WorldWideScience

Sample records for calcium oxalate crystal

  1. Probable functions of calcium oxalate crystals in different tissues of ...

    African Journals Online (AJOL)

    Representatives of seven major edible aroid accessions were screened for calcium oxalate using standard histochemical methods. All the accessions were noted to contain calcium oxalate in the forms of raphide bundles and intra-amylar crystals. The crystals were widely present in all parts of the plants including spongy ...

  2. Unusual calcium oxalate crystals in ethylene glycol poisoning.

    Science.gov (United States)

    Godolphin, W; Meagher, E P; Sanders, H D; Frohlich, J

    1980-06-01

    A patient poisoned with ethylene glycol exhibited the symptoms of (1) hysteria, (2) metabolic acidosis with both a large anion gap and osmolal gap, and (3) crystalluria. However, the shape of the urinary crystals was prismatic and resembled hippurate rather than the expected dipyramidal calcium oxalate dihydrate. X-ray crystallography positively identified them as calcium oxalate monohydrate.

  3. Crystallization of calcium oxalate in minimally diluted urine

    Science.gov (United States)

    Bretherton, T.; Rodgers, A.

    1998-09-01

    Crystallization of calcium oxalate was studied in minimally diluted (92%) urine using a mixed suspension mixed product crystallizer in series with a Malvern particle sizer. The crystallization was initiated by constant flow of aqueous sodium oxalate and urine into the reaction vessel via two independent feed lines. Because the Malvern cell was in series with the reaction vessel, noninvasive measurement of particle sizes could be effected. In addition, aliquots of the mixed suspension were withdrawn and transferred to a Coulter counter for crystal counting and sizing. Steady-state particle size distributions were used to determine nucleation and growth kinetics while scanning electron microscopy was used to examine deposited crystals. Two sets of experiments were performed. In the first, the effect of the concentration of the exogenous sodium oxalate was investigated while in the second, the effect of temperature was studied. Calcium oxalate nucleation and growth rates were found to be dependent on supersaturation levels inside the crystallizer. However, while growth rate increased with increasing temperature, nucleation rates decreased. The favored phases were the trihydrate at 18°C, the dihydrate at 38° and the monohydrate at 58°C. The results of both experiments are in agreement with those obtained in other studies that have been conducted in synthetic and in maximally diluted urine and which have employed invasive crystal counting and sizing techniques. As such, the present study lends confidence to the models of urinary calcium oxalate crystallization processes which currently prevail in the literature.

  4. Arthritis associated with calcium oxalate crystals in an anephric patient treated with peritoneal dialysis

    International Nuclear Information System (INIS)

    Rosenthal, A.; Ryan, L.M.; McCarty, D.J.

    1988-01-01

    The authors report a case of calcium oxalate arthropathy in a woman undergoing intermittent peritoneal dialysis who was not receiving pharmacologic doses of ascorbic acid. She developed acute arthritis, with calcium oxalate crystals in Heberden's and Bouchard's nodes, a phenomenon previously described in gout. Intermittent peritoneal dialysis may be less efficient than hemodialysis in clearing oxalate, and physicians should now consider calcium oxalate-associated arthritis in patients undergoing peritoneal dialysis who are not receiving large doses of ascorbic acid

  5. Aspects of calcium oxalate crystallization: theory, in vitro studies, and in vivo implementation.

    Science.gov (United States)

    Rodgers, A

    1999-11-01

    There are three main approaches to urolithiasis research: theory, basic science, and clinical implementation. Although each approach has yielded meaningful results, there does not appear to be complete synergy between them. This article examines these approaches as they pertain to urinary calcium oxalate crystallization processes. Theoretical calculations were performed to examine the role of oxalate concentration on calcium oxalate supersaturation. The effects of magnesium, citrate, and combinations thereof on calcium oxalate crystallization kinetics were examined in a mixed suspension, mixed product removal crystallizer. Finally, male volunteers were given supplements of calcium alone and binary combinations of calcium, magnesium, and citrate to investigate their effects on the urinary supersaturation of calcium oxalate. Calculations showed that oxalate is 23 times more potent than calcium in its effect on the supersaturation of calcium oxalate. In the in vitro experiments, magnesium and citrate reduced the growth and nucleation kinetics as well as the supersaturation. In combination, these two components were more effective than the individual components in reducing the growth rate and the supersaturation. All of the supplements favorably altered the kinetic and thermodynamic risk factors. Calcium was the most effective in reducing the urinary excretion of oxalate. Articulation of these three approaches is essential for the meaningful investigation and understanding of urolithiasis.

  6. Inhibition of crystallization of calcium oxalate by the extraction of Tamarix gallica L.

    Science.gov (United States)

    Bensatal, Ahmed; Ouahrani, M R

    2008-12-01

    The main objective is to study the inhibitor effect of acid fraction of the extract of Tamarix gallica L on the crystallization of calcium oxalate. The extract of Tamarix gallica L is very rich by acid compounds that are used as an inhibitor of nephrolithiasis (calcium oxalate). Our study of the calcium oxalate crystallization is based on the model of turbidimetry by means of a spectrophotometer. The calcium oxalate formation is induced by the addition of oxalate solutions of sodium and of calcium chloride. The addition of inhibitor with various concentrations enabled us to give information on the percentage of inhibition. The comparison between the turbidimetric slopes with and without inhibitor gives the effectiveness of inhibitor for the acid fraction. By comparing the photographs of with and without inhibitor, we concluded that the extract of Tamarix gallica L acts at the stage of growth. The acid fraction of the extract of Tamarix gallica L gives an activity remarkable in the formation of urinary lithiasis (calcium oxalate); this effectiveness is due to the presence of functions of acid.

  7. Calcium oxalate crystals: an integral component of the Sclerotinia sclerotiorum/Brassica carinata pathosystem.

    Directory of Open Access Journals (Sweden)

    Margaret B Uloth

    Full Text Available Oxalic acid is an important virulence factor for disease caused by the fungal necrotrophic pathogen Sclerotinia sclerotiorum, yet calcium oxalate (CaOx crystals have not been widely reported. B. carinata stems were infected with S. sclerotiorum and observed using light microscopy. Six hours post inoculation (hpi, CaOx crystals were evident on 46% of stem sections and by 72 hpi on 100%, demonstrating that the secretion of oxalic acid by S. sclerotiorum commences before hyphal penetration. This is the first time CaOx crystals have been reported on B. carinata infected with S. sclerotiorum. The shape of crystals varied as infection progressed. Long tetragonal rods were dominant 12 hpi (68% of crystal-containing samples, but by 72 hpi, 50% of stems displayed bipyramidal crystals, and only 23% had long rods. Scanning electron microscopy from 24 hpi revealed CaOx crystals in all samples, ranging from tiny irregular crystals (< 0.5 μm to large (up to 40 μm highly organized arrangements. Crystal morphology encompassed various forms, including tetragonal prisms, oval plates, crystal sand, and druses. Large conglomerates of CaOx crystals were observed in the hyphal mass 72 hpi and these are proposed as a strategy of the fungus to hold and detoxify Ca2+ions. The range of crystal morphologies suggests that S. sclerotiorum growth and infection controls the form taken by CaOx crystals.

  8. Reevaluation of the plant "gemstones": Calcium oxalate crystals sustain photosynthesis under drought conditions.

    Science.gov (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G; Kontoyannis, Christos G; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I; Karabourniotis, George

    2016-09-01

    Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path "alarm photosynthesis." The so-far "enigmatic," but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants.

  9. Degradation of sulfated polysaccharide extracted from algal Laminaria japonica and its modulation on calcium oxalate crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Jianming, E-mail: toyjm@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Wang Miao; Lu Peng; Tan Jin [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)

    2010-08-30

    Sulfated polysaccharide (LPS) extracted from alga Laminaria japonica was degraded by hydrogen peroxide (H{sub 2}O{sub 2}). The average molecular weight of LPS was apparently decreased from 172,000 to 9550 after degradation, while the proportion of sulfate groups (-OSO{sub 3}{sup -}) and carboxylic groups (-COO{sup -}) in the molecular chains of LPS were slightly decreased from 4.5% and 5.20% to 3.9% and 4.64%, respectively. The effects of degraded and natural LPS on formation of calcium oxalate (CaOxa) crystals were investigated in vitro using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta-potential, and atomic absorption spectroscopy. LPS could increase the concentration of soluble Ca{sup 2+} ions in the solution, decrease the weight of precipitated CaOxa, and increase the negative value of zeta-potential of CaOxa crystals. LPS also inhibits the formation of thermodynamically stable calcium oxalate monohydrate (COM) crystals, while inducing and stabilizing metastable calcium oxalate dihydrate (COD) crystals. These results suggested that both degraded and natural LPS could decrease CaOxa crystallization, but the inhibition efficiency of the degraded LPS was clearly superior to that of the natural LPS. We expected this investigation would provide encouragement for further exploration into new drugs for the prevention and treatment of urolithiasis.

  10. Preventive treatment of calcium oxalate crystal deposition with immortal flowers.

    Science.gov (United States)

    Orhan, Nilüfer; Onaran, Metin; Şen, İlker; Işık Gönül, İpek; Aslan, Mustafa

    2015-04-02

    A number of medicinal plants are used for their diuretic, urolithiatic and anti-inflammatory effects on urinary system problems in Turkey and the most common traditional remedy for kidney stones is the tea of immortal flowers. The aim of this study is to evaluate the preventive effect of infusions prepared from capitulums of Helichrysum graveolens (M.Bieb.) Sweet (HG) and Helichrysum stoechas ssp. barellieri (Ten.) Nyman (HS) on formation of kidney stones. Sodium oxalate (Ox-70mg/kg intraperitoneally) was used to induce kidney stones on Wistar albino rats. At the same time, two different doses of the plant extracts (HG: 62.5 and 125mg/kg; HS: 78 and 156mg/kg) were dissolved in the drinking water and administered to animals for 5 days. Potassium citrate was used as positive control in the experiments. During the experiment, water intake, urine volume and body weights of the animals were recorded. At the end of the experiments, liver, kidney and body weights of the animals were determined; biochemical analysis were conducted on urine, blood and plasma samples. Histopathological changes in kidney tissues were examined and statistical analysis were evaluated. HS extract showed the highest preventive effect at 156mg/kg dose (stone formation score: 1.16), whereas a number of kidney stones were maximum in sodium oxalate group (stone formation score: 2.66). Helichrysum extracts decreased urine oxalate and uric acid levels and increased citrate levels significantly. In addition, Helichrysum extracts regulated the negative changes in biochemical and hematological parameters occurred after Ox injection. We conclude that Helichrysum extracts could reduce the formation and growth of kidney stones in Ox-induced urolithiasis and can be beneficial for patients with recurrent stones. In addition, this is the first study on the preventive effect of immortal flowers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Role of Tamm-Horsfall protein and uromodulin in calcium oxalate crystallization

    Directory of Open Access Journals (Sweden)

    Carvalho M.

    2002-01-01

    Full Text Available One of the defenses against nephrolithiasis is provided by macromolecules that modulate the nucleation, growth, aggregation and retention of crystals in the kidneys. The aim of the present study was to determine the behavior of two of these proteins, Tamm-Horsfall and uromodulin, in calcium oxalate crystallization in vitro. We studied a group of 10 male stone formers who had formed at least one kidney stone composed of calcium oxalate. They were classified as having idiopathic nephrolithiasis and had no well-known metabolic risk factors involved in kidney stone pathogenesis. Ten normal men were used as controls, as was a group consisting of five normal women and another consisting of five pregnant women. Crystallization was induced by a fixed supersaturation of calcium oxalate and measured with a Coulter Counter. All findings were confirmed by light and scanning electron microscopy. The number of particulate material deposited from patients with Tamm-Horsfall protein was higher than that of the controls (P<0.001. However, Tamm-Horsfall protein decreased the particle diameter of the stone formers when analyzed by the mode of the volume distribution curve (P<0.002 (5.64 ± 0.55 µm compared to 11.41 ± 0.48 µm of uromodulin; 15.94 ± 3.93 µm and 12.45 ± 0.97 µm of normal men Tamm-Horsfall protein and uromodulin, respectively; 8.17 ± 1.57 µm and 9.82 ± 0.95 µm of normal women Tamm-Horsfall protein and uromodulin, respectively; 12.17 ± 1.41 µm and 12.99 ± 0.51 µm of pregnant Tamm-Horsfall protein and uromodulin, respectively. Uromodulin produced fewer particles than Tamm-Horsfall protein in all groups. Nonetheless, the total volume of the crystals produced by uromodulin was higher than that produced by Tamm-Horsfall protein. Our results indicate a different effect of Tamm-Horsfall protein and uromodulin. This dual behavior suggests different functions. Tamm-Horsfall protein may act on nucleation and inhibit crystal aggregation, while

  12. The influence of freezer storage of urine samples on the BONN-Risk-Index for calcium oxalate crystallization.

    Science.gov (United States)

    Laube, Norbert; Zimmermann, Diana J

    2004-01-01

    This study was performed to quantify the effect of a 1-week freezer storage of urine on its calcium oxalate crystallization risk. Calcium oxalate is the most common urinary stone material observed in urolithiasis patients in western and affluent countries. The BONN-Risk-Index of calcium oxalate crystallization risk in human urine is determined from a crystallization experiment performed on untreated native urine samples. We tested the influence of a 1-week freezing on the BONN-Risk-Index value as well as the effect of the sample freezing on the urinary osmolality. In vitro crystallization experiments in 49 native urine samples from stone-forming and non-stone forming individuals were performed in order to determine their calcium oxalate crystallization risk according to the BONN-Risk-Index approach. Comparison of the results derived from original sample investigations with those obtained from the thawed aliquots by statistical evaluation shows that i) no significant deviation from linearity between both results exists and ii) both results are identical by statistical means. This is valid for both, the BONN-Risk-Index and the osmolality data. The differences in the BONN-Risk-Index results of both procedures of BONN-Risk-Index determination, however, exceed the clinically acceptable difference. Thus, determination of the urinary calcium oxalate crystallization risk from thawed urine samples cannot be recommended.

  13. Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy.

    Science.gov (United States)

    Coté, Gary G; Gibernau, Marc

    2012-07-01

    Many flowers are pollinated by potentially hungry insects, yet flowers also contain gametes and embryos which must be protected from predation. Microscopic calcium oxalate crystals in plant tissues have been proposed to protect against herbivory. Aroids, which have an unusual diversity of such crystals, also exhibit diverse pollination strategies. Many species have pollinators that do not feed while visiting the flowers, while other species, especially those pollinated by beetles, offer sterile staminodia as food rewards. We examined flowers of 21 aroid species with various pollination strategies to test the hypothesis that crystals protect vital gametes and embryos while allowing consumption of food bribes. Aroid inflorescences collected from the field or from greenhouse material were sectioned, cleared, and examined by bright field and polarization microscopy. All species examined, regardless of pollination strategy, arrayed crystals around unshed pollen and ovules. Less vital tissues, such as odoriferous appendages, had few crystals. Staminodia offered as food to beetle pollinators, however, differed greatly between species in their crystal contents. Some had minimal crystals; some had crystals in patterns suggesting they limit beetle feeding; still others had abundant crystals in no obvious pattern. The results are consistent with crystals protecting against insect predation of gametes and embryos. However, the role of crystals in food-bribe staminodia is unclear. They may limit and direct feeding by beetles in some species, while in others they might have no protective role.

  14. Reevaluation of the plant “gemstones”: Calcium oxalate crystals sustain photosynthesis under drought conditions

    Science.gov (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G.; Kontoyannis, Christos G.; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I.; Karabourniotis, George

    2016-01-01

    ABSTRACT Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path “alarm photosynthesis.” The so-far “enigmatic,” but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants. PMID:27471886

  15. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    Directory of Open Access Journals (Sweden)

    Paul A Nakata

    Full Text Available The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.

  16. Defining and systematic analyses of aggregation indices to evaluate degree of calcium oxalate crystal aggregation

    Science.gov (United States)

    Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2017-12-01

    Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 µg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r=0.997; pr=0.993; pr=‑0.993; pr=0.991; p<0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

  17. A Study of Biomolecules as Growth Modifiers of Calcium Oxalate Crystals

    Science.gov (United States)

    Kwak, Junha John

    Crystallization processes are ubiquitous in nature, science, and technology. Controlling crystal growth is pivotal in many industries as material properties and functions can be tailored by tuning crystal habits (e.g. size, shape, phase). In biomineralization, organisms exert excellent control over bottom-up synthesis and assembly of inorganic-organic structures (e.g. bones, teeth, exoskeletons). This is made possible by growth modifiers that range from small molecules to macromolecules, such as proteins. Molecular recognition of the mineral phase allows proteins to function as nucleation templates, matrices, and growth inhibitors or promoters. We are interested in taking a biomimetic approach to control crystallization via biomolecular growth modifiers. We investigated calcium oxalate monohydrate (COM), found in plants and kidney stones, as a model system of crystallization. We studied the effects of four common proteins on COM crystallization: bovine serum albumin (BSA), transferrin, lactoferrin, and lysozyme. Through kinetic studies of COM crystallization, we classified BSA and lysozyme as COM growth inhibitor and promoter respectively. Their inhibition and promotion effects were also evident in the macroscopic crystal habit. Through adsorption and microscopy experiments, we showed that BSA exhibits binding specificity for the apical surfaces of macroscopic COM crystals. Lysozyme, on the other, functions via a non-binding mechanism at the surface to accelerate the growth of the apical surfaces. We also synthesized and studied peptides derived from the protein primary sequences to identify putative domains responsible for these inhibition and promotion effects. Collectively, our study of physiologically relevant biomolecules suggests potential roles of COM modifiers in pathological crystallization and helps to develop guidelines for rational design of biomolecular growth modifiers for applications in crystal engineering.

  18. Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties

    Science.gov (United States)

    Plant structural traits often act as defenses against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in Medicago truncatula Gaertn. (Fabaceae) leaves have previously been shown to be effective deterrents of lepidopteran insect feedi...

  19. Physical characteristics of calcium oxalate crystals as determinants in structural defense against chewing insects in Medicago truncatula

    Science.gov (United States)

    In addition to the numerous chemical defenses that plants employ to fend off insect herbivores, simple structural components can also play important roles in effective protection. Our investigations have shown that plant crystals of calcium oxalate can function in insect defense. The isolation of ca...

  20. Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine.

    Science.gov (United States)

    Grohe, Bernd; Chan, Brian P H; Sørensen, Esben S; Lajoie, Gilles; Goldberg, Harvey A; Hunter, Graeme K

    2011-10-01

    Osteopontin (OPN) is one of a group of proteins found in urine that are believed to limit the formation of kidney stones. In the present study, we investigate the roles of phosphate and carboxylate groups in the OPN-mediated modulation of calcium oxalate (CaOx), the principal mineral phase found in kidney stones. To this end, crystallization was induced by addition of CaOx solution to ultrafiltered human urine containing either human kidney OPN (kOPN; 7 consecutive carboxylates, 8 phosphates) or synthesized peptides corresponding to residues 65-80 (pSHDHMDDDDDDDDDGD; pOPAR) or 220-235 (pSHEpSTEQSDAIDpSAEK; P3) of rat bone OPN. Sequence 65-80 was also synthesized without the phosphate group (OPAR). Effects on calcium oxalate monohydrate (COM) and dihydrate (COD) formation were studied by scanning electron microscopy. We found that controls form large, partly intergrown COM platelets; COD was never observed. Adding any of the polyelectrolytes was sufficient to prevent intergrowth of COM platelets entirely, inhibiting formation of these platelets strongly, and inducing formation of the COD phase. Strongest effects on COM formation were found for pOPAR and OPAR followed by kOPN and then P3, showing that acidity and hydrophilicity are crucial in polyelectrolyte-affected COM crystallization. At higher concentrations, OPAR also inhibited COD formation, while P3, kOPN and, in particular, pOPAR promoted COD, a difference explainable by the variations of carboxylate and phosphate groups present in the molecules. Thus, we conclude that carboxylate groups play a primary role in inhibiting COM formation, but phosphate and carboxylate groups are both important in initiating and promoting COD formation.

  1. Mimicking the biomolecular control of calcium oxalate monohydrate crystal growth: effect of contiguous glutamic acids.

    Science.gov (United States)

    Grohe, Bernd; Hug, Susanna; Langdon, Aaron; Jalkanen, Jari; Rogers, Kem A; Goldberg, Harvey A; Karttunen, Mikko; Hunter, Graeme K

    2012-08-21

    Scanning confocal interference microscopy (SCIM) and molecular dynamics (MD) simulations were used to investigate the adsorption of the synthetic polypeptide poly(l-glutamic acid) (poly-glu) to calcium oxalate monohydrate (COM) crystals and its effect on COM formation. At low concentrations (1 μg/mL), poly-glu inhibits growth most effectively in ⟨001⟩ directions, indicating strong interactions of the polypeptide with {121} crystal faces. Growth in directions was inhibited only marginally by 1 μg/mL poly-glu, while growth in directions did not appear to be affected. This suggests that, at low concentrations, poly-glu inhibits lattice-ion addition to the faces of COM in the order {121} > {010} ≥ {100}. At high concentrations (6 μg/mL), poly-glu resulted in the formation of dumbbell-shaped crystals featuring concave troughs on the {100} faces. The effects on crystal growth indicate that, at high concentrations, poly-glu interacts with the faces of COM in the order {100} > {121} > {010}. This mirrors MD simulations, which predicted that poly-glu will adsorb to a {100} terrace plane (most calcium-rich) in preference to a {121} (oblique) riser plane but will adsorb to {121} riser plane in preference to an {010} terrace plane (least calcium-rich). The effects of different poly-glu concentration on COM growth (1-6 μg/mL) may be due to variations between the faces in terms of growth mechanism and/or (nano)roughness, which can affect surface energy. In addition, 1 μg/mL might not be adequate to reach the critical concentration for poly-glu to significantly pin step movement on {100} and {010} faces. Understanding the mechanisms involved in these processes is essential for the development of agents to reduce recurrence of kidney stone disease.

  2. Crystallization of calcium oxalate monohydrate at dipalmitoylphosphatidylcholine monolayers in the presence of chondroitin sulfate A

    Science.gov (United States)

    Ouyang, Jian-Ming; Deng, Sui-Ping; Zhong, Jiu-Ping; Tieke, Bernd; Yu, Shu-Hong

    2004-10-01

    The growth and aggregation of calcium oxalate monohydrate (COM) crystals beneath dipalmitoylphosphatidylcholine (DPPC) monolayers in the presence of chondroitin sulfate A (C4S) was systematically examined under different surface pressure. The results indicated that the addition of C4S can inhibit the crystal growth and prevent the aggregation of COM crystals. Under a DPPC monolayer, well-defined three-dimensional hexagonal prisms and three-dimensional rhombus prisms with sharply angled tips were obtained. The DPPC monolayer at a surface pressure of 10 mN/m can match the Ca2+ distance of the (1 bar 0 1) face of COM better than at 20 mN/m. The addition of C4S could cooperatively modulate the interaction strength between the monolayer (or itself) with the specific morphology determining faces such as (1 bar 0 1) and (0 2 0), and thus results in remarkable stabilization of the (1 bar 0 1) faces. The dramatic changes in morphological details were due to the strong electrostatic interactions between the Ca2+-rich (1 bar 0 1) crystal faces of COM and the polyanionic polysaccharide C4S together with the negatively charged sites of the zwitterionic DPPC monolayers. The increase of the concentration of C4S can further enhance the stabilization of the (1 bar 0 1) face.

  3. Calcium oxalate stone and gout.

    Science.gov (United States)

    Marickar, Y M Fazil

    2009-12-01

    Gout is well known to be produced by increased uric acid level in blood. The objective of this paper is to assess the relationship between gout and calcium oxalate stone formation in the humans. 48 patients with combination of gout and calcium oxalate stone problem were included. The biochemical values of this group were compared with 38 randomly selected uric acid stone patients with gout, 43 stone patients with gout alone, 100 calcium oxalate stone patients without gout and 30 controls, making a total of 259 patients. Various biochemical parameters, namely serum calcium, phosphorus and uric acid and 24-h urine calcium, phosphorus, uric acid, oxalate, citrate and magnesium were analysed. ANOVA and Duncan's multiple-range tests were performed to assess statistical significance of the variations. The promoters of stone formation, namely serum calcium (P stone patients and gouty calcium oxalate stone patients compared to the non-gouty patients and controls. Urine oxalate (P stones patients. The inhibitor urine citrate (P stone gouty patients, followed by the gouty uric acid stone formers and gouty calcium oxalate stone patients. The high values of promoters, namely uric acid and calcium in the gouty stone patients indicate the tendency for urinary stone formation in the gouty stone patients. There is probably a correlation between gout and calcium oxalate urinary stone. We presume this mechanism is achieved through the uric acid metabolism. The findings point to the summation effect of metabolic changes in development of stone disease.

  4. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris

    Directory of Open Access Journals (Sweden)

    A. Aggarwal

    2010-08-01

    Full Text Available PURPOSE: Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as “gokhru” which is often used in ayurveda to treat various urinary diseases including urolithiasis. MATERIALS AND METHODS: The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. RESULTS: Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. CONCLUSION: The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.

  5. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris.

    Science.gov (United States)

    Aggarwal, A; Tandon, S; Singla, S K; Tandon, C

    2010-01-01

    Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as "gokhru" which is often used in ayurveda to treat various urinary diseases including urolithiasis. The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx) crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.

  6. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    Science.gov (United States)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  7. The study of the inhibitory effect of calcium oxalate monohydrate's crystallization by two medicinal and aromatic plants: Ammi visnaga and Punica granatum.

    Science.gov (United States)

    Kachkoul, R; Sqalli Houssaini, T; Miyah, Y; Mohim, M; El Habbani, R; Lahrichi, A

    2018-03-01

    Urinary lithiasis is a recurrent disease defined by the presence of calculi in the urinary tract. Most urinary calculi have as a major component calcium oxalate which occurs mainly in two crystalline forms: Calcium oxalate monohydrate (whewellite) and calcium oxalate dihydrate (weddellite). The target behind, this work is to study the inhibiting effect of the calcium oxalate's crystallization by the extract of the Ammi visnaga and the Punica granatum. The inhibition of crystallization has been studied in vitro with both the absence and the presence of the different concentrations of the extracts of the two plants. This study consists in measurement, with the UV-Visible spectrophotometer, the temporal evolution of the optical density at λ equal to 620nm corresponding to the formation of the crystals due to the mixing of metastable solutions of calcium and oxalate. The characterization of the crystals is carried out in parallel by both the Fourier transform infrared spectra (FT-IR) and the observation of the crystals with the help of an optical microscope. In this respect, the inhibition percentages were calculated from the turbidity slopes in the presence and absence of the extract. The results obtained were more effective, especially for Punica granatum with percentages of 97.8±0.12 and 83.46±1.34% against nucleation and aggregation, respectively, the order of Ammi visnaga was as follow: 73.25±0.81 and 59.44±3.3%. Thus, all correlation coefficients are greater than 0.95 and all coefficients of variation are less than 10%. The prevention and treatment of urinary lithiasis and especially in the case of recurrence by plants remains an alternative choice for medical methods. This study justified the efficacy of the plants Ammi visnaga and in particular Punica granatum against the crystallization of calcium oxalate. 3. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Inhibition of calcium oxalate crystal deposition on kidneys of urolithiatic rats by Hibiscus sabdariffa L. extract.

    Science.gov (United States)

    Laikangbam, Reena; Damayanti Devi, M

    2012-06-01

    The present study aims at systematic evaluation of the calyces of Hibiscus sabdariffa to establish its scientific validity for anti-urolithiatic property using ethylene glycol-induced hyperoxaluria model in male albino rats. Administration of a mixture of 0.75% ethylene glycol and 2% ammonium chloride resulted in hyperoxaluria as well as increased renal excretion of calcium and phosphate. The decrease in the serum calcium concentration indicates an increased calcium oxalate formation. Supplementation of aqueous extract of H. sabdariffa at different doses (250, 500 and 750 mg/kg body weight) significantly lowered the deposition of stone-forming constituents in the kidneys and serum of urolithiatic rats. These findings have been confirmed through histological investigations. Results of in vivo genotoxicity testing showed no significant chromosomal aberrations in the bone marrow cells of ethylene glycol-induced rats. The plant extracts at the doses investigated induced neither toxic nor lethal effects and are safe. It can be concluded that the calyces of H. sabdariffa are endowed with anti-urolithiatic activity and do not have genotoxic effects. Thus, it can be introduced in clinical practices and medicine in the form of orally administered syrup after further investigations and clinical trials.

  9. Oxalate: Effect on calcium absorbability

    International Nuclear Information System (INIS)

    Heaney, R.P.; Weaver, C.M.

    1989-01-01

    Absorption of calcium from intrinsically labeled Ca oxalate was measured in 18 normal women and compared with absorption of Ca from milk in these same subjects, both when the test substances were ingested in separate meals and when ingested together. Fractional Ca absorption from oxalate averaged 0.100 +/- 0.043 when ingested alone and 0.140 +/- 0.063 when ingested together with milk. Absorption was, as expected, substantially lower than absorption from milk (0.358 +/- 0.113). Nevertheless Ca oxalate absorbability in these women was higher than we had previously found for spinach Ca. When milk and Ca oxalate were ingested together, there was no interference of oxalate in milk Ca absorption and no evidence of tracer exchange between the two labeled Ca species

  10. Occurrence and characterisation of calcium oxalate crystals in stems and fruits of Hylocereus costaricensis and Selenicereus megalanthus (Cactaceae: Hylocereeae).

    Science.gov (United States)

    Viñas, María; Jiménez, Víctor M

    2016-10-01

    Detailed description about occurrence of calcium oxalate (CaOx) crystals in the edible vine cactus species Hylocereus costaricensis and Selenicereus megalanthus is scarce. Therefore, we evaluated and characterized the presence, morphology and composition of CaOx crystals in both species. Crystals were isolated from greenhouse and in vitro vegetative stems, and from ripe fruit peels and pulp by enzymatic digestion and density centrifugation and quantified with a haemocytometer. Morphologies were studied using scanning electron microscopy, elemental composition with energy-dispersive X-ray spectroscopy and salt composition with X-ray powder diffraction. Analyses conducted confirmed that isolated crystals were exclusively composed by CaOx, both mono- and dihydrated. Highest crystal contents were measured in greenhouse stems, followed by the fruit peels. While very few crystals were quantified in in vitro plants, they were not detected in the fruit pulp at all, which is of advantage for its human consumption and could be linked to mechanisms of seed dispersal through animals. Different crystal morphologies were observed, sometimes varying between genotypes and tissues analysed. This is the first work known to the authors with a detailed characterization of CaOx crystals in vine cacti. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Plasma oxalic acid and calcium levels in oxalate poisoning

    Science.gov (United States)

    Zarembski, P. M.; Hodgkinson, A.

    1967-01-01

    Observations are reported on five cases of suicide or attempted suicide by poisoning with oxalic acid or ethylene glycol. Elevated oxalic acid levels were observed in the plasma, stomach contents, and a number of tissues. Raised oxalic acid levels in plasma were associated with reduced total and ultrafilterable calcium levels. It is suggested that the reduction in plasma total calcium level is due mainly to the deposition of calcium oxalate in the soft tissues, but inhibition of the parathyroid glands may be a contributory factor. Microscopic examination of various tissues indicated that oxalic acid is deposited in the tissues in two forms: (1) crystalline calcium oxalate dihydrate in the kidney and (2) a non-crystalline complex of calcium oxalate and lipid in liver and other tissues. PMID:5602563

  12. Biosynthesis of l-Ascorbic Acid and Conversion of Carbons 1 and 2 of l-Ascorbic Acid to Oxalic Acid Occurs within Individual Calcium Oxalate Crystal Idioblasts1

    Science.gov (United States)

    Kostman, Todd A.; Tarlyn, Nathan M.; Loewus, Frank A.; Franceschi, Vincent R.

    2001-01-01

    l-Ascorbic acid (AsA) and its metabolic precursors give rise to oxalic acid (OxA) found in calcium oxalate crystals in specialized crystal idioblast cells in plants; however, it is not known if AsA and OxA are synthesized within the crystal idioblast cell or transported in from surrounding mesophyll cells. Isolated developing crystal idioblasts from Pistia stratiotes were used to study the pathway of OxA biosynthesis and to determine if idioblasts contain the entire path and are essentially independent in OxA synthesis. Idioblasts were supplied with various 14C-labeled compounds and examined by micro-autoradiography for incorporation of 14C into calcium oxalate crystals. [14C]OxA gave heavy labeling of crystals, indicating the isolated idioblasts are functional in crystal formation. Incubation with [1-14C]AsA also gave heavy labeling of crystals, whereas [6-14C]AsA gave no labeling. Labeled precursors of AsA (l-[1-14C]galactose; d-[1-14C]mannose) also resulted in crystal labeling, as did the ascorbic acid analog, d-[1-14C]erythorbic acid. Intensity of labeling of isolated idioblasts followed the pattern OxA > AsA (erythorbic acid) > l-galactose > d-mannose. Our results demonstrate that P. stratiotes crystal idioblasts synthesize the OxA used for crystal formation, the OxA is derived from the number 1 and 2 carbons of AsA, and the proposed pathway of ascorbic acid synthesis via d-mannose and l-galactose is operational in individual P. stratiotes crystal idioblasts. These results are discussed with respect to fine control of calcium oxalate precipitation and the concept of crystal idioblasts as independent physiological compartments. PMID:11161021

  13. Oxalic acid decreases calcium absorption in rats

    International Nuclear Information System (INIS)

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-01-01

    Calcium absorption from salts and foods intrinsically labeled with 45 Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO 3 and CaCl 2 than from CaC 2 O 4 (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach

  14. Infusum Daun Alpukat Sebagai Inhibitor Kristalisasi Kalsium Oksalat pada Ginjal (THE AVOCADO LEAVES INFUSUM AS INHIBITOR ON RENAL CALCIUM OXALATE CRYSTALIZATION

    Directory of Open Access Journals (Sweden)

    Rini Madyastuti

    2016-01-01

    Full Text Available Urine crystal is a crystal nucleus which tend to form urine stone. The case of urine stone seems to beincreased every year. Crystallization could induce acute tubular necrosis which impact on renal dysfunction.The signs of this condition are high level of urea, creatinine and decrease glomerulus filtration rate. Theobjective of this research was to evaluate the effects of infusum Persea americana Mill as an inhibitorcrystallization which induced by ethylene glycol on white male rats. 20 male rats were divided into 4groups; K1 as negative group received only distilled water ad libitum, K2 as positive group receiveddistilled water containing ethylene glycol, K3 (dose 5% and K4 (dose 10% as treatment groups receivedwater containing ethylene glycol and avocado leaves infusion. Phytochemsitry screening of infusion avocadoleaves consisted of flavonoid, saponin, tanine and quinone. Result of analysis showed that the level ofureum and creatinine on K2 was higher than K3 and K4 group. The increased level could be inhibited byinfusion avocado leaves. The measurement of glomerular filtration rate in treatment groups wassignificantly different (p<0.05. Descriptive histopathology observation showed that renal lesio in grouptreatment (K3 and K4 were declined. Large crystal calcium oxalate on K2 group was observed by usingpolarized microscope, whereas small crystal calcium oxalate were seen in the infusion of avocado leavesgroups. These result showed the ability of infusion of avocado leaves as an inhibitor on the growth ofcrystallization calcium oxalate

  15. Extraction and estimation of the quantity of calcium oxalate crystals in the foliage of conifer and hardwood trees

    Science.gov (United States)

    Rakesh Minocha; Bradley Chamberlain; Stephanie Long; Swathi A. Turlapati; Gloria. Quigley

    2015-01-01

    The main goal of this study was to develop a method for the extraction and indirect estimation of the quantity of calcium oxalate (CaOx) in the foliage of trees. Foliar tissue was collected from a single tree of each species (five conifers and five hardwoods) for comparison of extractions in different solvents using 10 replicates per species from the same pool of...

  16. Modulation of Calcium Oxalate Crystallization by Proteins and Small Molecules Investigated by In Situ Atomic Force Microscopy

    Science.gov (United States)

    Qiu, R.; Orme, C.; Cody, A. M.; Wierzbicki, A.; Hoyer, J.; Nancollas, G.; de Yoreo, J.

    2002-12-01

    Understanding the physical mechanisms by which biological inhibitors control nucleation and growth of inorganic crystals is a major focus of biomineral research. Calcium oxalate monohydrate (COM), which plays a functional role in plant physiology, is also a source of pathogenesis in humans where it causes kidney stone disease. Although a great deal of research has been carried out on the modulation COM by proteins and small molecules, the basic mechanism has not yet been understood. However, because the proteins that play a role in COM growth have been identified and sequenced, COM provides an excellent model system for research into biomineral growth. In this study, in situ atomic force microscopy (AFM) was used to monitor the COM surface under controlled growth conditions both from pure solutions and those doped with citrate and osteopontin (OPN) in order to determine their effects on surface morphology and growth dynamics at the molecular level. As with other solution-grown crystals such as calcite, COM grows on complex dislocation hillocks. In pure solution, while growth on the (010) face is isotropic, hillocks on the (-101) face exhibit anisotropic step kinetics. Steps of [-10-1] and orientation are clearly delineated with the [-10-1] being the fast growing direction. When citrate is added to the solution, both growth rate and morphology are drastically changed on (-101) face, especially along the [-10-1] direction. This results in isotropic disc-shaped hillocks a shape that is then reflected in the macroscopic growth habit. In contrast, no large growth changes were observed on the (010) facet. At the same time, molecular modeling predicts an excellent fit of the citrate ion into the (-101) plane and a poor fit to the (010) face. Here we propose a model that reconciles the step-specific interactions implied by the AFM results with the face-specific predictions of the calculations. Finally, we present the results of doping with aspartic acid as well as OPN, an

  17. Short communication: Urinary oxalate and calcium excretion by dogs and cats diagnosed with calcium oxalate urolithiasis

    NARCIS (Netherlands)

    Dijcker, J.C.; Kummeling, A.; Hagen-Plantinga, E.A.; Hendriks, W.H.

    2012-01-01

    Introduction Urine concentrations of oxalate and calcium play an important role in calcium oxalate (CaOx) urolith formation in dogs and cats, with high excretions of both substances increasing the chance of CaOx urolithiasis. In 17 CaOx-forming dogs, urine calcium:creatinine ratio (Ca:Cr) was found

  18. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  19. Irritant contact dermatitis caused by needle-like calcium oxalate crystals, raphides, in Agave tequilana among workers in tequila distilleries and agave plantations.

    Science.gov (United States)

    Salinas, M L; Ogura, T; Soffchi, L

    2001-02-01

    It was found that needle-like calcium oxalate crystals, raphides, are found abundantly in all tissues of Agave tequilana plants; thus, 1 droplet (0.03 ml) of juice pressed from leaves contains 100-150 crystals, 30-500 microm in length, sharpened at both ends. In tequila distilleries, 5/6 of the workers who handle the agave stems have experienced the characteristic irritation. In contrast, only 1/3 of workers in agave plantations who harvest agave plants, complain of the irritation. It is confirmed that all the irritation suffered in both distilleries and plantations takes place at bodily locations where the plants come into contact with the worker's skin in the course of their work.

  20. Response surface methodology based extraction of Tribulus terrestris leads to an upsurge of antilithiatic potential by inhibition of calcium oxalate crystallization processes

    Science.gov (United States)

    Kaushik, Jyoti; Tandon, Simran; Gupta, Varun; Nayyar, Jasamrit; Singla, Surinder Kumar; Tandon, Chanderdeep

    2017-01-01

    Tribulus terrestris has significant antilithiatic efficacy established via both in vitro as well as in vivo studies and is used in numerous anti-urolithiatic herbal formulations viz. Cystone, Uriflow, Uritone and Neeri. However, to fully utilize its antilithiatic potential, the influence of different extraction parameters on antilithiatic ability of T. terrestris aqueous extract needs elucidation. Thus, the current study was undertaken using statistically optimized extraction conditions for aqueous extract preparation. Response surface methodology was employed to observe the influence of three variables i.e. temperature (°C), time (h) and solid: liquid ratio (S: L) on the extraction yield (%) and protein content (mg/g) of T. terrestris aqueous extract. RSM results revealed that the high S:L ratio, low temperature and reduced incubation time were optimal conditions for aqueous extraction. Under such extraction conditions the protein content reached the value of 26.6±1.22 mg/g and the obtained extraction yield was 27.32±1.62%. The assessment of antilithiatic activity of 4 selected extracts (AE1-4), revealed enhanced nucleation and aggregation inhibition of calcium oxalate crystals with AE1 and AE2, which in addition significantly altered the size and morphology of calcium oxalate monohydrate (COM) crystals compared to AE3 and AE4. In vitro cell culture based studies on renal epithelial cells (MDCK, NRK-52E and PK 15) proved that the AE1 showed higher cytoprotective potency by increasing cell viability as compared to the oxalate treated group. The free radical scavenging activity of aqueous extract lowered the reactive oxygen specie’s induced damage and potentially reduced the signals of programmed cell death due to oxalate injury. In addition, modulation of the COM crystal morphology was enhanced by AE1 as compared to AE2. The FTIR and GC-MS analysis of AE1, showed the presence of biomolecules which could aid in the attenuation of lithiatic process. In the light

  1. Response surface methodology based extraction of Tribulus terrestris leads to an upsurge of antilithiatic potential by inhibition of calcium oxalate crystallization processes.

    Science.gov (United States)

    Kaushik, Jyoti; Tandon, Simran; Gupta, Varun; Nayyar, Jasamrit; Singla, Surinder Kumar; Tandon, Chanderdeep

    2017-01-01

    Tribulus terrestris has significant antilithiatic efficacy established via both in vitro as well as in vivo studies and is used in numerous anti-urolithiatic herbal formulations viz. Cystone, Uriflow, Uritone and Neeri. However, to fully utilize its antilithiatic potential, the influence of different extraction parameters on antilithiatic ability of T. terrestris aqueous extract needs elucidation. Thus, the current study was undertaken using statistically optimized extraction conditions for aqueous extract preparation. Response surface methodology was employed to observe the influence of three variables i.e. temperature (°C), time (h) and solid: liquid ratio (S: L) on the extraction yield (%) and protein content (mg/g) of T. terrestris aqueous extract. RSM results revealed that the high S:L ratio, low temperature and reduced incubation time were optimal conditions for aqueous extraction. Under such extraction conditions the protein content reached the value of 26.6±1.22 mg/g and the obtained extraction yield was 27.32±1.62%. The assessment of antilithiatic activity of 4 selected extracts (AE1-4), revealed enhanced nucleation and aggregation inhibition of calcium oxalate crystals with AE1 and AE2, which in addition significantly altered the size and morphology of calcium oxalate monohydrate (COM) crystals compared to AE3 and AE4. In vitro cell culture based studies on renal epithelial cells (MDCK, NRK-52E and PK 15) proved that the AE1 showed higher cytoprotective potency by increasing cell viability as compared to the oxalate treated group. The free radical scavenging activity of aqueous extract lowered the reactive oxygen specie's induced damage and potentially reduced the signals of programmed cell death due to oxalate injury. In addition, modulation of the COM crystal morphology was enhanced by AE1 as compared to AE2. The FTIR and GC-MS analysis of AE1, showed the presence of biomolecules which could aid in the attenuation of lithiatic process. In the light

  2. Response surface methodology based extraction of Tribulus terrestris leads to an upsurge of antilithiatic potential by inhibition of calcium oxalate crystallization processes.

    Directory of Open Access Journals (Sweden)

    Jyoti Kaushik

    Full Text Available Tribulus terrestris has significant antilithiatic efficacy established via both in vitro as well as in vivo studies and is used in numerous anti-urolithiatic herbal formulations viz. Cystone, Uriflow, Uritone and Neeri. However, to fully utilize its antilithiatic potential, the influence of different extraction parameters on antilithiatic ability of T. terrestris aqueous extract needs elucidation. Thus, the current study was undertaken using statistically optimized extraction conditions for aqueous extract preparation. Response surface methodology was employed to observe the influence of three variables i.e. temperature (°C, time (h and solid: liquid ratio (S: L on the extraction yield (% and protein content (mg/g of T. terrestris aqueous extract. RSM results revealed that the high S:L ratio, low temperature and reduced incubation time were optimal conditions for aqueous extraction. Under such extraction conditions the protein content reached the value of 26.6±1.22 mg/g and the obtained extraction yield was 27.32±1.62%. The assessment of antilithiatic activity of 4 selected extracts (AE1-4, revealed enhanced nucleation and aggregation inhibition of calcium oxalate crystals with AE1 and AE2, which in addition significantly altered the size and morphology of calcium oxalate monohydrate (COM crystals compared to AE3 and AE4. In vitro cell culture based studies on renal epithelial cells (MDCK, NRK-52E and PK 15 proved that the AE1 showed higher cytoprotective potency by increasing cell viability as compared to the oxalate treated group. The free radical scavenging activity of aqueous extract lowered the reactive oxygen specie's induced damage and potentially reduced the signals of programmed cell death due to oxalate injury. In addition, modulation of the COM crystal morphology was enhanced by AE1 as compared to AE2. The FTIR and GC-MS analysis of AE1, showed the presence of biomolecules which could aid in the attenuation of lithiatic process. In

  3. Comparison of Physicochemical Properties of Nano- and Microsized Crystals in the Urine of Calcium Oxalate Stone Patients and Control Subjects

    Directory of Open Access Journals (Sweden)

    Jie Gao

    2014-01-01

    Full Text Available Purpose. To compare the properties of different sizes of urinary crystallites between calcium oxalate (CaOx calculi patients and healthy controls. Methods. We studied the average particle size, size distribution, intensity-autocorrelation curve, zeta potential (ζ, conductivity, mobility, aggregation state, and stability of different sizes of urinary crystallites by nanoparticle size analysis and transmission electron microscopy after filtration through a microporous membrane with an aperture size from 0.22 μm to 0.45, 1.2, 3, and 10 μm. Results. The urinary crystallites of the CaOx calculi patients were uneven and much easy to aggregate than those of controls. The number of large-sized crystallites of the patients was significantly more than that of the controls. The main components of the nanosized urinary crystallites in patients were CaOx monohydrate (COM, uric acid, and β-calcium phosphate, and these components were basically similar to those of the microsized urinary crystallites. The urinary crystallites of the calculi patients were easier to aggregate than that of the controls, and the small-sized urinary crystallites were much easier to agglomerate. Conclusions. The urinary system of CaOx calculi patients is unstable and highly susceptible to urinary crystallite aggregation. The rapid aggregation of urinary crystallites may be the key factor affecting urolithiasis formation.

