-01-01

    目的:研究体外培养的毕格犬骨髓基质细胞(bone marrow stromal cells,BMSCs)与活性多孔磷酸钙(calcium phosphate cement,CPC)复合物应用于牙槽嵴保存的可行性.方法:将体外培养的毕格犬第2代BMSCs接种于活性CPC上,形成活性CPC/BMSCs复合物.拔除4只毕格犬双侧下颌骨的第二、三、四前磨牙,随机选取一侧植入活性CPC/BMSCs,另一侧分别为空白对照、自体骨、活性CPC.分别于术后第4周和第10周取材,硬组织切片和CT扫描分析牙槽嵴的高度变化.结果:第10周时,活性CPC/BMSCs组牙槽嵴高度的减少值较对侧的CPC组、自体骨组、空白对照组牙槽嵴高度的减少值低(P<0.05),差别有统计学意义.硬组织切片显示第10周时活性CPC/BMSCs组具有良好的新骨形成.结论:活性CPC/BMSCs有利于牙槽嵴保存.%Objective: To examine the efficancy of active porous calcium phosphate cement together with bone marrow stromal cells (BMSCs) in alveolar ridge preservation. Methods: The 2nd,3rd,4th premolars in both sides of mandible of 4 beagle dogs were extracted and 24 extraction wounds were created. Randomly, one side of the mandible wounds were implanted by BMSCs with the growth factor/porous CPC composite. The opposite side of wounds were implanted by CPC,autologus bone, or keep void respectively. After four and ten weeks, the beagles were sacrificed. The gross specimens were examined, CT sean images, and mineralized specimen preparations were prepared. Results: CT analysis showed that alveolar ridge in each group experienced some degree of alveolar absorption. After ten weeks, the alveolar ridge height reduction values in active-CPC group was smaller than the CPC group, autogenous bone group, and blank group respectively (P<0.05). The difference has statistical significance. Tissue slides also revealed an effective osteogensis in those wounds implanted with active-Cpc. Conclusions: The BMSCs/active CPC complex is favorable for

  6. Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry

    International Nuclear Information System (INIS)

    Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL-1. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. C by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.

  7. Three-dimensionally Perforated Calcium Phosphate Ceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Porous calcium phosphate ceramics were produced by compression molding using a special mold followed by sintering. The porous calcium phosphate ceramics have three-dimensional and penetrated open pores380-400μm in diameter spaced at intervals of 200μm. The layers of the linear penetration pores alternately lay perpendicular to pore direction. The porosity was 59%-65% . The Ca/P molar ratios of the porous calcium phosphate ceramics range from 1.5 to 1.85. A binder containing methyl cellulose was most effective for preparing the powder compact among vinyl acetate, polyvinyl alcohol, starch, stearic acid, methyl cellulose and their mixtures. Stainless steel, polystyrene, nylon and bamboo were used as the long columnar male dies for the penetrated open pores. When polystyrene, nylon and bamboo were used as the long columnar male dies, the dies were burned out during the sintering process. Using stainless steel as the male dies with the removal of the dies before heat treatment resulted in a higher level of densification of the calcium phosphate ceramic.

  8. The stability mechanisms of an injectable calcium phosphate ceramic suspension.

    OpenAIRE

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique,; Weiss, Pierre

    2010-01-01

    International audience Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of "ready to use" injectable biomat...

  9. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  10. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  11. Apatite precipitation on a novel fast-setting calcium silicate cement containing fluoride

    Science.gov (United States)

    Ranjkesh, Bahram; Chevallier, Jacques; Salehi, Hamideh; Cuisinier, Frédéric; Isidor, Flemming; Løvschall, Henrik

    2016-01-01

    Abstract Aim: Calcium silicate cements are widely used in endodontics. Novel fast-setting calcium silicate cement with fluoride (Protooth) has been developed for potential applications in teeth crowns including cavity lining and cementation. Objective: To evaluate the surface apatite-forming ability of Protooth compositions as a function of fluoride content and immersion time in phosphate-buffered saline (PBS). Material and methods: Three cement compositions were tested: Protooth (3.5% fluoride and 10% radiocontrast), ultrafast Protooth (3.5% fluoride and 20% radiocontrast), and high fluoride Protooth (15% fluoride and 25% radiocontrast). Powders were cap-mixed with liquid, filled to the molds and immersed in PBS. Scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy were used to characterize the precipitations morphology and composition after 1, 7, 28, and 56 days. Apatite/belite Raman peak height indicated the apatite thickness. Results: Spherical calcium phosphate precipitations with acicular crystallites were formed after 1-day immersion in PBS and Raman spectra disclosed the phosphate band at 965 cm−1, supporting the apatite formation over Protooth compositions. The apatite deposition continued and more voluminous precipitations were observed after 56 days over the surface of all cements. Raman bands suggested the formation of β-type carbonated apatite over Protooth compositions. High fluoride Protooth showed the most compact deposition with significantly higher apatite/belite ratio compared to Protooth and ultrafast Protooth after 28 and 56 days. Conclusions: Calcium phosphate precipitations (apatite) were formed over Protooth compositions after immersion in PBS with increasing apatite formation as a function of time. High fluoride Protooth exhibited thicker apatite deposition. PMID:27335901

  12. Phase transformations, microstructure formation and in vitro osteoblast response in calcium silicate/brushite cement composites.

    Science.gov (United States)

    Sopcak, T; Medvecky, L; Giretova, M; Kovalcikova, A; Stulajterova, R; Durisin, J

    2016-01-01

    Self-setting simple calcium silicate/brushite (B) biocements with various Ca/P ratios were prepared by mutual mixing of both monocalcium silicate hydrate (CSH) or β-wollastonite (woll) powders with B and the addition of 2 wt% NaH2PO4 solution as a hardening liquid. The phase composition of the final composites and the texture of the surface calcium phosphate/silica layer were controlled by the starting Ca/P ratio in composites and the pH during setting. It was verified that the presence of continuous bone-like calcium phosphate coating on the surface of the samples was not essential for in vitro osteoblast proliferation. The nanocrystalline calcium deficient hydroxyapatite and amorphous silica were found as the main setting products in composite mixtures with a Ca/P ratio close to the region of the formation of deficient hydroxyapatite-like calcium phosphates. No CSH phase with a lower Ca/Si ratio was identified after transformation. The results confirmed a small effect of the monocalcium silicate addition on the compressive strength (CS) of cements up to 30 wt% (around 20-25 MPa) and a significant rise of the value in 50 woll/B cement (65 MPa). The final setting times of the cement composites varied between 5 and 43 min depending on the P/L ratio and the type of monocalcium silicate phase in the cement mixture. 10CSH/B and 50 woll/B cements with different textures but free of both the needle-like and perpendicularly-oriented hydroxyapatite particles on the surface of the samples had low cytotoxicity. PMID:27509265

  13. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem.

    Science.gov (United States)

    Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2013-10-01

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions.

  14. Influence of the calcium sulfate source on the rheological behaviour of calcium sulfoaluminate cement pastes

    OpenAIRE

    Santacruz, Isabel; García-Maté, Marta; G. Aranda, Miguel Ángel; De la Torre, Ángeles G.

    2013-01-01

    Calcium sulfoaluminate (CSA) cements are receiving increasing attention since their manufacture produces much less CO2 than ordinary Portland cement (OPC) [1]. In addition, they show interesting properties such as high early-age strengths, short setting times and impermeability. The main uses of these CSA cements are for quick repairs and pre-cast products or floor concrete applications. They are prepared by mixing the clinker with different amounts of a calcium sulfate set regulator such as ...

  15. Effect of distribution pattern of calcium polyphosphate fiber on mechanical properties of calcium phosphate cement%聚磷酸钙纤维分布形态对磷酸盐骨水泥力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    史雪婷; 徐立新; 杨云龙

    2013-01-01

    制备CPP/(α-TCP/n-HAP)骨水泥复合材料,观察并分析乱向及准单向分布的CPP纤维长度和含量对骨水泥凝固时间及力学性能的影响.结果显示:长度为3 mm、质量分数为10%的CPP纤维准单向分布时骨水泥试样抗压强度和抗弯强度分别比CPP纤维乱向分布时提高18.7%和34.5%;扫描电镜显示,CPP在CPC骨水泥基体中分布均匀,结合性能好.准单向分布的CPP纤维对CPC骨水泥有更好的增强、增韧效果.%CPP/(α-TCP/n-HAP) bone cement composites were prepared and the effect of the length and content of CPP fiber distributed quasi-unidirectionally and randomly in bone cement on its hardening time and mechanical properties were observed and analysed. The result showed that compressive and bending strength of bone cement with CPP fiber distributed quasi-unidirectionally in it would be enhanced by 18. 7% and 34. 5% more than those with random distribution of the fiber when CPP fiber length was 3 mm and content was 10%. Scanning electron microscope showed that CPP fibers were distributed uniformly in CPC bone cement base and exhibited good combining performance. CPP fiber distributed quasi-unidirectionally in bone cement exhibited stronger enhanced strength and toughness than CPC bone cement.

  16. 磷酸钙骨水泥对股骨颈骨折内固定辅强作用的组织学评价%Histological evaluation of calcium phosphate cement in augmentation of femoral neck fracture fixation

    Institute of Scientific and Technical Information of China (English)

    张伟; 赵军; 胡春明; 李玉林; 森川圭造; 杉本友宏; 佐藤啓二; 丹羽滋郎; 徐莘香

    2006-01-01

    宿主骨的改变.主要观察指标:术后不同时间各组骨水泥周围新骨形成情况及宿主骨的变化.结果:实验选用45只成熟中国绵羊,全部进入结果分析.术后不同时间各组骨水泥周围新骨形成情况及宿主骨的变化:①非辅强组:术后3周在螺钉周围产生少量纤维组织,且宿主骨骨床有显微破坏,但显微破坏在术后6及12周时可见修复.②磷酸钙骨水泥辅强组:术后3,6,12周磷酸钙骨水泥充满于螺钉和宿主骨之间,而且磷酸钙骨水泥表面有新骨形成,在新骨和磷酸钙骨水泥之间没有纤维组织介入.在术后12周可见大量新骨形成,且见许多骨小管.③聚甲基丙烯酸甲酯辅强组:术后3周在骨床与聚甲基丙烯酸甲酯之间产生大量纤维组织,可见明显骨吸收,术后6及12周尤为明显.结论:由于磷酸钙骨水泥具有良好的组织相容性、骨传导性及自身改建能力,因此对股骨颈骨折提供了长期有益的辅强作用.%BACKGROUND: Structural characteristics of calcium phosphate cement (CPC) offer substantial mechanical integrity for fracture stabilization and fixation during the healing process, with particular applications in mechanically compromised osteoporotic bone.OBJECTIVE: To investigate the mechanism of the augmentation to fixation with CPC, comparing with screw fixation augmented by polymenthymethacrylate (PMMA) bone cement or with unaugmented screw fixation for femoral neck fractures in sheep by histological evaluation.DESIGN: Randomized controlled, duplicated observation and opening study.SETTING: Departments of Orthopeadics and General Surgery, the First Hospital of Jilin University; Department of Pathology, Basic Medical College of Jilin University; Department of Plastic Surgery, Aichi Medical University of Japan.MATERIALS: The experiment was completed in the Taonan Municipal Hospital of Jilin, Jilin University and Aichi Medical University of Japan from January 1999 to January 2004. A

  17. Calcium phosphate cement II induces osteogenesis and repairs tendon-bone interface injury:a biomechanical analysis%自固化磷酸钙人工骨Ⅱ型诱导成骨及修复腱骨界面损伤的生物力学分析

    Institute of Scientific and Technical Information of China (English)

    李小飞; 谢文瑾; 盛路新; 袁西

    2015-01-01

    背景:自固化磷酸钙人工骨Ⅱ型与重组人骨形态发生蛋白均有一定的成骨诱导作用,存在修复腱骨界面损伤的可能。目的:探讨自固化磷酸钙人工骨Ⅱ型的成骨诱导作用及修复腱骨界面损伤生物力学情况。方法:35只成年健康的新西兰白兔,随机选取5只,处死后取双侧肩关节腱骨界面标本作为正常对照。剩余30只构建腱骨界面损伤模型后,随机等分为实验组和模型组,模型组不填塞任何药物,实验组填塞自固化磷酸钙人工骨Ⅱ型进行修复。结果与结论:填塞自固化磷酸钙人工骨Ⅱ型后,兔损伤腱骨界面明显恢复,且随时间的延长,修复效果更佳,骨形态发生蛋白2表达水平也随之增加,损伤腱骨界面最大抗拉强度以及最大刚度明显增加。表明利用自固化磷酸钙人工骨Ⅱ型复合重组人骨形态发生蛋白对腱骨界面损伤进行修复具有良好的成骨诱导作用,可以促进损伤的修复。%BACKGROUND:Both calcium phosphate cement II and recombinant human bone morphogenetic protein have certain osteoinductive effects, which have the possibility of repairing tendon-bone interface injury. OBJECTIVE: To investigate the osteoinductive effect of calcium phosphate cement II and its biomechanics analysis of repairing tendon-bone interface injury. METHODS:Five out of 35 adult healthy New Zealand white rabbits were randomly selected and their bilateral shoulder joint tendon-bone interface specimens were taken as normal control group after being sacrificed. The remaining 30 rabbits were used to make animal models of tendon-bone interface injury and then randomly divided into experimental and model groups. Rabbits in the model group had no treatment, and those in the experimental group were treated with calcium phosphate cement II. RESULTS AND CONCLUSION: After repair with calcium phosphate cement II, the injured tendon-bone interface of rabbits was

  18. Hybrid calcium phosphate coatings for implants

    Science.gov (United States)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  19. Seed selections for crystallization of calcium phosphate for phosphorus recovery

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Dietfried DONNERT; Ute BERG; Peter G. WEIDLER; Rolf NUEESCH

    2007-01-01

    Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.

  20. Calcium phosphate mineralization is widely applied in crustacean mandibles

    OpenAIRE

    Shmuel Bentov; Aflalo, Eliahu D.; Jenny Tynyakov; Lilah Glazer; Amir Sagi

    2016-01-01

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates speciali...

  1. Rheological and hydration characterization of calcium sulfoaluminate cement pastes

    OpenAIRE

    García-Maté, Marta; Santacruz, Isabel; de la Torre, Ángeles G.; León-Reina, Laura; Aranda, Miguel A. G.

    2012-01-01

    Calcium sulfoaluminate (CSA) cements are currently receiving a lot of attention because their manufacture produces less CO2 than ordinary Portland cement (OPC). However, it is essential to understand all parameters which may affect the hydration processes. This work deals with the study of the effect of several parameters, such as superplasticizer (SP), gypsum contents (10, 20 and 30 wt%) and w/c ratio (0.4 and 0.5), on the properties of CSA pastes during early hydration. This characteriza...

  2. Hydration of Portland cement with additions of calcium sulfoaluminates

    Energy Technology Data Exchange (ETDEWEB)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hori, Akihiro [DENKA Chemicals GmbH, Wehrhahn-Center, Cantadorstr. 3, D-40211 Duesseldorf (Germany); Higuchi, Takayuki [Denki Kagaku Kogyo Kabushiki Kaisha (DENKA), Omi, Itoigawa, Niigata, 949-0393 (Japan); Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  3. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  4. Theoretical and experimental approach to test the cohesion of calcium phosphate pastes

    Directory of Open Access Journals (Sweden)

    M Bohner

    2006-08-01

    Full Text Available Recent studies have revealed that the ability of a calcium phosphate cement paste to harden in a physiological environment without desintegrating into small particles might be a key property to ensure a safe and reliable clinical use of calcium phosphate cements. However, this property called cohesion is not well understood and has not been studied extensively. The goal of the present study was to better understand which factors affect the cohesion of a calcium phosphate paste using the combination of a theoretical and experimental approach. In the theoretical approach, factors expected to influence the paste cohesion such as Van der Waals forces, electrostatic and steric interactions, as well as osmotic effects were listed and discussed. In the experimental approach, a new method to measure the cohesion of a non-setting calcium phosphate paste was presented and used to assess the effects of various factors on this property. The new method allowed a continuous measurement of cohesion and gave reproducible results. The experimental results confirmed the theoretical predictions: an increase of the liquid-to-powder ratio of the paste and of the powder particle size, as well as the addition of citrate ions and in limited cases dissolved xanthan polymer chains reduced the paste cohesion.

  5. Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling

    International Nuclear Information System (INIS)

    Calcium sulfoaluminate cements (CSA) are a promising low-CO2 alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH)3 until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additional hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.

  6. Pathogenic Mineralization of Calcium Phosphate on Human Heart Valves

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    When calcium phosphate forms in soft tissues such as blood vessels and heart valves, it causes disease. The abnormal formation of calcium phosphate is called pathogenic mineralization or pathogenic calcification. Cases of rheumatic heart disease (RHD) always occur with fibrotic and calcified tissue of heart valve. In this article, samples taken from calcified human heart valves were studied. The characterization was performed by scanning electronic micrascope, X-ray Diffraction and transmission electron microscopy with selective diffraction patterns. It is found for the first time that calcium phosphate grains existing in the calcified human heart valves contain octacalcium phosphate (OCP).

  7. Preparation and Characterization of Porous Calcium Phosphate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    Honglian Dai; Xinyu Wang; Yinchao Han; Xin Jiang; Shipu Li

    2011-01-01

    β-tricalcium phosphate (β-TCP) powder and Na2O-CaO-MgO-P2O5 glass binder were synthesized and mixed, and then the biodegradable porous calcium phosphate ceramics were successfully prepared by foaming and sintering at 850℃. The as-prepared ceramics possess a high porosity with partial three-dimension interconnected macro- and micro-pores. As in vitro experiment testified, the calcium phosphate ceramics (CPCs) has good degradability.

  8. 磷酸钙骨水泥对颈椎前路螺钉置入体强化作用的生物力学分析%Biomechanical analysis of calcium phosphate cement in augmentation of anterior cervical screw

    Institute of Scientific and Technical Information of China (English)

    陈跃平; 朱勇; 张超

    2008-01-01

    BACKGROUND: Calcium phosphate cement (CPC) can strengthen the immediate and early fixation of screws by improving the quality of bone and the surface of screws. OBJECTIVE: To evaluate the biomechanical efficacy of CPC in augmentation of anterior cervical unicortical screw fixation. DESIGN: A study of controlled observation. SETTING: Department of Orthopaedics of First Xiangya Hospital of Xiangya Medical College of Central South University. MATERIALS: Experiments were performed at the Room of Electromechanical Tensile Property of College of Material Science and Engineering of Central South University from September 2003 to January 2004. Anterior cervical unicortical screw (pure titanium) was produced by Zhangjiagang Xinda Medical Equipment Co., Ltd. Injectable calcium phosphate cement was produced by Shanghai Ruibang Biomaterial Co., Ltd. Axial pull-out sleeve was produced by Machine Manufacture Center of Central South University. METHODS: ①Sixteen cervical vertebrae (C3-6) of four fresh young man cadavers with fine results in bone mineral density (BMD) test and sixteen cervical vertebrae (C3-6) of 4 fresh old man cadavers with poor results in BMD test were selected. Specimens were provided by Department of Anatomy of Xiangya Medical College of Central South University. Mortal remains of the deceased were donated according to the will of the dead. Informed consents were obtained from their family members. Twelve vertebrae were selected in each group for three tests. Six vertebrae were selected in pull-out test, and six vertebrae in cyclic bending test and shearing test. Screw holes, which were 8 mm apart from the midline and 5°inclined centrally, were made on both sides in the front part of the vertebra. Cortical bone was not penetrated. ②A screw was randomly inserted into one side hole, which was considered to be a control group. Pull-out test was performed on material testing machine at 5 mm/min. The screw hole was filled with CPC (0.10-0.15 mL) to repair the

  9. Biomechanical changes of injured rabbit tendon-to-bone interface during repair with calcium phosphate cement-II%自固化磷酸钙人工骨Ⅱ修复兔腱-骨损伤的生物力学变化

    Institute of Scientific and Technical Information of China (English)

    张喜海; 黄树华; 李森; 鲁晓波

    2014-01-01

    背景:磷酸钙人工骨与重组人骨形态发生蛋白2在实验中均有成骨诱导作用,有修复腱骨界面损伤的可能。目的:评估自固化磷酸钙人工骨Ⅱ(含重组人骨形态发生蛋白2)修复兔肩袖腱-骨界面损伤后的生物力学变化。方法:取27只成年健康家兔,其中3只直接取双侧肩关节腱-骨界面标本作为正常组,余下的24只家兔双侧肩关节接受兔肩袖急性断裂腱-骨止点重建手术,术中实验组12只填塞自固化磷酸钙人工骨Ⅱ,对照组12只不填塞任何药物。分别于术后2,4,8周采集标本行生物力学测试。结果与结论:实验组各时间点肩袖腱-骨界面最大抗拉强度均高于对照组(P <0.001),但低于正常组(P <0.001);实验组术后8周肩袖腱-骨界面刚度高于对照组(P <0.001),但低于正常组(P <0.001)。表明自固化磷酸钙人工骨Ⅱ可以在术后早期提高兔腱-骨界面的最大抗拉强度和刚度,增强腱-骨界面结合力,促进腱骨界面愈合。%BACKGROUND:Calcium phosphate cement and recombinant human bone morphogenetic protein-2 both have bone osteoinductivity. Maybe both of them could promote repair of tendon-to-bone interface damage. OBJECTIVE:To evaluate the effect of calcium phosphate cement-II containing recombinant human bone morphogenetic protein-2 on tendon-to-bone interface healing after rotator cuff injury . METHODS: Twenty-seven adult healthy rabbits were enroled in the study. The tendon-to-bone interface of the bilateral shoulder joints was taken from three rabbits as normal group, and the bilateral shoulder joints of the other 24 rabbits were subjected to acute rupture of the rotator cuff and tendon-to-bone reconstructive surgery as experimental group (n=12) and control group (n=12). Rabbits in the experimental group were treated with calcium phosphate cement-II, while those in the control group treated with nothing. Specimens were colected at 2, 4, 8

  10. Biomechanics study of interal fixation with hollow compression screw and composite calcium phosphate cement of osteoporotic femoral neck%复合磷酸钙骨水泥强化骨质疏松股骨颈加压空心螺钉的生物力学研究

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To evaluate the biomechanics of hollow compression screw in the osteoporotic femoral neck with composite calcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into two groups: augmentation group and non augmentation group.CCPC was used in augmentation group.Result Augmentation with CCPC would improve the initial mobile force of hollow compression screw,the initial mobile force and the maximal axial pull out strength for augmentation group,non augmentation group increased from (192.7± 14.0)N and (202.8± 14.0)N to(328.5± 34.7)N and( 347.8± 31.2)N.There was significant difference of two groups(P< 0.01).Conclusion CCPC can enhance hollow compression screw fixation in osteoporotic femoral neck.

  11. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  12. Conditions of k-struvite formation in magnesium phosphate cements

    International Nuclear Information System (INIS)

    Magnesium phosphate cements can be used as an alternative of Portland cements for the stabilization/solidification process of specific wastes like mercury, lead,... These cements are based on the reaction between magnesium oxide (MgO) and monopotassium phosphate (KH2PO4) mixed with water which leads to the formation of the solid skeleton of the matrix: MgO + KH2PO4 + 5H2O → MgKPO4.6H2O The development of k-struvite crystals (MgKPO4.6H2O) leads to the setting of these cements that have interesting properties for the stabilization/solidification of nuclear wastes: good chemical stability of the waste form, fast setting, low permeability, rapid compressive strength development. Still this novel material is not yet fully known, and its fast setting can be a drawback when it comes to large scale use. Thus, understanding the mechanisms of formation of k-struvite is important for a possible better control of the setting reaction. In this framework, the influence of pH and of the species in solution on the precipitation of k-struvite is studied. From pH and conductivity measurements of an MgO + KH2PO4 solution, it can be assumed that the k-struvite precipitation involves a precipitation and a dilution of an intermediate product: the newberyite (MgHPO4.3H2O). First newberyite (MgHPO4.3H2O) is formed, then with the pH rising, newberyite is dissolved and k-struvite will be able to crystallize. PH controlled precipitation, the XRD and DTA characterizations, and the supersaturation calculations confirm assumptions about the newberyite precipitation/dissolution mechanisms. (authors)

  13. Low temperature method for the production of calcium phosphate fillers

    Directory of Open Access Journals (Sweden)

    Nastro Alfonso

    2004-03-01

    Full Text Available Abstract Background Calcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity. Methods Commercial hydroxyapatite (HAp and monetite (M powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37–120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD, Vickers hardness test (HV, scanning electron microscopy (SEM, and porosity evaluation. Results The X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50–60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c or Hap 50%-M 50% (f, show cohesion of the powder grains. Conclusions The dissolution-reprecipitation process is more intesive in manufactured samples (c and (f, according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c (f manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues.

  14. Influence of Calcium Sulfate State and Fineness of Cement on Hydration of Portland Cements Using Electrical Measurement

    Institute of Scientific and Technical Information of China (English)

    WEI Xiaosheng; LI Zongjin; XIAO Lianzhen; THONG Wangfai

    2006-01-01

    The influence of calcium sulfate state and fineness of cement on hydration of Portland cement was studied using electrical resistivity measurement. The bulk resistivity curve of the paste from the abnormal cement mainly with hemihydrate had a characteristic abnormal peak and rapid increase in early period. The resistivity measurement technique can be used to discriminate abnormal setting. For normal cement with gypsum, the increase in fineness of the Portland cement decreases the minimum resistivity due to a higher ionic concentration and increases the 24 hour resistivity due to a reduction in macroscopic pore size. Thesetting time, compressive strength, pore structure of pastes made from different cements were carried out to compare the influence of water to cement ratio, calcium sulfate state and fineness. It is found that the electrical and mechanical properties are strongly affected by the initial porosity, the presence of hemihydrate or gypsum, and the fineness of cement.

  15. 兔股骨节段缺损模型研究磷酸钙骨水泥骨愈合性能%Bone Healing Capacity of Calcium Phosphate Cement Cylinder in a Rabbit Femur Segmental Defect Model

    Institute of Scientific and Technical Information of China (English)

    王大伟; 潘朝晖; 赵玉祥; 栾兆新

    2015-01-01

    Objective:To investigate the bone healing capacity of calcium phosphate cement ( CPC) cylinder in a rabbit femur seg-mental defect model by comparing the influence of muscle or periosteum as wrapping material.Methods: Pre-hardened CPC cylinder was prepared.Three specimens were analyzed by scanning electron microscopy and X-ray diffraction to characterize its microstructure and chemical composition.Sixty adult rabbits were randomly assigned to four groups,then received a defect size of 15 mm osteotomy within the femurs.The 8-hole plate was fixed with three screws in the proximal and distal part of the defect, respectively.In group A, the fem-oral defects were left alone;in group B, the defects with retained periosteum; in group C, the defects were grafted with CPC cylinder wrapped by muscle;and in group D, the defects were grafted with CPC cylinder wrapped by periosteum.Five rabbits from each group were sacrificed at 4, 8 and 12 weeks postoperatively.The samples were evaluated with radiological, biomechanical and histological meth-ods.Results:Irregular particles were seen on the surface of specimens, the pore size was approximately 10 μm.The peak locations for the hydroxyapatite were seen in the X-ray diffraction patterns of the specimens.Group A showed a few radiographic evidence of new bone formation within the boundary of the defect at 4 weeks.Three bone defects bridged at 8 weeks and 4 bone defects bridged at 12 weeks. Group B showed radiographic evidence of new bone formation at 4 weeks.Four bone defects bridged at 8 weeks and 5 bone defects bridged at 12 weeks.Group C showed discernable interface between the CPC cylinder and both femoral cut ends at 4 weeks, which became invisi-ble at 8 weeks.Defects bridged by continuous callus beside the CPC cylinder in 4 rabbits and completely surrounded in 1 rabbit at 12 weeks.Group D showed better quality of new bone formation, the CPC cylinders were surrounded by new bone at 12 weeks.However, all CPCs retained their

  16. Biomechanical characteristics of calcium phosphate cement in the reinforcement of vertebral pedicle screw fixation%磷酸钙骨水泥强化椎弓根螺钉固定的生物力学特性

    Institute of Scientific and Technical Information of China (English)

    黎逢峰; 张庆宏; 黄野; 王云华

    2006-01-01

    组椎骨,用磷酸钙骨水泥重新固定12 h后拔松的椎弓根螺钉,测定其两侧的最大轴向拔出力.主要观察指标:①磷酸钙骨水泥最终凝固时强化椎弓根螺钉固定的生物力学测试结果.②磷酸钙骨水泥初步凝固时强化椎弓根螺钉固定的生物力学测试结果.③磷酸钙骨水泥强化松动椎弓根螺钉固定的生物力学测试结果.结果:①50岁组对照侧和强化侧的椎弓根螺钉最大轴向拔出力中位数分别为620 N和1 136 N,强化侧较对照侧增加83%(P<0.01).强化骨-螺钉界面的抗剪切应力中位数从1.16 N/mm2增加到2.13 N/mm2.②52岁组对照侧和强化侧的椎弓根螺钉最大轴向拔出力中位数分别为554.5 N和859.5 N,强化侧较对照侧增加55%(P<0.01).强化骨-螺钉界面的抗剪切应力中位数从1.039 N/mm2增加到1.61 N/mm2.③50岁组椎骨对照侧和强化侧重新固定12 h后最大轴向拔出力中位数分别为517 N和876 N,和同侧松动后轴向拔出力中位数比较,分别增加了63.6%和54.2%(P均<0.01).结论:磷酸钙骨水泥初步凝固和最终凝固时能强化椎弓根螺钉的固定,并且椎弓根螺钉松动后使用磷酸骨水泥能使螺钉重新获得固定.椎体强化侧的椎弓根螺钉均从骨-螺界面剥离开来,不伴周边骨质和椎弓根的严重损害,有利于螺钉松动、拔出后的二次置入.%BACKGROUND: Polymethylmethacrylate (PMMA) can ameliorate the condition between vertebral pedicle screws and peripheral bone-matrix interfaces and notably enhance the strength of screw fixation. However, there are several disadvantages during and after operation such as polymerized thermal damaging effect, toxicity and unabsorbable etc. Calcium phosphate cement (CPC) is biocompatible and biodegradable with good biosafty and produce no heat of polymerization, which is a perfect substitute for PMMA.OBJECTIVE: To evaluate the reinforcing effect of CPC on vertebral pedicle screw fixation at

  17. Biomechanical evaluation of vertebroplasty using calcium sulfate cement for thoracolumbar burst fractures

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-tao; JIANG Xing-jie; ZHANG Shao-dong; YANG Hui-lin

    2007-01-01

    Objective: To evaluate the biomechanical performance of vertebroplasty using calcium sulfate cement for thoracolumbar burst fractures.Methods: Sixteen bovine thoracolumbar spines (T11-L1 ) were divided into 4 groups (A, B, C and D). After burst-fracture model was created, 12 vertebral bodies in Groups A, B and C were augmented with calcium sulfate cement (CSC), calcium phosphate cement (CPC) and polymethylmethacrylate ( PMMA ) bone cement,respectively. Each anterior vertebral body height was measured with a caliper at 4 time points: intact conditions(HInt), post-fracture (HFr), post-reduction (HRe) and post-vertebroplasty (HVP). The filling volume of 3 different bone cements was also measured. Each vertebral body was compressed at 0.5 mm/s using a hinged plating system on a materials testing machine to 50% of the postvertebroplasty height to determine strength and stiffness.Difference was checked using t test or One-way ANOVA.Results: The average strike energy was 66. 2 J.Vertebroplasty with different cements could sustain vertebral height. The average filling volume of bone cement in 3 groups was 4.35 ml (CSC), 3.72 ml (CPC) and 3.95 ml (PMMA), respectively, and there was no statistically significant difference among them ( P >0.05).Vertebroplasty with PMMA completely restored strength(116%) and stiffness (105%). CSC or CPC partly recovered vertebral strength and stiffness. However,greater strength restoration was got with CSC ( 1 659 N) as compared with CPC (1 011N, P<0.01 ). Regarding stiffness, differences between CSC (140 N/mm ±40 N/mm)and the other two bone cements ( CPC :148 N/mm ±33 N/mm,PMMA:236 N/mm ±97 N/mm) were not significant (P>0.05).Conclusions: For a burst-fracture of calf spine, useof CSC for vertebroplasty yields similar vertebral stiffnessas compared with PMMA or CPC. Although augmentationwith CSC partly obtains the normal strength, thistreatment still can be applied in thoracolumbar burstfractures with other instrumental devices in

  18. 以聚甲基丙烯酸甲酯为基质添加磷酸钙骨水泥在椎体成形术中的应用%APPLICATION OF USE OF PMMA AS MATRIX ADDED WITH CALCIUM PHOSPHATE CEMENT IN VERTEBROPLASTY

    Institute of Scientific and Technical Information of China (English)

    刘世军; 李俊霞; 程金生

    2011-01-01

    [目的]观察以聚甲基丙烯酸甲酯为基质添加磷酸钙骨水泥在椎体成形术中的应用价值,预防术后形成"空心椎"、"蛋壳椎"引起的椎体塌陷、后凸畸形.[方法]选取2007年7月~2009年8月住院椎体爆裂性骨折病人共15例患者,所有患者均行后路短阶段椎弓根内固定伤椎体成型术,以聚甲基丙烯酸甲酯为基质添加磷酸钙骨水泥填塞,随访10~15月.[结果]所有患者术中均没有发生脊髓损伤加重,无骨水泥外漏,伤椎恢复高度无明显丢失,无椎间隙塌陷.无内固定断裂或弯曲、松动.治疗前后两组相比差异有统计学意义(P<0.05).[结论]在短节段椎弓根复位固定后,应用聚甲基丙烯酸甲酯为基质添加磷酸钙骨水泥可即可恢复伤椎的强度和刚度,减少了后路内固定的应力,可早期下地活动,减少并发症,预防术后形成"空心椎"、"蛋壳椎"引起的椎体塌陷、后凸畸形.%[ Objective] To observe the value of PMMA matrix added with calcium phosphate cement in vertehroplasty,to prevent the vertebral collapse and kyphosis due to postoperative formation of "hollow venebrae" , "eggshell veflebral*.[Methods] From July 2007 to August 2009, 15 patients with burst fracture of vertebral body in our hospital underwent a short phase of posterior pedicle screw fixation injury vertebroplasty, in which polymethyl Methyl acrylate added with calcium phosphate cement as matrix was used to fill, then patients were followed up for 10 to 15 months. [Results] All patients were not found aggravating spinal cord injury dunng surgery, bone cement (t)eakage, obvious vertebral recovery height, disc space collapse, intemal fixation fracture or bending and loose. Compared two grroups before and after the treatment, there was statistically significant difference (P< 0.05). [Conclusion] In the short segment pedicle fixation, the application of PMMA added with calcium phosphate bone cement as matrix can restore

  19. Dentin-cement Interfacial Interaction: Calcium Silicates and Polyalkenoates

    OpenAIRE

    Atmeh, A.R.; Chong, E. Z.; Richard, G; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline c...

  20. Calcium Sulfoaluminate Eco-Cement from Industrial Waste

    OpenAIRE

    Ukrainczyk, N.; Frankoviæ Mihelj, N.; Šipušić, J.

    2013-01-01

    In this paper, the potential benefits offered by calcium sulfoaluminate cement (CSA) production from industrial wastes or by-products already present in Republic of Croatia have been addressed. A variety of industrial wastes, namely phosphogypsum (PG), coal bottom ash (BA) and electric arc furnace slag (EAFS) were used as raw materials to provide additional environmental advantages in production of CSA. Mass fraction of Ye’elimite, the principal hydraulic mineral in the prepared CSA was de...

  1. The Antimicrobial Action of Silver Halides in Calcium Phosphate

    OpenAIRE

    Kalniņa, D; Gross, K; Onufrijevs, P.; Daukšta, E; Nikolajeva, V; Stankeviciute, Z; Kareiva, A.

    2015-01-01

    Silver halides represent a yet unexplored avenue for imparting antimicrobial activity to calcium phosphates. Negtively charged silver halide colloids (AgI, AgBr and AgCl) were added to synthesized amorphous calcium phosphate. Concurrent melting of silver halides and crystallization to carbonated apatite at 700 oC increased the silver halide surface area available to bacteria and formed a lower solubility apatite. The effect of the matrix solubility on antimicrobial response could ...

  2. A review paper on biomimetic calcium phosphate coatings

    OpenAIRE

    Lin, X.; De Groot,, P.A.J.; Wang, D.; Hu, Q; Wismeijer, D.; Liu, Y

    2015-01-01

    Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation ...

  3. Calcium phosphate-based ceramic and composite materials for medicine

    International Nuclear Information System (INIS)

    The topical problems in chemistry and technology of materials based on calcium phosphates aimed at both the replacement of damaged bone tissue and its regeneration are discussed. Specific features of the synthesis of nanocrystalline powders and the fabrication of ceramic implants are described. Advances in the development of porous scaffolds from resorbable and osteoconductive calcium phosphates and of hybrid composites that form the basis of bone tissue engineering are considered.

  4. Effect of humic substances on the precipitation of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Hermann H. HAHN; Erhard HOFFMANN; Peter G. WEIDLER

    2006-01-01

    For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0,the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤ 3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.

  5. Aqueous deposition of calcium phosphates and silicate substituted calcium phosphates on magnesium alloys

    International Nuclear Information System (INIS)

    Attempts were made to deposit homogeneous films of calcium phosphates (CaPs) on two magnesium alloy systems, AZ31 and Mg–4Y, through an aqueous phosphating bath method. The deposition of silicate substituted CaPs by this aqueous method was also explored as silicate substitution is believed to increase the bioactivity of CaPs. The effect of doped and undoped coatings on the in vitro degradation and bioactivity of both alloy systems was studied. FTIR and EDX confirmed the deposition of Ca, P, and Si on both alloys and the coatings appeared to consist primarily biphasic mixtures of hydroxyapatite and β-TCP. These largely inhomogeneous coatings, as observed by SEM, were not shown to have any significant effect on maintaining the physiological pH of the culture medium in comparison to the uncoated samples, as the pH remained approximately in the 8.4–8.7 range. Interestingly, despite similar pH profiles between the coated and uncoated samples, CaP coatings affected the degradation of both alloys. These doped and undoped calcium phosphate coatings were observed to decrease the degradation of AZ31 whereas they increased the degradation of Mg–4Y. In vitro studies on cell attachment using MC3T3-E1 mouse osteoblasts showed that between the uncoated alloys, Mg–4Y appeared to be the more biocompatible of the two. Silicate substituted CaP coatings were observed to increase the cell attachment on AZ31 compared to bare and undoped CaPs coated samples, but did not have as great of an effect on increasing cell attachment on Mg–4Y.