  4. Anti-Transforming Growth Factor β IgG Elicits a Dual Effect on Calcium Oxalate Crystallization and Progressive Nephrocalcinosis-Related Chronic Kidney Disease.

    Science.gov (United States)

    Steiger, Stefanie; Grill, Julia Felicitas; Ma, Qiuyue; Bäuerle, Tobias; Jordan, Jutta; Smolle, Michaela; Böhland, Claudia; Lech, Maciej; Anders, Hans-Joachim

    2018-01-01

    Crystallopathies are a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring. Certain proteins interfere with crystal formation and growth, e.g., with intrarenal calcium oxalate (CaOx) crystal formation, a common cause of kidney stone disease or nephrocalcinosis-related chronic kidney disease (CKD). We hypothesized that immunoglobulins can modulate CaOx microcrystal formation and crystal growth and that therefore, biological IgG-based drugs designed to specifically target disease modifying proteins would elicit a dual effect on the outcome of CaOx-related crystallopathies. Indeed, both the anti-transforming growth factor (TGF)β IgG and control IgG1 antibody impaired CaOx crystallization in vitro , and decreased intrarenal CaOx crystal deposition and subsequent CKD in mice on an oxalate-rich diet compared to oxalate-fed control mice. However, the TGFβ-specific IgG antibody showed nephroprotective effects beyond those of control IgG1 and substantially reduced interstitial fibrosis as indicated by magnetic resonance imaging, silver and α-smooth muscle actin staining, RT-qPCR, and flow cytometry for pro-fibrotic macrophages. Suppressing interstitial fibrosis slowed the decline of glomerular filtration rate (GFR) compared to treatment with control IgG1 [slope of m  = -8.9 vs. m  = -14.5 μl/min/100 g body weight (BW)/day, Δ = 38.3%], an increased GFR at the end of the study (120.4 vs. 42.6 μl/min/100 g BW, Δ = 64.6%), and prolonged end stage renal disease (ESRD)-free renal survival by 10 days (Δ = 38.5%). Delayed onset of anti-TGFβ IgG from day 7 was no longer effective. Our results suggest that biological drugs can elicit dual therapeutic effects on intrinsic crystallopathies, such as anti-TGFβ IgG antibody treatment inhibits CaOx crystallization as well as interstitial fibrosis in nephrocalcinosis-related CKD.

  5. Anti-Transforming Growth Factor β IgG Elicits a Dual Effect on Calcium Oxalate Crystallization and Progressive Nephrocalcinosis-Related Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Stefanie Steiger

    2018-03-01

    Full Text Available Crystallopathies are a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring. Certain proteins interfere with crystal formation and growth, e.g., with intrarenal calcium oxalate (CaOx crystal formation, a common cause of kidney stone disease or nephrocalcinosis-related chronic kidney disease (CKD. We hypothesized that immunoglobulins can modulate CaOx microcrystal formation and crystal growth and that therefore, biological IgG-based drugs designed to specifically target disease modifying proteins would elicit a dual effect on the outcome of CaOx-related crystallopathies. Indeed, both the anti-transforming growth factor (TGFβ IgG and control IgG1 antibody impaired CaOx crystallization in vitro, and decreased intrarenal CaOx crystal deposition and subsequent CKD in mice on an oxalate-rich diet compared to oxalate-fed control mice. However, the TGFβ-specific IgG antibody showed nephroprotective effects beyond those of control IgG1 and substantially reduced interstitial fibrosis as indicated by magnetic resonance imaging, silver and α-smooth muscle actin staining, RT-qPCR, and flow cytometry for pro-fibrotic macrophages. Suppressing interstitial fibrosis slowed the decline of glomerular filtration rate (GFR compared to treatment with control IgG1 [slope of m = −8.9 vs. m = −14.5 μl/min/100 g body weight (BW/day, Δ = 38.3%], an increased GFR at the end of the study (120.4 vs. 42.6 μl/min/100 g BW, Δ = 64.6%, and prolonged end stage renal disease (ESRD-free renal survival by 10 days (Δ = 38.5%. Delayed onset of anti-TGFβ IgG from day 7 was no longer effective. Our results suggest that biological drugs can elicit dual therapeutic effects on intrinsic crystallopathies, such as anti-TGFβ IgG antibody treatment inhibits CaOx crystallization as well as interstitial fibrosis in nephrocalcinosis-related CKD.

  6. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    Science.gov (United States)

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  7. Trichoderma koningii as a biomineralizing fungous agent of calcium oxalate crystals in typical Argiudolls of the Los Padres Lake natural reserve (Buenos Aires, Argentina).

    Science.gov (United States)

    Oyarbide, F; Osterrieth, M L; Cabello, M

    2001-01-01

    The aim of the present study, performed on typical Argiudolls in a natural reserve with little or no anthropic impact, was to characterize the fungous biomineralizing process of calcium oxalate crystals in organic horizons of the soil. The chosen sites possessed different plant cover, identified as acacia woods and grassy meadows with particular micro environmental conditions that have differing effects in the process of biomineralization. The contribution of the plant material in the soil is a key factor since 1) it generates the particular composition of the organic horizons, 2) it determines the nature of decomposing organisms, and 3) it affects the presence, composition and development of biominerals. According to the results obtained, the acacia woods prove to be a site comparatively more favorable to the fungous biomineralizing process. This makes itself manifest in the greater abundance and development of crystals in the organic horizons of the soil, resulting in whewellite (CaC2O4.H2O) and weddellite (CaC2O4.(2+x) H2O) regarding biomineral species developed, the latter being the major component. The observation of both species of biominerals is noteworthy since it represents the first cited in the country. The isolated fungous organisms were Trichoderma koningii, and Absidia corymbifera. T. koningii was identified as the most active biomineralizing organism thus constituting the first reference to indicate this species as a biomineral producing agent.

  8. Role of cellular oxalate in oxalate clearance of patients with calcium oxalate monohydrate stone formation and normal controls.

    Science.gov (United States)

    Oehlschläger, Sven; Fuessel, Susanne; Meye, Axel; Herrmann, Jana; Froehner, Michael; Albrecht, Steffen; Wirth, Manfred P

    2009-03-01

    To examine the cellular, plasma, and urinary oxalate and erythrocyte oxalate flux in patients with calcium oxalate monohydrate (COM) stone formation vs normal controls. Pathologic oxalate clearance in humans is mostly integrated in calcium oxalate stone formation. An underlying cause of deficient oxalate clearance could be defective transmembrane oxalate transport, which, in many tissues, is regulated by an anion exchanger (SLC26). We studied 2 groups: 40 normal controls and 41 patients with COM stone formation. Red blood cells were divided for cellular oxalate measurement and for resuspension in a buffered solution (pH 7.40); 0.1 mmol/L oxalate was added. The supernatant was measured for oxalate immediately and 1 hour after incubation. The plasma and urinary oxalate were analyzed in parallel. The mean cellular oxalate concentrations were significantly greater in the normal controls (5.25 +/- 0.47 micromol/L) than in those with COM stone formation (2.36 +/- 0.28 micromol/L; P stone formation (0.31 +/- 0.02 mmol/L) than in the controls (0.24 +/- 0.02 mmol/L; P r = 0.49-0.63; P r = -0.29-0.41; P r = -0.30; P r = 0.25; P stone formation. Our data implicate the presence of a cellular oxalate buffer to stabilize plasma and urinary oxalate concentrations in normal controls.

  9. Update on probiotics for the treatment of calcium oxalate stones

    Directory of Open Access Journals (Sweden)

    Di ZHANG

    2016-09-01

    Full Text Available Urolithiasis is one of the common diseases in urinary system, among which calcium oxalate stone is the most common one with a high recurrence rate. An important pathological factor for the formation of calcium oxalate stone is the increased absorption of oxalate from intestine, which leads to a high urine oxalate concentration. Intestinal bacteria known to be able to degrade oxalate includes Oxalobacter formigenes, Enterococcus faecalis, Escherichia coli, Eubacterium lentum, Providencia rettgeri, Lactobacillus and Bifidobacterium species, etc. Among those, Oxalobacter formigenes is the first oxalate-degrading obligate anaerobe found in human, while the rest are just conditioned bacteria with the function to degrade intestinal oxalate. There are three kinds of enzymes in Oxalobacter formigenes involved in the metabolism of oxalate, namely oxalate-formate antiporter (OxlT, formyl-CoA transferase (Frc and oxalyl-CoA decarboxylase (Oxc. Animal experiments have verified that Oxalobacter formigenes could reduce intestinal oxalate absorption by promoting the secretion of oxalate and degradation as well, thus decrease the excretion of urine oxalate. The present review will focus on the research progress of probiotics treatment for the calcium oxalate stones so as to provide reference for further research and development. DOI: 10.11855/j.issn.0577-7402.2016.08.16

  10. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid)

    International Nuclear Information System (INIS)

    Yu Jiaguo; Tang Hua; Cheng Bei; Zhao Xiujian

    2004-01-01

    Calcium oxalate (CaOx) particles exhibiting different shapes and phase structures were fabricated by a simple precipitation reaction of sodium oxalate with calcium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as a crystal modifier at room temperature. The as-obtained products were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of reaction conditions including pH, [Ca 2+ ]/[C 2 O 4 2- ] ratio and concentration of PSMA and CaC 2 O 4 on the crystal forms and morphologies of the as-obtained calcium oxalate were investigated. The results show that various crystal morphologies of calcium oxalate, such as parallelograms, plates, spheres, bipyramids etc. can be obtained depending on the experimental conditions. Higher polymer concentration favors formation of the metastable calcium oxalate dihydrate (COD) crystals. Lower pH is beneficial to the formation of plate-like CaOx crystals. Especially, the monodispersed parallelogram-like CaOx crystals can be produced by PSMA as an additive at pH 2. PSMA may act as a good inhibitor for urolithiasis since it induces the formation of COD and reduces the particle size of CaOx. This research may provide new insight into the morphological control of CaOx particles and the prevention of urolithiasis

  11. Wu-Ling-San formula prophylaxis against recurrent calcium oxalate ...

    African Journals Online (AJOL)

    Wu-Ling-San (WLS) formula has been proved to prevent calcium oxalate nephrolithiasis both in vitro and in vivo. This is the first prospective, randomized and placebo-controlled clinical trial of WLS in calcium oxalate nephrolithiasis prevention. All patients who enrolled were asked to drink enough fluid to urinate at least 2 L ...

  12. Reaction of hydrazine hydrate with oxalic acid: synthesis and crystal structure of dihydrazinium oxalate

    OpenAIRE

    Selvakumar, Rajendran; Premkumar, Thathan; Manivannan, Vadivelu; Saravanan, Kaliannan; Govindarajan, Subbiah

    2014-01-01

    The reaction of oxalic acid with hydrazine hydrate (in appropriate mole ratio) forms the dihydrazinium oxalate under specific experimental condition. The title compound is a molecular salt containing two discrete hydrazinium cations and an oxalate anion. The oxalate anion is perfectly planar and there is a crystallographic centre of symmetry in the middle of the C-C bond. The C-O bond distances are almost equal indicating the presence of resonance in the oxalate ion. The crystal packing is st...

  13. Addition of calcium compounds to reduce soluble oxalate in a high oxalate food system.

    Science.gov (United States)

    Bong, Wen-Chun; Vanhanen, Leo P; Savage, Geoffrey P

    2017-04-15

    Spinach (Spinacia oleracea L.) is often used as a base vegetable to make green juices that are promoted as healthy dietary alternatives. Spinach is known to contain significant amounts of oxalates, which are toxic and, if consumed regularly, can lead to the development of kidney stones. This research investigates adding 50-500mg increments of calcium carbonate, calcium chloride, calcium citrate and calcium sulphate to 100g of raw homogenates of spinach to determine whether calcium would combine with the soluble oxalate present in the spinach. Calcium chloride was the most effective additive while calcium carbonate was the least effective. The formation of insoluble oxalate after incubation at 25°C for 30min is a simple practical step that can be incorporated into the juicing process. This would make the juice considerably safer to consume on a regular basis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Calcium Oxalate Stones Are Frequently Found Attached to Randall's Plaque

    International Nuclear Information System (INIS)

    Matlaga, Brian R.; Williams, James C. Jr.; Evan, Andrew P.; Lingeman, James E.

    2007-01-01

    The exact mechanisms of the crystallization processes that occur during the formation of calcium oxalate calculi are controversial. Over six decades ago, Alexander Randall reported on a series of cadaveric renal units in which he observed calcium salt deposits on the tips of the renal papilla. Randall hypothesized that these deposits, eponymously termed Randall's plaque, would be the ideal site for stone formation, and indeed in a number of specimens he noted small stones attached to the papillae. With the recent advent of digital endoscopic imaging and micro computerized tomography (CT) technology, it is now possible to inspect the renal papilla of living, human stone formers and to study the attached stone with greater scrutiny

  15. Circular patterns of calcium oxalate monohydrate induced by defective Langmuir-Blodgett film on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    He Jieyu [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Ouyang Jianming [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)], E-mail: toyjm@jnu.edu.cn

    2009-01-01

    The defective Langmuir-Blodgett (LB) film of dipalmitoylphosphatidylcholine (DPPC) on quartz injured by potassium oxalate (K{sub 2}C{sub 2}O{sub 4}) was used as a model system to induce growth of calcium oxalate crystals. Atomic force microscopy (AFM) indicated that circular defective domains with a diameter of 1-200 {mu}m existed in the LB film. Scanning electron microscopy (SEM) showed circular patterns of aggregated calcium oxalate monohydrate (COM) crystallites were induced by these defective domains. It was ascribed to that the interaction between the negatively-charged oxalate ions and the phosphatidyl groups in DPPC headgroups makes the phospholipid molecules rearranged and exist in an out-of-order state in the LB film, especially at the boundaries of liquid-condensed (LC)/liquid-expanded (LE) phases, which provide much more nucleating sites for COM crystals.

  16. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    International Nuclear Information System (INIS)

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-04-01

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  17. Characterization of calcium oxalate biominerals in some (non-Cactaceae) succulent plant species.

    Science.gov (United States)

    Monje, Paula V; Baran, Enrique J

    2010-01-01

    The water-accumulating leaves of crassulacean acid metabolism plants belonging to five different families were investigated for the presence of biominerals by infrared spectroscopic and microscopic analyses. Spectroscopic results revealed that the mineral present in succulent species of Agavaceae, Aizoaceae, and Asphodelaceae was calcium oxalate monohydrate (whewellite, CaC2O4 x H2O). Crystals were predominantly found as raphides or solitary crystals of various morphologies. However, representative Crassulaceae members and a succulent species of Asteraceae did not show the presence of biominerals. Overall, these results suggest no correlation between calcium oxalate generation and crassulacean acid metabolism in succulent plants.

  18. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    Science.gov (United States)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  19. Growth of strontium oxalate crystals in agar–agar gel

    Indian Academy of Sciences (India)

    Growth of strontium oxalate crystals in agar–agar gel. P V DALAL. ∗ and K B SARAF. Postgraduate Department of Physics, Pratap College, Amalner 425 401, India. MS received 16 March 2008; revised 5 April 2010. Abstract. Single crystals of strontium oxalate have been grown by using strontium chloride and oxalic acid in.

  20. Ultrastructural and biochemical studies on formation of calcium oxalate in plants

    International Nuclear Information System (INIS)

    Abdelmottaleb, A.M.

    1989-01-01

    Plant calcium oxalate crystals occur within cells called crystal idioblasts. Important aspects of this calcification phenomenon have not been characterized. This dissertation examines some of the aspects of this ubiquitous type of calcification including (1) characterization of ultrastructural features of developing crystal idioblasts, (2) determination of the relationship of specialized ultrastructural features of the idioblasts to transport of compounds and mechanisms of crystal deposition, and (3) the biochemical relationship between ascorbic acid metabolism and production of oxalic acid used for crystal formation. Structural and cytochemical studies revealed that crystal idioblasts have dense cytoplasm, modified plastids, enlarged nuclei, extensive endoplasmic reticulum, numerous dictyosomes and vesicles, and a bundle of raphide crystals in their vacuoles. A mechanism for Ca transport and crystal precipitation is proposed, based on these results. There is a strong and dynamic relationship between Ca concentration and oxalic acid produced for crystal formation, where increasing Ca level in the growth medium lead to increased total and insoluble oxalate in the plant. Calmodulin antagonists reduced oxalic acid production

  1. Mucin 4 Gene Silencing Reduces Oxidative Stress and Calcium Oxalate Crystal Formation in Renal Tubular Epithelial Cells Through the Extracellular Signal-Regulated Kinase Signaling Pathway in Nephrolithiasis Rat Model

    Directory of Open Access Journals (Sweden)

    Ling Sun

    2018-05-01

    Full Text Available Background/Aims: Nephrolithiasis plagues a great number of patients all over the world. Increasing evidence shows that the extracellular signal-regulated kinase (ERK signaling pathway and renal tubular epithelial cell (RTEC dysfunction and attrition are central to the pathogenesis of kidney diseases. Mucin 4 (MUC4 is reported as an activator of ERK signaling pathway in epithelial cells. In this study, using rat models of calcium oxalate (CaOx nephrolithiasis, the present study aims to define the roles of MUC4 and ERK signaling pathway as contributors to oxidative stress and CaOx crystal formation in RTEC. Methods: Data sets of nephrolithiasis were searched using GEO database and a heat flow map was drawn. Then MUC4 function was predicted. Wistar rats were prepared for the purpose of model establishment of ethylene glycol and ammonium chloride induced CaOx nephrolithiasis. In order to assess the detailed regulatory mechanism of MUC4 silencing on the ERK signaling pathway and RTEC, we used recombinant plasmid to downregulate MUC4 expression in Wistar rat-based models. Samples from rat urine, serum and kidney tissues were reviewed to identify oxalic acid and calcium contents, BUN, Cr, Ca2+ and P3+ levels, calcium crystal formation in renal tubules and MUC4 positive expression rate. Finally, RT-qPCR, Western blot analysis, and ELISA were employed to access oxidative stress state and CaOx crystal formation in RTEC. Results: Initially, MUC4 was found to have an influence on the process of nephrolithiasis. MUC4 was upregulated in the CaOx nephrolithiasis model rats. We proved that the silencing of MUC4 triggered the inactivation of ERK signaling pathway. Following the silencing of MUC4 or the inhibition of ERK signaling pathway, the oxalic acid and calcium contents in rat urine, BUN, Cr, Ca2+ and P3+ levels in rat serum, p-ERK1/2, MCP-1 and OPN expressions in RTEC and H2O2 and MDA levels in the cultured supernatant were downregulated, but the GSH

  2. Crystal structure of dimethylammonium hydrogen oxalate hemi(oxalic acid

    Directory of Open Access Journals (Sweden)

    Waly Diallo

    2015-05-01

    Full Text Available Single crystals of the title salt, Me2NH2+·HC2O4−·0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH22C2O4 salt and Sn(CH33Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a dimethylammonium cation (Me2NH2+, an hydrogenoxalate anion (HC2O4−, and half a molecule of oxalic acid (H2C2O4 situated about an inversion center. From a supramolecular point of view, the three components interact together via hydrogen bonding. The Me2NH2+ cations and the HC2O4− anions are in close proximity through bifurcated N—H...(O,O hydrogen bonds, while the HC2O4− anions are organized into infinite chains via O—H...O hydrogen bonds, propagating along the a-axis direction. In addition, the oxalic acid (H2C2O4 molecules play the role of connectors between these chains. Both the carbonyl and hydroxyl groups of each diacid are involved in four intermolecular interactions with two Me2NH2+ and two HC2O4− ions of four distinct polymeric chains, via two N—H...O and two O—H...O hydrogen bonds, respectively. The resulting molecular assembly can be viewed as a two-dimensional bilayer-like arrangement lying parallel to (010, and reinforced by a C—H...O hydrogen bond.

  3. Internalization of Calcium Oxalate Calculi Developed in Narrow Cavities

    Directory of Open Access Journals (Sweden)

    Fèlix Grases

    2014-03-01

    Full Text Available We describe the case of a patient with calcium oxalate monohydrate and calcium oxalate dihydrate calculi occluded in cavities. All those calculi were located inside narrow cavities covered with a thin epithelium that permits their visualization. Urinary biochemical analysis showed high calciuria, not hypercalciuria, hypocitraturia, and a ratio [calcium]/[citrate] >0.33. The existence of cavities of very low urodynamic efficacy was decisive in the formation of such calculi. It is important to emphasize that we observed a thin epithelium covering such cavities, demonstrating that this epithelium may be formed after the development of the calculi through a re-epithelialization process.

  4. Calcium extraction from brine water and seawater using oxalic acid

    Science.gov (United States)

    Natasha, Nadia Chrisayu; Lalasari, Latifa Hanum

    2017-01-01

    Calcium can be extracted not only from rocks but also from natural liquor such as seawater and brine water. In order to extract the calcium from seawater and brine water, oxalic acid was used in this research. Effect of variations of the volume of the oxalic acid at a constant concentration in seawater and brine water to produce calcium was investigated. The concentration of oxalic acid was 100 g/l and the variations of its volume were 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml, and 50 ml. The used seawater and brine water were firstly evaporated from 100 ml into 50 ml and then the oxalic acid was added into them with mixing to produce the calcium precipitates. The precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) and the filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES). The SEM analysis showed that the precipitates from brine water were consisted of only calcium compound while from seawater sodium one was also found along with calcium compound. The XRD analysis showed that the calcium was present in the form of calcium oxalate for both seawater and brine water. The ICP-OES analysis of the filtrate from seawater precipitation showed that the its calcium content was decreased from 826.20 ppm to 0.04 ppm while from brine water, it decreased from 170.06 ppm to 1.96 ppm. These results showed that both seawater and brine water have the potential to be a raw material for calcium production.

  5. Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status

    Science.gov (United States)

    Dauer, Jenny M.; Perakis, Steven S.

    2014-01-01

    Calcium oxalate (Ca oxalate) is an insoluble biomineral that forms in plants and fungi, and occurs in soils across many types of ecosystems. Assessing how Ca oxalate may shape ecosystem Ca cycling requires information on the distribution of Ca oxalate among plant biomass, detritus, and mineral soil, and how it varies with ecosystem Ca status. We compared two Douglas-fir forests of contrasting ecosystem Ca availability, and found that Ca oxalate was partitioned similarly among plant biomass, detritus and mineral soil major ecosystem compartments at both sites, and total pools of Ca oxalate were greater in the high-Ca forest. However, the proportional importance of Ca oxalate was greater in the low-Ca than high-Ca forest (18% versus 4% of actively cycling ecosystem Ca, respectively). And calcium oxalate in mineral soil, which is of particular interest as a potential long-term Ca reservoir, was a larger portion of total available Ca (exchangeable Ca plus Ca oxalate Ca) in the low-Ca site than the high-Ca site (9% versus 1% of available soil Ca, respectively). Calcium oxalate was the dominant form of Ca returned from plants to soil as leaf litterfall at the high-Ca site, yet calcium oxalate disappeared rapidly from decomposing litter (0.28 yr−1 or faster) at both sites. We conclude that accumulation of Ca oxalate in forest ecosystems appears most closely related to overall Ca supply for live biomass pools, and that the accumulation of Ca oxalate in forest floor and mineral soil is limited by rapid microbial degradation of putatively unavailable Ca oxalate.

  6. Characterization of calcium oxalate biominerals in Pereskia species (Cactaceae).

    Science.gov (United States)

    Monje, Paula V; Baran, Enrique J

    2009-01-01

    Calcium oxalate druses were isolated from the stems and leaves of six Pereskioideae family members and investigated by infrared spectroscopy, showing that in all samples the biomineral was present in the form of whewellite, CaC2O4 x H2O. As Pereskia is thought to represent the "ancestral" condition of the leafless stem-succulent cacti, these results suggest that the biomineralization of calcium oxalate in Cactaceae represents a primitive characteristic of the group and also support a close genetic relationship between Pereskia and Opuntia.

  7. Influence of nutrition on feline calcium oxalate urolithiasis with emphasis on endogenous oxalate synthesis

    NARCIS (Netherlands)

    Dijcker, J.C.; Plantinga, E.A.; Baal, van J.; Hendriks, W.H.

    2011-01-01

    The prevalence of calcium oxalate (CaOx) uroliths detected in cats with lower urinary tract disease has shown a sharp increase over the last decades with a concomitant reciprocal decrease in the occurrence of struvite (magnesium ammonium phosphate) uroliths. CaOx stone-preventative diets are

  8. In vitro dissolution of calcium oxalate stones with ethylenediaminetetraacetic acid and snake venom thrombin-like enzyme.

    Science.gov (United States)

    Zhou, Xiang-Jun; Zhang, Jie; Zhang, Ci; Xu, Chang-Geng

    2014-01-01

    The aim of this study was to determine the feasibility of using snake venom thrombin-like enzyme (SVTLE) and/or ethylenediaminetetraacetic acid (EDTA) to dissolve calcium oxalate stones in vitro. Seven calcium oxalate stones were incubated with various chemolytic agents [EDTA, Tris-HCl/EDTA (TE) buffer or SVTLE diluted in TE buffer]. The pH, calcium concentration, stone weight and stone surface integrity were recorded, as well as related pathological changes to bladder mucosae. Compared to all other solutions, those containing SVTLE and buffered EDTA had higher concentrations of mobilized calcium and caused significantly more stone weight loss, stone fragility and gaps in the calcium crystals. Also, there were no adverse pathological effects on rabbit bladder mucosae from any of the solutions. The data indicate that buffered EDTA and SVTLE can be used to dissolve calcium oxalate stones and, at the concentrations used here, do not damage tissue. 2013 S. Karger AG, Basel.

  9. Effect of calcium intake on urinary oxalate excretion in calcium stone-forming patients

    Directory of Open Access Journals (Sweden)

    Nishiura J.L.

    2002-01-01

    Full Text Available Dietary calcium lowers the risk of nephrolithiasis due to a decreased absorption of dietary oxalate that is bound by intestinal calcium. The aim of the present study was to evaluate oxaluria in normocalciuric and hypercalciuric lithiasic patients under different calcium intake. Fifty patients (26 females and 24 males, 41 ± 10 years old, whose 4-day dietary records revealed a regular low calcium intake (<=500 mg/day, received an oral calcium load (1 g/day for 7 days. A 24-h urine was obtained before and after load and according to the calciuria under both diets, patients were considered as normocalciuric (NC, N = 15, diet-dependent hypercalciuric (DDHC, N = 9 or diet-independent hypercalciuric (DIHC, N = 26. On regular diet, mean oxaluria was 30 ± 14 mg/24 h for all patients. The 7-day calcium load induced a significant decrease in mean oxaluria compared to the regular diet in NC and DIHC (20 ± 12 vs 26 ± 7 and 27 ± 18 vs 32 ± 15 mg/24 h, respectively, P<0.05 but not in DDHC patients (22 ± 10 vs 23 ± 5 mg/24 h. The lack of an oxalate decrease among DDHC patients after the calcium load might have been due to higher calcium absorption under higher calcium supply, with a consequent lower amount of calcium left in the intestine to bind with oxalate. These data suggest that a long-lasting regular calcium consumption <500 mg was not associated with high oxaluria and that a subpopulation of hypercalciuric patients who presented a higher intestinal calcium absorption (DDHC tended to hyperabsorb oxalate as well, so that oxaluria did not change under different calcium intake.

  10. Effect of animal and vegetable protein intake on oxalate excretion in idiopathic calcium stone disease.

    Science.gov (United States)

    Marangella, M; Bianco, O; Martini, C; Petrarulo, M; Vitale, C; Linari, F

    1989-04-01

    Oxalate excretion was measured in healthy subjects and idiopathic calcium stone-formers on dietary regimens which differed in the type and amount of protein allowed; 24-h urine collections were obtained from 41 practising vegetarians and 40 normal persons on a free, mixed, "mediterranean" diet. Twenty idiopathic calcium stone-formers were also studied while on two low calcium, low oxalate diets which differed in that animal protein was high in one and restricted in the other. Vegetarians had higher urinary oxalate levels than controls and although the calcium levels were markedly lower, urinary saturation with calcium/oxalate was significantly higher. This mild hypercalciuria was interpreted as being secondary to both a higher intake and increased fractional intestinal absorption of oxalate. Changing calcium stone-formers from a high to a low animal protein intake produced a significant decrease in calcium excretion but there was no variation in urinary oxalate. As a result, the decrease in calcium oxalate saturation was only marginal and not significant. It was concluded that dietary animal protein has a minimal effect on oxalate excretion. Mild hyperoxaluria of idiopathic calcium stone disease is likely to be intestinal in origin. Calcium stone-formers should be advised to avoid an excess of animal protein but the risks of a vegetable-rich diet should also be borne in mind.

  11. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites

    Directory of Open Access Journals (Sweden)

    S. Vaitheeswari

    2015-06-01

    Full Text Available ABSTRACTPurpose:Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model.Materials and Methods:The antilithiatic activity of sodium hydrogen sulfide (NaSH, sodium thiosulfate (Na2S2O3 and sodium sulfate (Na2SO4 on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques.Results:The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4.Conclusion:Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O32-and SO42- moiety produced by the test compounds.

  12. MRP-1 and BCRP Promote the Externalization of Phosphatidylserine in Oxalate-treated Renal Epithelial Cells: Implications for Calcium Oxalate Urolithiasis.

    Science.gov (United States)

    Li, YiFu; Yu, ShiLiang; Gan, XiuGuo; Zhang, Ze; Wang, Yan; Wang, YingWei; An, RuiHua

    2017-09-01

    To investigate the possible involvement of multidrug resistance-associated protein 1 (MRP-1) and breast cancer resistance protein (BCRP) in the oxalate-induced redistribution of phosphatidylserine (PS) in renal epithelial cell membranes. A western blot analysis was used to examine the MRP-1 and BCRP expression levels. Surface-expressed PS was detected by the annexin V-binding assay. The cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate was used to measure the intracellular reactive oxygen species (ROS) level. A rat model of hyperoxaluria was obtained using 0.5% ethylene glycol and 1.0% ammonium chloride. In addition, certain animals received verapamil (50 mg/kg body weight), which is a common inhibitor of MRP-1 and BCRP. The degree of nephrolithiasis was assessed histomorphometrically using sections stained by Pizzolato method and by measuring the calcium oxalate crystal content in the renal tissue. Oxalate produced a concentration-dependent increase in the synthesis of MRP-1 and BCRP. Treatment with MK571 and Ko143 (MRP-1- and BCRP-specific inhibitors, respectively) significantly attenuated the oxalate-induced PS externalization. Adding the antioxidant N-acetyl-l-cysteine significantly reduced MRP-1 and BCRP expression. In vivo, markedly decreased nephrocalcinosis was observed compared with that in the rat model of hyperoxaluria without verapamil treatment. Oxalate induces the upregulation of MRP-1 and BCRP, which act as phospholipid floppases causing PS externalization in the renal epithelial cell membrane. The process is mediated by intracellular ROS production. The ROS-mediated increase in the synthesis of MRP-1 and BCRP can play an important role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Morse code effect: A crystal-crystal transformation observed in gel-grown lead (II) oxalate crystals

    Science.gov (United States)

    Lisgarten, J. N.; Marks, J. A.

    2018-05-01

    This paper reports on an unusual crystal-crystal transformation phenomenon, which we have called the Morse Code Effect, based on the change in appearance of lead(II) oxalate crystals grown in agarose gels.

  14. [Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin].

    Science.gov (United States)

    Xu, Jing-Jing; Ci, Hua-Cong; He, Xing-Dong; Xue, Ping-Ping; Zhao, Xue-Lai; Guo, Jian-Tan; Gao, Yu-Bao

    2012-05-01

    Plant calcium (Ca) is composed of dissociated Ca2+ and easily soluble, slightly soluble, and hard soluble combined Ca salts. The hard soluble Ca salts can often engender Ca crystals. To understand the Ca status in different growth form plants in salinized habitats, 54 plant species were sampled from the salinized habitats in Tianjin, with the Ca crystals examined by microscope and the Ca components determined by sequential fractionation procedure. More Ca crystals were found in 38 of the 54 plant species. In 37 of the 38 plant species, drusy and prismatic Ca oxalate crystals dominated, whereas the cystolith of Ca carbonate crystal only appeared in the leaves of Ficus carica of Moraceae. The statistics according to growth form suggested that deciduous arbors and shrubs had more Ca oxalate crystal, liana had lesser Ca oxalate crystal, and herbs and evergreen arbors had no Ca oxalate crystal. From arbor, shrub, liana to herb, the concentration of HCl-soluble Ca decreased gradually, while that of water soluble Ca was in adverse. The concentration of water soluble Ca in herbs was significantly higher than that in arbors and shrubs. This study showed that in salinized habitats, plant Ca crystals and Ca components differed with plant growth form, and the Ca oxalate in deciduous arbors and shrubs played an important role in withstanding salt stress.

  15. Kaleidoscopic Views in the Bone Marrow: Oxalate Crystals in a Patient Presenting with Bicytopenia

    Directory of Open Access Journals (Sweden)

    Yelda Dere

    2016-03-01

    Full Text Available Pancytopenia associated with BM infiltration of different deposits is a rare condition mostly associated with amyloidosis or the accumulation of iron. One of the rarest deposits in the BM is oxalate crystals due to hyperoxaluria [1,2,3]. Primary hyperoxaluria, a genetic disorder due to mutation in the alanine glyoxylate aminotransferase gene, located on chromosome 2q37.3 and resulting in the conversion of glyoxylate to oxalate, is characterized by increased production of oxalic acid because of the specific liver enzyme deficiency and generally presents with renal stones, renal or liver failure, and oxalosis [4]. Calcium oxalate may even be deposited into various tissues such as those of the retina, peripheral nerves, arterial media, and heart [4,5]. The medical history of nephrolithiasis at early ages, characteristic appearance of birefringent crystals forming rosettes in the BM, and the envelope-like forms in the BM aspirates seen in our case supported the diagnosis of primary hyperoxaluria, which is best confirmed by genetic studies and treated with liver transplantation because of the location of the abnormal enzymes in the hepatocytes.

  16. Effects of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on risk factors for urinary calcium oxalate stones in rats.

    Science.gov (United States)

    Woottisin, Surachet; Hossain, Rayhan Zubair; Yachantha, Chatchai; Sriboonlue, Pote; Ogawa, Yoshihide; Saito, Seiichi

    2011-01-01

    We evaluated the antilithic effect of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on known risk factors for calcium oxalate stones in rats. We divided 30 male Wistar rats into 5 equal groups. Controls were fed a standard diet and the remaining groups received a 3% glycolate diet for 4 weeks to induce hyperoxaluria. One glycolate fed group served as the untreated group and the others were given oral extracts of Orthosiphon grandiflorus, Hibiscus sabdariffa or Phyllanthus amarus at a dose of 3.5 mg daily. We collected 24-hour urine and blood samples. Kidneys were harvested for histological examination. We measured the renal tissue content of calcium and oxalate. The Hibiscus sabdariffa group showed significantly decreased serum oxalate and glycolate, and higher oxalate urinary excretion. The Phyllanthus amarus group showed significantly increased urinary citrate vs the untreated group. Histological examination revealed less CaOx crystal deposition in the kidneys of Hibiscus sabdariffa and Phyllanthus amarus treated rats than in untreated rats. Those rats also had significantly lower renal tissue calcium content than untreated rats. All parameters in the Orthosiphon grandiflorus treated group were comparable to those in the untreated group. Hibiscus sabdariffa and Phyllanthus amarus decreased calcium crystal deposition in the kidneys. The antilithic effect of Hibiscus sabdariffa may be related to decreased oxalate retention in the kidney and more excretion into urine while that of Phyllanthus amarus may depend on increased urinary citrate. In contrast, administering Orthosiphon grandiflorus had no antilithic effect. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells.

    Science.gov (United States)

    Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2016-11-01

    Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Specificity in calcium oxalate adherence to papillary epithelial cells in culture

    International Nuclear Information System (INIS)

    Riese, R.J.; Riese, J.W.; Kleinman, J.G.; Wiessner, J.H.; Mandel, G.S.; Mandel, N.S.

    1988-01-01

    Attachment of microcystallites to cellular membranes may be an important component of the pathophysiology of many diseases including urolithiasis. This study attempts to characterize the interaction of calcium oxalate (CaOx) crystals and apatite (AP) crystals with renal papillary collecting tubule (RPCT) cells in primary culture. Primary cultures of RPCT cells showed the characteristic monolayer growth with sporadically interspersed clumped cells. Cultures were incubated with [ 14 C]CaOx crystals, and the crystals that bound were quantified by microscopy and adherent radioactivity. Per unit of cross-sectional area, 32 times more CaOx crystals were bound to the clumps than to the monolayer. CaOx adherence demonstrated concentration-dependent saturation with a β value (fraction of cell culture area binding CaOx crystals) of 0.179 and a 1/α ox value of 287 μg/cm 2 . On incubation with AP crystals, CaOx binding demonstrated concentration-dependent inhibition with a 1/α AP value of 93 μg/cm 2 . Microcystallite adherence to RPCT cells demonstrates selectivity for cellular clumps, saturation, and inhibition. These features suggest specific binding

  19. Availability of calcium from chemically pure potassium oxalate to the buffalo (Bubalus bubalis)

    International Nuclear Information System (INIS)

    Singh, Sudarshan; Sareen, V.K.; Marwah, S.R.; Sharma, K.C.; Bhatia, I.S.

    1978-01-01

    Three experiments were conducted to determine the true dige'stibility of calcium in the buffalo calves fed chemically pure potassium oxalate. In each experiments 6 calves were divided into two groups, viz. control and oxalate-fed. The control group was given basal ration consisting of wheat straw, mustard-cake and maize grains. The oxalate-fed group was fed the basal ration supplemented with 60, 100 and 140 g potassium oxalate per day in experiments 1,2, and 3 respectively. The percent true digestibility of calcium was 51.7 and 52.5 in experiment 1, 60.5 and 44.1 in experiment 2, and 59.3 and 44.1 in experiment 3 in the control and oxalate-fed groups respectively. In all the experiments the oxalate was completely broken down in the rumen. The volume of water intake and urine excretion was more in the oxalate-fed groups. The daily alkali output in the urine in terms of N-acid was 0.7 and 1.3 in experiment 1, 1.5 and 2.5 in experiment 2, and 2.1 and 3.8 in experiment 3 in control and oxalate-fed groups respectively. The daily bicarbonate concentration in the urine (in g) was 26.5 and 53.4 in experiment 1, 83.2 and 146.2 in experiment 2, and 132.6 and 222.8 in experiment 3 in control and oxalate-fed groups respectively. Likewise the excretion of oxalate in the urine was more in oxalate-fed groups. On the basis of the results obtained, the reason for the somewhat low true digestibility of calcium in the calves consuming more than 60 g of potassium oxalate/day are discussed. Isotope-dilution technique using 45 CaCl 2 was employed in the study. (auth.)

  20. Acúmulo de ácido oxálico e cristais de cálcio em ectomicorrizas de eucalipto.: II- formação de cristais de oxalato de cálcio induzida por fungos ectomicorrízicos em raízes laterais finas Accumulation of oxalic acid and calcium crystals in ectomycorrhizas of eucalypt.: II- calcium oxalate crystal formation induced by ectomicorrhizal fungi in fine lateral roots

    Directory of Open Access Journals (Sweden)

    Jhon Alexander Zambrano Gonzalez

    2009-06-01

    Full Text Available O eucalipto é eficiente na aquisição de Ca do solo, mas pouco se sabe sobre a participação das ectomicorrizas e dos ácidos orgânicos nesse processo em campo. O acúmulo de cristais de Ca (CaOx foi avaliado em, aproximadamente, 2.100 raízes laterais finas e ectomicorrizas do híbrido de Eucalyptus grandis x Eucalyptus urophylla, cultivado por 2,5 anos em área com topografia típica em meia laranja, com vertente côncavo-convexa, na região de Viçosa, MG. Técnicas de microscopia óptica e microscopia eletrônica de varredura foram usadas para a visualização dos CaOx. Em 73,7 % das raízes, ocorreu abundante acúmulo de drusas e grânulos de CaOx nas células do córtex. A presença conspícua de CaOx foi observada em 56,2 % das ectomicorrizas e em 17,5 % das raízes laterais finas não colonizadas, evidenciando o papel das micorrizas no acúmulo de Ca em eucalipto. A forma predominante dos CaOx foram as drusas nas ectomicorrizas e os grânulos cristalinos nas raízes. Os dez morfotipos de ectomicorrizas observados na área diferiram quanto à presença e à morfologia dos CaOx, o que pode representar distintas capacidades dos fungos ectomicorrízicos em fornecer Ca para a planta hospedeira. A análise da superfície do manto das ectomicorrizas por microscopia eletrônica de varredura não evidenciou a presença de CaOx nessa estrutura, confirmando que, nas condições avaliadas, o acúmulo de cristais limita-se ao córtex radicular. Este é o primeiro relato da ocorrência de CaOx em ectomicorrizas de eucalipto no Brasil, com dados que comprovam que há mecanismos de armazenamento de Ca nas ectomicorrizas em áreas com baixa disponibilidade do elemento.Eucalypt is efficient at taking up Ca from the soil, however little is known about the contribution of ectomycorrhizas and organic acids to this process under field conditions. The accumulation of calcium oxalate crystals (CaOx was evaluated in, approximately, 2,100 fine lateral roots

  1. Renal Epithelial Cell Injury Induced by Calcium Oxalate Monohydrate Depends on their Structural Features: Size, Surface, and Crystalline Structure.

    Science.gov (United States)

    Sun, Xin-Yuan; Ouyang, Jian-Ming; Gan, Qiong-Zhi; Liu, Ai-Jie

    2016-11-01

    Urinary crystals in normal and kidney stone patients often differ in crystal sizes and surface structures, but the effects of different crystal properties on renal tubular epithelial cells remain unclear. This study aimed to compare the cytotoxicity of micron/nano-calcium oxalate monohydrate (COM) crystals with sizes of 50 nm, 200 nm, 1 μm, 3 μm, and 10 μm to African green monkey renal epithelial (Vero) cells, to reveal the effect of crystal size and surface structure on cell injury, and to investigate the pathological mechanism of calcium oxalate kidney stones. Cell viability, cellular biochemical parameters, and internalized crystal amount in Vero cells were closely associated with the size of COM crystals. At the same concentration (200 μg/mL), COM-1 μm induced the most serious injury to Vero cells and caused the most significant change to cellular biochemical parameters, which were related to the specific porous structure and highest internalized amount in Vero cells. By contrast, COM-50 nm and COM-200 nm crystals lost their small size effect because of serious aggregation and weakened their toxicity to cells. COM-3 μm and COM-10 μm crystals were too large for cells to completely internalize; these crystals also exhibited a low specific surface area and thus weakened their toxicity. The excessive expression of intracellular ROS and reduction of the free-radical scavenger SOD were the main reasons for cell injury and eventually caused necrotic cell death. Crystal size, surface structure, aggregation, and internalization amount were closely related to the cytotoxicity of COM crystals.

  2. Synthesis of CaTiO 3 from calcium titanyl oxalate hexahydrate (CTO)

    Indian Academy of Sciences (India)

    Calcium titanate, CaTiO3, an important microwave dielectric material and one of major phases in synroc (synthetic rock), a titanate ceramic with potential application for fixation of high level nuclear waste was synthesized from calcium titanyl oxalate [CaTiO (C2O4)2.6H2O] (CTO) by employing microwave heating technique.

  3. Studies on Pu(IV)/(III)-oxalate precipitation from nitric acid containing high concentration of calcium and fluoride ions

    International Nuclear Information System (INIS)

    Kalsi, P.K.; Pawar, S.M.; Ghadse, D.R.; Joshi, A.R.; Ramakrishna, V.V.; Vaidya, V.N.; Venugopal, V.

    2003-01-01

    Plutonium (IV)/(III) oxalate precipitation from nitric acid solution, containing large amount of calcium and fluoride ions was investigated. It was observed that direct precipitation of Pu (IV) oxalate from nitric acid containing large amount of calcium and fluoride ions did not give good decontamination of Pu from calcium and fluoride impurities. However, incorporation of hydroxide precipitation using ammonium hydroxide prior to Pu (IV) oxalate precipitation results into PuO 2 with much less calcium and fluoride impurities. Whereas, good decontamination from calcium and fluoride impurities could be obtained by employing Pu (III) oxalate precipitation directly from nitric acid containing large amount of calcium and fluoride ions. A method was also developed to recover Pu from the oxalate waste containing calcium and fluoride ions. (author)

  4. Crystal structure of di?methyl?ammonium hydrogen oxalate hemi(oxalic acid)

    OpenAIRE

    Diallo, Waly; Gueye, Ndongo; Crochet, Aur?lien; Plasseraud, Laurent; Cattey, H?l?ne

    2015-01-01

    Single crystals of the title salt, Me2NH2 +?HC2O4 ??0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu)3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH2)2C2O4 salt and Sn(CH3)3Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a di?methyl?ammonium cation (Me2NH2 +), an hydrogenoxalate anion (HC2O4 ?), and half a mol?ecule of oxalic acid (H2C2O4) situated about an inversion center. From a supra?molecular point of view, the t...

  5. Effect of oxalic acid on the optical, thermal, dielectric and mechanical behaviour of ADP crystals

    International Nuclear Information System (INIS)

    Rajesh, P.; Ramasamy, P.

    2009-01-01

    The effect of the addition, over a concentration range from 1 to 5 mol%, of oxalic acid on the growth rate, optical transparency, hardness, dielectric behaviour, and SHG efficiency of ammonium dihydrogen phosphate single crystals grown by slow evaporation method has been investigated. UV-Vis studies show that the transparency of the oxalic acid added crystals decreased gradually. Thermal studies indicate that the decomposition temperatures of the crystal are decreased in oxalic acid added ADP crystals. It is observed from the dielectric measurements that the dielectric constant and dielectric loss increase with increase in temperature for all the crystals. Vicker's microhardness study reveals that the addition of higher concentration of oxalic acid decreases the hardness of the crystal. SHG efficiency of 1 mol% of oxalic acid is higher than the pure ADP.

  6. Substituting milk for apple juice does not increase kidney stone risk in most normocalciuric adults who form calcium oxalate stones.

    Science.gov (United States)

    Massey, L K; Kynast-Gales, S A

    1998-03-01

    Increasing intake of dietary calcium from less than 400 mg to 800 mg daily may decrease the absorption of dietary oxalate, which in turn would decrease urinary oxalate excretion. The effect of substituting milk for apple juice on urine composition and risk of calcium oxalate precipitability was studied. Twenty-one normocalciuric adults with a history of at least 1 calcium oxalate stone and urinary oxalate excretion exceeding 275 micromol/day on their self-selected diet. Randomized crossover trial. Each participant consumed two moderate-oxalate (2,011 micromol/day) study diets, which were identical except that one contained 360 mL milk and the other contained 540 mL apple juice as the beverage with meals. Four days free-living then 2 days in the metabolic unit of a university nutrition department. Tiselius risk index for calcium oxalate precipitability calculated from urine composition. Paired t tests. Twenty-four hour urinary oxalate excretion was 18% lower (Pjuice diet: 423 vs 514 micromol, respectively. Calcium excretion was 17% higher (Pjuice diet: 4.7 vs 3.9 mmol, respectively. Urinary magnesium and citrate excretion, volume, and Tiselius risk index did not differ between diets. Substituting 360 mL milk daily for apple juice with meals in a diet containing moderate amounts of dietary oxalate from whole grains, legumes, fruits, and vegetables does not increase the risk index of calcium oxalate precipitability in most normocalciuric adults who form stones.

  7. 3.2.1. Synthesis, crystal and molecular structure of catena-(bis(µ1-oxalic acid-µ3-hydrogen oxalate-di-aqua-sodium(I.

    Directory of Open Access Journals (Sweden)

    Olga Kovalchukova*, Sergey Aldoshin, Andrey Utenyshev, Konstantin Bogenko, Valeriy Tkachev

    2015-07-01

    Full Text Available The crystal and molecular structure of catena-(bis(µ- oxalic acid-µ-hydrogen oxalate-di-aqua-sodium(I was detected by X-Ray analysis. The compound crystallizes in the triclinic space group P-1, with a(Å 6.2378(12; b(Å 7,1115(14; c(Å 10.489(2; α(° 94.65(3; β(° 100.12(3; γ(° 97.78(3. The sodium cation in the title compound is eight coordinated and forms a square antiprism. It is surrounded by two molecules of oxalic acid, one hydrogen oxalate anion and one water molecule. Both oxalic acid and hydrogen oxalate anion act as polydentate bridging ligands. Centrosymmetric sodium cations are bounded by hydrogen oxalate anions through a system of H bonds involving the molecules of oxalic acid. In the lattice, the 3D structure stabilized by H bonds is formed.

  8. Trace element studies in urolithiasis; preliminary investigation on mixed calcium oxalate-struvite urinary calculi

    International Nuclear Information System (INIS)

    Syed, A.M.; Qadiruddin, M.; Shirin, K.; Manser, W.W.T.

    1999-01-01

    In this study the levels of the trace elements copper , zinc, lead, iron, aluminum, nickel, chromium along with magnesium, sodium and potassium were estimated in fifteen mixed calcium oxalate-struvite (CaOx/STR) urinary stones. The mean values of the combined results were, copper 4.24, zinc 1302, zinc 1302.10, lead 23.25, iron 36.83,nickel 0.69, chromium 1.93, magnesium 4530441, sodium 54.13 and potassium 5.93 ng mg/sup -1/. It was observed that zinc, aluminum and potassium levels were higher than in calcium oxalate(CaOx) calculi 0.05>P>0.02 and potassium levels were higher than in mixed calcium oxalate-hydroxy appetite (CaOx/APA) calculi, P<0.01. A combination of all the results was also compared with similar data from South Africa, Turkey, Austria, India, U.S.A and Japan. (author)

  9. Smad signaling pathway in pathogenesis of kidney injury induced by calcium oxalate stone in rats

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-10-01

    Full Text Available Objective: To investigate the involvement of Smad signaling pathway in the pathogenesis of kidney injury induced by calcium oxalate stone in rats to provide a reference for clinical treatment. Methods: Clean SD rats were randomly divided into 3 group, namely the control group, model group and pirfenidone group. Ethylene glycol + αhydroxy vitamin D3 was used as a stone-inducing agent to replicate the renal calcium oxalate stone model. Rats in the pirfenidone group were treated with pirfenidone intragastric administration. The serum Cr, BUN and 24-hour oxalate and calcium in renal tissues were assayed. The expressions of Bax/ Bcl2 protein, Caspase3 protein, TGFβ, Smad1, Smad2 and Smad3 proteins were detected by the fluorescent quantitation PCR method. Results: Compared with the rats of the control group, the results showed that the levels of serum BUN, Cr and 24-hour oxalate in rats of the model group were increased greatly, Bax and Caspase3 mRNA also increased while the level of Bcl2 decreased significantly, and the expressions of TGFβ, Smad1, Smad2 and Smad3 proteins increased distinctly as well (P<0.01. These abnormal parameters could be normalized effectively by pirfenidone. Conclusions: Activated TGFβ/Smad signaling pathway is involved in the pathogenesis of kidney injury induced by calcium oxalate stone in rats.

  10. Crystal structure of di­methyl­ammonium hydrogen oxalate hemi(oxalic acid)

    Science.gov (United States)

    Diallo, Waly; Gueye, Ndongo; Crochet, Aurélien; Plasseraud, Laurent; Cattey, Hélène

    2015-01-01

    Single crystals of the title salt, Me2NH2 +·HC2O4 −·0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu)3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH2)2C2O4 salt and Sn(CH3)3Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a di­methyl­ammonium cation (Me2NH2 +), an hydrogenoxalate anion (HC2O4 −), and half a mol­ecule of oxalic acid (H2C2O4) situated about an inversion center. From a supra­molecular point of view, the three components inter­act together via hydrogen bonding. The Me2NH2 + cations and the HC2O4 − anions are in close proximity through bifurcated N—H⋯(O,O) hydrogen bonds, while the HC2O4 − anions are organized into infinite chains via O—H⋯O hydrogen bonds, propagating along the a-axis direction. In addition, the oxalic acid (H2C2O4) mol­ecules play the role of connectors between these chains. Both the carbonyl and hydroxyl groups of each diacid are involved in four inter­molecular inter­actions with two Me2NH2 + and two HC2O4 − ions of four distinct polymeric chains, via two N—H⋯O and two O—H⋯O hydrogen bonds, respectively. The resulting mol­ecular assembly can be viewed as a two-dimensional bilayer-like arrangement lying parallel to (010), and reinforced by a C—H⋯O hydrogen bond. PMID:25995858

  11. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    Science.gov (United States)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  12. Protective Effects of Pistacia lentiscus L. fruit extract against calcium oxalate monohydrate induced proximal tubular injury.

    Science.gov (United States)

    Cheraft-Bahloul, Nassima; Husson, Cécile; Ourtioualous, Meriam; Sinaeve, Sébastien; Atmani, Djebbar; Stévigny, Caroline; Nortier, Joëlle L; Antoine, Marie-Hélène

    2017-09-14

    The world prevalence of kidney stones is increasing and plants are frequently used to treat urolithiasis. Pistacia lentiscus L, a plant which freely grows around the Mediterranean basin areas, is widely used for various pathologies. P. lentiscus has an important impact as it has economical value on top of its pharmacological interest. Decoctions of its aerial parts and/or resin are used to treat kidney stones. To in vitro assess the potential nephroprotective effect of Pistacia lentiscus ethanolic fruit extract (PLEF) on proximal tubular cells in response to the adhesion of calcium oxalate monohydrate (COM) crystals. Human Kidney [HK]-2 cells were incubated with and without COM in the presence or absence of PLEF. Cell viability was measured by the resazurin assay. The expression of E-cadherin was analyzed by PCR. The extracellular production of H 2 O 2 was measured by Amplex® Red H 2 O 2 Assay. The numbers of detached or non-adherent COM crystals in the presence of PLEF were microscopically captured and counted using ImageJ software. The interaction of PLEF with COM and the effect of PLEF on crystal size were analyzed by flow cytometry. The spectrophotometric measurement of turbidity was performed for assessing the COM concentration. PLEF incubated with COM was able to increase the cell viability. The decrease of E-cadherin expression after incubation with COM was counteracted by PLEF. Overproduction of H 2 O 2 induced by COM was also inhibited by PLEF. Observations using flow cytometry showed that interactions between PLEF and the COM crystals occurred. PLEF was also effective in reducing the particles size and in lowering COM concentration. Our data show that COM tubulotoxicity can be significantly reversed by PLEF -at least in part- via an inhibition of COM crystals adhesion onto the apical membrane. This early beneficial effect of PLEF needs to be further investigated as a useful strategy in nephrolithiasis prevention. Copyright © 2017 Elsevier Ireland Ltd

  13. Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis.

    Directory of Open Access Journals (Sweden)

    Kanu Priya Aggarwal

    Full Text Available BACKGROUND: The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal-membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. METHODS: Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin-Darby Canine Kidney (MDCK renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. RESULTS: Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. CONCLUSIONS: We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone

  14. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.

    Science.gov (United States)

    Warren, L M; Mackenzie, A; Dance, D R; Young, K C

    2013-04-07

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.

  15. Fasting urinary calcium-to-creatinine and oxalate-to-creatinine ratios in dogs with calcium oxalate urolithiasis and breed-matched controls.

    Science.gov (United States)

    Furrow, E; Patterson, E E; Armstrong, P J; Osborne, C A; Lulich, J P

    2015-01-01

    Hypercalciuria and hyperoxaluria are risk factors for calcium oxalate (CaOx) urolithiasis, but breed-specific reports of urinary metabolites and their relationship with stone status are lacking. To compare urinary metabolites (calcium and oxalate) and blood ionized calcium (iCa) concentrations between CaOx stone formers and breed-matched stone-free controls for the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. Forty-seven Miniature Schnauzers (23 cases and 24 controls), 27 Bichons Frise (14 cases and 13 controls), and 15 Shih Tzus (7 cases and 8 controls). Prospective study. Fasting spot urinary calcium-to-creatinine and oxalate-to-creatinine ratios (UCa/Cr and UOx/Cr, respectively) and blood iCa concentrations were measured and compared between cases and controls within and across breeds. Regression models were used to test the effect of patient and environmental factors on these variables. UCa/Cr was higher in cases than controls for each of the 3 breeds. In addition to stone status, being on a therapeutic food designed to prevent CaOx stone recurrence was associated with higher UCa/Cr. UOx/Cr did not differ between cases and controls for any of the breeds. Blood iCa was higher in cases than controls in the Miniature Schnauzer and Bichon Frise breeds and had a moderate correlation with UCa/Cr. Hypercalciuria is associated with CaOx stone status in the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. UOx/Cr did not correlate with stone status in these 3 breeds. These findings may influence breed-specific stone prevention recommendations. Copyright © 2015 by the American College of Veterinary Internal Medicine.

  16. Crystal agglomeration of europium oxalate in reaction crystallization using double-jet semi-batch reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Sik; Kim, Woon-Soo; Kim, Kwang-Seok; Kim, Joon-Soo; Ward, Michael D.

    2004-01-01

    The particle agglomeration of europium oxalate was investigated in a double-jet semi-batch reactor over a wide range of operating variables, including the agitation speed, reactant feed rate, and reactant concentration. The size of the agglomerates was directly dictated by the particle collision and supersaturation promoting agglomeration and the fluid shear force inhibiting agglomeration. Thus, with a longer feeding time and higher feed concentration for the reaction crystallization, the mean particle size increased, while the corresponding total particle population decreased due to the enhanced chance of particle agglomeration, resulting from a longer residence time and higher supersaturation in the reactor. Agitation was found to exhibit a rather complicated influence on particle agglomeration. Although both particle collision and turbulent fluid shear were promoted by an increase in the mixing intensity, the crystal agglomeration of europium oxalate was maximized at around 500 rpm of agitation speed due to an optimized balance between particle aggregation and breakage

  17. Spectroscopic properties of Pr -doped erbium oxalate crystals

    Indian Academy of Sciences (India)

    Spectroscopic properties of praseodymium ions-doped erbium oxalate ... solution with specific gravity 1.04 g/cm3 was mixed homogeneously with 0.5 M oxalic ... of concentrated nitric acid were transferred carefully and gently through the wall ...

  18. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  19. Can Randall's plug composed of calcium oxalate form via the free particle mechanism?

    Science.gov (United States)

    Grases, F; Söhnel, O

    2017-09-08

    The likelihood of a Randall's plug composed of calcium oxalate monohydrate (COM) forming by the free particle mechanism in a model of kidney with a structure recently described by Robertson was examined at the most favourable conditions for the considered mechanism. The Robertson model of the kidney is used in the following development. The classical theory of crystallization was used for calculations. Initial COM nuclei were assumed to form at the beginning of the ascending loop of Henle where the supersaturation with respect to COM has been shown to reach the threshold level for spontaneous nucleation. Nucleation proceeds by a heterogeneous mechanism. The formed particles are transported in the nephron by a laminar flow of liquid with a parabolic velocity profile. Particles travel with a velocity dependent on their position in the cross-section of the nephron assumed to be straight tubule with smooth walls and without any sharp bends and kinks. These particles move faster with time as they grow as a result of being surrounded by the supersaturated liquid. Individual COM particles (crystals) can reach maximum diameter of 5.2 × 10 -6  m, i.e. 5.2 μm, at the opening of the CD and would thus always be washed out of the CD into the calyx regardless of the orientation of the CD. Agglomeration of COM crystals forms a fractal object with an apparent density lower than the density of solid COM. The agglomerate that can block the beginning of the CD is composed of more crystals than are available even during crystaluria. Moreover the settling velocity of agglomerate blocking the opening of the CD is lower than the liquid flow and thus such agglomerate would be washed out even from upward-draining CD. The free particle mechanism may be responsible for the formation of a Randall's plug composed by COM only in specific infrequent cases such as an abnormal structure of kidney. Majority of incidences of Randall's plug development by COM are caused by mechanism different

  20. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    Science.gov (United States)

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effects of dietary interventions on 24-hour urine parameters in patients with idiopathic recurrent calcium oxalate stones

    Directory of Open Access Journals (Sweden)

    Mustafa Kıraç

    2013-02-01

    Full Text Available The aim of this study is to investigate the effects of dietary factors on 24-hour urine parameters in patients with idiopathic recurrent calcium oxalate stones. A total of 108 of idiopathic recurrent calcium oxalate stones were included in the study. A 24-hour urinalysis was performed and metabolic abnormalities were measured for all of the patients. All of the patients were given specialized diets for their 24-hour urine abnormalities. At the end of first month, the same parameters were examined in another 24-hour urinalysis. Hyperoxaluria, hypernatruria, and hypercalciuria were found in 84 (77%, 43 (39.8%, and 38 (35.5% of the patients, respectively. The differences between the oxalate, sodium, volume, uric acid, and citrate parameters before and after the dietary intervention were significant (p < 0.05. The calcium parameters were not significantly different before and after the intervention. We found that oxalate, sodium, volume, uric acid, and citrate—but not calcium—abnormalities in patients with recurrent calcium oxalate stones can be corrected by diet. The metabolic profiles of idiopathic calcium oxalate stone patients should be evaluated and the appropriate dietary interventions should be implemented to decrease stone recurrence.

  2. Growth and study of barium oxalate single crystals in agar gel

    Indian Academy of Sciences (India)

    Barium oxalate was grown in agar gel at ambient temperature. The effect of various parameters like gel concentration, gel setting time and concentration of the reactants on the growth of these crystals was studied. Prismatic platy shaped spherulites and dendrites were obtained. The grown crystals were characterized by ...

  3. Synthesis, Crystal structure and Characterization of a New Oxalate ...

    Indian Academy of Sciences (India)

    in a slightly distorted octahedral environment, by two O atoms from two water molecules and four O atoms of two oxalate anions acting as chelating ligands. ... component for building up supramolecular systems and for participating in hydrogen bonding ... heating rate of 10◦C min−1. 2.2 Synthesis of the complex. Aqueous ...

  4. 3.2.1. Synthesis, crystal and molecular structure of catena-(bis(µ1-oxalic acid)-µ3-hydrogen oxalate-di-aqua-sodium(I)).

    OpenAIRE

    Olga Kovalchukova*, Sergey Aldoshin, Andrey Utenyshev, Konstantin Bogenko, Valeriy Tkachev

    2015-01-01

    The crystal and molecular structure of catena-(bis(µ- oxalic acid)-µ-hydrogen oxalate-di-aqua-sodium(I)) was detected by X-Ray analysis. The compound crystallizes in the triclinic space group P-1, with a(Å) 6.2378(12); b(Å) 7,1115(14); c(Å) 10.489(2); α(°) 94.65(3); β(°) 100.12(3); γ(°) 97.78(3). The sodium cation in the title compound is eight coordinated and forms a square antiprism. It is surrounded by two molecules of oxalic acid, one hydrogen oxalate anion and one water molecule. Both ox...

  5. Quantitative Mineralogical Composition of Calculi and Urine Abnormalities for Calcium Oxalate Stone Formers: A Single-Center Results.

    Science.gov (United States)

    Kustov, Andrey V; Strelnikov, Alexander I

    2017-12-26

    The paper focuses on the relationship of risk factors and metabolic disorders with mineralogical composition of calculi, age and gender of calcium oxalate stone formers. Stone mineralogical composition, 24 hour biochemistry and pH-profile of urine were examined for sixty four stone formers using powder X-ray diffraction, spectrophotometric and potentiometric techniques. The analysis indicated that 44 % of calculi were composed of pure calcium oxalate monohydrate, whereas other 56 % contained both monohydrate and dihydrate or usually their mixtures with hydroxyl apatite. Hypocitraturia, hypercalciuria and hyperuricosuria were identified as the most frequent disorders. Patients with pure calcium oxalate stones and calcium oxalate mixed with apatite revealed different patterns including age, acid-base balance of urine, calcium, citrate excretion etc. Our results demonstrate that most patients simultaneously reveal several risk factors. The special attention should be paid to normalize the daily citrate, calcium and urate excretion. High risk patients, such as postmenopausal females or stone formers with a high apatite content require a specific metabolic evaluation towards in highlighting abnormalities associated with stone formation.

  6. Characterization of metabolic network of oxalic acid biosynthesis through RNA seq data analysis of developing spikes of finger millet (Eleusine coracana): Deciphering the role of key genes involved in oxalate formation in relation to grain calcium accumulation.

    Science.gov (United States)

    Akbar, Naved; Gupta, Supriya; Tiwari, Apoorv; Singh, K P; Kumar, Anil

    2018-04-05

    In the present study, we identified seven major genes of oxalic acid biosynthesis pathway (SGAT, GGAT, ICL, GLO, MHAR, APO and OXO) from developing spike transcriptome of finger millet using rice as a reference. Sequence alignment of identified genes showed high similarity with their respective homolog in rice except for OXO and GLO. Transcript abundance (FPKM) reflects the higher accumulation of identified genes in GP-1 (low calcium genotype) as compared to GP-45 (high calcium genotype) which was further confirmed by qRT-PCR analysis, indicating differential oxalate formation in both genotypes. Determination of oxalic acid and tartaric acid content in developing spikes explain that higher oxalic acid content in GP-1 however, tartaric acid content was more in GP-45. Higher calcium content in GP-45 and lower oxalate accumulation may be due to the diversion of more ascorbic acid into tartaric acid and may correspond to less formation of calcium oxalate. Our results suggest that more than one pathway for oxalic acid biosynthesis might be present in finger millet with probable predominance of ascorbate-tartarate pathway rather than glyoxalate-oxalate conversion. Thus, finger millet can be use as an excellent model system for understanding more specific role of nutrients-antinutrients interactions, as evident from the present study. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study

    Science.gov (United States)

    2013-01-01

    Background The objective of this study is to determine in a case series (four patients) how calcified deposits in renal papillae are associated with the development of calcium oxalate monohydrate (COM) papillary calculi. Methods From the recently collected papillary calculi, we evaluated retrospectively patients, subjected to retrograde ureteroscopy, with COM papillary lithiasis. Results The COM papillary calculi were found to result from subepithelial injury. Many of these lesions underwent calcification by hydroxyapatite (HAP), with calculus morphology and the amount of HAP in the concave zone dependent on the location of the calcified injury. Most of these HAP deposits grew, eroding the epithelium covering the renal papillae, coming into contact with urine and starting the development of COM calculi. Subepithelial HAP plaques may alter the epithelium covering the papillae, resulting in the deposit of COM crystals directly onto the epithelium. Tissue calcification depends on a pre-existing injury, the continuation of this process is due to modulators and/or crystallization inhibitors deficiency. Conclusions Since calculus morphology and the amount of detected HAP are dependent on the location and widespread of calcified injury, all types of papillary COM calculi can be found in the same patient. All patients had subepithelial calcifications, with fewer papillary calculi, demonstrating that some subepithelial calcifications did not further evolve and were reabsorbed. A high number of subepithelial calcifications increases the likelihood that some will be transformed into COM papillary calculi. PMID:23497010

  8. Renal papillary calcification and the development of calcium oxalate monohydrate papillary renal calculi: a case series study.

    Science.gov (United States)

    Grases, Fèlix; Costa-Bauzá, Antonia; Prieto, Rafel M; Conte, Antonio; Servera, Antonio

    2013-03-11

    The objective of this study is to determine in a case series (four patients) how calcified deposits in renal papillae are associated with the development of calcium oxalate monohydrate (COM) papillary calculi. From the recently collected papillary calculi, we evaluated retrospectively patients, subjected to retrograde ureteroscopy, with COM papillary lithiasis. The COM papillary calculi were found to result from subepithelial injury. Many of these lesions underwent calcification by hydroxyapatite (HAP), with calculus morphology and the amount of HAP in the concave zone dependent on the location of the calcified injury. Most of these HAP deposits grew, eroding the epithelium covering the renal papillae, coming into contact with urine and starting the development of COM calculi. Subepithelial HAP plaques may alter the epithelium covering the papillae, resulting in the deposit of COM crystals directly onto the epithelium. Tissue calcification depends on a pre-existing injury, the continuation of this process is due to modulators and/or crystallization inhibitors deficiency. Since calculus morphology and the amount of detected HAP are dependent on the location and widespread of calcified injury, all types of papillary COM calculi can be found in the same patient. All patients had subepithelial calcifications, with fewer papillary calculi, demonstrating that some subepithelial calcifications did not further evolve and were reabsorbed. A high number of subepithelial calcifications increases the likelihood that some will be transformed into COM papillary calculi.

  9. Dietary and animal-related factors associated with the rate of urinary oxalate and calcium excretion in dogs and cats

    NARCIS (Netherlands)

    Dijcker, J.C.; Hagen-Plantinga, E.A.; Everts, H.; Bosch, G.; Kema, I.P.; Hendriks, W.H.

    2012-01-01

    This paper reports the results of a cohort study and randomised clinical trial (RCT) in cross-over design. In the cohort study, the range of urinary oxalate (Uox) and calcium (Uca) excretion was determined within a sample of the Dutch population of dogs and cats, and dietary and animal-related

  10. Dietary and animal-related factors associated with the rate of urinary oxalate and calcium excretion in dogs and cats

    NARCIS (Netherlands)

    Dijcker, J.C.; Hagen-Plantinga, E.A.; Everts, H.; Bosch, Guido; Kema, I.P.; Hendriks, W.H.

    2012-01-01

    This paper reports the results of a cohort study and randomised clinical trial (RCT) in crossover design. In the cohort study, the range of urinary oxalate (Uox) and calcium (Uca) excretion was determined within a sample of the Dutch population of dogs and cats, and dietary and animal-related

  11. Crystal forms of the hydrogen oxalate salt of o-desmethylvenlafaxine.

    Science.gov (United States)

    Dichiarante, Elena; Curzi, Marco; Giaffreda, Stefano L; Grepioni, Fabrizia; Maini, Lucia; Braga, Dario

    2015-06-01

    To prepare new crystalline forms of the antidepressant o-desmethylvenlafaxine salt as potential new commercial forms and evaluate their physicochemical properties, in particular the dissolution rate. A new hydrogen oxalate salt of o-desmethylvenlafaxine hydrogen oxalate (ODV-OX) was synthesized, and a polymorph screening was performed using different solvents and crystallization conditions. Crystalline forms were characterized by a combination of solid-state techniques: X-ray powder diffraction, differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy and single crystal X-ray diffraction. The stability of all crystalline phases was tested under International Conference on Harmonisation (ICH) conditions (40°C and 75% Relative Humidity (RH)) for 1 week. Dissolution tests were performed on the hydrogen oxalate salt ODV-OX Form 1 and compared with dissolution test on the commercial form of the succinate salt of o-desmethylvenlafaxine. Five crystalline forms of ODV-OX were isolated, namely three hydrated forms (Form 1, Form 2, Form 3) and two anhydrous forms (Form 4 and Form 5). Comparative solubility tests on ODV-OX Form 1 and o-desmethylvenlafaxine succinate evidenced a significant increase in solubility for the hydrogen oxalate salt (142 g/l) with respect to the succinate salt (70 g/l). © 2015 Royal Pharmaceutical Society.

  12. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-08-01

    Full Text Available Single crystals of the title molecular salt, C4H7N2+·HC2O4−·2H2O, were isolated from the reaction of 2-methyl-1H-imidazole and oxalic acid in a 1:1 molar ratio in water. In the crystal, the cations and anions are positioned alternately along an infinite [010] ribbon and linked together through bifurcated N—H...(O,O hydrogen bonds. The water molecules of crystallization link the chains into (10-1 bilayers, with the methyl groups of the cations organized in an isotactic manner.

  13. Growth and physico chemical characterization of lanthanum neodymium oxalate single crystals

    International Nuclear Information System (INIS)

    Raju, K.S.; John, Varughese; Ittyachen, M.A.

    1998-01-01

    Single crystals of lanthanum neodymium oxalate (LNO) are grown in sodium meta silicate gels, by the diffusion of a mixture of aqueous solutions of lanthanum nitrate and neodymium nitrate into the test tube having the set gel containing oxalic acid. The bluish pink coloured tabular crystals of LNO having well defined hexagonal basal planes appear either as foggy or clear, the latter at the greater depths inside the gel. The coloration of LNO visually observed is evidenced in UV-visible spectrum, by the revelation of well pronounced characteristic peaks in the visible region (500-900 nm). X-ray diffraction (XRD) of powdered LNO is ordered, meaning crystalline in nature, besides its isostructurality with similarly grown lanthanum samarium oxalate crystals. The single crystallinity of LNO is established by its oscillation XRD pattern. Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) support that LNO loses water of crystallization around 120 degC and CO and CO 2 around 350-450 degC, while the infrared absorption (IR) spectrum of LNO establishes the presence of oxalate (C 2 O 4 ) 2- ions. Energy dispersive x-ray analysis (EDAX) confirms the presence of La and Nd in the sample. X-ray photoelectron spectroscopic (XPS) studies of LNO establish the presence of La and Nd in their respective oxide states. An empirical structure for LNO has been proposed on the basis of these findings. The smokiness in the foggy LNO crystal has been attributed due to the gel inclusion during the growth process. (author)

  14. Effect of Postharvest Oxalic Acid and Calcium Chloride on Quality Attributes of Sweet Cherry (Prunus avium L.

    Directory of Open Access Journals (Sweden)

    M. Safa

    2016-02-01

    Full Text Available Introduction: Fruits and vegetables have special importance as a very important part of the human food supply. And from the beginnings of life, man has used these products to supply a part of his food. Nowadays, horticultural products are widely used in the diet. Cherry is one of the deciduous trees in the temperate regions, which is potassium rich. Use of Oxalic acid significantly reduces frost injury in pomegranate fruits during storage at a temperature of 2° C. In fruit trees, the importance of calcium is due to a delay in fruit ripening process and this way products have better portability. Materials and Methods: Firmness test was measured using the FT011 model of penetrometer. For determination of titratable acidity, the 0.1 N sodium hydroxide (NaOH titration method was used. Total Soluble solids content (SSC of fruit was measured by a digital refractometer (PAL-1. For determination of vitamin C in fruit juices, titration method with the indicator, 2,6-di-chlorophenolindophenol was used. Fruit juice pH was measured using pH meter model HI 9811.In order to investigate the effect of postharvest soaking treatment with Oxalic acid on the qualitative specifications and storage life of single grain sweet cherry fruit a research was conducted. This experience was conducted in a completely randomized design with 3 replications separately for the two materials. In this experiment Oxalic acid, in four levels (0,4,6 and 8 mM and Calcium chloride in four levels (0, 40, 55 and 70 mM were applied on the single grain sweet cherry fruit in the form of soaking and sampleswith7-day intervals for a period of 28 days from the fridge out and quanti tate and qualitative traits such as stiffness, weight loss, Titratable acidity, total soluble solids, vitamin C and pH were measured. Results and Discussion: The results showed that compared with control ones all of the concentrations of Oxalic acid and Calcium chloride caused significant differences in the amount

  15. Kinetic study of nucleation and crystal growth during oxalic precipitation in the nuclear industry

    International Nuclear Information System (INIS)

    Andrieu, Murielle

    1999-01-01

    In spite of an extensive use in chemical industry, most of precipitation processes are based on global and empirical knowledge. However, in the recent years, fundamental and phenomenological theories have been developed and they can be used to better understand the mechanisms of precipitation of plutonium IV oxalate, which is a significant stage of the irradiated fuel reprocessing. For this reason, appropriate methods were developed to study nucleation and crystal growth kinetics in a nuclear environment under a wide range of operating conditions. Each phenomena was studied individually in order to reduce the free parameters of the System. This study bears on the oxalates of plutonium and elements which simulate plutonium behaviour during the precipitation, neodymium III and uranium IV. A compact apparatus of a specific construction was used for nucleation measurements in accordance with the Nielsen's method. The state of the mixing was characterised at the reactor scale (macro-mixing) and at molecular scale (micro-mixing). The experimental results for the studied oxalates are in good agreement with the Volmer and Weber's theory. We propose primary nucleation kinetic laws over a wide range of operating conditions (temperature, non-stoichiometric conditions, acidity...). An original method, using a high seed charge, was developed for the determination of crystal growth kinetics, in a batch crystallizer. The crystal growth rate is first order with respect to the supersaturation and the kinetic constant follows an Arrhenius type relation with activation energies of 14, 29 and 36 kJ.mol -1 for respectively neodymium III, uranium IV and plutonium IV oxalates. The overall growth process is surface integration controlled, with a screw dislocation mechanism. [fr

  16. Dose Optimization of Calcusol™ and Calcium Oxalate Monohydrate (COM on Primary Renal Epithelial Cells Cultures of Mice ( Mus musculus

    Directory of Open Access Journals (Sweden)

    Ahmad Soni

    2014-05-01

    Full Text Available Kidney stones are one of the urologic diseases that have plagued mankind for centuries. The main constituents of stones in the kidney are calcium oxalate monohydrate (COM crystals. Nowadays, there are varieties of drugs and treatments that can be made to minimize the grievances due to kidney stone disease. The treatment can be done either by using chemicals or traditional medicine. Calcusol™ is one of the popular herbal products that have been used by Indonesian people in curing the kidney stone disease. The main constituent that was contained in Calcusol™ is an extract of the tempuyung leaves (Sonchus arvensis L., which is expected could cure the kidney stone disease. This study used primary cultured renal epithelial cells of mice to determine the optimal dose of Calcusol™ and the optimal dose of COM. The primary Kidney epithelial cell were treated with Calcusol™ and COM at various doses. The analysis of the cell death either by necrosis or apoptosis pathways was analyzed by flow cytometric analysis. The results that were obtained is the percentage of cell death that is then analyzed by using a complete randomized design (CRD One Way Anova. Based on the results that were obtained, it is known that the optimal dose of Calcusol™ in vitro were ranging from 75 ppm to 100 ppm, whereas the optimal dose of COM suggested for 500 ppm.

  17. The crystal structure of paramagnetic copper(ii) oxalate (CuC2O4):

    DEFF Research Database (Denmark)

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel

    2014-01-01

    Synthetic copper(ii) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(ii) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have...... the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(ii) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar....... The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns...

  18. Mucins and calcium phosphate precipitates additively stimulate cholesterol crystallization

    NARCIS (Netherlands)

    van den Berg, A. A.; van Buul, J. D.; Tytgat, G. N.; Groen, A. K.; Ostrow, J. D.

    1998-01-01

    Human biliary mucin and calcium binding protein (CBP) influence formation of both calcium salt precipitates and cholesterol crystals and colocalize in the center of cholesterol gallstones. We investigated how physiological concentrations of these proteins regulate cholesterol crystallization in

  19. Associations of diet and breed with recurrence of calcium oxalate cystic calculi in dogs.

    Science.gov (United States)

    Allen, Heidi S; Swecker, William S; Becvarova, Iveta; Weeth, Lisa P; Werre, Stephen R

    2015-05-15

    To evaluate the long-term risk of recurrence of calcium oxalate (CaOx) cystic calculi in dogs of various breeds fed 1 of 2 therapeutic diets. Retrospective cohort study. Animals-135 dogs with a history of CaOx cystic calculi. Medical records for 4 referral hospitals were searched to identify dogs that had had CaOx cystic calculi removed. Owners were contacted and medical records evaluated to obtain information on postoperative diet, recurrence of signs of lower urinary tract disease, and recurrence of cystic calculi. Dogs were grouped on the basis of breed (high-risk breeds, low-risk breeds, and Miniature Schnauzers) and diet fed after removal of cystic calculi (diet A, diet B, and any other diet [diet C], with diets A and B being therapeutic diets formulated to prevent recurrence of CaOx calculi). Breed group was a significant predictor of calculi recurrence (as determined by abdominal radiography or ultrasonography), with Miniature Schnauzers having 3 times the risk of recurrence as did dogs of other breeds. Dogs in diet group A had a lower prevalence of recurrence than did dogs in diet group C, but this difference was not significant in multivariable analysis. Results indicated that Miniature Schnauzers had a higher risk of CaOx cystic calculi recurrence than did dogs of other breeds. In addition, findings suggested that diet may play a role in decreasing recurrence, but future prospective studies are needed to validate these observations.

  20. Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis.

    Directory of Open Access Journals (Sweden)

    Annerose Heller

    Full Text Available The mechanism of the diseases caused by the necrotroph plant pathogen Sclerotinia sclerotiorum is not well understood. To investigate the role of oxalic acid during infection high resolution, light-, scanning-, transmission electron microscopy and various histochemical staining methods were used. Our inoculation method allowed us to follow degradation of host plant tissue around single hyphae and to observe the reaction of host cells in direct contact with single invading hyphae. After penetration the outer epidermal cell wall matrix appeared degraded around subcuticular hyphae (12-24 hpi. Calcium oxalate crystals were detected in advanced (36-48 hpi and late (72 hpi infection stages, but not in early stages. In early infection stages, surprisingly, no toxic effect of oxalic acid eventually secreted by S. sclerotiorum was observed. As oxalic acid is a common metabolite in plants, we propose that attacked host cells are able to metabolize oxalic acid in the early infection stage and translocate it to their vacuoles where it is stored as calcium oxalate. The effects, observed on healthy tissue upon external application of oxalic acid to non-infected, living tissue and cell wall degradation of dead host cells starting at the inner side of the walls support this idea. The results indicate that oxalic acid concentrations in the early stage of infection stay below the toxic level. In plant and fungi oxalic acid/calcium oxalate plays an important role in calcium regulation. Oxalic acid likely could quench calcium ions released during cell wall breakdown to protect growing hyphae from toxic calcium concentrations in the infection area. As calcium antimonate-precipitates were found in vesicles of young hyphae, we propose that calcium is translocated to the older parts of hyphae and detoxified by building non-toxic, stable oxalate crystals. We propose an infection model where oxalic acid plays a detoxifying role in late infection stages.

  1. Acute oxalate nephropathy caused by ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    Jung Woong Seo

    2012-12-01

    Full Text Available Ethylene glycol (EG is a sweet-tasting, odorless organic solvent found in many agents, such as anti-freeze. EG is composed of four organic acids: glycoaldehyde, glycolic acid, glyoxylic acid and oxalic acid in vivo. These metabolites are cellular toxins that can cause cardio-pulmonary failure, life-threatening metabolic acidosis, central nervous system depression, and kidney injury. Oxalic acid is the end product of EG, which can precipitate to crystals of calcium oxalate monohydrate in the tubular lumen and has been linked to acute kidney injury. We report a case of EG-induced oxalate nephropathy, with the diagnosis confirmed by kidney biopsy, which showed acute tubular injury of the kidneys with extensive intracellular and intraluminal calcium oxalate monohydrate crystal depositions.

  2. Urinary calcium and oxalate excretion in healthy adult cats are not affected by increasing dietary levels of bone meal in a canned diet.

    Directory of Open Access Journals (Sweden)

    Nadine Passlack

    Full Text Available This study aimed to investigate the impact of dietary calcium (Ca and phosphorus (P, derived from bone meal, on the feline urine composition and the urinary pH, allowing a risk assessment for the formation of calcium oxalate (CaOx uroliths in cats. Eight healthy adult cats received 3 canned diets, containing 12.2 (A, 18.5 (B and 27.0 g Ca/kg dry matter (C and 16.1 (A, 17.6 (B and 21.1 g P/kg dry matter (C. Each diet was fed over 17 days. After a 7 dayś adaptation period, urine and faeces were collected over 2×4 days (with a two-day rest between, and blood samples were taken. Urinary and faecal minerals, urinary oxalate (Ox, the urinary pH and the concentrations of serum Ca, phosphate and parathyroid hormone (PTH were analyzed. Moreover, the urine was microscopically examined for CaOx uroliths. The results demonstrated that increasing levels of dietary Ca led to decreased serum PTH and Ca and increased faecal Ca and P concentrations, but did not affect the urinary Ca or Ox concentrations or the urinary fasting pH. The urinary postprandial pH slightly increased when the diet C was compared to the diet B. No CaOx crystals were detected in the urine of the cats. In conclusion, urinary Ca excretion in cats seems to be widely independent of the dietary Ca levels when Ca is added as bone meal to a typical canned diet, implicating that raw materials with higher contents of bones are of subordinate importance as risk factors for the formation of urinary CaOx crystals.

  3. OSTEOPOROSIS IN CALCIUM PYROPHOSPHATE CRYSTAL DEPOSITION DISEASE

    Directory of Open Access Journals (Sweden)

    S A Vladimirov

    2013-01-01

    Full Text Available Objective: to study the incidence of osteoporosis (OP in patients with calcium pyrophosphate crystal deposition disease (CPCDD. Subjects and methods. Eighty patients with CPCDD were examined. Bone mineral density (BMD of the forearm, lumbar spine, and femoral neck was determined by dual-energy X-ray absorptiometry. Laboratory diagnosis involved determination of the blood levels of C-reactive protein, parathyroid hormone, calcium, magnesium, and phosphorus and the daily urinary excretion of calcium and phosphates. Results. The patients with OP were significantly older than those with normal BMD and osteopenia. Forearm bones were the most common isolated location of OP and osteopenia. Injuries in the history, traumatic fractures, and the intake of diuretics were somewhat more common in the patients diagnosed with OP. The incidence of hyperparathyroidism did not differ significantly in the groups.

  4. SYNTHESIS, THERMAL STUDIES AND CRYSTAL STRUCTURE OF 4-AMINOPYRIDINIUM SEMI-OXALATE HEMIHYDRATE

    Directory of Open Access Journals (Sweden)

    CECILIA CHACÓN

    2017-06-01

    Full Text Available The title compound has been synthesized by grinding in an agate mortar. Its structure was characterized by TGA-DSC studies and single-crystal X-ray diffraction. This compound crystallize in the monoclinic system with space group C2/c, Z = 4, and unit cell parameters a = 16.109(2 Å, b = 5.748(7 Å, c = 20.580(3 Å, β = 107.36(1°. The salt, C2HO4-.C5H7N+.0.5 H2O, is an ionic ensemble assisted by hydrogen bonds established between 4-aminopyridinium cations, oxalate anions and water molecules. The three components thus construct a supramolecular assembly with a three-dimensional hydrogen bonded framework.

  5. Pathology and Epidemiology of Oxalate Nephrosis in Cheetahs.

    Science.gov (United States)

    Mitchell, Emily P; Church, Molly E; Nemser, Sarah M; Yakes, Betsy Jean; Evans, Eric R; Reimschuessel, Renate; Lemberger, Karin; Thompson, Peter N; Terio, Karen A

    2017-11-01

    To investigate cases of acute oxalate nephrosis without evidence of ethylene glycol exposure, archived data and tissues from cheetahs ( Acinonyx jubatus) from North America ( n = 297), southern Africa ( n = 257), and France ( n = 40) were evaluated. Renal and gastrointestinal tract lesions were characterized in a subset of animals with ( n = 100) and without ( n = 165) oxalate crystals at death. Crystals were confirmed as calcium oxalate by Raman spectroscopy in 45 of 47 cheetahs tested. Crystals were present in cheetahs from 3.7 months to 15.9 years old. Cheetahs younger than 1.5 years were less likely to have oxalates than older cheetahs ( P = .034), but young cheetahs with oxalates had more oxalate crystals than older cheetahs ( P Cheetahs with oxalate crystals were more likely to have renal amyloidosis, interstitial nephritis, or colitis and less likely to have glomerular loop thickening or gastritis than those without oxalates. Crystal number was positively associated with renal tubular necrosis ( P ≤ .001), regeneration ( P = .015), and casts ( P ≤ .001) but inversely associated with glomerulosclerosis, renal amyloidosis, and interstitial nephritis. Crystal number was unrelated to the presence or absence of colitis and was lower in southern African than American and European animals ( P = .01). This study found no evidence that coexisting chronic renal disease (amyloidosis, interstitial nephritis, or glomerulosclerosis), veno-occlusive disease, gastritis, or enterocolitis contributed significantly to oxalate nephrosis. Oxalate-related renal disease should be considered as a potential cause of acute renal failure, especially in young captive cheetahs. The role of location, diet, stress, and genetic predisposition in the pathogenesis of oxalate nephrosis in cheetahs warrants further study.

  6. Effect of feeding various forms of oxalate on the rumen metabolism and the fate of calcium in buffalo (Bubalus bubalis) calves

    International Nuclear Information System (INIS)

    Saddi, L.K.; Ahuja, S.P.; Sareen, V.K.; Singh, Sudarshan; Bhatia, I.S.

    1978-01-01

    The degradation of 45 Ca oxalate in the rumen and the absorption of 45 Ca released (experiment 2), the production of bicarbonates and TVFA in the rumen, and the rumen pH value (experiment 1) were studied in male buffalo calves consuming paddy straw (group 1), wheat straw supplemented with calcium oxalate (group 2) and wheat straw supplemented with calcium oxalate plus potassium oxalate (group 3). The radioactivity 1n the blood appeared with 1 hr in all the animals. Maximum 45 Ca specific activity in the blood was observed at 18,24 and 36 hr in groups 1 to 3, respectively, after intraruminal infusion of 15 mCi 45 Ca oxalate. Paddy-straw feeding caused polyurea. In all the animals the very first micturition showed the presence of radioactivity, and maximum 45 Ca specific activity in the urine and feaces was obtained around 31 and 25 hr, respectively, after infusion. However, during the following 5 days, the decline in 45 Ca specific activity in the feaces was sharper in group 1 than in the other groups indicating less absorption of calcium in group 1. Higher bicarbonates contents and pH of the rumen fluid were observed in group 3. The results indicated a slow and continuous release of oxalates from paddy straw. The ruminal TVFA concentration was lower and pH was relatively higher in group 3. Group 1 showed uniformly higher amounts of TVFA. (auth.)

  7. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles

    Directory of Open Access Journals (Sweden)

    Yuniar Ponco Prananto

    2013-03-01

    Full Text Available Crystal growth of cobalt (II oxalate in silica gel at room temperature as precursor of Co3O4 nano particles has been studied. Specifically, this project is focusing on the use of two different reaction tube types toward crystallization of cobalt (II oxalate in gel. The gel was prepared at pH 5 by reacting sodium metasilicate solution with dilute nitric acid (for U-tube and oxalic acid (for straight tube, with gelling time of 4 days and crystal growth time of 8 (for straight tube and 12 (for U-tube weeks. Result shows that pink crystalline powder was directly formed using straight tube method. The use of different solvents in straight tube method affects crystallization and could delay direct precipitation of the product. In contrast, bigger and better shape of red block crystal was yielded from U-tube method; however, longer growth time was needed. FTIR studies suggest that both growth method produces identical compound of hydrated cobalt (II oxalate. © 2013 BCREC UNDIP. All rights reservedReceived: 25th October 2012; Revised: 30th November 2012; Accepted: 5th December 2012[How to Cite: Y.P. Prananto, M.M. Khunur, D.T. Wahyuni, R.A. Shobirin, Y.R. Nata, E. Riskah, (2013. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 198-204. (doi:10.9767/bcrec.7.3.4066.198-204][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4066.198-204 ] View in  |

  8. Association Study of Klotho Gene Polymorphism With Calcium Oxalate Stones in The Uyghur Population of Xinjiang, China.

    Science.gov (United States)

    Ali, Abdusamat; Tursun, Halmurat; Talat, Alim; Abla, Akpar; Muhtar, Erpan; Zhang, Tao; Mahmut, Murat

    2017-01-18

    The aim of the present study was to investigate the correlation between Klotho gene polymorphisms andcalcium oxalate stones in Xinjiang Uyghur people. We compared 128 patients with calcium oxalate stones (case group) and 94 healthypeople (control group), detected the genotype and allele distributions of single-nucleotide polymorphisms (SNPs)of the Klotho gene (rs3752472, rs650439, and rs1207568) by reverse transcription polymerase chain reaction. The distributions of the genotype and allele frequencies of the SNPs were consistent with the Hardy-Weinberg equilibrium in the two groups. There were statistically significant differences between the genotype andallele distributions of rs3752472 between the case and control groups; the allele frequencies in the case/controlgroups were C = 240 (93.7%)/151 (80.3%) and T = 16 (6.3%)/37 (19.7%). There was no statistically significantdifference in the genotype distribution of rs650439 between the case and control groups, but there was a differencein the allele distribution; the allele frequencies in the case/control groups were A = 202 (78.9%)/143 (57.2%) andT = 54 (21.1%)/107 (42.8%). There were no statistically significant differences in genotype and allele distributionsbetween the case and control groups of rs1207568; the allele frequencies in the case/control groups were C = 194(71.3%)/145 (77.1%) and T = 78 (28.7%)/43 (22.9%). In rs3752472, the risk for patients with the C and A allelesincreased by 3.675 and 2.799 times, respectively. The rs3752472 and rs650439 SNPs are related to the risk of calcium oxalate stones in Xinjiang Uyghurpeople, and might be one of the risk factors.