  6. Early resorption of an artificial bone graft made of calcium phosphate for cranioplasty: case report

    Directory of Open Access Journals (Sweden)

    Monaco BA

    2013-11-01

    Full Text Available Bernardo Assumpção de Monaco, Erich Talamoni Fonoff, Manoel Jacobsen TeixeiraDivision of Functional Neurosurgery, Department of Neurology, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, BrazilAbstract: The treatment of uncomplicated osteoma consists of an en bloc resection, or curettage, of the tumor, followed by cranioplasty. Here, we present a case report of a patient treated for a parietal osteoma, followed by a calcium phosphate cranioplasty, with early resorption after 3 months, which was presented by a sinking flap above the resection area. This case suggests that synthetic cranioplasty should be preferred, even in small skull-gap areas.Keywords: cranioplasty, bone cement, osteoma, calcium phosphate, resorption

  7. The stability mechanisms of an injectable calcium phosphate ceramic suspension.

    Science.gov (United States)

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A V; Weiss, Pierre

    2010-06-01

    Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of "ready to use" injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity. PMID:20229185

  8. Calcium phosphate bioceramics prepared from wet chemically precipitated powders

    Directory of Open Access Journals (Sweden)

    Kristine Salma

    2010-03-01

    Full Text Available In this work calcium phosphates were synthesized by modified wet chemical precipitation route. Contrary to the conventional chemical precipitation route calcium hydroxide was homogenized with planetary mill. Milling calcium oxide and water in planetary ball mill as a first step of synthesis provides a highly dispersed calcium hydroxide suspension. The aim of this work was to study the influence of main processing parameters of wet chemical precipitation synthesis product and to control the morphology, phase and functional group composition and, consequently, thermal stability and microstructure of calcium phosphate bioceramics after thermal treatment. The results showed that it is possible to obtain calcium phosphates with different and reproducible phase compositions after thermal processing (hydroxyapatite [HAp], β-tricalcium phosphate [β-TCP] and HAp/β-TCP by modified wet-chemical precipitation route. The β-TCP phase content in sintered bioceramics samples is found to be highly dependent on the changes in technological parameters and it can be controlled with ending pH, synthesis temperature and thermal treatment. Pure, crystalline and highly thermally stable (up to 1300°C HAp bioceramics with homogenous grainy microstructure, grain size up to 200–250 nm and high open porosity can be successfully obtained by powder synthesized at elevated synthesis temperature of 70°C and stabilizing ending pH at 9.

  9. Renal control of calcium, phosphate, and magnesium homeostasis.

    Science.gov (United States)

    Blaine, Judith; Chonchol, Michel; Levi, Moshe

    2015-07-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys.

  10. Biodegradable magnetic calcium phosphate nanoformulation for cancer therapy.

    Science.gov (United States)

    Tang, Zhaomin; Zhou, Yangbo; Sun, Huili; Li, Dan; Zhou, Shaobing

    2014-05-01

    We fabricated a magnetic calcium phosphate nanoformulation by the biomineralization of calcium phosphate on the surface of magnetic nanoparticles with abundant amino groups, and thus the inorganic layer of calcium phosphate can improve the biocompatibility and simultaneously the magnetic iron oxide can maintain the magnetic targeting function. Two types of anticancer drug models, doxorubicin hydrochloride and DNA, were entrapped in these nanocarriers, respectively. This delivery system displayed high pH sensitivity in drug-controlled release profile as the dissolution of CaP under acid pH condition. Magnetofection was performed to investigate the intracellular uptake and the anti-proliferative effect of tumor cells in the presence of an external magnet. The transfection of the DNA-loaded magnetic system in A549 and HepG2 tumor cells demonstrated that the magnetic nanoformulation could enhance the transfection efficiency to 30% with an applied external magnetic field. PMID:24462792

  11. Optimization of calcium phosphate fine ceramic powders preparation

    Science.gov (United States)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  12. Rickets induced by calcium or phosphate depletion.

    OpenAIRE

    Abugassa, S.; Svensson, O.

    1990-01-01

    We studied the effects of calciopenia and phosphopenia on longitudinal growth, skeletal mineralization, and development of rickets in young Sprague-Dawley rats. At an age of 21 days, two experimental groups were given diets containing 0.02% calcium or 0.02% phosphorus; otherwise the diets were nutritionally adequate. After 7, 14, and 21 days, five animals from each group were randomly chosen. The animals were anaesthetized and blood samples were drawn for analysis of calcium, phosphorus, and ...

  13. 磷酸钙骨水泥载药核心块型重组合异种骨修复大段骨缺损的能力及其力学性能%Ability of massive reconstituted xenograft aided with calcium phosphate cement drug-loaded core to repair massive bone defect and its mechanical performance

    Institute of Scientific and Technical Information of China (English)

    孙效棠; 赵黎; 胡蕴玉; 李丹; 杜俊杰; 崔赓; 毕龙

    2004-01-01

    目的:寻找一种制备工艺简单的能够修复大段感染骨缺损的骨移植材料.方法:在块型重组合牛异种骨(massive reconstituted bovine xenograft,MRBX)中复合磷酸钙骨水泥(calcium phosphate cement,CPC)载药核心,制成CPC载药核心抗感染块型重组合牛异种骨(anti-infection massive reconstitnted hovme xenograft,CPC-AMRBX)观察其缓释效果、力学性能和修复兔股骨大段感染骨缺损的能力.结果:体外试验观察到了CPC载药核心的块型重组合异种骨具有较理想的药物缓释能力,抗压缩性能较单纯块型重组合异种骨有较明显的提高,并能够修复兔股骨的大段感染骨缺损.结论:CPC-AMRBX制备工艺简单,具有良好的修复大段感染骨缺损的能力,同时力学性能电得到了提高.

  14. Synthesis and characterization of zirconium-doped calcium phosphate biomaterial

    International Nuclear Information System (INIS)

    A new synthesis route for the production of calcium phosphate biomaterial was developed by using organic di-(2-ethylhexyl) phosphoric acid (DEHPA) mixed with calcium hydroxide slurry. Unlike the conventional involving chemical precipitation process this new method involves a sol-gel process. Another advantage of this method is the starting material DEHPA can form strong bonding with many elements including zirconium and rare earths. This makes it suitable to be used as drug delivery material especially those involving bone related disease. It also improves the biomaterial strength with the presence of zirconium oxide phase. From XRD analysis, the result shows the present of HA, α-TCP and β-TCP. The addition of different rare elements on to the calcium phosphate will varies the amount of these three phases. SEM analysis was also performed to study the morphology of the calcium phosphate material. The presence of the rare earths on to the calcium phosphate was established by using the EDS technique. (Author)

  15. Casein Phosphopeptide-Amorphous Calcium Phosphate Nanocomplexes: A Structural Model.

    Science.gov (United States)

    Cross, Keith J; Huq, N Laila; Reynolds, Eric C

    2016-08-01

    Tryptic digestion of the calcium-sensitive caseins yields casein phosphopeptides (CPP) that contain clusters of phosphorylated seryl residues. The CPP stabilize calcium and phosphate ions through the formation of complexes. The calcium phosphate in these complexes is biologically available for intestinal absorption and remineralization of subsurface lesions in tooth enamel. We have studied the structure of the complexes formed by the CPP with calcium phosphate using a variety of nuclear magnetic resonance (NMR) techniques. Translational diffusion measurements indicated that the β-CN(1-25)-ACP nanocomplex has a hydrodynamic radius of 1.526 ± 0.044 nm at pH 6.0, which increases to 1.923 ± 0.082 nm at pH 9.0. (1)H NMR spectra were well resolved, and (3)JH(N)-H(α) measurements ranged from a low of 5.5 Hz to a high of 8.1 Hz. Total correlation spectroscopy and nuclear Overhauser effect spectroscopy spectra were acquired and sequentially assigned. Experiments described in this paper have allowed the development of a structural model of the β-CN(1-25)-amorphous calcium phosphate nanocomplex. PMID:27434168

  16. Another look at the deterioration of calcium aluminate cement concrete

    Directory of Open Access Journals (Sweden)

    Jambor, Jaromir

    1996-03-01

    Full Text Available Potential degradation of concrete structures made of calcium aluminate cement (CAC is well known and is caused by transformation (conversion of the thermodynamically metastable into stable calcium aluminate hydrate phases. This recrystallization is influenced by temperature and humidity; the structural degradation of the concrete itself thus its loss of strength, is strongly related to the pore structure of the hydrated cement paste, the critical parameters being the total volume of pores below 15-20 nm and the median micropore radius. This constitutes a novel procedure for evaluation of existing CAC concrete structure.

    La degradación potencial de estructuras de hormigón elaboradas con cemento aluminoso (CA es bien conocida. Este deterioro está causado por la recristalización (conversión de las fases del aluminato cálcico que son termodinámicamente metastables, en fases estables. En esta recristalización influye la temperatura y la humedad. Tanto la degradación del propio hormigón, como su pérdida de resistencias están relacionadas estrechamente con la estructura porosa de la pasta del cemento hidratado, siendo parámetros críticos el volumen total de los poros inferiores a 15-20 nm y el tamaño medio de los radios de los microporos. Esto constituye un nuevo procedimiento para evaluar las estructuras existentes de hormigón de cemento aluminoso (CA.

  17. Tri-calcium phosphate (ß-TCP) can be artificially synthesized by recycling dihydrate gypsum hardened.

    Science.gov (United States)

    Han-Cheol, Cho; Hori, Masaharu; Yoshida, Takakazu; Yamada, Naoko; Komada, Yuko; Tamaki, Yukimichi; Miyazaki, Takashi

    2014-01-01

    Calcium phosphate is known as a major component of biological hard tissues. This study aimed to produce calcium phosphate by recycling kneaded surplus gypsum. β-dihydrate gypsum was derived from commercial dental β-hemihydrate gypsum, which was mechanically powdered and mixed with the liquid component of a commercial zinc phosphate cement. This mixture was fired at 1,200°C and evaluated by XRD analysis, thermal analysis and scanning electron microscopy (SEM). An acceptable ratio of mixing was 4 g of β-dihydrate gypsum powder to 1.5 mL of phosphoric acid liquid. XRD peaks were monotonic below 800°C, but new ß-TCP was formed by firing at 900°C or more, although TG-DTA analysis of synthetic ß-TCP suggested that some residual dihydrate gypsum remained in the sample. SEM images indicated a fused-block bone-like structure covered with phosphorus and calcium. These results suggest that production of synthetic β-TCP is possible through ecological techniques using recycled materials. PMID:25483384

  18. Physicochemical and Microstructural Characterization of Injectable Load-Bearing Calcium Phosphate Scaffold

    Directory of Open Access Journals (Sweden)

    Mazen Alshaaer

    2013-01-01

    Full Text Available Injectable load-bearing calcium phosphate scaffolds are synthesized using rod-like mannitol grains as porogen. These degradable injectable strong porous scaffolds, prepared by calcium phosphate cement, could represent a valid solution to achieve adequate porosity requirements while providing adequate support in load-bearing applications. The proposed process for preparing porous injectable scaffolds is as quick and versatile as conventional technologies. Using this method, porous CDHA-based calcium phosphate scaffolds with macropores sizes ranging from 70 to 300 μm, micropores ranging from 5 to 30 μm, and 30% open macroporosity were prepared. The setting time of the prepared scaffolds was 15 minutes. Also their compressive strength and e-modulus, 4.9 MPa and 400 MPa, respectively, were comparable with those of the cancellous bone. Finally, the bioactivity of the scaffolds was confirmed by cell growth with cytoplasmic extensions in the scaffolds in culture, demonstrating that the scaffold has a potential for MSC seeding and growth architecture. This combination of an interconnected macroporous structure with pore size suitable for the promotion of cell seeding and proliferation, plus adequate mechanical features, represents a porous scaffold which is a promising candidate for bone tissue engineering.

  19. Kebaikan Dan Keburukan Zinc Phosphate Cement Serta Penggunaannya Dalam Bidang kedokteran Gigi

    OpenAIRE

    Ramses Ricardo B.

    2008-01-01

    Salah satu jenis semen yang paling sering digunakan dalam bidang kedokteran gigi adalah Zinc Phosphate Cement. Komposisinya terdiri dan bubuk dan cairan yang akan dicampur pacta glass slab untuk mendapatkan kekentalan yang tepat. Semen ini memiliki beberapa kebaikan dan keburukan yang saling mempengaruhi dan hal ini pula yang membuat semen ini masih tetap dipergunakan sampai saat ini di klinik. Zinc Phosphate Cement memiliki sifat mekanis, khususnya Compressive Strength yang sangat baik....

  20. Atomic structure of intracellular amorphous calcium phosphate deposits.

    Science.gov (United States)

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-06-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed.

  1. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A [Department of Tissue Regeneration, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hedhammar, My; Johansson, Jan [Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Box 575, 751 23 Uppsala (Sweden); Blom, Tobias; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden)

    2010-08-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  2. Mechanical properties of porous, electrosprayed calcium phosphate coatings

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Lommen, L.; Pooters, T.; Schoonman, J.; Jansen, J.A.

    2006-01-01

    Mechanical properties of calcium phosphate coatings (CaP), deposited using the electrostatic spray deposition (ESD) technique, have been characterized using a range of analytical techniques, including tensile testing (ASTM C633), fatigue testing (ASTM E855), and scratch testing using blunt and sharp

  3. Calcium and phosphate homeostasis: concerted interplay of new regulators.

    NARCIS (Netherlands)

    Renkema, K.Y.R.; Alexander, R.T.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2008-01-01

    Calcium (Ca(2+)) and phosphate (P(i)) are essential to many vital physiological processes. Consequently the maintenance of Ca(2+) and P(i) homeostasis is essential to a healthy existence. This occurs through the concerted action of intestinal, renal, and skeletal regulatory mechanisms. Ca(2+) and P(

  4. Amorphous calcium phosphate and its application in dentistry

    Directory of Open Access Journals (Sweden)

    Sun Wei-bin

    2011-07-01

    Full Text Available Abstract Amorphous Calcium Phosphate (ACP is an essential mineral phase formed in mineralized tissues and the first commercial product as artificial hydroxyapatite. ACP is unique among all forms of calcium phosphates in that it lacks long-range, periodic atomic scale order of crystalline calcium phosphates. The X-ray diffraction pattern is broad and diffuse with a maximum at 25 degree 2 theta, and no other different features compared with well-crystallized hydroxyapatite. Under electron microscopy, its morphological form is shown as small spheroidal particles in the scale of tenths nanometer. In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the growing of microcrystalline. It has been demonstrated that ACP has better osteoconductivity and biodegradability than tricalcium phosphate and hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activities of mesoblasts, enhance cell proliferation and promote cell adhesion. The unique role of ACP during the formation of mineralized tissues makes it a promising candidate material for tissue repair and regeneration. ACP may also be a potential remineralizing agent in dental applications. Recently developed ACP-filled bioactive composites are believed to be effective anti-demineralizing/remineralizing agents for the preservation and repair of tooth structures. This review provides an overview of the development, structure, chemical composition, morphological characterization, phase transformation and biomedical application of ACP in dentistry.

  5. Cytotoxic effects of mineral trioxide aggregate, calcium enrichedmixture cement, Biodentine and octacalcium pohosphate onhuman gingival fibroblasts

    Science.gov (United States)

    A. Saberi, Eshagh; Farhadmollashahi, Narges; Ghotbi, Faroogh; Karkeabadi, Hamed; Havaei, Roholla

    2016-01-01

    Background. This in vitro study compared the effects of mineral trioxide aggregate (MTA), calcium enriched mixture(CEM) cement, Biodentine (BD) and octacalcium phosphate (OCP) on the viability of human gingival fibroblasts (HGFs). Methods. After completion of the setting time of the materials under study, fibroblasts were placed in 24-well insert platesand 1 mg of each material was added to the respective wells. The plates were then incubated at 37°C. The inserts were removedat 24, 48 and 168 hours and 2,5-diphenyltetrazolium bromide was added to assess cytotoxicity via the MTT colorimetricassay. Data were analyzed at different time intervals using repeated-measures ANOVA, followed by the Bonferronitest at three levels of significance of P MTA (P MTA, CEM, Biodentine and OCP against HGFs was similar to that of the control group at 24and 48 hours. Over time, MTA and Biodentine exhibited less cytotoxicity than other materials. PMID:27429722

  6. Magnetic properties study on Fe-doped calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C C; Valente, M A [Physics Department (I3N), Aveiro University (Portugal); Vasconcelos, I F [Metallurgical and Materials Engineering Department, Federal University of Ceara, Campus do Pici, 714 Block, 60455-760, Fortaleza, Ceara (Brazil); Sombra, A S B [Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Department of Physics, Federal University of Ceara, Campus do Pici, Postal Code 6030, 60455-760, Fortaleza, Ceara (Brazil)], E-mail: ccsilva@ua.pt, E-mail: ccsilva@fisica.ufc.br

    2009-11-15

    Calcium phosphates are very important for applications in medicine due to their properties such as biocompatibility and bioactivity. In order to enhance these properties, substitution of calcium with other ions has been proposed. Partial substitution of calcium by different ions has been made in order to improve the properties of the calcium phosphates and also to allow new applications of apatite in medicine. In this work, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}-HAP] was prepared by high-energy dry milling (20 h) and mixed with iron oxide (5 wt.%). The mixture was calcinated at 900 deg. C for 5 h with a heating rate of 3 deg. C min{sup -1} in an attempt to introduce iron oxide into the HAP structure. The sintered sample was characterized using x-ray diffraction (XRD) and magnetization. The {sup 57}Fe-Moessbauer spectra of the calcium phosphate oxides were also measured, revealing the presence of iron in three different phases: Ca{sub 2}Fe{sub 2}O{sub 5}, Fe{sub 2}O{sub 3} and hydroxyapatite.

  7. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Birkedal, Henrik; Olsen, Jakob;

    2016-01-01

    Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co......-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment......H always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control....

  8. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian

    Oftentimes caries lesions develop in protected sites that are difficult to access by self-performed mechanical tooth cleaning. At present, there is a growing interest in chemical adjuncts to mechanical procedures of oral hygiene that aim at biofilm control rather than biofilm eradication. Calcium......-phosphate-osteopontin particles are a new promising therapeutic approach to caries control. They are designed to bind to dental biofilms and interfere with biofilm build-up, lowering the bacterial burden on the tooth surface without affecting bacterial viability in the oral cavity. Moreover, they dissolve when pH in the biofilm...... drops to 6 or below and release buffering phosphate ions that stabilize biofilm pH above the critical level for enamel dissolution. With that twofold approach, calcium-phosphate-osteopontin particles may make a relevant contribution to clinical caries control....

  9. Formation of calcium phosphate mineral materialcontrolled by microemulsion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to prepare calcium phosphate-based material with nano-structure and bioactivity, natural lecithin and n-tetradecane were used as the amphipile and the oil phase respectively, along with the water phase, to form a microemulsion template. Phosphate mineralization was induced and controlled by the microemulsion. The products, characterized by scanning electronic microscopy, infrared spectroscopy and X-ray diffraction analysis, are composed of lecithin and hydroxyapatite, and possess the nano-structure of sticks, balls and three-dimensional nets connected by tubes. These results show that the microemulsion can be used to control calcium phosphate mineralization for the preparation of biomimetic mineral materials with various nano-structures.

  10. Diagnosis and clinical manifestations of calcium pyrophosphate and basic calcium phosphate crystal deposition diseases.

    Science.gov (United States)

    Ea, Hang-Korng; Lioté, Frédéric

    2014-05-01

    Basic calcium phosphate and pyrophosphate calcium crystals are the 2 main calcium-containing crystals that can deposit in all skeletal tissues. These calcium crystals give rise to numerous manifestations, including acute inflammatory attacks that can mimic alarming and threatening differential diagnoses, osteoarthritis-like lesions, destructive arthropathies, and calcific tendinitis. Awareness of uncommon localizations and manifestations such as intraspinal deposition (eg, crowned dens syndrome, tendinitis of longus colli muscle, massive cervical myelopathy compression) prevents inappropriate procedures and cares. Coupling plain radiography, ultrasonography, computed tomography, and synovial fluid analysis allow accurate diagnosis by directly or indirectly identifying the GRAAL of microcrystal-related symptoms.

  11. Minimally Invasive Pedicle Screw Fixation Combined with Vertebroplasty with Calcium Phosphate Bone Cement in the Treatment of Thoracolumbar Burst Fracture%微创椎弓根钉内固定联合磷酸钙骨水泥椎体成形术治疗胸腰椎爆裂性骨折

    Institute of Scientific and Technical Information of China (English)

    顾宇彤; 梁朝革; 张亮; 林红; 周健

    2015-01-01

    目的:评估微创椎弓根钉内固定(微小切口非空心椎弓根钉技术)联合磷酸钙骨水泥经皮穿刺椎体成形术(percutaneous vertebroplasty ,PVP)治疗胸腰椎爆裂性骨折的疗性和安全性。方法:采用微创椎弓根钉内固定联合磷酸钙骨水泥 PVP术治疗23例单节段胸腰椎新鲜爆裂性骨折且无神经症状的患者,伤椎位于 T11~L2,均属A3型骨折。记录手术时间、术中出血量、骨水泥注射量和住院天数。记录术前及术后即刻、1个月、2个月、3个月、6个月、1年、2年的腰背痛评分,计算并比较各时点的椎体高度压缩率、恢复率、椎体后凸角、椎体后凸矫正率。结果:磷酸钙骨水泥平均注射量为4.9(3.8~6.4)mL,平均手术时间92(75~120) min ,平均出血量52(40~75) mL ,平均住院5.6(4~7) d ,术后平均随访26(24~29)个月。VAS评分由术前的(8.8±1.2)分下降至术后即刻的(1.8±0.6)分及术后2年的(0.4±0.5)分,差异均有显著统计学意义(P<0.001)。高度压缩率由术前的(50.4±7.2)%显著下降至术后即刻的(6.2±1.5)%及术后2年的(6.9±1.4)%,差异均有显著统计学意义(P<0.001)。后凸角由术前的(22.6±1.8)°下降至术后即刻的(3.2±1.7)°及术后2年的(5.1±1.5)°,差异均有显著统计学意义( P<0.001)。随访过程中术后高度恢复率、后凸矫正率无明显减小;未出现螺钉松动、断钉或断棒。结论:微创椎弓根钉内固定联合磷酸钙骨水泥PV P术是治疗胸腰椎爆裂性骨折的安全、有效的方法。%Objective:To evaluate the efficacy and safety of minimally invasive pedicle screw fixation combined with percutaneous vertebroplasty(PVP) with calcium phosphate bone cement in the treatment of acute thoracolumbar burst fracture . Methods:Twenty‐three patients

  12. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  13. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    International Nuclear Information System (INIS)

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits

  14. Synthesis optimization of calcium aluminate cement phases for biomedical applications

    International Nuclear Information System (INIS)

    Calcium aluminate cement (CAC) has been studied as a potential material for applications in the areas of health such as, endodontics and bone reconstruction. These studies have been based on commercial products consisting of a mixture of phases. Improvements can be attained by investigating the synthesis routes of CAC aiming the proper balance between the phases and the control of impurities that may impair its performance for biomedical applications. Thus, the aim of this work was to study the CAC synthesis routes in the Al2O3-CaCO3 and Al2O3-CaO systems, as well as the phase characterization attained by means of X ray analysis. The Al2O3-CaO route enabled the production of the target phases (CA, CA2, C3A and C12A7) with a higher purity compared to the Al2O3-CaCO3 one. As a result the particular properties of these phases can be evaluated to define a more suitable composition that results in better properties for an endodontic cement and other applications. (author)

  15. Use of zinc phosphate cement as a luting agent for Denzir™ copings: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mondragon Eduardo

    2003-02-01

    Full Text Available Abstract Background The clinical success rate with zinc phosphate cemented Procera crowns is high. The objective with this study was to determine whether CADCAM processed and zinc phosphate cemented Denzir copings would perform as well as zinc phosphate cemented Procera copings when tested in vitro in tension. Methods Twelve Procera copings and twenty-four Denzir copings were made. After the copings had been made, twelve of the Denzir copings were sandblasted on their internal surfaces. All copings were then cemented with zinc phosphate cement to carbon steel dies and transferred to water or artificial saliva. Two weeks after cementation, half of the samples were tested. The remaining samples were tested after one year in the storage medium. All tests were done in tension and evaluated with an ANOVA. Results Sandblasted and un-sandblasted Denzir copings performed as well as Procera copings. Storage in water or artificial saliva up to one year did not decrease the force needed to dislodge any of the coping groups. Three copings fractured during testing and one coping developed a crack during testing. The three complete fractures occurred in Procera copings, while the partly cracked coping was a Denzir coping. Conclusion No significant differences existed between the different material groups, and the retentive force increased rather than decreased with time. Fewer fractures occurred in Denzir copings, explained by the higher fracture toughness of the Denzir material. Based on good clinical results with zinc phosphate cemented Procera crowns, we foresee that zinc phosphate cement luted Denzir copings are likely to perform well clinically.

  16. Subcutaneous ectopic osteogenesis induced by porous calcium phosphate cement and gelatin sponge as the carrier of recombinant bone morphogenetic protein-2 in rats:A comparative study%两种材料复合rhBMP-2诱导大鼠皮下异位成骨的比较研究

    Institute of Scientific and Technical Information of China (English)

    李想; 董纪元; 彭江; 汪爱媛; 睢翔; 赵斌; 刘道宏

    2011-01-01

    Objective To analyze the difference in subcutaneous ectopic osteogenesis induced by porous calcium phosphate cement (CPC) and gelatin sponge as a carrier of recombinant bone morphogenetic protein-2 (rhBMP-2). Methods Thirty Sprague Dawley rats with an average body weight of 200g were divided into groups A-D. CPC+rhBMP-2, CPC, gelatin sponge+rhBMP-2, and gelatin sponge were implanted into the rats after anesthesia. Ten rats were killed 2, 4 and 8 weeks after they were fed under sterile environment. Bone tissue samples were collected from the implantation sites. Tissue mineral density (TMD) and trabecular thickness were detected with micro-CT scanner and analyzed with SPSS 1 OX) statistical software. Bone tissue was fixed in 4% paraformaldehyde for 2 days, embedded in paraffin, and cut into sections. The sections were stained with H&E to observe their histological change. Results The tissue mineral density and trabecular thickness of the samples with rhBMP-2 were higher in two experimental groups 2,4 and 8 weeks after implantation, which increased with the prolongation of time (P<0.05). Conclusion Porous CPC can be used as a carrier of rhBMP-2 for osteogenesis.%目的 分析多孔自固化磷酸钙骨水泥(Calcium Phosphate Cement,CPC)和明胶海绵复合重组人骨形态发生蛋白(Recombinantion Humen Bone Morphogenetic Protein-2,rhBMP-2)诱导大鼠皮下异位成骨的区别.方法 平均质量200g SD大鼠30只,麻醉后分别植入A:多孔CPC复合rhBMP-2(2μg);B:多孔CPC;C:明胶海绵复合rhBMP-2(2μg);D:空白明胶海绵,无菌喂养后分别于2、4、8周各处死10只.对植入部位组织取材,分别进行micro-CT扫描,并使用Micview V2.1三维重建处理软件扫及ABA骨形态分析软件检测,记录组织骨密度(Tissue Mineral Density,TMD)及骨小梁厚度(Trabecular Thickness,Tb.Th).运用SPSS10.0统计软件进行统计学分析.后行甲醛固定2周,石蜡包埋切片,HE染色进行组织学观察.结果 在2、4、8

  17. 3D Computational Simulation of Calcium Leaching in Cement Matrices

    Directory of Open Access Journals (Sweden)

    Gaitero, J. J.

    2014-12-01

    Full Text Available Calcium leaching is a degradation process consisting in progressive dissolution of the cement paste by migration of calcium atoms to the aggressive solution. It is therefore, a complex phenomenon involving several phases and dissolution and diffusion processes simultaneously. Along this work, a new computational scheme for the simulation of the degradation process in three dimensions was developed and tested. The toolkit was used to simulate accelerated calcium leaching by a 6M ammonium nitrate solution in cement matrices. The obtained outputs were the three dimensional representation of the matrix and the physicochemical properties of individual phases as a consequence of the degradation process. This not only makes it possible to study the evolution of such properties as a function of time but also as a function of the position within the matrix. The obtained results are in good agreement with experimental values of the elastic modulus in degraded and undegraded samples.El lixiviado de calcio es un proceso de degradación consistente en la disolución progresiva de la pasta de cemento por la migración de los átomos de calcio a la disolución agresiva. Se trata por tanto de un fenómeno complejo que involucra simultáneamente diferentes fases y procesos de disolución y difusión. En este trabajo se desarrolló y probó una nueva herramienta computacional para la simulación del proceso de degradación en tres dimensiones. Para ello se simuló el lixiviado de calcio acelerado provocado por una disolución de nitrato amónico 6M en matrices de cemento. Como resultado se obtuvieron la representación tridimensional de la matriz y las propiedades físico-químicas sus fases a lo largo del tiempo. Esto permitió estudiar la evolución de dichas propiedades a lo largo del proceso de degradación así como en función de su posición dentro de la matriz. Los resultados obtenidos coinciden con los valores experimentales del módulo elástico tanto

  18. Acid gelation of colloidal calcium phosphate-depleted preheated milk

    OpenAIRE

    Famelart, Marie-Hélène; Gauvin, Géraldine; Paquet, Denis; Brulé, Gérard

    2009-01-01

    Abstract – This study aimed at understanding the role of colloidal calcium phosphate (CCP) in acid gelation of milk. Milks were depleted in Calcium (Ca) by dialysis against milk permeate containing a cation-exchange resin. Dialysed milks were then heated (90 °C-10 min) and acidgelled at 42 °C with a yoghurt culture. Minerals, total and soluble protein contents, pH and optical density were measured in unheated and heated dialysed milk, together with diameters and ζ-potentials of particles. Dia...

  19. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  20. Formation and thermal studies of calcium phosphate glasses

    International Nuclear Information System (INIS)

    Calcium Phosphate based glasses and glass ceramics are known for their bio- active nature. Thermal behaviour of three compositions of CaO-Na/sub 2/O-SiO/sub 2/-P/sub 2/O/sub 5/ glass system were studied. All glasses were clear and stable. Characteristic temperatures i.e. glass transition, glass softening temperature and liquids temperatures were determined by differential thermal analyzer and dilatometer. (author)

  1. Calcium Phosphate Coating over Silk Fibroin Film by Biomimetic Methods

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the biomineralization behavior of silk fibroin and to valuate the biodegradation and biocompatibility of the hybrid biomaterial, the calcium phosphate deposits were identified with SEM, EDX,XRD and FTIR. The results reveal that supersaturated calcification solution is an effective method for the mineralization of fibroin film. Enzymatic degradation experiment demonstrates the biodegradability of the composites. Osteoblasts incubation shows an excellent cytocompatibility on the mineralized fibroin films.

  2. Aggregation of Calcium Phosphate and Oxalate Phases in the Formation of Renal Stones

    OpenAIRE

    Xie, Baoquan; Halter, Timothy J.; Borah, Ballav M.; Nancollas, George H.

    2014-01-01

    The majority of human kidney stones are comprised of multiple calcium oxalate monohydrate (COM) crystals encasing a calcium phosphate nucleus. The physiochemical mechanism of nephrolithiasis has not been well determined on the molecular level; this is crucial to the control and prevention of renal stone formation. This work investigates the role of phosphate ions on the formation of calcium oxalate stones; recent work has identified amorphous calcium phosphate (ACP) as a rapidly forming initi...

  3. The influence of Sr content in calcium phosphate coatings

    International Nuclear Information System (INIS)

    In this study calcium phosphate coatings with different amounts of strontium (Sr) were prepared using a biomineralization method. The incorporation of Sr changed the composition and morphology of coatings from plate-like to sphere-like morphology. Dissolution testing indicated that the solubility of the coatings increased with increased Sr concentration. Evaluation of extracts (with Sr concentrations ranging from 0 to 2.37 μg/mL) from the HA, 0.06Sr, 0.6Sr, and 1.2Sr coatings during in vitro cell cultures showed that Sr incorporation into coatings significantly enhanced the ALP activity in comparison to cells treated with control and HA eluted media. These findings show that calcium phosphate coatings could promote osteogenic differentiation even in a low amount of strontium. - Highlights: • Calcium phosphate coating doping with low Sr contents was prepared via a biomineralization process. • The solubility of the coatings increased with increased Sr concentration. • Present findings show the potential that Sr has on promoting osteogenic differentiation even in a low amount

  4. Single Step Sintered Calcium Phosphate Fibers from Avian EGG Shell

    Science.gov (United States)

    Dadhich, Prabhash; Das, Bodhisatwa; Dhara, Santanu

    2013-11-01

    Different forms of calcium-phosphate (Hydoxyapatite, α-TCP, β-TCP, CDHA) minerals are found to be major component of bone tissue. Development of calcium-phosphate (CaP) based fibrous microstructures is of significant research interest worldwide owing to its improved mechanical properties and higher interconnectivity. Here we represent a method for single step sintered wet-spun Fibers of calcium phosphate from avian egg shells for biomedical applications. Raw egg shell powder was mixed with chitosan solution and Phosphoric acid. The mixture is milled in a ball mill overnight and then filtered. The slurry was de-aired using 100 microliter 1-octanol per 100 ml of slurry as antifoaming and wet spun in coagulation bath. Fiber was dried overnight and sintered at different temperatures for microstructure and phase analysis. Both green and sintered Fibers were physico-chemical characterized by SEM, EDX, XRD, TGA, DSC, FTIR, and stereo-zoom microscopy. The fibers obtained in this procedure are found to have highly porous interconnected structures which can provide good cell adhesion and therefore can be used for bioactive scaffold making.

  5. Protein Adsorption of Calcium Phosphate Ceramics in vitro

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to provide valuable information for the design of new calcium phosphate bone repair materials, bone tissue engineering scaffold materials, and other clinical application, the interaction between calcium phosphate materials and proteins were investigated. The adsorption of the calcium phosphate ceramic to the protein was investigated by using FT- IR, XPS, SEM, and SDS- PAGE. As the results shown, the proteins were strongly adsorbed by the CPC, and a shift of the feature peak of the protein and also a chemical shift in the Ca2p and O1s bind energy of CPC was observed. This indicated that the acidic amino-group and alkaline amino- residue on the proteins' surface bonded to the Ca2 + in the β- TCP crystal by ionic bond and the proteins' alkaline amino groups to the oxygen in PO3-4 by hydrogen bond and electrostatic attraction. The adsorption mechanism of the protein in the CPC can be described as three ndsorption layers: irreversible chemical adsorption layer, physical adsorption layer and biomineralized adsorption layer.

  6. Characterization and biocompatibility of fluoridated biphasic calcium phosphate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.L. [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Yu, H.Y. [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: yhyang6812@tfol.com; Zeng, Q. [Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu 610041 (China); He, H.W. [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    Biphasic calcium phosphate ceramics (BCP) has been widely used in tooth and bone implants due to its excellent biocompatibility. Incorporation of fluorine ions in BCP has drawn much attention because of the beneficial role played by the fluorine ions in bone and tooth growth. The aim of this study was to obtain fluoridated biphasic calcium phosphate (FBCP) by immersing BCP into saturated ZnF{sub 2} solution with F{sup -} concentration of 3500 mg/l at different times. The phase and incorporation of fluoride into BCP were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The biomineralization and influence of FBCP on osteoblastic behavior were evaluated and compared with that of biphasic calcium phosphate (BCP). The results exhibited that the phase evolution of the BCP was affected by the fluoride incorporation and the FBCP significantly improved the differentiation and proliferation of osteoblasts. These findings suggest that the FBCP would be very useful as a bone reconstructive material.

  7. The influence of Sr content in calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Carl [Department of Biomaterials, Institute for Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Pujari-Palmer, Shiuli; Hoess, Andreas; Ott, Marjam [Applied Materials Science, Department of Engineering Sciences, Uppsala University, Uppsala (Sweden); Engqvist, Håkan [BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Applied Materials Science, Department of Engineering Sciences, Uppsala University, Uppsala (Sweden); Xia, Wei, E-mail: wei.xia@angstrom.uu.se [BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Applied Materials Science, Department of Engineering Sciences, Uppsala University, Uppsala (Sweden)

    2015-08-01

    In this study calcium phosphate coatings with different amounts of strontium (Sr) were prepared using a biomineralization method. The incorporation of Sr changed the composition and morphology of coatings from plate-like to sphere-like morphology. Dissolution testing indicated that the solubility of the coatings increased with increased Sr concentration. Evaluation of extracts (with Sr concentrations ranging from 0 to 2.37 μg/mL) from the HA, 0.06Sr, 0.6Sr, and 1.2Sr coatings during in vitro cell cultures showed that Sr incorporation into coatings significantly enhanced the ALP activity in comparison to cells treated with control and HA eluted media. These findings show that calcium phosphate coatings could promote osteogenic differentiation even in a low amount of strontium. - Highlights: • Calcium phosphate coating doping with low Sr contents was prepared via a biomineralization process. • The solubility of the coatings increased with increased Sr concentration. • Present findings show the potential that Sr has on promoting osteogenic differentiation even in a low amount.

  8. In Vitro Cytotoxicity of Calcium Silicate-Based Endodontic Cement as Root-End Filling Materials

    OpenAIRE

    Selen Küçükkaya; Mehmet Ömer Görduysus; Naciye Dilara Zeybek; Sevda Fatma Müftüoğlu

    2016-01-01

    The aim of this study was to evaluate the cytotoxicity of three types of calcium silicate-based endodontic cement after different incubation periods with human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were cultured from extracted third molars and seeded in 96-well plates. MTA, calcium enriched mixture (CEM) cement, and Biodentine were prepared and added to culture insert plates which were immediately placed into 96-well plates containing cultured cells. After i...

  9. 磷酸钙骨水泥强化骨质疏松绵羊腰椎力学强度的动态观察%Dynamic Biomechanical Performance of Osteoporotic Vertebrae Augmented with Calcium Phosphate Cement:an in Vivo Study

    Institute of Scientific and Technical Information of China (English)

    罗志强; 张玉; 缪滋光

    2011-01-01

    目的 观察磷酸钙骨水泥(calcium phosphate cement,CPC)强化骨质疏松绵羊腰椎生物力学强度的体内动态变化.方法 成年雌性绵羊12只行去势手术后饲养1年,测量去势前后腰椎骨密度.取L2~L5为实验对象,空白组不给予任何处理,CPC组中,经椎弓根向椎体内注射CPC 2.0 mL.于术后1 d、6周、12周和24周四个时间点各随机处死3只绵羊,对椎体行压缩实验,分别测量各组中椎体的最大压缩应力(ultimate compressive stress,σult)和能量吸收值(energy absorption value,EAV),对比分析同一时间点不同方法之间和同一方法的不同时间点之间的力学指标.结果 去势1年后绵羊腰椎骨密度显著下降,差异具有统计学意义(P<0.05),骨质疏松绵羊模型建立成功.空白组中各时间点之间的σult和EAV均无显著性差异(P>0.05),而CPC组中各时间点之间的σult和EAV也均无显著性差异(P>0.05);在同一时间点,CPC组螺钉的σult和EAV均显著高于对照组(P<0.05).结论 CPC对骨质疏松椎体的即时强度和远期强度均有显著的强化效果,它对椎体的强化效果在体内是动态稳定的,为脊柱达到坚强骨性融合提供了良好的力学环境.CPC作为一种生物相容性好、可降解吸收、可促骨生成和机械强度好的材料具有广阔临床应用前景.%Objective: To evaluate dynamic biomechanical performance of vertebral body augmented with calcium phosphate cement(CPC) in ovariectomized sheep. Methods Twelve female adult sheep were treated with bilateral ovariectomy. Bone mineral density(BMD) of lumbar vertebra in all sheep was measured before ovariectomy and one year after ovariectomy. L2~L5 from all sheep were employed in this experiment. In CPC group, vertebrae were transpedicular augmented with CSC(2.0 mL) there was no augmentation in blank group. Three sheep were selected randomly and killed at four study periods of 1 day, 6 weeks, 12 weeks and 24 weeks. Then

  10. Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery

    NARCIS (Netherlands)

    Tervahauta, T.H.; Weijden, van der R.D.; Flemming, R.L.; Hernández, L.; Zeeman, G.; Buisman, C.J.N.