  9. Study of interaction of bismuth, strontium, calcium copper, lead nitrates solutions with sodium oxalate solution with the aim of HTSC synthesis

    International Nuclear Information System (INIS)

    Danilov, V.P.; Krasnobaeva, O.N.; Nosova, T.A.

    1993-01-01

    With the aim of developing a new technique for HTSC oxides synthesis on the base of combined sedimentation of hydroxy salts and their heat treatment is studied interaction of bismuth, strontium, calcium, copper and lead nitrates with alkali solution of sodium oxalate. Conditions for total sedimentation of all five metals from the solution are found. The phase composition of interaction products is determined. It is established that they are high-dispersed homogeneous mixture of three phases of variable composition: twin hydroxalate of copper-bismuth, lead hydroxalate and twin oxalate of strontium-calcium. After heat treatment of the phases are obtained the HTSC oxides

  10. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium for- mate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation den- sity was reduced and the size of the crystals was improved to a large extent compared to the conventional way.

  11. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    Science.gov (United States)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  12. Press forging of single crystal calcium fluoride

    International Nuclear Information System (INIS)

    Turk, R.R.

    1975-01-01

    Single crystals of high-purity calcium fluoride have been deformed uniaxially in an attempt to improve strength and resistance to cleavage, without impairing infrared transmission. Order of magnitude increases in strength, such as those found in forged KCl, have not been attained, but fine-grained polycrystalling material has been produced which is resistant to crystalline cleavage. Deformation rates of 10 -2 min -1 , reductions of 10 to 73 percent in height, and deformation temperatures of 550 to 1000 0 C have been used. Flexural strengths over 13,000 psi and grain sizes down to 5 μm have been obtained. Reduction of residual stress through heat treatment has been studied, and resultant techniques applied before, during, and after deformation. No increase in infrared absorption has been noted at the CO laser wavelength of 5.3 μm

  13. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    Science.gov (United States)

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching.

  14. Kinetic isotope effect in dehydration of ionic solids. II. The kinetics of dehydration of calcium oxalate monohydrate

    International Nuclear Information System (INIS)

    Manche, E.P.; Carroll, B.

    1977-01-01

    The kinetics of the isothermal dehydration of the protonated and deuterated monohydrate of calcium oxalate has been investigated at 120, 150, and 170 0 C. The rate of dehydration for these salts was found to be k/sub H//k/sub D/ = 1.025 +- 0.012. This result rules out the enormous kinetic isotope effect as given in the literature. An isotope effect of a few percent is not ruled out; this magnitude is in keeping with that found by Heinzinger in other dehydration processes. An estimated difference of about 150 cal/mol between the heat of desorption for H 2 O and D 2 O should have led to a ratio, k/sub h//k/sub D/ = 1.20. The smaller observed ratio has been explained on the basis of a compensation effect and may be considered an example of the Barclay--Butler correlation

  15. Correlation between the development of calcium oxalate stones and polymorphisms in the fibronectin gene in the Uighur population of the Xinjiang region of China.

    Science.gov (United States)

    Murat, M; Aekeper, A; Yuan, L Y; Alim, T; Du, G J; Abdusamat, A; Wu, G W; Aniwer, Y

    2015-10-29

    Here, we have investigated the correlation between calcium oxalate stone formation and Fn gene polymorphisms in urinary calculi patients among the Uighur population (Xinjiang region). In this case control study, genomic DNA extracted from the peripheral blood of 129 patients with calcium oxalate stones (patient group) and 94 normal people (control group) was used to genotype polymorphisms in the rs6725958, rs10202709, and rs35343655 sites of the Fn gene by polymerase chain reaction-restriction fragment length polymorphism. Subsequently, the association between different genotypes and susceptibility to calcium oxalate stone formation was compared among the patient and control groups. Single nucleotide polymorphisms (SNPs) were detected in the rs6725958, rs10202709, and rs35343655 sites of the Fn gene among the patient and control groups. The genotype distributions of the three loci complied with the Hardy-Weinberg equilibrium. The results of allele frequencies of the patient/control group for polymorphisms in the rs6725958 site of the Fn gene were C = 179 (69.92%)/119 (63.30%) and A = 77 (30.08%)/69 (36.70%), in the rs10202709 site were C = 245 (95.70%)/176 (93.63%) and T = 11 (4.30%)/12 (6.38%), and in the rs35343655 site of the Fn gene were A = 139 (54.30%)/87 (46.28%) and G = 117 (45.70%)/101 (53.72%). We observed no significant differences between the three SNPs and development of calcium oxalate stones. Polymorphisms in rs6725958, rs10202709, and rs35343655 of the Fn gene had no obvious effect on the susceptibility to the development of calcium oxalate stones in the Uighur population, residing in the Xinjiang region of China.

  16. Crystallization Kinetics of Precipitating Calcium from Yellow Phosphorus Slag Lixivium

    Directory of Open Access Journals (Sweden)

    Li, G. -B.

    2014-11-01

    Full Text Available The crystallization dynamic parameters of calcium sulphate were determined in the course of the precipitation conversion process of calcium in lixivium. The crystallization dynamic equations of calcium sulphate were achieved by multiple linear regression. The study results indicate that CaSO4 · 2 H2O crystal nucleation-growth kinetics equation in nitric acid leaching liquid of yellow phosphorus slag at room temperature is expressed by B0 = 2.904 · 1011 · G0.83 · MT 0.167.

  17. Structural, optical, mechanical and density functional theory studies of 1H-pyrazol-2-ium hydrogen oxalate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Devi, P. Karthiga, E-mail: karthvi19@gmail.com; Venkatachalam, K.

    2016-11-01

    In the present work, we have grown 1H- pyrazol-2-ium hydrogen oxalate single crystal by slow evaporation solution growth technique. The lattice parameters are determined from single crystal X ray diffraction studies. The functional groups present in the compound are confirmed by Fourier transform infrared spectroscopy. UV-Vis analysis shows that the crystal has a wide transparency window. Vicker's hardness test has been carried out to estimate the stiffness constant, fracture toughness, brittleness index and yield strength of the crystal. Density functional study B3LYP method at 6-31 G (d, p) has been performed to study the optimized structure, HOMO-LUMO energy gap, hyperpolarizability and thermodynamic properties. - Highlights: • The title compound was analyzed using FTIR and UV–Vis spectroscopy. • Mechanical study was carried out using Vicker's hardness test. • Optimized molecular geometry was determined using DFT method. • Hydrogen bonding interaction was studied through NBO analysis.

  18. Growth and characterization of strontium oxalate crystals by the decomposition of ascorbic acid in presence of strontium chloride

    International Nuclear Information System (INIS)

    Bijini, B.R.; Prasanna, S.; Rajendra Babu, K.; Deepa, M.

    2010-01-01

    Full text: Ascorbic acid (vitamin c) is an important organic compound that helps to maintain the optimal health of human body. It is essential for the development and maintenance of connective tissues. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. During the process of metabolism it decomposes into oxalic acid. This compound is photosensitive and has least thermal stability. The decomposition of Ascorbic acid has been studied in various conditions. It is reported that decomposition of ascorbic acid in presence of Cd 2+ ions leads to the formation of cadmium oxalate crystals. In the present work, in presence of Sr 2+ ion the ascorbic acid is decomposed to Strontium Oxalate in gel media. In this technique, silica gel is used as a medium to grow crystals. Slow diffusion of reactants in the gel medium can be considered to mimic the growth of crystals in the human body. Gels were prepared by mixing appropriate quantities of sodium meta silicate and ascorbic acid, adjusting the pH in the range 5-7.5. Over the set gel, the feed solution of 1M Strontium chloride was added. Yellowish prismatic and bar shaped crystals were obtained within 24 hours. The nucleation density is maximum at a pH of 6 and minimum at 5. Good quality crystals were obtained for a pH of 5 and gel density 1.05g/cc. The FTIR spectra of grown crystals are recorded and analyzed.The band at 3431 cm -1 is assigned to OH stretching frequency of co-ordinated water molecule and the band at 1637cm -1 corresponds to C=O Stretching of carbonyl group. The band at 1319cm -1 is assigned to symmetric stretching of COO- group. The IR band at 767cm -1 corresponds to the combined effect of inplane deformation of CO 2 and the presence of metal oxygen bond .The band at 505cm -1 is due to wagging mode

  19. Plasma biochemistry and urinalysis variables of koalas (Phascolarctos cinereus) with and without oxalate nephrosis.

    Science.gov (United States)

    Speight, K Natasha; Haynes, Julie I; Boardman, Wayne; Breed, William G; Taggart, David A; Rich, Brian; Woolford, Lucy

    2014-06-01

    Oxalate nephrosis is a highly prevalent disease in the Mount Lofty Ranges koala population in South Australia, but associated clinicopathologic findings remain undescribed. The aims of this study were to determine plasma biochemical and urinalysis variables, particularly for renal function and urinary crystal morphology and composition, in koalas with oxalate nephrosis. Blood and urine samples from Mount Lofty Ranges koalas with oxalate nephrosis were compared with those unaffected by renal oxalate crystal deposition from Mount Lofty and Kangaroo Island, South Australia and Moggill, Queensland. Plasma and urine biochemistry variables were analyzed using a Cobas Bio analyzer, and urinary oxalate by high-performance liquid chromatography. Urinary crystal composition was determined by infrared spectroscopy and energy dispersive X-ray analysis. Azotemia (urea > 6.6 mmol/L, creatinine > 150 μmol/L) was found in 93% of koalas with oxalate nephrosis (n = 15). All azotemic animals had renal insufficiency (urine specific gravity [USG] < 1.035), and in 83%, USG was < 1.030. Koalas with oxalate nephrosis were hyperoxaluric compared with Queensland koalas (P < .01). Urinary crystals from koalas with oxalate nephrosis had atypical morphology and were composed of calcium oxalate. Mount Lofty Ranges koalas unaffected by renal oxalate crystal deposition had renal insufficiency (43%), although only 14% had USG < 1.030 (n = 7). Unaffected Mount Lofty Ranges and Kangaroo Island koalas were hyperoxaluric compared with Queensland koalas (P < .01). Koalas with oxalate nephrosis from the Mount Lofty Ranges had renal insufficiency, hyperoxaluria, and pathognomonic urinary crystals. The findings of this study will aid veterinary diagnosis of this disease. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  20. Growth and study of barium oxalate single crystals in agar gel

    Indian Academy of Sciences (India)

    Unknown

    tive Powder Diffraction Data Interpretation and Indexing. Program, Version 2.2) was used to calculate 'd' values. Calculated 'd' values matched with reported values. Table. 2 shows calculated unit cell parameters. Table 2. Calculated unit cell parameters. Parameters. Barium oxalate. System. Monoclinic (P) a. 8⋅2426 Å b.

  1. Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH.H2O.

    Science.gov (United States)

    Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang

    2004-10-04

    Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

  2. Effect of Ultrasound on Calcium Carbonate Crystallization

    NARCIS (Netherlands)

    Wagterveld, R.M.

    2013-01-01

    Scaling comprises the formation of hard mineral deposits on process or membrane equipment and calcium carbonate is the most common scaling salt. Especially in reverse osmosis (RO) membrane systems, scale formation has always been a serious limitation, causing flux decline, membrane degradation, loss

  3. Accumulation of oxalic acid and calcium crystals in ectomycorrhizas of eucalypt.: II- calcium oxalate crystal formation induced by ectomicorrhizal fungi in fine lateral roots

    OpenAIRE

    Gonzalez, Jhon Alexander Zambrano; Costa, Maurício Dutra; Silva, Ivo Ribeiro; Neves, Júlio César Lima; Barros, Nairam Félix de; Borges, Arnaldo Chaer

    2009-01-01

    O eucalipto é eficiente na aquisição de Ca do solo, mas pouco se sabe sobre a participação das ectomicorrizas e dos ácidos orgânicos nesse processo em campo. O acúmulo de cristais de Ca (CaOx) foi avaliado em, aproximadamente, 2.100 raízes laterais finas e ectomicorrizas do híbrido de Eucalyptus grandis x Eucalyptus urophylla, cultivado por 2,5 anos em área com topografia típica em meia laranja, com vertente côncavo-convexa, na região de Viçosa, MG. Técnicas de microscopia óptica e microscopi...

  4. Crystal growth and characterization of calcium metaborate scintillators

    Czech Academy of Sciences Publication Activity Database

    Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Chani, V.; Nikl, Martin; Yoshikawa, A.

    2013-01-01

    Roč. 703, MAR (2013), s. 7-10 ISSN 0168-9002 Institutional support: RVO:68378271 Keywords : Czochralski method * single crystal * scintillator * calcium metaborate * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.316, year: 2013

  5. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    . Calcium formate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation density was reduced and the size of the crystals was improved to a large extent compared to the conventional way of growing ...

  6. Pathological features of oxalate nephrosis in a population of koalas (Phascolarctos cinereus) in South Australia.

    Science.gov (United States)

    Speight, K N; Boardman, W; Breed, W G; Taggart, D A; Woolford, L; Haynes, J I

    2013-03-01

    The wild and captive koala population of the Mt Lofty Ranges in South Australia has a high level of renal dysfunction in which crystals consistent with calcium oxalate have been observed in the kidneys. This study aimed to describe the pathological features of the renal disease in this population, confirm the composition of renal crystals as calcium oxalate, and determine whether any age or sex predispositions exist for this disease. A total of 51 koalas (28 wild rescues, 23 captive) were examined at necropsy, of which 28 (55%) were found to have gross and/or histological evidence of oxalate nephrosis. Histopathological features included intratubular and interstitial inflammation, tubule dilation, glomerular atrophy, tubule loss, and cortical fibrosis. Calcium oxalate crystals were demonstrated using a combination of polarization microscopy, alizarin red S staining, infrared spectroscopy, and energy-dispersive X-ray analysis with scanning electron microscopy. Uric acid and phosphate deposits were also shown to be present but were associated with minimal histopathological changes. No significant differences were found between the numbers of affected captive and wild rescued koalas; also, there were no sex or age predispositions identified, but it was found that oxalate nephrosis may affect koalas <2 years of age. The findings of this study suggest that oxalate nephrosis is a leading disease in this koala population. Possible causes of this disease are currently under investigation.

  7. Molecular mechanism of crystallization impacting calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  8. Isostructural crystal hydrates of rare-earth metal oxalates at high pressure. From strain anisotropy to dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Boris A.; Matvienko, Alexander A. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry; Novosibirsk State Univ. (Russian Federation); Gribov, Pavel A.; Boldyreva, Elena V. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry

    2017-07-01

    The crystal structures of a series of isostructural rare-earth metal oxalates, (REE){sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O (REE=Sm, Y) and a 1:1 YSm(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O solid solution, have been studied in situ by single-crystal X-ray diffraction and optical microscopy. The structures were followed from ambient pressure to 6 GPa in a DAC with paraffin as the hydrostatic fluid. Bulk compressibilities, anisotropic lattice strain on hydrostatic compression and the corresponding changes in the atomic coordinates were followed. Discontinuities/sharp changes in the slopes of the pressure dependences of volume and selected cell parameters have been observed for yttrium-containing salts at ∝3.5 GPa. This may be related to the re-distribution of water molecules within the crystal structure. Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O undergoes a partial dehydration at 1 GPa, forming monoclinic Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.6H{sub 2}O as single-crystalline inclusions in the original phase.

  9. Estimation of the oxalate content of foods and daily oxalate intake

    Science.gov (United States)

    Holmes, R. P.; Kennedy, M.

    2000-01-01

    BACKGROUND: The amount of oxalate ingested may be an important risk factor in the development of idiopathic calcium oxalate nephrolithiasis. Reliable food tables listing the oxalate content of foods are currently not available. The aim of this research was to develop an accurate and reliable method to measure the food content of oxalate. METHODS: Capillary electrophoresis (CE) and ion chromatography (IC) were compared as direct techniques for the estimation of the oxalate content of foods. Foods were thoroughly homogenized in acid, heat extracted, and clarified by centrifugation and filtration before dilution in water for analysis. Five individuals consuming self-selected diets maintained food records for three days to determine their mean daily oxalate intakes. RESULTS: Both techniques were capable of adequately measuring the oxalate in foods with a significant oxalate content. With foods of very low oxalate content (choice over IC for estimating the oxalate content of foods with a medium (>10 mg/100 g) to high oxalate content due to a faster analysis time and lower running costs, whereas IC may be better suited for the analysis of foods with a low oxalate content. Accurate estimates of the oxalate content of foods should permit the role of dietary oxalate in urinary oxalate excretion and stone formation to be clarified. Other factors, apart from the amount of oxalate ingested, appear to exert a major influence over the amount of oxalate excreted in the urine.

  10. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    Directory of Open Access Journals (Sweden)

    G. Cailleau

    2011-07-01

    Full Text Available An African oxalogenic tree, the iroko tree (Milicia excelsa, has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi. Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate

  11. Crystal growth and characterization of calcium metaborate scintillators

    Science.gov (United States)

    Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Chani, V.; Nikl, M.; Yoshikawa, A.

    2013-03-01

    Calcium metaborate CaB2O4 single crystals were grown by the Czochralski (CZ) method with the radio-frequency (RF) heating system. In these crystals, a plane cleavage was observed along the growth direction. The crystals had an 80% transparency, and no absorption bands were detected in the 190-900 nm wavelength range. The 241Am 5.5 MeV α-ray-excited radioluminescence spectrum of CaB2O4 demonstrated a broad intrinsic luminescence peak at 300-400 nm, which originated from the lattice defects or an exciton-based emission. According to the pulse height spectrum, when irradiated by neutrons from a 252Cf source, the scintillation light yielded approximately 3200 photons per neutron (ph/n).

  12. Exploring the Therapeutic Mechanism of Desmodium styracifolium on Oxalate Crystal-Induced Kidney Injuries Using Comprehensive Approaches Based on Proteomics and Network Pharmacology

    Directory of Open Access Journals (Sweden)

    Jiebin Hou

    2018-06-01

    Full Text Available Purpose: As a Chinese medicinal herb, Desmodium styracifolium (Osb. Merr (DS has been applied clinically to alleviate crystal-induced kidney injuries, but its effective components and their specific mechanisms still need further exploration. This research first combined the methods of network pharmacology and proteomics to explore the therapeutic protein targets of DS on oxalate crystal-induced kidney injuries to provide a reference for relevant clinical use.Methods: Oxalate-induced kidney injury mouse, rat, and HK-2 cell models were established. Proteins differentially expressed between the oxalate and control groups were respectively screened using iTRAQ combined with MALDI-TOF-MS. The common differential proteins of the three models were further analyzed by molecular docking with DS compounds to acquire differential targets. The inverse docking targets of DS were predicted through the platform of PharmMapper. The protein–protein interaction (PPI relationship between the inverse docking targets and the differential proteins was established by STRING. Potential targets were further validated by western blot based on a mouse model with DS treatment. The effects of constituent compounds, including luteolin, apigenin, and genistein, were investigated based on an oxalate-stimulated HK-2 cell model.Results: Thirty-six common differentially expressed proteins were identified by proteomic analysis. According to previous research, the 3D structures of 15 major constituents of DS were acquired. Nineteen differential targets, including cathepsin D (CTSD, were found using molecular docking, and the component-differential target network was established. Inverse-docking targets including p38 MAPK and CDK-2 were found, and the network of component-reverse docking target was established. Through PPI analysis, 17 inverse-docking targets were linked to differential proteins. The combined network of component-inverse docking target-differential proteins was

  13. Reference values for urinary oxalate, calcium, citrate, uric acid, phosphate, magnesium, sulphate and sodium in biochemistry students at Universidad Nacional del Litoral, Argentina

    Directory of Open Access Journals (Sweden)

    Verónica Fernández

    2017-10-01

    Full Text Available Introduction: Urolithiasis (UL is a common disease whose incidence increased in the last quarter of the twentieth century. Metabolic evaluation is necessary for diagnosis, which requires the establishment of reference values (RV for the population in question. Objective: To determine the RV for calcium, oxalate, citrate, uric acid, phosphate, magnesium, sulphate and sodium in 24-hour urine belonging to students from the School of Biochemistry and Biological Sciences at Universidad Nacional del Litoral, province of Santa Fe, Argentina. Once RV were established, a frequency of alterations was determined and then compared with literature data. Methods: The NCCLSC28-A3 guideline (2008 was used. The study group included 69 students. The enzymatic colorimetric method, a Metrolab 1600 plus spectrophotometer and a DIESTRO ionselective electrode were also employed. Results: The RV found (95 % CI were the following: oxalate, 1.96-45.08; calcium, 20.65-250.74; citrate, 112.78-666.01; uric acid, 58.73-782.17; phosphate, 238.37-1051.44; magnesium, 28.7-146.67, all these values expressed as mg/24h; sulphate, 3.15-25.18 mmol/24h, and sodium, 42.81-285.3 mEq/24h. These findings emerged as well: hyperoxaluria, 3 %; hypercalciuria 12 %; hypocitraturia, 3 %; hyperuricosuria, 6 %; hyperphosphaturia, 6 %; hypomagnesuria, 6 %; hypernatriuria, 7 %, and hypersulphaturia, 0 %. When RV were compared, some analyte levels were similar and others showed a considerable difference. Conclusions: The diagnosis of UL through the study of metabolic changes is different according to the reference value used. Applying reference values established for other populations, including those of commercial kits manufacturers, may lead to a diagnosis which does not match the clinical condition of the patient.

  14. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.

    Science.gov (United States)

    Wang, Hong-Yan; Gao, Hong-Wen

    2009-05-01

    Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. On the basis of the chemical coprecipitation of calcium oxalate (CaC(2)O(4)), bromopyrogallol red (BPR) was embedded during the growing of CaC(2)O(4) particles. The ternary C(2)O(4) (2-)-BPR-Ca(2+) sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. The saturation number of BPR binding to CaC(2)O(4) reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 x 10(5) M(-1). Over 80% of the sorbent particles are between 0.7 and 1.02 microm, formed by the aggregation of the global CaC(2)O(4)/BPR inclusion grains of 30-50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC(2)O(4)/BPR inclusion material adsorbed EV over two times more

  15. Analytical precision of the Urolizer for the determination of the BONN-Risk-Index (BRI) for calcium oxalate urolithiasis and evaluation of the influence of 24-h urine storage at moderate temperatures on BRI.

    Science.gov (United States)

    Berg, Wolfgang; Bechler, Robin; Laube, Norbert

    2009-01-01

    Since its first publication in 2000, the BONN-Risk-Index (BRI) has been successfully used to determine the calcium oxalate (CaOx) crystallization risk from urine samples. To date, a BRI-measuring device, the "Urolizer", has been developed, operating automatically and requiring only a minimum of preparation. Two major objectives were pursued: determination of Urolizer precision, and determination of the influence of 24-h urine storage at moderate temperatures on BRI. 24-h urine samples from 52 CaOx stone-formers were collected. A total of 37 urine samples were used for the investigation of Urolizer precision by performing six independent BRI determinations in series. In total, 30 samples were taken for additional investigation of urine storability. Each sample was measured thrice: directly after collection, after 24-h storage at T=21 degrees C, and after 24-h cooling at T=4 degrees C. Outcomes were statistically tested for identity with regard to the immediately obtained results. Repeat measurements for evaluation of Urolizer precision revealed statistical identity of data (p-0.05). 24-h storage of urine at both tested temperatures did not significantly affect BRI (p-0.05). The pilot-run Urolizer shows high analytical reliability. The innovative analysis device may be especially suited for urologists specializing in urolithiasis treatment. The possibility for urine storage at moderate temperatures without loss of analysis quality further demonstrates the applicability of the BRI method.

  16. Mechanism of calcium phosphates precipitation in liquid crystals

    International Nuclear Information System (INIS)

    Prelot, B.; Zemb, T.

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m 2 /g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  17. Cerium oxalate precipitation

    International Nuclear Information System (INIS)

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  18. Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage.

    OpenAIRE

    Nguyen, C.; Bazin, D.; Daudon, M.; Chatron-Colliet, A.; Hannouche, D.; Bianchi, A.; Côme, D.; So, A.; Busso, N.; Lioté, F.; Ea, H.K.

    2013-01-01

    International audience; INTRODUCTION: Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. METHODS: We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transfor...

  19. In vitro anti-inflammatory activity of selected oxalate-degrading probiotic bacteria: potential applications in the prevention and treatment of hyperoxaluria.

    Science.gov (United States)

    Giardina, Silvana; Scilironi, Cristina; Michelotti, Angela; Samuele, Alberta; Borella, Fabio; Daglia, Maria; Marzatico, Fulvio

    2014-03-01

    Oxalate (Ox) is a very common component of the human diet, capable to collect in the renal tissue and bind calcium to form calcium oxalate (CaOx) crystals. A supersaturation of CaOx crystal may cause nephrocalcinosis and nephrolithiasis. The inflammation derived from the CaOx crystal accumulation, together with innate or secondary renal alterations, could strongly affect the renal function. In this case a consumption of probiotics with either oxalate-degrading activity at intestinal level and systemic anti-inflammatory activity could be an alternative approach to treat the subjects with excess of urinary oxalate excretion. 11 strains of lactic acid bacteria (Lactobacilli and Bifidobacteria), already included in the list of bacteria safe for the human use, were investigated for their capability to degrade oxalate by mean of RP-HPLC-UV method and modulate inflammation in an in vitro model system based on peripheral blood mononuclear cells. Four promising bacterial strains (Lactobacillus plantarum PBS067, Lactobacillus acidophilus LA-14, Bifidobacterium breve PBS077, Bifidobacterium longum PBS078) were identified as innovative biological tools for the prevention and the therapeutic treatment of hyperoxaluria and the inflammatory events associated to the Ox accumulation. The oxalate-degrading activity of some probiotics and their capability to modulate the release of inflammation mediators could be exploited as a new nutraceutical and therapeutic approach for the treatment of oxalate accumulation and the related inflammatory state. © 2014 Institute of Food Technologists®

  20. Crystal structure of the epithelial calcium channel TRPV6.

    Science.gov (United States)

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  1. Sobresaturacion urinaria del Oxalato de Calcio más alla de la Nefrolitiasis: La relación con el daño tubulointersticial Urinary calcium oxalate supersaturation beyond nephrolithiasis: Relationship with tubulointerstitial damage

    Directory of Open Access Journals (Sweden)

    J. E. Toblli

    2003-04-01

    Full Text Available Numerosos estudios han demostrado que el producto de la actividad iónica (PAI de oxalato de calcio (OxCa en la orina, como indicador de sobresaturación (SS urinaria, es mayor en pacientes formadores de cálculos que en sujetos normales. Más allá de la relación entre SS urinaria del OxCa y litogénesis, la exposición de OxCa al epitelio tubular puede ocasionar lesiones en la célula tubular y en el intersticio renal. Nuestro objetivo fue evaluar la posible relación entre SS urinaria de OxCa y el daño tubulointersticial (TI en un modelo animal de hiperoxaluria. Durante cuatro semanas, ratas Sprague-Dawley machos, divididas en dos grupos recibieron: grupo 1 Control [G1], (n= 8 agua, grupo 2 [G2], (n = 8 etilenglicol (ETG al 1% en el agua de beber. La SS urinaria de OxCa se valoró mediante el PAI del OxCa. Las lesiones TI se analizaron al finalizar el estudio por microscopía óptica e inmunohistoquímica. El G2 (ETG presentó valores mayores (pA number of studies have demonstrated that the urinary ion activity product (IAP of calcium oxalate (CaOx, as an index of urinary CaOx supersaturation (SS, is higher in renal stone formers than in normal subjects. Besides, the relation between CaOx SS and lithogenesis, crystal CaOx exposition can produce tubular cell as well as renal interstitial lesions. The aim of our study was to evaluate the possible relationship between CaOx SS and tubulointerstitial (TI damage in an animal model of hyperoxaluria. During four weeks, male Sprague-Dawley rats received: G1 (n=8 control regular water, and G2 (n= 8 1% ethylene glycol (ETG (precursor for oxalates in drinking water. In order to evaluate urinary CaOx SS, IAP assessed by Tisselius formula was performed. At the end of the study, renal lesions were evaluated by light microscopy and immunohistochemistry. Animals from G2 (ETG presented higher (p< 0.01 values of: a urinary oxalate excretion; b urinary CaOx SS; c crystalluria score; d proteinuria; and lower (p

  2. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    Science.gov (United States)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  3. Single crystal growth of yttrium calcium oxy borate (YCOB) crystals by flux technique and their characterization. CP-3.5

    International Nuclear Information System (INIS)

    Arun Kumar, R.; Senthilkumar, M.; Dhanasekaran, R.

    2007-01-01

    Yttrium calcium oxy borate single crystals were grown by the flux technique for the first time. Polycrystalline YCOB material was prepared by solid state reaction method. Single crystals of YCOB were grown using boron-tri-oxide flux. Several transparent single crystals of dimensions 10 x 5 x 5 mm 3 were obtained. The grown crystals were characterized by powder XRD and UV- VIS-NIR studies. The results of powder XRD confirm the crystalline structure of YCOB. The UV- VIS-NIR transmission spectrum reveals that the crystal is highly transparent (above 75%) from ultraviolet (220 nm) to near IR regions enabling it as a suitable candidate for high power UV applications

  4. Oxalates in oca (New Zealand yam) (Oxalis tuberosa Mol.).

    Science.gov (United States)

    Ross, A B; Savage, G P; Martin, R J; Vanhanen, L

    1999-12-01

    Oca (Oxalis tuberosa Mol.) or New Zealand yam, in common with other members of this genus, contains oxalate, an antinutritive factor. Twelve South American and two New Zealand cultivars of oca were analyzed for total and soluble oxalate contents of the tubers. The range of total oxalate levels was 92-221 mg/100 g of fresh weight. Levels of soluble and total oxalate extracted from the tubers were not significantly different, suggesting that no calcium oxalate is formed in the tubers. The oxalate concentrations obtained in this study for oca suggest that previously reported values are too low and that oca is a moderately high oxalate-containing food. This is the first report of a tuber crop containing moderate to high levels of soluble oxalates in the tubers and no insoluble oxalates.

  5. Effect of calcium deficiency on the mechanical properties of hydroxyapatite crystals

    International Nuclear Information System (INIS)

    Viswanath, B.; Shastry, V.V.; Ramamurty, U.; Ravishankar, N.

    2010-01-01

    The deterioration of the mechanical properties of bone with age is related to several factors including the structure, organization and chemistry of the constituent phases; however, the relative contribution of each of these factors is not well understood. In this study, we have investigated the effect of chemistry (calcium deficiency) on the mechanical properties of single crystals of hydroxyapatite. Single crystals of stoichiometric crystals grown by the flux method and calcium-deficient platelet crystals grown using wet chemical methods were used as model systems. Using nanoindentation, we show that calcium deficiency leads to an 80% reduction in the hardness and elastic modulus and at least a 75% reduction in toughness in plate-shaped hydroxyapatite crystals. Measurement of local mechanical properties using nanoindentation and nanoscale chemistry through elemental mapping in a transmission electron microscope points to a direct correlation between the observed spatial variation in composition and the large scatter in the measured hardness and modulus values.

  6. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    International Nuclear Information System (INIS)

    Kohiruimaki, T

    2011-01-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm 2 suggesting that these crystals may be of practical use in industrial fermenters.

  7. The bioavailability of oxalate from Oca (Oxalis tuberosa).

    Science.gov (United States)

    Albihn, P B; Savage, G P

    2001-08-01

    It is believed that soluble oxalate has higher bioavailability than insoluble oxalate. Oca (Oxalis tuberosa) is moderately high in oxalate and contains oxalate in soluble form only. We estimated the bioavailability of oxalate in oca based on the urinary excretion of oxalate after oxalate loading with oca to estimate the bioavailability of oxalate in oca. We also clarified whether bioavailability differs in various oxalate loads from the same food source and studied the effect of an additional calcium source on the bioavailability of oxalate from oca. Four men and 4 women ingested 50, 100 and 150 gm. oca as well as 100 gm. oca with 100 gm. sour cream. Oxalate was measured in a 6-hour urine sample from each volunteer. The mean bioavailability of oxalate from oca plus or minus standard deviation was 1.44% +/- 1.31% during the 6-hour period after intake. There was no significant difference in oxalate bioavailability among oxalate intake levels in this study, although oca consumption with sour cream significantly decreased the uptake of oxalate (p oca appears to be similar to that in spinach. However, bioavailability varies among individuals and depends on other constituents of a combined meal.

  8. Origin of Urinary Oxalate

    Science.gov (United States)

    Holmes, Ross P.; Knight, John; Assimos, Dean G.

    2007-04-01

    Urinary oxalate is mostly derived from the absorption of ingested oxalate and endogenous synthesis. The breakdown of vitamin C may also contribute small amounts to the urinary oxalate pool. The amount of oxalate absorbed is influenced by the oxalate content of the diet, the concentrations of divalent cations in the gut, the presence of oxalate-degrading organisms, transport characteristics of the intestinal epithelium, and other factors associated with the intestinal environment. Knowledge of pathways associated with endogenous oxalate synthesis is limited. Urinary oxalate excretion can be modified using strategies that limit dietary oxalate absorption and the ingestion of oxalogenic substrates such as hydroxyproline.

  9. Crystals in brain and meninges in primary hyperoxaluria and oxalosis.

    Science.gov (United States)

    Haqqani, M T

    1977-01-01

    A case of primary hyperoxaluria and oxalosis with chronic renal failure, crystalline myocarditis, and disseminated calcium oxalate crystal deposition in various tissues including the brain and meninges is described. Deposition of crystals in brain and meninges is exceptionally rare in primary oxalosis. Images PMID:838867

  10. Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis

    Science.gov (United States)

    Hirsch, Danielle; Azoury, Reuven; Sarig, Sara

    1990-09-01

    Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.

  11. Acute oxalate nephropathy due to ′Averrhoa bilimbi′ fruit juice ingestion

    Directory of Open Access Journals (Sweden)

    G Bakul

    2013-01-01

    Full Text Available Irumban puli (Averrhoa bilimbi is commonly used as a traditional remedy in the state of Kerala. Freshly made concentrated juice has a very high oxalic acid content and consumption carries a high risk of developing acute renal failure (ARF by deposition of calcium oxalate crystals in renal tubules. Acute oxalate nephropathy (AON due to secondary oxalosis after consumption of Irumban puli juice is uncommon. AON due to A. bilimbi has not been reported before. We present a series of ten patients from five hospitals in the State of Kerala who developed ARF after intake of I. puli fruit juice. Seven patients needed hemodialysis whereas the other three improved with conservative management.

  12. Feasibility of a tetracycline-binding method for detecting synovial fluid basic calcium phosphate crystals.

    Science.gov (United States)

    Rosenthal, Ann K; Fahey, Mark; Gohr, Claudia; Burner, Todd; Konon, Irina; Daft, Laureen; Mattson, Eric; Hirschmugl, Carol; Ryan, Lawrence M; Simkin, Peter

    2008-10-01

    Basic calcium phosphate (BCP) crystals are common components of osteoarthritis (OA) synovial fluid. Progress in understanding the role of these bioactive particles in clinical OA has been hampered by difficulties in their identification. Tetracyclines stain calcium phosphate mineral in bone. The aim of this study was to investigate whether tetracycline staining might be an additional or alternative method for identifying BCP crystals in synovial fluid. A drop of oxytetracycline was mixed with a drop of fluid containing synthetic or native BCP, calcium pyrophosphate dihydrate (CPPD), or monosodium urate (MSU) crystals and placed on a microscope slide. Stained and unstained crystals were examined by light microscopy, with and without a portable broad-spectrum ultraviolet (UV) pen light. A small set of characterized synovial fluid samples were compared by staining with alizarin red S and oxytetracycline. Synthetic BCP crystals in synovial fluid were quantified fluorimetrically using oxytetracycline. After oxytetracycline staining, synthetic and native BCP crystals appeared as fluorescent amorphous aggregates under UV light. Oxytetracycline did not stain CPPD or MSU crystals or other particulates. Oxytetracycline staining had fewer false-positive test results than did alizarin red S staining and could provide estimates of the quantities of synthetic BCP crystals in synovial fluid. With further validation, oxytetracycline staining may prove to be a useful adjunct or alternative to currently available methods for identifying BCP crystals in synovial fluid.

  13. Neptunium (IV) oxalate solubility

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  14. Oxalate Content of Taro Leaves Grown in Central Vietnam

    Science.gov (United States)

    Du Thanh, Hang; Phan Vu, Hai; Vu Van, Hai; Le Duc, Ngoan; Le Minh, Tuan; Savage, Geoffrey

    2017-01-01

    Leaves were harvested from four different cultivars of Colocasia esculenta and three cultivars of Alocasia odora that were growing on nine different farms in central Vietnam. The total, soluble and insoluble oxalate contents of the leaves were extracted and measured using HPLC chromatography. Total calcium determinations were also carried out on the same samples. The total oxalate content of the leaves ranged from 433.8 to 856.1 mg/100 g wet matter (WM) while the soluble oxalate ranged from 147.8 to 339.7 mg/100 g WM. The proportion of soluble oxalate ranged from 28% to 41% (overall mean 35%) of the total oxalate content of the leaves. The equivalent insoluble oxalate proportion ranged from 59% to 72% of the total (overall mean 65%). There was little difference between the Colocasia esculenta and Alocasia odora taro cultivars, although the total oxalate content was significantly higher in Alocasia odora cultivars. The overall mean total calcium content was 279.5 mg/100 WM and the percentage of insoluble calcium bound as calcium oxalate ranged from 31.7% to 57.3% of the total calcium content (overall mean 47.1%). The oxalate content in taro leaves is a major factor to consider when different cultivars of taro are recommended for human or animal consumption. PMID:28231080

  15. Oxalate Content of Taro Leaves Grown in Central Vietnam

    Directory of Open Access Journals (Sweden)

    Hang Du Thanh

    2017-01-01

    Full Text Available Leaves were harvested from four different cultivars of Colocasia esculenta and three cultivars of Alocasia odora that were growing on nine different farms in central Vietnam. The total, soluble and insoluble oxalate contents of the leaves were extracted and measured using HPLC chromatography. Total calcium determinations were also carried out on the same samples. The total oxalate content of the leaves ranged from 433.8 to 856.1 mg/100 g wet matter (WM while the soluble oxalate ranged from 147.8 to 339.7 mg/100 g WM. The proportion of soluble oxalate ranged from 28% to 41% (overall mean 35% of the total oxalate content of the leaves. The equivalent insoluble oxalate proportion ranged from 59% to 72% of the total (overall mean 65%. There was little difference between the Colocasia esculenta and Alocasia odora taro cultivars, although the total oxalate content was significantly higher in Alocasia odora cultivars. The overall mean total calcium content was 279.5 mg/100 WM and the percentage of insoluble calcium bound as calcium oxalate ranged from 31.7% to 57.3% of the total calcium content (overall mean 47.1%. The oxalate content in taro leaves is a major factor to consider when different cultivars of taro are recommended for human or animal consumption.

  16. Tris(bipyridineMetal(II-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction

    Directory of Open Access Journals (Sweden)

    Alla Dikhtiarenko

    2016-02-01

    Full Text Available A series of 3D oxalate-bridged ruthenium-based coordination polymers with the formula of {[ZII(bpy3][MIRu(C2O43]}n (ZII = Zn2+ (1, Cu2+ (3, 4, Ru2+ (5, 6, Os2+ (7, 8; MI = Li+, Na+; bpy = 2,2’-bipyridine and {[ZnII(bpy3](H2O[LiRu(C2O43]}n (2 has been synthesized at room temperature through a self-assembly reaction in aqueous media and characterized by single-crystal and powder X-ray diffraction, elemental analysis, infrared and diffuse reflectance UV–Vis spectroscopy and thermogravimetric analysis. The crystal structures of all compounds comprise chiral 3D honeycomb-like polymeric nets of the srs-type, which possess triangular anionic cages where [ZII(bpy3]2+ cationic templates are selectively embedded. Structural analysis reveals that the electronic configuration of the cationic guests is affected by electrostatic interaction with the anionic framework. Moreover, the MLCT bands gaps values for 1–8 can be tuned in a rational way by judicious choice of [ZII(bpy3]2+ guests. The 3D host-guest polymeric architectures can be used as self-supported heterogeneous photocatalysts for the reductive splitting of water, exhibiting photocatalytic activity for the evolution of H2 under UV light irradiation.

  17. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crystallization of calcium carbonate on radiation-grafted polyethylene films

    International Nuclear Information System (INIS)

    Hou Zhengchi; Zhang Fengying; Deng Bo; Yang Haijun; Chen Shuang; Sheng Kanglong

    2006-01-01

    In biomineralization processes, nucleation and growth of inorganic crystals can be regulated by organic template molecules. This has inspired great interest in studying mimic biomineralization. In our study, growing CaCO 3 crystals on PE films functionalized through radiation-induced grafting was attempted. PE films grafted with different functional groups of different distributions and densities were used as substrates for CaCO 3 nucleation and crystal growth from Ca(HCO 3 ) 2 supersaturated solution under different environmental conditions (e.g. additives and temperature) to study the effects and mechanisms. The grafted PE films were analyzed by ATR-FTIR and AFM, and the evolution of CaCO 3 crystal formation on the grafted PE film was characterized by SEM, FTIR, and XRD. The results indicated that heterogeneous nucleation of CaCO 3 crystals was significantly facilitated by the functional groups grafted on the surface of PE films, that the morphology of CaCO 3 crystals could be controlled by distribution and density of the grafted functional groups, and that polymorphism of CaCO 3 crystal could be regulated by selection of grafting functional groups. We believe that studying the effects of chemical structures on inorganic crystallization is of great importance since radiation-induced grafting is an effective method to graft desirable functional groups onto different polymers by selected monomers, in the endeavor of developing advanced organic/inorganic composites with high performance, with a wide availability of polymers, monomers and inorganic solutions. (authors)

  19. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization

    DEFF Research Database (Denmark)

    Tobler, Dominique Jeanette; Rodriguez Blanco, Juan Diego; Dideriksen, Knud

    2015-01-01

    Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid-mineral inte......Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid...

  20. Substitutional Carbon-Modified Anatase TiO2 Decahedral Plates Directly Derived from Titanium Oxalate Crystals via Topotactic Transition.

    Science.gov (United States)

    Niu, Ping; Wu, Tingting; Wen, Lei; Tan, Jun; Yang, Yongqiang; Zheng, Shijian; Liang, Yan; Li, Feng; Irvine, John Ts; Liu, Gang; Ma, Xiuliang; Cheng, Hui-Ming

    2018-03-30

    Changing the composition and/or structure of some metal oxides at the atomic level can significantly improve their performance in different applications. Although many strategies have been developed, the introduction of heteroatoms, particularly anions to the internal part of metal oxide particles, is still not adequate. Here, an effective strategy is demonstrated for directly preparing polycrystalline decahedral plates of substitutional carbon-doped anatase TiO 2 from titanium (IV) oxalate by a thermally induced topotactic transition in an inert atmosphere. Because of the carbon concentration gradient introduced in side of the plates, the carbon-doped TiO 2 (TiO 2- x C x ) shows an increased visible light absorption and a two orders of magnitude higher electrical conductivity than pure TiO 2 . Consequently, it can be used as a photocatalyst and an active material for lithium storage and shows much superior activity in generating hydroxyl radicals under visible light and greatly increased electrical-specific capacity at high charge-discharge rates. The strategy developed could also be applicable to the atomic-scale modification of other metal oxides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... with Ca/Si molar ratio of 1, to which Fe2O3 is added with Fe/Si molar ratios of 0.1, 0.5, 0.7, 1.0, and 1.3%. Structure and morphology of the porous calcium silicate, with different iron concentrations, are investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR...... measurements reveal a pronounced decrease in the number of Q3 sites in the calcium silicate with an increase of Fe3+, and thereby lower the crystal fraction of xonotlite (Ca6Si6O17(OH)2) phase, and increase the crystal fractions of tobermorite(Ca5Si6O16(OH)2·4H2O) and calcite (CaCO3) phases, as confirmed...

  2. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    Science.gov (United States)

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. © 2016 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Science.gov (United States)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  4. Primary Nonfunction of Renal Allograft Secondary to Acute Oxalate Nephropathy

    Directory of Open Access Journals (Sweden)

    Ravi Parasuraman

    2011-01-01

    Full Text Available Primary nonfunction (PNF accounts for 0.6 to 8% of renal allograft failure, and the focus on causes of PNF has changed from rejection to other causes. Calcium oxalate (CaOx deposition is common in early allograft biopsies, and it contributes in moderate intensity to higher incidence of acute tubular necrosis and poor graft survival. A-49-year old male with ESRD secondary to polycystic kidney disease underwent extended criteria donor kidney transplantation. Posttransplant, patient developed delayed graft function (DGF, and the biopsy showed moderately intense CaOx deposition that persisted on subsequent biopsies for 16 weeks, eventually resulting in PNF. The serum oxalate level was 3 times more than normal at 85 μmol/L (normal <27 μmol/L. Allograft nephrectomy showed massive aggregates of CaOx crystal deposition in renal collecting system. In conclusion, acute oxalate nephropathy should be considered in the differential diagnosis of DGF since optimal management could change the outcome of the allograft.

  5. [Does carbonate originate from carbonate-calcium crystal component of the human urinary calculus?].