    2014-01-01

    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed i

  11. Effects of calcium phosphate bioceramics on skeletal muscle cells.

    Science.gov (United States)

    Sun, J S; Tsuang, Y H; Yao, C H; Liu, H C; Lin, F H; Hang, Y S

    1997-02-01

    With advances in ceramics technology, calcium phosphate bioceramics have been applied as bone substitutes. The effects of implants on bony tissue have been investigated. The effects upon adjacent skeletal muscles have not been determined. The focus of this work is to elucidate the biological effects of various calcium phosphate bioceramics on skeletal muscles. Four different kinds of powder of calcium phosphate biomaterials including beta-tricalcium phosphate (beta-TCP), hydroxyapatite (HA), beta-dicalcium pyrophosphate (beta-DCP) and sintered beta-dicalcium pyrophosphate (SDCP), were tested by myoblast cell cultures. The results were analyzed by cell count, cell morphology and concentration of transforming growth factor beta 1 (TGF-beta 1) in culture medium. The cell population and TGF-beta 1 concentration of the control sample increased persistently as the time of culture increased. The changes in cell population and TGF-beta 1 concentration in culture medium of the beta-TCP and HA were quite low in the first 3 days of culture, then increased gradually toward the seventh day. The changes in cell population and TGF-beta 1 concentration in culture medium of the silica, beta-DCP, and SDCP were quite similar. They were lower during the first day of culture but increased and reached that of the control medium after 7 days' culture. Most cells on B-TCP and HA diminished in size with radially spread, long pseudopods. We conclude that HA and beta-TCP are thought to have an inhibitory effect on growth of the myoblasts. The HA and beta-TCP may interfere with the repair and regeneration of injured skeletal muscle after orthopedic surgery.

  12. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects

    International Nuclear Information System (INIS)

    The 3D printing technique based on cement powders is an excellent method for the fabrication of individual and complex bone substitutes even in the case of large defects. The outstanding bone remodeling capacity of biphasic calcium phosphates (BCPs) containing hydroxyapatite (HA) as well as tricalcium phosphate (TCP) in varying ratios makes the adaption of powder systems resulting in BCP materials to this fabrication technique a desirable aim. This study presents the synthesis and characterization of a novel powder system for the 3D printing process, intended for the production of complexly shaped BCP scaffolds by a hydraulic setting reaction of calcium carbonate and TCP with phosphoric acid. The HA/TCP ratio in the specimens could be tailored by the calcium/phosphate ratio of the starting powder. The scaffolds could be fabricated with a dimensional accuracy of >96.5% and a minimal macro pore size of 300 µm. Independent of the phase composition the printed specimens showed a microporosity of approximately 68%, while the compressive strength strongly depended on the chemical composition and increased with rising TCP content in the scaffolds to a maximum of 1.81 MPa. Post-treatment of the scaffolds with a polylactic-co-glycolic acid-solution enhanced the mechanical properties by a factor of 8. In vitro studies showed that all BCP scaffolds were cytocompatible and enhanced the cell viability as well as the cell proliferation, as compared with pure TCP. Cell proliferation is even better on BCP when compared to HA and cell viability is in a similar range on these materials. (paper)

  13. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects.

    Science.gov (United States)

    Castilho, Miguel; Moseke, Claus; Ewald, Andrea; Gbureck, Uwe; Groll, Jürgen; Pires, Inês; Teßmar, Jörg; Vorndran, Elke

    2014-03-01

    The 3D printing technique based on cement powders is an excellent method for the fabrication of individual and complex bone substitutes even in the case of large defects. The outstanding bone remodeling capacity of biphasic calcium phosphates (BCPs) containing hydroxyapatite (HA) as well as tricalcium phosphate (TCP) in varying ratios makes the adaption of powder systems resulting in BCP materials to this fabrication technique a desirable aim. This study presents the synthesis and characterization of a novel powder system for the 3D printing process, intended for the production of complexly shaped BCP scaffolds by a hydraulic setting reaction of calcium carbonate and TCP with phosphoric acid. The HA/TCP ratio in the specimens could be tailored by the calcium/phosphate ratio of the starting powder. The scaffolds could be fabricated with a dimensional accuracy of >96.5% and a minimal macro pore size of 300 µm. Independent of the phase composition the printed specimens showed a microporosity of approximately 68%, while the compressive strength strongly depended on the chemical composition and increased with rising TCP content in the scaffolds to a maximum of 1.81 MPa. Post-treatment of the scaffolds with a polylactic-co-glycolic acid-solution enhanced the mechanical properties by a factor of 8. In vitro studies showed that all BCP scaffolds were cytocompatible and enhanced the cell viability as well as the cell proliferation, as compared with pure TCP. Cell proliferation is even better on BCP when compared to HA and cell viability is in a similar range on these materials.

  14. Blended Calcium Aluminate-Calcium Sulfate Cement-Based Grout For P-Reactor Vessel In-Situ Decommissioning

    International Nuclear Information System (INIS)

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH ≤ 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts (Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010). Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere (Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively). Radiolysis calculations are also provided in a separate document (Reyes-Jimenez, 2010).

  15. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  16. Effect of different retarders on the hydration of calcium sulfoaluminate eco-cement pastes

    OpenAIRE

    García-Maté, Marta; De la Torre, Ángeles G.; Aranda, Miguel A. G.; Santacruz, Isabel

    2014-01-01

    The manufacture of Calcium SulfoAluminate (CSA) cements is more environmentally friendly than that of OPC [1] as their production releases up to 40% less CO2 than the latter. The main performances of CSA cements are fast setting time, good-chemical resistance properties and high early strengths. CSA cements are prepared by mixing CSA clinker with different amounts of a calcium sulfate set regulator such as gypsum (CaSO4•2H2O), bassanite (CaSO4•½H2O), or anhydrite (CaSO4), or mixtures of th...

  17. Calcium-phosphate-osteopontin particles for caries control.

    Science.gov (United States)

    Schlafer, Sebastian; Birkedal, Henrik; Olsen, Jakob; Skovgaard, Jonas; Sutherland, Duncan S; Wejse, Peter L; Nyvad, Bente; Meyer, Rikke L

    2016-01-01

    Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment with particles or pure osteopontin led to less biofilm formation compared to untreated controls or biofilms treated with osteopontin-free particles. The anti-biofilm effect can thus be ascribed to osteopontin. The particles also led to a slower acidification of the biofilm after exposure to glucose, and the pH always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control. PMID:26923119

  18. Post cementation sensitivity evaluation of glass Ionomer, zinc phosphate and resin modified glass Ionomer luting cements under class II inlays: An in vivo comparative study

    Directory of Open Access Journals (Sweden)

    Chandrasekhar V

    2010-01-01

    Full Text Available Objective: This study aims to compare the patient-perceived post-cementation sensitivity of class II metal restorations preoperatively, immediately after cementation, one week after cementation and one month after cementation with (1 Glass Ionomer luting cement (2 Zinc Phosphate cement and (3 Resin-modified Glass Ionomer luting cement. Materials and Methods: A total of 60 patients, irrespective of sex, in the age group of 15-50 years were selected and the teeth were randomly divided into three groups of 20 each. Twenty inlay cast restorations were cemented with three different luting cements. The criteria adapted to measure tooth sensitivity in the present study were objective examination for sensitivity.(1 Cold water test (2 Compressed air test and (3 Biting pressure test. Results: The patients with restorations cemented with Resin-modified Glass ionomer demonstrated the least postoperative sensitivity when compared with Glass Ionomer and zinc phosphate cement at all different intervals of time evaluated by different tests. Conclusion: The patients with restorations cemented with resin-modified Glass ionomer demonstrated the least postoperative sensitivity.

  19. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol.

    Science.gov (United States)

    Huang, Ming-Hsien; Shen, Yu-Fang; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Shie, Ming-You

    2016-08-01

    Hinokitiol is a natural material and it has antibacterial and anti-inflammatory effects. The purpose of this study was to evaluate the material characterization, cell viability, antibacterial and anti-inflammatory abilities of the hinokitiol-modified calcium silicate (CS) cement as a root end filling material. The setting times, diametral tensile strength (DTS) values and XRD patterns of CS cements with 0-10mM hinokitiol were examined. Then, the antibacterial effect and the expression levels of cyclooxygenase 2 (COX-2) and interleukin-1 (IL-1) of the hinokitiol-modified CS cements were evaluated. Furthermore, the cytocompatibility, the expression levels of the markers of odontoblastic differentiation, mineralized nodule formation and calcium deposition of human dental pulp cells (hDPCs) cultured on hinokitiol-modified CS cements were determined. The hinokitiol-modified CS cements had better antibacterial and anti-inflammatory abilities and cytocompatibility than non-modified CS cements. Otherwise, the hinokitiol-modified CS cements had suitable setting times and better odontoblastic potential of hDPCs. Previous report pointed out that the root-end filling materials may induce inflammatory cytokines reaction. In our study, hinokitiol-modified CS cements not only inhibited the expression level of inflammatory cytokines, but also had better cytocompatibility, antimicrobial properties and active ability of odontoblastic differentiation of hDPCs. Therefore, the hinokitiol-modified CS cement may be a potential root end filling material for clinic. PMID:27157721

  20. Selective laser sintering of calcium phosphate materials for orthopedic implants

    Science.gov (United States)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  1. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    OpenAIRE

    Zhang Kui-Hua; Mo Xiu-Mei; Chen Feng; Zhu Ying-Jie; Wu Jin; Wang Ke-Wei; Tang Qi-Li

    2011-01-01

    Abstract Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area ...

  2. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  3. The Transformation of Calcium Phosphate Bioceramics in Vivo

    Institute of Scientific and Technical Information of China (English)

    DAI Hong-lian; CAO Xian-ying; LI Xiao-xi; YAN Yu-hua; LI Shi-pu

    2003-01-01

    To study the transformation process of calcium phosphate bioceramic in vivo,biodegradable porous β-tricalcium phosphate ceramics (β-TCP) were used in this experiment. The materials (φ5×8mm) were implanted in the tibia of rabbits. The β-TCP ceramics with bone tissue were retrieved and treated for histology, and then observed by using a scanning electron microscope (SEM) and an electron probe X-ray microanalyzer (EMPA) every month. The results show that β-TCP ceramics bond to bone directly,new bones are forming and maturing with materials continuous degrading,and the materials are nearly replaced by the formed bone finally.Parts of the materials were degraded,absorpted and recrystallized,the others dispersped on the cancellous bone and the Haversian lamella with an irregular arrangement incorporating in bone formation directly by remodeling structure.

  4. Effect on Hydration and Hardening of Tricalcium Phosphate Bone Cement

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The bioactive α-Ca3 (PO4)2 bone cement was studied by XRD , SEM and isothermal calorimetric measurements. The results showed that a mixed pattern of TCP and hydroxylapatite were obtained after hydration and hardening. The mechanism of hydration and hardening of the α-Ca3 ( PO4 )2 was dissolution-precipitation,(NH4) H2 PO4 was the best set accelerator to the α-Ca3 ( PO4 )2 cement, and the HAP powers and the(NH4) H2 PO4 concentration had a great effect on the hydration rate of α-Ca3 ( PO4 )2.

  5. Physicochemical characterization of zinc-substituted calcium phosphates

    Indian Academy of Sciences (India)

    DOROTA WALCZYK; DAGMARA MALINA; MILENA KRÓL; KLAUDIA PLUTA; AGNIESZKA SOBCZAK-KUPIEC

    2016-04-01

    Biocompatible and bioactive calcium phosphates can make chemical bonds with living bones. Improvement of their biological and physicochemical properties can be achieved by doping with various ions that are presented in natural apatites of bones. These substitutions influence lattice parameters, structure and morphology of apatites. In recent times great attention has been devoted to zinc ions that are the second most abundant trace element present in bones. Zinc embedded into calcium phosphate may enhance the bone formation and in addition exhibits antifungal and antibacterial properties. Therefore, it is rational to form structures incorporated with this ion. In this paper the incorporation of the Zn ions into natural and synthetic calcium phosphates has been reported.Natural hydroxyapatites (HAs) applied in this study were derived mainly from pork bones whereas both brushite and synthetic were formed using wet chemical methods. Ambient temperature synthesis leads to the formation ofbrushite, whereas the process performed at elevated temperature gives HA. Subsequently, attained structures were modified with Zn ions by using in situ or sorption procedures. Phase composition and morphology of obtained materials were determined by means of X-ray diffractometry, Fourier transform infrared spectroscopy and scanning electron microscopy equipped with energy-dispersive spectroscopy. Introduced XRD patterns depict changes of the crystallinity of HA with the increase in the amount of embedded zinc ions. On the contrary, no changes of the crystallinity were observed for the brushite doped with Zn ions. Morphology of attained powders, visualized using scanningelectron microscopy exemplified structural changes between calcium phosphates conjugated with zinc ions. Many authors report that the addition of small amounts of Zn ions leads to loss of crystallinity and decrease of lattice parameters. Interestingly, upon addition of Zn ions to the natural and synthetic HAp by sorption

  6. A new evaporation-based method for the preparation of biomimetic calcium phosphate coatings on metals

    International Nuclear Information System (INIS)

    This study reports a new method to prepare biomimetic calcium phosphate coatings on titanium, stainless steel, CoCrMo, and tantalum. The method does not require surface etching, high supersaturation, or tight control of solution conditions. Metallic samples were dipped into a supersaturated calcium phosphate solution, withdrawn, and left to dry at room temperature. Calcium phosphate crystallites formed on and completely covered the surfaces by repeating the dip-and-dry treatment. The crystallite-covered surfaces readily grew to calcium phosphate coatings when immersed in the supersaturated solution. The mechanism of the treatment was suggested to be an evaporation-induced surface crystallization process.

  7. Characterization of modified calcium-silicate cements exposed to acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, Josette, E-mail: josette.camilleri@um.edu.mt

    2011-01-15

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  8. Characterization of modified calcium-silicate cements exposed to acidic environment

    International Nuclear Information System (INIS)

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: → An acidic environment affects modified fast setting calcium silicate-based cements. → No surface changes are observed in acidic environment. → An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. → A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  9. Obtenção e caracterização de espumas de cimento de fosfato de cálcio: avaliação dos métodos de emulsão e gelcasting Fabrication and characterization of calcium phosphate cement foams: evaluation of emulsion and gelcasting methods

    Directory of Open Access Journals (Sweden)

    E. de Sousa

    2012-12-01

    Full Text Available Em Engenharia Tecidual, a fabricação de scaffolds capazes de guiar o crescimento, a organização e a diferenciação de células no processo de formação de novos tecidos apresenta grande relevância. Várias são as técnicas de processamento para a fabricação desta classe de material: réplica de esponjas poliméricas, incorporação de material orgânico ao pó cerâmico, gelcasting, emulsão, entre outras. Na fabricação de scaffolds focados na terapia de tecidos ósseos, os cimentos de fosfato de cálcio (CFC apresentam grande destaque, pois além de reabsorvíveis, apresentam morfologia e composição química semelhante à fase mineral óssea. Este trabalho tem como objetivo a obtenção de espumas de CFC por meio de duas rotas de processamento, emulsão e gelcasting. As espumas foram caracterizadas quanto suas propriedades físicas e mecânicas e as fases cristalinas formadas após a cura do cimento foram determinadas por difração de raios X. As amostras obtidas por ambos os métodos apresentaram porosidade entre 58-62% e microestrutura constituída de poros aproximadamente esféricos (d50=50-100 µm. A resistência mecânica das amostras variou entre 5,5-1,5 MPa. As fases cristalinas encontradas foram monetita (CaHPO4 e brushita (CaHPO4 2H2O.In Tissue Engineering, the need for scaffolds which are capable of guiding the organization, differentiation and growth of cells leading to the formation of new tissues is highly relevant. For the development of new scaffolds focused on bone tissue therapy, calcium phosphate cements (CPC have great potential, because besides their resorbability, they present morphology and chemical composition similar to the bone mineral phase. Moreover, there are several processing techniques to produce ceramic scaffolds: polymeric sponge replication, incorporation of organic material into the ceramic powder, gelcasting, emulsion, among others. The aim of this work was to obtain CPCs foams by using two

  10. Effect of calcium triphosphate cement on proximal humeral fracture osteosynthesis: a finite element analysis.

    Science.gov (United States)

    Kennedy, Jim; Feerick, Emer; McGarry, Patrick; FitzPatrick, David; Mullett, Hannan

    2013-08-01

    PURPOSE. To measure the effect of void-filling calcium triphosphate cement on the loads at the implant-bone interface of a proximal humeral fracture osteosynthesis using a finite element analysis. METHODS. Finite element models of a 3-part proximal humeral fracture fixed with a plate with and without calcium triphosphate cement augmentation were generated from a quantitative computed tomography dataset of an intact proximal humerus. Material properties were assigned to bone fragments using published expressions relating Young's modulus to local Hounsfield number. Boundary conditions were then applied to the model to replicate the physiological loads. The effect of void-filling calcium triphosphate cement was analysed. RESULTS. When the void was filled with calcium triphosphate cement, the pressure gradient of the bone surrounding the screws in the medial fracture fragment decreased 97% from up to 21.41 to 0.66 MPa. Peak pressure of the fracture planes decreased 95% from 6.10 to 0.30 MPa and occurred along the medial aspect. The mean stress in the screw locking mechanisms decreased 78% from 71.23 to 15.92 MPa. The angled proximal metaphyseal screw had the highest stress. CONCLUSION. Augmentation with calcium triphosphate cement improves initial stability and reduces stress on the implant-bone interface. PMID:24014777

  11. Study of belite calcium sulfo-aluminate cement potential for zinc conditioning: From hydration to durability

    International Nuclear Information System (INIS)

    Calcium silicate cements are widely used for low- and intermediate-level radioactive waste conditioning. However, wastes produced by nuclear activities are very diverse and some of their components may chemically react with cement phases. For instance, ashes resulting from the incineration of technological wastes including neoprene and polyvinylchloride may contain substantial amounts of soluble zinc chloride. This compound is known to strongly delay or inhibit Portland cement setting. One approach to limit adverse cement-waste interactions is to select a binder showing a better compatibility with the waste while keeping cement matrix advantages (low cost, simple process, hydration with water provided by the waste...). This work thus investigates the potential of calcium sulfo-aluminate cement for zinc Zn(II) immobilization. Four aspects were considered: hydration (kinetics and products formed), properties of hydrated binders, mechanisms of zinc retention and durability of the cement pastes (based on leaching experiments and modelling). The influence of three main parameters was assessed: the gypsum content of the cement, the concentration of ZnCl2 and the thermal evolution at early age. It follows that materials based on a calcium sulfo-aluminate cement containing 20% gypsum are interesting candidates for zinc Zn(II) stabilization/solidification: there is no delay in hydration, mineralogy of the hydrated phases is slightly dependent on thermal history, mechanical strength is high, dimensional changes are limited and zinc Zn(II) is well immobilized, even if the cement paste is leached by pure water during a long period (90 d). (author)

  12. Nucleation, growth and evolution of calcium phosphate films on calcite.

    Science.gov (United States)

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. PMID:25233226

  13. 丝素蛋白增强型磷酸钙复合rhBMP-2用于绵羊腰椎椎体间融合的实验研究%Experimental study on lumbar interbody fusion with silk fibroin enhanced calcium phosphate cement composite loaded with recombinant human bone morphogenetic protein-2 in sheep

    Institute of Scientific and Technical Information of China (English)

    陈亮; 顾勇; 陈晓庆; 干旻峰; 朱雪松; 杨惠林; 唐天驷

    2010-01-01

    Objective To evaluate the osteogenic characteristics of an injectable silk fibroin (SF) enhanced calcium phosphate cement (CPC) composite loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) on lumbar interbody fusion in sheep. Methods Twenty-four mature sheep were randomly divided into two groups. Each sheep underwent L1.2, L3.4 and L5.6 lumber interbody fusion, and the three disc spaces were randomly implanted with three of the following materials: SF/CPC, CPC/rhBMP-2, SF/CPC/rhBMP2 and autogenous iliac crest bone. One group was killed at 6 months and the other at 12 months. The fusion segments were observed and analyzed by manual palpation, CT scan, undestructive biomechanical testing, undecalcified histology, and histomorphology. Results The fusion rates of SF/CPC, CPC/rhBMP-2, SF/CPC/rhBMP-2 and autogenous bone assessed by manual palpation were 0, 33.33%, 55.56% and 77.78% respectively at 6 months. At 12 months, the fusion rates improved to 11.11%, 44.44%, 77.78% and 77.78%, respectively.The biomechanical results showed that fusion stiffness was significantly greater in autograft compared with SF/CPC/rhBMP-2, CPC/rhBMP-2, and SF/CPC in 4 degrees of freedom (flexion, extension, right bending, and left bending) at 6 months. The SF/CPC/rhBMP-2 composite showed similar stiffness as autograft, which was significantly greater than CPC/rhBMP-2 and SF/CPC at 12 nonths. Both CPC/rhBMP-2 and SF/CPC/rhBMP-2 showed significantly greater stiffness at 12 months compared with that of at 6 months. The results showed that bone volume was significantly greater in autograft compared with SF/CPC/rhBMP-2, CPC/rhBMP-2, and SF/CPC at 6 months. There was significant difference among ceramic residue among SF/CPC, CPC/rhBMP-2 and SF/CPC/rhBMP-2, with SF/CPC the greatest and SF/CPC/thBMP-2 the least. At 12 months, the bone volume of SF/CPC/rhBMP-2 composite was comparable with autograft, and greater than that of CPC/rhBMP-2 and SF/CPC. The bone volume of SF/CPC, CPC

  14. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  15. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    OpenAIRE

    Hongfang Sun; Zishanshan Li; Jing Bai; Shazim Ali Memon; Biqin Dong; Yuan Fang; Weiting Xu; Feng Xing

    2015-01-01

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (...

  16. Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA) cement blends

    OpenAIRE

    Herrmann, P

    2014-01-01

    Calcium sulfoaluminate (CSA) is a comparatively new cementitious material that is mainly established in China where it is produced in a large scale. CSA cement is not covered by European standards. However, it provides different beneficial properties such as rapid hardening and high early strength development. Furthermore, the usage of CSA cement can save energy during production process in comparison to established cementitious materials. Therefore it is also more environmental friendly. ...

  17. Corrosion Resistance of Calcium Aluminate Cement Concrete Exposed to a Chloride Environment

    OpenAIRE

    Ki Yong Ann; Chang-Geun Cho

    2014-01-01

    The present study concerns a development of calcium aluminate cement (CAC) concrete to enhance the durability against an externally chemically aggressive environment, in particular, chloride-induced corrosion. To evaluate the inhibition effect and concrete properties, CAC was partially mixed with ordinary Portland cement (OPC), ranging from 5% to 15%, as a binder. As a result, it was found that an increase in the CAC in binder resulted in a dramatic decrease in the setting time of fresh concr...

  18. Calcium aluminate cements for nuclear wastes conditioning: literature review and new approaches

    International Nuclear Information System (INIS)

    Encapsulate the diverse wastes produced by nuclear activities in cementitious binders may be very complex due to the adverse cement-waste interactions. Consequences are for example: strong delay, poor mechanical strength or low resistance to leaching. In this case, pure or blended calcium aluminate cements (CACs) may be valuable alternatives. This paper summarises the properties of CAC and blended CAC system and gives some examples from literature where calcium aluminate cements are used for conventional wastes or nuclear wastes conditioning. Moreover, it proposes another approach: using CAC not only as a binder, but also as a chemical reactant. After dissolution calcium aluminates ions can combine with many chemical species (sulphates, nitrates, chlorides, alkali metals, heavy metals) to precipitate specific hydrates allowing chemical trapping of these species. An example is given for the purification of Ni and Zn nitrates solutions. (authors)

  19. The flame photometric determination of calcium in phosphate, carbonate, and silicate rocks

    Science.gov (United States)

    Kramer, H.

    1957-01-01

    A flame photometric method of determining calcium in phosphate, carbonate, and silicate locks has been developed Aluminum and phosphate interference was overcome by the addition of a large excess of magnesium. The method is rapid and suitable for routine analysis Results obtained are within ?? 2% of the calcium oxide content. ?? 1957.

  20. CALCIUM ORTHOPHOSPHATES HYDRATES: FORMATION, STABILITY AND INFLUENCE ON STANDARD PROPERTIES OF PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    Kaziliunas A.

    2013-12-01

    Full Text Available Preparation of phosphogypsum to produce the binders requires a much higher input than preparation of natural gypsum stone. This makes it uncompetitive material. The investigations presented therein are meant to reduce this input by looking for the ways of rendering impurities harmless. Soluble acid orthophosphates are the main harmful impurity of phosphogypsum. The studies show that dry insoluble calcium orthophosphates hydrates (1.09 % and 2.18 % P2O5 in gypsum have little effect on W/C, setting times and soundness of Portland cement pastes. Insoluble calcium orthophosphates hydrates {CaHPO4∙2H2O, Ca8(HPO42(PO44∙5H2O and Ca9(HPO4(PO45(OH∙4H2O} formed in acidic medium (pH = 4.2 - 5.9 have been destroyed in alkaline medium and reduce standard compressive strength of cement up to 28 %. Calcium orthophosphates hydrates of hydroxyapatite group are stable in alcaline medium, while in dry state they reduce the standard compressive strength of cement until 10 %, but their suspensions prolong setting times of Portland cement as soluble orthophosphates – 2 - 3 times. Alkalis in cement increase pH of paste, but do not change the process of formation of calcium orthophosphates hydrates of hydroxyapatite group: it takes place through an intermediate phase - CaHPO4·2H2O, whose transformation into apatite lasts for 2 - 3 months.

  1. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D;

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  2. Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement.

    Science.gov (United States)

    Silva, Emmanuel Jnl; Carvalho, Nancy Kudsi; Zanon, Mayara; Senna, Plínio Mendes; DE-Deus, Gustavo; Zuolo, Mário Luis; Zaia, Alexandre Augusto

    2016-06-14

    This study was designed to investigate the resistance to dislodgment provided by MTA HP, a new high-plasticity calcium silicate-based cement. Biodentine and White MTA Angelus were used as reference materials for comparison. Three discs 1 ± 0.1 mm thick were obtained from the middle third of the roots of 5 maxillary canines. Three 0.8-mm-wide holes were drilled on the axial surface of each root disc. Standardized irrigation was performed. Then the holes were dried with paper points and filled with one of the three tested cements. The filled dental slices were immersed in a phosphate-buffered saline (PBS) solution (pH 7.2) for 7 days before the push-out assessment. The Kruskal-Wallis test was applied to assess the effect of each endodontic cement on the push-out bond strength. Mann-Whitney with Bonferroni correction was used to isolate the differences. The alpha-type error was set at 0.05. All specimens had measurable push-out values and no premature failure occurred. There were significant differences among the materials (p <0.05). The Biodentine specimens had the highest push-out bond strength values (p < 0.05). MTA HP had significantly higher bond strength than White MTA (p < 0.05). MTA HP showed better push-out bond strength than its predecessor, White MTA; however, Biodentine had higher dislodgment resistance than both MTA formulations. PMID:27305515

  3. Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement.

    Science.gov (United States)

    Silva, Emmanuel Jnl; Carvalho, Nancy Kudsi; Zanon, Mayara; Senna, Plínio Mendes; DE-Deus, Gustavo; Zuolo, Mário Luis; Zaia, Alexandre Augusto

    2016-06-14

    This study was designed to investigate the resistance to dislodgment provided by MTA HP, a new high-plasticity calcium silicate-based cement. Biodentine and White MTA Angelus were used as reference materials for comparison. Three discs 1 ± 0.1 mm thick were obtained from the middle third of the roots of 5 maxillary canines. Three 0.8-mm-wide holes were drilled on the axial surface of each root disc. Standardized irrigation was performed. Then the holes were dried with paper points and filled with one of the three tested cements. The filled dental slices were immersed in a phosphate-buffered saline (PBS) solution (pH 7.2) for 7 days before the push-out assessment. The Kruskal-Wallis test was applied to assess the effect of each endodontic cement on the push-out bond strength. Mann-Whitney with Bonferroni correction was used to isolate the differences. The alpha-type error was set at 0.05. All specimens had measurable push-out values and no premature failure occurred. There were significant differences among the materials (p Biodentine specimens had the highest push-out bond strength values (p Biodentine had higher dislodgment resistance than both MTA formulations.

  4. Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate

    International Nuclear Information System (INIS)

    Highlights: • Dicalcium silicate can improve osteogenic activity of calcium sulfate cement. • The higher the calcium sulfate content, the shorter the setting time in the composite cement. • The results were useful for designing calcium-based cement with optimal properties. -- Abstract: An ideal bone graft substitute should have the same speed of degradation as formation of new bone tissue. To improve the properties of calcium sulfate hemihydrate (CSH) featured for its rapid resorption, a low degradation material of dicalcium silicate (DCS) was added to the CSH cement. This study examined the effect of DCS (20, 40, 60 and 80 wt%) on the in vitro physicochemical properties and osteogenic activities of the calcium-based composite cements. The diametral tensile strength, porosity and weight loss of the composite cements were evaluated before and after soaking in a simulated body fluid (SBF). The osteogenic activities, such as proliferation, differentiation and mineralization, of human mesenchymal stem cells (hMSCs) seeded on cement surfaces were also examined. As a result, the greater the DCS amount, the higher the setting time was in the cement. Before soaking in SBF, the diametral tensile strength of the composite cements was decreased due to the introduction of DCS. On 180-day soaking, the composite cements containing 20, 40, 60 and 80 wt% DCS lost 80%, 69%, 61% and 44% in strength, respectively. Regarding in vitro bioactivity, the DCS-rich cements were covered with clusters of apatite spherulites after soaking for 7 days, while there was no formation of apatite spherulites on the CSH-rich cement surfaces. The presence of DCS could reduce the degradation of the CSH cements, as evidenced in the results of weight loss and porosity. More importantly, DCS may promote effectively the cell proliferation, proliferation and mineralization. The combination of osteogenesis of DCS and degradation of CSH made the calcium-based composite cements an attractive choice for

  5. Coating of calcium phosphate on biometallic materials by electrophoretic deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    Although biometallic materials have been used as bone implant materials for a long time, they are still detected as foreign bodies by human immune system. Calcium phosphate coating, especially hydroxyapatite(HA)coating attracts special attention due to its good biocompatibility. Being one of the effective methods used to deposit HA coating onto the metallic implant, the electrophoretic deposition(EPD) was reviewed in detail, including the process of EPD, the advantages and disadvantages, the important processing factors and the microstructure and mechanical properties of the coating. Research results on the processing and the coating show potential application of EPD process to the biomedical materials surface modification. In addition, the nanoparticulate HA coating as a new trend in HA coating was also introduced.

  6. Calcium Silicate-Based Cements Associated with Micro- and Nanoparticle Radiopacifiers: Physicochemical Properties and Bioactivity

    OpenAIRE

    BOSSO-MARTELO, Roberta; Juliane Maria GUERREIRO-TANOMARU; Viapiana, Raqueli; Berbert, Fábio Luis Camargo Vilella; Basso Bernardi, Maria Inês; Tanomaru-Filho, Mario

    2015-01-01

    Objective. The aim of this study was to evaluate the physicochemical properties and bioactivity of two formulations of calcium silicate-based cements containing additives (CSCM) or resin (CSCR), associated with radiopacifying agents zirconium oxide (ZrO2) and niobium oxide (Nb2O5) as micro- and nanoparticles; calcium tungstate (CaWO4); and bismuth oxide (Bi2O3). MTA Angelus was used as control. Methods. Surface features and bioactivity were evaluated by scanning electron microscopy and the ch...

  7. Particle size of a new endodontic cement compared to Root MTA and calcium hydroxide

    OpenAIRE

    Soheilipour, Elham; Kheirieh, Sanam; Madani, Majid; Akbarzadeh Baghban, Alireza; Asgary, Saeed

    2009-01-01

    INTRODUCTION: Particle size and distribution can influence the properties of materials. This study analyzed and compared the particle size of Root MTA, calcium hydroxide (CH), and a new endodontic cement called calcium enriched material (CEM). MATERIALS AND METHODS: The particle size of each material was analyzed three times using 0.05 mg of test material with a particle size analyzer. The particle size distribution ranges, the cumulative percentage and the mean of particle sizes were calcula...

  8. 椎弓根螺钉系统加自固化磷酸钙人工骨灌注治疗胸腰椎骨折%Treatment of thoracolumbar vertebrae fractures with vertebral pedicle screw system and artificial bones filled with autosolidification calcium phosphate cement

    Institute of Scientific and Technical Information of China (English)

    曾忠友; 金才益; 陆金荣; 王斌; 徐阿炳

    2001-01-01

    目的探讨应用椎弓根螺钉系统及自固化磷酸钙人工骨(ACPC)灌注治疗胸腰椎骨折的效果。方法 1999年4月始,选择18例胸腰椎骨折患者,其中压缩型12例,爆裂型6例。伤后6 h~7 d行椎弓根螺钉系统固定、复位,同时加ACPC灌注伤椎。结果 18例患者除2例神经功能A级脊髓神经症状无改善外,其余均有Ⅰ~Ⅲ级的恢复,脊柱后凸角平均恢复21°,伤椎前缘高度平均恢复至98%,伤椎后缘侵入椎管骨块明显回纳。随访10~16个月,平均11.6个月。随访期间无内固定松动及断裂现象,无慢性腰背痛,伤椎高度及脊柱生理弧度无丢失。结论胸腰椎压缩型骨折是使用ACPC的最佳适应证。如术前影像检查明确有双侧椎弓根骨折,则为禁忌。只要手术适应证选择适当,术中操作仔细,椎弓根螺钉系统加ACPC灌注治疗胸腰椎骨折是一有效而又安全的方法,特别是后期伤椎高度和脊柱生理弧度得到很好的维持。%Objective To study the effect of vertebral pedicle screw system and artificial bones filled with autosolidification calcium phosphate cement(ACPC) on thoracolumbar vertebrae fractures.  Methods A total of 18 patients with thoracolumbar vertebrae fractures and with operative indications were treated with vertebral pedicle screw system and artificial bones filled with ACPC.  Results  Except 2 patients with the spinal cord function for Grade A, all the patients had the average improvement of Degree I to Degree Ⅲ on the aspect of spinal cord function. The kyphotic angle recovered averagely for 21°, the anterior height of the injured vertebral body was averagely restored to 98% of the normal, and the bone fragments that invaded into the spinal canal were obviously restored. During the following-up, loose or breakage of the internal fixation was not found, and there was no chronic lumbar back pain or loss of the normal spine curve and the

  9. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis

    DEFF Research Database (Denmark)

    Bro, S; Rasmussen, R A; Handberg, J;

    1998-01-01

    into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium carbonate (US$6.00/d v US$0.65/d). Calcium ketoglutarate may be an effective and safe alternative to treatment with aluminum......The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main...... outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate...

  10. Penggunaan batuan fosfat NDCP (natural defluorinated calcium phosphate sebagai pengganti dicalcium phosphate dalam ransom ayam broiler

    Directory of Open Access Journals (Sweden)

    Arnold P. Sinurat

    1995-08-01

    Full Text Available An experiment was conducted to study the utilization of local rock phosphate or natural defluorinated calcium phosphate (NDCP as phosphorus source for broilers by using the imported dicalcium phosphate (DCP as a reference. The study was designed by formulating 6 experimental diets which consist of 2 phosphorus sources (DCP dan NDCP and 3 dietary total P levels (0 .55 ; 0.65 and 0 .75%. Each diet was fed to 60 chickens (10 replicates with 6 birds each from three day old to 6 weeks of age. Parameters observed were feed consumption, body weight gain, mortality, Ca and P retention, and ash content of tibia bones. Results showed that dietary phosphorus levels (0.55 to 0.75% did not significantly affect body weight gain, feed consumption, and mortalities. However, better feed conversion ratio was obtained when dietary phosphorus level was 0.55%. The NDCP treated birds could significantly gain heavier weight compared with those received DCP, although this improvement was also followed by an increase in the feed consumption. The relative biological value of phosphorus in NDCP was 101 `7n. It is concluded that NDCP can he used in broilers diet to replace DCP as phosphorus source.

  11. Porosity distribution in root canals filled with gutta percha and calcium silicate cement

    NARCIS (Netherlands)

    A.T. Moinzadeh; W. Zerbst; C. Boutsioukis; H. Shemesh; P. Zaslansky

    2015-01-01

    Objective Gutta percha is commonly used in conjunction with a sealer to produce a fluid-tight seal within the root canal fillings. One of the most commonly used filling methods is lateral compaction of gutta percha coupled with a sealer such as calcium silicate cement. However, this technique may re

  12. Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: cement hydration, strength development and volume stability.

    Science.gov (United States)

    Berger, Stéphane; Cau Dit Coumes, Céline; Le Bescop, Patrick; Damidot, Denis

    2011-10-30

    The potential of calcium sulfoaluminate (CSA) cement was investigated to solidify and stabilize wastes containing large amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration). Hydration of pastes and mortars prepared with a 0.5 mol/L ZnCl(2) mixing solution was characterized over one year as a function of the gypsum content of the binder and the thermal history of the material. Blending the CSA clinker with 20% gypsum enabled its rapid hydration, with only very small delay compared with a reference prepared with pure water. It also improved the compressive strength of the hardened material and significantly reduced its expansion under wet curing. Moreover, the hydrates assemblage was less affected by a thermal treatment at early age simulating the temperature rise and fall occurring in a large-volume drum of cemented waste. Fully hydrated materials contained ettringite, amorphous aluminum hydroxide, strätlingite, together with AFm phases (Kuzel's salt associated with monosulfoaluminate or Friedel's salt depending on the gypsum content of the binder), and possibly C-(A)-S-H. Zinc was readily insolubilized and could not be detected in the pore solution extracted from cement pastes. PMID:21889260

  13. The utilization of rock phosphate (natural defluorinated calcium phosphate or NDCP in laying hens diet to replace dicalcium phosphate

    Directory of Open Access Journals (Sweden)

    A.P Sinurat

    1996-06-01

    Full Text Available An experimentwas conducted to study the utilization of local rock phosphate or natural defluorinated calcium phosphate (NDCP as phosphorus source for layer chickens by using the imported dicalcium phosphate (DCP as a reference. Eight experimental diets consisted of 2 source of phosphorus (DCP and NDCP and 4 dietary total P levels (0.4, 0.5, 0.6 and 0.7% were formulated. Each diet was fed to 24 pullets (6 replicates with 4 birds each from 20 weeks of age to 14 weeks of egg production. Observations were made on feed consumption, egg production, egg weight, mortality, egg quality, Ca and P retention and ash content of tibial bones . Results showed no significant effect of different source and level of phosphorus tested on egg production (% HD, feed consumption, egg weight and mortality rates . Egg shell thickness was depressed in NDCP diet as compared with DCP, however this only occurred at firstmonth of production. It is concluded that the NDCP can be used in layers diet to replace DCP as phosphorus source. The relative biological value of phosphorus inNDCP is 96% for layers.

  14. Stabilisation of clayey soils with high calcium fly ash and cement

    Energy Technology Data Exchange (ETDEWEB)

    S. Kolias; V. Kasselouri-Rigopoulou; A. Karahalios [National Technical University of Athens, Athens (Greece)

    2005-02-01

    The effectiveness of using high calcium fly ash and cement in stabilising fine-grained clayey soils (CL,CH) was investigated in the laboratory. Strength tests in uniaxial compression, in indirect (splitting) tension and flexure were carried out on samples to which various percentages of fly ash and cement had been added. Modulus of elasticity was determined at 90 days with different types of load application and 90-day soaked CBR values are also reported. Pavement structures incorporating subgrades improved by in situ stabilisation with fly ash and cement were analyzed for construction traffic and for operating traffic. These pavements are compared with conventional flexible pavements without improved subgrades and the results clearly show the technical benefits of stabilising clayey soils with fly ash and cement. In addition TG-SDTA and XRD tests were carried out on certain samples in order to study the hydraulic compounds, which were formed.