    Science.gov (United States)

    Yuzawa, Masayuki; Nakano, Kazuhiko; Kumamaru, Takatoshi; Nukui, Akinori; Ikeda, Hitoshi; Suzuki, Kazumi; Kobayashi, Minoru; Sugaya, Yasuhiro; Morita, Tatsuo

    2008-09-01

    It gives important information in selecting the appropriate treatment for urolithiasis to confirm the component of urinary calculus. Presently component analysis of the urinary calculus is generally performed by infrared spectroscopy which is employed by companies providing laboratory testing services in Japan. The infrared spectroscopy determines the molecular components from the absorption spectra in consequence of atomic vibrations. It has the drawback that an accurate crystal structure cannot be analyzed compared with the X-ray diffraction method which analyzes the crystal constituent based on the diffraction of X-rays on crystal lattice. The components of the urinary calculus including carbonate are carbonate apatite and calcium carbonate such as calcite. Although the latter is reported to be very rare component in human urinary calculus, the results by infrared spectroscopy often show that calcium carbonate is included in calculus. The infrared spectroscopy can confirm the existence of carbonate but cannot determine whether carbonate is originated from carbonate apatite or calcium carbonate. Thus, it is not clear whether calcium carbonate is included in human urinary calculus component in Japan. In this study, we examined human urinary calculus including carbonate by use of X-ray structural analysis in order to elucidate the origin of carbonate in human urinary calculus. We examined 17 human calculi which were reported to contain calcium carbonate by infrared spectroscopy performed in the clinical laboratory. Fifteen calculi were obtained from urinary tract, and two were from gall bladder. The stones were analyzed by X-ray powder method after crushed finely. The reports from the clinical laboratory showed that all urinary culculi consisted of calcium carbonate and calcium phosphate, while the gallstones consisted of calcium carbonate. But the components of all urinary calculi were revealed to be carbonate apatite by X-ray diffraction. The components of

  6. 4-Methoxybenzamidinium hydrogen oxalate monohydrate

    Directory of Open Access Journals (Sweden)

    Simona Irrera

    2012-12-01

    Full Text Available The title hydrated salt, C8H11N2O+·C2HO4−·H2O, was synthesized by a reaction of 4-methoxybenzamidine (4-amidinoanisole and oxalic acid in water solution. In the cation, the amidinium group forms a dihedral angle of 15.60 (6° with the mean plane of the benzene ring. In the crystal, each amidinium unit is bound to three acetate anions and one water molecule by six distinct N—H...O hydrogen bonds. The ion pairs of the asymmetric unit are joined by two N—H...O hydrogen bonds into ionic dimers in which the carbonyl O atom of the semi-oxalate anion acts as a bifurcated acceptor, thus generating an R12(6 motif. These subunits are then joined through the remaining N—H...O hydrogen bonds to adjacent semi-oxalate anions into linear tetrameric chains running approximately along the b axis. The structure is stabilized by N—H...O and O—H...O intermolecular hydrogen bonds. The water molecule plays an important role in the cohesion and the stability of the crystal structure being involved in three hydrogen bonds connecting two semi-oxalate anions as donor and a benzamidinium cation as acceptor.

  7. Crystal structure and spectroscopic analysis of a new oxalate-bridged MnII compound: catena-poly[guanidinium [[aquachloridomanganese(II]-μ2-oxalato-κ4O1,O2:O1′,O2′] monohydrate

    Directory of Open Access Journals (Sweden)

    Hiba Sehimi

    2016-05-01

    Full Text Available As part of our studies on the synthesis and the characterization of oxalate-bridged compounds M–ox–M (ox = oxalate dianion and M = transition metal ion, we report the crystal structure of a new oxalate-bridged MnII phase, {(CH6N3[Mn(C2O4Cl(H2O]·H2O}n. In the compound, a succession of MnII ions (situated on inversion centers adopting a distorted octahedral coordination and bridged by oxalate ligands forms parallel zigzag chains running along the c axis. These chains are interconnected through O—H...O hydrogen-bonding interactions to form anionic layers parallel to (010. Individual layers are held together via strong hydrogen bonds involving the guanidinium cations (N—H...O and N—H...Cl and the disordered non-coordinating water molecule (O—H...O and O—H...Cl, as well as by guanidinium π–π stacking. The structural data were confirmed by IR and UV–Visible spectroscopic analysis.

  8. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The grown crystals were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction analysis (XRD), microhardness measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential thermal analysis (DTA). The results obtained are compared with the ...

  9. Crystal structure of metagenomic β-xylosidase/ α-l-arabinofuranosidase activated by calcium.

    Science.gov (United States)

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Kishine, Naomi; Fujimoto, Zui; Yaoi, Katsuro

    2017-09-01

    The crystal structure of metagenomic β-xylosidase/α-l-arabinofuranosidase CoXyl43, activated by calcium ions, was determined in its apo and complexed forms with xylotriose or l-arabinose in the presence and absence of calcium. The presence of calcium ions dramatically increases the kcat of CoXyl43 for p-nitrophenyl β-d-xylopyranoside and reduces the Michaelis constant for p-nitrophenyl α-l-arabinofuranoside. CoXyl43 consists of a single catalytic domain comprised of a five-bladed β-propeller. In the presence of calcium, a single calcium ion was observed at the centre of this catalytic domain, behind the catalytic pocket. In the absence of calcium, the calcium ion was replaced with one sodium ion and one water molecule, and the positions of these cations were shifted by 1.3 Å. The histidine-319 side chain, which coordinates to the 2-hydroxyl oxygen atom of the bound xylose molecule in the catalytic pocket, also coordinates to the calcium ion, but not to the sodium ion. The calcium-dependent increase in activity appears to be caused by the structural change in the catalytic pocket induced by the tightly bound calcium ion and coordinating water molecules, and by the protonation state of glutamic acid-268, the catalytic acid of the enzyme. Our findings further elucidate the complex relationship between metal ions and glycosidases. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    Directory of Open Access Journals (Sweden)

    Guobin Xu

    2017-01-01

    Full Text Available Microbial-induced calcite precipitation (MICP is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.

  11. Investigation of organic desulfurization additives affecting the calcium sulfate crystals formation

    Directory of Open Access Journals (Sweden)

    Lv Lina

    2017-01-01

    Full Text Available In the study, the optimal experimental conditions for gypsum crystals formation were 323 K, 300 rpm stirring speed. The major impurities of Mg2+, Al3+ and Fe3+ were found to inhibit calcium sulfate crystals formation. Fe3+ caused the strongest inhibition, followed by Mg2+ and Al3+. The influence of desulfurization additives on the gypsum crystals formation was explored with the properties of moisture content, particle size distribution and crystal morphology. The organic desulfurization additives of adipic acid, citric acid, sodium citrate and benzoic acid were investigated. Citric acid and sodium citrate were found to improve the quality of gypsum. Moisture contents were reduced by more than 50%, gypsum particle sizes were respectively enlarged by 9.1 and 22.8%, induction time extended from 4.3 (blank to 5.3 and 7.8 min, and crystal morphology trended to be thicker.

  12. Why Basic Calcium Phosphate Crystals Should Be Targeted In the Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Claire-Louise Murphy

    2014-07-01

    Full Text Available Osteoarthritis (OA is the most common form of arthritis and results in significant social, psychological, and economic costs. It is characterised by progressive cartilage loss, bone remodelling, osteophyte formation, and synovial inflammation with resultant joint pain and disability. Since OA affects the entire joint, it is not surprising that there has been difficulty developing an effective targeted treatment. Treatments available for structural disease modification are limited. Current options appear to mostly reduce symptoms. Basic calcium phosphate (BCP crystals represent a potential therapeutic target in OA; they have been found in 100% of knee and hip cartilages removed at joint replacement. Intra-articular BCP crystals are associated with large joint effusions and dissolution of intra-articular structures, synovial proliferation, and marked degeneration as assessed by diagnostic imaging. While BCP deposition has been considered by many to be simply a consequence of advanced OA, there is substantial evidence to support BCP crystal deposition as an active pathogenic mediator of OA. BCP crystals exhibit a multiplicity of biologic effects in vitro including the ability to stimulate mitogenesis and prostaglandin, cytokine, and matrix metalloproteinase (MMP synthesis in a number of cell types including macrophages, synovial fibroblasts, and chondrocytes. BCP crystals also contribute to inflammation in OA through direct interaction with the innate immune system. Intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation in mice in vivo . Although intra-articular BCP crystals are difficult to detect at the bedside, advances in modern technology should allow improved identification and quantitation of BCP crystals. Our article focuses on why basic calcium crystals are important in the pathogenesis of OA. There is ample evidence that BCP crystals should be explored as a therapeutic target in OA.

  13. Growth Rate and Morphology of a Single Calcium Carbonate Crystal on Polysulfone Film Measured with Time Lapse Raman Micro Spectroscopy

    NARCIS (Netherlands)

    Liszka, B.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2016-01-01

    The growth of single, self- nucleated calcium carbonate crystals on a polysulfone (PSU) film was investigated with high resolution, time lapse Raman imaging. The Raman images were acquired on the interface of the polymer with the crystal. The growth of crystals could thus be followed in time. PSU is

  14. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    Science.gov (United States)

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. Copyright © 2015. Published by Elsevier B.V.

  15. Calcific tendinitis of the shoulder in basic calcium phosphate crystal deposition disease

    International Nuclear Information System (INIS)

    Scutellari, P.N.; Mazzilli, M.P.; Orzincolo, C.

    1986-01-01

    Basic calcium phosphate (BCP) crystal deposition can lead to periarticular collections associated with typical radiographic findings, most frequently observed in the shoulder. Moreover, these deposits may be revealed in other articular sites (i.e.,wrist, hand, foot, elbow, hip, etc.). Initially, the calcium deposits may appear poorly defined (cloudlike); sequently, they may reveal different patterns (linear, triangular or circular areas), changing in size, configuration and site. Adjacent bone may be normal, altough osteoporosis, cystic lesions and reactive sclerosis are reported. The radiographic appearance of calcifications will depend upon the exact location of the deposits in the specific tendon of the rotator cuff, the adjacent bursae and the soft tissues

  16. Stone clearance after extracorporeal shockwave lithotripsy in patients with solitary pure calcium oxalate stones smaller than 1.0 cm in the proximal ureter, with special reference to monohydrate and dihydrate content.

    Science.gov (United States)

    Ichiyanagi, Osamu; Nagaoka, Akira; Izumi, Takuji; Kawamura, Yuko; Tsukigi, Masaaki; Ishii, Tatsuya; Ohji, Hiroshi; Kato, Tomoyuki; Tomita, Yoshihiko

    2013-04-01

    The aim of this study was to assess stone-free rates following extracorporeal shockwave lithotripsy (ESWL) of pure calcium oxalate (CaOx) stones in the proximal ureter. The investigators retrospectively examined 53 patients with 5-10 mm pure CaOx stones in the proximal ureter from the medical archives of 593 consecutive patients treated with ESWL. The compositions of calcium oxalate monohydrate (COM) and dihydrate (COD) in a given stone were determined by infrared spectrometry. Stone size, attenuation number and stone-to-skin distance (SSD) were measured using plain radiography and computed tomography (CT). ESWL success was evaluated by stone-free status after the first single session. On average, calculi were 8.0 × 5.3 mm in size, with an SSD of 11.0 cm. The mean CT attenuation value was 740.1 HU. Attenuation numbers correlated significantly with stone diameter (r = 0.49), but had no correlation with the stone content of COM or COD. A negative correlation was observed between COM and COD content (r = -0.925). With regard to patients' physical characteristics and COM and COD content, no differences were found between study subgroups with stone-free and residual status (n = 38 and 15, respectively). There were also no differences in clinical features between patient subgroups with COM- or COD-predominant stones (n = 22 and 31, respectively). The findings indicated that the differences in COM and COD content of CaOx stones had no impact on stone clearance after ESWL and that a favorable stone-free rate of the stones treated with ESWL may be achieved independently of CaOx hydration.

  17. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  18. Synthesis and structural characterization of actinide oxalate compounds

    International Nuclear Information System (INIS)

    Tamain, C.

    2011-01-01

    Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles. (author) [fr

  19. Calcium pyrophosphate dihydrate crystal deposition disease presenting as a pseudotumor of the temporomandibular joint

    International Nuclear Information System (INIS)

    Vargas, A.; Teruel, J.; Pont, J.; Velayos, A.; Trull, J.; Lopez, E.

    1997-01-01

    We report a case of a 66-year-old white woman with calcium pyrophosphate dihydrate (CPPD) crystal deposition disease. The patient related a 2-month history of swelling with tenderness over the left pre-auricular region. A CT scan suggested a synovial chondromatosis. Surgical removal was done and histologic study showed CPPD crystals. This disease rarely involves the temporomandibular joint (TMJ) and is not usually considered in the differential diagnosis. To our knowledge, only 14 cases have been reported in the literature. (orig.)

  20. An analysis of calcium carbonate/polymer hybrid crystals applying contrast variation SANS

    International Nuclear Information System (INIS)

    Endo, Hitoshi; Schwahn, Dietmar; Coelfen, Helmut

    2004-01-01

    The geometry of calcium carbonate (CaCO 3 )/polymer hybrid crystals was investigated by means of the contrast variation small angle neutron scattering. Our sophisticated contrast variation method led to decomposition of the measured scattering intensities into partial scattering functions of each component. These decomposed partial scattering functions gave detailed information on each component in the hybrid particle. Especially, on the basis of the Babinet principle (or incompressibility hypothesis), the comparison of the cross terms led to the relationships of each scattering amplitude. In this way, we could determine the geometry of the hybrid crystals in detail

  1. An analysis of calcium carbonate/polymer hybrid crystals applying contrast variation SANS

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Hitoshi; Schwahn, Dietmar; Coelfen, Helmut

    2004-07-15

    The geometry of calcium carbonate (CaCO{sub 3})/polymer hybrid crystals was investigated by means of the contrast variation small angle neutron scattering. Our sophisticated contrast variation method led to decomposition of the measured scattering intensities into partial scattering functions of each component. These decomposed partial scattering functions gave detailed information on each component in the hybrid particle. Especially, on the basis of the Babinet principle (or incompressibility hypothesis), the comparison of the cross terms led to the relationships of each scattering amplitude. In this way, we could determine the geometry of the hybrid crystals in detail.

  2. Calcium carbonate as ikaite crystals in Antarctic sea ice

    Science.gov (United States)

    Dieckmann, Gerhard S.; Nehrke, Gernot; Papadimitriou, Stathys; Göttlicher, Jörg; Steininger, Ralph; Kennedy, Hilary; Wolf-Gladrow, Dieter; Thomas, David N.

    2008-04-01

    We report on the discovery of the mineral ikaite (CaCO3.6H2O) in sea-ice from the Southern Ocean. The precipitation of CaCO3 during the freezing of seawater has previously been predicted from thermodynamic modelling, indirect measurements, and has been documented in artificial sea ice during laboratory experiments but has not been reported for natural sea-ice. It is assumed that CaCO3 formation in sea ice may be important for a sea ice-driven carbon pump in ice-covered oceanic waters. Without direct evidence of CaCO3 precipitation in sea ice, its role in this and other processes has remained speculative. The discovery of CaCO3.6H2O crystals in natural sea ice provides the necessary evidence for the evaluation of previous assumptions and lays the foundation for further studies to help elucidate the role of ikaite in the carbon cycle of the seasonally sea ice-covered regions

  3. Two series of reactant's ratio-dependent lanthanide organic frameworks derived from nicotinic acid N-oxide and oxalate: synthesis, crystal structures and luminescence properties.

    Science.gov (United States)

    Yu, Yanyan; Zhang, Lijuan; Zhou, Yunshan; Zuhra, Zareen

    2015-03-14

    Two series of lanthanide(III)–organic frameworks with the molecular formula [Ln2(NNO)2(OX)2(H2O)4]n (Ln = Eu 1, Tb 2, Sm 3, Dy 4, Gd 5) and [Ln2(NNO)4(OX)(H2O)2]n (Ln = Eu 6, Tb 7, Sm 8, Dy 9, Gd 10) were synthesized successfully under the same hydrothermal conditions with nicotinic N-oxide (HNNO) and oxalic acid (H2OX) as the mixed ligands merely through varying the molar ratio of the reactants. The compounds were characterized by IR, elemental analysis, UV, TG-DTA and powder X-ray diffraction (XRD). X-ray single-crystal diffraction analyses of compounds 1 and 7 selected as representatives and powder XRD analysis of the compounds revealed that both the series of compounds feature three-dimensional (3-D) open frameworks, and crystallize in the triclinic P1 space group while with different unit cell parameters. In compound 1, pairs of Eu(3+) ions and pairs of NNO(−) ligands connect with each other alternately to form a 1-D infinite Eu-NNO double chain, the adjacent 1-D double-chains are then joined together through OX(2−) ligands leading to a 2D layer, the 2-D layers are further ‘pillared’ by OX(2−) ligands resulting in a 3-D framework. In compound 7, the 1-D Tb-NNO infinite chain and its 2-D layer are formed in an almost similar fashion to that in compound 1. The difference between the structures of the two compounds 1 and 7 is that the adjacent 2-D layers in compound 7 are further connected by NNO(−) ligands resulting in a 3-D framework. The photoluminescence properties and energy transfer mechanism of the compounds were studied systematically. The energy level of the lowest triplet states of the HNNO ligand (23148 cm(−1)) was determined based on the phosphorescence spectrum of compound 5 at 77 K. The (5)D0 (Eu(3+)) and (5)D4 (Tb(3+)) emission lifetimes are 0.46 ms, 0.83 ms, 0.69 ms and 0.89 ms and overall quantum yields are 1.03%, 3.29%, 2.58% and 3.78% for the compounds 1, 2, 6 and 7, respectively.

  4. Nutrition and oxalate metabolism in cats

    NARCIS (Netherlands)

    Dijcker, J.C.

    2013-01-01

    Over the past 30 years, a progressive increase in calcium oxalate (CaOx) urolith prevalence is reported in cats and dogs diagnosed with urolithiasis. This increase in prevalence appears to have occurred since dietary modifications were introduced to address magnesium ammonium phosphate urolithiasis.

  5. Study of lithium extraction from brine water, Bledug Kuwu, Indonesia by the precipitation series of oxalic acid and carbonate sodium

    Science.gov (United States)

    Sulistiyono, Eko; Lalasari, Latifa Hanum; Mayangsari, W.; Prasetyo, A. B.

    2018-05-01

    Lithium is one of the key elements in the development of batteries for electric car applications. Currently, the resources of the world's lithium are derived from brine water and lithium mineral based on spodumene rock. Indonesia which is located in the area of the ring of fire, has potential brine water resources in some area, such as brine water from Bledug Kuwu, Central Java that used in this research. The purposes of this research are to characterize brine water, Bledug Kuwu and to investigate the influence of chemical solvents on Li, Na, K, Ca, Mg, Al, B ion precipitation from brine water. This research was done with 2 times the process of chemical precipitation that runs series as follows: 5 liters of brine water were chemically precipitated using 400 ml of 12.43 N oxalic acid and followed by chemical precipitation using 400 mL of 7.07 N sodium carbonate solutions. Evaporation and filtration processes were also done twice in an effort to separate white precipitate and filtrate. The filtrate was analyzed by ICP-OES and white precipitates (salts) were analyzed by SEM, XRD, and XRF. The result shows that oxalate precipitation process extracted 32.24% Al, 23.42% B, 22.43% Ca, 14.26% Fe, 3.21 % K, 9.86% Na and 14.26% Li, the following process by carbonate precipitation process extracted 98.86% Mg, 73% Ca, 22.53% Li, 82.04% Al, 14.38% B, 12.50% K, 2.27% Na. There is 63.21% lithium is not extracted from the series process. The SEM analysis shows that the structure of granules on the precipitated salts by oxalic acid form gentle cubic-shaped solid. In the other hand, oxalate precipitation followed by sodium carbonate has various particle sizes and the shape of crystals is fragments, prism and cube look like magnesium carbonate, calcium chloride, and calcite's crystal respectively. This is in accordance with XRD analysis that phases of whewellite (CaC2O4.H2O), disodium oxalate (Na2C2O4), magnesite (MgCO3), calcium lithium aluminum (Al1.19 Ca1Li0.81), dolomite (CaCO3

  6. Calcium

    Science.gov (United States)

    ... You can get decent amounts of calcium from baked beans, navy beans, white beans, and others. Canned fish. You're in luck if you like sardines and canned salmon with bones. Almond milk. Working Calcium Into Your ...

  7. Electron paramagnetic resonance and luminescence of chromium in calcium germanate crystals

    CERN Document Server

    Gorshkov, O N; Tyurin, S A; Chigineva, A B; Chigirinskij, Y I

    2002-01-01

    One observed luminescence of Cr sup 4 sup + :Ca sub 2 GeO sub 4 single crystals near 1.3 mu m wave length at excitation by a semiconducting laser up to 573 K. At T < 110 K one detected the EPR spectrum identified as one belonging to Cr sup 4 sup + ions substituting for germanium. One determined the components of g-tensor and its basic axes. In calcium germanate this impurity centre slightly violates crystal symmetry. Detected deviation from the Curie law in EPR temperature dependence is explained by transition into the excited state with activation low energy. The giant efficient multiplicity of degeneration of the excited state is explained by induction of soft phonon modes of crystal at excitation of a defect

  8. Removal of Calcium from Scheelite Leaching Solution by Addition of CaSO4 Inoculating Crystals

    Science.gov (United States)

    Liu, Wenting; Li, Yongli; Zeng, Dewen; Li, Jiangtao; Zhao, Zhongwei

    2018-04-01

    In this work, the solubility behaviors of gypsum and anhydrite in the H2SO4-H3PO4-H2O system were investigated over the temperature range T = 30-80°C, and the results showed that the solubility of anhydrite was considerably lower than that of gypsum. On the basis of the differential solubilities of gypsum and anhydrite, a method was developed to remove calcium from the scheelite leaching solution by adding anhydrite as an inoculating crystal. The effects of the reaction time, concentration of the CaSO4 inoculating crystals, and temperature were investigated. With an addition of CaSO4 inoculating crystals at a concentration of 60 g/L, the Ca2+ concentration of the scheelite leaching solution decreased to a low level of approximately 0.76 g/L after 10 h at 70°C.

  9. Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC) for Eco-Friendly Paper

    Science.gov (United States)

    Kim, Jung-Ah; Han, Gi-Chun; Lim, Mihee; You, Kwang-Suk; Ryu, Miyoung; Ahn, Ji-Whan; Fujita, Toyohisa; Kim, Hwan

    2009-01-01

    Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process (Ca(OH)2-NaOH-Na2CO3). Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture. PMID:20087470

  10. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    International Nuclear Information System (INIS)

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S.

    2005-01-01

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKCα-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis

  11. Effect of Lagenaria siceraria fruit powder on sodium oxalate induced urolithiasis in Wistar rats

    Directory of Open Access Journals (Sweden)

    Rahul V Takawale

    2012-01-01

    Full Text Available Background: In spite of advances in the present practice of medicine, the formation and growth of calculi continues to trouble mankind, as there is no satisfactory drug to treat kidney stones. In India, many indigenous drugs are in use for the treatment of urinary calculus disease. Objective: The present study was intended to determine anti-urolithiatic effect of Lagenaria siceraria fruit powder (LSFP against sodium oxalate (NaOx induced urolithiasis in rats. Materials and Methods: Animals were grouped as Vehicle Group (received vehicle gum acacia 2% w/v 1 mL/kg/p.o., NaOx Group(Sodium oxalate 70 mg/kg,i.p., LSFP Group (500 mg/kg, p.o. LSFP suspended in gum acacia 2% + Sodium oxalate 70 mg/kg, Cystone Group (500 mg/kg, p.o. Cystone suspended in gum acacia 2% + Sodium oxalate 70 mg/kg. Result: The increased severity of microscopic calcium oxalate (CaOx crystals deposition along with increased concentration in the kidney was seen after 7 days of NaOx (70 mg/kg, i.p. pre-treatment. LSFP (500 mg/kg, p.o. and standard marketed formulation Cystone (500 mg/kg, p.o. caused a significant reversal of NaOx-induced changes in ion excretion and urinary CaOx concentration in 7 days treatment. Conclusion: From the results, it was concluded that LSFP showed beneficial effect against urolithiasis by decreasing CaOx excretion and preventing crystal deposition in the kidney tubules.

  12. Conservation of Monuments by a Three-Layered Compatible Treatment of TEOS-Nano-Calcium Oxalate Consolidant and TEOS-PDMS-TiO2 Hydrophobic/Photoactive Hybrid Nanomaterials

    Directory of Open Access Journals (Sweden)

    Chrysi Kapridaki

    2018-04-01

    Full Text Available In the conservation of monuments, research on innovative nanocomposites with strengthening, hydrophobic and self-cleaning properties have attracted the interest of the scientific community and promising results have been obtained as a result. In this study, stemming from the need for the compatibility of treatments in terms of nanocomposite/substrate, a three-layered compatible treatment providing strengthening, hydrophobic, and self-cleaning properties is proposed. This conservation approach was implemented treating lithotypes and mortars of different porosity and petrographic characteristics with a three-layered treatment comprising: (a a consolidant, tetraethoxysilane (TEOS-nano-Calcium Oxalate; (b a hydrophobic layer of TEOS-polydimethylsiloxane (PDMS; and (c a self-cleaning layer of TiO2 nanoparticles from titanium tetra-isopropoxide with oxalic acid as hole-scavenger. After the three-layered treatment, the surface hydrophobicity was improved due to PDMS and nano-TiO2 in the interface substrate/atmosphere, as proven by the homogeneity and the Si–O–Ti hetero-linkages of the blend protective/self-cleaning layers observed by Scanning Electron Microscope (SEM, Transmission Electron Microscope (TEM and Fourier-Transform Infrared Spectroscopy (FTIR. The aesthetic, microstructural, mechanical and permeabile compatibility of the majority of treated substrates ranged within acceptability limits. The improved photocatalytic activity, as proven by the total discoloration of methylene blue in the majority of cases, was attributed to the anchorage of TiO2, through the Si–O–Ti bonds to SiO2, in the interface with the atmosphere, thus enhancing photoactivation.

  13. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Radha, A. V. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Forbes, Tori Z. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Killian, Christopher E. [Univ. of Wisconsin, Madison, WI (United States); Gilbert, P.U.P.A [Univ. of Wisconsin, Madison, WI (United States); Navrotsky, Alexandra [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States)

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  14. Growth and characterization of calcium hydrogen phosphate dihydrate crystals from single diffusion gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, K.; Dale Keefe, C. [Department of Chemistry, Cape Breton University, Sydney, Nova Scotia (Canada)

    2010-09-15

    Calcium hydrogen phosphate dihydrate (CaHPO{sub 4}.2H{sub 2}O, CHPD) a dissolved mineral in urine is known to cause renal or bladder stones in both human and animals. Growth of CHPD or brushite using sodium metasilicate gel techniques followed by light and polarizing microscopic studies revealed its structural and morphological details. Crystal identity by powder x-ray diffraction confirmed the FT-IR and FT-Raman spectroscopic techniques as alternate methods for fast analysis of brushite crystals which could form as one type of renal stones. P-O-P asymmetric stretchings in both FT-IR (987.2, 874.1 and 792 cm{sup -1}) and FT-Raman (986.3 cm{sup -1}, 1057.6 cm{sup -1} and 875.2 cm{sup -1}) were found as characteristics of brushite crystals. Differential Scanning Calorimetry (DSC) analysis revealed brushite crystallization purity using gel method by studying their endothermic peaks. This study incorporated a multidisciplinary approach in characterizing CHPD crystals grown in vitro to help formulate prevention or dissolution strategy in controlling urinary stone growth. Initial studies with 0.2 M citric acid ions as controlling agent in the nucleation of brushite crystals further support the presented approach. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Hydroxyproline Metabolism and Oxalate Synthesis in Primary Hyperoxaluria.

    Science.gov (United States)

    Fargue, Sonia; Milliner, Dawn S; Knight, John; Olson, Julie B; Lowther, W Todd; Holmes, Ross P

    2018-06-01

    Background Endogenous oxalate synthesis contributes to calcium oxalate stone disease and is markedly increased in the inherited primary hyperoxaluria (PH) disorders. The incomplete knowledge regarding oxalate synthesis complicates discovery of new treatments. Hydroxyproline (Hyp) metabolism results in the formation of oxalate and glycolate. However, the relative contribution of Hyp metabolism to endogenous oxalate and glycolate synthesis is not known. Methods To define this contribution, we performed primed, continuous, intravenous infusions of the stable isotope [ 15 N, 13 C 5 ]-Hyp in nine healthy subjects and 19 individuals with PH and quantified the levels of urinary 13 C 2 -oxalate and 13 C 2 -glycolate formed using ion chromatography coupled to mass detection. Results The total urinary oxalate-to-creatinine ratio during the infusion was 73.1, 70.8, 47.0, and 10.6 mg oxalate/g creatinine in subjects with PH1, PH2, and PH3 and controls, respectively. Hyp metabolism accounted for 12.8, 32.9, and 14.8 mg oxalate/g creatinine in subjects with PH1, PH2, and PH3, respectively, compared with 1.6 mg oxalate/g creatinine in controls. The contribution of Hyp to urinary oxalate was 15% in controls and 18%, 47%, and 33% in subjects with PH1, PH2, and PH3, respectively. The contribution of Hyp to urinary glycolate was 57% in controls, 30% in subjects with PH1, and synthesis in individuals with PH2 and PH3. In patients with PH1, who have the highest urinary excretion of oxalate, the major sources of oxalate remain to be identified. Copyright © 2018 by the American Society of Nephrology.

  16. Spectrographic determination of dysprosium in doped crystals of calcium sulfate used for dosimetric material

    International Nuclear Information System (INIS)

    Grigoletto, T.; Lordello, A.R.

    1984-01-01

    A spectrographic method is described for the quantitative determination of dysprosium in doped crystals of calcium sulphate. The consequences of the changes in some parameters of the excitation conditions, such as arc current, electrode type and total or partial burning of sample, in the analytical results are discussed. Matrix effects are investigated. Variations in the intensity of the spectral lines are verified by recording the spectrum in distinct photographic plates. The role of internal standard in analytical reproducibility and in counterbalance of the variations in the arc current and in the weight of sample is studied. Accuracy is estimated by comparative analysis of two calcium sulphate samples by X-Ray Fluorescence, Neutron Activation and Inductive Coupled Plasma Emission Spectroscopy. (M.A.C.) [pt

  17. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.

    Science.gov (United States)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Benning, Liane G

    2011-01-01

    The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.

  18. Optimized Pyroelectric Vidicon Thermal Imager. Volume II. Improper Ferroelectric Crystal Growth.

    Science.gov (United States)

    1980-09-01

    4.2.1 Apparatus .......................... 77 4.2.2 Growth from Acidic Media .................o 78 4.2.3 Hydrothermal Growth in Basic Media ...... 99...method of hydrothermal growth was examined using both acidic and basic solvents. (1) Standard Composition Our standard composition was derived from... Acid 10 Good, well formed crystals. Acrylic Acid 10 Very good, clear crystals. Glycine 10 Poor crystals. Oxalic Acid 10 Precipitation of calcium and

  19. Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos

    Science.gov (United States)

    C. A. Clausen; Frederick Green; B. M. Woodward; J. W. Evans; R. C. DeGroot

    2000-01-01

    The increased interest in copper-based wood preservatives has hastened the need for understanding why some fungi are able to attack copper-treated wood. Due in part to accumulation of oxalic acid by brown-rot fungi and visualization of copper oxalate crystals in wood decayed by known copper-tolerant decay fungi, oxalic acid has been implicated in copper tolerance by...

  20. Crystal Macropattern Development in Prunus serotina (Rosaceae, Prunoideae) Leaves

    OpenAIRE

    LERSTEN, NELS R.; HORNER, HARRY T.

    2006-01-01

    • Background and Aims Prunus, subgenus Padus, exhibits two completely different calcium oxalate crystal macropatterns in mature leaves. Foliar macropattern development has been described previously in P. virginiana, representing one version. Prunus serotina, in the group exhibiting the second macropattern, is described here. The goal was to describe developmental details for comparison with P. virginiana, and to extend the sparse current knowledge of crystal macropatterns.

  1. Investigation of self-frequency doubling crystals, yttrium calcium oxyborate (YCOB), doped with neodymium or ytterbium

    Science.gov (United States)

    Ye, Qing

    1999-09-01

    There is a need for low cost red, green, and blue (RGB) lasers for a number of commercial applications such as high-resolution laser printing, full color laser display. While semiconductor lasers still have both availability (green and blue) and beam quality (red) problems, nonlinear frequency conversion of diode-pumped solid state lasers are good alternatives. Among them, self- frequency doubling is an attractive approach because of its simpler design and lower cost. Unfortunately, few known crystals possess self-frequency doubling property. A newly discovered yttrium calcium oxyborate (YCOB) can fill in the role because it has adequate lasing and nonlinear frequency conversion efficiency. More importantly, YCOB crystal melts congruently so that high quality, large size single crystals can be grown using conventional Czochralski melt pulling technique. The thermal mechanical properties, linear and nonlinear optical properties of YCOB, laser properties of Nd:YCOB and Yb:YCOB crystals were investigated. Based on the calculated second harmonic phase matching angles, Nd:YCOB laser rods were fabricated. Self-frequency doubled green emission with 62 mW output power and red emission with 16 mW output power were successfully demonstrated using diode-pumping. It is the first time to achieve the continuous wave (cw) red lasing in Nd doped rare-earth calcium oxyborates. Rare-earth ions doping in YCOB crystal can not only achieve lasing, but also affect the physical and chemical properties of the crystal. The stability field of YCOB is reduced in proportion to both the ionic size differences from yttrium and doping concentrations of the rare-earth ions. The doping also changes the linear and nonlinear optical properties of the material. For example, the second harmonic conversion efficiency of 20% Yb doped YCOB was enhanced by more than 15% compared to undoped YCOB. The absorption cutoff edge of 20% Yb:YCOB was red- shift by more than 60 nm. Similar effects were observed in

  2. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2010-08-01

    Full Text Available The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario

  3. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Science.gov (United States)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  4. Thermal decomposition kinetics of strontium permanganate trihydrate, cadmium permanganate hexahydrate and calcium permanganate pentahydrate crystals

    International Nuclear Information System (INIS)

    Sakurai, K.R.; Schaeffer, D.A.; Herley, P.J.

    1978-01-01

    A thermogravimetric study of the kinetics of thermal nuclei formation and growth has been carried out for the dehydration and decomposition of single crystal strontium permanganate trihydrate, cadmium permanganate hexahydrate, and calcium permanganate pentahydrate. The isothermal dehydration of strontium parmanganate trihydrate occurs in two stages between 50 and 100 0 C. The dehydration kinetics suggest that the two dehydration stages are based on a single-step nucleation process followed by a growth process without nuclei overlap. The resulting activation energies are consistent with the proposed nucleation theory. For the dehydration kinetics of cadmium permanganate hexahydrate, an overlapping nucleation growth mechanism appears to be operating between 30 and 60 0 C. The results are irreproducible for the dehydration of calcium permanganate pentahydrate at 100 0 C. The thermal decomposition studies indicate that the data of the sigmoidal, isothermal fractional decomposition vs. time curves are reproducible for whole and ground crystals of each dehydrated permanganate. All of the data plots contain an induction or slow rate period, an acceleratory and a decay period. The induction period can be shortened by irradiation with 60 Co γ-rays prior to decomposition. Activation energies obtained for all three materials for the various thermal decomposition periods are found to be similar to those published previously on other alkali and alkaline-earth permanganates. (Auth.)

  5. CT Imaging for Evaluation of Calcium Crystal Deposition in the Knee: Initial Experience from The Multicenter Osteoarthritis (MOST) Study

    Science.gov (United States)

    Misra, Devyani; Guermazi, Ali; Sieren, Jered P.; Lynch, John; Torner, James; Neogi, Tuhina; Felson, David T.

    2014-01-01

    Objective Role of intra-articular calcium crystals in osteoarthritis (OA) is unclear. Imaging modalities used to date for its evaluation have limitations in their ability to fully characterize intra-articular crystal deposition. Since Computed Tomography (CT) imaging provides excellent visualization of bones and calcified tissue, in this pilot project we evaluated the utility of CT scan in describing intra-articular calcium crystal deposition in the knees. Method We included 12 subjects with and 4 subjects without radiographic chondrocalcinosis in the most recent visit from the Multicenter Osteoarthritis (MOST) study, which is a longitudinal cohort of community-dwelling older adults with or at risk for knee OA. All subjects underwent CT scans of bilateral knees. Each knee was divided into 25 subregions and each subregion was read for presence of calcium crystals by a musculoskeletal radiologist. To assess reliability, readings were repeated 4 weeks later. Results CT images permitted visualization of 25 subregions with calcification within and around the tibio-femoral and patello-femoral joints in all 24 knees with radiographic chondrocalcinosis. Intra-articular calcification was seen universally including meniscal cartilage (most common site involved in 21/24 knees), hyaline cartilage, cruciate ligaments, medial collateral ligament and joint capsule. Readings showed good agreement for specific tissues involved with calcium deposition (kappa: 0.70, 95% CI 0.62–0.80). Conclusion We found CT scan to be a useful and reliable tool for describing calcium crystal deposition in the knee and therefore potentially for studying role of calcium crystals in OA. We also confirmed that “chondrocalcinosis” is a misnomer because calcification is present ubiquitously. PMID:25451303

  6. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    International Nuclear Information System (INIS)

    Rodríguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Akerboom, Jasper; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2008-01-01

    The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way

  7. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls

    International Nuclear Information System (INIS)

    Ma Yufei; Qiao Li; Feng Qingling

    2012-01-01

    For the purpose of studying the mediation of organic matrix on the crystallization of calcium carbonate, water soluble matrix (WSM), acid soluble matrix (ASM) and acid insoluble matrix (AIM) were extracted from aragonite pearls and vaterite pearls respectively. Then, in-vitro calcium carbonate crystallization experiments under the control of these six organic matrices were carried out in the present study. Scanning electron microscopy (SEM) was utilized to observe the morphology of CaCO 3 and Raman spectroscopy as a powerful technique was used to distinguish the crystal polymorph. Influences of the six kinds of organic matrices on the calcium carbonate crystal growth are proposed. ASM of vaterite pearls can induce vaterite to crystallize and WSM of aragonite pearls mediates to produce aragonite crystals. The single AIM membranes of the two pearls have no pronounced effect on the CaCO 3 crystallization. Additionally, the crystal size obtained with the additive of WSM of the two kinds of pearls is smaller than that with the additive of ASM. Moreover, self-assembly phenomenon in the biomineralization process and the distorted morphology calcite are observed. Current results demonstrate important aspects of matrix protein-controlled crystallization, which is beneficial to the understanding of nacre biomineralization mechanism. Further study of the precise control of these matrix proteins on CaCO 3 crystal growth is being processed. - Highlights: ► WSM, ASM and AIM are extracted from aragonite pearls and vaterite pearls. ► ASM of vaterite pearl induces vaterite. ► WSM of aragonite pearl mediates to produce aragonite. ► WSM can fine control crystal size smaller than that with the additive of ASM. ► Self-assembly and the distorted calcite existed in the mineralization process.

  8. Calcium pyrophosphate dihydrate and hydroxyapatite crystals in a patient with rheumatoid arthritis: Acase report

    Directory of Open Access Journals (Sweden)

    Shereen R Kamel

    2017-01-01

    Full Text Available The association between rheumatoid arthritis (RA and calcium pyrophosphate dihydrate (CPPD crystal deposits can now be easily identified by MSUS, which is a noninvasive technique that can be applied to patients with painful joints and enthesis that are unexplained by rheumatoid activity. In this paper, we report an Egyptian case of a 51-year-old man who had rheumatoid arthritis since 7 years and developed bilateral knee and heel pain of 1.5 months’ duration with gradual onset and progressive course. Radiography revealed features of RA in both hands, as well as features of severe osteoarthritis in both knees with no signs of chondrocalcinosis. Ultrasonography of the joints, Achilles tendon, and plantar fascia detected knee, Achilles tendon, and plantar fascia calcifications, which are characteristic of CPPD, and supraspinatus calcification, which is characteristic of hydroxyapatite (HA deposition. Further investigations revealed no evidence of metabolic disorders. CPPD and HA crystals were identified in his synovial fluid. Subclinical affection with CPPD and HA crystals in RA can be easily detected by ultrasonography, which allows early management to prevent future attacks in RA patients that could lead to exacerbation of joint symptoms that may be missed as rheumatoid disease activity. Diet control and colchicine treatment may be more effective if started early before exacerbation.

  9. Oxalate metal complexes in aerosol particles: implications for the hygroscopicity of oxalate-containing particles

    Directory of Open Access Journals (Sweden)

    T. Furukawa

    2011-05-01

    Full Text Available Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to weaken the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA play an important role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is an important component of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca and zinc (Zn in aerosols collected at Tsukuba in Japan. Size-fractionated aerosol samples were collected for this purpose using an impactor aerosol sampler. It was shown that 10–60% and 20–100% of the total Ca and Zn in the finer particles (<2.1 μm were present as Ca and Zn oxalate complexes, respectively. Oxalic acid is hygroscopic and can thus increase the CCN activity of aerosol particles, while complexes with various polyvalent metal ions such as Ca and Zn are not hygroscopic, which cannot contribute to the increase of the CCN activity of aerosols. Based on the concentrations of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not always increase the hygroscopicity of aerosols in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is advisable that the cooling effect of organic aerosols should be estimated by including the

  10. Evaluation of calcium hydrogen carbonate mesoscopic crystals as a disinfectant for influenza A viruses

    Science.gov (United States)

    NAKASHIMA, Ryuji; KAWAMOTO, Masaomi; MIYAZAKI, Shigeru; ONISHI, Rumiko; FURUSAKI, Koichi; OSAKI, Maho; KIRISAWA, Rikio; SAKUDO, Akikazu; ONODERA, Takashi

    2017-01-01

    In this study, the virucidal effect of a novel electrically charged disinfectant CAC-717 was investigated. CAC-717 is produced by applying an electric field to mineral water containing calcium hydrogen carbonate to generate mesoscopic crystals. Virus titration analysis showed a >3 log reduction of influenza A viruses after treatment with CAC-717 for 1 min in room temperature, while infectivity was undetectable after 15 min treatment. Adding bovine serum albumin to CAC-717 solution did not affect the disinfectant effect. Although CAC-717 is an alkaline solution (pH=12.39), upon contact with human tissue, its pH becomes almost physiological (pH 8.84) after accelerated electric discharge, which enables its use against influenza viruses. Therefore, CAC-717 may be used as a preventative measure against influenza A viruses and for biosecurity in the environment. PMID:28392537

  11. Calcium Sulfoaluminate Sodalite (Ca 4 Al 6 O 12 SO 4 ) Crystal Structure Evaluation and Bulk Modulus Determination

    KAUST Repository

    Hargis, Craig W.; Moon, Juhyuk; Lothenbach, Barbara; Winnefeld, Frank; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.

    2013-01-01

    The predominant phase of calcium sulfoaluminate cement, Ca 4(Al6O12)SO4, was investigated using high-pressure synchrotron X-ray diffraction from ambient pressure to 4.75 GPa. A critical review of the crystal structure of Ca4(Al 6O12)SO4 is presented

  12. Reaction of uranyl nitrate with carboxylic di-acids under hydrothermal conditions. Crystal structure of complexes with L(+)-tartaric and oxalic acids

    International Nuclear Information System (INIS)

    Thuery, P.

    2007-01-01

    L(+)-tartaric acid reacts with uranyl nitrate in the presence of KOH, under mild hydrothermal conditions, to give the complex [UO 2 (C 4 H 4 O 6 )(H 2 O)] (1), the first uranyl tartrate to be crystallographically characterized. Each tartrate ligand bridges three uranyl ions, one of them in chelating fashion through proximal carboxylate and hydroxyl groups. The resulting assemblage is two-dimensional, with the uranyl pentagonal bipyramidal coordination polyhedra separated from one another. Prolonged heating of an uranyl tartrate solution resulted in oxidative cleavage of the acid and formation of the oxalate complex [(UO 2 ) 2 (C 2 O 4 ) 2 (OH)Na(H 2 O) 2 ] (2). The bis-bidentate oxalate and bridging hydroxide groups ensure the formation of sheets with corner-sharing uranyl pentagonal bipyramidal coordination polyhedra, in which six-membered metallacycles encompass the sodium ions. These sheets are assembled into a three-dimensional framework through further oxo-bonding of the sodium ions. (authors)

  13. On the americium oxalate solubility

    International Nuclear Information System (INIS)

    Zakolupin, S.A.; Korablin, Eh.V.

    1977-01-01

    The americium oxalate solubility at different nitric (0.0-1 M) and oxalic (0.0-0.4 M) acid concentrations was investigated in the temperature range from 14 to 60 deg C. The dependence of americium oxalate solubility on the oxalic acid concentration was determined. Increasing oxalic acid concentration was found to reduce the americium oxalate solubility. The dependence of americium oxalate solubility on the oxalic acid concentration was noted to be a minimum at low acidity (0.1-0.3 M nitric acid). This is most likely due to Am(C 2 O 4 ) + , Am(C 2 O 4 ) 2 - and Am(C 2 O 4 ) 3 3- complex ion formation which have different unstability constants. On the basis of the data obtained, a preliminary estimate was carried out for the product of americium oxalate solubility in nitric acid medium (10 -29 -10 -31 ) and of the one in water (6.4x10 -20 )

  14. Nephroprotective effect of Corn Silk extract on oxalic acid-induced nephrocalcinosis in rabbit model

    Directory of Open Access Journals (Sweden)

    Faruk Hassan Al-Jawad

    2012-04-01

    Full Text Available ABSTRACT Background : Nephrocalcinosis is a state of deposition of calcium phosphate or oxalate in the renal parenchyma. It may occur in patients with renal tubular acidosis, vitamin D intoxication, and hyperparathyroidism. Corn silk was used in traditional Chinese medicine to relieve renal pains. Aim: To evaluate the effect of Corn silk aqueous extract in reducing calcium deposits from renal parenchyma in oxalic acid-induced nephrocalcinosis model. Materials and methods: Fourteen healthy rabbits were allocated to two groups. Two hours before induction of nephrocalcinosis, one group received water and the other received aqueous extract of corn silk and continued feeding for ten days. Blood samples were collected for biochemical analysis before induction and in the fifth and tenth post-induction day. Urine samples were taken to estimate urinary ca+2 levels and crystals. The histopathological examination was carried to check for crystal deposits in renal tissues. Results: Corn silk aqueous extract produced a significant reduction of blood urea nitrogen(5.2+/-0.08 vs 7.3+/-0.2 mmol/l, serum creatinine (85.9+/-0.2 vs 97.3+/-0.5 mmol/l and serum Na+ levels (137+/-0.2 vs 142.16+/-0.7 mmol/l with non-significant reduction in serum K+ (4.0+/-0.02 vs 4.2+/-0.05. There is a significant reduction in calcium deposition in renal parenchyma in comparison to the control group after ten days of treatment. Conclusion: Corn silk had a significant diuretic effect that accelerates the excretion of urinary calcium. [J Intercult Ethnopharmacol 2012; 1(2.000: 75-78

  15. Rare-Earth Calcium Oxyborate Piezoelectric Crystals ReCa4O(BO33: Growth and Piezoelectric Characterizations

    Directory of Open Access Journals (Sweden)

    Fapeng Yu

    2014-07-01

    Full Text Available Rare-earth calcium oxyborate crystals, ReCa4O(BO33 (ReCOB, Re = Er, Y, Gd, Sm, Nd, Pr, and La , are potential piezoelectric materials for ultrahigh temperature sensor applications, due to their high electrical resistivity at elevated temperature, high piezoelectric sensitivity and temperature stability. In this paper, different techniques for ReCOB single-crystal growth are introduced, including the Bridgman and Czochralski pulling methods. Crystal orientations and the relationships between the crystallographic and physical axes of the monoclinic ReCOB crystals are discussed. The procedures for dielectric, elastic, electromechanical and piezoelectric property characterization, taking advantage of the impedance method, are presented. In addition, the maximum piezoelectric coefficients for different piezoelectric vibration modes are explored, and the optimized crystal cuts free of piezoelectric cross-talk are obtained by rotation calculations.