  15. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    Energy Technology Data Exchange (ETDEWEB)

    Champenois, Jean-Baptiste; Dhoury, Mélanie [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze Cedex (France); Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze Cedex (France); Mercier, Cyrille [LMCPA, Université de Valenciennes et du Hainaut Cambrésis, 59600 Maubeuge (France); Revel, Bertrand [Centre Commun de Mesure RMN, Université Lille1 Sciences Technologies, Cité Scientifique, 59655 Villeneuve d' Ascq Cedex (France); Le Bescop, Patrick [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France); Damidot, Denis [Ecole des Mines de Douai, LGCgE-GCE, 59508 Douai (France)

    2015-04-15

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorly crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.

  16. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    International Nuclear Information System (INIS)

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorly crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay

  17. Preparation and in vitro evaluation of strontium-doped calcium silicate/gypsum bioactive bone cement

    International Nuclear Information System (INIS)

    The combination of two or more bioactive components with different biodegradability could cooperatively improve the physicochemical and biological performances of the biomaterials. Here we explore the use of α-calcium sulfate hemihydrate (α-CSH) and calcium silicate with and without strontium doping (Sr-CSi, CSi) to fabricate new bioactive cements with appropriate biodegradability as bone implants. The cements were fabricated by adding different amounts (0–35 wt%) of Sr-CSi (or CSi) into the α-CSH-based pastes at a liquid-to-solid ratio of 0.4. The addition of Sr-CSi into α-CSH cements not only led to a pH rise in the immersion medium, but also changed the surface reactivity of cements, making them more bioactive and therefore promoting apatite mineralization in simulated body fluid (SBF). The impact of additives on long-term in vitro degradation was evaluated by soaking the cements in Tris buffer, SBF, and α-minimal essential medium (α-MEM) for a period of five weeks. An addition of 20% Sr-CSi to α-CSH cement retarded the weight loss of the samples to 36% (in Tris buffer), 43% (in SBF) and 54% (in α-MEM) as compared with the pure α-CSH cement. However, the addition of CSi resulted in a slightly faster degradation in comparison with Sr-CSi in these media. Finally, the in vitro cell-ion dissolution products interaction study using human fetal osteoblast cells demonstrated that the addition of Sr-CSi improved cell viability and proliferation. These results indicate that tailorable bioactivity and biodegradation behavior can be achieved in gypsum cement by adding Sr-CSi, and such biocements will be of benefit for enhancing bone defect repair. (paper)

  18. The Mechanical Properties and Hydration Characteristics of Cement Pastes Containing Added-calcium Coal Gangue

    Institute of Scientific and Technical Information of China (English)

    LI Dongxu; SONG Xuyan

    2008-01-01

    The mechanical properties of several kinds of coal gangue calcined with limestone were Researched so as to find the optimum way of calcinations with limestone. Mierostructure and property of hydration process of cement pastes containing added-calcium coal gangue were analyzed by means of scanning electron microscope (SEM) and method of mercury in trusion poremeasurement (MIP), etc. The experiment can approve those results: when proper amounst of gypsum and fluorite were taken as mineralizers in the course of calcinations of added-calcium coal gangue, activity of coal gangue can be effectively improved. The results of mechanical property and structural characteristic such as hydration process, hydration product and microstructure etc. of cement pastes containing added-calcium coal gangue are consistent.

  19. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  20. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    OpenAIRE

    Garcia-Maté, Marta; De la Torre, Angeles G; León-Reina, Laura; Aranda, Miguel A. G.; Santacruz, Isabel

    2013-01-01

    The main objective of this work is to study the hydration and properties of calciumsulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied paramet...

  1. Effect of pH and Lidocaine on the Compressive Strength of Calcium Enriched Mixture Cement

    Directory of Open Access Journals (Sweden)

    Sobhnamayan F

    2015-12-01

    Full Text Available Statement of Problem: The pH of the human abscess has been measured as low as 5.0. This low pH could potentially inhibit setting reactions, affect adhesion, or increase the solubility of root end filling materials hence affect the compressive strength. Moreover, root end filling materials might expose or even mix with lidocaine HCL during periapical surgery. Objectives: The aim of this in vitro study was to evaluate the effect of acidic pH and lidocaine on the compressive strength of calcium-enriched mixture (CEM. Materials and Methods: CEM was mixed according to the manufacturer’s instructions or with lidocaine (L, and condensed into 6 × 4 mm split moulds. The samples were exposed to phosphate buffered saline (PBS at pH 5 or 7.4 for 7 or 28 days. Cylindrical blocks of CEM (total number = 120 and 15 for each group were subjected to compressive strength test using a universal testing machine. Data were analysed using three-factor analysis of variance (ANOVA. Results: Regardless of pH and time, significant differences were not found between lidocaine groups and the groups that were mixed according to the manufacturer’s instruction (p = 0.083. For both mixing agents, regardless of time, there were no significant differences between the two pH levels (p = 0.157. Regardless of the material and pH, there was a significant increase in the compressive strength from days 7 to 28 (p < 0.001. Conclusions: Mixtures with lidocaine and exposure to an acidic environment had no adverse effects on the compressive strength of CEM Cement.

  2. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis.

    Science.gov (United States)

    Bro, S; Rasmussen, R A; Handberg, J; Olgaard, K; Feldt-Rasmussen, B

    1998-02-01

    The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate calcium concentration of 1.25 mmol/L and a fixed alfacalcidol dose for at least 2 months. All had previously tolerated therapy with calcium carbonate. Of the 19 patients included, 10 completed both treatment arms. After 12 weeks of therapy, the mean (+/-SEM) plasma ionized calcium level was significantly lower in the ketoglutarate arm compared with the calcium carbonate arm (4.8+/-0.1 mg/dL v 5.2+/-0.1 mg/dL; P = 0.004), whereas the mean plasma phosphate (4.5+/-0.3 mg/dL v 5.1+/-0.1 mg/dL) and PTH levels (266+/-125 pg/mL v 301+/-148 pg/mL) did not differ significantly between the two treatment arms. Supplemental aluminum-aminoacetate was not required during calcium ketoglutarate treatment, while two patients needed this supplement when treated with calcium carbonate. Five of 17 (29%) patients were withdrawn from calcium ketoglutarate therapy within 1 to 2 weeks due to intolerance (anorexia, vomiting, diarrhea, general uneasiness), whereas the remaining 12 patients did not experience any side effects at all. The five patients with calcium ketoglutarate intolerance all had pre-existing gastrointestinal symptoms; four of them had received treatment with cimetidine or omeprazol before inclusion into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium

  3. Cytotoxicity and genotoxicity of calcium silicate-based cements on an osteoblast lineage

    Directory of Open Access Journals (Sweden)

    Ana Lívia GOMES-CORNÉLIO

    2016-01-01

    Full Text Available Abstract Several calcium silicate-based biomaterials have been developed in recent years, in addition to Mineral Trioxide Aggregate (MTA. The aim of this study was to evaluate the cytotoxicity, genotoxicity and apoptosis/necrosis in human osteoblast cells (SAOS-2 of pure calcium silicate-based cements (CSC and modified formulations: modified calcium silicate-based cements (CSCM and three resin-based calcium silicate cements (CSCR1 (CSCR 2 (CSCR3. The following tests were performed after 24 hours of cement extract exposure: methyl-thiazolyl tetrazolium (MTT, apoptosis/necrosis assay and comet assay. The negative control (CT- was performed with untreated cells, and the positive control (CT+ used hydrogen peroxide. The data for MTT and apoptosis were submitted to analysis of variance and Bonferroni’s posttest (p < 0.05, and the data for the comet assay analysis, to the Kruskal-Wallis and Dunn tests (p < 0.05. The MTT test showed no significant difference among the materials in 2 mg/mL and 10 mg/mL concentrations. CSCR3 showed lower cell viability at 10 mg/mL. Only CSC showed lower cell viability at 50 mg/mL. CSCR1, CSCR2 and CSCR3 showed a higher percentage of initial apoptosis than the control in the apoptosis test, after 24 hours exposure. The same cements showed no genotoxicity in the concentration of 2 mg/mL, with the comet assay. CSC and CSCR2 were also not genotoxic at 10 mg/mL. All experimental materials showed viability with MTT. CSC and CSCR2 presented a better response to apoptosis and genotoxicity evaluation in the 10 mg/mL concentration, and demonstrated a considerable potential for use as reparative materials.

  4. Initial Stability Study of Calcium Phosphate Coated Dental Implants

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Thin film of biodegradable calcium phosphate coated on threaded commercially pure titanium( cp- Ti) dental implants has been investigated as one of alternatives to eliminate the problem of the long-term instability of plasma sprayed HA coated implants. In order to compare in-vivo hone-to-implant response behavior among as-machined, HA coated and CMP coated groups, each group was implanted into New Zealand white mature male rabbits for 2 and 6 weeks, and then in- vivo biological behavior was examined in terms of H&E staining. Initial stability and removable torques of implants were compared among three groups. Measured removable torque of CMP coated specimen at 6 wceks after implantation was significantly higher than that of non-coated group, but slightly lower than that of HA coated group, without any inflammatory response at the surrounding of the implants. The initial stability (ISQ value; implant stability quotient ) of CMP coated specimen at 2 weeks after implantation was slightly lower than that of HA coated group and significantly higher than that of non-coated group. However, after 6 weeks, ISQ value of CMP coated group was slightly higher than that of HA coated group and significantly higher than that of non-coated group.

  5. Degree of vinyl conversion in experimental amorphous calcium phosphate composites

    Science.gov (United States)

    Tarle, Z.; Knežević, A.; Matošević, D.; Škrtić, D.; Ristić, M.; Prskalo, K.; Musić, S.

    2009-04-01

    An experimental dental composite, based on amorphous calcium phosphate (ACP) with the potential to arrest caries development and regenerate mineral-deficient tooth structures has recently been developed. The aim of this study was to assess the degree of vinyl conversion (DVC) attained in experimental composites based on zirconia-modified ACP. Photo-activated resins were based on ethoxylated bisphenol A dimethacrylate (EBPADMA) [ETHM series with varying EBPADMA/triethylene glycol dimethacrylate (TEGDMA) molar ratios assigned 0.5-ETHM I, 0.85-ETHM II and 1.35-ETHM III], or 2,2-bis[p-(2'-hydroxy-3'-methacryloxypropoxy)phenyl]-propane (Bis-GMA) [BTHZ series]. To asses a possible effect of filler particle size on DVC, composites containing 60 mass % resin and 40 mass % of either milled ACP (mACP; median diameter d m = 0.9 μm) or coarse ACP (cACP; d m = 6.0 μm) were prepared, and irradiated with LED curing unit for 40 s. The DVC was calculated as the % change in the ratio of the integrated peak areas between the aliphatic and aromatic absorption bands determined by Fourier transform infrared spectroscopy (FTIR). The highest DVCs values were attained in mACP-BTHZ, cACP-BTHZ and mACP-ETHM III formulations. DVC of tested ACP composites (on average (76.76 ± 4.43)%) compares well with or exceeds DVCs values reported for the majority of commercial materials.

  6. Structure and properties of silver-doped calcium phosphate nanopowders

    Indian Academy of Sciences (India)

    RAVINDER PAL SINGH; UMA BATRA

    2016-09-01

    Stable and antimicrobial silver-doped calcium phosphate nanopowders were synthesized using sol–gel route by setting the atomic ratio of Ag/(Ag +Ca) at 3%and (Ca $+$ Ag)/P at 1.67. Prior to synthesis of nanopowders, influence of time of hydrolyzation on pH and density of precursors were comprehensively studied. Hydrolyzation time was found to have profound influence on pH of constituent precursors. Sufficient hydrolysis resulted in early maturation of sol. Scanning electron microscopy (SEM) showed the heterogeneous and agglomerated state of particles with average size of $3.9\\pm 1.9$ $\\mu$m. Energy dispersive X-ray spectroscopy (EDX) presented uniform distributionof O, Ag, Ca and P elements in nanopowder. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of apatitic structure, whereas X-ray diffraction (XRD) revealed the multiphase constitution of nanopowdersprimarily composed of $\\beta$-TCP, Ag and other hybrid phases. Crystallite size and lattice parameters of $\\beta$-TCP and Ag phases were increased with the rise in calcination temperature. Thermogravimetric analysis (TGA) showed threeregions of weight change and indicated the high thermal stability of nanopowders. Disk diffusion method was used to test the antimicrobial resistance of nanopowders against Escherichia coli and Staphylococcus aureus bacterial strains. All nanopowders exhibited antimicrobial resistance against both E. coli and S. aureus bacteria.

  7. Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings

    Science.gov (United States)

    Ievlev, V. M.; Kostyuchenko, A. V.; Darinskii, B. M.; Barinov, S. M.

    2014-02-01

    The hardness of thin (1.0-4.0 μm) hydroxyapatite coatings with different structures (nanocrystalline, amorphous-crystalline, and amorphous) grown by rf magnetron sputtering on Ti and Si plates has been studied using the nanoindentation method. All the grown structures are characterized by the strain which has reversible and irreversible components. The hardness of nanocrystalline coatings (about 10 GPa) corresponds to the average hardness of hydroxyapatite single crystals. The structure of nanocrystalline coatings in the indentation zone and outside it has been investigated and changes in the structure under the indenter have been revealed using high-resolution transmission electron microscopy. From a comparison of the hardnesses of coatings with different structures and based on an analysis of the intragranular structure, it has been assumed that the plastic deformation occurs according to a dislocation-free mechanism. The plastic deformation is interpreted in terms of the cluster representation of the hydroxyapatite structure and amorphous calcium phosphates of the same elemental composition and cluster-boundary sliding during the deformation.

  8. Authigenic dolomite cementation in the Upper Cretaceous Phosphate Formation, Western Desert, Egypt

    Science.gov (United States)

    Rifai, Rifai I.; Shaaban, Mohamad N.

    2007-12-01

    The Upper Cretaceous Phosphate Formation in the Western Desert of Egypt displays a characteristic facies association that includes marine phosphorites interbedded with black shales and glauconitic sandstones. The upper part of the formation is characterized by the presence of thin phosphatic beds, which are filled-extensively-with disordered and non stoichiometric (mean MgCO 3 = 41.4 ± 0.34 mol%) authigenic dolomite cement. SEM and the back scattered images of these coarse crystalline dolomite cements reveal that they display planar euhedral crystal boundaries, polymodal crystal size distribution and variable inclusion pattern. The relatively low and wide ranged δ18O (- 0.87 to - 4.15‰ VPDB) values of the dolomite cements coupled with their depleted Sr (mean = 187 ± 26 ppm) and high iron and manganese values (mean = 6851 ± 554 ppm and 11599 ± 229 ppm respectively) invoke that they were formed from mixed hypo-saline fluids within a mixing marine-meteoric zone probably during a low stand period at the vicinity of the Maastrichtian/Early Tertiary unconformity. Meanwhile, their negative δ13C (- 1.31 to - 3.56‰ VPDB) values argue for a possible involvement of isotopically light carbon, derived from degradation of organic matter, during their precipitation.

  9. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts.

    Science.gov (United States)

    Sheikh, Zeeshan; Zhang, Yu Ling; Grover, Liam; Merle, Géraldine E; Tamimi, Faleh; Barralet, Jake

    2015-10-01

    There are two types of DCP: dihydrated (brushite) and anhydrous (monetite). After implantation, brushite converts to hydroxyapatite (HA) which resorbs very slowly. This conversion is not observed after implantation of monetite cements and result in a greater of resorption. The precise mechanisms of resorption and degradation however of these ceramics remain uncertain. This study was designed to investigate the effect of: porosity, surface area and hydration on in vitro degradation and in vivo resorption of DCP. Brushite and two types of monetite cement based grafts (produced by wet and dry thermal conversion) were aged in phosphate buffered saline (PBS) and bovine serum solutions in vitro and were implanted subcutaneously in rats. Here we show that for high relative porosity grafts (50-65%), solubility and surface area does not play a significant role towards in vitro mass loss with disintegration and fragmentation being the main factors dictating mass loss. For grafts having lower relative porosity (35-45%), solubility plays a more crucial role in mass loss during in vitro ageing and in vivo resorption. Also, serum inhibited dissolution and the formation of HA in brushite cements. However, when aged in PBS, brushite undergoes phase conversion to a mixture of octacalcium phosphate (OCP) and HA. This phase conversion was not observed for monetite upon ageing (in both serum and PBS) or in subcutaneous implantation. This study provides greater understanding of the degradation and resorption process of DCP based grafts, allowing us to prepare bone replacement materials with more predictable resorption profiles.

  10. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    Science.gov (United States)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  11. Reflections on the Mechanism of Calcium Phosphate Nucleation on Titanium in Simulated Body Fluids

    Institute of Scientific and Technical Information of China (English)

    F. T. Cheng

    2005-01-01

    The results and main findings of studies reported in the literature in relation to the deposition of calcium phosphate on Ti in simulated body fluids are summarized. The effects of the surface hydroxyl groups and the sign of surface charge on the nucleation of calcium phosphate are reviewed. One major controversy among the conclusions of different studies is the order of adsorption of the calcium ions and the phosphate ions in the initial stage of immersion. A simple model based on the amphoteric nature of the hydroxyl groups on Ti is proposed in an attempt to delineate the nucleation process for calcium phosphate on Ti in simulated body fluids. HPO42- ions interact with the hydroxyl groups via ion exchange and/or electrostatic attraction, and Ca2+ ions, via electrostatic attraction only. There is no preferential order of adsorption. Seemingly inconsistent results in different studies possibly arise from different prior treatments of the samples, which affect the adsorption properties.

  12. Towards understanding biomineralization:calcium phosphate in a biomimetic minerallzation process

    Institute of Scientific and Technical Information of China (English)

    Yu-rong CAI; Rui-kang TANG

    2009-01-01

    Biomineralization processes result in organic/inorganic hybrid materials with complex shapes,hiemrchi-cal structures.and superior matefial properties. Recent developments in biominemlization and biomatarials have demonstrated that calcium phosphate particles play an important role in the formation of hard tissues in nature. In this paper,current concepts in biominemlization,such as nano assembly,biomimetic shell structure,and their applications are introduced. It is confirmed experimentally that enamel-or bone-liked apatita can be achieved by oriented aggregations using nano calcium phosphates as starting matarials. The assembly of calcium phosphate can be either promoted or inhibited by diflerent biomolecules so that the kinetics can he regulated biologically.In this paper,the role of nano calcium phosphate in tissue repair is highligllted Furthermore,a new,interesting result on biomimetie mineralization 1s Introduced,which can offer an artificial shell for living cells via a biomimatic method .

  13. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    Energy Technology Data Exchange (ETDEWEB)

    Han, I-H [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Lee, I-S [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Song, J-H [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, M-H [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Park, J-C [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, G-H [Korea Institute of Machinery and Materials, Chang-Won 641-010 (Korea, Republic of); Sun, X-D [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chung, S-M [Implantium Research Center, Seoul 135-879 (Korea, Republic of)

    2007-09-15

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO{sub 3} concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  14. Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration

    NARCIS (Netherlands)

    Cardoso, D.A.; Beucken, J.J.J.P van den; Both, L.L.; Bender, J.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    An emerging approach toward development of injectable, self-setting, and fully biodegradable bone substitutes involves the combination of injectable hydrogel matrices with a dispersed phase consisting of nanosized calcium phosphate particles. Here, novel injectable composites for bone regeneration h

  15. Simplified estimates of ion-activity products of calcium oxalate and calcium phosphate in mouse urine.

    Science.gov (United States)

    Tiselius, Hans-Göran; Ferraz, Renato Ribeiro Nogueira; Heilberg, Ita Pfeferman

    2012-08-01

    This study aimed at formulating simplified estimates of ion-activity products of calcium oxalate (AP(CaOx)) and calcium phosphate (AP(CaP)) in mouse urineto find the most important determinants in order to limit the analytical work-up. Literature data on mouse urine composition was used to determine the relative effect of each urine variable on the two ion-activity products. AP(CaOx) and AP(CaP) were calculated by iterative approximation with the EQUIL2 computerized program. The most important determinants for AP(CaOx) were calcium, oxalate and citrate and for AP(CaP) calcium, phosphate, citrate, magnesium and pH. Urine concentrations of the variables were used. A simplified estimate of AP(CaOx) (AP(CaOx)-index(MOUSE)) that numerically approximately corresponded to 10(8) × AP(CaOx) was given the following expression:[Formula: see text]For a series of urine samples with various composition the coefficient of correlation between AP(CaOx)-index(MOUSE) and 10(8) × AP(CaOx) was 0.99 (p = 0.00000). A similar estimate of AP(CaP) (AP(CaP)-index(MOUSE)) was formulated so that it approximately would correspond numerically to 10(14) × AP(CaP) taking the following form:[Formula: see text]For a series of variations in urine composition the coefficient of correlation was 0.95 (p = 0.00000). The two approximate estimates shown in this article are simplified expressions of AP(CaOx) and AP(CaP). The intention of these theoretical calculations was not to get methods for accurate information on the saturation levels in urine, but to have mathematical tools useful for rough conclusions on the outcome of different experimental situations in mice. It needs to be emphasized that the accuracy will be negatively influenced if urine variables not included in the formulas differ very much from basic concentrations.

  16. Influence of Ethylene Glycol on the Formation of Calcium Phosphate Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    Yi ZUO; Yubao LI; Jie WEI; Yonggang YAN

    2003-01-01

    A synthesis route of using calcium hydroxide Ca(OH)2 with ethylene glycol solvent and orthophosphoric acid (H3PO4)as reagents is described. Three ratios of ethylene glycol to distilled water 1:0, 1:1 and 0:1 are used as diluting media for Ca(OH)2. Crystals of different morphology and composition are formed under weak alkaline circumstance at pH 7.0~8.0. Acicular calcium phosphate nanocrystals are prepared in pure ethylene glycol while rod-like calcium phosphate nanocrystals form in pure distilled water. The nanograde size of the former is smaller than that of the latter. Calcium-deficient apatite (CDAP) is obtained with a Ca/P molar ratio of 1.66. Therefore, it was deduced that the usage of ethylene glycol solvent could influence the formation of calcium phosphate crystal lattice.

  17. Clogging and Cementation Caused by Calcium or Iron Biogrouts

    Science.gov (United States)

    Ivanov, V.; Chu, J.; Naeimi, M.

    2012-12-01

    Chemical grouts are often used to reduce the hydraulic conductivity of soil for seepage control purposes. However, chemical grouts can be expensive and environmentally unfriendly. Therefore, two new biogrouts were tested for their bioclogging and biocementation properties. The first was calcium-based biogrout, which contained urease-producing bacteria, calcium chloride and urea for the crystallization of calcite due to enzymatic hydrolysis of urea. The second was iron-based biogrout, which consisted of urease-producing bacteria, ferric chelate, and urea for the precipitation of ferric hydroxide and carbonate due to enzymatic hydrolysis of urea. The permeability of sand (P, 10^-5 m/s), treated with calcium-based biogrout, linearly decreased as a function of the content of precipitated calcium (C, % w/w) according to the following equation: P = 5.1 - 4.0 C. Meanwhile, the permeability of sand treated with iron-based biogrout dropped to 2.7x10^-6 m/s at content of precipitated iron (F, % w/w) about 0.35 % w/w , by the equation: P = 5.1 - 14.6 F , and then slowly decreased to 1.4x10^-7 m/s at content of precipitated iron 1.8% w/w by the following equation: P = 0.36 - 0.23F. Both biogrouts have approximately same efficiency in the reduction of permeability of sand to low values. However, the mechanisms of bioclogging are probably different because the reduction of permeability by calcium-based biogrout was described by linear function of precipitated calcium but the reduction of permeability by iron-based biogrout showed two steps of the clogging. Different functions and mechanisms were related probably to the different type of precipitates. The images of biogrouted sand samples show that calcium-based biogrout produced white amorphous or crystallised calcium carbonate, while iron-based biogrout produced gel-like brown precipitate without visible crystals. The unconfined compressive strengths of the sand treated with different biogrouts (Y, kPa) increased by power

  18. Cytotoxicity Comparison of Harvard Zinc Phosphate Cement Versus Panavia F2 and Rely X Plus Resin Cements on Rat L929-fibroblasts

    Directory of Open Access Journals (Sweden)

    Alireza Akbar-zadeh Baghban

    2011-01-01

    Full Text Available Objective: Resin cements, regardless of their biocompatibility, have been widely used inrestorative dentistry during the recent years. These cements contain hydroxy ethyl methacrylate(HEMA molecules which are claimed to penetrate into dentinal tubules and mayaffect dental pulp. Since tooth preparation for metal ceramic restorations involves a largesurface of the tooth, cytotoxicity of these cements would be more important in fixed prosthodontictreatments. The purpose of this study was to compare the cytotoxicity of tworesin cements (Panavia F2 and Rely X Plus versus zinc phosphate cement (Harvardusing rat L929-fibroblasts in vitro.Materials and Methods: In this experimental study, ninety hollow glass cylinders (internaldiameter 5-mm, height 2-mm were made and divided into three groups. Each group wasfilled with one of three experimental cements; Harvard Zinc Phosphate cement, PanaviaF2 resin cement and Rely X Plus resin cement. L929- Fibroblast were passaged and subsequentlycultured in 6-well plates of 5×105 cells each. The culture medium was RPMI_1640. All samples were incubated in CO2. Using enzyme-linked immune-sorbent assay(ELISA and (3-(4,5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay,the cytotoxicity of the cements was investigated at 1 hour, 24 hours and one week post exposure.Statistical analyses were performed via two-way ANOVA and honestly significantdifference (HSD Tukey tests.Results: This study revealed significant differences between the three cements at the differenttime intervals. Harvard cement displayed the greatest cytotoxicity at all three intervals.After 1 hour Panavia F2 showed the next greatest cytotoxicity, but after 24-hours and oneweekintervals Rely X Plus showed the next greatest cytotoxicity. The results further showedthat cytotoxicity decreased significantly in the Panavia F2 group with time (p<0.005, cytotoxicityincreased significantly in the Rely X Plus group with time (p<0.001, and the

  19. Effects of silica addition on the chemical, mechanical and biological properties of a new α-Tricalcium Phosphate/Tricalcium Silicate Cement

    Directory of Open Access Journals (Sweden)

    Loreley Morejón-Alonso

    2011-12-01

    Full Text Available The addition of tricalcium silicate (C3S to apatite cements results in an increase of bioactivity and improvement in the mechanical properties. However, adding large amounts raises the local pH at early stages, which retards the precipitation of hydroxyapatite and produces a loss of mechanical strength. The introduction of Pozzolanic materials in cement pastes could be an effective way to reduces basicity and enhance their mechanical resistance; thus, the effect of adding silica on the chemical, mechanical and biological properties of α-tricalcium phosphate/C3S cement was studied. Adding silica produces a reduction in the early pH and a decrease in setting times; nevertheless, the presence of more calcium silicate hydrate (C-S-H delays the growth of hydroxyapatite crystals and consequently, reduces early compressive strength. The new formulations show a good bioactivity, but higher cytotoxicity than traditional cements and additions higher than 2.5% of SiO2 cause a lack of mechanical strength and an elevated degradability.

  20. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation.

    Science.gov (United States)

    Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi

    2014-07-01

    Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone. PMID:24460696

  1. Calcium phosphate coating on titanium using laser and plasma spray

    Science.gov (United States)

    Roy, Mangal

    Though calcium phosphate (CaP) coated implants are commercially available, its acceptance is still not wide spread due to challenges related to weaker interfacial bonding between metal and ceramic, and low crystallinity of hydroxyapatite (HA). The objectives of this research are to improve interfacial strength, crystallinity, phase purity and bioactivity of CaP coated metallic implants for orthopaedic applications. The rationale is that forming a diffuse and gradient metal-ceramic interface will improve the interfacial strength. Moreover, reducing CaP particles exposure to high temperature during coating preparation, can lead to improvement in both crystallinity and phase purity of CaP. In this study, laser engineered net shaping (LENS(TM)) was used to coat Ti metal with CaP. LENS(TM) processing enabled generation of Ti+TCP (tricalcium phosphate) composite coating with diffused interface, that also increased the coating hardness to 1049+/-112 Hv compared to a substrate hardness of 200+/-15 Hv. In vitro bone cell-material interaction studies confirmed the bioactivity of TCP coatings. Antimicrobial properties of the TCP coatings were improved by silver (Ag) electrodeposition. Along with LENS(TM), radio frequency induction plasma spray, equipped with supersonic plasma nozzle, was used to prepare HA coatings on Ti with improved crystallinity and phase purity. The coating was made of multigrain HA particles of ˜200 nm in size, which consisted of 15--20 nm HA grains. In vitro bone cell-material interaction and in vivo rat model studies confirmed the HA coatings to be bioactive. Furthermore, incorporation of Sr2+ improved bone cell of HA coatings interaction. A combination of LENS(TM) and plasma spray was used to fabricate a compositionally graded HA coatings on Ti where the microstructure varied from pure HA at the surface to pure Ti substrate with a diffused Ti+TCP composite region in between. The plasma spray system was used to synthesize spherical HA nano powder from

  2. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Poulsen, S.L.; Herfort, D.;

    2012-01-01

    This work investigates the hydration of blended Portland cement containing 30 wt.% Na2O-CaO-Al2O3-SiO2 (NCAS) glass particles either as the only supplementary cementitious material (SCM) or in combination with limestone, using 29Si MAS NMR, powder XRD, and thermal analyses. The NCAS glass...... of hydration. The hydrated glass contributes to the formation of the calcium-silicate-hydrate (C-S-H) phase, consuming a part of the Portlandite (Ca(OH)2) formed during hydration of the Portland cement. Furthermore, the presence of the glass and limestone particles, alone or in combination, results...... in an accelerated hydration for alite (Ca3SiO5), the main constituent of Portland cement. A higher degree of limestone reaction has been observed in the blend containing both limestone and NCAS glass as compared to the limestone – Portland mixture. This reflects that limestone reacts with a part of the alumina...

  3. Conditioning highly concentrated borate solutions with calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    The early age hydration by borate solution of 3 calcium sulfo-aluminate cements (CSA), containing respectively 0%, 10% and 20% of gypsum by weight of cement was studied using isothermal calorimetry and dynamic mode rheo-metry. XRD and TGA analysis were carried out on pastes with increasing hydration degrees (up to 90 days) to specify the mineralogy and to figure out the mechanisms of borate immobilisation. It has been shown that the retarding effect of borate anions is due to the precipitation of the amorphous calcium borate C2B3H8; borate anions were then incorporated in Aft-type phases. The macroscopic properties of hydrated binders (compressive strength, length change) were also followed during 180 days. It appears that the mechanical strength continuously increases with the hydration degree. Length changes under wet-curing and sealed bag remain moderate and seem to be stabilized after 180 days

  4. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium con

  5. Influence of whole-body irradiation on calcium and phosphate homeostasis in the rat

    International Nuclear Information System (INIS)

    Previous irradiation studies have revealed marked alterations in calcium metabolism. Moreover, the maintenance of calcium homeostasis with parathyroid hormone or calcium salts has been reported to reduce radiation lethality. Therefore, the present study was designed to evaluate the influence of irradiation on calcium homeostasis in the rat. Nine hundred rad of whole-body irradiation produced a significant depression of both plasma calcium and phosphate at 4 days postirradiation. This effect of irradiation was observed to be dose-dependent over a range of 600 to 1200 rad, and possibly related to irradiation-induced anorexia. The physiological significance of these observations is discussed

  6. Investigation of Phosphate Cement-based Binder with Super High Early Strength for Repair of Concrete

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Magnesium phosphate cement-based binder (MPB) for repair of concrete was prepared by proportionally mixing over burned MgO powder (M) with NHH2PO4 powder (P) and set modifying admixtures. It is characteristic by excellent properties such as rapid setting,high strength and high bond strength to old concrete.. The study is focused on the key factors influencing the setting time and strength of MPB, the bond property of MPB to old concrete and the kinetic feature of the hydration of MPB.

  7. Effect of Incorporating Nanoporous Metal Phosphate Materials on the Compressive Strength of Portland Cement

    OpenAIRE

    Wellman, Dawn M.; Kent E. Parker; Mattigod, Shas V.; Fryxell, Glen E.

    2008-01-01

    Nanoporous metal phosphate (NP-MPO) materials are being developed for removal of contaminant oxyanions (As(OH)O32−, CrO42−, and TcO4−), and cations (mercury, cadmium, and lead) from water and waste streams. Following sequestration, incorporation of metal laden NP-MPOs as a portion of cement formulation would provide an efficient and low-cost way to immobilize metal laden NP-MPOs in an easily handled waste form suitable for permanent disposal. There are no known investigations...

  8. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.K. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Chen, C.Z., E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Wang, D.G.; Lin, Z.Q. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China)

    2013-09-16

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca·H{sub 2}O) and disodium hydrogen phosphate dodecahydrate (Na{sub 2}HPO{sub 4}·12H{sub 2}O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) and calcium pyrophosphates (Ca{sub 2}P{sub 2}O{sub 7}, CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF{sub 2}, CaO, CaF{sub 2} and Ca{sub 3}(PO{sub 4}){sub 2}. • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate.

  9. 磷酸钙骨水泥载药核心的块型重组合异种骨体内缓释及修复兔长段感染性骨缺损的研究%STUDY ON IN VIRO DRUG DELIVERY AND REPAIRING LARGE SEGMENTAL INFECTED BONY DEFECT WITH MASSIVE RECONSTITUTED BOVINE XENOGRAFT AIDED BY CALCIUM PHOSPHATE CEMENT DRUG CORE

    Institute of Scientific and Technical Information of China (English)

    孙效棠; 赵黎; 胡蕴玉; 李丹; 袁志; 崔庚; 杜俊杰

    2005-01-01

    目的寻找抗感染的块型重组合异种骨制备工艺简便的药物缓释方式,一期修复感染性长段骨缺损. 方法将载药的自凝固磷酸钙骨水泥(calcium phosphate cement,CPC)分4柱置入块型重组合异种骨(massive reconstituted bone xenograft,MRBX),制成CPC载药核心的块型重组合异种骨(CPC-MRBX).用18只成年大白兔行体内缓释实验.按照术后1、2、5、10、15、20、25、30和35 d分为9组,每组2只.将CPC-MRBX植入兔骶棘肌肌袋中,按各时间点测定动物的血药浓度,并从植骨处取软组织测定植骨区周围的药物浓度.动物模型采用兔股骨感染长段骨缺损模型,共40只.外固定架位于膝上1.5~2.0 cm,邻近截骨处的固定针距离截骨端0.5~0.8 cm,针道方向垂直于股骨前外侧面,并在植入材料后适当加压.实验组(n=25)用CPC-MRBX修复,对照组(n=15)将自体骨段回植.术后观察动物饮食、活动和伤口的变化;在4、8、16和24周分别行影像学、组织学观察两组骨愈合情况. 结果 CPC-MRBX的制备过程在常温、常压下顺利完成,体内药物缓释实验显示组织中有效药物浓度可以维持30 d左右,同时血药浓度无明显增高.动物模型的固定方法可靠,术后实验组动物一般情况可.术后4 d动物能够正常站立,X线片示有明显的骨痂生成;8周时X线片示骨痂进一步增多,骨折线消失,可去除外固定架负重,以后功能活动基本正常.组织学4周时可见大量软骨组织长入载体;8周时新生骨组织进一步增多,CPC已有明显降解;16周时骨组织进一步增多,骨髓组织生成,CPC进一步降解;24周时髓腔再通,CPC基本降解完全.对照组4周时出现明显的骨髓炎表现,伤口局部脓性渗出,动物呈屈髋屈膝保护性体位,X线片示植骨处无愈合迹象,皮质变薄,2只针道处有骨折发生,光镜下可见明显的炎性细胞浸润和骨皮质溶解;8周前动物全部死亡,4只心脏无

  10. Biomechanics study of a composite injectable calcium phosphate bone cement in repairing tibial plateau compressive fractures%复合型可注射磷酸钙骨水泥在胫骨平台塌陷骨折修复中的生物力学研究

    Institute of Scientific and Technical Information of China (English)

    邹华章; 马晓春; 李创; 唐程; 龙浩; 叶建东

    2013-01-01

    目的 探讨一种复合聚乳酸-羟基乙酸共聚物的新型可注射磷酸钙骨水泥(CPC)结合双螺钉固定在胫骨平台SchatzkerⅡ型骨折模型修复中的生物力学性能,为临床微创治疗提供力学依据.方法 取10对老年尸体胫骨近端标本制备成胫骨平台SchatzkerⅡ型骨折模型后成对匹配随机分配到实验组和对照组中,分别采用CPC加压注入和自体松质骨充填植骨结合双螺钉横排固定的方法植骨固定胫骨平台骨折.将标本在材料测试机上进行轴向垂直压缩,记录载荷-位移数据,测量2组标本的最大失效载荷和抗压刚度.结果 新型CPC室温下具有良好的可注射性,在胫骨平台塌陷下方骨缺损区充填充分,且材料在骨缺损区周围松质骨中进一步渗透、扩散.实验组胫骨干骺端平均骨密度为(0.639 ±0.081)g·cm-2,对照组为(0.668±0.083)g·cm-2,2组间差异无统计学意义(P>0.05).实验组最大失效载荷为(4 101-813)N,对照组最大失效载荷为(692±138)N,2组间比较差异有统计学意义(P<0.05).实验组轴向抗压刚度为(1 363±362)N·mm-1,对照组轴向抗压刚度为(223±54)N·mm-1,2组间比较差异有统计学意义(P<0.05).结论 在胫骨平台SchatzkerⅡ型骨折中采用新型复合CPC加压充填植骨结合双螺钉固定技术,能有效恢复胫骨平台的抗塌陷力学性能,是一种理想的植骨填充材料.%Objective To investigate the biomechanics of a novel injectable calcium phosphate cement( CPC) composited by polylactic-co-glycolic acid in repairing tibial plateau type Schatzker Ⅱ fracture combined with double-screw fixation, and provide the mechanical basis for the clinical minimally invasive treatment. Methods Ten matched pairs of proximal tibia specimens were taken from 10 elderly cadavers and then were prepared Schatzker Ⅱ tibial plateau fracture model. The matched 10 pairs specimens were randomly divided into experiment group which were fixed by using

  11. 冻干硬脑膜内骨形成蛋白-自固化磷酸钙复合移植修复骨缺损%Repairing bone defects using bone morphogenetic protein and calcium phosphate cement combined with freeze-dried dura mater

    Institute of Scientific and Technical Information of China (English)

    邹国耀; 吴恒烜

    2009-01-01

    背景:骨形成蛋白和自固化磷酸钙各自有着良好的成骨能力,冻干硬脑膜内骨形成蛋白和自固化磷酸钙复合移植存在优化成骨效能的可能性.目的:以冻干硬脑膜为膜材料,观察膜内充填材料骨形成蛋白复合自固化磷酸钙移植修复节段性骨缺损的效果.设计、时间及地点:随机分组设计,动物体内组织病理学对照观察,于2006-07/2007-07在广西医科大学动物实验室完成.对象:健康成年新西兰大白兔28只,雌雄不限,体质量1.5~2.5 kg.方法:实验兔28只,其中4只用于取硬脑膜.其余24只随机分成A,B两大组,每组12只.A组制造双侧兔桡骨中段10 mm的骨缺损.一侧骨缺损用骨形成蛋白、自固化磷酸钙、冻干硬脑膜复合移植修复,为骨形成蛋白组, 另一侧不予处理作为空白对照组.B组制造单侧兔桡骨中段10 mm的骨缺损,用骨髓、自固化磷酸钙、冻干硬脑膜复合移植修复称骨髓组.主要观察指标:于术后第1,2,4,6,8,10,12周分别行双侧桡骨X射线检查.观察骨缺损处的新骨形成及骨修复情况.并于术后第2,4,8,12周切取标本行组织学检查及成骨面积分析.结果:在术后第4,8,12周,骨形成蛋白组的成骨面积大于骨髓组(P<0.05),而在实验早期(术后2周)两组间差异无显著性意义(P>0.05);在实验的各个时期,骨形成蛋白组和骨髓组的成骨面积均明显大于空白组(P<0.01).X射线结果显示,骨形成蛋白组在10~12周出现明显骨痂塑形现象;组织学病理切片结果显示,骨形成蛋白组在12周时桡骨可见成熟骨髓,骨缺损处为成熟的板层骨连接.结论:骨形成蛋白复合自固化磷酸钙与冻干硬脑膜移植具有良好的成骨作用.%BACKGROUND: Both bone morphogenetic protein (BMP) and calcium phosphate cement (CPC) have excellent osteogenic capability, so, it is possible to optimize osteogenic efficiency by combing BMP, CPC and freeze-dried dura mater (FDDM

  12. Analysis of the color alteration and radiopacity promoted by bismuth oxide in calcium silicate cement

    Directory of Open Access Journals (Sweden)

    Marina Angelica Marciano

    2013-07-01

    Full Text Available The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO, determined by weight. Mineral trioxide aggregate (MTA was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/Tukey tests (p 3 mm equivalent of Al. The MTA group was statistically similar to the CSC / 30% BO group (p > 0.05. In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC / 50% BO group (p < 0.05. The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC / 15% BO and CSC / 50% BO groups (p < 0.05. After 30 days, CSC showed statistically higher ΔE values than CSC / 30% BO and CSC / 50% BO (p < 0.05. In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.

  13. Evaluation of pH, calcium ion release and antimicrobial activity of a new calcium aluminate cement

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2013-07-01

    Full Text Available This study evaluated the pH, calcium ion release and antimicrobial activity of EndoBinder (EB, containing different radiopacifiers: bismuth oxide (Bi2O3, zinc oxide (ZnO or zirconium oxide (ZrO2, in comparison to MTA. For pH and calcium ion release tests, 5 specimens per group (n = 5 were immersed into 10 mL of distilled and deionized water at 37°C. After 2, 4, 12, 24, 48 h; 7, 14 and 28 days, the pH was measured and calcium ion release quantified in an atomic absorption spectrophotometer. For antimicrobial activity, the cements were tested against S. aureus, E. coli, E. faecalis and C. albicans, in triplicate. MTA presented higher values for pH and calcium ion release than the other groups, however, with no statistically significant difference after 28 days (p > 0.05; and the largest inhibition halos for all strains, with no significant difference (E. coli and E. faecalis for pure EB and EB + Bi2O3 (p > 0.05. EB presented similar performance to that of MTA as regards pH and calcium ion release; however, when ZnO and ZrO2 were used, EB did not present antimicrobial activity against some strains.

  14. Microanalyses of the hydroxyl—poly—calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Yang; WANGChang-Xing; 等

    2002-01-01

    Thin calcium phosphate catings on titanium alloy substrates were prepared by Ar+ ion beam assisted deposition(IBAD) from hydroxyl-poly-calcium sodium phosphate(HPPA) target.The coatings were analyzed by XRD,FTIR,XPS,These analyses revealed that the as-deposited films were amorphous or no apparent crystallinity.No distinct absorption band of the hydroxyl group was observed in FTIR spectra of the coatings but new absorption bands were presented for CO3-2,The calcium to phosphorous ratio of these catings in different IBAD conditions varied from 0.46 to 3.36.

  15. Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: preparation and characterization.

    Science.gov (United States)

    Tanase, Constantin E; Popa, Marcel I; Verestiuc, Liliana

    2012-04-01

    A novel biomimetic technique for obtaining chitosan-calcium phosphates (Cs-CP) scaffolds are presented: calcium phosphates are precipitated from its precursors, CaCl(2) and NaH(2) PO(4) on the Cs matrix, under physiological conditions (human body temperature and body fluid pH; 37°C and pH = 7.2, respectively). Materials composition and structure have been confirmed by various techniques: elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). FTIR and SEM data have shown the arrangement of the calcium phosphates-hydroxyapatite (CP-Hap) onto Cs matrix. In this case the polymer is acting as glue, bonding the calcium phosphates crystals. Behavior in biological simulated fluids (phosphate buffer solution-PBS and PBS-albumin) revealed an important contribution of the chelation between -NH3(+) and Ca(2+) on the scaffold interaction with aqueous mediums; increased quantities of chitosan in composites permit the interaction with human albumin and improve the retention of fluid. The composites are slightly degraded by the lysozyme which facilitates an in vivo degradation control of bone substitutes. Modulus of elasticity is strongly dependent of the ratio chitosan/calcium phosphates and recommends the obtained biomimetic composites as promising materials for a prospective bone application. PMID:22121073

  16. Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants.

    Science.gov (United States)

    Sunarso; Toita, Riki; Tsuru, Kanji; Ishikawa, Kunio

    2016-11-01

    In this work, to elevate weak osteoconductivity of titanium (Ti) implant, we prepared a Ti implant having both calcium and phosphate ions on its surface. To modify calcium and phosphate ions onto Ti, phosphate ions were first immobilized by treating the Ti with a NaH2PO4 solution, followed by CaCl2 treatment to immobilize calcium ions, which created the calcium and phosphate ions-modified Ti (Ca-P-Ti). X-ray photoelectron spectroscopy and thin-layer X-ray diffraction measurement confirmed that both phosphate and calcium ions were co-immobilized onto the Ti surface on the molecular level. Three-hour after seeding MC3T3-E1 murine pre-osteoblast cells on substrates, cell number on Ca-P-Ti was much larger than that of Ti and phosphate-modified Ti (P-Ti), but was similar to that of calcium-modified Ti (Ca-Ti). Also, MC3T3-E1 cells on Ca-P-Ti expressed larger amount of vinculin, a focal adhesion protein, than those on other substrates, probably resulting in larger cell size as well as greater cell proliferation on Ca-P-Ti than those on other substrates. Alkaline phosphatase activity of cells on Ca-P-Ti was greater than those on Ti and P-Ti, but was almost comparable to that of Ca-Ti. Moreover, the largest amount of bone-like nodule formation was observed on Ca-P-Ti. These results provide evidence that calcium and phosphate ions-co-immobilization onto Ti increased the osteoconductivity of Ti by stimulating the responses of pre-osteoblast cells. This simple modification would be promising technique for bone tissue implant including dental and orthopedic implants. PMID:27524023

  17. Discrimination between biologically relevant calcium phosphate phases by surface-analytical techniques

    International Nuclear Information System (INIS)

    The spatially resolved phase identification of biologically relevant calcium phosphate phases (CPPs) in bone tissue is essential for the elucidation of bone remodeling mechanisms and for the diagnosis of bone diseases. Analytical methods with high spatial resolution for the discrimination between chemically quite close phases are rare. Therefore the applicability of state-of-the-art ToF-SIMS, XPS and EDX as chemically specific techniques was investigated. The eight CPPs hydroxyapatite (HAP), β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α-TCP), octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate (DCP), monocalcium phosphate (MCP) and amorphous calcium phosphate (ACP) were either commercial materials in high purity or synthesized by ourselves. The phase purity was proven by XRD analysis. All of the eight CPPs show different mass spectra and the phases can be discriminated by applying the principal component analysis method to the mass spectrometric data. The Ca/P ratios of all phosphates were determined by XPS and EDX. With both methods some CPPs can be distinguished, but the obtained Ca/P ratios deviate systematically from their theoretical values. It is necessary in any case to determine a calibration curve, respectively the ZAF values, from appropriate standards. In XPS also the O(1s)-satellite signals are correlated to the CPPs composition. Angle resolved and long-term XPS measurements of HAP clearly prove that there is no phosphate excess at the surface. Decomposition due to X-ray irradiation has not been observed.

  18. Discrimination between biologically relevant calcium phosphate phases by surface-analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kleine-Boymann, Matthias, E-mail: matthias.kleine-boymann@phys.chemie.uni-giessen.de; Rohnke, Marcus, E-mail: marcus.rohnke@phys.chemie.uni-giessen.de; Henss, Anja, E-mail: anja.henss@phys.chemie.uni-giessen.de; Peppler, Klaus, E-mail: klaus.peppler@phys.chemie.uni-giessen.de; Sann, Joachim, E-mail: joachim.sann@phys.chemie.uni-giessen.de; Janek, Juergen, E-mail: juergen.janek@phys.chemie.uni-giessen.de

    2014-08-01

    The spatially resolved phase identification of biologically relevant calcium phosphate phases (CPPs) in bone tissue is essential for the elucidation of bone remodeling mechanisms and for the diagnosis of bone diseases. Analytical methods with high spatial resolution for the discrimination between chemically quite close phases are rare. Therefore the applicability of state-of-the-art ToF-SIMS, XPS and EDX as chemically specific techniques was investigated. The eight CPPs hydroxyapatite (HAP), β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α-TCP), octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate (DCP), monocalcium phosphate (MCP) and amorphous calcium phosphate (ACP) were either commercial materials in high purity or synthesized by ourselves. The phase purity was proven by XRD analysis. All of the eight CPPs show different mass spectra and the phases can be discriminated by applying the principal component analysis method to the mass spectrometric data. The Ca/P ratios of all phosphates were determined by XPS and EDX. With both methods some CPPs can be distinguished, but the obtained Ca/P ratios deviate systematically from their theoretical values. It is necessary in any case to determine a calibration curve, respectively the ZAF values, from appropriate standards. In XPS also the O(1s)-satellite signals are correlated to the CPPs composition. Angle resolved and long-term XPS measurements of HAP clearly prove that there is no phosphate excess at the surface. Decomposition due to X-ray irradiation has not been observed.

  19. Osteogenesis and angiogenesis properties of dental pulp cell on novel injectable tricalcium phosphate cement by silica doped.

    Science.gov (United States)

    Su, Ying-Fang; Lin, Chi-Chang; Huang, Tsui-Hsien; Chou, Ming-Yung; Yang, Jaw-Ji; Shie, Ming-You

    2014-09-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material in clinical. In this study, we have doped silica (Si) into β-TCP and enhanced its bioactive and osteostimulative properties. To check its effectiveness, a series of Si-doped with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of the diametral tensile strength, ions released and weight loss of cements was considered after immersion. In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on Si-doped β-TCP cements. The results showed that setting time and injectability of the Si-doped β-TCP cements were decreased as the Si content was increased. At the end of the immersion point, weight losses of 30.1%, 36.9%, 48.1%, and 55.3% were observed for the cement doping 0%, 10%, 20%, and 30% Si into β-TCP cements, respectively. In vitro cell experiments show that the Si-rich cements promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the Si-doped in the cement is more than 20%, the amount of cells and osteogenesis protein of hDPCs was stimulated by Si released from Si-doped β-TCP cements. The degradation of β-TCP and osteogenesis of Si gives a strong reason to believe that these Si-doped β-TCP cements may prove to be promising bone repair materials.

  20. Study of the action of phosphate ions contained in the mixing water on the hydration of a Portland cement

    International Nuclear Information System (INIS)

    Cementation is considered as the most attractive solution for the conditioning of low and intermediate radioactive wastes. The species contained in these wastes can strongly influence the reactivity of the cement pastes, it is in particular the case of the ortho-phosphate ions which are found in the evaporation concentrates. The aim of our work was to determine the influence of these ions on the hydration and the rheological properties of the cement pastes at early age as well as the mechanical and physical properties on the hardened material. (author)

  1. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-based Materials with Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Wei-Ting Lin

    2013-05-01

    Full Text Available Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials.

  2. Osteotransductive bone cements.

    Science.gov (United States)

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  3. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies.

    Directory of Open Access Journals (Sweden)

    Hang-Korng Ea

    Full Text Available basic calcium phosphate (BCP crystals are commonly found in osteoarthritis (OA and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1. In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals.synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages.intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation suggesting that BCP crystals have a direct

  4. Effect of calcium sulfates on the early hydration of calcium sulfoaluminate cement and the stability of embedded aluminium

    International Nuclear Information System (INIS)

    Conventional Portland cement-based systems have been considered unsuitable for immobilising nuclear wastes containing reactive metals, such as aluminium, due to the high pH of the pore solution (usually around 12.5) and free moisture. On the contrary, calcium sulfo-aluminate cement (CSA) produces a lower pH (10.5-12) environment and has an excellent water binding capability as a result of the formation of its main hydration product, ettringite. Therefore, it offers a good potential to immobilise aluminium. However, the pore solution pH and ettringite formation depend largely on the raw materials used to formulate the CSA, which is usually a blend of 75%-85% of CSA clinker and 15-25% of calcium sulfate (in the form of gypsum or anhydrite). In this paper, it was found that, compared to anhydrite, gypsum (15% wt of the blend) demonstrated the highest reduction in the corrosion of embedded Al, possibly due to its lower initial pH (around 10.5) and self-desiccating nature at the early stage of hydration. Whilst the CSA/anhydrite had a higher Al corrosion rate, the initial set was more acceptable than CSA/gypsum. Nonetheless, overall, it was concluded that CSA with gypsum (15% wt) should be considered as a base formulation for the encapsulation of Al waste. The unfavorable rapid set and high heat generation, however, demonstrated that modifications are required, potentially by using mineral additions. (authors)

  5. Calcium looping spent sorbent as a limestone replacement in the manufacture of portland and calcium sulfoaluminate cements.

    Science.gov (United States)

    Telesca, Antonio; Marroccoli, Milena; Tomasulo, Michele; Valenti, Gian Lorenzo; Dieter, Heiko; Montagnaro, Fabio

    2015-06-01

    The calcium looping (CaL) spent sorbent (i) can be a suitable limestone replacement in the production of both ordinary Portland cement (OPC) and calcium sulfoaluminate (CSA) cement, and (ii) promotes environmental benefits in terms of reduced CO2 emission, increased energy saving and larger utilization of industrial byproducts. A sample of CaL spent sorbent, purged from a 200 kWth pilot facility, was tested as a raw material for the synthesis of two series of OPC and CSA clinkers, obtained from mixes heated in a laboratory electric oven within temperature ranges 1350°-1500 °C and 1200°-1350 °C, respectively. As OPC clinker-generating mixtures, six clay-containing binary blends were investigated, three with limestone (reference mixes) and three with the CaL spent sorbent. All of them showed similar burnability indexes. Moreover, three CSA clinker-generating blends (termed RM, MA and MB) were explored. They included, in the order: (I) limestone, bauxite and gypsum (reference mix); (II) CaL spent sorbent, bauxite and gypsum; (III) CaL spent sorbent plus anodization mud and a mixture of fluidized bed combustion (FBC) fly and bottom ashes. The maximum conversion toward 4CaO·3Al2O3·SO3, the chief CSA clinker component, was the largest for MB and almost the same for RM and MA. PMID:25915150

  6. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.

    Science.gov (United States)

    Hu, Ming-Hsien; Lee, Pei-Yuan; Chen, Wen-Cheng; Hu, Jin-Jia

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4-L5 vertebrae in fifteen adult rats (n=5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion.

  7. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.

    Science.gov (United States)

    Hu, Ming-Hsien; Lee, Pei-Yuan; Chen, Wen-Cheng; Hu, Jin-Jia

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4-L5 vertebrae in fifteen adult rats (n=5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion. PMID

  8. Templating route for mesostructured calcium phosphates with carboxylic acid- and amine-type surfactants.

    Science.gov (United States)

    Ikawa, Nobuaki; Hori, Hideki; Kimura, Tatsuo; Oumi, Yasunori; Sano, Tsuneji

    2008-11-18

    Mesostructured calcium phosphates constructed by ionic frameworks were synthesized using carboxylic acid- and amine-type surfactants in mixed solvent systems of ethanol and water. A lamellar mesostructured calcium phosphate was prepared using palmitic acid as an anionic surfactant, as in the case using n-alkylamines. A wormhole-like mesostructured calcium phosphate can be obtained using dicarboxyl N-lauroyl- l-glutamic acid, whose headgroup is larger than that of palmitic acid. Similar mesostructured product was obtained using 4-dodecyldiethylenetriamine with a large headgroup containing two primary amine groups. Interactions of carboxyl and primary amino groups in the surfactant molecules with inorganic species are quite important for the formation of mesostructured calcium phosphates. The Ca/P molar ratio of mesostructured calcium phosphates was strongly affected by the molecular structure of surfactants containing carboxyl and primary amino groups. Ca-rich materials can be obtained using carboxylic acid-type surfactants (Ca/P approximately 1.7) rather than amine-type surfactants (Ca/P approximately 1.0). PMID:18947246

  9. Preparation and mechanical property of core-shell type chitosan/calcium phosphate composite fiber

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Atsushi [Japan Society for the Promotion of Science, Ikenohata1-1-1, Daitou-ku, Tokyo 110-0008 (Japan) and Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan)]. E-mail: MATSUDA.Atsushi@nims.go.jp; Ikoma, Toshiyuki [Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan); Kobayashi, Hisatoshi [Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)]. E-mail: Kobayashi.Hisatoshi@nims.go.jp; Tanaka, Junzo [Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan); Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2004-12-01

    Core-shell type chitosan/calcium phosphate composite fibers were prepared by a facile wet spinning method; the chitosan aqueous solution with PO{sub 4} ions was dropped and coagulated in the ethanol/calcium hydroxide solutions at different mixed ratio. X-ray diffraction (XRD) patterns indicated that the crystal phases of calcium phosphates in the composite fibers were a low-crystalline hydroxyapatite (HAp; Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2})or the low-crystalline hydroxyapatite/brushite mixture depended on the ratio of ethanol/calcium hydroxide solutions. The inorganic contents were ca. 60 wt.% by using the TG-DTA analysis. The energy-dispersive X-ray spectroscopy (EDS) analysis indicated that Ca and P atoms were mainly distributed on the outer layer of the composite fiber to grow calcium phosphate crystals; however, a little amount of P atom still remained at the inside of the fiber. This indicated that the composite fibers formed a unique core-shell structure with shell of calcium phosphate and core of chitosan. The mechanical property of the fibers was reinforced by the initial concentration of chitosan solution.

  10. Calcium-enriched mixture cement as artificial apical barrier: A case series

    Directory of Open Access Journals (Sweden)

    Ali Nosrat

    2011-01-01

    Full Text Available In comparison to the conventional apexification using calcium hydroxide, artificial apical barrier technique is more valuable and less time consuming. This article describes successful use of calcium-enriched mixture (CEM cement as an artificial apical barrier in open apices. In this study, 13 single-rooted teeth with necrotic pulps and open apices were treated non-surgically. After copious irrigation of the root canals with NaOCl 5.25% and gentle filing, based on need for interappointment dressing, treatments were followed by CEM cement (BioniqueDent, Tehran, Iran apical plug insertion in the first or second appointment. All cases were then permanently restored. All subjects were followed until radiographic evidence of periradicular healing was seen (mean 14.5 months. Clinically, all cases were functional and asymptomatic and complete osseous healing was observed in all the teeth. Considering the biological properties of CEM cement, this new endodontic biomaterial might be appropriate to be used as artificial apical barrier in the open apex teeth.

  11. In situ synchrotron X-ray powder diffraction study of the early hydration of α-tricalcium phosphate/tricalcium silicate composite bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Morejon-Alonso, Loreley; Correa, Jose Raul, E-mail: lmorejon@fq.uh.cu [Departamento de Quimica General, Facultad de Quimica, Universidad de La Habana, UH (Cuba); Motisuke, Mariana [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil); Carrodeguas, Raul Garcia [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Laboratorio de Avaliacao e Desenvolvimento de Biomateriais do Nordeste; Santos, Luis Alberto dos [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Departamento de Materiais

    2015-01-15

    Bioactivity, osteogenicity and mechanical properties of α-tricalcium phosphate (α-TCP) based phosphates cements can be improved by adding tricalcium silicate (C{sub 3}S); however, the addition of C{sub 3}S delays the precipitation and growth of calcium deficient hydroxyapatite (CDHA). Thus, the aim of this work was the study of in situ setting reaction of α-TCP/C{sub 3}S composite bone cement under high energy X-ray generated by a synchrotron source within the first 72h. The results showed that the addition of C{sub 3}S induces the precipitation of nanosized CDHA at early times depending on the added content. Calculated crystallite sizes showed that the higher the content of C{sub 3}S, the smaller the crystal size at the beginning of the precipitation. These results are different from those obtained by conventional XRD method, suggesting that the proposed technique is a powerful tool in determining the composition and extent of reaction of CPCs surfaces in real time. (author)

  12. Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA cement blends

    Directory of Open Access Journals (Sweden)

    P. Herrmann

    2014-05-01

    Full Text Available Calcium sulfoaluminate (CSA is a comparatively new cementitious material that is mainly established in China where it is produced in a large scale. CSA cement is not covered by European standards. However, it provides different beneficial properties such as rapid hardening and high early strength development. Furthermore, the usage of CSA cement can save energy during production process in comparison to established cementitious materials. Therefore it is also more environmental friendly. Insufficient knowledge of this material behaviour restricts the possibilities and makes further research necessary. The research project applied a laboratory test program to elaborate the characterization of the materials. The obtained knowledge from these tests was then applied to further tests to determine application relevant key properties of CSA based pastes and mortars.The properties of pure CSA cement had been compared with the properties of CSA blends. The additions were PC, HAC, FA and GGBS with quantities of 10, 20 and 30%. The water to cement ratio was varying between 0.4, 0.5 and 0.6. General tests like fineness, XRD and XRF were used to define the present non-standardized material. Investigation of fresh pastes included measurement of setting time and calorimetry. Hardened mortar specimens of different ages were examined for compressive strength. The results showed that CSA itself hardens very rapidly and gives an early strength development. Possible ways of utilization of CSA based mortars and concretes were also emphasized in the paper.

  13. CO₂ capture from cement plants using oxyfired precalcination and/or calcium looping.

    Science.gov (United States)

    Rodríguez, Nuria; Murillo, Ramón; Abanades, J Carlos

    2012-02-21

    This paper compares two alternatives to capture CO(2) from cement plants: the first is designed to exploit the material and energy synergies with calcium looping technologies, CaL, and the second implements an oxyfired circulating fluidized bed precalcination step. The necessary mass and heat integration balances for these two options are solved and compared with a common reference cement plant and a cost analysis exercise is carried out. The CaL process applied to the flue gases of a clinker kiln oven is substantially identical to those proposed for similar applications to power plants flue gases. It translates into avoided cost of of 23 $/tCO(2) capturing up to 99% of the total CO(2) emitted in the plant. The avoided cost of an equivalent system with an oxyfired CFBC precalcination only, goes down to 16 $/tCO(2) but only captures 89% of the CO(2) emitted in the plant. Both cases reveal that the application of CaL or oxyfired CFBC for precalcination of CaCO(3) in a cement plant, at scales in the order of 50 MWth (referred to the oxyfired CFB calciner) is an important early opportunity for the development of CaL processes in large scale industrial applications as well as for the development of zero emissions cement plants.

  14. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  15. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements

    Directory of Open Access Journals (Sweden)

    S Pina

    2010-09-01

    Full Text Available The core aim of this study was to investigate zinc (Zn- and zinc and strontium (ZnSr-containing brushite-forming beta-tricalcium phosphate (TCP cements for their effects on proliferation and differentiation of osteoblastic-like cells (MC3T3-E1 cell line as well as for their in vivo behaviour in trabecular bone cylindrical defects in a pilot study. In vitro proliferation and maturation responses of MC3T3-E1 osteoblastic-like cells to bone cements were studied at the cellular and molecular levels. The Zn- and Sr-containing brushite cements were found to stimulate pre-osteoblastic proliferation and osteoblastic maturation. Indeed, MC3T3-E1 cells exposed to the powdered cements had increased proliferative rates and higher adhesiveness capacity, in comparison to control cells. Furthermore, they exhibited higher alkaline phosphatase (ALP activity and increased Type-I collagen secretion and fibre deposition into the extracellular matrix. Proliferative and collagen deposition properties were more evident for cells grown in cements doped with Sr. The in vivo osteoconductive propertiesof the ZnCPC and ZnSrCPC cements were also pursued. Histological and histomorphometric analyses were performed at 1 and 2 months after implantation, using carbonated apatite cement (Norian SRS® as control. There was no evidence of cement-induced adverse foreign body reactions, and furthermore ZnCPC and ZnSrCPC cements revealed better in vivo performance in comparison to the control apatite cement. Additionally, the presence of both zinc and strontium resulted in the highest rate of new bone formation. These novel results indicate that the investigated ZnCPC and ZnSrCPC cements are both biocompatible and osteoconductive, being good candidate materials to use as bone substitutes.

  16. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells.

    Science.gov (United States)

    Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias

    2013-02-01

    Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1).

  17. Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis.

    Science.gov (United States)

    Ben-Nissan, Besim; Macha, Innocent; Cazalbou, Sophie; Choi, Andy H

    2016-01-01

    During the last two decades although many calcium phosphate based nanomaterials have been proposed for both drug delivery, and bone regeneration, their coating applications have been somehow slow due to the problems related to their complicated synthesis methods. In order to control the efficiency of local drug delivery of a biomaterial the critical pore sizes as well as good control of the chemical composition is pertinent. A variety of calcium phosphate based nanocoated composite drug delivery systems are currently being investigated. This review aims to give an update into the advancements of calcium phosphate nanocoatings and thin film nanolaminates. In particular recent research on PLA/hydroxyapatite composite thin films and coatings into the slow drug delivery for the possible treatment of osteomyelitis is covered. PMID:26891748

  18. Corrosion Resistance of Calcium Aluminate Cement Concrete Exposed to a Chloride Environment

    Directory of Open Access Journals (Sweden)

    Ki Yong Ann

    2014-01-01

    Full Text Available The present study concerns a development of calcium aluminate cement (CAC concrete to enhance the durability against an externally chemically aggressive environment, in particular, chloride-induced corrosion. To evaluate the inhibition effect and concrete properties, CAC was partially mixed with ordinary Portland cement (OPC, ranging from 5% to 15%, as a binder. As a result, it was found that an increase in the CAC in binder resulted in a dramatic decrease in the setting time of fresh concrete. However, the compressive strength was lower, ranging about 20 MPa, while OPC indicated about 30–35 MPa at an equivalent age. When it comes to chloride transport, there was only marginal variation in the diffusivity of chloride ions. The corrosion resistance of CAC mixture was significantly enhanced: its chloride threshold level for corrosion initiation exceeded 3.0% by weight of binder, whilst OPC and CAC concrete indicated about 0.5%–1.0%.

  19. The Microleakage of Polycarboxylate, Glass Ionomer and Zinc Phosphate Cements for Stainless Steel Crowns of Pulpotomized Primary Molars

    Directory of Open Access Journals (Sweden)

    Mahkameh Mirkarimi

    2013-01-01

    Full Text Available Background: Microleakage in Stainless Steel Crowns (SSC margins leads to seepage of oral fluids and bacteria and it is one of the reasons for treatments failures. The aim of this study was to assess the effect of zinc phosphate, glass Ionomer and polycarboxylate cements on microleakage of stainless steel crowns for primary pulpotomized molar teeth. Materials and Methods: In this experimental in vitro study, 60 extracted primary molar teeth were randomly divided in to three groups (n=20. Stainless steel crowns were fitted for each tooth after pulpotomy procedures. Crowns were luted with a zinc phosphate, glass ionomer or polycarboxylate cement. All specimens were stored in 100% humidity at 37o C for 1 hour and termocycled 500 times (5ºC to 55ºC with a 30 seconds dwell time and then immersed in 0.5% basic fuschin solution for 24 hours. The specimens were sectioned buccolingually and each section was evaluated for microleakage under a stereomicroscope.Results: In zinc phosphate group 45% of spicemens and in glass ionomer group there was 5% of spicemens showed leakage extending on to occlusal aspect and in polycarboxylate group none of the spicemens had this situation. According to the kruskal wallis test in all groups there were significant differences in microleakage (p< 0.001.Conclusion: The use of zinc phosphate cement resulted in the highest percentage of microleakage. The microleakage of SSCs cemented with polycarboxylate and glass ionomer were similar.

  20. Phosphate recovery using calcium zeolite in ultrafiltration pilot plant

    OpenAIRE

    La Rotonda Ferrer, Pablo

    2015-01-01

    One of the most important ecological problems is the eutrophication, this process consist in the uncontrolled growing of algae and phytoplankton, which can destroy entire aquatic ecosystems. The reason of this process is the excess of nutrients, as for example, phosphate coming from human activities. This project focus on the study of synthetic zeolites capacity to absorb phosphate from wastewater. Zeolites are porous minerals of the alumina-silicates family with high capacity ...

  1. Ossification Vesicles with Calcium Phosphate in the Eyes of the Insect Copium teucrii (Hemiptera: Tingidae

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Guinea

    2011-01-01

    Full Text Available Arthropod eyes are built of repeating units named ommatidia. Each single ommatidium unit contains a cluster of photoreceptor cells surrounded by support cells and pigment cells. The insect Copium eye ommatidia include additional calcium-phosphate deposits, not described in insects to date, which can be examined today using a combined set of modern microscopy and spectroscopy techniques. Teucrium gnaphalodes L'Her plants, growing in central Spain, develop galls induced by Copium insects. A survey of C. teucrii adult specimens resulted in surprising environmental scanning electron microscopy (ESEM images, showing that their bright red eyes contain a calcium-phosphate mineralization. A complete survey of Copium eye specimens was performed by ESEM using energy-dispersive spectroscopy, backscattered electron detector and cathodoluminescence (CL probes, field emission scanning electron microscopy, micro-Raman spectroscopy, and confocal laser scanning microscopy in order to learn ommatidia features, such as chemical composition, molecular structure, cell membrane, and internal ommatidium eye fluids and calcium-phosphate distribution deposits. The CL panchromatic images distinguish between the calcium-phosphate ommatidium and calcium-phosphate setae, which are more apatite rich. They show Raman bands attributable to bone tissue apatite biomaterials, such as bone, collagen, lipids, and blood, i.e., peptides, amide-S, amide-II, amide-III, and cytochrome P-450scc. The chemical composition of both galls and leaves of T. gnaphalodes was determined by gas chromatography – mass spectrometry (GC-MS of their extracts. The spectrometric and microscopic images reveal that the calcium-phosphate mineralization is formed and constrained to Copium ommatidia, which are both matrix vesicles generating mixtures of apatite collagen and operational compound eyes of the insect.

  2. Effect of ultrasonic instrumentation on the bond strength of crowns cemented with zinc phosphate cement to natural teeth. An in vitro study

    Directory of Open Access Journals (Sweden)

    Antonio Braulino de Melo Filho

    2008-09-01

    Full Text Available Several studies have reported the benefits of sonic and/or ultrasonic instrumentation for root debridement, with most of them focusing on changes in periodontal clinical parameters. The present study investigated possible alterations in the tensile bond strength of crowns cemented with zinc phosphate cement to natural teeth after ultrasonic instrumentation. Forty recently extracted intact human third molars were selected, cleaned and stored in physiologic serum at 4°C. They received standard preparations, at a 16º convergence angle, and AgPd alloy crowns. The crowns were cemented with zinc phosphate cement and then divided into four groups of 10 teeth each. Each group was then subdivided into two subgroups, with one of the subgroups being submitted to 5,000 thermal cycles ranging from 55 ± 2 to 5 ± 2°C, while the other was not. Each group was submitted to ultrasonic instrumentation for different periods of time: group 1 - 0 min (control, group 2 - 5 min, group 3 - 10 min, and group 4 - 15 min. Tensile bond strength tests were performed with an Instron testing machine (model 4310. Statistical analysis was performed using ANOVA and Tukey's test at the 5% level of significance. A significant reduction in the tensile bond strength of crowns cemented with zinc phosphate and submitted to thermal cycles was observed at 15 min (196.75 N versus 0 min = 452.01 N, 5 min = 444.23 N and 10 min = 470.85 N. Thermal cycling and ultrasonic instrumentation for 15 min caused a significant reduction in tensile bond strength (p < .05.

  3. Influence of calcium sulfoaluminate cement on the pullout performance of reinforcing fibers: An evaluation of the micro-mechanical behavior

    Science.gov (United States)

    Jewell, Robert Benjamin

    The objective of this research was to determine the influence of calcium sulfoaluminate (CSA) cement on reinforcing fibers by evaluating the fiber pullout behavior, and bonding characteristics, of a single fiber embedded in a cementitious paste matrix. Four types of fibers commonly used in industry were evaluated: 1) Polyvinyl alcohol; 2) Polypropylene; 3) Coated Steel; and 4) Plain Steel. Upward trends in energy costs and potential greenhouse gas regulations favor an increased use of construction materials that require lower energy and lower CO2 emissions to fabricate, such as CSA cement, as opposed to the production of ordinary portland cement (OPC), which is more energy intensive and produces more CO2 emissions. However, widespread use of CSA cement requires a more in-depth understanding of the engineering characteristics that govern its performance, including interaction with reinforcing fibers. The overarching objective of this research was to provide the engineering base needed for the utilization of reinforcing fibers in CSA cement-based construction materials. The aims of the research were (1) to develop an ettringite-rich calcium sulfoaluminate cement, and (2) evaluate the pullout characteristics of reinforcing fibers embedded in a CSA-cement matrix. Key elements of the strategy included (1) Compare the performance of a laboratory-fabricated CSA cement to a commercial CSA cement and OPC, (2) Evaluate the peak load, and toughness of reinforcing fibers in CSA cement and OPC, (3) Evaluate the debonding-energy density and multiple-cracking behavior of fibers in CSA cement and OPC, and (4) Evaluate the shear bond strength of reinforcing fibers in CSA cement and OPC. Based on the findings of this PhD dissertation, calcium sulfoaluminate cement has a significant influence on the characteristics and behavior of embedded reinforcing fibers. An important factor contributing to the bond strength between fiber and matrix was the ability to transfer interfacial

  4. Serum Proteins Stabilized Calcium Phosphate Nanoparticles and Its Effect on Bel-7402 Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydroxyapatite has a high affinity to biological macromolecules, especially to proteins. Bovine serum proteins were extracted to be used as stablizer to prepare calcium phosphate nanoparticles. 167.7 am and87.7 nm particles were respectively prepared by using bovine serum protein fractions at the concentration of 0.5mg/mL and 1.0 mg/mL. As the polysaccharide stabilized hydroxyapatite nanoparticles, the protein-stablized nanoparticles also inhibited the proliferation rate of Bel-7402 cells. It suggested that proteins could be applied to prepare calcium phosphate nanoparticles and it also has the anticancer effect.

  5. Synthesis and characterization of porous calcium phosphate; Sintesis y caracterizacion del fosfato de calcio poroso

    Energy Technology Data Exchange (ETDEWEB)

    Granados C, F.; Serrano G, J.; Bonifacio M, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: fgc@nuclear.inin.mx

    2007-07-01

    The porous calcium phosphate was prepared by the continuous precipitation method using Ca(NO{sub 3}){sub 2}.4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} salts. The synthesized material was structurally and superficially characterized using the XRD, BET, IR TGA and SEM techniques. The obtained inorganic material was identified as calcium phosphate that presents a great specific area for what can be efficiently used as adsorbent material for adsorption studies in the radioactive wastes treatment present in aqueous solution. (Author)

  6. Casein Phosphopeptide-Amorphous Calcium Phosphate and Shear Bond Strength of Adhesives to Primary Teeth Enamel

    OpenAIRE

    Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila

    2015-01-01

    Background: CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. Objectives: This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesiv...

  7. Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Drew Lenzen Enlow

    2006-08-09

    In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of {approx}40 nm, and agglomerates of these particles (on the order of 0.5 {mu}m) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough to retain its integrity even below polymer critical micelle concentration and/or temperature. Calcium phosphate-polymer gel nanocomposites were also prepared. Gel samples appeared as a single phase network of agglomerated spherical micelles, and had a final calcium phosphate concentration of up to 15 wt%. Analysis with x-ray diffraction and NMR indicated a disordered brushite phase with the phosphate groups linking inorganic phase to the polymer.

  8. Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Enlow, Drew Lenzen [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of ~40 nm, and agglomerates of these particles (on the order of 0.5 μm) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough to retain its integrity even below polymer critical micelle concentration and/or temperature. Calcium phosphate-polymer gel nanocomposites were also prepared. Gel samples appeared as a single phase network of agglomerated spherical micelles, and had a final calcium phosphate concentration of up to 15 wt%. Analysis with x-ray diffraction and NMR indicated a disordered brushite phase with the phosphate groups linking inorganic phase to the polymer.

  9. Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells

    OpenAIRE

    Tahmasebi Birgani, Zeinab; van Blitterswijk, Clemens A.; Habibovic, Pamela

    2016-01-01

    Calcium phosphates (CaPs), extensively used synthetic bone graft substitutes, are often combined with other materials with the aim to overcome issues related to poor mechanical properties of most CaP ceramics. Thin ceramic coatings on metallic implants and polymer-ceramic composites are examples of such hybrid materials. Both the properties of the CaP used and the method of incorporation into a hybrid structure are determinant for the bioactivity of the final construct. In the present study, ...

  10. Hard tissue deposition in dental pulp canal by {alpha}-tricalcium phosphate cement

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M.; Toda, T. [Osaka Dental Univ. (Japan). Dept. of Endodontics; Mandai, Y. [Bio-Chemical Lab. of Nitta Gelatin Inc., Yao (Japan); Oonishi, H. [Osaka Minami National Hospital, Kawachi (Japan). Dept. of Orthopaedic Surgery

    2001-07-01

    Canal closure by hard tissue proliferation in the pulp canal and/or apical foramen is the most ideal healing after pulp removal. Generally, Ca(OH){sub 2} may induce secondary dentine or dentine-bridge on the amputated pulp surface. However, Ca(OH){sub 2} shows strong alkalinity and may cause severe inflammatory responses in the residual pulp. Moreover, completely formed dentine-bridge at the orifice will disturb further treatment of residual pulp because of the difficulty in localizing the pathway. The purpose of this study was to see hard tissue induction using newly developed {alpha}-tricalcium phosphate cement and to recognize the morphological difference of hard tissue from that of Ca(OH){sub 2}. (orig.)

  11. Combining Hydraulic and Phosphate Bonds to Improve Properties of Alumina-spinel Low Cement Castables

    Institute of Scientific and Technical Information of China (English)

    M.Paghandeh; A.Monshi; R.Emadi

    2009-01-01

    A basic alumina-spinel low cement castables (castables A) and another castables (castables B) with 5% addition of sodium hexametaphosphate were prepared and heat treated at 110 ℃,900 ℃ and 1 400 ℃.It is shown that after heat treating at 110 ℃,cold crushing strength (CCS) of castables B is more than 3 times of castables A and apparent porosity (AP) is less than half of castables A.The presence of 800-1 000 ℃ that hydraulic bond reverses to dehydrate condition and castables A becomes weak with high porosity,castables B shows a CCS more than 4 times of castables A.Needles of magnesium phosphate are responsible for reinforcing microstructure of castables B at 900 ℃.After firing at 1 400 ℃,castables B shows extra ordinary CCS of mare than 100 MPa.Reasons were discussed with X-ray diffraction and scanning electron microscopy.