  16. Uranyl Oxalate Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Leturcq, G.; Costenoble, S.; Grandjean, S. [CEA Marcoule DEN/DRCP/SCPS/LCA - BP17171 - 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    The solubility of uranyl oxalate was determined at ambient temperature by precipitation in oxalic-nitric solutions, using an initial uranyl concentration of 0.1 mol/L. Oxalic concentration varied from 0.075 to 0.3 mol/L while nitric concentration ranged between 0.75 and 3 mol/L. Dissolution tests, using complementary oxalic-nitric media, were carried out for 550 hours in order to study the kinetic to reach thermodynamic equilibrium. Similar solubility values were reached by dissolution and precipitation. Using the results, it was possible to draw the solubility surface versus oxalic and nitric concentrations and to determine both the apparent solubility constant of UO{sub 2}C{sub 2}O{sub 4}, 3H{sub 2}O (Ks) and the apparent formation constant of the first uranyl-oxalate complex UO{sub 2}C{sub 2}O{sub 4} (log {beta}1), for ionic strengths varying between 1 and 3 mol/L. Ks and log {beta}1 values were found to vary from 1.9 10{sup -8} to 9.2 10{sup -9} and from 5.95 to 6.06, respectively, when ionic strength varied from 1 to 3 mol/L. A second model may fit our data obtained at an ionic strength of 3 mol/L suggesting as reported by Moskvin et al. (1959) that no complexes are formed for [H{sup +}] at 3 M. The Ks value would then be 1.3 10{sup -8}. (authors)

  17. Studies on the growth and characterization of tris (glycine) calcium({Iota}{Iota}) dichloride-a nonlinear optical crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@ssn.edu.i [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India)

    2011-01-01

    A systematic characterization of a novel nonlinear optical material tris (glycine) calcium({Iota}{Iota}) dichloride (TGCC) is performed. The solubility and metastable zone width of TGCC were studied. TGCC single crystal of dimensions 34x23x5 mm{sup 3} was grown by the slow evaporation technique. Single crystal X-ray diffraction studies reveal that the crystal belongs to orthorhombic system. Energy dispersive X-ray analysis confirms the presence of elements in the crystal. Structural perfection of the as-grown single crystal was studied through multicrystal X-ray diffraction analysis. The thermal characteristics of TGCC were analyzed by thermogravimetric and differential thermal analysis and differential scanning calorimetry. The transmittance of TGCC crystal has been used to calculate the optical band gap of the crystal. Chemical etching studies of TGCC crystal was carried out. The dielectric and mechanical behavior of the crystals were analyzed. The second harmonic conversion property of TGCC was identified by the Kurtz and Perry powder technique and was observed to be higher than that of KDP.

  18. Effect of processing and cooking on total and soluble oxalate content in frozen root vegetables prepared for consumption

    Directory of Open Access Journals (Sweden)

    Z. LISIEWSKA

    2008-12-01

    Full Text Available The oxalate content of beetroot, carrot, celeriac and parsnip after freezing by traditional and modified methods (the latter resulting in a convenience food product, and after the preparation of frozen products for consumption was evaluated. The highest content of total and soluble oxalates (105 and 82 mg 100 g-1 fresh matter was found in beetroot. The lowest proportion (55% of soluble oxalates was noted in celeriac; this proportion was higher in the remaining vegetables, being broadly similar for each of them. Blanching brought about a significant decrease in total and soluble oxalates in fresh vegetables. Cooking resulted in a higher loss of oxalates. The level of oxalates in products prepared for consumption directly after freezing approximated that before freezing. Compared with the content before freezing, vegetables prepared for consumption by cooking after frozen storage contained less oxalates, except for total oxalates in parsnip and soluble oxalates in beetroot and celeriac. The highest ratio of oxalates to calcium was found in raw beetroot; it was two times lower in raw carrot; five times lower in raw celeriac; and eight times lower in raw parsnip. These ratios were lower after technological and culinary processing. The percentage of oxalate bound calcium depended on the species; this parameter was not significantly affected by the procedures applied. The true retention of oxalates according to Judprasong et al. (2006 was lower than retention calculated taking its content in 100 g fresh matter into account.;

  19. Research on the possibility of separation of the small amounts of calcium from strontium during crystallization of their nitrates in the system acetic acid-water

    International Nuclear Information System (INIS)

    Hubicki, W.; Piskorek, M.

    1976-01-01

    Co-crystallization of the calcium nitrate and strontium nitrate from solutions of acetic acid at room temperature and boiling point were investigated. The process of crystallization was studied, using radioactive calcium isotope Ca 45 of 153 day semi-stability period. The presented investigations show that high effects of purifying strontium nitrate from small amounts of calcium can be obtained during crystallization of these nitrates from the system CH 3 COOH-H 2 O. This method was applied for obtaining strontium nitrate of high purity. (author)

  20. The influence of calcium lignosulphonate - sodium bicarbonate on the status of ettringite crystallization in fly ash cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K.; Zhang, C.; Liu, Z. [Hebei Institute of Technology, Tang Shan (China)

    2002-01-01

    Calcium lignosulphonate (CL) - sodium bicarbonate (SB) (a total of 0.7% by weight of cement and CL to SB ratio of 1:1.8) will cause the fluidity of fly ash cement paste to decrease rapidly. It is the variation of the status of ettringite crystallization that causes this phenomenon. Experimental results show that CL-SB affects the liquid-phase composition of fly ash cement paste remarkably. As a result, ettringite crystallizes out in the shape of needles from the solution. These needle-like crystal particles are distributed in the solution at a certain distance from the surface of clinker particles. At the initial hydration stage, the crystallization of ettringite is stronger in fly ash cement with calcined gypsum than in fly ash cement with gypsum. 5 refs., 10 figs., 2 tabs.

  1. Crystal structure of a mixed-ligand terbium(III coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology

    Directory of Open Access Journals (Sweden)

    Chainok Kittipong

    2016-01-01

    Full Text Available The title compound, poly[(μ3-formato(μ4-oxalatoterbium(III], [Tb(CHO2(C2O4]n, is a three-dimensional coordination polymer, and is isotypic with the LaIII, CeIII and SmIII analogues. The asymmetric unit contains one TbIII ion, one formate anion (CHO2− and half of an oxalate anion (C2O42−, the latter being completed by application of inversion symmetry. The TbIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic manner by two chelating carboxylate groups from two C2O42− ligands, two carboxylate oxygen atoms from another two C2O42− ligands and three oxygen atoms from three CHO2− ligands, with the Tb—O bond lengths and the O—Tb—O bond angles ranging from 2.4165 (19 to 2.478 (3 Å and 64.53 (6 to 144.49 (4°, respectively. The CHO2− and C2O42− anions adopt μ3-bridging and μ4-chelating-bridging coordination modes, respectively, linking adjacent TbIII ions into a three-dimensional 12-connected fcu topology with point symbol (324.436.56. The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature.

  2. Thorium oxalate solubility and morphology

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.; Hall, R.

    1981-10-01

    Thorium was used as a stand-in for studying the solubility and precipitation of neptunium and plutonium oxalates. Thorium oxalate solubility was determined over a range of 0.001 to 10.0 in the concentration parameter [H 2 C 2 O 4 ]/[HNO 3 ] 2 . Morphology of thorium oxide made from the oxalate precipitates was characterized by scanning electron microscopy. The different morphologies found for oxalate-lean and oxalate-rich precipitations were in agreement with predictions based on precipitation theory

  3. Nephroprotective effect of Corn Silk extract on oxalic acid-induced nephrocalcinosis in rabbit model

    OpenAIRE

    Faruk Hassan Al-Jawad; Rafi Abdul Majeed Al-Razzuqi; Zainab Awaen Al-Ebady; Thulfuqar Abdul Majeed Al-Razzuqi

    2012-01-01

    ABSTRACT Background : Nephrocalcinosis is a state of deposition of calcium phosphate or oxalate in the renal parenchyma. It may occur in patients with renal tubular acidosis, vitamin D intoxication, and hyperparathyroidism. Corn silk was used in traditional Chinese medicine to relieve renal pains. Aim: To evaluate the effect of Corn silk aqueous extract in reducing calcium deposits from renal parenchyma in oxalic acid-induced nephrocalcinosis model. Materials and methods: Fourteen healthy...

  4. (Dimethylphosphorylmethanaminium hydrogen oxalate–oxalic acid (2/1

    Directory of Open Access Journals (Sweden)

    Sebastian Bialek

    2014-03-01

    Full Text Available The reaction of (dimethylphosphorylmethanamine (dpma with oxalic acid in ethanol yielded the title solvated salt, C3H11NOP+·C2HO4−·0.5C2H2O4. Its asymmetric unit consists of one dpmaH+ cation, one hydrogen oxalate anion and a half-molecule of oxalic acid located around a twofold rotation axis. The H atom of the hydrogen oxalate anion is statistically disordered over two positions that are trans to each other. The hydrogen oxalate monoanion is not planar (bend angle ∼16° whereas the oxalic acid molecule shows a significantly smaller bend angle (∼7°. In the crystal, the components are connected by strong O—H...O and much weaker N—H...O hydrogen bonds, leading to the formation of layers extending parallel to (001. The structure was refined from a racemically twinned crystal with twin components in an approximate 1:1 ratio.

  5. Dynamic process model of a plutonium oxalate precipitator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.L.; Hammelman, J.E.; Borgonovi, G.M.

    1977-11-01

    In support of LLL material safeguards program, a dynamic process model was developed which simulates the performance of a plutonium (IV) oxalate precipitator. The plutonium oxalate precipitator is a component in the plutonium oxalate process for making plutonium oxide powder from plutonium nitrate. The model is based on state-of-the-art crystallization descriptive equations, the parameters of which are quantified through the use of batch experimental data. The dynamic model predicts performance very similar to general Hanford oxalate process experience. The utilization of such a process model in an actual plant operation could promote both process control and material safeguards control by serving as a baseline predictor which could give early warning of process upsets or material diversion. The model has been incorporated into a FORTRAN computer program and is also compatible with the DYNSYS 2 computer code which is being used at LLL for process modeling efforts.

  6. Dynamic process model of a plutonium oxalate precipitator. Final report

    International Nuclear Information System (INIS)

    Miller, C.L.; Hammelman, J.E.; Borgonovi, G.M.

    1977-11-01

    In support of LLL material safeguards program, a dynamic process model was developed which simulates the performance of a plutonium (IV) oxalate precipitator. The plutonium oxalate precipitator is a component in the plutonium oxalate process for making plutonium oxide powder from plutonium nitrate. The model is based on state-of-the-art crystallization descriptive equations, the parameters of which are quantified through the use of batch experimental data. The dynamic model predicts performance very similar to general Hanford oxalate process experience. The utilization of such a process model in an actual plant operation could promote both process control and material safeguards control by serving as a baseline predictor which could give early warning of process upsets or material diversion. The model has been incorporated into a FORTRAN computer program and is also compatible with the DYNSYS 2 computer code which is being used at LLL for process modeling efforts

  7. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  8. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  9. Synthesis, crystal structure refinement, and nonlinear-optical properties of CaB{sub 3}O{sub 5}(OH): Comparative crystal chemistry of calcium triborates

    Energy Technology Data Exchange (ETDEWEB)

    Yamnova, N. A., E-mail: aks.crys@gmail.com; Aksenov, S. M. [Moscow State University, Faculty of Geology (Russian Federation); Stefanovich, S. Yu. [Moscow State University, Faculty of Chemistry (Russian Federation); Volkov, A. S.; Dimitrova, O. V. [Moscow State University, Faculty of Geology (Russian Federation)

    2015-09-15

    Calcium triborate CaB{sub 3}O5(OH) obtained by hydrothermal synthesis in the Ca(OH){sub 2}–H{sub 3}BO{sub 3}–Na{sub 2}CO{sub 3}–KCl system is studied by single-crystal X-ray diffraction. The parameters of the orthorhombic unit cell are as follows: a = 13.490(1), b = 6.9576(3), and c = 4.3930(2) Å; V = 412.32(3) Å{sup 3} and space group Pna2{sub 1}. The structure is refined in the anisotropic approximation of the atomic displacement parameters to R = 4.28% using 972 vertical bar F vertical bar > 4σ(F). It is confirmed that the crystal structure of Ca triborate CaB{sub 3}O{sub 5}(OH) is identical to that described earlier. The hydrogen atom is localized. An SHG signal stronger than that of the quartz standard is registered. The phase transition of calcium triborate into calciborite is found on heating. The comparative crystal-chemical analysis of a series of borates with the general chemical formula 2CaO · 3B{sub 2}O{sub 3} · nH{sub 2}O (n = 0–13) with the constant CaO: B{sub 2}O{sub 3}= 2: 3 ratio and variable content of water is performed.

  10. Synthesis, crystal structure refinement, and nonlinear-optical properties of CaB3O5(OH): Comparative crystal chemistry of calcium triborates

    International Nuclear Information System (INIS)

    Yamnova, N. A.; Aksenov, S. M.; Stefanovich, S. Yu.; Volkov, A. S.; Dimitrova, O. V.

    2015-01-01

    Calcium triborate CaB 3 O5(OH) obtained by hydrothermal synthesis in the Ca(OH) 2 –H 3 BO 3 –Na 2 CO 3 –KCl system is studied by single-crystal X-ray diffraction. The parameters of the orthorhombic unit cell are as follows: a = 13.490(1), b = 6.9576(3), and c = 4.3930(2) Å; V = 412.32(3) Å 3 and space group Pna2 1 . The structure is refined in the anisotropic approximation of the atomic displacement parameters to R = 4.28% using 972 vertical bar F vertical bar > 4σ(F). It is confirmed that the crystal structure of Ca triborate CaB 3 O 5 (OH) is identical to that described earlier. The hydrogen atom is localized. An SHG signal stronger than that of the quartz standard is registered. The phase transition of calcium triborate into calciborite is found on heating. The comparative crystal-chemical analysis of a series of borates with the general chemical formula 2CaO · 3B 2 O 3 · nH 2 O (n = 0–13) with the constant CaO: B 2 O 3 = 2: 3 ratio and variable content of water is performed

  11. The effects of copper proximity on oxalate production in Fibroporia radiculosa

    Science.gov (United States)

    Katie M. Jenkins; Carol A. Clausen; Frederick Green III

    2014-01-01

    Copper remains a key component used in wood preservatives available today. However, the observed tolerance of several critical wood rotting organisms continues to be problematic. Tolerance to copper has been linked to the production and accumulation of oxalate, which precipitates copper into insoluble copper-oxalate crystals, thus inactivating copper ions. The purpose...

  12. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  13. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  14. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    Science.gov (United States)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  15. Identification of a macromolecular crystal growth inhibitor in human urine as osteopontin

    DEFF Research Database (Denmark)

    Sørensen, Steen; Justesen, S J; Johnsen, A H

    1995-01-01

    , an unidentified protein rich in uronic acid, and uropontin have all been described as possessing such activity. We have recently isolated an unknown inhibitor of calcium oxalate crystal growth that co-eluted with trypsin inhibitor in several separation steps, which suggested its identity. The aim of the present......Macromolecules occurring in human urine inhibit the growth and/or aggregation of calcium oxalate crystals and may prevent the formation of kidney stones. Attention has focused particularly on proteins, as these seem to be most responsible for the inhibitory activity; three proteins, nephrocalcin...... study was to outline a simple procedure for isolating and identifying this inhibitor. Purification was done as follows: precipitation of the major proteins (albumin and uromucoid) with trichloroacetic acid, followed by anion exchange chromatography, hydroxyapatite chromatography, anion exchange...

  16. Tetraphenylphosphonium hydrogen oxalate

    Directory of Open Access Journals (Sweden)

    Philip A. W. Dean

    2008-01-01

    Full Text Available In the title compound, C24H20P+·C2HO4−, two symmetry-independent ion pairs are present. The cations aggregate into puckered sheets via zigzag infinite chains of sixfold phenyl embraces and parallel fourfold phenyl embraces, while the anions form hydrogen-bonded chains between the sheets of cations. In the two independent oxalate anions, the angles between the normals to the two least-squares carboxylate COO planes are unusually large, viz. 72.5 (1 and 82.1 (1°.

  17. Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the ?-lactam producer Penicillium chrysogenum

    NARCIS (Netherlands)

    Daran, J.M.; Pronk, J.T.; Driessen, A.J.M.; Nijland, J.G.; Lamboo, F.; Puig-Martinez, M.; Veiga, T.; Gombert, A.K.

    2011-01-01

    Penicillium chrysogenum is widely used as an industrial antibiotic producer, in particular in the synthesis of ß-lactam antibiotics such as penicillins and cephalosporins. In industrial processes, oxalic acid formation leads to reduced product yields. Moreover, precipitation of calcium oxalate

  18. Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the beta-lactam producer Penicillium chrysogenum

    NARCIS (Netherlands)

    Gombert, A. K.; Veiga, T.; Puig-Martinez, M.; Lamboo, F.; Nijland, J. G.; Driessen, A. J. M.; Pronk, J. T.; Daran, J. M.

    Penicillium chrysogenum is widely used as an industrial antibiotic producer, in particular in the synthesis of g-lactam antibiotics such as penicillins and cephalosporins. In industrial processes, oxalic acid formation leads to reduced product yields. Moreover, precipitation of calcium oxalate

  19. New indium selenite-oxalate and indium oxalate with two- and three-dimensional structures

    International Nuclear Information System (INIS)

    Cao Junjun; Li Guodong; Chen Jiesheng

    2009-01-01

    Two new indium(III) compounds with extended structures, [In 2 (SeO 3 ) 2 (C 2 O 4 )(H 2 O) 2 ].2H 2 O (I) and [NH 3 (CH 2 ) 2 NH 3 ][In(C 2 O 4 ) 2 ] 2 .5H 2 O (II), have been prepared under mild hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis and infrared spectroscopy. Compound I crystallizes in the triclinic system, space group P-1, with a=5.2596(11) A, b=6.8649(14) A, c=9.3289(19) A, α=101.78(3) o , β=102.03(3) o , γ=104.52(3) o , while compound II crystallizes in the orthorhombic system, space group Fdd2, with a=15.856(3) A, b=31.183(6) A, c=8.6688(17) A. In compound I, indium-selenite chains are bridged by oxalate units to form two-dimensional (2D) In 2 (SeO 3 ) 2 C 2 O 4 layers, separated by non-coordinating water molecules. In compound II, the indium atoms are connected through the oxalate units to generate a 3D open framework containing cross-linked 12- and 8-membered channels. - Graphical abstract: Two new indium(III) compounds have been hydrothermally synthesized and structurally characterized. In I, the indium-selenite chains are bridged by oxalate units to form 2D In 2 (SeO 3 ) 2 C 2 O 4 layers. In II, the indium atoms are connected through the oxalate units to generate a 3D open framework containing cross-linked 12- and 8-membered ring channels

  20. Synthesis, Crystal Structure, and Luminescence Properties of a New Calcium(II Coordination Polymer Based on L-Malic Acid

    Directory of Open Access Journals (Sweden)

    Duraisamy Senthil Raja

    2013-01-01

    Full Text Available A new calcium coordination polymer [Ca(HL-MA]n (H3L-MA = L-malic acid has been solvothermally synthesized. The structure of the newly synthesized complex has been determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, reflectance UV-Vis & IR spectra, powder X-ray diffraction (PXRD, and thermogravimetric analysis (TGA. The single crystal structure analysis showed that the complex forms three-dimensional framework. The new Ca(II complex has displayed very high thermal stability which was inferred from TGA and PXRD results. As far as the optical property of the new complex is concerned, the complex emitted its own characteristic sensitized luminescence.

  1. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    Yuan, Q.; Yang, Y.; Chen, J.; Ramuni, V.; Misra, R.D.K.; Bertrand, K.J.

    2010-01-01

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  2. Hyperoxaluria Requires TNF Receptors to Initiate Crystal Adhesion and Kidney Stone Disease.

    Science.gov (United States)

    Mulay, Shrikant R; Eberhard, Jonathan N; Desai, Jyaysi; Marschner, Julian A; Kumar, Santhosh V R; Weidenbusch, Marc; Grigorescu, Melissa; Lech, Maciej; Eltrich, Nuru; Müller, Lisa; Hans, Wolfgang; Hrabě de Angelis, Martin; Vielhauer, Volker; Hoppe, Bernd; Asplin, John; Burzlaff, Nicolai; Herrmann, Martin; Evan, Andrew; Anders, Hans-Joachim

    2017-03-01

    Intrarenal crystals trigger inflammation and renal cell necroptosis, processes that involve TNF receptor (TNFR) signaling. Here, we tested the hypothesis that TNFRs also have a direct role in tubular crystal deposition and progression of hyperoxaluria-related CKD. Immunohistochemical analysis revealed upregulated tubular expression of TNFR1 and TNFR2 in human and murine kidneys with calcium oxalate (CaOx) nephrocalcinosis-related CKD compared with controls. Western blot and mRNA expression analyses in mice yielded consistent data. When fed an oxalate-rich diet, wild-type mice developed progressive CKD, whereas Tnfr1-, Tnfr2- , and Tnfr1/2- deficient mice did not. Despite identical levels of hyperoxaluria, Tnfr1-, Tnfr2- , and Tnfr1/2 -deficient mice also lacked the intrarenal CaOx deposition and tubular damage observed in wild-type mice. Inhibition of TNFR signaling prevented the induced expression of the crystal adhesion molecules, CD44 and annexin II, in tubular epithelial cells in vitro and in vivo , and treatment with the small molecule TNFR inhibitor R-7050 partially protected hyperoxaluric mice from nephrocalcinosis and CKD. We conclude that TNFR signaling is essential for CaOx crystal adhesion to the luminal membrane of renal tubules as a fundamental initiating mechanism of oxalate nephropathy. Furthermore, therapeutic blockade of TNFR might delay progressive forms of nephrocalcinosis in oxalate nephropathy, such as primary hyperoxaluria. Copyright © 2017 by the American Society of Nephrology.

  3. CCDC 1420581: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. CCDC 1420582: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethane

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. CCDC 1420580: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium acetylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  6. Electrolytic destruction of oxalate ions in plutonium oxalate supernatant

    International Nuclear Information System (INIS)

    Michael, K.M.; Talnikar, S.G.; Jambunathan, U.; Kapoor, S.C.; Ramanujam, A.; Venkataraman, N.

    1996-01-01

    A simple and efficient electrolytic method is described for the destruction of the oxalate ions present in plutonium oxalate supernatant. Using platinum electrode and very little KMnO 4 , in situ generation of Mn 3+ ions is achieved which in turn destroys the oxalate. The use of lower current density helps in achieving maximum current efficiency. The end point is easily detectable by the pink colour of permanganate. By reversing the current, this slight excess of permanganate can be destroyed, thus avoiding the use of hydrogen peroxide. By this simple electrolytic method, the corrosive oxalate ion is completely destroyed and the salt content of the waste solution is considerably reduced. (author). 4 refs., 1 fig., 6 tabs

  7. Bioleaching of incineration fly ash by Aspergillus niger - precipitation of metallic salt crystals and morphological alteration of the fungus.

    Science.gov (United States)

    Xu, Tong-Jiang; Ramanathan, Thulasya; Ting, Yen-Peng

    2014-09-01

    This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger , and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter) and a swollen pellet structure. In the absence of the fly ash, the fungi showed a linear structure (with 2-4 μm hyphae diameter). Energy-dispersive X-ray spectroscopy and X-ray diffraction confirmed the precipitation of calcium oxalate hydrate crystals at the surface of hyphae in both one-step and two-step bioleaching. Calcium oxalate precipitation affects bioleaching via the weakening of the fly ash, thus facilitating the release of other tightly bound metals in the matrix.

  8. Destruction of oxalate by reaction with hydrogen peroxide. [Hydrazine oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Mailen, J.C.; Tallent, O.K.; Arwood, P.C.

    1981-09-01

    The destruction of oxalate by oxidation to carbon dioxide using hydrogen peroxide was studied as an alternative method for the disposal of oxalate in connection with the possible use of an aqueous hydrazine oxalate solution as a scrubbing agent for solvent cleanup in processes for the recovery of uranium, plutonium, and thorium by solvent extraction. The rate of oxidation of oxalate by hydrogen peroxide in acid solution at the reflux temperature was adequate for process application; reaction half-times at 100/sup 0/C were less than one hour when the hydrogen peroxide concentration was greater than 0.5 M. The reaction was first order with respect to both the oxalate and hydrogen peroxide concentrations and had an activation energy of 58.7 kJ/g-mol. The rate increased with the hydrogen ion concentration as (H/sup +/)/sup 0/ /sup 3/ but was not significantly affected by the presence of 100 ppM of uranium or copper in solution. In the near-neutral hydrazine oxalate solutions, the reaction of either component with hydrogen peroxide was too slow for process application.

  9. Effect of different brewing times on soluble oxalate content of loose-packed black teas and tea bags.

    Science.gov (United States)

    Mahdavi, Reza; Lotfi Yagin, Neda; Liebman, Michael; Nikniaz, Zeinab

    2013-02-01

    Because of the postulated role of increased dietary oxalate intake in calcium oxalate stone formation, the effect of different brewing times on soluble oxalate contents of loose-packed black tea and tea bags was studied. The oxalate content of 25 different samples of loose-packed black teas after brewing at 5, 10, 15, 30, and 60 min and of ten brands of tea bags after infusion for 1, 2, 3, 4, and 5 min was measured by enzymatic assay. The oxalate concentration resulting from different brewing times ranged from 4.3 to 6.2 mg/240 ml for loose-packed black teas and from 2.7 to 4.8 mg/240 ml for tea bags. There was a stepwise increase in oxalate concentration associated with increased brewing times.

  10. Calcium Sulfoaluminate Sodalite (Ca 4 Al 6 O 12 SO 4 ) Crystal Structure Evaluation and Bulk Modulus Determination

    KAUST Repository

    Hargis, Craig W.

    2013-12-12

    The predominant phase of calcium sulfoaluminate cement, Ca 4(Al6O12)SO4, was investigated using high-pressure synchrotron X-ray diffraction from ambient pressure to 4.75 GPa. A critical review of the crystal structure of Ca4(Al 6O12)SO4 is presented. Rietveld refinements showed the orthorhombic crystal structure to best match the observed peak intensities and positions for pure Ca4(Al6O 12)SO4. The compressibility of Ca4(Al 6O12)SO4 was studied using cubic, orthorhombic, and tetragonal crystal structures due to the lack of consensus on the actual space group, and all three models provided similar results of 69(6) GPa. With its divalent cage ions, the bulk modulus of Ca4(Al6O 12)SO4 is higher than other sodalites with monovalent cage ions, such as Na8(AlSiO4)6Cl2 or Na8(AlSiO4)6(OH)2·H 2O. Likewise, comparing this study to previous ones shows the lattice compressibility of aluminate sodalites decreases with increasing size of the caged ions. Ca4(Al6O12)SO4 is more compressible than other cement clinker phases such as tricalcium aluminate and less compressible than hydrated cement phases such as ettringite and hemicarboaluminate. © 2013 The American Ceramic Society.

  11. Hygroscopic properties of oxalic acid and atmospherically relevant oxalates

    Science.gov (United States)

    Ma, Qingxin; He, Hong; Liu, Chang

    2013-04-01

    Oxalic acid and oxalates represent an important fraction of atmospheric organic aerosols, however, little knowledge about the hygroscopic behavior of these particles is known. In this study, the hygroscopic behavior of oxalic acid and atmospherically relevant oxalates (H2C2O4, (NH4)2C2O4, CaC2O4, and FeC2O4) were studied by Raman spectrometry and vapor sorption analyzer. Under ambient relative humidity (RH) of 10-90%, oxalic acid and these oxalates hardly deliquesce and exhibit low hygroscopicity, however, transformation between anhydrous and hydrated particles was observed during the humidifying and dehumidifying processes. During the water adsorption process, conversion of anhydrous H2C2O4, (NH4)2C2O4, CaC2O4, and FeC2O4 to their hydrated particles (i.e., H2C2O4·2H2O, (NH4)2C2O4·H2O, CaC2O4·H2O, and FeC2O4·2H2O) occurred at about 20% RH, 55% RH, 10% RH, and 75% RH, respectively. Uptake of water on hydrated Ca-oxalate and Fe-oxalate particles can be described by a multilayer adsorption isotherm. During the dehumidifying process, dehydration of H2C2O4·2H2O and (NH4)2C2O4·H2O occurred at 5% RH while CaC2O4·H2O and FeC2O4·2H2O did not undergo dehydration. These results implied that hydrated particles represent the most stable state of oxalic acid and oxalates in the atmosphere. In addition, the assignments of Raman shift bands in the range of 1610-1650 cm-1 were discussed according to the hygroscopic behavior measurement results.

  12. Analytical Study of Oxalates Coprecipitation

    Directory of Open Access Journals (Sweden)

    Liana MARTA

    2003-03-01

    Full Text Available The paper deals with the establishing of the oxalates coprecipitation conditions in view of the synthesis of superconducting systems. A systematic analytical study of the oxalates precipitation conditions has been performed, for obtaining superconducting materials, in the Bi Sr-Ca-Cu-O system. For this purpose, the formulae of the precipitates solubility as a function of pH and oxalate excess were established. The possible formation of hydroxo-complexes and soluble oxalato-complexes was taken into account. A BASIC program was used for tracing the precipitation curves. The curves of the solubility versus pH for different oxalate excess have plotted for the four oxalates, using a logaritmic scale. The optimal conditions for the quantitative oxalate coprecipitation have been deduced from the diagrams. The theoretical curves were confirmed by experimental results. From the precursors obtained by this method, the BSCCO superconducting phases were obtained by an appropriate thermal treatment. The formation of the superconducting phases was identified by X-ray diffraction analysis.

  13. Uranyl oxalate hydrates: structures and IR spectra

    International Nuclear Information System (INIS)

    Giesting, P.A.; Porter, N.J.; Burns, P.C.

    2006-01-01

    The novel compound (UO 2 ) 2 C 2 O 4 (OH) 2 (H 2 O) 2 (UrOx2A) and the previously studied compound UO 2 C 2 O 4 (H 2 O) 3 (UrOx3) have been synthesized by mild hydrothermal methods. Single crystal diffraction data collected at 125 K using MoK α radiation and a CCD-based area detector were used to solve and refine the crystal structures by full-matrix least-squares techniques to agreement indices (UrOx2A, UrOx3) wR 2 = 0.037, 0.049 for all data, and R1 0.015, 0.024 calculated for 1285, 2194 unique reflections respectively. The compound UrOx2A is triclinic, space group P1, Z = 1, a = 5.5353(4), b 6.0866(4), c = 7.7686(6) Aa, α = 85.6410(10) , β = 89.7740(10) , γ = 82.5090(10) , V = 258.74(3) Aa 3 . The compound UrOx3 is monoclinic, space group P2 1 /c, Z = 4, a = 5.5921(4), b = 16.9931(13), c = 9.3594(7) Aa, β = 99.5330(10) , V = 877.11(11) Aa 3 . The structures consist of chains of uranyl pentagonal bipyramids connected by oxalate groups and, in UrOx2A, hydroxyl groups; UrOx2A is also notable for its high (2:1) ratio of uranyl to oxalate groups, higher than any observed in other published structures of uranyl oxalates. The structure determined for UrOx3, previously studied by Jayadevan and Chackraburtty (1972); Mikhailov et al. (1999) is in agreement with the previous results; however, the increased precision of the present low-temperature structure refinement allows for the assignment of H atom positions based on the difference Fourier map of electron density. The infrared spectra of these two materials collected at room temperature are also presented and compared with previous work on uranyl oxalate systems. (orig.)

  14. Successful treatment of sodium oxalate induced urolithiasis with Helichrysum flowers.

    Science.gov (United States)

    Onaran, Metin; Orhan, Nilüfer; Farahvash, Amirali; Ekin, Hasya Nazlı; Kocabıyık, Murat; Gönül, İpek Işık; Şen, İlker; Aslan, Mustafa

    2016-06-20

    Helichrysum (Asteraceae) flowers, known as "altın otu, yayla çiçeği, kudama çiçeği" , are widely used to remove kidney stones and for their diuretic properties in Turkey. To determine the curative effect of infusions prepared from capitulums of Helichrysum graveolens (M. Bieb.) Sweet (HG) and H. stoechas ssp. barellieri (Ten.) Nyman (HS) on sodium oxalate induced kidney stones. Infusions prepared from the capitulums of HG and HS were tested for their curative effect on calcium oxalate deposition induced by sodium oxalate (70mg/kg i.p.). Following the injection of sodium oxalate for 5 days, plant extracts were administered to rats at two different doses. Potassium citrate was used as positive control. Water intake, urine volume, body, liver and kidney weights were measured; biochemical and hematological analyses were conducted on urine and blood samples. Additionally, histopathological examinations were done on kidney samples. H. stoechas extract showed prominent effect at 156mg/kg dose (stone formation score: 0.33), whereas number of kidney stones was maximum in sodium oxalate group (stone formation score: 2.33). The reduction in the uric acid and oxalate levels of urine samples and the elevation in the urine citrate levels are significant and promising in extract groups. Some hematological, biochemical and enzymatic markers are also ameliorated by the extracts. This is the first report on the curative effect of immortal flowers. Our preliminary study indicated that Helichrysum extracts may be used for treatment of urolithiasis and Helichrysum extracts are an alternative therapy to potassium citrate for patients suffering from kidney stones. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Energy-dispersive x-Ray Analysis of Phosphorus, Potassium, Magnesium, and Calcium in Globoid Crystals in Protein Bodies from Different Regions of Cucurbita maxima Embryos 1

    Science.gov (United States)

    Lott, John N. A.; Greenwood, John S.; Vollmer, Catherine M.; Buttrose, Mark S.

    1978-01-01

    The seeds of Cucurbita maxima contain protein bodies with electrondense globoid crystals. Because of their density globoid crystals are ideal material for energy-dispersive x-ray (EDX) analysis studies of elemental composition. Fixation trials were carried out to test globoid crystal extraction during glutaraldehyde fixation, water washing, and ethanol dehydration. Glutaraldehyde fixation without subsequent washing or dehydration alone produced no significant changes in elemental composition of cotyledon globoid crystals. If glutaraldehyde fixation was followed by water washes or ethanol dehydration there was some loss of the major globoid crystal elements but the relative percentages of the elements P, K, Ca, and Mg remained relatively unchanged. In this paper results of a study of the P, K, Mg, and Ca content of globoid crystals in different tissues of squash embryos are presented. The globoid crystals in the radicle were found to be the least dense in the embryo. Globoid crystals from all embryo regions contained P, K, and Mg. In the various embryo regions P and Mg maintained relatively constant proportions of the globoid crystal composition while K and Ca varied. Of particular significance is the distribution of Ca which is generally an immobile element. Calcium was found in highest amounts in the globoid crystals of the radicle and stem regions while globoid crystals in much of the cotyledon contained little, if any, Ca. The Ca storage thus seems to be spatially arranged in a manner that would aid early growth of the root-shoot axis. PMID:16660439

  16. Crystal structure of pira toxin-I: a calcium-independent, myotoxic phospholipase A2 - homologue from Bothrops pirajai venom

    International Nuclear Information System (INIS)

    Canduri, R.J.; Ward, R.J.; Azevedo Junior, G.W.F. de; Arni, R.K.; Soares, A.M.; Giglio, J.R.

    1997-01-01

    Full text. Phospho lipases A2 (PLA 2 ) are small enzymes that specifically hydrolysed the sn-2 ester bond of phospholipids, preferentially in lamellar or micellar aggregates at membrane surfaces. These enzymes are widely distributed in nature and have been extensively studied. Toxic proteins from venoms from Bothrops species include catalytically active PLA 2 s and calcium independent PLA 2L ys 49 homologues. The substitution of Asp49 by Lys greatly diminishes the ability of these PLA 2 to bind calcium, an ion that plays a critical role in the stabilization of the tetrahedral transition state intermediate in the catalytic mechanism. The Lys 49 PLA 2 homologues and therefore catalytically inactive yet maintain cytolytic and myotoxic activities and furthermore retain the ability to disrupt the integrity of both plasma membranes and model lipid bilayers by a poorly understood Ca 2+ independente mechanism. Lys49 PLA 2 homologues demonstrate a specific toxic activity against skeletal muscle, affecting only muscle fibers and leaving other tissue structure such as connective tissue, nerves and vessels essentially unharmed. In order to improve our understanding of the molecular basis of the myotoxic and Ca 2+ -independent membrane damaging activities, we have determined the crystal structure of Pr TX-I, a Lys49 variant from the venom of B. pirajai. The model presented has been determined at 2.8 angstrom resolution and refined to a crystallographic residual of 19.7% (R free =29.7%). (author)

  17. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    Energy Technology Data Exchange (ETDEWEB)

    Neira-Carrillo, Andronico, E-mail: aneira@uchile.cl [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Yazdani-Pedram, Mehrdad [Faculty of Chemical and Pharmaceutical Science, University of Chile, S. Livingstone 1007, PO Box 233, Santiago (Chile)

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite

  18. Crystal growth and scintillation properties of Ce-doped sodium calcium lutetium complex fluoride

    Czech Academy of Sciences Publication Activity Database

    Wakahara, S.; Furuya, Y.; Yanagida, T.; Yokota, Y.; Pejchal, Jan; Sugiyama, M.; Kawaguchi, N.; Totsuka, D.; Yoshikawa, A.

    2012-01-01

    Roč. 34, č. 4 (2012), s. 729-732 ISSN 0925-3467 Institutional research plan: CEZ:AV0Z10100521 Keywords : scintillator * micro-pulling-down method * single crystal * gamma-ray stopping power Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.918, year: 2012

  19. Precipitation of calcium, magnesium, strontium and barium in tissues of four Acacia species (Leguminosae: Mimosoideae).

    Science.gov (United States)

    He, Honghua; Bleby, Timothy M; Veneklaas, Erik J; Lambers, Hans; Kuo, John

    2012-01-01

    Precipitation of calcium in plants is common. There are abundant studies on the uptake and content of magnesium, strontium and barium, which have similar chemical properties to calcium, in comparison with those of calcium in plants, but studies on co-precipitation of these elements with calcium in plants are rare. In this study, we compared morphologies, distributional patterns, and elemental compositions of crystals in tissues of four Acacia species grown in the field as well as in the glasshouse. A comparison was also made of field-grown plants and glasshouse-grown plants, and of phyllodes of different ages for each species. Crystals of various morphologies and distributional patterns were observed in the four Acacia species studied. Magnesium, strontium and barium were precipitated together with calcium, mainly in phyllodes of the four Acacia species, and sometimes in branchlets and primary roots. These elements were most likely precipitated in forms of oxalate and sulfate in various tissues, including epidermis, mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex. In most cases, precipitation of calcium, magnesium, strontium and barium was biologically induced, and elements precipitated differed between soil types, plant species, and tissues within an individual plant; the precipitation was also related to tissue age. Formation of crystals containing these elements might play a role in regulating and detoxifying these elements in plants, and protecting the plants against herbivory.

  20. Immobilizing Water into Crystal Lattice of Calcium Sulfate for its Separation from Water-in-Oil Emulsion.

    Science.gov (United States)

    Jiang, Guangming; Li, Junxi; Nie, Yunliang; Zhang, Sen; Dong, Fan; Guan, Baohong; Lv, Xiaoshu

    2016-07-19

    This work report a facile approach to efficiently separate surfactant-stabilized water (droplet diameter of around 2.0 μm) from water-in-oil emulsion via converting liquid water into solid crystal water followed by removal with centrifugation. The liquid-solid conversion is achieved through the solid-to-solid phase transition of calcium sulfate hemihydrate (CaSO4. 0.5H2O, HH) to dihydrate (CaSO4·2H2O, DH), which could immobilize the water into crystal lattice of DH. For emulsion of 10 mg mL(-1) water, the immobilization-separation process using polycrystalline HH nanoellipsoids could remove 95.87 wt % water at room temperature. The separation efficiency can be further improved to 99.85 wt % by optimizing the HH dosage, temperature, HH size and crystalline structure. Property examination of the recycled oil confirms that our method has neglectable side-effect on oil quality. The byproduct DH was recycled to alpha-HH (a valuable cemetitious material widely used in construction and binding field), which minimizes the risk of secondary pollution and promotes the practicality of our method. With the high separation efficiency, the "green" feature and the recyclability of DH byproduct, the HH-based immobilization-separation approach is highly promising in purifying oil with undesired water contamination.

  1. Urinary oxalate excretion, as determined by isotope dilution and indirect colorimetry

    International Nuclear Information System (INIS)

    Prenen, J.A.C.; Boer, P.; Leersum, L. van; Oldenburg, S.J.; Endeman, H.J.

    1983-01-01

    A simple and reliable method for the determination of urinary oxalate excretion is described. Urinary oxalate is precipitated with calcium chloride, and the oxalate content of the precipitate is measured by an indirect colorimetric method developed by Neas and Guyon in 1972. For single urine samples, a correction is made for the incompleteness of the precipitation of calcium oxalate by isotope dilution. The range of normal values (5% limits) determined in 52 normal subjects was 0.121-0.325 mmol.24 h - 1 .m - 2 for a 1-day collection period and 0.145-0.301 mmol. 24 h - 1 .m - 2 for a 3-day collection period. The within-assay CV of a control urine with a low oxalate concentration was 9% (n=7) and the between-assay CV for the same control urine was 12% (n=6). When the values obtained for oxalate excretion were normalized to body surface area, there was no significant difference between males and females; the main source of variation was the intra-individual variation. (Auth.)

  2. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution

    Science.gov (United States)

    Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang

    2011-12-01

    A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.

  3. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    Directory of Open Access Journals (Sweden)

    G. A. Silva-Castro

    2015-01-01

    Full Text Available The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments.

  4. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2(C2O4)(OH)2(H2O)2].H2O

    International Nuclear Information System (INIS)

    Duvieubourg, Laurence; Nowogrocki, Guy; Abraham, Francis; Grandjean, Stephane

    2005-01-01

    Two modifications of the new uranyl oxalate hydroxide dihydrate [UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ].H 2 O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2σ(I)), for α (1) and β (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2σ(I)), for 3. The α-form of the dihydrate is triclinic, space group P1-bar , Z=1, a=6.097(2), b=5.548(2), c=7.806(3)A, α=89.353(5), β=94.387(5), γ=97.646(5) o , V=260.88(15)A 3 , β-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), c=10.777(3)A, β=95.817(4), V=1073.8(5)A 3 . The trihydrate is monoclinic, space group P2 1 /c, Z=4, a=5.5095(12), b=15.195(3), c=13.398(3)A, β=93.927(3), V=1119.0(4)A 3 . In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO 2 2+ cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO 7 polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U 2 O 10 ] obtained by edge-sharing in 1, chains [UO 6 ] ∼ and tetramers [U 4 O 26 ] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays

  5. Dynamic process model of a plutonium oxalate precipitator

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; Hammelman, J.E.; Miller, C.L.

    1980-01-01

    A dynamic model of a plutonium oxalate precipitator is developed to provide a means of predicting plutonium inventory on a continuous basis. The model is based on state-of-the-art crystallization equations, which describe nucleation and growth phenomena. The model parameters were obtained through the use of batch experimental data. The model has been used to study the approach to steady state, to investigate the response to input transients, and to simulate the control of the precipitation process. 12 refs

  6. Structural diversity of the lanthanide oxalates: Condensation of neodymium oxygen polyhedra under hydrothermal conditions

    International Nuclear Information System (INIS)

    Mer, A.; Rivenet, M.; Abraham, F.; De Almeida, L.; Grandjean, S.

    2013-01-01

    New neodymium hydroxo-oxalate and oxalate [Nd 6 (H 2 O) 6 (C 2 O 4 ) 7 (OH) 4 ].4H 2 O (1) and [Nd 2 (H 2 O) 4 (C 2 O 4 ) 3 ].2H 2 O (2) were synthesized by hydrothermal reaction at 150 C between neodymium nitrate and oxalic acid solutions at pH = 10-11 obtained by adding various monoamines. The structures were determined from single-crystal X-ray diffraction data. The two compounds crystallize in the monoclinic system with space group P21/c and a = 17.4384 (11), b = 8.1717 (5), c = 12.9929 (7), β = 94.66 (1) degrees, V = 1845.38 (19) (Angstroms) 3 , Z = 2 for 1 and a = 9.8249 (2) Angstroms, b = 8.2487 (2) Angstroms, c = 10.1911 (3) Angstroms, β = 99.09 (1), V = 815.53 (4) (Angstroms) 3 , Z = 2 for 2. Full matrix least-squares refinement yielded R1 = 0.0365 and 0.0267 for 6033 and 3382 independent reflections for 1 and 2 respectively. In 2, the three-dimensional neodymium oxalate arrangement results from dimeric units of edge shared NdO 9 polyhedra connected through oxalate ions acting as bis-bidentate. In 1, the neodymium atoms are connected through μ2-OH and μ3-OH ions to form a hexa-nuclear inorganic core [Nd 6 (OH) 4 (H 2 O) 6 ] with an un-precedently reported geometry leading to a hexa-nuclear polyhedra block. The blocks are connected through an O-O bridge involving two oxygen atoms of two oxalate ions to build a centipede-like ribbon. The ribbons are further connected through oxalate ions to form a three dimensional neodymium oxalate arrangement. In 1, oxalates adopt four distinct bridging modes of coordination, μ2, μ3, μ4 and μ5. (authors)

  7. Crystal Analysis of Multi Phase Calcium Phosphate Nanoparticles Containing Different amount of Magnesium

    Science.gov (United States)

    Gozalian, Afsaneh; Behnamghader, Ali Asghar; Moshkforoush, Arash

    In this study, Mg doped hydroxyapatite [(Ca, Mg)10(PO4)6(OH)2] and β-tricalcium phosphate nanoparticles were synthesized via sol gel method. Triethyl phosphite, calcium nitrate tetrahydrate and magnesium nitrate hexahydrate were used as P, Ca and Mg precursors. The ratio of (Ca+Mg)/P and the amount of magnesium (x) were kept constant at 1.67 and ranging x = 0 up to 3 in molecular formula of Ca10-xMgx (PO4)6(OH)2, respectively. Phase composition and chemical structure were performed using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Phase percentages, crystallite size, degree of crystallinity and lattice parameters were investigated. The presence of magnesium led to form the Mg doped tricalcium phosphate (β-TCMP) and Mg doped hydroxyapatite (Mg-HA). Based on the results of this study, lattice parameters, degree of crystallinity and crystallite size decreased with magnesium content. In addition, with increasing magnesium content, the amount of CaO phase decreased whereas the amount of MgO phase increased significantly. Obtained results can be used for new biomaterials design.

  8. Calcium carbonate crystallizations on hypogean mural paintings: a pilot study of monitoring and diagnostics in Roman catacombs

    Science.gov (United States)

    Tapete, D.; Fratini, F.; Mazzei, B.; Camaiti, M.; Cantisani, E.; Riminesi, C.; Manganelli Del Fà, R.; Cuzman, O.; Tiano, P.

    2012-04-01

    One of the deterioration processes affecting mural paintings and rock surfaces within manmade hypogea consists in the formation of calcium carbonate crystallizations, which can create thick coverage and incrustations, even in some cases speleothems. These chemical reactions necessarily require the availability of calcium sources, which can be also of anthropogenic origin (e.g., lime-based mortars). Microclimate parameters also represent environmental forcing factors, on which the morphology and the degree of crystallinity of the precipitated carbonates depend. Understanding past/recent dynamics of carbonate precipitation implies a deep knowledge of the relationships between the exposed surfaces and the microclimate conditions, the impacts of external factors (e.g., groundwater infiltration and percolation from the overlying soil) and how they change over time. This is particularly fundamental for the preservation of hypogean sites which have not comparison with other typologies of environment due to their uniqueness, such as the ancient catacombs carved underneath the suburbs of Rome (Italy), since the 2nd century AD. In this paper we present the multidisciplinary methodological approach designed for the instrumental monitoring of the microphysical environment of the Catacombs of Saints Mark, Marcellian and Damasus, in the framework of the co-operation between the Institute for the Conservation and Valorization of Cultural Heritage and Pontifical Commission for Sacred Archaeology, Vatican, on the project HYPOGEA. Temperature inside the catacomb and on the surfaces, air relative humidity and CO2 concentration are the main of the parameters continuously measured by means of data loggers installed within the cubicles. Contemporarily, standardized methods of photographic documentation and digital micro-photogrammetry are used for change detection analysis of the painted surfaces and ancient plasters, as well as of the test areas purposely realized by applying fresh

  9. Normal coordinate treatment and Raman intensity analysis of yttrium vanadate and calcium tungstate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Budha Addepalli, V; Kumar, S P; Padma, V A; Rajeswara Rao, N [Osmania Univ., Hyderabad (India). Dept. of Physics

    1976-09-01

    Raman scattering tensors of crystalline YVO/sub 4/ and CaWO/sub 4/ are derived. Using the spectra of YVO/sub 4/, the intensities are substituted in the formulae. They are used to determine the polarizability derivatives of V-O bond. Substituting them back into the intensity formulae, a number of equations involving the L elements are obtained. Supplementing them with the matrix equation LL' = G, and using L'FL = ..gamma.., a-l the F-elements are determined. It is observed that the force constants relating to the translations of the group YVO/sub 4/ are quite high, explaining the high melting point of the crystal.

  10. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhang [Department of Restorative Dentistry, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road 119074, Singapore (Singapore); Neoh, Koon Gee [Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 119260, Singapore (Singapore); Kishen, Anil, E-mail: anil.kishen@utoronto.ca [Discipline of Endodontics, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON (Canada)

    2010-07-20

    Objective: The aim of this study is to induce mineralization of collagen by introducing phosphate groups onto type I collagen from eggshell membrane (ESM) by treating with sodium trimetaphosphate (STMP). This strategy is based on the hypothesis that phosphate groups introduced on collagen can mimic the nucleating role of phosphorylated non-collagenous proteins bound to collagen for inducing mineralization in natural hard tissue. Method: The collagen membrane was phosphorylated by treating it with a solution of STMP and saturated calcium hydroxide. The phosphorylated collagen was subsequently exposed to a mineralization solution and the pattern of mineralization on the surface of phosphorylated collagen substrate was analyzed. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), field emission electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and microhardness test were used to characterize the collagen substrate and the pattern of minerals formed on the collagen surface. Results: The FTIR and EDX results indicated that the phosphate groups were incorporated onto the collagen surface by treatment with STMP. During the mineralization process, the plate-like mineral, octacalcium phosphate (OCP), which was initially formed on the surface of ESM, was later transformed into needle-like hydroxyapatite (HAP) as indicated by the SEM, FESEM, EDX and XRD findings. The microhardness test displayed significant increase in the Knoop hardness number of the mineralized collagen. Conclusions: Phosphate groups can be introduced onto type I collagen surface by treating it with STMP and such phosphorylated collagen can induce the mineralization of type I collagen.

  11. Hyperoxaluria in idiopathic calcium nephrolithiasis--what are the limits?

    DEFF Research Database (Denmark)

    Osther, P J

    1999-01-01

    OBJECTIVE: The object of this study was to investigate the role for measurement of 24-h renal oxalate excretion in the evaluation of idiopathic calcium stone formers. MATERIALS AND METHODS: Renal excretion rates of oxalate and creatinine were measured in 24-h urines in 46 consecutive male recurrent...

  12. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Science.gov (United States)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  13. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    Science.gov (United States)

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  14. High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite

    Science.gov (United States)

    Williams, Q. C.; Vennari, C.; O'Bannon, E. F., III

    2015-12-01

    Raman and synchrotron-based single crystal x-ray diffraction data have been collected on shortite (Na2Ca2(CO3)3) up to 10 GPa at 300 K. Shortite is of geological importance due to its presence in the ground-mass of kimberlites, and the alkaline-/carbon-rich character of kimberlitic eruptions. This investigation focuses on shortite's high pressure behavior and is relevant to the behavior of alkali-carbonate systems within Earth's upper mantle. X-ray data demonstrate that shortite's symmetry remains stable at high pressures—retaining orthorhombic C crystal system (Amm2) up to 10 GPa; diffraction data show a 12% volume decrease from room pressure, and a bulk modulus of 71.0(3) GPa. These also demonstrate that the c-axis is twice as compressible as the a- and b-axes. This anisotropic compression is likely due to the orientation of the relatively stiff carbonate groups, a third of which are oriented close to the plane of the a- and b-axes, c axis compression primarily involves the compaction of the 9-fold coordinate sodium and calcium polyhedral. The two distinct carbonate sites within the unit cell give rise to two Raman symmetric stretching modes of the symmetric stretch; the carbonate group stretching vibration which is close to in plane with the a- and b-axes shifts at 3.75 cm-1/GPa as opposed to the carbonate groups which is closer to in plane with the b- and c-axes which shift at 4.25 cm-1/GPa. This furthers evidence for anisotropic compression observed using x-ray diffraction--as the carbonate in plane with the a- and b-axes is compressed, the strength of oxygen bonds along the c-axis with the cations increases, thus decreasing the pressure shift of the mode. The out of plane bending vibration shifts at -0.48 cm-1/GPa, indicating an enhanced interaction of the oxygens with the cations. The multiple in plane bending modes all shift positively, as do at the low frequency lattice modes, indicating that major changes in bonding do not occur up to 10 GPa. The data

  15. In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria

    Directory of Open Access Journals (Sweden)

    Tulika Dahiya

    2013-01-01

    Interpretation & conclusions: EMA-oxalate oxidase encapsulated liposome caused oxalate degradation in experimental hyperoxaluria indicating that the enzyme could be used as a therapeutic agent in hyperoxaluria leading to urinary stones.

  16. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  17. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Jae-Hyung Yoo; Eung-Ho Kim

    1999-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, some experimental work of photochemical decomposition of oxalate was carried out to prove its feasibility as a step of partitioning process. The decomposition of oxalic acid in the presence of nitric acid was performed in advance in order to understand the mechanistic behaviour of oxalate destruction, and then the decomposition of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was examined. The decomposition rate of neodymium oxalate was found as 0.003 mole/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  18. Vibrational studies in aqueous solutions. Part II. The acid oxalate ion and oxalic acid

    Science.gov (United States)

    Shippey, T. A.

    1980-08-01

    Assignments for oxalic acid in solution are re-examined. A detailed assignment of the IR and Raman spectra of the acid oxalate ion is presented for the first time. Raman spectroscopy is used to study the first ionization of oxalic acid.

  19. Solving the crystal structure of human calcium-free S100Z: the siege and conquer of one of the last S100 family strongholds.

    Science.gov (United States)

    Calderone, V; Fragai, M; Gallo, G; Luchinat, C

    2017-06-01

    The X-ray structure of human apo-S100Z has been solved and compared with that of the zebrafish calcium-bound S100Z, which is the closest in sequence. Human apo-S100A12, which shows only 43% sequence identity to human S100Z, has been used as template model to solve the crystallographic phase problem. Although a significant buried surface area between the two physiological dimers is present in the asymmetric unit of human apo-S100Z, the protein does not form the superhelical arrangement in the crystal as observed for the zebrafish calcium-bound S100Z and human calcium-bound S100A4. These findings further demonstrate that calcium plays a fundamental role in triggering quaternary structure formation in several S100s. Solving the X-ray structure of human apo-S100Z by standard molecular replacement procedures turned out to be a challenge and required trying different models and different software tools among which only one was successful. The model that allowed structure solution was that with one of the lowest sequence identity with the target protein among the S100 family in the apo state. Based on the previously solved zebrafish holo-S100Z, a putative human holo-S100Z structure has been then calculated through homology modeling; the differences between the experimental human apo and calculated holo structure have been compared to those existing for other members of the family.

  20. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.

    Science.gov (United States)

    Martin, Gaëtan; Guggiari, Matteo; Bravo, Daniel; Zopfi, Jakob; Cailleau, Guillaume; Aragno, Michel; Job, Daniel; Verrecchia, Eric; Junier, Pilar

    2012-11-01

    The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. The Relationship between Serum Oxalic Acid, Central Hemodynamic Parameters and Colonization by Oxalobacter formigenes in Hemodialysis Patients.

    Science.gov (United States)

    Gulhan, Baris; Turkmen, Kultigin; Aydin, Merve; Gunay, Murat; Cıkman, Aytekin; Kara, Murat

    2015-06-01

    Elevated pulse wave velocity (PWV) and central aortic blood pressures are independent predictors of increased cardiovascular morbidity and mortality in hemodialysis (HD) patients. Oxalic acid is a uremic retention molecule that is extensively studied in the pathogenesis of calcium oxalate stones. Oxalobacter formigenes, a member of the colon microbiota, has important roles in oxalate homeostasis. Data regarding the colonization by and the exact role of O. formigenes in the pathogenesis of oxalic acid metabolism in HD patients are scant. Hence, we aimed to determine the relationship between fecal O. formigenes colonization, serum oxalic acid and hemodynamic parameters in HD patients with regard to the colo-reno-cardiac axis. Fifty HD patients were enrolled in this study. PWV and central aortic systolic (cASBP) and diastolic blood pressures (cADBP) were measured with a Mobil-O-Graph (I.E.M. GmbH, Stolberg, Germany). Serum oxalic acid levels were assessed by ELISA, and fecal O. formigenes DNA levels were isolated and measured by real-time PCR. Isolation of fecal O. formigenes was found in only 2 HD patients. One of them had 113,609 copies/ml, the other one had 1,056 copies/ml. Serum oxalic acid levels were found to be positively correlated with PWV (r = 0.29, p = 0.03), cASBP (r = 0.33, p = 0.001) and cADBP (r = 0.42, p = 0.002) and negatively correlated with LDL (r = -0.30, p = 0.03). In multivariate linear regression analysis, PWV was independently predicted by oxalic acid, glucose and triglyceride. This is the first study that demonstrates the absence of O. formigenes as well as a relation between serum oxalic acid and cASBP, cADBP and PWV in HD patients. Replacement of O. formigenes with pre- and probiotics might decrease serum oxalic acid levels and improve cardiovascular outcomes in HD patients.

  2. Putative Aspergillus niger-induced oxalate nephrosis in sheep : clinical communication

    Directory of Open Access Journals (Sweden)

    C.J. Botha

    2009-05-01

    Full Text Available A sheep farmer provided a maize-based brewer's grain (mieliemaroek and bales of Eragrostis curvula hay to ewes and their lambs, kept on zero-grazing in pens. The 'mieliemaroek' was visibly mouldy. After 14 days in the feedlot, clinical signs, including generalised weakness, ataxia of the hind limbs, tremors and recumbency, were noticed. Six ewes died within a period of 7 days. A post mortem examination was performed on 1 ewe. The carcass appeared to be cachectic with mild effusions into the body cavities; mild lung congestion and pallor of the kidneys were observed. Microscopical evaluation revealed nephrosis and birefringent oxalate crystals in the renal tubules when viewed under polarised light. A provisional diagnosis of oxalate nephrosis with subsequent kidney failure was made. Amongst other fungi, Aspergillus niger was isolated from 'mieliemaroek' samples submitted for fungal culture and identification. As A. niger is known to synthesise oxalates, a qualitative screen to detect oxalic acid in the mieliemaroek and purified A. niger isolates was performed using high-performance liquid chromatography (HPLC. Oxalic acid was detected, which supported a diagnosis of soluble oxalate-induced nephropathy.

  3. Tetrakis(acetonitrilecopper(I hydrogen oxalate–oxalic acid–acetonitrile (1/0.5/0.5

    Directory of Open Access Journals (Sweden)

    A. Timothy Royappa

    2013-10-01

    Full Text Available In the title compound, [Cu(CH3CN4](C2HO4·0.5C2H2O4·0.5CH3CN, the CuI ion is coordinated by the N atoms of four acetonitrile ligands in a slightly distorted tetrahedral environment. The oxalic acid molecule lies across an inversion center. The acetonitrile solvent molecule is disordered across an inversion center and was refined with half occupancy. In the crystal, the hydrogen oxalate anions and oxalic acid molecules are linked via O—H...O hydrogen bonds, forming chains along [010].

  4. Thermal behaviour of iron (II) oxalate dihydrate in the atmosphere of its conversion gases

    Czech Academy of Sciences Publication Activity Database

    Heřmánek, M.; Zbořil, R.; Mašláň, M.; Machala, L.; Schneeweiss, Oldřich

    2006-01-01

    Roč. 16, č. 13 (2006), s. 1273-1280 ISSN 0959-9428 R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : hydrous ferrous oxalate * oxide nanoparticles * crystal-structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.287, year: 2006

  5. Precipitation of plutonium oxalate from homogeneous solutions

    International Nuclear Information System (INIS)

    Rao, V.K.; Pius, I.C.; Subbarao, M.; Chinnusamy, A.; Natarajan, P.R.

    1986-01-01

    A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92-98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(Csub(2)Osub(4))sub(2).6Hsub(2)O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuOsub(2) obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen. (author)

  6. Dating oxalate minerals in rock surface deposits

    International Nuclear Information System (INIS)

    Watchman, A.

    2001-01-01

    Oxalate minerals are found associated with rocks, mineral coatings, micro-organisms, plants and animals. They are important in archaeology because they have been found intimately associated with organic binders in prehistoric paints. Oxalate minerals also accumulate in the coatings on rock shelter walls and fallen ceiling slabs where they form the natural backing supports for painting and opaque laminates covering engravings. Though the relationship between anthropogenic activity in a rock shelter and oxalate formation is often uncertain, the radiocarbon age of the oxalate may provide the only means for determining the antiquity of a rock painting or engraving. This paper examines the history of dating oxalate minerals at archaeological sites and provides insights into achieving reliable age estimates. (author). 37 refs., 1 fig., 2 tabs

  7. Calcium hydroxyapatite crystal deposition with intraosseous penetration involving the posterior aspect of the cervical spine: a previously unreported cause of neck pain.

    Science.gov (United States)

    Urrutia, Julio; Contreras, Oscar

    2017-05-01

    Calcific tendinitis is a frequent disorder caused by hydroxyapatite crystal deposition; however, bone erosions from calcific tendinitis are unusual. The spinal manifestation of this disease is calcific tendinitis of the longus colli muscle; this disease has never been described in the posterior aspect of the spine. We report a case of calcium hydroxyapatite crystal deposition involving the posterior cervical spine eroding the bone cortex. A 57-year-old woman presented with a 5-month history of left-sided neck pain. Radiographs showed C4-C5 interspinous calcification with lytic compromise of the posterior arch of C4. Magnetic resonance imaging confirmed a lytic lesion of the posterior arch of C4, with a soft tissue mass extending to the C4-C5 interspinous space; calcifications were observed as very low signal intensity areas on T1 and T2 sequences, surrounded by gadolinium-enhanced soft tissues. A computed tomography (CT) scan confirmed the bone erosions and the soft tissue calcifications. A CT-guided needle biopsy was performed; it showed vascularized connective tissue with inflammatory histiocytic infiltration and multinucleated giant cells; Alizarin Red stain confirmed the presence of hydroxyapatite crystals. The patient was treated with anti-inflammatories for 2 weeks. She has been asymptomatic in a 6-month follow-up; a CT scan at the last follow-up revealed reparative remodeling of bone erosions. This is the first report of calcium hydroxyapatite crystal deposition with intraosseous penetration involving the posterior aspect of the cervical spine. Considering that this unusual lesion can be misinterpreted as a tumor or infection, high suspicion is required to avoid unnecessary surgical procedures.

  8. Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils

    Science.gov (United States)

    Sahin, Nurettin

    2004-10-01

    The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (SJ) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a ≥70% SSM similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P>0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces.

  9. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Yoo, J.H.; Kim, E.H.

    1998-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, the photochemical decomposition mechanism of oxalates in the presence of nitric acid was elucidated by experimental work. The decomposition of oxalates was proved to be dominated by the reaction with hydroxyl radical generated from the nitric acid, rather than with nitrite ion also formed from nitrate ion. The decomposition rate of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was found to be 0.003 M/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  10. Investigation of the effects of swift heavy ion on the properties of yttrium calcium oxyborate (YCOB) NLO crystal

    International Nuclear Information System (INIS)

    Kalidasan, M.; Dhanasekaran, R.; Asokan, K.

    2012-01-01

    Heavy ion irradiation is a successful tool to create an effective refractive index change in a nonlinear optical (NLO) crystal surface in several micron thickness. It leads to the fabrication of non-leaky optical guiding structures. As irradiation can create the property changes with low ion fluence, it will be an alternative for the ion implantation. The present work is related to the creation of micrometer level surface modification in the YCa_4O(BO_3)_3 NLO crystal by the irradiation of 120 MeV Au"9"+ swift heavy ion and studying the changes in property of the material. The irradiation was carried out in the Materials Science beam line of the pelletron accelerator at Inter University Accelerator Centre, New Delhi. YCOB crystals were grown by high temperature flux technique in our laboratory. YCOB belongs to borate family of crystals which are superior to other NLO crystals due to their structural and optical features. Borate crystal can produce UV and deep UV laser through harmonic generation with good optical conversion efficiency. YCOB crystal attracted because of its high laser damage threshold, long nonlinear conversion length and large aperture scaling capability to be employed in high power laser applications. The Stopping and Range of Ions in Matter (SRIM) simulation has been carried out to study the variation of electronic (S_e) and nuclear (S_n) energy losses with penetration depth and energy of gold ions in YCOB crystal. Refractive index change was observed in the YCOB crystal due to the irradiation of 120 MeV Au"9"+ ion. The UV-Visible studies show optical band gap shift and confirms the refractive index change created in the YCOB crystal. The morphology of the irradiated crystal was analysed with scanning electron microscopy. The inhomogeneous broadening of emission curve of the YCOB crystal takes place due to ion irradiation which is analyzed in detail. From the fluorescence decay curves of pristine and irradiated crystals the excited state

  11. Crystal structure and spectroscopic behavior of synthetic novgorodovaite Ca2(C2O4)Cl2·2H2O and its twinned triclinic heptahydrate analog

    Science.gov (United States)

    Piro, Oscar E.; Echeverría, Gustavo A.; González-Baró, Ana C.; Baran, Enrique J.

    2018-02-01

    Synthetic novgorodovaite analog Ca2(C2O4)Cl2·2H2O is identical to its natural counterpart. It crystallizes in the monoclinic I2/ m space group with a = 6.9352(3), b = 7.3800(4), c = 7.4426(3) Å, β = 94.303(4)°, V = 379.85(3) Å3 and Z = 2. The heptahydrate analog, Ca2(C2O4)Cl2·7H2O, crystallizes as triclinic twins in the P \\overline{1} space group with a = 7.3928(8), b = 8.9925(4), c = 10.484(2) Å, α = 84.070(7), β = 70.95(1), γ = 88.545(7)°, V = 655.3(1) Å3 and Z = 2. The crystal packing of both calcium oxalate-chloride double salts favors the directional bonding of oxalate, C2O4 2-, ligands to calcium ions as do other related calcium oxalate minerals. The π-bonding between C and O atoms of the C2O4 2- oxalate group leaves sp 2-hydridised orbitals of the oxygen atoms available for bonding to Ca. Thus, the Ca-O bonds in both calcium oxalate-chloride double salts are directed so as to lie in the plane of the oxalate group. This behavior is reinforced by the short O···O distances between the oxygens attached to a given carbon atom, which favors them bonding to a shared Ca atom in bidentate fashion. Strong bonding in the plane of the oxalate anion and wide spacing perpendicular to that plane due to repulsion between oxalate π-electron clouds gives rise to a polymerized structural units which are common to both hydrates, explaining the nearly equal cell constants 7.4 Å which are defined by the periodicity of Ca-oxalate chains in the framework (monoclinic b ≈ triclinic a). When compared with novgorodovaite, the higher water content of Ca2(C2O4)Cl2·7H2O leads to some major differences in their structures and ensuing physical properties. While novgorodovaite has a three-dimensional framework structure, in the higher hydrate, the highly polar water molecules displace chloride ions from the calcium coordination sphere and surround them through OwH···Cl hydrogen bonds. As a result, polymerization in Ca2(C2O4)Cl2·7H2O solid is limited to the formation

  12. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  13. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    OpenAIRE

    R. Wagner; O. Möhler; H. Saathoff; M. Schnaiter; T. Leisner

    2010-01-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to ...

  14. Histochemical localization and probable functions of calcium oxalate ...

    African Journals Online (AJOL)

    Dr. Julian O. Osuji

    The specimens already fixed in FAA (1 part formalin, 1 part glacial acetic acid and 18 parts 70% ethanol v/v) were rinsed in deionized water and dehydrated through graded ethanol series in the order 30, 50, 70 and 90% for two hours in each solution and finally in absolute ethanol overnight. Dehydrated specimens were.

  15. Synthesis and structural characterisation of mixed An(IV)-An(III) actinide oxalates used as precursors for dedicated fuel or target

    International Nuclear Information System (INIS)

    Tamain, Christelle; Grandjean, Stephane; Arab Chapelet, Benedicte; Abraham, Francis

    2010-01-01

    Oxalic co-conversion process plays an important role by producing mixed-actinide compounds used as starting materials as they are particularly suitable precursors of actinide oxide solid solutions. In these oxalate compounds, a mixed crystallographic site which accommodates both elements in spite of their different oxidation states has been established. The charge compensation is ensured by monovalent cations present in the acidic solution. This communication reviews the various mixed-actinide oxalates obtained by crystallization from acidic solution. First, crystallographic structures determined by X-ray diffraction from single crystals are described. Then completing data obtained by powder X-ray diffraction are presented on various systems. The different supramolecular arrangements underline the complexity of An(IV)-An(III)/Ln(III) oxalate system and the need to pursue studies on single crystals. (authors)

  16. (Di­methyl­phosphor­yl)methanaminium hydrogen oxalate–oxalic acid (2/1)

    Science.gov (United States)

    Bialek, Sebastian; Clemens, Rebecca; Reiss, Guido J.

    2014-01-01

    The reaction of (di­methyl­phosphor­yl)methanamine (dpma) with oxalic acid in ethanol yielded the title solvated salt, C3H11NOP+·C2HO4 −·0.5C2H2O4. Its asymmetric unit consists of one dpmaH+ cation, one hydrogen oxalate anion and a half-mol­ecule of oxalic acid located around a twofold rotation axis. The H atom of the hydrogen oxalate anion is statistically disordered over two positions that are trans to each other. The hydrogen oxalate monoanion is not planar (bend angle ∼16°) whereas the oxalic acid molecule shows a significantly smaller bend angle (∼7°). In the crystal, the components are connected by strong O—H⋯O and much weaker N—H⋯O hydrogen bonds, leading to the formation of layers extending parallel to (001). The structure was refined from a racemically twinned crystal with twin components in an approximate 1:1 ratio. PMID:24765013

  17. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    Science.gov (United States)

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  18. Dissolution of oxalate precipitate and destruction of oxalate ion by hydrogen peroxide in nitric acid solution

    International Nuclear Information System (INIS)

    Kim, Eung-Ho; Chung, Dong-Yong; Park, Jin-Ho; Yoo, Jae-Hyung

    2000-01-01

    This study aims at developing an oxalate precipitation process, which is applicable to a partitioning of long-lived radionuclides from the high-level radioactive liquid waste. In order to achieve this, a study for decomposition-reaction of oxalic acid by hydrogen peroxide was first carried out. The decomposition rates of H 2 O 2 and oxalic acid increased with an increase of nitric acid concentration, and especially those decomposition rates steeply increased at more than 2 M HNO 3 . Based on this result, the decomposition kinetics of H 2 O 2 and oxalic acid were suggested in this work. Then, the dissolution of oxalate precipitate and the destruction of oxalate ion in the solution were examined. Oxalate precipitates were prepared by adding oxalic acid into a simulated radioactive waste containing 8 metallic elements. The precipitates obtained thereby were dissolved in various nitric acid concentrations and reacted with H 2 O 2 at 90degC. When the oxalates were completely dissolved, most of the oxalates were decomposed by adding H 2 O 2 , but in a slurry state the decomposition yield of the oxalate decreased with an increase of the slurry density in the solution. Such phenomenon was considered to be due to a catalytic decomposition of H 2 O 2 on a solid surface of oxalate and the decomposition mechanism was explained by a charge transfer from a surface of oxalate solid to H 2 O 2 , producing OH radicals which can destruct H 2 O 2 explosively. Accordingly, the experimental condition for the decomposition of the oxalate precipitates was found to be most favorable at 3 M HNO 3 under the initial concentrations of 0.2 M oxalate and 1 M H 2 O 2 . At 3M HNO 3 , oxalate precipitates could be safely and completely dissolved, and almost decomposed. Additionally, it was observed that the presence of ferric ion in the solution largely affects the decomposition rate of H 2 O 2 . This could be explained by a chain reaction of hydrogen peroxide with ferric ion in the solution

  19. The polymorphic weddellite crystals in three species of Cephalocereus (Cactaceae).

    Science.gov (United States)

    Bárcenas-Argüello, María-Luisa; Gutiérrez-Castorena, Ma C-del-Carmen; Terrazas, Teresa

    2015-10-01

    Mineral inclusions in plant cells are genetically regulated, have an ecological function and are used as taxonomic characters. In Cactaceae, crystals in epidermal and cortical tissues have been reported; however, few studies have conducted chemical and morphological analyses on these crystals, and even fewer have reported non-mineral calcium to determine its systematic value. Cephalocereus apicicephalium, C. totolapensis and C. nizandensis are Cactaceae species endemic to the Isthmus of Tehuantepec, Mexico with abundant epidermal prismatic crystals. In the present study, we characterize the mineral cell inclusions, including their chemical composition and their morphology, for three species of Cephalocereus. Crystals of healthy branches of the three species were isolated and studied. The crystals were identified by X-ray diffraction (XRD), their morphology was described using a petrographic and scanning electron microscope (SEM), and their elemental composition was measured with Energy Dispersive X-ray (EDXAR). The three species synthesized weddellite with different degrees of hydration depending on the species. The optical properties of calcium oxalate crystals were different from the core, which was calcium carbonate. We observed a large diversity of predominantly spherical forms with SEM. EDXAR analysis detected different concentrations of Ca and significant amounts of elements, such as Si, Mg, Na, K, Cl, and Fe, which may be related to the edaphic environment of these cacti. The occurrence of weddellite is novel for the genus according to previous reports. The morphological diversity of the crystals may be related to their elemental composition and may be a source of phylogenetic characters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Determination of thermodynamic parameters for complexation of calcium and magnesium with chondroitin sulfate isomers using isothermal titration calorimetry: Implications for calcium kidney-stone research

    Science.gov (United States)

    Rodgers, Allen L.; Jackson, Graham E.

    2017-04-01

    Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.

  1. Physical simulation of precipitation of radioactive element oxalates by using the harmless neodymium oxalate for studying the agglomeration phenomena

    International Nuclear Information System (INIS)

    Lalleman, Sophie; Bertrand, Murielle; Plasari, Edouard

    2012-01-01

    Oxalic precipitation is usually applied in nuclear industry to process radioactive wastes or to recover actinides from a multicomponent solution.This paper deals with the development of methods adapted to a nuclear environment in order to study the agglomeration phenomena during actinide oxalic precipitation.These methods are previously set up with harmless elements that simulate the actinide behaviour: the lanthanides. A parametric study is carried out to quantify the influence of operating parameters on the agglomeration kernel and to determine a kinetic law for this mechanism. The experimental study is performed in a continuous-MSMPR precipitator at steady-state. The method is based on the resolution of two population balances using the moment approach, one for elementary crystals and the other for agglomerates. Provided that the kinetic rates of nucleation and growth are known, the agglomeration kernel can be obtained from a mathematical treatment of the experimental particle size distributions. Results point out that experimental crystal sizes are consistent with an independent kernel. It appears that the agglomeration kernel is directly proportional to supersaturation, increases with temperature but is limited by ionic strength and shear rate. (authors)

  2. Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants 1

    Science.gov (United States)

    Nuss, Richard F.; Loewus, Frank A.

    1978-01-01

    l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined. When l-[1-14C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the 14C is released over a 24-hour period as 14CO2 and only a small portion is recovered as [14C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the 14C as [14C]oxalic acid and release very little 14CO2. Support for an intermediate role of oxalate in the release of 14CO2 from l-[1-14C]ascorbic acid is seen in the rapid release of 14CO2 by R. crispus and H. glomeratus seedlings labeled with [14C]oxalic acid. The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of 14C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-14C]- or l-[UL-14C]ascorbic acid. Theoretically, l-[1-14C]ascorbic acid will produce labeled oxalic acid containing three times as much 14C as l-[UL-14C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 ± 0.5 is obtained in duplicate experiments with six different species. PMID:16660342

  3. Synthesis of Fluorite (CaF2 Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel

    Directory of Open Access Journals (Sweden)

    Mohammad Misbah Khunur

    2012-06-01

    Full Text Available This paper report the synthesis and characterization of fluorite single crystal prepared from gypsum waste of phosphoric acid production in silica gel. Instead of its high calcium, gypsum was used to recycle the waste which was massively produces in the phosphoric acid production. The gypsum waste, the raw material of CaCl2 supernatant, was dissolved in concentrated HCl and then precipitated as calcium oxalate (CaC2O4 by addition of ammonium oxalate. The CaCl2 was obtained by dissolving the CaC2O4 with HCl 3M. The crystals were grown at room temperature in silica gel and characterized by AAS, FTIR and powder XRD. The optimum crystal growth condition, which is pH of gel, CaCl2 concentration and growth time, were investigated. The result shows that at optimum condition of pH 5.80, CaCl2 concentrations of 1.2 M, and growth time of 144 hours, colorless crystals with the longest size of 3 mm, were obtained (72.57%. Characterization of the synthesized crystal by AAS indicates that the obtained crystal has high purity. Meanwhile, analysis by FTIR spectra shows a Ca–F peak at 775 cm-1, and powder-XRD analysis confirms that the obtained crystal was fluorite (CaF2. © 2012 BCREC UNDIP. All rights reservedReceived: 11st April 2012; Revised: 4th June 2012; Accepted: 13rd June 2012[How to Cite: M.M. Khunur, A. Risdianto, S. Mutrofin, Y.P. Prananto. (2012. Synthesis of Fluorite (CaF2 Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 71-77.  doi:10.9767/bcrec.7.1.3171.71-77 ][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.3171.71-77 ] | View in 

  4. Crystal and molecular structure of mixed-ligand calcium, strontium and barium complexes with dipivaloylmethane and 1,10-phenanthroline of composition MDpm2Phen2

    International Nuclear Information System (INIS)

    Soboleva, I.E.; Troyanov, S.I.; Kuz'mina, N.P.; Ivanov, V.K.; Martynenko, L.I.; Struchkov, Yu.T.; AN SSSR, Moscow

    1995-01-01

    Mixed-ligand complexes (MLC) of MDpm P hen 2 composition were prepared for the first time in result of interaction of calcium and strontium dipivaloylmethane (MDpm 2 ) with 1,10-phenanthroline (Phen · H 2 O) in benzene-acetonitrile mixture. Method of x-ray diffraction analysis was used to establish, that they were crystallized in monoclinic syngony with C2/c space group for CaDpm 2 Phen 2 and P2 1 /n space group for SrDpm 2 Phen 2 and were composed of monomeric molecules. The central atom (Ca,Sr) coordinates 4 oxygen atoms of two dipivaloylmethane ligands and 4 nitrogen atoms of two 1,10-phenanthroline molecules. Correlation with x-ray diffraction data for similar MZC of barium (BaDpm 2 Phen 2 ) was conducted. 4 refs.; 4 tabs

  5. Adaptable coordination of U(IV) in the 2D-(4,4) uranium oxalate network: From 8 to 10 coordinations in the uranium (IV) oxalate hydrates

    International Nuclear Information System (INIS)

    Duvieubourg-Garela, L.; Vigier, N.; Abraham, F.; Grandjean, S.

    2008-01-01

    Crystals of uranium (IV) oxalate hydrates, U(C 2 O 4 ) 2 .6H 2 O (1) and U(C 2 O 4 ) 2 .2H 2 O (2), were obtained by hydrothermal methods using two different U(IV) precursors, U 3 O 8 oxide and nitric U(IV) solution in presence of hydrazine to avoid oxidation of U(IV) into uranyl ion. Growth of crystals of solvated monohydrated uranium (IV) oxalate, U(C 2 O 4 ) 2 .H 2 O.(dma) (3), dma=dimethylamine, was achieved by slow diffusion of U(IV) into a gel containing oxalate ions. The three structures are built on a bi-dimensional complex polymer of U(IV) atoms connected through bis-bidentate oxalate ions forming [U(C 2 O 4 )] 4 pseudo-squares. The flexibility of this supramolecular arrangement allows modifications of the coordination number of the U(IV) atom which, starting from 8 in 1 increases to 9 in 3 and, finally increases, to 10 in 2. The coordination polyhedron changes from a distorted cube, formed by eight oxygen atoms of four oxalate ions, in 1, to a mono-capped square anti-prism in 3 and, finally, to a di-capped square anti-prism in 2, resulting from rotation of the oxalate ions and addition of one and two water oxygen atoms in the coordination of U(IV). In 1, the space between the ∞ 2 [U(C 2 O 4 ) 2 ] planar layers is occupied by non-coordinated water molecules; in 2, the space between the staggered ∞ 2 [U(C 2 O 4 ) 2 .2H 2 O] layers is empty, finally in 3, the solvate molecules occupy the interlayer space between corrugated ∞ 2 [U(C 2 O 4 ) 2 .H 2 O] sheets. The thermal decomposition of U(C 2 O 4 ) 2 .6H 2 O under air and argon atmospheres gives U 3 O 8 and UO 2 , respectively. - Graphical abstract: The adaptable environment of U(IV) in U(IV) oxalates: from eight cubic coordination in U(C 2 O 4 ) 2 .6H 2 O (a) completed by water oxygens to nine in [U(C 2 O 4 ) 2 .H 2 O](C 2 NH 5 ) (b) and ten coordination in U(C 2 O 4 ) 2 .2H 2 O (c)

  6. Variation in oxalate and oxalate decarboxylase production by six species of brown and white rot fungi

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Oliver, Jason; Howell, Caitlin

      Oxalic acid (C2O4H2), the strongest of the organic acids is produced by both brown and white rot decay fungi and has been connected to various aspects of brown- and white rot decay including the Fenton reaction (Green and Highley, 1997; Munir et al.,2001). Oxalic acid is secreted into the wood...... cell lumen where it quickly dissociates into hydrogen ions and oxalate, resulting in a pH decrease of the environment, and oxalate-cation complexes. Generally, brown rot fungi accumulate larger quantities of oxalic acid in the wood than white rot fungi. The amount of oxalic acid has been shown to vary...... of formic acid and CO2 (Makela et al., 2002). So far only a few species of brown rot fungi have been shown to accumulate this enzyme (Micales, 1995, Howell and Jellison, 2006).   The purpose of this study was to investigate the variation in the levels of soluble oxalate and total oxalate, in correlation...

  7. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    Science.gov (United States)

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    Excess accumulation of extracellular inorganic pyrophosphate (ePPi) in aged human cartilage is crucial in calcium pyrophosphate dihydrate (CPPD) crystal formation in cartilage matrix. Two sources of ePPi are ePPi-generating ectoenzymes (NTPPPH) and extracellular transport of intracellular PPi by ANK. This study was undertaken to evaluate the role of NTPPPH and ANK in ePPi elaboration, by investigating expression of NTPPPH enzymes (cartilage intermediate-layer protein [CILP] and plasma cell membrane glycoprotein 1 [PC-1]) and ANK in human chondrocytes from osteoarthritic (OA) articular cartilage containing CPPD crystals and without crystals. Chondrocytes were harvested from knee cartilage at the time of arthroplasty (OA with CPPD crystals [CPPD], n = 8; OA without crystals [OA], n = 10). Normal adult human chondrocytes (n = 1) were used as a control. Chondrocytes were cultured with transforming growth factor beta1 (TGFbeta1), which stimulates ePPi elaboration, and/or insulin-like growth factor 1 (IGF-1), which inhibits ePPi elaboration. NTPPPH and ePPi were measured in the media at 48 hours. Media CILP, PC-1, and ANK were determined by dot-immunoblot analysis. Chondrocyte messenger RNA (mRNA) was extracted for reverse transcriptase-polymerase chain reaction to study expression of mRNA for CILP, PC-1, and ANK. NTPPPH and ANK mRNA and protein were also studied in fresh frozen cartilage. Basal ePPi elaboration and NTPPPH activity in conditioned media from CPPD chondrocytes were elevated compared with normal chondrocytes, and tended to be higher compared with OA chondrocytes. Basal expression of mRNA for CILP (chondrocytes) and ANK (cartilage) was higher in both CPPD chondrocytes and CPPD cartilage extract than in OA or normal samples. PC-1 mRNA was less abundant in CPPD chondrocytes and cartilage extract than in OA chondrocytes and extract, although the difference was not significant. CILP, PC-1, and ANK protein levels were similar in CPPD, OA, and normal chondrocytes

  8. Calcium fluoride

    International Nuclear Information System (INIS)

    King, C.W.; Nestor, O.H.

    1989-01-01

    A new process for producing large, single, oriented crystals of calcium fluoride (CaF 2 ) has been developed which overcomes the limitations of current growing methods. This process has been reduced to practice and has yielded oriented crystals 17.5 x 17.5 x 5 cm 3 . Currently nearing completion is a system for producing 35 x 35 x 7.5 cm 3 single crystals. A scale up to one-meter-square is considered feasible. This crystal growing process makes possible the fabrication of very large CaF 2 windows. Suitability for very high power lasers, however, requires attention to properties beyond mere size. A process to generate higher purity growth stock (starting material) was also developed. The additional purification of the growth stock contributes to lower bulk absorption, the absence of color centers and increased radiation hardness. Also identified were several specific impurities which correlate with radiation hardness. A correlation was found between color centers induced by laser radiation and ionizing radiation. Other CaF 2 crystal properties such as tensile strength, absorption and laser damage thresholds were studied and are discussed

  9. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals

    Science.gov (United States)

    Mitzi, David Brian

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  10. On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, R. F., E-mail: robsonfmuniz@yahoo.com.br [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Ligny, D. de [Department of Materials Science, Glass and Ceramics, University of Erlangen Nürnberg, Martensstr. 5, 91058 Erlangen (Germany); Le Floch, S.; Martinet, C.; Guyot, Y. [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Rohling, J. H.; Medina, A. N.; Sandrini, M.; Baesso, M. L. [Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Andrade, L. H. C.; Lima, S. M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C.P. 351, Dourados, MS (Brazil)

    2016-06-28

    From initial calcium aluminosilicate glass, transparent glass-ceramics have been successfully synthesized under simultaneous high pressure and temperature (SHPT). Possible homogeneous volumetric crystallization of this glassy system, which was not achieved previously by means of conventional heat treatment, has been put in evidence with a SHPT procedure. Structural, mechanical, and optical properties of glass and glass-ceramic obtained were investigated. Raman spectroscopy and X-ray diffraction allowed to identify two main crystalline phases: merwinite [Ca{sub 3}Mg(SiO{sub 4}){sub 2}] and diopside [CaMgSi{sub 2}O{sub 6}]. A Raman scanning profile showed that the formation of merwinite is quite homogeneous over the bulk sample. However, the sample surface also contains significant diopside crystals. Instrumented Berkovich nanoindentation was applied to determine the effect of SHPT on hardness from glass to glass-ceramic. For Eu-doped samples, the broadband emission due to 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+} was studied in both host systems. Additionally, the {sup 5}D{sub 0} → {sup 7}F{sub J} transition of Eu{sup 3+} was used as an environment probe in the pristine glass and the glass-ceramic.

  11. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    Science.gov (United States)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  12. Investigations on the crystal-structure and non-ambient behaviour of K2Ca2Si8O19 - a new potassium calcium silicate

    Science.gov (United States)

    Schmidmair, Daniela; Kahlenberg, Volker; Praxmarer, Alessandra; Perfler, Lukas; Mair, Philipp

    2017-09-01

    Within the context of a systematic re-investigation of phase relationships between compounds of the ternary system K2O-CaO-SiO2 a new potassium calcium silicate with the chemical formula K2Ca2Si8O19 was synthesized via solid state reactions as well as the flux method using KCl as a solvent. Its crystal structure was determined from single-crystal X-ray diffraction data by applying direct methods. The new compound crystallizes in the triclinic space group P 1 bar . Unit cell dimensions are a = 7.4231(7) Å, b = 10.7649(10) Å, c = 12.1252(10) Å, α = 70.193(8)°, β = 83.914(7)° and γ = 88.683(7)°. K2Ca2Si8O19 is built up of corner-connected, slightly distorted [SiO4]-tetrahedra forming double-sheets, which are linked by double-chains of edge-sharing [CaO6]-octahedra. Electroneutrality of the material is provided by additional potassium atoms that are located within the voids of the silicate layers and between adjacent [Ca2O6]-double-chains. Further characterization of the compound was performed by Raman spectroscopy and differential thermal analysis. The behaviour of K2Ca2Si8O19 under high-temperature and high-pressure was investigated by in-situ high-temperature powder X-ray diffraction up to a maximum temperature of 1125 °C and a piston cylinder experiment at 1.5 GPa and 1100 °C. Additionally an overview of known double-layer silicates is given as well as a comparison of K2Ca2Si8O19 to closely related structures.

  13. A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry

    Science.gov (United States)

    Han, Mei; Zhao, Yanyang; Zhao, Hui; Han, Zuozhen; Yan, Huaxiao; Sun, Bin; Meng, Ruirui; Zhuang, Dingxiang; Li, Dan; Liu, Binwei

    2018-04-01

    Based on the terminology of "aragonite seas" and "calcite seas", whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.

  14. Advanced Oxidation: Oxalate Decomposition Testing With Ozone

    International Nuclear Information System (INIS)

    Ketusky, E.; Subramanian, K.

    2012-01-01

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  15. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  16. A comparison of leaf crystal macropatterns in the two sister genera Piper and Peperomia (Piperaceae).

    Science.gov (United States)

    Horner, Harry T; Wanke, Stefan; Samain, Marie-Stéphanie

    2012-06-01

    This is the first large-scale study comparing leaf crystal macropatterns of the species-rich sister genera Piper and Peperomia. It focuses on identifying types of calcium oxalate crystals and their macropatterns in leaves of both genera. The Piper results are placed in a phylogenetic context to show evolutionary patterns. This information will expand knowledge about crystals and provide specific examples to help study their form and function. One example is the first-time observation of Piper crystal sand tumbling in chlorenchyma vacuoles. Herbarium and fresh leaves were cleared of cytoplasmic content and examined with polarizing microscopy to identify types of crystals and their macropatterns. Selected hydrated herbarium and fresh leaf punches were processed for scanning electron microscopy and x-ray elemental analysis. Vibratome sections of living Piper and Peperomia leaves were observed for anatomical features and crystal movement. Both genera have different leaf anatomies. Piper displays four crystal types in chlorenchyma-crystal sand, raphides, styloids, and druses, whereas Peperomia displays three types-druses, raphides, and prisms. Because of different leaf anatomies and crystal types between the genera, macropatterns are completely different. Crystal macropattern evolution in both is characterized by increasing complexity, and both may use their crystals for light gathering and reflection for efficient photosynthesis under low-intensity light environments. Both genera have different leaf anatomies, types of crystals and crystal macropatterns. Based on Piper crystals associated with photosynthetic tissues and low-intensity light, further study of their function and association with surrounding chloroplasts is warranted, especially active crystal movement.