  12. Stabilization of ZnCl2-Containing Waste Using Calcium Sulfoaluminate Cement

    International Nuclear Information System (INIS)

    The potential of calcium sulfoaluminate (CSA) cement was investigated to solidify and stabilize radwastes containing large amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration). Hydration of pastes and mortars prepared with a 0.5 mol/L ZnCl2 mixing solution was characterized over one year as a function of the gypsum content of the binder and the thermal history of the material. Blending the CSA clinker with 20% gypsum enabled rapid hydration, with only very small delay compared with a reference prepared with pure water. It also improved the compressive strength of the hardened material and significantly reduced its expansion under wet curing. Moreover, the hydrate assemblage was less affected by a thermal treatment at early age simulating the temperature rise and fall occurring in a large-volume drum of cemented waste. Fully hydrated materials contained ettringite, amorphous aluminum hydroxide, straetlingite, together with AFm phases (Kuzel's salt associated with monosulfoaluminate or Friedel's salt depending on the gypsum content of the binder), and possibly C-(A)-S-H. Zinc was readily insolubilized and could not be detected in the pore solution extracted from cement pastes, or in their leachates after 3 months of leaching by pure water at pH 7. The good retention of zinc by the cement matrix was mainly attributed to the precipitation of a hydrated and well crystallized phase with platelet morphology (which may belong to the layered double hydroxides family) at early age ≤ 1 day), and to chemisorption onto aluminum hydroxide at later age. (author)

  13. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    International Nuclear Information System (INIS)

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg+2 and Ca+2 ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg+2 and Ca+2 ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg+2, calcium magnesium phosphates (CMPs) which release Mg+2 and Ca+2, and hydroxyapatites (HAs) which release Ca+2 were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg+2 and Ca+2 ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg2+ and Ca2+ ions in proliferation, and differentiation of

  14. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    Science.gov (United States)

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils. PMID:27197655

  15. N-Acetyl cysteine (NAC)-mediated reinforcement of alpha-tricalcium phosphate/silk fibroin (α-TCP/SF) cement.

    Science.gov (United States)

    Feng, Tao; Pi, Bin; Li, Bin; Jiang, Lei; Wang, Yi-Meng; Zhu, Xue-Song; Yang, Hui-Lin

    2015-12-01

    Calcium phosphate cements (CPCs) are popular bone filling materials and drug carriers. However poor mechanical properties and lack of osteoinduction restrict their clinical applications. Recent studies suggested the osteogenic properties of NAC. In our study, we incorporated NAC with α-TCP/SF. We found that the compressive strength of α-TCP/SF-NAC composites increased with increase in NAC concentration, possibly due to complex three-dimensional networks of SF induced by NAC, which was large and chemically heterogeneous and induced compact oriented growth of HA crystals. However the setting time increased slightly with the addition of NAC, due to the ruptured disulfide bonds in SF. The α-TCP/SF-NAC composites also showed decent biocompatibility in vitro. As a result, these composites hold great potential as bone filling materials for clinical applications, including minimally invasive surgeries.

  16. Osteogenesis and angiogenesis properties of dental pulp cell on novel injectable tricalcium phosphate cement by silica doped

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ying-Fang [Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@gmail.com [Department of Anatomy, Chung Shan Medical University, Taichung City, Taiwan (China); Huang, Tsui-Hsien; Chou, Ming-Yung [Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Yang, Jaw-Ji, E-mail: jjyang@csmu.edu.tw [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Department of Anatomy, Chung Shan Medical University, Taichung City, Taiwan (China)

    2014-09-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material in clinical. In this study, we have doped silica (Si) into β-TCP and enhanced its bioactive and osteostimulative properties. To check its effectiveness, a series of Si-doped with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of the diametral tensile strength, ions released and weight loss of cements was considered after immersion. In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on Si-doped β-TCP cements. The results showed that setting time and injectability of the Si-doped β-TCP cements were decreased as the Si content was increased. At the end of the immersion point, weight losses of 30.1%, 36.9%, 48.1%, and 55.3% were observed for the cement doping 0%, 10%, 20%, and 30% Si into β-TCP cements, respectively. In vitro cell experiments show that the Si-rich cements promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the Si-doped in the cement is more than 20%, the amount of cells and osteogenesis protein of hDPCs was stimulated by Si released from Si-doped β-TCP cements. The degradation of β-TCP and osteogenesis of Si gives a strong reason to believe that these Si-doped β-TCP cements may prove to be promising bone repair materials. - Highlights: • The higher the Si in the cement, the shorter the setting time and the higher the DTS. • Si20-doped in TCP improved cell adhesion, proliferation and differentiation. • The Si ion stimulated collagen secreted from cells. • The Si released from substrate can promote osteogenic and angiogenic.

  17. Effect of calcium phosphate crystals induced by uremic serum on calcification of human aortic smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    刘曜蓉

    2013-01-01

    Objective To investigate the impact of calcium phosphate crystals induced by uremic serum on calcification of human aortic smooth muscle cells (HASMCs) .Methods Uremic serum was incubated at 37℃for 3days.Calcium phosphate crystals and uremic supernatant were isolated from uremic serum by ultracentrifugation.

  18. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors.

    Science.gov (United States)

    Eyckmans, Jeroen; Roberts, Scott J; Bolander, Johanna; Schrooten, Jan; Chen, Christopher S; Luyten, Frank P

    2013-06-01

    Although calcium phosphate-containing biomaterials are promising scaffolds for bone regenerative strategies, the osteoinductive capacity of such materials is poorly understood. In this study, we investigated whether endogenous mechanisms of in vivo calcium phosphate-driven, ectopic bone formation could be identified and used to induce enhanced differentiation in vitro of the same progenitor population. To accomplish this, human periosteum derived cells (hPDCs) were seeded on hydroxyapatite/collagen scaffolds (calcium phosphate rich matrix or CPRM), or on decalcified scaffolds (calcium phosphate depleted matrix or CPDM), followed by subcutaneous implantation in nude mice to trigger ectopic bone formation. In this system, osteoblast differentiation occurred in CPRM scaffolds, but not in CPDM scaffolds. Gene expression was assessed by human full-genome microarray at 20 h after seeding, and 2, 8 and 18 days after implantation. In both matrices, implantation of the cell constructs triggered a similar gene expression cascade, however, gene expression dynamics progressed faster in CPRM scaffolds than in CPDM scaffolds. The difference in gene expression dynamics was associated with differential activation of hub genes and molecular signaling pathways related to calcium signaling (CREB), inflammation (TNFα, NFkB, and IL6) and bone development (TGFβ, β-catenin, BMP, EGF, and ERK signaling). Starting from this set of pathways, a growth factor cocktail was developed that robustly enhanced osteogenesis in vitro and in vivo. Taken together, our data demonstrate that through the identification and subsequent stimulation of genes, proteins and signaling pathways associated with calcium phosphate mediated osteoinduction, a focused approach to develop targeted differentiation protocols in adult progenitor cells can be achieved.

  19. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    International Nuclear Information System (INIS)

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration

  20. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Liu, Xi [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lian, Xiaojie [College of Mechanics, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Zhongwu [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Jiang, Hong-Jiang [Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology, Shandong 264400 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-04-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration.

  1. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    International Nuclear Information System (INIS)

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on 25Mg, 27Al, 29Si, 31P and 39K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC

  2. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk

    2015-08-15

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  3. Grafting cyclodextrins to calcium phosphate ceramics for biomedical applications

    DEFF Research Database (Denmark)

    Jacobsen, P.A.L.; Nielsen, J.L.; Juhl, M.V.;

    2012-01-01

    The grafting of hydroxyapatite/beta-tricalcium phosphate with β-cyclodextrin was achieved using a two step reaction with (3-glycidyloxypropyl)trimethoxysilane as a linker. Firstly, the silane group was brought to react with the hydroxyl groups at the surface of the hydroxyapatite/beta-tricalcium ...

  4. Effects of Silicate, Phosphate, and Calcium on the Stability of Aldopentoses

    Science.gov (United States)

    Nitta, Sakiko; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2016-06-01

    Ribose is an important constituent of RNA: ribose connects RNA bases and forms a strand of sugar phosphates. Accumulation of ribose on prebiotic Earth was difficult because of its low stability. Improvement in the yield of ribose by the introduction of borate or silicate in a formose-like reaction has been proposed. The effects of borates have been further analyzed and confirmed in subsequent studies. Nonetheless, the effects of silicates and phosphates remain unclear. In the present study, we incubated aldopentoses in a highly alkaline aqueous solution at a moderate temperature to determine the effects of silicate or phosphate on the degradation rates of ribose and its isomeric aldopentoses. The formation of a complex of silicate (or phosphate) with ribose was also analyzed in experiments with 29Si and 31P nuclear magnetic resonance (NMR). We found that silicate or phosphate complexes of ribose were not detectable under our experimental conditions. The stability of ribose and lyxose improved after addition of 40-fold molar excess (relative to a pentose) of sodium silicate or sodium phosphate to the alkaline solution. The stability was not improved further when an 80-fold molar excess of sodium silicate or sodium phosphate was added. Calcium was removed from these solutions by precipitation of calcium salts. The drop in Ca2+ concentration might have improved the stability of ribose and lyxose, which are susceptible to aldol addition. The improvement of ribose stability by the removal of Ca2+ and by addition of silicate or phosphate was far smaller than the improvement by borate. Furthermore, all aldopentoses showed similar stability in silicate- and phosphate-containing solutions. These results clearly show that selective stabilization of ribose by borate cannot be replaced by the effects of silicate or phosphate; this finding points to the importance of borate in prebiotic RNA formation.

  5. Treatment of acute thoracolumbar burst fractures with kyphoplasty and short pedicle screw fixation: Transpedicular intracorporeal grafting with calcium phosphate: A prospective study

    Directory of Open Access Journals (Sweden)

    Korovessis Panagiotis

    2007-01-01

    Full Text Available Background: In the surgical treatment of thoracolumbar fractures, the major problem after posterior correction and transpedicular instrumentation is failure to support the anterior spinal column, leading to loss of correction and instrumentation failure with associated complaints. We conducted this prospective study to evaluate the outcome of the treatment of acute thoracolumbar burst fractures by transpedicular balloon kyphoplasty, grafting with calcium phosphate cement and short pedicle screw fixation plus fusion. Materials and Methods : Twenty-three consecutive patients of thoracolumbar (T 9 to L 4 burst fracture with or without neurologic deficit with an average age of 43 years, were included in this prospective study. Twenty-one from the 23 patients had single burst fracture while the remaining two patients had a burst fracture and additionally an adjacent A1-type fracture. On admission six (26% out of 23 patients had neurological deficit (five incomplete, one complete. Bilateral transpedicular balloon kyphoplasty with liquid calcium phosphate to reduce segmental kyphosis and restore vertebral body height and short (three vertebrae pedicle screw instrumentation with posterolateral fusion was performed. Gardner kyphosis angle, anterior and posterior vertebral body height ratio and spinal canal encroachment were calculated pre- to postoperatively. Results : All 23 patients were operated within two days after admission and were followed for at least 12 months after index surgery. Operating time and blood loss averaged 45 min and 60 cc respectively. The five patients with incomplete neurological lesions improved by at least one ASIA grade, while no neurological deterioration was observed in any case. The VAS and SF-36 (Role physical and Bodily pain domains were significantly improved postoperatively. Overall sagittal alignment was improved from an average preoperative 16° to one degree kyphosis at final follow-up observation. The anterior

  6. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    Science.gov (United States)

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  7. Use of industrial byproducts as alumina sources for the synthesis of calcium sulfoaluminate cements.

    Science.gov (United States)

    Pace, Maria Lucia; Telesca, Antonio; Marroccoli, Milena; Valenti, Gian Lorenzo

    2011-07-15

    Calcium sulfoaluminate (CSA) cements show some desirable environmentally friendly features that include the possibility of using several industrial byproducts as raw materials in their manufacturing process. Alumina powder, from the secondary aluminum manufacture, and anodization mud, from the production process of anodized aluminum, have proved to be suitable as partial or total substitutes for an expensive natural material like bauxite. CSA clinker generating raw mixtures, containing limestone, natural gypsum, bauxite, and/or one of the alumina-rich byproducts, were heated 2 h in a laboratory electric oven at temperatures ranging from 1150 to 1300 °C. Conversion of reactants into 4CaO·3Al(2)O(3)·SO(3) (the key component of CSA cements), evaluated using X-ray diffraction (XRD) analysis, increased with an increase of both burning temperature and byproduct concentration. When examined through differential thermogravimetric and XRD analyses, a synthetic CSA clinker (made from the raw mixture incorporating alumina powder as a total replacement of bauxite) mixed with 20% gypsum showed a hydration behavior almost similar to that of an industrial CSA cement containing the same amount of gypsum. PMID:21707122

  8. Statistical Analyses of Optimum Partial Replacement of Cement by Fly Ash Based on Complete Consumption of Calcium Hydroxide

    Directory of Open Access Journals (Sweden)

    Ouypornprasert Winai

    2016-01-01

    Full Text Available The objectives of this technical paper were to propose the optimum partial replacement of cement by fly ash based on the complete consumption of calcium hydroxide from hydration reactions of cement and the long-term strength activity index based on equivalent calcium silicate hydrate as well as the propagation of uncertainty due to randomness inherent in main chemical compositions in cement and fly ash. Firstly the hydration- and pozzolanic reactions as well as stoichiometry were reviewed. Then the optimum partial replacement of cement by fly ash was formulated. After that the propagation of uncertainty due to main chemical compositions in cement and fly ash was discussed and the reliability analyses for applying the suitable replacement were reviewed. Finally an applicability of the concepts mentioned above based on statistical data of materials available was demonstrated. The results from analyses were consistent with the testing results by other researchers. The results of this study provided guidelines of suitable utilization of fly ash for partial replacement of cement. It was interesting to note that these concepts could be extended to optimize partial replacement of cement by other types of pozzolan which were described in the other papers of the authors.

  9. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs.

    NARCIS (Netherlands)

    Davison, N.L.; Su, J.; Yuan, H.; Beucken, J.J.J.P van den; Bruijn, J.D. de; rrere-de Groot, F. Ba

    2015-01-01

    It has been reported that surface microstructural dimensions can influence the osteoinductivity of calcium phosphates (CaPs), and osteoclasts may play a role in this process. We hypothesised that surface structural dimensions of

  10. Lead Retention in a Calcareous Soil Influenced by Calcium and Phosphate Amendments

    Science.gov (United States)

    Phosphate amendments in calcareous lead (Pb)-contaminated soils to immobilize Pb may be hindered due to competition of Pb with calcium (Ca) that may inhibit the retention of Pb as a precipitation mechanism. This study explored the retention of Pb in a calcareous soil spiked and ...

  11. Dense and porous titanium substrates with a biomimetic calcium phosphate coating

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.A., E-mail: aantunesr@yahoo.com.br [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Balestra, R.M. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Rocha, M.N. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Peripolli, S.B. [Materials Metrology Division, National Institute of Metrology, Normalization and Quality, No. 50 Nossa Senhora das Gracas Street, Building 3, 25250-020 Duque de Caxias, RJ (Brazil); Andrade, M.C. [Polytechnic Institute of Rio de Janeiro, Rio de Janeiro State University, s/n, Alberto Rangel Street, 28630-050 Nova Friburgo, RJ (Brazil); Pereira, L.C. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, M.V. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A biomimetic coating method with simplified solution is proposed. Black-Right-Pointing-Pointer Titanium substrates are submitted to chemical and heat treatments. Black-Right-Pointing-Pointer Titanium substrates are coated with biocompatible calcium phosphate phases. Black-Right-Pointing-Pointer The simplified solution shows potential to be applied as a coating technique. - Abstract: The present work studied a biomimetic method using a simplified solution (SS) with calcium and phosphorus ions for coating titanium substrates, in order to improve their bioactivity. Commercially pure titanium dense sheet, microporous and macroporous titanium samples, both produced by powder metallurgy, were treated in NaOH solution followed by heat-treating and immersed in SS for 7, 14 or 21 days. The samples characterization was performed by quantitative metallographic analysis, confocal scanning optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and low angle X-ray diffraction. The results showed coatings with calcium phosphate precipitation in all samples, with globular or plate-like morphology, typical of hydroxyapatite and octacalcium phosphate, respectively, indicating that the solution (SS) has potential for coating titanium substrates. In addition, the different surfaces of substrates had an effect on the formed calcium phosphate phase and thickness of coatings, depending on the substrate type and imersion time in the simplified solution.

  12. Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers.

    Science.gov (United States)

    Mohammadi, Zahra; Mesgar, Abdorreza Sheikh-Mehdi; Rasouli-Disfani, Fariba

    2016-08-01

    The composite scaffolds of the chitosan and multiphasic calcium phosphate (HW) short fibers were prepared by freeze drying and characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM and FE-SEM). The mechanical properties of the scaffolds were assessed by compression test. The incorporation of HW fibers consisting three phases of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP) and calcium pyrophosphate (CPP) into the chitosan matrices was associated with an increase in pore size, density and compressive strength and modulus, and a decrease in porosity and swelling ratio of the scaffolds. The strongest composite scaffolds in this study with a chitosan: HW fibers weight ratio of 1:1 showed a mean porosity of 69% and a mean strength and modulus of 420kPa and 3.87MPa, respectively. The in vitro bioactivity of the composites was confirmed by the formation of a calcium phosphate rich layer on the surface of soaked scaffolds in simulated body fluid. The findings of this initial work indicate that the chitosan-multiphasic calcium phosphate short fibers may be a suitable material for bone scaffolding. PMID:27179144

  13. Novel tea polyphenol-modified calcium phosphate nanoparticle and its remineralization potential

    NARCIS (Netherlands)

    L. He; D. Deng; X. Zhou; L. Cheng; J.M. ten Cate; J. Li; X. Li; W. Crielaard

    2015-01-01

    Tea polyphenols (TP) are not only potent antimicrobial and antioxidant agents but also effective modifiers in the formation of nanosized crystals. Since nano-hydroxyapatite (n-HA) is known to enhance remineralization of dental hard tissue, our aims were to synthesize nanosized calcium phosphate part

  14. The role of prenucleation clusters in surface-induced calcium phosphate crystallization

    Science.gov (United States)

    Dey, Archan; Bomans, Paul H. H.; Müller, Frank A.; Will, Julia; Frederik, Peter M.; de With, Gijsbertus; Sommerdijk, Nico A. J. M.

    2010-12-01

    Unravelling the processes of calcium phosphate formation is important in our understanding of both bone and tooth formation, and also of pathological mineralization, for example in cardiovascular disease. Serum is a metastable solution from which calcium phosphate precipitates in the presence of calcifiable templates such as collagen, elastin and cell debris. A pathological deficiency of inhibitors leads to the uncontrolled deposition of calcium phosphate. In bone and teeth the formation of apatite crystals is preceded by an amorphous calcium phosphate (ACP) precursor phase. ACP formation is thought to proceed through prenucleation clusters-stable clusters that are present in solution already before nucleation-as was recently demonstrated for CaCO3 (refs 15,16). However, the role of such nanometre-sized clusters as building blocks for ACP has been debated for many years. Here we demonstrate that the surface-induced formation of apatite from simulated body fluid starts with the aggregation of prenucleation clusters leading to the nucleation of ACP before the development of oriented apatite crystals.

  15. In vivo performance of microstructured calcium phosphate formulated in novel water-free carriers

    NARCIS (Netherlands)

    Davison, N.L.; Yuan, H.; Bruijn, de J.D.; Barrere-de Groot, F.YF.

    2012-01-01

    Osteoinductive calcium phosphate (CaP) ceramics can be combined with polymeric carriers to make shapeable bone substitutes as an alternative to autologous bone; however, carriers containing water may degrade the ceramic surface microstructure, which is crucial to bone formation. In this study five n

  16. Calcium phosphate coating on magnesium alloy by biomimetic method :Investigation of morphology ,composition and formation process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Magnesium alloy has similar mechanical properties with natural bone and can degrade via corrosion in the electrolytic environment of the human body.Calcium phosphate has been proven to possess bioactivity and bone inductivity.In order to integrate both advantages,calcium phosphate coating was fabricated on magnesium alloy by a biomimetic method.Supersaturated calcification solutions (SCSs) with different Ca/P ratio and C1- concentration were used as mimetic solutions.The morphology,composition and formation process of the coating were studied with scanning electron microscopy (SEM),energy dispersive spectrometer (EDS),Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD).The results show that a uniform calcium phosphate coating was observed on magnesium alloy,the properties of which could be adjusted by the SCSs with different Ca/P ratio.The formation process of the coating was explored by immersing magnesium alloy in SCSs with different Cl- concentration which could adjust the hydrogen production.According to SEM results,the hydrogen bubbles were associated with the formation of grass-like and flower-like coating morphologies.In conclusion,the biomimetic method was effective to form calcium phosphate coating on magnesium alloy and the morphology and composition of the coating could be accommodated by the Ca/P ratio and Cl- concentration in SCSs.

  17. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts

    NARCIS (Netherlands)

    Yang, Liang; Perez-Amodio, Soledad; Barrere-de Groot, Florence Y.F.; Everts, Vincent; Blitterswijk, van Clemens A.; Habibovic, Pamela

    2010-01-01

    This study describes a medium-throughput system based on deposition of calcium phosphate films in multi-well tissue culture plates that can be used to study the effect of inorganic additives on the behavior of osteoblasts and osteoclasts in a standardized manner. All tested elements, copper, zinc, s

  18. Conservative Management of Class 4 Invasive Cervical Root Resorption Using Calcium-enriched Mixture Cement.

    Science.gov (United States)

    Asgary, Saeed; Nosrat, Ali

    2016-08-01

    Class 4 invasive cervical root resorption (ICRR) presents a treatment dilemma in endodontics. The widely accepted treatment options for a class 4 ICRR are to leave these teeth untreated for as long as they are asymptomatic or extraction. This report presents a conservative approach for the management of class 4 ICRR. A 28-year-old woman was referred for root canal treatment of tooth #26. The patient had a history of orthodontic treatment. Radiographic evaluation showed class 4 ICRR that had perforated the root canal space, a radiolucent crestal bony defect, and a periapical lesion. Clinically, a deep (6-mm) probing area was found on the mesial side of the tooth that bled on probing. The tooth was sensitive to percussion. After the treatment options were discussed with the patient, she chose to save the tooth. After complete chemomechanical preparation of the root canal, the entire canal space and perforation area were filled with calcium-enriched mixture cement. No attempt was made to mechanically remove the resorptive lacuna. Twenty four months after treatment, the tooth was functional and asymptomatic, and probing was within normal limits (canal space with calcium-enriched mixture cement may be a viable treatment option for an otherwise non-treatable tooth with class 4 invasive cervical root resorption. PMID:27316319

  19. In Vitro Cytotoxicity of Calcium Silicate-Based Endodontic Cement as Root-End Filling Materials

    Directory of Open Access Journals (Sweden)

    Selen Küçükkaya

    2016-01-01

    Full Text Available The aim of this study was to evaluate the cytotoxicity of three types of calcium silicate-based endodontic cement after different incubation periods with human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were cultured from extracted third molars and seeded in 96-well plates. MTA, calcium enriched mixture (CEM cement, and Biodentine were prepared and added to culture insert plates which were immediately placed into 96-well plates containing cultured cells. After incubation periods of 24, 48, and 72 hours, cell viability was determined with WST-1 assay. Data were analysed statistically by ANOVA with repeated measures and Bonferroni tests. There was no significant difference in cell viability amongst the test materials after each incubation period (P>0.05. MTA and CEM presented more than 90% cell viability after 24 and 48 hours of incubation and showed statistically significant decrease in cell viability after 72 hours of incubation (P<0.05. Biodentine showed significantly less cell viability (73% after 24 hours of incubation, whereas more than 90% cell viability was seen after 48 and 72 hours of incubation (P<0.05. Despite the significant changes in cell viability over time, materials presented similar cytotoxicity profile. Biodentine and CEM can be considered as alternative materials for root-end surgery procedures.

  20. In Vitro Cytotoxicity of Calcium Silicate-Based Endodontic Cement as Root-End Filling Materials.

    Science.gov (United States)

    Küçükkaya, Selen; Görduysus, Mehmet Ömer; Zeybek, Naciye Dilara; Müftüoğlu, Sevda Fatma

    2016-01-01

    The aim of this study was to evaluate the cytotoxicity of three types of calcium silicate-based endodontic cement after different incubation periods with human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were cultured from extracted third molars and seeded in 96-well plates. MTA, calcium enriched mixture (CEM) cement, and Biodentine were prepared and added to culture insert plates which were immediately placed into 96-well plates containing cultured cells. After incubation periods of 24, 48, and 72 hours, cell viability was determined with WST-1 assay. Data were analysed statistically by ANOVA with repeated measures and Bonferroni tests. There was no significant difference in cell viability amongst the test materials after each incubation period (P > 0.05). MTA and CEM presented more than 90% cell viability after 24 and 48 hours of incubation and showed statistically significant decrease in cell viability after 72 hours of incubation (P Biodentine showed significantly less cell viability (73%) after 24 hours of incubation, whereas more than 90% cell viability was seen after 48 and 72 hours of incubation (P Biodentine and CEM can be considered as alternative materials for root-end surgery procedures.

  1. Mechanistic study and modeling of radionuclides retention by the hydrated calcium silicates (HCS) of cements

    International Nuclear Information System (INIS)

    This work attempts to investigate the modelling of radioisotopes (Cs+, Pb2+, Eu3+) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs+ is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm-2), which accounts for the CSH unsaturation in high [CS+]. A strong site is also identified. - Pb2+ immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu3+ fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu3+ thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)

  2. Influence of core-finishing intervals on tensile strength of cast posts-and-cores luted with zinc phosphate cement

    Directory of Open Access Journals (Sweden)

    Michele Andrea Lopes Iglesias

    2012-08-01

    Full Text Available The core finishing of cast posts-and-cores after luting is routine in dental practice. However, the effects of the vibrations produced by the rotary cutting instruments over the luting cements are not well-documented. This study evaluated the influence of the time intervals that elapsed between the cementation and the core-finishing procedures on the tensile strength of cast posts-and-cores luted with zinc phosphate cement. Forty-eight bovine incisor roots were selected, endodontically treated, and divided into four groups (n = 12: GA, control (without finishing; GB, GC, and GD, subjected to finishing at 20 minutes, 60 minutes, and 24 hours after cementation, respectively. Root canals were molded, and the resin patterns were cast in copper-aluminum alloy. Cast posts-and-cores were luted with zinc phosphate cement, and the core-finishing procedures were applied according to the groups. The tensile tests were performed at a crosshead speed of 0.5 mm/min for all groups, 24 hours after the core-finishing procedures. The data were subjected to one-way analysis of variance (ANOVA and Tukey's test (α = 0.05. No significant differences were observed in the tensile strengths between the control and experimental groups, regardless of the time interval that elapsed between the luting and finishing steps. Within the limitations of the present study, it was demonstrated that the core-finishing procedures and time intervals that elapsed after luting did not appear to affect the retention of cast posts-and-cores when zinc phosphate cement was used.

  3. An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery

    Directory of Open Access Journals (Sweden)

    Liu YC

    2011-04-01

    Full Text Available Yachun Liu1,2,*, Tao Wang1,*, Fangli He1,*, Qian Liu1,*, Dexi Zhang2, Shuanglin Xiang1, Shengpei Su2, Jian Zhang11Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education of China, College of Life Sciences; 2Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, China*These authors contributed equally to this workBackground: Smaller nanoparticles facilitate the delivery of DNA into cells through endocytosis and improve transfection efficiency. The aim of this study was to determine whether protamine sulfate-coated calcium phosphate (PS-CaP could stabilize particle size and enhance transfection efficiency.Methods: pEGFP-C1 green fluorescence protein was employed as an indicator of transfection efficiency. Atomic force microscopy was used to evaluate the morphology and the size of the particles, and an MTT assay was introduced to detect cell viability and inhibition. The classical calcium phosphate method was used as the control.Results: Atomic force microscopy images showed that the PS-CaP were much smaller than classical calcium phosphate particles. In 293 FT, HEK 293, and NIH 3T3 cells, the transfection efficiency of PS-CaP was higher than for the classical calcium phosphate particles. The difference in efficiencies implies that the smaller nanoparticles may promote the delivery of DNA into cells through endocytosis and could improve transfection efficiency. In addition, PS-CaP could be used to transfect HEK 293 cells after one week of storage at 4°C with a lesser extent of efficiency loss compared with classical calcium phosphate, indicating that protamine sulfate may increase the stability of calcium phosphate nanoparticles. The cell viability inhibition assay indicated that

  4. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic

    OpenAIRE

    de Carvalho, Rodrigo Furtado; Caroline COTES; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa Pereira; Özcan, Mutlu

    2015-01-01

    This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Sil...

  5. Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate.

    Science.gov (United States)

    Lin, Chi-Chang; Fu, Shu-Juan; Lin, Yu-Ching; Yang, I-Kuan; Gu, Yesong

    2014-07-01

    In this work, hydroxyapatite (HA) mineralized on chitosan (CS)-coated poly(lactic acid) (PLA) nanofiber mat was prepared and compared in terms of mineralization characteristics. Significant calcium phosphate crystals formed on various concentrations of CS-coated PLA fiber mat with better uniformity after 2h of incubation in 10 times simulated body fluid (10× SBF). X-ray diffraction results further indicated that the composition of the deposited mineral was a mixture of dicalcium phosphate dehydrates and apatite. Chitosan, a cationic polysaccharide, can promote more nucleation and growth of calcium phosphate under conditions of 0.4% chitosan concentrations. These results indicated that HA-mineralized on CS-coated PLA fiber mat can be prepared directly via simply using CS coating followed by SBF immersion, and the results also suggest that this composite can mimic structural, compositional, and biological functions of native bone and can serve as a good candidate for bone tissue engineering (BTE). PMID:24768970

  6. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. PMID:23827538

  7. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  8. Histological evaluation of direct pulp capping by using of calcium hydroxide and octacalcium phosphate in cats dental pulp

    Directory of Open Access Journals (Sweden)

    Eshagh Ali Saberi

    2013-08-01

    Full Text Available   Background and Aims: The purpose of this study was to evaluate the tissue responses to octacalcium phosphate (OCP and calcium hydroxide (CH used as direct pulp capping (DPC materials in cat teeth.   Materials and Methods: 72 premolar teeth of 9 cats were selected and divided into 3 groups (Two experimental and one control group. After the cats had been anesthetized, the pulp were exposed and capped directly with OCP, CH or no capping material as control group. The cavities of all three groups were filled with Glass ionomer cement (GI. Histological evaluations were performed at two, four and eight weeks after pulp capping. After tissue preparation procedures, paraffin blocks were prepared. After preparation and staining of the sections, the relevant variables were measured by optical microscope. The results were analyzed using Mann-Whitney U and Chi-square tests ( α =0.05.   Results: Two weeks after pulp capping, all specimens in three groups showed mild to sever inflammation. The formation of hard tissue (dentinal bridge at in the exposed areas of the experimental groups was more noticeable for calcium hydroxide than that of octacalcium phosphate group. These differences were statistically significant (P<0.001. At four weeks, hard tissues were observed in both groups which were more evident for the CH group and there were statistically significant difference between two experimental groups (p0.05, but hard tissues continuity were better for in the OCP than that of the CH.   Conclusion: It seems that the formation of hard tissue in CH because of its porosities had a worse percentage in sealing of the pulp than the OCP .

  9. Phase stability of silver particles embedded calcium phosphate bioceramics

    Indian Academy of Sciences (India)

    Brajendra Singh; Samayendra Kumar; Naresh Saha; Bikramjit Basu; Rajeev Gupta

    2015-04-01

    In this paper, we report the compositional variation-dependent phase stability of hydroxyapatite (Ca10(PO4)6(OH)2) on doping with silver. The transformation of hydroxyapatite to (/) tricalcium phosphate phases during sintering has been explored using Raman spectroscopy and X-ray diffraction techniques. The optical absorption spectroscopy analysis reveals the presence of Ag+ ions at low doping levels. As the doping increases, abundance of Ag particles is enhanced.

  10. Kinetics and Mechanism of Adsorption of Phosphate on Fluorine-containing Calcium Silicate

    Institute of Scientific and Technical Information of China (English)

    ZHU Xinhua; ZHANG Zhao; SHEN Jun

    2016-01-01

    The nanowires-reticulated calcium silicate with a speciifc surface area more than 100 m2/g was prepared by a hydrothermal process using hydrated lime (Ca(OH)2, HL) and silica containing soluble lfuoride, which was a by-product of lfuorine industry, and the soluble lfuoride in raw silica was ifxed as CaSiF6 at the same time. The kinetic characteristics and mechanism of adsorbing phosphate by lfuorine-containing calcium silicate were investigated in the experiments of phosphorus (P) removal from aqueous solution. The results show that the prepared lfuorine-containing calcium silicate has excellent performance for adsorbing phosphate, the adsorption process appears to follow pseudo-second-order reaction kinetics and the process is mainly controlled by chemisorption. The product resulted from P adsorption is mainly composed of hydroxyapatite (HAP) and lfuorapatite (FAP), which are further used as adsorbents of heavy metal ion Cd2+ in aqueous solution and display excellent performance.

  11. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Hsien [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Department of Orthopedic Surgery, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Pei-Yuan [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Chen, Wen-Cheng, E-mail: wincheng0925@yahoo.com.tw [Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Hu, Jin-Jia, E-mail: jjhu@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion

  12. Characterization of high-calcium fly ash and its influence on ettringite formation in portland cement pastes

    Science.gov (United States)

    Tishmack, Jody Kathleen

    High-calcium Class C fly ashes derived from Powder River Basin coal are currently used as supplementary cementing materials in portland cement concrete. These fly ashes tend to contain significant amounts of sulfur, calcium, and aluminum, thus they are potential sources of ettringite. Characterization of six high-calcium fly ashes originating from Powder River Basin coal have been carried out. The hydration products formed in pastes made from fly ash and water were investigated. The principal phases produced at room temperature were ettringite, monosulfate, and stratlingite. The relative amounts formed varied with the specific fly ash. Removal of the soluble crystalline sulfur bearing minerals indicated that approximately a third of the sulfur is located in the fly ash glass. Pore solution analyses indicated that sulfur concentrations increased at later ages. Three fly ashes were selected for further study based on their ability to form ettringite. Portland cement-fly ash pastes made with the selected fly ashes were investigated to evaluate ettringite and monosulfate formation. Each of the fly ashes were mixed with four different types of portland cements (Type I, I/II, II, and III) as well as three different Type I cements exhibiting a range of C3A and sulfate contents. The pastes had 25% or 35% fly ash by total weight of solids and a water:cement-fly ash ratio of 0.45. The samples were placed in a curing room (R.H. = 100, 23°C) and were then analyzed at various ages by x-ray diffraction (XRD) and differential scanning calorimetry (DSC) to determine the principal hydration products. The hydration products identified by XRD were portlandite, ettringite (an AFt phase), monosulfate, and generally smaller amounts of hemicarboaluminate and monocarboaluminate (all AFm phases). Although the amount of ettringite formed varied with the individual cement, only a modest correlation with cement sulfate content and no correlation with cement C3A content was observed. DSC

  13. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties

    Energy Technology Data Exchange (ETDEWEB)

    Drevet, Richard, E-mail: richard.drevet@univ-reims.fr; Benhayoune, Hicham

    2013-10-15

    Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1 h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H{sub 2}O{sub 2}) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. - Highlights: • Strontium-substituted calcium phosphate coatings are successfully electrodeposited. • The strontium is homogeneously distributed in the synthesized prosthetic coating. • This divalent cation modifies the calcium phosphate structure. • H{sub 2}O{sub 2} addition in the electrolyte allows to control the coating's stoichiometry. • This implies a control of the strontium release in the physiological environment.

  14. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate) Bone Cement

    OpenAIRE

    Lucas C. Rodriguez; Jonathan Chari; Shant Aghyarian; Gindri, Izabelle M.; Victor Kosmopoulos; Rodrigues, Danieli C.

    2014-01-01

    Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cem...

  15. Effect of Fluoride, Casein Phosphopeptide–Amorphous Calcium Phosphate and Casein Phosphopeptide–Amorphous Calcium Phosphate Fluoride on Enamel Surface Microhardness After Microabrasion: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadi Zenouz

    2016-03-01

    Full Text Available Objectives: This study aimed to assess the effect of applying casein phosphopeptide–amorphous calcium phosphate (CPP-ACP paste, casein phosphopeptide–amorphous calcium phosphate fluoride (CPP-ACPF paste and sodium fluoride gel on surface microhardness of enamel after microabrasion.Materials and Methods: Thirty freshly extracted human premolars were selected. All samples were subjected to hardness indentations made with the Vickers hardness machine and the average value was recorded as the initial surface microhardness. The specimens were then randomly divided into three groups (n=10 of CPP-ACPF, fluoride and CPP-ACP. The teeth were micro-abraded with Opalustre. Microhardness test was performed to assess the post-abrasion hardness. Three remineralization modalities were performed on samples of each group. The enamel surface microhardness measurements were performed. To compare the difference between groups, the rehardening and softening values were defined. One-way ANOVA and Tukey’s post hoc test at a significance level of 5% were used for statistical analysis.Results: The mean microhardness value (MMV had a significant decrease after microabrasion from baseline. The MMV had a significant increase after remineralization in all groups. The MMV of CPP-ACPF group was significantly more than that of fluoride group (P=0.027. The rehardening value of fluoride group was significantly more than that of other groups (P<0.001.Conclusion: All the remineralizing agents were effective for rehardening the enamel after microabrasion. The CPP-ACP and CPP-ACPF pastes are effective, but to a lesser extent than neutral sodium fluoride gel in remineralizing enamel surface. Incorporation of fluoride to CPP-ACP formulation does not provide any additional remineralizing potential.Keywords: Casein phosphopeptide-amorphous calcium phosphate nanocomplex; Enamel Microabrasion; Hardness; Sodium Fluoride

  16. Hereditary deafness with hydrops and anomalous calcium phosphate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, L.G.; Rouse, R.C.; Hawkins, J.E. Jr.; Kingsley, T.C.; Wright, C.G.

    1981-11-01

    The temporal bones from a 58-year-old white woman who had had hereditary congenital deafness were examined with the techniques of microdissection and surface preparations followed by sectioning of the modiolus. There was bilateral, almost total sensorineural degeneration, which also involved the saccule. The degeneration of the distal processes of the cochlear neurons in the osseous spiral lamina was almost complete, whereas numerous ganglion cells and proximal processes remained in the modiolus and the internal auditory canal. Severe cochleo-saccular hydrops was present in the left ear with Reissner's membrane bulging into the horizontal canal. X-ray diffraction and electron probe analysis were used to study the abnormal crystalline deposits in both ears. On the left side the saccular otoconia were composed of calcite, but the utricular macula was covered by a crust of apatite spherulites. More apatite occurred around the maculae and in the scala media. The cupulae were composed of apatite and octacalcium phosphate. On the right side the utricular otoconia were of normal calcite, but there was a deposit of apatite on the macula sacculi. The upper part of the scala media was completely filled by a deposit of apatite and octacalcium phosphate.

  17. Hereditary deafness with hydrops and anomalous calcium phosphate deposits

    International Nuclear Information System (INIS)

    The temporal bones from a 58-year-old white woman who had had hereditary congenital deafness were examined with the techniques of microdissection and surface preparations followed by sectioning of the modiolus. There was bilateral, almost total sensorineural degeneration, which also involved the saccule. The degeneration of the distal processes of the cochlear neurons in the osseous spiral lamina was almost complete, whereas numerous ganglion cells and proximal processes remained in the modiolus and the internal auditory canal. Severe cochleo-saccular hydrops was present in the left ear with Reissner's membrane bulging into the horizontal canal. X-ray diffraction and electron probe analysis were used to study the abnormal crystalline deposits in both ears. On the left side the saccular otoconia were composed of calcite, but the utricular macula was covered by a crust of apatite spherulites. More apatite occurred around the maculae and in the scala media. The cupulae were composed of apatite and octacalcium phosphate. On the right side the utricular otoconia were of normal calcite, but there was a deposit of apatite on the macula sacculi. The upper part of the scala media was completely filled by a deposit of apatite and octacalcium phosphate

  18. Calcium Carbonate versus Sevelamer Hydrochloride as Phosphate Binders after Long-Term Disease Progression in 5/6 Nephrectomized Rats

    Directory of Open Access Journals (Sweden)

    Suvi Törmänen

    2014-01-01

    Full Text Available Our aim was to compare the effects of calcium carbonate and sevelamer-HCl treatments on calcium-phosphate metabolism and renal function in 5/6 nephrectomized (NX rats so that long-term disease progression preceded the treatment. After 15-week progression, calcium carbonate (3.0%, sevelamer-HCl (3.0%, or control diets (0.3% calcium were given for 9 weeks. Subtotal nephrectomy reduced creatinine clearance (−40%, plasma calcidiol (−25%, and calcitriol (−70% and increased phosphate (+37%, parathyroid hormone (PTH (11-fold, and fibroblast growth factor-23 (FGF-23 (4-fold. In NX rats, calcium carbonate diet increased plasma (+20% and urinary calcium (6-fold, reduced plasma phosphate (−50% and calcidiol (−30%, decreased creatinine clearance (−35% and FGF 23 (−85%, and suppressed PTH without influencing blood pH. In NX rats, sevelamer-HCl increased urinary calcium (4-fold and decreased creatinine clearance (−45%, PTH (−75%, blood pH (by 0.20 units, plasma calcidiol (−40%, and calcitriol (−65%. Plasma phosphate and FGF-23 were unchanged. In conclusion, when initiated after long-term progression of experimental renal insufficiency, calcium carbonate diet reduced plasma phosphate and FGF-23 while sevelamer-HCl did not. The former induced hypercalcemia, the latter induced acidosis, while both treatments reduced vitamin D metabolites and deteriorated renal function. Thus, delayed initiation influences the effects of these phosphate binders in remnant kidney rats.

  19. Structural characterization of anion-calcium-humate complexes in phosphate-based fertilizers.

    Science.gov (United States)

    Baigorri, Roberto; Urrutia, Oscar; Erro, Javier; Mandado, Marcos; Pérez-Juste, Ignacio; Garcia-Mina, José María

    2013-07-01

    Fertilizers based on phosphate-metal-humate complexes are a new family of compounds that represents a more sustainable and bioavailable phosphorus source. The characterization of this type of complex by using solid (31)P NMR in several fertilizers, based on single superphosphate (SSP) and triple superphosphate (TSP) matrices, yielded surprising and unexpected trends in the intensity and fine structure of the (31)P NMR peaks. Computational chemistry methods allowed the characterization of phosphate-calcium-humate complexes in both SSP and TSP matrices, but also predicted the formation of a stable sulfate-calcium-humate complex in the SSP fertilizers, which has not been described previously. The stability of this complex has been confirmed by using ultrafiltration techniques. Preference towards the humic substance for the sulfate-metal phase in SSP allowed the explanation of the opposing trends that were observed in the experimental (31)P NMR spectra of SSP and TSP samples. Additionally, computational chemistry has provided an assignment of the (31)P NMR signals to different phosphate ligands as well as valuable information about the relative strength of the phosphate-calcium interactions within the crystals.

  20. Structural characterization of anion-calcium-humate complexes in phosphate-based fertilizers.

    Science.gov (United States)

    Baigorri, Roberto; Urrutia, Oscar; Erro, Javier; Mandado, Marcos; Pérez-Juste, Ignacio; Garcia-Mina, José María

    2013-07-01

    Fertilizers based on phosphate-metal-humate complexes are a new family of compounds that represents a more sustainable and bioavailable phosphorus source. The characterization of this type of complex by using solid (31)P NMR in several fertilizers, based on single superphosphate (SSP) and triple superphosphate (TSP) matrices, yielded surprising and unexpected trends in the intensity and fine structure of the (31)P NMR peaks. Computational chemistry methods allowed the characterization of phosphate-calcium-humate complexes in both SSP and TSP matrices, but also predicted the formation of a stable sulfate-calcium-humate complex in the SSP fertilizers, which has not been described previously. The stability of this complex has been confirmed by using ultrafiltration techniques. Preference towards the humic substance for the sulfate-metal phase in SSP allowed the explanation of the opposing trends that were observed in the experimental (31)P NMR spectra of SSP and TSP samples. Additionally, computational chemistry has provided an assignment of the (31)P NMR signals to different phosphate ligands as well as valuable information about the relative strength of the phosphate-calcium interactions within the crystals. PMID:23670945

  1. ATR-FTIR measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics.

    Science.gov (United States)

    Boix, Marcel; Eslava, Salvador; Costa Machado, Gil; Gosselin, Emmanuel; Ni, Na; Saiz, Eduardo; De Coninck, Joël

    2015-11-01

    Arthritis, bone fracture, bone tumors and other musculoskeletal diseases affect millions of people across the world. Nowadays, inert and bioactive ceramics are used as bone substitutes or for bone regeneration. Their bioactivity is very much dictated by the way proteins adsorb on their surface. In this work, we compared the adsorption of albumin and fibrinogen on inert and calcium phosphates ceramics (CaPs) using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to follow in situ protein adsorption on these materials. To this effect, we developed a sol-gel technique to control the surface chemistry of an ATR-FTIR detector. Hydroxyapatite adsorbed more albumin and β-tricalcium phosphate adsorbed more fibrinogen. Biphasic calcium phosphate presented the lowest adsorption among CaP for both proteins, illustrating the effect of surface heterogeneities. Inert ceramics adsorbed a lower amount of both proteins compared with bioactive ceramics. A significant change was observed in the conformation of the adsorbed protein versus the surface chemistry. Hydroxyapatite produced a larger loss of α-helix structure on albumin and biphasic calcium phosphate reduced β-sheet percentage on fibrinogen. Inert ceramics produced large α-helix loss on albumin and presented weak interaction with fibrinogen. Zirconia did not adsorb albumin and titanium dioxide promoted huge denaturalization of fibrinogen.

  2. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    Science.gov (United States)

    Kohiruimaki, T.

    2011-10-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm2 suggesting that these crystals may be of practical use in industrial fermenters.

  3. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Kohiruimaki, T, E-mail: kohi@hi-tech.ac.jp [Department of Technology, Hachinohe Institute of Technology, 88-1 Myo-oobiraki, Hachinohe-shi 031-8501 (Japan)

    2011-10-29

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 {mu}m were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 {mu}m were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 {mu}m had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 {mu}m{sup 2} suggesting that these crystals may be of practical use in industrial fermenters.

  4. Investigation into the role of NaOH and calcium ions in the synthesis of calcium phosphate nanoshells

    Directory of Open Access Journals (Sweden)

    C. H. Yeo

    2012-03-01

    Full Text Available Calcium phosphate (CaP nanoshells were prepared using negatively charged liposomes (1,2-dioleoyl-sn-glycero-3-phosphate sodium salt (DOPA as a template by base titration synthesis at various concentrations of NaOH and calcium ions. The elemental composition, morphology, particle size, particle size distribution and zeta potential of the products were determined via various characterisation techniques, such as energy-dispersive X-ray spectrometry (EDX, transmission electron microscopy (TEM, dynamic light scattering (DLS, laser Doppler velocimetry (LDV and Fourier transform infrared spectroscopy (FTIR. The best results showed that stable spherical CaP nanoshells with a mean particle size of 197.5 ± 5.8 nm and a zeta potential of -34.5 ± 0.6 mV were successfully formed when 0.100 M sodium hydroxide (NaOH and 0.100 M calcium ions were used. Moreover, an optimal pH of 10.52 and a final Ca/P molar ratio of 0.97 were achieved under these conditions.

  5. Study on an Improved Phosphate Cement Binder for the Development of Fiber-Reinforced Inorganic Polymer Composites

    OpenAIRE

    Zhu Ding; Jian-Guo Dai; Sarfraz Muner

    2014-01-01

    Magnesium phosphate cement (MPC) has been proven to be a very good repair material for deteriorated concrete structures. It has excellent adhesion performance, leading to high bonding strength with old concrete substrates. This paper presents an experimental study into the properties of MPC binder as the matrix of carbon fiber sheets to form fiber-reinforced inorganic polymer (FRIP) composites. The physical and mechanical performance of the fresh mixed and the hardened MPC paste, the bond st...

  6. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Nabiyouni, Maryam, E-mail: maryam.nabiyouni@rockets.utoledo.edu [Department of Bioengineering, University of Toledo, Toledo, OH (United States); Ren, Yufu [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH (United States); Department of Surgery (Dentistry), University of Toledo, Toledo, OH (United States)

    2015-07-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg{sup +2} and Ca{sup +2} ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg{sup +2} and Ca{sup +2} ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg{sup +2}, calcium magnesium phosphates (CMPs) which release Mg{sup +2} and Ca{sup +2}, and hydroxyapatites (HAs) which release Ca{sup +2} were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg{sup +}2 and Ca{sup +2} ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg{sup 2

  7. Study of calcium phosphate (DCPD electrodeposition process on a Mg-3Al-1Zn magnesium alloy surface

    Directory of Open Access Journals (Sweden)

    Filip Pastorek

    2013-02-01

    Full Text Available Evaluation of calcium phosphating process realized on Mg-3Al-1Zn alloy surface after grinding was investigated by electrochemical tests supported by photodocumentation. The electrodeposition treatment was performed by electrochemical method in water solution of Ca(NO32.4H2O, (NH42HPO4 and H2O2. The formation of calcium phosphate was divided into several stages and described using light microscopy. The progress in corrosion protection of created calcium phosphate layer in 0.9% NaCl after particular electrodeposition steps was evaluated by electrochemical impedance spectroscopy. The results in the form of Nyquist plots were analyzed using equivalent circuits.

  8. Modulating calcium phosphate formation using CO2 laser engineering of a polymeric material

    International Nuclear Information System (INIS)

    The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO2 laser surface treatment of nylon® 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 μm, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6%at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, θ, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in θ can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, Δg, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 J cm−2. No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between θ, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials. - Highlights: ► Surface modifications brought about a modulation in the wetting of nylon 6,6. ► An increase in θ can be attributed to a mixed-state wetting regime. ► Laser surface treatment modulated the ability to promote apatite formation. ► Mixed-state wetting regime affected the promotion of uniform apatite formation. ► Method

  9. Microanalyses of the hydroxyl-poly-calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thin calcium phosphate coatings on titanium alloy substrates wereprepared by Ar+ ion beam assisted deposition (IBAD) from hydroxyl-poly-calciumsodium phosphate (HPPA) target. The coatings were analyzed by XRD, FTIR, XPS.These analyses revealed that the as-deposited films were amorphous or no apparentcrystallinity. No distinct absorption band of the hydroxyl group was observed in FTIRspectra of the coatings but new absorption bands were presented for CO3-2. Thecalcium to phosphorous ratio of these coatings in different IBAD conditions variedfrom 0.46 to 3.36.

  10. Calcium thorium phosphate (Whitlockite-type mineral). Synthesis and structure refinement

    International Nuclear Information System (INIS)

    The crystal structure of a new calcium thorium phosphate has been refined by the full-profile Rietveld method using X-ray powder diffraction data. The sample has been synthesized by the sol-gel technique. The phosphate has been identified by X-ray powder diffraction and IR spectroscopy. The refined composition is represented by the formula Ca10.26Th0.12(PO4)7. The CaOn and PO4 polyhedra are distorted compared to the corresponding polyhedra in the basic compound β-Ca3(PO4)2.

  11. Effect of Incorporating Nanoporous Metal Phosphate Materials on the Compressive Strength of Portland Cement

    Directory of Open Access Journals (Sweden)

    Glen E. Fryxell

    2008-03-01

    Full Text Available Nanoporous metal phosphate (NP-MPO materials are being developed for removal of contaminant oxyanions (As(OHO32−, CrO42−, and TcO4−, and cations (mercury, cadmium, and lead from water and waste streams. Following sequestration, incorporation of metal laden NP-MPOs as a portion of cement formulation would provide an efficient and low-cost way to immobilize metal laden NP-MPOs in an easily handled waste form suitable for permanent disposal. There are no known investigations regarding the incorporation of NP-MPOs in concrete and the effects imparted on the physical and mechanical properties of concrete. Results of this investigation demonstrated that incorporating of NP-MPO materials requires additional water in the concrete formulation which decreases the compressive strength. Thus, incorporation of NP-MPOs in concrete may not serve as an efficient means for long-term disposal.

  12. Solidification/stabilization of toxic metals in calcium aluminate cement matrices.

    Science.gov (United States)

    Navarro-Blasco, I; Duran, A; Sirera, R; Fernández, J M; Alvarez, J I

    2013-09-15

    The ability of calcium aluminate cement (CAC) to encapsulate toxic metals (Pb, Zn and Cu) was assessed under two curing conditions. Changes in the consistency and in the setting time were found upon the addition of the nitrates of the target metals. Both Pb and Cu caused a delay in CAC hydration, while Zn accelerated the stiffening of the mortar. Compressive strengths of the metal-doped mortars, when initially cured at 60 °C/100% RH, were comparable with that of the free-metal mortar. Three different pore size distribution patterns were identified and related to the compounds identified by XRD and SEM. Sorbent capacities of CAC for the toxic metals were excellent: a total uptake was achieved for up to 3 wt.% loading of the three metals. In this way, CAC mortars were perfectly able to encapsulate the toxic metals, allowing the use of CAC for waste management as proved by the leaching tests.

  13. Influence of portland cement replacement in high calcium fly ash geopolymer paste

    Directory of Open Access Journals (Sweden)

    Tanakorn Phoo-ngernkham

    2014-03-01

    Full Text Available This article presents the influence of ordinary Portland cement (OPC replacement in high calcium fly ash (FA geopolymer paste. FA was used to replace OPC at the rate of 5, 10 and 15% by mass of binder. Sodium silicate (Na2SiO3 and 10 molar sodium hydroxide (NaOH solutions were used as the alkaline solution in the reaction. The Na2SiO3/NaOH ratio of 2.0 and the liquid/binder (L/B ratio of 0.60 were used in all mixtures. The results of increase OPC replacement, the setting time and compressive strain capacity decreased while the compressive strength and modulus of elasticity increased. The compressive strength and modulus of elasticity at 28 days of geopolymer pastes with 15% OPC replacement were 36.7 MPa and 13,300 MPa, respectively.

  14. Properties of MSW fly ash-calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals.

    Science.gov (United States)

    Qian, G R; Shi, J; Cao, Y L; Xu, Y F; Chui, P C

    2008-03-21

    In this paper, investigations were undertaken to formulate the properties of fly ash-calcium sulfoaluminate (CSA) cement matrix by blending MSW fly ash with CSA cement. The compressive strength, pore structure, hydration phases, and leaching behavior of Zn and Pb doped MSW fly ash-CSA cement matrices were determined by XRD, MIP, DSC, FTIR, EDX, TCLP leaching test and other experiments. The results showed that the addition of MSW fly ash to form fly ash-CSA cement matrix reduced the compressive strengths of matrices and made the pore distribution of matrices coarser, compared to that of pure CSA cement matrix. However, fly ash-CSA cement matrix could effectively immobilize high concentration of heavy metal such as lead and zinc with much lesser leaching of TCLP. Besides ettringite AFt, Friedel phase was a new hydration phase formed in the matrix. The formation of these hydration phases was responsible for huge reservoir of heavy metal stabilization by chemical fixing. Therefore, it could be postulated that MSW fly ash-CSA cement matrix was a potential new constituent of S/S matrix for high concentration of heavy metals such as Zn and Pb ions. PMID:17728061

  15. Indirect pulp therapy in a symptomatic mature molar using calcium enriched mixture cement

    Directory of Open Access Journals (Sweden)

    Hassan Torabzadeh

    2013-01-01

    Full Text Available Dental pulp has the ability of repair/regeneration. Indirect pulp therapy (IPT is recommended for pulp preservation in asymptomatic teeth with extremely deep caries as well as teeth with clinical symptoms of reversible pulpitis. In this case study, we performed IPT with calcium enriched mixture (CEM cement on a symptomatic permanent molar. After clinical/radiographic examinations the tooth was diagnosed with irreversible pulpitis and associated apical periodontitis. IPT involved partial caries removal, the placement of CEM cement pulp cap and overlying adhesive permanent restoration. At the 1 week follow-up, patient′s spontaneous symptoms had resolved. One-year follow-up demonstrated pulp vitality, clinical function, as well as the absence of pain/tenderness to percussion/palpation/cold sensitivity tests; periapical radiograph showed a healing periradicular lesion with newly formed bone, that is normal pulp with normal periodontium. These favorable results indicate that IPT/CEM may be a good treatment option in comparison to endodontic treatment in young patients. IPT of deep-caries lesion is an easier, more practical and valuable treatment plan than complete caries removal.

  16. Augmentation of screw fixation with injectable calcium sulfate bone cement in ovariectomized rats.

    Science.gov (United States)

    Yu, Xiao-Wei; Xie, Xin-Hui; Yu, Zhi-Feng; Tang, Ting-Ting

    2009-04-01

    The objective of this study was to determine the effect of augmenting screw fixation with an injectable calcium sulfate cement (CSC) in the osteoporotic bone of ovariectomized rats. The influence of the calcium sulfate (CS) on bone remodeling and screw anchorage in osteoporotic cancellous bone was systematically investigated using histomorphometric and biomechanical analyses. The femoral condyles of 55 Sprague-Dawley ovariectomized rats were implanted with screw augmented with CS, while the contralateral limb received a nonaugmented screw. At time intervals of 2, 4, 8, 12, and 16 weeks, 11 rats were euthanized. Six pair-matched samples were used for histological analysis, while five pair-matched samples were preserved for biomechanical testing. Histomorphometric data showed that CS augmented screws activated cancellous bone formation, evidenced by a statistically higher (p < 0.05) percentage of osteoid surface at 2, 4, and 8 weeks and a higher rate of bone mineral apposition at 12 weeks compared with nonaugmented screws. The amount of the bone-screw contact at 2, 8, and 12 weeks and of bone ingrowth on the threads at 4 and 8 weeks was greater in the CS group than in the nonaugmented group (p < 0.05), although these parameters increased concomitantly with time for both groups. The CS was resorbed completely at 8 weeks without stimulating fibrous encapsulation on the screw surface. Also, the cement significantly increased the screw pull-out force and the energy to failure at 2, 4, 8, and 12 weeks after implantation, when compared with the control group (p < 0.05). These results imply that augmentation of screw fixation with CS may have the potential to decrease the risk of implant failure in osteoporotic bone.

  17. Preparation and Properties of Nanoparticles of Calcium Phosphates With Various Ca/P Ratios.

    Science.gov (United States)

    Sun, Limin; Chow, Laurence C; Frukhtbeyn, Stanislav A; Bonevich, John E

    2010-01-01

    This study aimed at preparing and studying the properties of nanoparticles of calcium phosphate (nCaP) with Ca/P ratios ranging from 1.0 to 1.67 using a spray-drying technique. Micro-structural analyses suggested that the nCaPs with Ca/P ratios of 1.67 to 1.33 were nano-sized amorphous calcium phosphate (ACP) containing varying amounts of acid phosphate and carbonate. The nCaP with Ca/P ratio of 1 contained only nano-sized low crystalline dicalcium phosphate (DCP). BET measurements of the nCaPs showed specific surface areas of (12 ± 2 to 50 ± 1) m(2)/g, corresponding to estimated equivalent spherical diameters of (38 to 172) nm. However, dynamic light scattering measurements revealed much larger particles of (380 ± 49 to 768 ± 111) nm, owing to agglomeration of the smaller primary nano particles as revealed by Scanning Electron Microscopy (SEM). Thermodynamic solubility measurements showed that the nCaPs with Ca/P ratio of 1.33 - 1.67 all have similar solubility behavior. The materials were more soluble than the crystalline hydroxyapatite (HA) at pH greater than about 4.7, and more soluble than β-tricalcium phosphate (β-TCP), octacalcium phosphate (OCP) and DCP at pH above 5.5. Their solubility approached that of α-tricalcium phosphate (α-TCP) at about pH 7. These nCaPs, which cannot be readily prepared by other currently available methods for nanoparticle preparation, have potential biomedical applications.

  18. Manufacturing of calcium phosphate scaffolds by pseudomorphic transformation of gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Batista, H. de.; Batista Cardoso, M.; Sales Vasconcelos, A.; Vinicius Lia Fook, M.; Rodriguez Barbero, M. A.; Garcia Carrodeguas, R.

    2016-08-01

    Carbonated hydroxyapatite (CHAp) and β-tricalcium phosphate (β-TCP) have been employed for decades as constituents of scaffolds for bone regeneration because they chemically resemble bone mineral. In this study, the feasibility to manufacture CHAp/β-TCP scaffolds by pseudomorphic transformation of casted blocks of gypsum was investigated. The transformation was carried out by immersing the precursor gypsum block in 1 M (NH{sub 4}){sub 2}HPO{sub 4}/1.33 M NH{sub 4}OH solution with liquid/solid ratio of 10 mL/g and autoclaving at 120 degree centigrade and 203 kPa (2 atm) for 3 h at least. Neither shape nor dimensions significantly changed during transformation. The composition of scaffolds treated for 3 h was 70 wt.% CHAp and 30 wt.% β-TCP, and their compressive and diametral compressive strengths were 6.5 ± 0.7 and 5.3 ±0.7 MPa, respectively. By increasing the time of treatment to 6 h, the composition of the scaffold enriched in β-TCP (60 wt.% CHAp and 40 wt.% β-TCP) but its compressive and diametral compressive strengths were not significantly affected (6.7 ± 0.9 and 5.4 ± 0.6 MPa, respectively). On the basis of the results obtained, it was concluded that this route is a good approach to the manufacturing of biphasic (CHAp/β-TCP) scaffolds from previously shaped pieces of gypsum. (Author)

  19. Investigation on the biomimetic influence of biopolymers on calcium phosphate precipitation-Part 1: Alginate

    International Nuclear Information System (INIS)

    The understanding of how macromocules act in precipitation of inorganic phases is the key knowledge that is needed to establish the foundation to mimic nature and produce materials with high mechanical modulus besides outstanding optical and thermal properties. This study investigated how addition of small amounts of alginate (7-70 ppm), that presents many carboxylic groups, affects phase distribution and morphology of calcium phosphates, obtained through precipitation and further submitted to calcination and sintering. The results lead to the conclusion that alginate action is dynamic, where alginate molecules act as templates to nucleation, and most of the biopolymer remains in solution even when all calcium phosphate has precipitated. However, despite the effect on phase composition being mainly related to the system's kinetics, alginate does present thermodynamic interaction with the precipitates. It is probable that it acts by reducing the free energy of nucleation, as in heterogeneous nucleation processes.

  20. Crystallization at the polymer/calcium-phosphate interface in a sterilized injectable bone substitute IBS.

    Science.gov (United States)

    Schmitt, M; Weiss, P; Bourges, X; Amador del Valle, G; Daculsi, G

    2002-07-01

    Calcium phosphate (CaP) ceramics are the main raw materials used to elaborate blocks or granules for bone substitutes. In this study, injectable bone substitutes (IBS) were developed for applications in orthopedic or dental surgery. Sterile, ready-to-use composite containing CaP granules (biphasic calcium phosphate, BCP) and polymer (hydroxypropylmethylcellulose, HPMC) was prepared. Steam sterilization produced new phenomena at the CaP/polymer interface, resulting in crystal growth. These phenomena may constitute a model for the biomineralization study. Scanning electron microscopy showed that the formed crystallites organize themselves into a three-dimensional structure. Currently, the mechanisms of crystal growth are unknown and have been observed with only one combination of polymer/BCP ceramics after steam sterilization. PMID:12059030

  1. Ultraviolet transmission characteristics of calcium meta phosphate glass; Metarinsan karushiumu garasu no shigaiko toka tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, T.; Kawamoto, Y. [Kobe University, Hyogo (Japan). Division of Molecular Scinece

    2000-02-01

    The ultraviolet transmission characteristics of a calcium meta phosphate glass is reported. A calcium meta phosphate glass was prepared using high-purity reagents and taking care in avoiding contamination during glass preparation. This glass exhibited an excellent transmittance in the wavelength range from 250 to 1500 nm (10 mm thick) and an ultraviolet absorption-edge wavelength of 178 nm (3 mm thick). The absorption-edge value was about 60 nm shorter than that reported by Kordes et al. Irradiation of 248-nm excimer laser light to the glass induced strong absorption at <300 nm and weak absorption in the 350-550 nm range. The weak absorption consists of two bands, which are considered to be due to P-O{sup (+)} and Ca{sup 2+(-)}. (author)

  2. Investigation on the biomimetic influence of biopolymers on calcium phosphate precipitation-Part 1: Alginate

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira de Lima, Daniel; Gomes Aimoli, Cassiano [Faculdade de Engenharia Quimica, Unicamp, CP6066 CEP13083-970, Campinas, SP (Brazil); Beppu, Marisa Masumi, E-mail: beppu@feq.unicamp.br [Faculdade de Engenharia Quimica, Unicamp, CP6066 CEP13083-970, Campinas, SP (Brazil)

    2009-05-05

    The understanding of how macromocules act in precipitation of inorganic phases is the key knowledge that is needed to establish the foundation to mimic nature and produce materials with high mechanical modulus besides outstanding optical and thermal properties. This study investigated how addition of small amounts of alginate (7-70 ppm), that presents many carboxylic groups, affects phase distribution and morphology of calcium phosphates, obtained through precipitation and further submitted to calcination and sintering. The results lead to the conclusion that alginate action is dynamic, where alginate molecules act as templates to nucleation, and most of the biopolymer remains in solution even when all calcium phosphate has precipitated. However, despite the effect on phase composition being mainly related to the system's kinetics, alginate does present thermodynamic interaction with the precipitates. It is probable that it acts by reducing the free energy of nucleation, as in heterogeneous nucleation processes.

  3. Treatment of post-orthodontic white spot lesions with casein phosphopeptide-stabilised amorphous calcium phosphate

    DEFF Research Database (Denmark)

    Bröchner, Ann; Christensen, Carsten; Kristensen, Bjarne;

    2010-01-01

    This study aims to investigate the effect of topical applications of 10% casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on white spot lesions (WSL) detected after treatment with fixed orthodontic appliances. Sixty healthy adolescents with >/=1 clinically visible WSL at debonding were....... The intervention period was 4 weeks and the endpoints were quantitative light-induced fluorescence (QLF) on buccal surfaces of the upper incisors, cuspids and first premolars and visual scoring from digital photos. The attrition rate was 15%, mostly due to technical errors, and 327 lesions were included...... findings were largely reflected by the clinical scores. No side effects were reported. Topical treatment of white spot lesions after debonding of orthodontic appliances with a casein phosphopeptide-stabilised amorphous calcium phosphate agent resulted in significantly reduced fluorescence and a reduced...

  4. A brief review of calcium phosphate conversion coating on magnesium and its alloys

    Science.gov (United States)

    Zaludin, Mohd Amin Farhan; Jamal, Zul Azhar Zahid; Jamaludin, Shamsul Baharin; Derman, Mohd Nazree

    2016-07-01

    Recent developments have shown that magnesium is a promising candidate to be used as a biomaterial. Owing to its light weight, biocompatibility and compressive strength comparable with natural bones makes magnesium as an excellent choice for biomaterial. However, high reactivity and low corrosion resistance properties have restricted the application of magnesium as biomaterials. At the moment, several strategies have been developed to solve this problem. Surface modification of magnesium is one of the popular solutions to solve the problem. Among many techniques developed in the surface modification, conversion coating method is one of the simple and effective techniques. From various types of conversion coating, calcium phosphate-based conversion coating is the most suitable for biomedical fields. This paper reviews some studies on calcium phosphate coating on Mg and its alloys via chemical conversion method and discusses some factors determining the coating performance.

  5. Influence of surface treatment of carbon fibers on electrochemical crystallization of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    TAO Ke; HUANG Su-ping; ZHOU Ke-chao

    2005-01-01

    Electrodeposition technique was used to coat calcium phosphate on carbon fiber which can be used to reinforce hydroxyapatite. The differences between fibers treated with and without nitric acid in electrodeposition were evaluated. The X-ray diffractometry results show that CaHPO4·2H2O is obtained as the kind of calcium phosphate coating on carbon fiber. The scanning electron microscopy photographs and deposit kinetic curve indicate that the influences of the functional group attained by nitric acid treatment, the crystal morphology and crystallization of the coating layers on the fiber with and without treatment rate are obviously different. The functional group, especially the acidic group, can act as nucleation centers of electrochemical crystallization.

  6. Preparation of novel bioactive nano-calcium phosphate-hydrogel composites

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Judith A; Best, Serena M; Bonfield, William, E-mail: jaj33@cam.ac.u [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2010-02-15

    Nano-sized hydroxyapatite (nHA) and carbonate-substituted hydroxyapatite (nCHA) particles were incorporated into a poly-2-hydroxyethylmethacrylate/polycaprolactone (PHEMA/PCL) hydrogel at a filler content of 10 wt%. Fourier transform infrared absorption, transmission electron microscopy, x-ray diffraction and scanning electron microscopy were used to analyse the physical and chemical characteristics of the calcium phosphate fillers and resultant composites. Nano-sized calcium phosphate particles were produced with a needle-like morphology, average length of 50 nm and an aspect ratio of 3. The nanoparticles were uniformly distributed in the polymer matrix. The addition of both HA and CHA in nano-form enhanced the bioactivity and biocompatibility of the PHEMA/PCL matrix. The carbonate-substitution has allowed for improved bioactivity and biocompatibility of the resultant composite, indicating the potential of this material for use in bone tissue engineering.

  7. Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging.

    Science.gov (United States)

    Choi, Andy H; Ben-Nissan, Besim

    2015-07-01

    A number of materials have been applied as implant coatings and as tissue regeneration materials. Calcium phosphate holds a special consideration, due to its chemical similarity to human bone and, most importantly, its dissolution characteristics, which allow for bone growth and regeneration. The applications of molecular and nanoscale-based biological materials have been and will continue to play an ever increasing role in enhancing and improving the osseointegration of dental and orthopedic implants. More recently, extensive research efforts have been focused on the development and applications of fluorescent nanoparticles and nanocoatings for in vivo imaging and diagnostics as well as devising methods of adding luminescent or fluorescent capabilities to enhance the in vivo functionality of calcium phosphate-based biomedical materials. PMID:26119630

  8. Characterization of calcium phosphate coating and zinc incorporation on the porous alumina scaffolds

    Directory of Open Access Journals (Sweden)

    Hermes de Souza Costa

    2007-03-01

    Full Text Available Bone ingrowth requires materials with the existence of open and interconnected pores with diameters larger than 150 µm for proper circulation of nutrients. Such materials must possess enough mechanical strength to avoid failure whilst offering a bioactive surface for bone regeneration. We have developed porous ceramic alumina scaffold with compressive strength that achieves 3.3 MPa by replication method by using the network structure of cellular polymer foam. However, the biocompatibility of ceramics based on Al2O3 requires further improvement so that it could have strong bonding to natural bone tissue. To address this problem of the interface between alumina and bone, we have developed a novel calcium phosphate with Zn2+ (CaP-Zn coating onto porous alumina ceramic scaffold by impregnating with calcium phosphate/poly(vinyl alcohol slurry. The tri-dimensional alumina scaffold coated with CaP-Zn was extensively characterized by SEM, EDS and FTIR.

  9. Calcium salts of keto-amino acids, a phosphate binder alternative for patients on CAPD.

    Science.gov (United States)

    Macia, M; Coronel, F; Navarro, J F; Gallego, E; Herrero, J A; Méndez, M L; Chahin, J; García, J

    1997-09-01

    Control of hyperphosphoremia is crucial to the prevention of secondary hyperparathyroidism. Calcium salts of keto-amino acids (KAA) were employed as phosphate binders in hemodialysis patients. We wanted to assess the efficacy of these substances as quelating agents in patients under continuous ambulatory peritoneal dialysis (CAPD). Also, as an amino acid supplement, we determined their possible effect on some parameters related to nutritional status. We studied 13 patients (7 M; 6 F) with a mean age of 45.2 +/- 17 years and a mean time on CAPD of 18.4 +/- 11.4 months. None had severe secondary hyperparathyroidism and/or clinically relevant aluminium intoxication. They were not receiving calcitriol and none were using low-calcium peritoneal dialysis fluids. All were under aluminum hydroxide (AlOH3) treatment and 8 patients also received calcium carbonate. These quelating agents were withdrawn and after 21 days (wash-out period) KAA were initiated. We analyzed serum levels of bone metabolism parameters (calcium, phosphate, osteocalcin [OC], intact parathyroid hormone [iPTH], alkaline phosphatase [AP]) and nutritional parameters (total protein, albumin, pre-albumin, transferrin) in four periods: (A) during AlOH3; (B) immediately after the washout period; (C) after 1.5 months; and (D) after 3 months of KAA therapy. In 5 patients serum aluminum level was also measured in periods (A) and (D). The serum phosphate level at period (B) was significantly higher than in other periods. After 3 months of treatment phosphate levels decreased significantly (A = 1.77 +/- 0.3 mmol/l vs D = 1.48 +/- 0.2; p < 0.05). Serum calcium levels increased, while iPTH and OC decreased (p = ns). AP remained stable during the study. All nutritional parameters increased at the end of the study (p = ns). Calcium salts of keto-amino acids showed to be an effective alternative to aluminum-containing phosphate binders. They were well tolerated, without relevant side-effects. These compounds could also

  10. Studies on the mechanisms underlying the transfer of calcium and phosphate from bone to blood

    Energy Technology Data Exchange (ETDEWEB)

    Brommage, Robert J. Jr.

    1978-01-01

    The skeleton is recognized as a crucial organ in the minute-to-minute regulation of the blood levels of calcium and phosphate. The fluxes of calcium and phosphate to and from bone greatly exceed the entry and exit of these ions occurring in the intestine and kidneys. Parathyroid hormone, calcitonin, and 1,25-dihydroxyvitamin D/sub 3/ (1,25-(OH)/sub 2/D/sub 3/ are known to influence the transfer of calcium and phosphate from bone to blood. Three mechanisms have been proposed to explain the hormonal control of the calcium and phosphate effluxes from bone. The concept of a bone membrane maintaining a distinct bone extracellular fluid composition has led to the pump and pH gradient theories. An alternate solubilizer theory proposes that bone cells secrete a substance which increases the solubility of the bone mineral. The bone membrane concept was originally proposed to explain the presence of the apparent anomalously high concentrations of potassium in the bone extracellular fluid. However, the available evidence does not allow an unambiguous decision concerning the presence of a bone membrane. Calvarial lactate production was unaltered by 1,25-(OH)/sub 2/D/sub 3/ treatment and consequently 1,25-(OH)/sub 2/D/sub 3/ does not appear to promote the mobilization of bone mineral through a lactate-mediated pH gradient mechanism. 1,25-(OH)/sub 2/D/sub 3/ did increase the solubility of non-vital bone, clearly demonstrating that the solubilizer mechanism is at least partially responsible for the mobilization of bone mineral and the regulation of blood levels of calcium and phosphate. Vitamin D-deficient female rats fed a 0.2% calcium, 0.4% phosphorous diet and supplemented with daily injections of 0.75 pmole of 1,25-(OH)/sub 2/D/sub 3/ were shown to be capable of bearing young. When the injections of 1,25-(OH)/sub 2/D/sub 3/ were terminated at delivery, the dams and pups showed signs of vitamin D deficiency approximately one week later.

  11. Effect of citric acid and the hemihydrate amount on the properties of a calcium sulphoaluminate cement

    Directory of Open Access Journals (Sweden)

    Velazco, G.

    2014-12-01

    Full Text Available The influence of citric acid on the hydration and strength development of a calcium sulphoaluminate cement was investigated. Cement pastes were prepared by mixing calcium sulphoaluminate (C4A3Ŝ with 15, 20 and 25wt% of hemihydrate (CŜH0.5. Citric acid was added as a retarder at 0 and 0.5wt%. The samples were cured at 20 °C for periods of time from 1 to 28 days to evaluate their compressive strength and to characterize the hydration products by scanning electron microscopy and X-ray diffraction. Calorimetric curves showed that the retarding agent considerably decreases the heat release rate and the quantity of total heat released. The main product after the curing was ettringite (C6AŜ3H32. The morphology of this phase consisted of long and thin needles growing radially on the cement grains. Samples with 15wt% of hemihydrate and 0.5wt% of citric acid developed the highest compressive strength (70 MPa at 28 days of curing.Se investigó el efecto del ácido cítrico sobre la hidratación y propiedades mecánicas de un cemento de sulfoaluminato de calcio. El C4A3Ŝ se mezcló con 15, 20 y 25% e.p. de hemihidrato (CŜH0.5. Se agregó ácido cítrico como retardante en 0 y 0.5% e.p. Las muestras fueron curadas a 20 °C por periodos de 1 a 28 días para realizar mediciones de resistencia a la compresión y caracterizar los productos de hidratación mediante microscopía electrónica de barrido y difracción de rayos X. Las curvas de calorimetría mostraron ue el ácido cítrico disminuye la velocidad de liberación de calor y la cantidad de calor liberado durante la hidratación. La resistencia a la compresión alcanzó un máximo de 70 MPa en muestras con 15% e.p. de hemihidrato y 0,5% e.p de ácido cítrico. Los resultados muestran a la etringita (C6AŜ3H32 como principal producto de hidratación. Se observa a esta fase con morfología acicular creciendo sobre las partículas de cemento.

  12. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    AbdulQader, Sarah Talib [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Department of Pedodontic and Preventive Dentistry, College of Dentistry, University of Baghdad, Baghdad (Iraq); Kannan, Thirumulu Ponnuraj, E-mail: kannan@usm.my [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Rahman, Ismail Ab [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Ismail, Hanafi [School of Materials and Minerals Resource Engineering, Universiti Sains Malaysia, 14300 Penang (Malaysia); Mahmood, Zuliani [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-01

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300 μm and 65% porosity were prepared from phosphoric acid (H{sub 2}PO{sub 4}) and calcium carbonate (CaCO{sub 3}) sintered at 1000 °C for 2 h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration. - Highlights: • BCPs of different HA/β-TCP ratios influence cell microenvironment. • BCP20 decreases cell viability of HDPCs as compared to BCP50 and BCP80. • HDPCs cultured with BCP20 express highest ALP activity. • HDPCs cultured with BCP20 up-regulate BSP, DMP-1 and DSPP gene expressions. • BCP20 can support HDPC differentiation for dentin tissue regeneration.

  13. Ability of Pit and Fissure Sealant-containing Amorphous Calcium Phosphate to inhibit Enamel Demineralization

    OpenAIRE

    Zawaideh, Feda I; Owais, Arwa I; Kawaja, Wasan

    2016-01-01

    ABSTRACT Aim: To evaluate the effect of amorphous calcium phosphate (ACP)-containing pit and fissure sealant on inhibition of enamel demineralization in vitro. Materials and methods: Enamel specimens (n = 75) were prepared using freshly extracted noncarious human third molars. Box-shaped cavities (8 × 2 × 2 mm) on the buccal or lingual surfaces were prepared and restored with resin-based sealant (Concise™), ACP-containing sealant (Aegis®) or fluoride-containing sealant (Conseal-F™). The sampl...

  14. Characterisation of calcium phosphate layers grown on polycaprolactone for tissue engineering purposes

    OpenAIRE

    Lebourg, M.; Antón, J. Suay; Ribelles, J.L. Gomez

    2010-01-01

    Abstract Composites fabricated by biomimetic mineral precipitation on polymeric substrates are of interest for tissue engineering. As biological properties of such mineral layers vary with slight changes in composition, a good physical characterization is necessary in order to study their biological activity. In this work polycaprolactone sheets were subjected to air plasma treatment followed by nucleation of calcium phosphate seeds to activate the growth of an apatite-like coating...

  15. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite

    OpenAIRE

    Moreau, Jennifer L.; Sun, Limin; Chow, Laurence C.; Xu, Hockin H. K.

    2011-01-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size wer...

  16. Calcium Phosphate Nanocomposite Particles for In Vitro Imaging and Encapsulated Chemotherapeutic Drug Delivery to Cancer Cells

    OpenAIRE

    Kester, Mark; Heakal, Y.; Sharma, A.; Robertson, Gavin P.; Morgan, Thomas T.; İ Altinoğlu, Erhan; Tabaković, Amra; Parette, Mylisa R.; Rouse, Sarah; Ruiz-Velasco, Victor; Adair, James H.

    2008-01-01

    Paradigm-shifting modalities to more efficiently deliver drugs to cancerous lesions require the following attributes: nanoscale-size, targetability and stability under physiological conditions. Often, these nanoscale drug delivery vehicles are limited due to agglomeration, poor solubility or cytotoxicity. Thus, we have designed a methodology to encapsulate hydrophobic antineoplastic chemotherapeutics within a 20-30 nm diameter, pH-responsive, non-agglomerating, non-toxic calcium phosphate nan...

  17. Electrodeposition on nanofibrous polymer scaffolds: Rapid mineralization, tunable calcium phosphate composition and topography

    OpenAIRE

    He, Chuanglong; Xiao, Guiyong; Jin, Xiaobing; Sun, Chenghui; Ma, Peter X.

    2010-01-01

    We developed a straightforward, fast, and versatile technique to fabricate mineralized nanofibrous polymer scaffolds for bone regeneration in this work. Nanofibrous poly(l-lactic acid) scaffolds were fabricated using both electrospinning and phase separation techniques. An electrodeposition process was designed to deposit calcium phosphate on the nanofibrous scaffolds. Such scaffolds contain a high quality mineral coating on the fiber surface with tunable surface topography and chemical compo...

  18. Calcium gluconate in phosphate buffered saline increases gene delivery with adenovirus type 5.

    Directory of Open Access Journals (Sweden)

    Marko T Ahonen

    Full Text Available BACKGROUND: Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. METHODS/RESULTS: We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. CONCLUSION: In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline.

  19. Calcium Gluconate in Phosphate Buffered Saline Increases Gene Delivery with Adenovirus Type 5

    Science.gov (United States)

    Ahonen, Marko T.; Diaconu, Iulia; Pesonen, Sari; Kanerva, Anna; Baumann, Marc; Parviainen, Suvi T.; Spiller, Brad

    2010-01-01

    Background Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. Methods/Results We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. Conclusion In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline. PMID:20927353

  20. Nano-sized calcium phosphate (CaP) carriers for non-viral gene deilvery

    International Nuclear Information System (INIS)

    Highlights: ► Nanostructured calcium phosphates (NanoCaPs): comprehensive review. ► Non viral gene delivery mechanisms: detailed mechanisms are outlined. ► Barriers to non-viral gene delivery: detailed barriers are discussed. - Abstract: Gene therapy has garnered much interest due to the potential for curing multiple inherited and/or increases in the acquired diseases. As a result, there has been intense activity from multiple research groups for developing effective delivery methods and carriers, which is a critical step in advancing gene delivery technologies. In order for the carriers to effectively deliver the genetic payloads, multiple extracellular and intracellular barriers need to be overcome. Although overcoming these challenges to improve the effectiveness is critical, the development of safe gene delivery agents is even more vital to assure its use in clinical applications. The development of safe and effective strategies has therefore been a major challenge impeding gene therapy progress. In this regard, calcium phosphate (CaP) based nano-particles has been considered as one of the candidate non-viral gene delivery vehicles, but has been plagued by inconsistent and low transfection efficiencies limiting its progress. There has been major research effort to improve the consistency and effectiveness of CaP based vectors. Currently, it is therefore thought that by controlling the various synthesis factors such as Ca/P ratio, mode of mixing, and type of calcium phosphate phase, such variability and inefficiency could be modulated. This review attempts to provide a comprehensive analysis of the current research activity in the development of CaP based ceramic and polymer-ceramic hybrid systems for non-viral gene delivery. Preliminary transfection results of hydroxyapatite (HA or NanoCaPs), amorphous calcium phosphate (ACP) and brushite phases are also compared to assess the effect of various CaP phases, and correspondingly, changes in the dissolution

  1. Current and Future Theranostic Applications of the Lipid-Calcium-Phosphate Nanoparticle Platform

    OpenAIRE

    Satterlee, Andrew B.; Huang, Leaf

    2016-01-01

    Over the last four years, the Lipid-Calcium-Phosphate (LCP) nanoparticle platform has shown success in a wide range of treatment strategies, recently including theranostics. The high specific drug loading of radiometals into LCP, coupled with its ability to efficiently encapsulate many types of cytotoxic agents, allows a broad range of theranostic applications, many of which are yet unexplored. In addition to providing an overview of current medical imaging modalities, this review highlights ...

  2. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells

    International Nuclear Information System (INIS)

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300 μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000 °C for 2 h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration. - Highlights: • BCPs of different HA/β-TCP ratios influence cell microenvironment. • BCP20 decreases cell viability of HDPCs as compared to BCP50 and BCP80. • HDPCs cultured with BCP20 express highest ALP activity. • HDPCs cultured with BCP20 up-regulate BSP, DMP-1 and DSPP gene expressions. • BCP20 can support HDPC differentiation for dentin tissue regeneration

  3. Formation of calcium phosphates by vapour diffusion in highly concentrated ionic micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Iafisco, M. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy); Universita del Piemonte Orientale, Dipartimento di Scienze Mediche, Via Solaroli 4, 28100 Novara (Italy); Delgado-Lopez, J.M.; Gomez-Morales, J.; Hernandez-Hernandez, M.A.; Rodriguez-Ruiz, I. [Laboratorio de Estudios Cristalograficos, IACT CSIC-UGR, Edificio Lopez Neyra, Avenida del Conocimiento, s/n 18100 Armilla (Spain); Roveri, N. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy)

    2011-08-15

    In this work we have used the sitting drop vapour diffusion technique, employing the ''crystallization mushroom '' to analyze the evolution of calcium phosphate crystallization in micro-droplets containing high initial concentrations of Ca{sup 2+} and HPO{sub 4}{sup 2-}. The decomposition of NH{sub 4}HCO{sub 3} solution produces vapours of NH{sub 3} and CO{sub 2} which diffuse through the droplets containing an aqueous solution of Ca(CH{sub 3}COO){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4}. The result is the increase of pH by means of the diffusion of NH{sub 3} gas and the doping of the calcium phosphate with CO{sub 3}{sup 2-} ions by means of the diffusion of CO{sub 2} gas. The pH of the crystallization process is monitored and the precipitates at different times are characterized by XRD, FTIR, TGA, SEM and TEM techniques. The slow increase of pH and the high concentration of Ca{sup 2+} and HPO{sub 4}{sup 2-} in the droplets induce the crystallization of three calcium phosphate phases: dicalcium phosphate dihydrate (DCPD, brushite), octacalcium phosphate (OCP) and carbonate-hydroxyapatite (HA). The amount of HA nanocrystals with needle-like morphology and dimensions of about 100 nm, closely resembling the inorganic phase of bones, gradually increases, with the precipitation time up to 7 days, whereas the amount of DCPD, growing along the b axis, increases up to 3 days. Then, DCDP crystals start to hydrolyze yielding OCP nanoribbons and HA nanocrystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Cementing Material From Rice Husk-Broken Bricks-Spent Bleaching Earth-Dried Calcium Carbide Residue

    Directory of Open Access Journals (Sweden)

    Muthengia Jackson Washira

    2012-10-01

    Full Text Available A cementious material, coded CSBR (Carbide residue Spent bleaching earth Broken bricks and Rice husks, was made from dried calcium carbide residue (DCCR and an incinerated mix of rice husks (RH, broken bricks (BB and spent bleaching earth (SBE. Another material, coded SBR (Spent bleaching earth Broken bricks and Rice husk ash, was made from mixing separately incinerated RH, SBE and ground BB in the same ash ratio as in CSBR. When CSBR was inter-ground with Ordinary Portland Cement (OPC, it showed a continued decrease in Ca(OH2 in the hydrating cement as a function of curing time and replacement levels of the cement. Up to 45 % replacement of the OPC by CSBR produced a Portland pozzolana cement (PPC material that passed the relevant Kenyan Standard. Incorporation of the CSBR in OPC reduces the resultant calcium hydroxide from hydrating Portland cement. The use of the waste materials in production of cementitious material would rid the environment of wastes and lead to production of low cost cementitious material.

  5. Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes

    Directory of Open Access Journals (Sweden)

    Gallardo, M.

    2014-09-01

    Full Text Available Environmentally-friendly calcium sulphoaluminate clinkers were obtained from a mixture of aluminium dross, fluorgypsum, fly ash and CaCO₃ at temperatures within the range of 1100 to 1400 °C. After the heat treatments Ca₄Al₆O₁₂SO₄ was the main phase. Three different cements were prepared using the clinkers synthesized at 1250, 1350 and 1400 °C; the clinker powders were mixed with 20 wt% of hemihydrate. Cement pastes were prepared using a water/cement ratio (w/c, 0.4 followed by curing at 20 or 40 °C for periods of time ranging from 1 to 28 days. Most of the samples showed high compression strengths 40–47 MPa after 28 days, which were comparable to the strength of Portland cement. Ettringite was the main hydration product and its morphology consisted of acicular and hexagonal plates, which is typical of this phase.Se fabricaron clinkers de bajo impacto ambiental a base de sulfoaluminato de calcio calcinando mezclas de escoria de aluminio, fluoryeso, ceniza volante y CaCO₃ a diferentes temperaturas dentro de un rango de 1100 a 1400 °C. Se observó la formación de Ca₄Al₆O₁₂SO₄ como fase principal. Para obtener los cementos, los clinkers obtenidos a 1250, 1350 y 1400 °C se mezclaron con 20% en peso de hemihidrato. Se prepararon pastas usando una relación agua/cemento, de 0.4 y se curaron a 20 y 40 °C por diferentes periodos de tiempo desde 1 hasta 28 días. Los valores de resistencia a la compresión a los 28 días de curado de la mayoría de las muestras estuvieron entre 40–47 MPa, equiparables a los de referencia de pastas de cemento Portland. La etringita fue el principal producto de hidratación y su morfología consistió de placas hexagonales y aciculares, típicas de esta fase.

  6. Comparison and preparation of multilayered polylactic acid fabric strengthen calcium phosphate-based bone substitutes for orthopedic applications.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Yang, Jia-Kai; Wu, Hui-Yu; Lin, Jia-Horng

    2016-03-01

    An attempt to maintain the three-dimensional space into restorative sites through the conveniently pack porous fillers are general used strategy. Advancement in the manufacturing protective shells in the scaffolds, which would be filled with brittle ceramic grafts for the development of highly connective pores provides the approach to solve crack problem for generating the tissues. Therefore, multilayered braided and alkalized poly(lactic acid) (PLA) composites with calcium phosphate bone cement (CPC) were synthesized and compared. The PLA/CPC composites were divided into various groups according to a series of heat-treatment temperatures (100-190 °C) and periods (1-3 h) and then characterized. The effects of 24-h immersion on the strength decay resistance of the samples were compared. Results showed that the residual oil capped on the surfaces of alkalized PLA braid was removed, and the structure was unaltered. However, the reduced tensile stress of alkalized PLA braids was due to ester-group formation by hydrolysis. Mechanical test results of PLA/CPC composites showed that the strength significantly increased after heat treatment, except when the heating temperature was higher than the PLA melting point at approximately 160-170 °C. The degree of PLA after recrystallization became higher than that of unheated composites, thereby leading to reduced strength and toughness of the specimen. Braiding fibers of biodegradable PLA reinforced and toughened the structure particularly of the extra-brittle material of thin-sheet CPC after implantation.

  7. The formation of calcium phosphate coatings by pulse laser deposition on the surface of polymeric ferroelectric

    Energy Technology Data Exchange (ETDEWEB)

    Bolbasov, E.N. [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Lapin, I.N.; Svetlichnyi, V.A. [Tomsk State University, 36 Lenin Avenue, Tomsk 634050 (Russian Federation); Lenivtseva, Y.D. [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Malashicheva, A. [Federal Almazov Medical Research Centre, 2 Akkuratova St., St. Petersburg 197341 (Russian Federation); St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034 (Russian Federation); ITMO University, Institute of translational Medicine, St. Petersburg (Russian Federation); Malashichev, Y. [St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034 (Russian Federation); Golovkin, A.S. [Federal Almazov Medical Research Centre, 2 Akkuratova St., St. Petersburg 197341 (Russian Federation); Anissimov, Y.G. [Griffith University, School of Natural Sciences, Engineering Dr., Southport, QLD 4222 (Australia); Tverdokhlebov, S.I., E-mail: tverd@tpu.ru [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation)

    2015-09-15

    Graphical abstract: - Highlights: • Calcium phosphate coatings were obtained on ferroelectric polymer materials surface by using PLD method. • Obtained coatings have well-developed surface. • Depending on sputtering target composition it is possible to obtain crystalline or amorphous coating. • Formation of coating does not change the crystal structure of the ferroelectric polymer material. - Abstract: This work analyses the properties of calcium phosphate coatings obtained by pulsed laser deposition on the surface of the ferroelectric polymer material. Atomic force and scanning electron microscopy studies demonstrate that, regardless of the type of sputtering target, the calcium phosphate coatings have a multiscale rough surface that is potentially capable of promoting the attachment and proliferation of osteoblasts. This developed surface of the coatings is due to its formation mainly from a liquid phase. The chemical and crystalline composition of the coatings depends on the type of sputtering target used. It was shown that, regardless of the type of sputtering target, the crystalline structure of the ferroelectric polymer material does not change. Cell viability and adhesion studies of mesenchymal stromal cells on the coatings were conducted using flow cytometry and fluorescent microscopy. These studies indicated that the produced coatings are non-toxic.

  8. The formation of calcium phosphate coatings by pulse laser deposition on the surface of polymeric ferroelectric

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Calcium phosphate coatings were obtained on ferroelectric polymer materials surface by using PLD method. • Obtained coatings have well-developed surface. • Depending on sputtering target composition it is possible to obtain crystalline or amorphous coating. • Formation of coating does not change the crystal structure of the ferroelectric polymer material. - Abstract: This work analyses the properties of calcium phosphate coatings obtained by pulsed laser deposition on the surface of the ferroelectric polymer material. Atomic force and scanning electron microscopy studies demonstrate that, regardless of the type of sputtering target, the calcium phosphate coatings have a multiscale rough surface that is potentially capable of promoting the attachment and proliferation of osteoblasts. This developed surface of the coatings is due to its formation mainly from a liquid phase. The chemical and crystalline composition of the coatings depends on the type of sputtering target used. It was shown that, regardless of the type of sputtering target, the crystalline structure of the ferroelectric polymer material does not change. Cell viability and adhesion studies of mesenchymal stromal cells on the coatings were conducted using flow cytometry and fluorescent microscopy. These studies indicated that the produced coatings are non-toxic

  9. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  10. Synthesis and characterization of nanocomposite powders of calcium phosphate/silica-gel

    International Nuclear Information System (INIS)

    In the recent years ceramics of calcium phosphate are pointed out as an outstanding material in substitution and regeneration in defects from osseous tissue, in reason of their similar mineralogical characteristics of apatite of bone structure. However, the challenge with phosphate calcium ceramics find out about the mechanical properties and the development of biomaterials similar of the bone structure, what sometimes is not so easy, about fragile materials. The aim of this work focused in synthesis and characterization nanocomposites powders of calcium phosphate/silica-gel with percentages 1, 2, 3 e 5% of nanometric silica. The method synthesis used for the compositions elaboration was dissolution-precipitation. The presented results are related with the optimization to method elaboration of nanostructured powders, the mineralogical characterization with X-ray diffraction, thermal behavior with thermal differential analysis, differential scanning calorimetry here is ADT and dilatometer. The scanning electronic microscopy was used to help of morphological characterization the nanostructured powders and the surfaces from body test recovered from the mechanical test. (author)

  11. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    Directory of Open Access Journals (Sweden)

    Zhang Kui-Hua

    2011-01-01

    Full Text Available Abstract Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP/polylactide-block-monomethoxy(polyethyleneglycol hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP porous nanospheres is achieved (126.7 m2/g. PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t. The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated.

  12. Preparation of calcium phosphate coating on pure titanium substrate by electrodeposition method

    Institute of Scientific and Technical Information of China (English)

    赵中伟; 张刚; 李洪桂

    2004-01-01

    The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with an electrochemical work-station supplying a direct current power at potential of -0.8V (vs SCE). The electrolyte consists of 7 mmol·L-1 CaCl2·2H2O, 3 mmol·L-1 Ca(H2PO4)2·H2O and 2.5% H2O2. NaOH and HCl solutions were used to adjust pH value. The deposited samples were characterized by X-ray diffraction and scanning electron microscope. The comparison of the deposits obtained at lower and higher pH values demonstrates that the crystallization process at the interface is favoured by high pH value. With temperature increasing, the deposited hydroxyapatite is occasionally of plate-like shape, and the width and the length of the deposited calcium phosphates at 65 ℃ are larger than those at 55 ℃. Therefore, it is confirmed that the morphology and microstructure of electrochemically deposited calcium phosphates can be regulated. Additionally, the coating formed in electrolyte with H2O2 additive is homogeneous and the evolution of H2 bubble can be eliminated.

  13. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.

    Science.gov (United States)

    Inzana, Jason A; Olvera, Diana; Fuller, Seth M; Kelly, James P; Graeve, Olivia A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2014-04-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1-2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing.

  14. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers.

    Science.gov (United States)

    Chen, Feng; Zhu, Ying-Jie; Zhang, Kui-Hua; Wu, Jin; Wang, Ke-Wei; Tang, Qi-Li; Mo, Xiu-Mei

    2011-01-01

    Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated. PMID:21711603

  15. Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria

    Directory of Open Access Journals (Sweden)

    Claudio R. Martínez

    2014-09-01

    Full Text Available Current procedures for the detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore the work presented herein developed a simple, fast, and low cost method for bacterial detection based on hydroxyapatite nanoparticles with a nutritive mixture and the fluorogenic substrate. Calcium phosphate ceramic nanoparticles were characterized and integrated with a nutritive mixture for the early detection of bacteria by visual as well as fluorescence spectroscopy techniques. The composite was obtained by combining calcium phosphate nanoparticles (Ca:P ratio, 1.33:1 with a nutritive mixture of protein hydrolysates and carbon sources, which promote fast bacterial multiplication, and the fluorogenic substrate 4-methylumbellipheryl-β-d-glucuronide (MUG. The composite had an average particle size of 173.2 nm and did not show antibacterial activity against Gram-negative or Gram-positive bacteria. After an Escherichia coli suspension was in contact with the composite for 60–90 min, fluorescence detected under UV light or by fluorescence spectrophotometer indicated the presence of bacteria. Intense fluorescence was observed after incubation for a maximum of 90 min. Thus, this calcium phosphate nanocomposite system may be useful as a model for the development of other nanoparticle composites for detection of early bacterial adhesion.

  16. Reproducibility of the uptake of U(VI) onto degraded cement pastes and calcium silicate hydrate phases

    International Nuclear Information System (INIS)

    The U(VI) uptake in degraded cement pastes was undertaken in the laboratories of CEA/L3MR and SUBATECH in order to check the reproducibility of the study. Two well hydrated cement pastes, CEM I (ordinary portland cement, OPC) and CEM V (blast furnace slag (BFS) and fly ash added to OPC) were degraded using similar protocols. Equilibrium solutions and solid materials were characterised for three degradation states for each paste. All samples are free of portlandite and the pH of the equilibrated cement solutions vary in the range 9.8-12.2. Three calcium silicate hydrate phases (C-S-H) were synthesised in order to compare the sorption properties of degraded cement pastes and of hydrate phases in similar pH conditions. In order to avoid precipitation processes, the operational solubility limit was evaluated before batch experiments. These solubility values vary significantly in the pH range [9-13] with a 2.4 x 10-7 mol L-1 minimum at pH close to 10.5. In batch sorption experiments, the distribution ratio Rd values are high: 3 x 104 - 1.5 x 105 mL g-1. The uptake of U(VI) increases when comparing the least and the most degraded cement pastes whereas the initial composition of cement has relatively insensitive effect. Sorption isotherms, expressed as a log [U(VI)solid]/log[U(VI)solution] plots are linear. A slope of 1 is calculated indicating the predominance of sorption processes. As sorption and desorption values are close, the uptake mechanism seems reversible. The Rd values measured in C-S-H suspensions are in good agreement with Rd values of degraded cement pastes, and C-S-H materials could be one of the cementitious phases which control U(VI) uptake in cement pastes. (orig.)

  17. Nanostructural Deformation Analysis of Calcium Silicate Hydrate in Portland Cement Paste by Atomic Pair Distribution Function

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    2016-01-01

    Full Text Available The deformation of nanostructure of calcium silicate hydrate (C-S-H in Portland cement (PC paste under compression was characterized by the atomic pair distribution function (PDF, measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a short-range order below 2.0 nm, close to the size of the C-S-H globule, while the deformation for a long-range order was similar to that of a calcium hydroxide phase measured by Bragg peak shift. The compressive deformation of the C-S-H nanostructure was comprised of three stages with different interactions between globules. This behavior would originate from the granular nature of C-S-H, which deforms with increasing packing density by slipping the interfaces between globules, rearranging the overall C-S-H nanostructure. This new approach will lead to increasing applications of the PDF technique to understand the deformation mechanism of C-S-H in PC-based materials.

  18. Biomimetic synthesis of modified calcium phosphate fine powders and their in vitro studies

    Energy Technology Data Exchange (ETDEWEB)

    Gergulova, R., E-mail: rumigg@yahoo.com; Tepavitcharova, S., E-mail: rumigg@yahoo.com; Rabadjieva, D., E-mail: rumigg@yahoo.com; Sezanova, K., E-mail: rumigg@yahoo.com; Ilieva, R., E-mail: rumigg@yahoo.com [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia (Bulgaria); Alexandrova, R.; Andonova-Lilova, B. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, BAS, Acad. G. Bonchev Str., Bl. 25, Sofia (Bulgaria)

    2013-12-16

    Biomimetic approach and subsequent high-temperature treatment were used to synthesize ion modified calcium phosphate fine powders. Thus, using Simulated Body Fluid (SBF) as an ion modifier, a bi-phase mixture of ion modified β-tricalcium phosphate and hydroxyapatite (β-TCP + HA) was prepared. The use of SBF electrolyte solution enriched with Mg{sup 2+} or Zn{sup 2+} yielded monophase β-tricalcium phosphate additionally modified with Mg{sup 2+} or Zn{sup 2+} (Mg-β-TCP or Zn-β-TCP). The in vitro behavior of the prepared powders on cell viability and proliferation of murine BALB/c 3T3 fibroblasts and of human Lep 3 cells was studied by MTT test assays and Mosmann method after 72 h incubation. The relative cell viability was calculated.

  19. Chemical synthesis and characterization of magnesium substituted amorphous calcium phosphate (MG-ACP)

    International Nuclear Information System (INIS)

    Amorphous calcium phosphate (ACP) was synthesized by a simple aqueous precipitation using CaCl2 and Na3PO4 in the presence of MgCl2 to ensure the formation of the ACP phase at room temperature. Magnesium substituted ACP phases corresponding to two different compositions representing the two most prominent calcium phosphate phases (hydroxyapatite: Ca + Mg/P = 1.67 and tricalcium phosphate: Ca + Mg/P = 1.5) were synthesized by this simple approach. Both compositions of ACP phases resulted in their transformation into β-tricalcium phosphate upon heat treatment in air at 600 deg. C. X-ray diffraction (XRD), heat treatment, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and Brunauer-Emmett-Teller (BET) analyses were used to characterize the phase, thermal stability, surface area, and morphology of the synthesized ACP powders corresponding to the two different nominal Ca/P compositions. Although it is known that α-TCP is the phase that appears upon heat treatment at 600 deg. C unsubstituted ACP, substitution of magnesium ion in ACP (both TCP and HA composition) stabilized the structure of β-TCMP phase at 600 deg. C. Moreover, FT-IR analysis revealed that the ACP phase regardless of the composition, exhibited characteristic bands corresponding to that of HA, with the exception of the ACP corresponding to HA composition which exhibited a prominent OH vibrational mode.

  20. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties.

    Science.gov (United States)

    Drevet, Richard; Benhayoune, Hicham

    2013-10-01

    Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. PMID:23910341

  1. The Effect of Variability in the Powder/Liquid Ratio on the Strength of Zinc Phosphate Cement

    Directory of Open Access Journals (Sweden)

    Jill E. McKenna

    2011-01-01

    Full Text Available Aim. To investigate (a variability in powder/liquid proportioning and (b effect of variability on diametral tensile strength (DTS, in a zinc phosphate cement. Statistical analyses (=0.05 were by Student’s t-test in the case of powder/liquid ratio and one-way ANOVA and Tukey HSD for pair-wise comparisons of mean DTS. The Null hypotheses were that (a the powder-liquid mixing ratios would not differ from the manufacturer’s recommended ratio (b DTS of the set cement samples using the extreme powder/liquid ratios would not differ from those made using the recommended ratio. Methodology. 34 dental students dispensed the components according to the manufacturer’s instructions. The maximum and minimum powder/liquid ratios, together with the manufacturer’s recommended ratio, were used to prepare samples for DTS testing. Results. Powder/liquid ratios ranged from 2.386 to 1.018. The mean ratio (1.644 was not significantly different from the recommended value of 1.718 (=0.189. DTS values for the maximum and minimum ratios were both significantly different from each other (<0.001 and from the mean value obtained from the recommended ratio (<0.001. Conclusions. Variability exists in powder/liquid ratio for hand dispensed zinc phosphate cement. This variability can affect the DTS of the set material.

  2. [Retention of crowns as affected by film thickness of zinc phosphate cement and taper angle of crowns (author's transl)].

    Science.gov (United States)

    Otani, H; Goto, T

    1979-10-01

    Dependence of the retention of crowns at their axial wall on the film thickness of zinc phosphate cement and the taper angle was investigated. Stainless steel dies, composed of a preparation and an occlusally perforated crown the taper angle of which was 2.9, 5.7, 8.5 and 11.3 degrees respectively (Fig. 1, (a) and (b)), were cemented within three min. after the start of mix with a Shofu Micro Cement having a powder-liquid ratio of 1.5 g/0.5 cc. The thickness of the cement layer at the axial wall was regulated to a given value between 9 and 55 mu through the use of a discrepancy measurer. A Shimazu Autograph tensile test machine was employed to measure 48-hr retention (kg/cm2). The retention of the crowns was strongly dependent on the cement film thickness and the taper angle when the film thickness was below a critical value (15 mu in this experiment), but not when the film thickness was above this value (Fig. 3). This may be explained by the term of mechanical interlocking of either of the unreacted powder grains and the matrix phase in the luting cement, as schematically drawn in Fig. 6. The same findings were more evidently appeared on the semilogarythmic diagram in Fig. 4. In this diagram, the critical value was shown as intersection of two straight lines which could be drawn through all the measurements for four taper angles, using the least squares. PMID:295065

  3. Beneficial use of a cell coupling rheometry, conductimetry, and calorimetry to investigate the early age hydration of calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    A specific cell was designed to monitor simultaneously the evolution of the viscoelastic properties, electrical conductivity, and temperature of a cement paste with ongoing hydration. Hydration of calcium sulfo-aluminate cement by demineralized water or by a borated solution was then investigated as an example. Borate anions acted as set retarders but to a smaller extent than with ordinary Portland cement. The delay in cement hydration resulted from the precipitation of an amorphous or poorly crystallized calcium borate, which also caused a rapid stiffening (and thus a loss of workability) of the paste after mixing. The gypsum content of the CSA cement was shown to play a key role in the control of the cement reactivity. (authors)

  4. Surface acidity of calcium phosphate and calcium hydroxyapatite: FTIR spectroscopic study of low-temperature CO adsorption

    International Nuclear Information System (INIS)

    The surface properties of calcium phosphate precursor (CP) and crystalline calcium hydroxyapatite (HA) prepared biomimetically have been studied by IR spectroscopy of adsorbed CO. Both samples are characterized by the absence of Bronsted acidity. Low-temperature CO adsorption on CP evacuated at 523 K leads to formation of only one family of Ca2+-CO species (2168 cm-1). The analysis indicates that the respective calcium ions on the surface are not isolated. Similar spectra were obtained with HA evacuated at 573 K. In this case, however, the Ca2+-CO band was detected at 2165 cm-1 due to enhanced lateral interaction between the adsorbed CO molecules. Another family of Ca2+ sites (Ca2+-CO band at 2178 cm-1) was created after evacuation of the HA sample at 673 K. These sites were assumed to be a result of sample dehydroxylation. The results demonstrate the absence of any protonic acidity of the samples (i.e. P-OH surface groups) and weak electrostatic Lewis acidity caused by coordinatively unsaturated Ca2+ cations.

  5. Calcium phosphate flocs and the clarification of sugar cane juice from whole of crop harvesting.

    Science.gov (United States)

    Thai, Caroline C D; Moghaddam, Lalehvash; Doherty, William O S

    2015-02-11

    Sugar cane biomass is one of the most viable feedstocks for the production of renewable fuels and chemicals. Therefore, processing the whole of crop (WC) (i.e., stalk and trash, instead of stalk only) will increase the amount of available biomass for this purpose. However, effective clarification of juice expressed from WC for raw sugar manufacture is a major challenge because of the amounts and types of non-sucrose impurities (e.g., polysaccharides, inorganics, proteins, etc.) present. Calcium phosphate flocs are important during sugar cane juice clarification because they are responsible for the removal of impurities. Therefore, to gain a better understanding of the role of calcium phosphate flocs during the juice clarification process, the effects of impurities on the physicochemical properties of calcium phosphate flocs were examined using small-angle laser light scattering technique, attenuated total reflectance Fourier transformed infrared spectroscopy, and X-ray powder diffraction. Results on synthetic sugar juice solutions showed that the presence of SiO2 and Na(+) ions affected floc size and floc structure. Starch and phosphate ions did not affect the floc structure; however, the former reduced the floc size, whereas the latter increased the floc size. The study revealed that high levels of Na(+) ions would negatively affect the clarification process the most, as they would reduce the amount of suspended particles trapped by the flocs. A complementary study on prepared WC juice using cold and cold/intermediate liming techniques was conducted. The study demonstrated that, in comparison to the one-stage (i.e., conventional) clarification process, a two-stage clarification process using cold liming removed more polysaccharides (≤19%), proteins (≤82%), phosphorus (≤53%), and SiO2 (≤23%) in WC juice but increased Ca(2+) (≤136%) and sulfur (≤200%).

  6. The effects of calcium phosphate particles on the growth of osteoblasts.

    Science.gov (United States)

    Sun, J S; Tsuang, Y H; Liao, C J; Liu, H C; Hang, Y S; Lin, F H

    1997-12-01

    With advances in ceramics technology, calcium phosphate bioceramics have been applied as bone substitutes for several decades. The focus of this work is to elucidate the biocompatibility of the particulates of various calcium phosphate cytotoxicities. Four different kinds of calcium phosphate powders, including beta-tricalcium phosphate (beta-TCP), hydroxyapatite (HA), beta-dicalcium pyrophosphate (beta-DCP), and sintered beta-dicalcium pyrophosphate (SDCP), were tested by osteoblast cell culture. The results were analyzed by cell count, concentration of transforming growth factor-beta 1 (TGF-beta 1), alkaline phosphatase (ALP), and prostaglandin E2 (PGE2) in culture media. The changes were most significant when osteoblasts were cultured with beta-TCP and HA bioceramics. The changes in cell population of the beta-TCP and HA were quite low in the first 3 days, then increased gradually toward the seventh day. The changes in TGF-beta 1 concentration in culture medium inversely related to the changes in cell population. The ALP titer in the culture media of the beta-TCP and HA were quite high in the first 3 days, then decreased rapidly between the third and seventh days. The concentrations of PGE2 in the culture media tested were quite high on the first day, decreased rapidly to the third day, and then gradually until the seventh day. The changes in the beta-DCP and SDCP were quite similar to those of HA and beta-TCP but much less significant. We conclude that HA and beta-TCP have an inhibitory effect on the growth of osteoblasts. The inhibitins effects of the HA and beta-TCP powders on the osteoblast cell cultures possibly are mediated by the increased synthesis of PGE2.

  7. Early age corrosion of aluminium in calcium sulfo-aluminate cement based composites

    International Nuclear Information System (INIS)

    At present, encapsulation of low level and intermediate level nuclear wastes using Portland Cement (PC) based matrices is a preferred approach. However, it is now widely accepted that the high pH of the pore solution of these PC-based matrices (usually above pH 12.5) can cause concerns over the stability of certain wastes containing reactive metals, such as aluminium and uranium. One potential low pH system for reducing the corrosion of aluminium is calcium sulfo-aluminate cement (CSA). However, significant heat could be generated from the hydration of CSA, causing another concern to the nuclear industry. In the current study, various additives, namely pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and limestone powder (LSP) were used to replace part of the CSA in order to reduce the heat output. The results indicated that the replacement of CSA with GGBS, PFA and LSP can reduce the heat output of 100% CSA, although it is still higher than the control GGBS/PC 9:1 system. The corrosion rate of aluminium in each of the CSA composites was slightly higher than 100% CSA, however, all the CSA systems had corrosion rates lower than GGBS/PC 9:1 after 15 hours. Therefore, the composite CSA systems investigated in this study provide a good compromise between the heat output and the resistance to the corrosion of aluminium. Hence, offers a good potential for dealing with some historical nuclear wastes where the corrosion of aluminium is a concern. (authors)

  8. Glucose-6-phosphate reduces calcium accumulation in rat brain endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-04-01

    Full Text Available Brain cells expend large amounts of energy sequestering calcium (Ca2+, while loss of Ca2+ compartmentalization leads to cell damage or death. Upon cell entry, glucose is converted to glucose-6-phosphate (G6P, a parent substrate to several metabolic major pathways, including glycolysis. In several tissues, G6P alters the ability of the endoplasmic reticulum to sequester Ca2+. This led to the hypothesis that G6P regulates Ca2+ accumulation by acting as an endogenous ligand for sarco-endoplasmic reticulum calcium ATPase (SERCA. Whole brain ER microsomes were pooled from adult male Sprague-Dawley rats. Using radio-isotopic assays, 45Ca2+ accumulation was quantified following incubation with increasing amounts of G6P, in the presence or absence of thapsigargin, a potent SERCA inhibitor. To qualitatively assess SERCA activity, the simultaneous release of inorganic phosphate (Pi coupled with Ca2+ accumulation was quantified. Addition of G6P significantly and decreased Ca2+ accumulation in a dose-dependent fashion (1-10 mM. The reduction in Ca2+ accumulation was not significantly different that seen with addition of thapsigargin. Addition of glucose-1-phosphate or fructose-6-phosphate, or other glucose metabolic pathway intermediates, had no effect on Ca2+ accumulation. Further, the release of Pi was markedly decreased, indicating G6P-mediated SERCA inhibition as the responsible mechanism for reduced Ca2+ uptake. Simultaneous addition of thapsigargin and G6P did decrease inorganic phosphate in comparison to either treatment alone, which suggests that the two treatments have different mechanisms of action. Therefore, G6P may be a novel, endogenous regulator of SERCA activity. Additionally, pathological conditions observed during disease states that disrupt glucose homeostasis, may be attributable to Ca2+ dystasis caused by altered G6P regulation of SERCA activity

  9. Plasma Calcium, Inorganic Phosphate and Magnesium During Hypocalcaemia Induced by a Standardized EDTA Infusion in Cows

    Directory of Open Access Journals (Sweden)

    Enemark JMD

    2001-06-01

    Full Text Available The intravenous Na2EDTA infusion technique allows effective specific chelation of circulating Ca2+ leading to a progressive hypocalcaemia. Methods previously used were not described in detail and results obtained by monitoring total and free ionic calcium were not comparable due to differences in sampling and analysis. This paper describes a standardized EDTA infusion technique that allowed comparison of the response of calcium, phosphorus and magnesium between 2 groups of experimental cows. The concentration of the Na2EDTA solution was 0.134 mol/l and the flow rate was standardized at 1.2 ml/kg per hour. Involuntary recumbency occurred when ionised calcium dropped to 0.39 – 0.52 mmol/l due to chelation. An initial fast drop of ionized calcium was observed during the first 20 min of infusion followed by a fluctuation leading to a further drop until recumbency. Pre-infusion [Ca2+] between tests does not correlate with the amount of EDTA required to induce involuntary recumbence. Total calcium concentration measured by atomic absorption remained almost constant during the first 100 min of infusion but declined gradually when the infusion was prolonged. The concentration of inorganic phosphate declined gradually in a fluctuating manner until recumbency. Magnesium concentration remained constant during infusion. Such electrolyte responses during infusion were comparable to those in spontaneous milk fever. The standardized infusion technique might be useful in future experimental studies.

  10. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    International Nuclear Information System (INIS)

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO2 alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C3S), blended C3S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C3S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements

  11. Influence of a dental ceramic and a calcium aluminate cement on dental biofilm formation and gingival inflammatory response

    OpenAIRE

    Konradsson, Katarina

    2007-01-01

    Dental restorative materials interact with their surrounding oral environment. Interaction factors can be release of toxic components and/or effects on biofilm formation and gingiva. In the end of the nineties, a calcium aluminate cement (CAC) was manufactured as a “bioceramic” alternative to resin composite. Dental ceramics are considered to be chemically stable and not to favour dental biofilm formation. Since the influence of aged, resin-bonded ceramic coverages is not fully investigated a...

  12. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    OpenAIRE

    Utneja, Shivani; Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2014-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, a...

  13. Hemolysis effect and calcium-phosphate precipitation of heat-organic-film treated magnesium

    Institute of Scientific and Technical Information of China (English)

    GAO Jia-cheng; QIAO Li-ying; LI Long-chuan; WANG Yong

    2006-01-01

    A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis properties of magnesium were improved for biomedical applications. Firstly, magnesium samples were heat-treated at 773 K for 10 h; secondly, stearic acid films were coated on the surface of the heat-treated magnesium.Then the surface modified magnesium was soaked in simulated body fluid (SBF) to test its corrosion resistance. The results show that the heat treatment process allows magnesium to form a dense oxide layer with a thickness of around 20 μm, thereby the surface modified magnesium has higher corrosion resistance. After 24 h in SBF island apatite was deposited on magnesium. The unevenly precipitates were characterized by XRD and FTIR as the mixture of hydroxyapatite(HA) and octacalcium phosphate(OCP). The preliminary hemolysis experiment indicates that untreated magnesium has hemolytic effect (about 60%); whereas the heat-organic film treated samples has no hemolytic effect. The mechanism of fast nucleation and growth of calcium-phosphate apatites on surface modified magnesium in SBF was also discussed.

  14. Synthesis and characterization of the aluminium phosphates modified with ammonium, calcium and molybdenum by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Łuczka Kinga

    2016-06-01

    Full Text Available Synthesis and characterization of the aluminum phosphates modified with ammonium, calcium and molybdenum were conducted. The influence of process parameters (reactive pressure and molar ratios in the reaction mixture were studied. The contents of the individual components in the products were in the range of: 10.97–17.31 wt% Al, 2.65–13.32 wt% Ca, 0.70–3.11 wt% Mo, 4.36–8.38 wt% NH3, and 35.12–50.54 wt% P2O5. The materials obtained in the experiments were characterized by various physicochemical parameters. The absorption oil number was in the range from 67 to 89 of oil/100 g of product, the surface area was within the range of 4–76 m2/g, whereas the average particle size of products reached 282–370 nm. The Tafel tests revealed comparable anticorrosive properties of aluminum phosphates modified with ammonium, calcium, molybdenum in comparison with commercial phosphate.

  15. In Situ Laser Coating of Calcium Phosphate on TC4 Surface for Enhancing Bioactivity

    Institute of Scientific and Technical Information of China (English)

    DENG Chi; WANG Yong; ZHANG Ya-ping; GAO Jia-cheng

    2007-01-01

    Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight,toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 ·2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m-2 and a scanning velocity of 10. 5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tric