  17. Recovery Ce from Ce - TBP Used Oxalic Acid

    International Nuclear Information System (INIS)

    Purwani, MV; Subagiono, R.; Suyanti

    2007-01-01

    Recovery or stripping Ce from Ce - TBP product of monazite sand used oxalic acid. Ce - TBP as organic phase and oxalic acid as aqueous phase and as strong precipitant compound to precipitate metal element. The stripping product as Ce - oxalic precipitate. The influence parameter were percentage of oxalic acid, volume ratio of Ce-TBP with oxalic acid, time and rate of stripping. At stripping of 25 ml Ce - TBP used oxalic acid, the optimum condition were achieve at using 5% oxalic acid, volume ratio of Ce - TBP : 5% oxalic acid = 1 : 1, time of stripping 7.5 minute and rate of stripping 150 rpm. At the optimum condition was obtained the recovery efficiency was 100%. (author)

  18. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    Science.gov (United States)

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear complex Al 2(OH) 2(C 2O 4) 44- to exist in a

  19. Interaction Studies of Dilute Aqueous Oxalic Acid

    Directory of Open Access Journals (Sweden)

    Kiran Kandpal

    2007-01-01

    Full Text Available Molecular conductance λm, relative viscosity and density of oxalicacid at different concentration in dilute aqueous solution were measured at 293 K.The conductance data were used to calculate the value association constant.Viscosity and density data were used to calculate the A and B coefficient ofJone-Dole equation and apparent molar volume respectively. The viscosityresults were utilized for the applicability of Modified Jone-Dole equation andStaurdinger equations. Mono oxalate anion acts, as structure maker and thesolute-solvent interaction were present in the dilute aqueous oxalic acid.

  20. Utilization of Snail (Achatina fulica Shell Waste for Synthesis of Calcium Tartrate Tetrahydrate (CaC4H4O6.4H2O Single Crystals in Silica Gel

    Directory of Open Access Journals (Sweden)

    Imam Sakdi

    2012-01-01

    Full Text Available Snail (Achatina fulica shell waste is massively produced by many home industries in Indonesia, especially in East Java. The snail shell is known for high calcium; therefore it is potential to be used as calcium source of supernatant in the synthesis of piezoeletric material, such as single crystal of calcium tartrate tetrahydrate (CaTT. The aim of this research is to study the synthesis and characterization of CaTT or CaC4H4O6.4H2O from snail shell waste in silica gel. Supernatant solution of CaCl2 was prepared from CaO, which previously made by calcinating the shell at 1000°C, and then reacted with HCl 1,5M. Synthesis of CaTT was conducted in a single-tube reaction at room temperature in which silica gel was used as growth medium with gelling time of 10 days and growth time of 2 weeks. The pH of gel and CaCl2 concentration were varied, 3.00; 3.50; 4.00; 4.50; 5.00; and 0.27; 0.36; 0.45; 0.54 M respectively, in order to obtain optimum condition of the synthesis, which is indicated from crystal yields. The synthesized crystals were characterized by atomic adsorption spectrophotometry (AAS, infrared spectroscopy (IR and powder X-ray diffraction (XRD. Experimental data shows that optimum condition was obtained at pH of 3.50 and [CaCl2] of 0.45M with yield of 69.37%. The obtained single crystal has clear color and octahedral-like shape with size ranged between 4 – 9 mm. Analysis data by FTIR and powder XRD confirmed that the obtained crystal was CaTT single crystals with crystal system of orthorhombic.

  1. A novel 3D framework indium phosphite-oxalate based on a pcu-type topology

    International Nuclear Information System (INIS)

    Zuo, Mengmeng; Zhou, Mingdong; Hu, Dianwen; Gao, Fan; Dong, Sijie; Huang, Liangliang

    2016-01-01

    A new inorganic–organic hybrid indium phosphite-oxalate, formulated as H[In 5 (HPO 3 ) 6 (H 2 PO 3 ) 2 (C 2 O 4 ) 2 ]·(C 4 N 2 H 11 ) 2 ·H 2 O 1 has been hydrothermally synthesized in the presence of piperazine acting as a structure directing agent (SDA). The single crystal X-ray diffraction reveals that compound 1 shows three-dimensional open-framework with intersecting 12-ring channels along the [010] and [001] directions, which is constructed from strictly alternating double 6-ring units (D6Rs), [C 2 O 4 ] 2− groups and [H 2 PO 3 ] − pseudo-pyramids. It is noted that the classical D6R SBU is firstly reported in main metal phosphite/phosphite-oxalate. By regarding D6R as the 6-connected nodes, the inorganic–organic hybrid framework is based on a pcu-type topology. The as-synthesized product was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis (TGA), ICP-AES and elemental analyses. - Graphical abstract: A 3D open-framework indium phosphite-oxalate has been synthesized under hydrothermal conditions. A classical SBU, D6R, is present in the structure. By regarding D6R as the 6-connected nodes, the inorganic–organic hybrid framework is based on a pcu-type topology. - Highlights: • A new indium phosphite-oxalate based on a pcu-type topology has been synthesized. • A classical SBU, D6R, is present in the structure. • The classical SBU is firstly reported in main metal phosphite/phosphite-oxalate.

  2. Self-diffusion of calcium and yttrium in pure and YF3-doped CaF2 single crystals

    International Nuclear Information System (INIS)

    Kucheria, C.S.

    1979-07-01

    Self-diffusion coefficients for Ca and Y were measured in pure and YF 3 -doped CaF 2 crystals for dopant levels ranging from 2 to 10 mole %. Diffusion data were analyzed as a function of temperature and as a function of composition. Comparison of Arrhenius relationships for both Ca and Y showed that the activation energy for cation diffusion decreased approximately linearly as the YF 3 dopant level increased. Atomic jump pathways were considered and the decrease in the activation energy was explained by an increase in the constriction sizes due to Willis cluster formation. Diffusion coefficients for both cations were found to increase approximately linearly with square of the mole percent YF 3 . A comparison of activation energies and diffusion coefficients for both cations in doped crystals indicated that Y required lower activation energy for diffusion than Ca but the diffusion coefficient was also lower for Y compared to Ca. The smaller activation energy for Y was explained by the smaller ionic size of Y, whereas the smaller diffusion coefficient for Y was explained on the basis of highly correlated jumps of Y ions because of interaction between Y/sub Ca/ and V/sub Ca/

  3. Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol

    Science.gov (United States)

    Gierlus, Kelly M.; Laskina, Olga; Abernathy, Tricia L.; Grassian, Vicki H.

    2012-01-01

    Dicarboxylic acids, which make up a significant portion of the atmospheric organic aerosol, are emitted directly through biomass burning as well as produced through the oxidation of volatile organic compounds. Oxalic acid, the most abundant of the dicarboxylic acids, has been shown by recent field studies to be present in mineral dust aerosol particles. The presence of these internally mixed organic compounds can alter the water absorption and cloud condensation nuclei (CCN) abilities of mineral particles in the Earth's atmosphere. The University of Iowa's Multi-Analysis Aerosol Reactor System ( MAARS) was used to measure the CCN activity of internally mixed particles that were generated from a mixture of either calcite or polystyrene latex spheres (PSLs) in an aqueous solution of oxalic acid. Although PSL is not a mineral dust component, it is used here as a non-reactive, insoluble particle. CCN measurements indicate that the internally mixed oxalate/calcite particles showed nearly identical CCN activity compared to the original calcite particles whereas oxalic acid/PSL internally mixed particles showed much greater CCN activity compared to PSL particles alone. This difference is due to the reaction of calcite with oxalic acid, which produces a relatively insoluble calcium oxalate coating on the particle surface and not a soluble coating as it does on the PSL particle. Our results suggest that atmospheric processing of mineral dust aerosol through heterogeneous processes will likely depend on the mineralogy and the specific chemistry involved. Increase in the CCN activity by incorporation of oxalic acid are only expected for unreactive insoluble dust particles that form a soluble coating.

  4. Recovery of plutonium from oxalate bearing solutions using a mixture of CMPO and TBP

    International Nuclear Information System (INIS)

    Mathur, J.N.; Murali, M.S.; Rizvi, G.H.; Iyer, R.H.; Badheka, L.P.; Banerji, A.; Michael, K.M.; Kapoor, S.C.; Dhumwad, R.K.

    1993-01-01

    A simple and efficient procedure has been developed to quantitatively recover Pu from oxalate bearing solutions using a mixture of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and TBP in dodecane. Pu(IV) in the range of 6.9 to 34.6 mg/1 was quantitatively extracted into 0.2 M CMPO+ 1.2 M TBP in dodecane from an aqueous solution containing 3.0 M HNO 3 and 0.1 M H 2 C 2 O 4 . At such low concentrations of Pu, the distribution ratio (D) did not change but the increase in oxalic acid concentration drastically reduced these values. The variation in HNO 3 concentration at a fixed concentration of 0.2 M CMPO + 1.2 M TBP has shown a dramatic increase in the D values, being 0.3 at 1.0 M and > 10 4 at 7.5 M. The extraction was almost quantitative even at the aqueous to organic ratio of 10:1. Plutonium could be quantitatively recovered (i) by stripping with 0.5 M acetic acid and (ii) by coprecipitating it directly from the organic phase with 0.3 M oxalic acid + 0.3 M calcium nitrate + sodium nitrite. ∼ 92% of the Pu was found in the precipitate and ∼7% in the supernatant. Using this procedure Pu, in a concentrated form (∼50 times), could be recovered from the oxalate bearing solutions without recourse to the destruction of oxalate ion. The slope of 2 from the nitrate ion as well as CMPO variation experiments suggest the species in the organic phase to be PuC 2 O 4 (NO 3 ) 2 .2CMPO. The absorption spectral study of Pu(IV) confirmed the above species in the organic phase. (author). 19 refs., 5 figs., 9 tabs

  5. Crystal structure of a polymeric calcium levulinate dihydrate: catena-poly[[diaquacalcium]-bis(μ2-4-oxobutanoato

    Directory of Open Access Journals (Sweden)

    Ananda S. Amarasekara

    2015-05-01

    Full Text Available In the title calcium levulinate complex, [Ca(C5H7O32(H2O2]n, the Ca2+ ion lies on a twofold rotation axis and is octacoordinated by two aqua ligands and six O atoms from four symmetry-related carboxylate ligands, giving a distorted square-antiprismatic coordination stereochemistry [Ca—O bond-length range = 2.355 (1–2.599 (1 Å]. The levulinate ligands act both in a bidentate carboxyl O,O′-chelate mode and in a bridging mode through one carboxyl O atom with an inversion-related Ca2+ atom, giving a Ca...Ca separation of 4.0326 (7 Å. A coordination polymeric chain structure is generated, extending along the c-axial direction. The coordinating water molecules act as double donors and participate in intra-chain O—H...O hydrogen bonds with carboxyl O atoms, and in inter-chain O—H...O hydrogen bonds with carbonyl O atoms, thus forming an overall three-dimensional structure.

  6. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    African Journals Online (AJOL)

    Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate on the ... The test plant was sown in aluminium-polluted soil (conc. ... The perseverance of the test plant in the aluminium spiked soil is an indication of adaptation to the stress ...

  7. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    African Journals Online (AJOL)

    ADOWIE PERE

    acid and ammonium oxalate on the prevalence of microorganisms and removal of aluminum in soil by bitter leaf plant (Vernonia ... highest accumulation of aluminium in the root (16.92mg/kg); however concentrations of aluminium in the roots were .... whereas the sulphate was 13.75mg/kg. Table 2: The total colony count of ...

  8. Investigation of composition and properties of some neptunium (5) oxalate compounds

    International Nuclear Information System (INIS)

    Zubarev, V.G.; Krot, N.N.

    1981-01-01

    A simple way of neptunium (5) oxalate synthesis is described and its composition is determined: (NpO 2 ) 2 C 2 O 4 xH 2 O. The compound is precipitated from solution during pouring together stoichiometric quantities of neptunium (5) nitrate and ammonium, sodium or potassium oxalate at pH=4-5. An explanation to unusual effect of solubility change with time of neptunium (5) monooxalate complexes and alkali metal or ammonium ion is found taking into account the slow formation of precipitate and low solubility of the compound obtained (0.62 g/l as to metal). Thermal decomposition of the compound is studied. At 180 deg C a water molecule is split off and at 260 deg C decomposition of neptunium oxalate starts. IR spectra and interplane distances (dsub(hkl)) of the compound crystal lattice are determined. New data on the synthesis and properties of complex neptunium (5) oxalates and monovalent cation in second sphere with the ratio ligand: metal=2:1 and 3:1 are presented. On the basis of results of IR spectroscopy and X-ray phase analyses a supposition is made on the existence of such complex compounds [ru

  9. Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus

    Directory of Open Access Journals (Sweden)

    Tong-Jiang Xu

    2014-09-01

    Full Text Available This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger, and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter and a swollen pellet structure. In the absence of the fly ash, the fungi showed a linear structure (with 2–4 μm hyphae diameter. Energy-dispersive X-ray spectroscopy and X-ray diffraction confirmed the precipitation of calcium oxalate hydrate crystals at the surface of hyphae in both one-step and two-step bioleaching. Calcium oxalate precipitation affects bioleaching via the weakening of the fly ash, thus facilitating the release of other tightly bound metals in the matrix.

  10. The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Bo Jensen; Carol Clausen; Frederick Green

    2006-01-01

    The dry rot fungus, Serpula lacrymans, is one of the most destructive copper-tolerant fungi causing timber decay in buildings in temperate regions. Calcium and oxalic acid have been shown to play important roles in the mechanism of wood decay. The effect of calcium on growth and decay was evaluated for 12 strains of S. lacrymans and compared to five brown-rot fungi....

  11. Theoretical calculation of zero field splitting parameters of Cr{sup 3+} doped ammonium oxalate monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com

    2015-06-15

    Zero field splitting parameters (ZFSPs) D and E of Cr{sup 3+} ion doped ammonium oxalate monohydrate (AOM) are calculated with formula using the superposition model. The theoretically calculated ZFSPs for Cr{sup 3+} in AOM crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in good agreement with the experimental ones. The energy band positions of optical absorption spectra of Cr{sup 3+} in AOM crystal calculated with CFA package are in good match with the experimental values.

  12. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats.

    Science.gov (United States)

    Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A

    2003-01-15

    To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.

  13. Hydrothermal synthesis of two layered indium oxalates with 12-membered apertures

    International Nuclear Information System (INIS)

    Chen Zhenxia; Zhou Yaming; Weng Linhong; Zhang Haoyu; Zhao Dongyuan

    2003-01-01

    Two layered indium oxalates, In(C 2 O 4 ) 2.5 (C 3 N 2 H 12 )(H 2 O) 3 , I, and In(C 2 O 4 ) 1.5 (H 2 O) 3 , II, have been hydrothermally synthesized. In I, the linkage between indium and oxalate units gives rise to a sheet with a rectangular 12-membered aperture (six indium atoms and six oxalate units). Indium atom of II has an unusual pentagonal bipyramidal coordination arrangement. The connectivity between indium and oxalate units forms a neutral puckered layer with 12- (along a-axis) and eight-membered (along b-axis) apertures. Crystal data for these two indium oxalates are as follows: I, triclinic, space group: P-1 (No. 2), a=8.725(3) A, b=9.170(3) A, c=9.901(3) A, α=98.101(4) deg. , β=97.068(4) deg. , γ=102.403(4) deg. , V=756.3(4) A 3 , Z=2, M=463.0(5), ρ calc =2.042 g/cm 3 , R 1 =0.0377, wR 2 =0.0834. II, monoclinic, space group: P2 1 /c (No. 14), a=10.203(5) A, b=6.638(1) A, c=11.152(7) A, β=95.649(4) deg. , V=751.7(4)A 3 , Z=4, M=300.9(0), ρ calc =2.659 g/cm 3 , R 1 =0.0229, wR 2 =0.0488. TG analyses indicate the water molecules of I can be removed at 150 deg. C. The dehydrated product retains structural integrity

  14. Manganese oxalate nanorods as ballistic modifier for composite solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Supriya [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India); Chawla, Mohit [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Siril, Prem Felix, E-mail: prem@iitmandi.ac.in [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India)

    2014-12-10

    Highlights: • Manganese oxalate nanorods were prepared using mild thermal precipitation and aging. • The nanorods were found to be efficient ballistic modifier for solid propellants. • The nanorods sensitized the thermolysis of ammonium perchlorate. • Controlled thermal decomposition of nanorods yielded manganese oxide nanoparticles. • MnO nanoparticles formed insitu in the condensed phase enhance the burning rates. - Abstract: Rod-shaped nanostructures of manganese oxalate (MnC{sub 2}O{sub 4}) were synthesized via mild thermal precipitation and aging process. Chemical composition of the MnC{sub 2}O{sub 4} nanorods was confirmed using Fourier transform infra-red (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) and selected area electron diffraction (SAED) studies revealed the crystal structure. Field emission scanning electron microscopy (FE-SEM) imaging and high resolution transmission electron microscopy (HR-TEM) were employed to study the structural features of the nanorods. The MnC{sub 2}O{sub 4} nanorods were found to be efficient ballistic modifier for the burning rate enhancement of composite solid propellants (CSPs). Thermal analysis using TGA-DSC showed that MnC{sub 2}O{sub 4} nanorods sensitized the thermal decomposition of ammonium perchlorate (AP) and the CSPs. Controlled thermal decomposition of the MnC{sub 2}O{sub 4} nanorods resulted in the formation of managanese oxide nanoparticles with mesoporosity. A plausible mechanism for the burning rate enhancement using MnC{sub 2}O{sub 4} nanorods was proposed.

  15. Oxalate complexation in dissolved carbide systems

    International Nuclear Information System (INIS)

    Choppin, G.R.; Bokelund, H.; Valkiers, S.

    1983-01-01

    It has been shown that the oxalic acid produced in the dissolution of mixed uranium, plutonium carbides in nitric acid can account for the problems of incomplete uranium and plutonium extraction on the Purex process. Moreover, it was demonstrated that other identified products such as benzene polycarboxylic acids are either too insoluble or insufficiently complexing to be of concern. The stability constants for oxalate complexing of UO 2 +2 and Pu +4 ions (as UO 2 (C 2 O 4 ), Pu(C 2 O 4 ) 2+ and Pu(C 2 O 4 ) 2 , respectively) were measured in nitrate solutions of 4.0 molar ionic strength (0-4 M HNO 3 ) by extraction of these species with TBP. (orig.)

  16. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  17. X-ray fluorescence analysis of neodymium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Mohile, A.N.

    1977-01-01

    An X-ray fluorescence method for the determination of cesium, praseodymium, samarium, europium and gadolinium in pure neodymium oxide and oxalate is described. The oxide sample is converted to oxalate and mixed with a binder (boric acid) to obtain a pressed circular pellet. The amount of sample needed for analysis is reduced by making use of the double layer pellet technique. A tungsten target X-ray tube is employed to irradiate the sample and a Philips PW 1220 semiautomatic X-ray spectrometer with a LiF (200) crystal is used to analyse the fluorescent X-rays. The minimum determination limit is 0.01 percent for all rare earths determined except for europium for which the limit is 0.005 percent. Three sigma detection limits have been calculated. (author)

  18. Development and characterization of oxalate coatings for the corrosion protection of metallic zinc

    International Nuclear Information System (INIS)

    Oliveira, M.; Ferreira Junior, J.M.; Baker, M.A.; Rossi, J.; Costa, I.

    2016-01-01

    This work aims to develop and characterize surface treatments for corrosion protection of zinc. Oxalic acid (OA) was used and the concentration range selected was from 10"-"1 M to 1 M. The chemical composition of the layers formed was evaluated by XPS, and the morphology and thickness, by FIB and EDS, respectively. The corrosion resistance was monitored by Electrochemical Impedance Spectroscopy (EIS). The results showed that a zinc oxalate layer had been formed in both concentrations but of different thickness and crystal sizes but similar morphology. The EIS results showed that the layer formed in the lower concentration solution provided corrosion protection for long periods whereas the one obtained at higher concentration did not protect the surface. The results led to conclude that one of the treatments tested is highly indicated for corrosion protection of zinc. (author)

  19. Influence des ions étrangers et de la matière organique sur la cristallisation des carbonates de calcium Influence of Foreign Ions and of Organic Matter on the Crystallization of Calcium Carbonates

    Directory of Open Access Journals (Sweden)

    Cailleau P.

    2006-11-01

    examines the influence of foreign ions and organic matter on the ger-mination and growth of calcium carbonates.The main results obtained can be summed up as follows:a Concerning Foreign Ions.Their action generally results in:- an increase in germination time and a reduction in the growth rate of CaC03 crystals:- the appearance of special facies for some of the minerals formed: - the inhibition of transformation from one variety ta another.A classification by order of increasing efficiency is obtained: - approximately zero action: K+, CI-;- moderate action: Bot+, Na+, A13+, Cul+, Sr 2+, S04-, P04- . - dominant action of Mg'+.b For Organic Matter.Citric acid and, ta a lesser extent, tartaric acid are the only ones ta have an appre ciable influence, moreover an influence which is similar to thot of foreign ions with regard ta kinetics of CaCO3 germination and growth.The adsorption of some of these products also results in special facies of the minerals formed and eventually in the inhibition of transformations from one variety ta another

  20. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering

    International Nuclear Information System (INIS)

    Doherty, B.; Pamplona, M.; Selvaggi, R.; Miliani, C.; Matteini, M.; Sgamellotti, A.; Brunetti, B.

    2007-01-01

    The artificial oxalate protection method was analyzed in laboratory experiments in order to achieve an optimum treatment application and concentration giving rise to its most effective protective nature. Spectroscopic (Fourier transform infrared, Micro-Raman and UV-vis colorimetry), microscopic (scanning electron microscope) and contact-angle analyses were carried out to characterize Carrara marble samples before and after application of the treatment to validate its efficiency. The resistance effects against chemical weathering were subsequently observed in a lab-controlled weak acid rain experiment. An acid spray at pH 5.5, representative of normal rain was used to provoke degrade of natural marble, marble treated with the artificial oxalate protective at concentrations of 0.4 and 5% and marble treated with a commercial organic silicon product. Run-off solutions sampled at timely intervals were tested for any change in pH followed by ion chromatography measurements for the presence of calcium ions in solution. The chromatography results of the oxalate treatment applied at a 5% concentration are analogous to an organic commercial product indicating its validity as a method for the conservation of carbonate substrates conferring protection to stone materials against acid environments

  1. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, B. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Pamplona, M. [Centro de Petrologia e Geoquimica do Instituto Superior Tecnico Universidade Tecnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Selvaggi, R. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Miliani, C. [Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy)]. E-mail: miliani@thch.unipg.it; Matteini, M. [CNR Istituto, Conservazione e Valorizzazione dei Beni Culturali (ICVBC), Via Madonna del Piano, 10, Edifico C-50019, Florence (Italy); Sgamellotti, A. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Brunetti, B. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy)

    2007-03-15

    The artificial oxalate protection method was analyzed in laboratory experiments in order to achieve an optimum treatment application and concentration giving rise to its most effective protective nature. Spectroscopic (Fourier transform infrared, Micro-Raman and UV-vis colorimetry), microscopic (scanning electron microscope) and contact-angle analyses were carried out to characterize Carrara marble samples before and after application of the treatment to validate its efficiency. The resistance effects against chemical weathering were subsequently observed in a lab-controlled weak acid rain experiment. An acid spray at pH 5.5, representative of normal rain was used to provoke degrade of natural marble, marble treated with the artificial oxalate protective at concentrations of 0.4 and 5% and marble treated with a commercial organic silicon product. Run-off solutions sampled at timely intervals were tested for any change in pH followed by ion chromatography measurements for the presence of calcium ions in solution. The chromatography results of the oxalate treatment applied at a 5% concentration are analogous to an organic commercial product indicating its validity as a method for the conservation of carbonate substrates conferring protection to stone materials against acid environments.

  2. Crystal macropattern development in Prunus serotina (Rosaceae, Prunoideae) leaves.

    Science.gov (United States)

    Lersten, Nels R; Horner, Harry T

    2006-05-01

    Prunus, subgenus Padus, exhibits two completely different calcium oxalate crystal macropatterns in mature leaves. Foliar macropattern development has been described previously in P. virginiana, representing one version. Prunus serotina, in the group exhibiting the second macropattern, is described here. The goal was to describe developmental details for comparison with P. virginiana, and to extend the sparse current knowledge of crystal macropatterns. Leaves at various developmental stages were removed from local trees and from herbarium specimens. Early leaf stages and freehand leaf and stem sections were mounted directly in aqueous glycerine; larger leaves were processed whole or in representative pieces in household bleach, dehydrated in alcohol/xylol, and mounted in Permount. Crystals were detected microscopically between crossed polarizers. Bud scales have a dense druse population. Druses appear first at the stipule tip and proliferate basipetally but soon stop forming; growing stipules therefore have a declining density of druses. Druses appear at the tip of leaves virginiana, and shows that two closely related species can develop radically different modes of crystallization. The few detailed macropattern studies to date reveal striking variations that indicate a new level of organization that must be integrated with the anatomical, physiological and molecular approaches that have been dominant so far.

  3. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.

    Science.gov (United States)

    Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K

    2012-11-01

    Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.

  4. The distribution of free calcium ions in the cholesteatoma epithelium

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Rasmussen, Gurli; Ottosen, Peter D

    2005-01-01

    The distribution of free calcium ions in normal skin and cholesteatoma epithelium was investigated using the oxalate precipitation method. In agreement with previous observations, we could demonstrate a calcium ion gradient in normal epidermis where the cells in stratum basale and spinosum reside...... appeared where oblong accumulations of free calcium ions were found basally in the stratum. These findings provide evidence that fluctuations in epidermal calcium in cholesteatoma epithelium may underlie the abnormal desquamation, may contribute to the formation of an abnormal permeability barrier and may...

  5. Oxalate Acid-Base Cements as a Means of Carbon Storage

    Science.gov (United States)

    Erdogan, S. T.

    2017-12-01

    Emission of CO2 from industrial processes poses a myriad of environmental problems. One such polluter is the portland cement (PC) industry. PC is the main ingredient in concrete which is the ubiquitous binding material for construction works. Its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. There have long been efforts to reduce the carbon footprint of concrete. Among the many ways, one is to bind CO2 to the phases in the cement-water paste, oxides, hydroxides, and silicates of calcium, during early hydration or while in service. The problem is that obtaining calcium oxide cheaply requires the decarbonation of limestone and the uptake of CO2 is slow and limited mainly to the surface of the concrete due to its low gas permeability. Hence, a faster method to bind more CO2 is needed. Acid-base (AB) cements are fast-setting, high-strength systems that have high durability in many environments in which PC concrete is vulnerable. They are made with a powder base such as MgO and an acid or acid salt, like phosphates. Despite certain advantages over PC cement systems, AB cements are not feasible, due to their high acid content. Also, the phosphoric acid used comes from non-renewable sources of phosphate. A potential way to reduce the drawbacks of using phosphates could be to use organic acids. Oxalic acid or its salts could react with the proper powder base to give concrete that could be used for infrastructure hence that would have very high demand. In addition, methods to produce oxalates from CO2, even atmospheric, are becoming widespread and more economical. The base can also be an industrial byproduct to further lower the environmental impact. This study describes the use of oxalic acid and industrial byproducts to obtain mortars with mechanical properties comparable to those of PC mortars. It is

  6. Studies in the solubility of Pu(III) oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Hasilkar, S P; Khedekar, N B; Chander, K; Jadhav, V; Jain, H C [Bhabha Atomic Research Centre, Bombay (India). Fuel Reprocessing Div.

    1994-11-01

    Studies have been carried out on the solubility of Pu(III) oxalate by precipitation of Pu(III) oxalate from varying concentrations of HNO[sub 3]/HCl (0.5-2.0M) solutions and also by equilibrating freshly prepared Pu(III) oxalate with solutions containing varying concentrations of HNO[sub 3]/HCl, oxalic acid and ascorbic acid. Pu(III) solutions in HNO[sub 3] and HCl media were prepared by reduction of Pu(IV) with ascorbic acid. 0.01-0.10M ascorbic acid concentration in the aqueous solution was maintained as holding reductant. The solubility of Pu(III) oxalate was found to be a minimum in 0.5M-1M HNO[sub 3]/HCl solutions containing 0.05M ascorbic acid and 0.2M excess oxalic acid in the supernatant. (author) 6 refs.; 6 tabs.

  7. Surface activation of MnNb{sub 2}O{sub 6} nanosheets by oxalic acid for enhanced photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junshu; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Li, Hongyi; Li, Yongli; Du, Yucheng; Yang, Yilong; Jia, Xinjian

    2017-05-01

    Graphical abstract: Visible light driven photoreduction of Cr(VI) over MnNb{sub 2}O{sub 6} nanosheets is enhanced via oxalic acid surface complex to generate activation layer. - Highlights: • MnNb{sub 2}O{sub 6} nanosheets are crystallized by a surface capping route of sulfonate groups. • Oxalic acid on MnNb{sub 2}O{sub 6} nanosheets forms an excited surface complex hybrid layer. • Surface activation enhances visible-light induced reduction of Cr(VI) into Cr(III). - Abstract: MnNb{sub 2}O{sub 6} nanosheets (P-MNOs) is selectively crystallized by using surface capping ligand with functional sulfonate group (sodium dodecyl benzene sulphonate), which binds to the (131) surface of MnNb{sub 2}O{sub 6} inducing the morphology-controlled crystallization of MnNb{sub 2}O{sub 6} materials. Surface modification of photoactive P-MNOs with electron-rich oxalic acid ligands establishes an excited surface complex layer on phase-pure P-MNO as evidenced by spectroscopic analyses (FT-IR, UV–vis, Raman, PL, etc.), and thus more efficiently photocatalyzes the reduction of Cr(VI) into Cr(III) than solely P-MNOs or oxalic acid under visible light (λ > 420 nm) via a ligand-to-metal interfacial electron transfer pathway. However, the interaction between oxalic acid and MnNb{sub 2}O{sub 6} is highly dependent upon the morphology of solid MnNb{sub 2}O{sub 6} substrate due to the higher surface-area-to-volume ratio and higher surface activity of (131) planes in the sheet-like morphology. This study could assist the construction of stable niobate material systems to allow a versatile solid surface activation for establishing more energy efficient and robust catalysis process under visible light.

  8. Features of atopic dermatitis in children with oxalic acid dysmetabolism

    Directory of Open Access Journals (Sweden)

    T.V. Stoieva

    2018-03-01

    Full Text Available The article presents the features of atopic dermatitis in children with concomitant metabolic disturbances of oxalic acid. The influence of metabolic shifts was evaluated by clinical presentation, morphofunctional parameters of the skin and the features of oxalic acid metabolites excretion. In this study, a high incidence of dysmetabolic changes was identified, their significance was determined by the involvement of different systems for oxalic acid products excretion. The increased concentration of oxalate in the urine and in the exhaled air condensate had irritant effect and is associated with the hereditary metabolic disorders, early manifestation of atopy symptoms and the intensity of skin itching, with moderate increase of immunoglobulin E level.

  9. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.

    1976-01-01

    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  10. Reaction of Hydrazine Hydrate with Oxalic Acid: Synthesis and ...

    African Journals Online (AJOL)

    NICO

    2013-11-28

    Nov 28, 2013 ... The title compound is a molecular salt containing two discrete hydrazinium cations and an oxalate anion. The oxalate ... RESEARCH ARTICLE ... Scheme and reaction showing the simple experimental procedure for the preparation of .... 7 A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, 4th edn.,.

  11. Total and soluble oxalate content of some Indian spices.

    Science.gov (United States)

    Ghosh Das, Sumana; Savage, G P

    2012-06-01

    Spices, such as cinnamon, cloves, cardamom, garlic, ginger, cumin, coriander and turmeric are used all over the world as flavouring and colouring ingredients in Indian foods. Previous studies have shown that spices contain variable amounts of total oxalates but there are few reports of soluble oxalate contents. In this study, the total, soluble and insoluble oxalate contents of ten different spices commonly used in Indian cuisine were measured. Total oxalate content ranged from 194 (nutmeg) to 4,014 (green cardamom) mg/100 g DM, while the soluble oxalate contents ranged from 41 (nutmeg) to 3,977 (green cardamom) mg/100 g DM. Overall, the percentage of soluble oxalate content of the spices ranged from 4.7 to 99.1% of the total oxalate content which suggests that some spices present no risk to people liable to kidney stone formation, while other spices can supply significant amounts of soluble oxalates and therefore should be used in moderation.

  12. Radiolysis of titanium potassium oxalate in aqueous solution. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bundo, Y; Ono, I [Industrial Research Inst. of Kanagawa Prefecture, Yokohama (Japan); Ogawa, T

    1975-01-01

    The dissolution state of titanium potassium oxalate in aqueous solution is different according to the pH. The yellowish brown titanium complex produced by the reaction of titanium potassium oxalate and hydrogen peroxide seems to be different in its structure according to the pH. Considering these points, gamma-ray irradiation was carried out on the sample by dissolving titanium potassium oxalate in purified water under the conditions of oxygen saturation and nitrogen saturation, and the relation between irradiation dose and the production of titanium complex was determined. On the basis of the experimental result, the mechanism of forming hydrogen peroxide was presumed. The radiation source used was 2,000 Ci of /sup 60/Co. For photometric analysis, a 139 type photoelectric spectrophotometer of Hitachi Ltd. was used. From the experimental results, in neutral water, titanium potassium oxalate exists in the state that two oxalic acid ions are coordinated to titanyl ion, while in case of the pH lowered by the addition of sulfuric acid, it can exist in the state that one oxalic acid ion is coordinated to titanyl ion. The yield of hydrogen peroxide produced by irradiating titanium potassium oxalate aqueous solution with gamma-ray is the sum of the molecular product from water and the radiolysis product from titanium potassium oxalate.

  13. X-ray fluorescence analysis of praseodymium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Mohile, A.N.

    1976-01-01

    A method for the determination of lanthanum, cerium, neodymium and samarium oxides in praseodymium oxide is described. The sample in the oxalate form is mixed with boric acid binder in the weight ratio of 1:1 and pressed into a pellet. The pellet is irradiated by X-rays from a tungsten tube and fluorescent X-rays are dispersed by a LiF (200) crystal in a Philips semiautomatic X-ray fluorescence spectrometer. The intensity of the characteristic X-rays of the impurity elements is measured by a flow proportional counter at selected 20 angles. The minium determination limit is 0.01% for all impurities. (author)

  14. Urinary oxalate to creatinine ratios in healthy Turkish schoolchildren.

    Science.gov (United States)

    Dursun, Ismail; Çelik, İlknur; Poyrazoglu, Hakan M; Köse, Kader; Tanrıkulu, Esen; Sahin, Habibe; Yılmaz, Kenan; Öztürk, Ahmet; Yel, Sibel; Gündüz, Zübeyde; Düşünsel, Ruhan

    2017-11-01

    we aimed to establish reference values for urinary oxalate to creatinine ratios in healthy children aged 6-15 years and to investigate the relationship between their nutritional habits and oxalate excretion. Random urine specimens from 953 healthy children aged 6-15 years were obtained and analyzed for oxalate and creatinine. Additionally, a 24-h dietary recall form was prepared and given to them. The ingredient composition of the diet was calculated. The children were divided into three groups according to age: Group I (69 years, n = 353), Group II (10-12 years, n = 335), and Group III (13-15 years, n = 265). The 95th percentile of the oxalate to creatinine ratio for subjects aged 6-9, 10-12, and 13-15 years were 0.048, 0.042, and 0.042 mg/mg, respectively. The oxalate to creatinine ratio was significantly higher in Group 1 than in Group 2 and Group 3. Urinary oxalate excretion was positively correlated with increased protein intake and negatively correlated with age. A significant positive correlation was determined between urinary oxalate excretion and the proline, serine, protein, and glycine content of diet. Dietary proline intake showed a positive correlation with the urine oxalate to creatinine ratio and was found to be an independent predictor for urinary oxalate. These data lend support to the idea that every country should have its own normal reference values to determine the underlying metabolic risk factor for kidney stone disease since regional variation in the dietary intake of proteins and other nutrients can affect normal urinary excretion of oxalate.

  15. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  16. Directed synthesis of crystalline plutonium (III) and (IV) oxalates: accessing redox-controlled separations in acidic solutions

    International Nuclear Information System (INIS)

    Runde, Wolfgang; Brodnax, Lia F.; Goff, George S.; Bean, Amanda C.; Scott, Brian L.

    2009-01-01

    Both binary and ternary solid complexes of Pu(III) and Pu(IV) oxalates have been previously reported in the literature. However, uncertainties regarding the coordination chemistry and the extent of hydration of some compounds remain mainly because of the absence of any crystallographic characterization. Single crystals of hydrated oxalates of Pu(III), Pu 2 (C 2 O 4 ) 3 (H 2 O) 6 ·3H 2 O (I) and Pu(IV), KPu(C 2 O 4 ) 2 (OH)·2.5H 2 O (II), were synthesized under moderate hydrothermal conditions and characterized by single crystal X-ray diffraction studies. Compounds I and II are the first plutonium(III) or (IV) oxalate compounds to be structurally characterized via single crystal X-ray diffraction studies. Crystallographic data for I: monoclinic, space group P21/c, a = 11.246(3) A, b = 9.610(3) A, c = 10.315(3) A, Z = 4 and II: monoclinic, space group C2/c, a = 23.234(14) A, b = 7.502(4) A, c = 13.029(7) A, Z = 8.

  17. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    Science.gov (United States)

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II oxalate precursor layers

    Directory of Open Access Journals (Sweden)

    Kai Rückriem

    2016-06-01

    Full Text Available Copper(II oxalate grown on carboxy-terminated self-assembled monolayers (SAM using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS. Helium ion microscopy (HIM reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.

  19. Calcium - ionized

    Science.gov (United States)

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  20. Calcium Carbonate

    Science.gov (United States)

    ... Calcium is needed by the body for healthy bones, muscles, nervous system, and heart. Calcium carbonate also ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  1. The promotion effect of coexisting hygroscopic composition on the reaction between oxalic acid and calcite during humidifying process

    Science.gov (United States)

    Ma, Q.; He, H.

    2012-12-01

    Internally mixed oxalic acid with mineral dust has been frequently detected in field measurements (Sullivan and Prather, 2007; Wang et al., 2012; Yang et al., 2009). Meanwhile, Furukawa and Takahashi (Furukawa and Takahashi, 2011) found that most of the oxalic acid in mineral mixture is present as metal oxalate complexes in the aerosols, however, the formation mechanism of these complexes is not well known. It was reported that cloud process of H2C2O4/CaCO3 mixture could lead to the formation of calcium oxalate (Gierlus et al., 2012). Recently, we used Raman spectroscopy to investigate the hygroscopic behavior of H2C2O4/CaCO3 mixture below saturation condition as well as the effect of coexisting hygroscopic compositions, e.g. Ca(NO3)2, NaCl, NH4NO3, and (NH4)2SO4. It was found that there was no interaction between H2C2O4 and calcite without third component during humidifying process under ambient condition. In contrast, the presence of coexisting Ca(NO)3, NaCl, or NH4NO3 could promote the reaction between H2C2O4 and calcite by providing an aqueous circumstance after deliquescence, resulting in the formation of calcium oxalate hydrates. Moreover, substitution of strong acid (HNO3) by medium acid (H2C2O4) occurred when water vapor was absorbed in Ca(NO3)2/H2C2O4 mixture (Ma and He, 2012). As for (NH4)2SO4, there existed a competition effect between (NH4)2SO4 and H2C2O4 for the reaction with CaCO3. CaCO3 was preferentially reacted with (NH4)2SO4 to form gypsum in the solution, while the residual NH4+ and C2O42- ions were bonded to (NH4)2C2O4 after efflorescence. These results implies a potential formation pathway of metal oxalate complexes in the atmosphere and also suggests that synergistic effect between different constituents in humidifying process of mixed particles should be considered in future hygroscopic behavior studies.

  2. A new polymorph of magnesium oxalate dihydrate

    Directory of Open Access Journals (Sweden)

    Xue-An Chen

    2008-07-01

    Full Text Available In the asymmetric unit of the title compound, catena-poly[[diaquamagnesium(II]-μ-oxalato], [Mg(C2O4(H2O2]n, there is one Mg atom in an octahedral coordination with site symmetry 222, a unique C atom of the oxalate anion lying on a twofold axis, an O atom of the anion in a general position and a water O atom at a site with imposed twofold rotation symmetry. The Mg2+ ions are ligated by water molecules and bridged by the anions to form chains that are held together by O—H...O hydrogen bonds. The structure of the title compound has already been reported in a different space group [Lagier, Pezerat & Dubernat (1969. Rev. Chim. Miner. 6, 1081–1093; Levy, Perrotey & Visser (1971. Bull. Soc. Chim. Fr. pp. 757–761].

  3. Studies on surface structures and etch patterns on habit faces of gel-grown crystals of iodates of barium, strontium, and calcium

    International Nuclear Information System (INIS)

    Joshi, M.S.; Trivedi, S.G.

    1986-01-01

    Microtopographical studies on habit faces of gel grown crystals (of different habits) of iodates of Ba, Sr, and Ca are illustrated and described. Etch patterns on these faces are illustrated and correlated to the observed growth patterns on the respective faces. Growth mechanism of the crystals is explained in light of the observed surface structures and etch pits suitably produced. (author)

  4. CCDC 1420585: Experimental Crystal Structure Determination : catena-[(mu-22,25-bis(4-carboxyphenyl)[11,21:24,31-terphenyl]-14,34-dicarboxylato)-calcium ethane

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. CCDC 1420584: Experimental Crystal Structure Determination : catena-[(mu-22,25-bis(4-carboxyphenyl)[11,21:24,31-terphenyl]-14,34-dicarboxylato)-calcium ethylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  6. CCDC 1420583: Experimental Crystal Structure Determination : catena-[(mu-22,25-bis(4-carboxyphenyl)[11,21:24,31-terphenyl]-14,34-dicarboxylato)-calcium acetylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  7. Synthesis of unsymmetrical dimethylhydrazine oxalate from rejected liquid rocket propellant

    Science.gov (United States)

    Mu, Xiaogang; Yang, Jingjing; Zhang, Youzhi

    2018-02-01

    The rejected liquid propellant unsymmetrical dimethylhydrazine (UDMH) was converted to UDMH oxalate, which has commercial value. The UDMH oxalate structure and stability were investigated by the Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and ultraviolet-visible spectrophotometric analysis. The results indicate that UDMH oxalate has good thermal and aqueous solution stability, a melting point of 144 °C, an initial decomposition temperature of 180 °C, and a peak wavelength of UV in aqueous solution at λ = 204 nm. This disposal method of rejected UDMH is highly efficient and environmentally safe.

  8. Neurotoxic effects of carambola in rats: the role of oxalate.

    Science.gov (United States)

    Chen, Chien-Liang; Chou, Kang-Ju; Wang, Jyh-Seng; Yeh, Jeng-Hsien; Fang, Hua-Chang; Chung, Hsiao-Min

    2002-05-01

    Carambola (star fruit) has been reported to contain neurotoxins that cause convulsions, hiccups, or death in uremic patients, and prolong barbiturate-induced sleeping time in rats. The constituent responsible for these effects remains uncertain. Carambola contains a large quantity of oxalate, which can induce depression of cerebral function and seizures. This study was conducted to investigate the role of oxalate in carambola toxicity in rats. The effects on barbiturate-induced sleeping time and death caused by intraperitoneal administration of carambola juice were observed in Sprague-Dawley rats. To obtain a dose-dependent response curve and evaluate the lethal dose, rats were treated with serial amounts of pure carambola juice diluted with normal saline in a volume of 1:1. To test the role of oxalate in the neurotoxic effect of carambola, either 5.33 g/kg carambola after oxalate removal or 5.33 g/kg of pure carambola juice diluted with normal saline were administered intraperitoneally, while the control group was given normal saline before pentobarbital injection. The effects of carambola and oxalate-removed carambola on barbiturate-induced sleeping time were compared with those of saline. To assess the lethal effect of oxalate in carambola, we gave rats chemical oxalate at comparable concentrations to the oxalate content of carambola. Carambola juice administration prolonged barbiturate-induced sleeping time in a dose-dependent manner. The sleeping time of rats that received normal saline and 1.33 g/kg, 2.67 g/kg, 5.33 g/kg, and 10.67 g/kg of carambola juice were 66 +/- 16.6, 93.7 +/- 13.4, 113.3 +/- 11.4, 117.5 +/- 29.0, and 172.5 +/- 38.8 minutes, respectively. The three higher-dose groups had longer sleeping times than controls (p carambola juice. Four of eight rats in the 10.67-g/kg group and all rats in the 21.33 g/kg and chemical oxalate groups died after seizure. Lethal doses of carambola juice were rendered harmless by the oxalate removal procedure

  9. Influence of additives on the structure and microstructure of lanthanides and actinides oxalates

    International Nuclear Information System (INIS)

    Haidon, Blaise; Vitart, Anne-Lise; Rivenet, Murielle; Arab-Chapelet, Benedicte; Roussel, Pascal; Delahaye, Thibaud; Grandjean, Stephane; Abraham, Francis

    2015-07-01

    Oxalic conversion is a well-known process in the nuclear industry where it is used for precipitating plutonium as an oxalate thereafter calcinated into an oxide. As there is a strong relationship between the morphology of the oxalate precursor and that of the resulting oxide, it is of interest to control the oxalate structure and microstructure during the precipitation step. The influence of additives on the precipitation of neodymium (III) oxalates, non-radioactive analogs of actinides (III) oxalates, was explored. With the use of nitrilotri-methylphosphonic acid (NTMP), the structure and microstructure of the neodymium oxalates are different from that obtained without additive. (authors)

  10. Comprehensive physicochemical studies of a new hybrid material: 2-Amino-4-methyl-3-nitropyridinium hydrogen oxalate

    Science.gov (United States)

    Bryndal, I.; Kucharska, E.; Wandas, M.; Lorenc, J.; Hermanowicz, K.; Mączka, M.; Lis, T.; Marchewka, M.; Hanuza, J.

    2014-01-01

    A new organic-organic salt, 2-amino-4-methyl-3-nitropyridinium hydrogen oxalate (AMNPO), and its deuterium analogue have been synthesized and characterized by means of FT-IR, FT-Raman, DSC and single crystal X-ray studies. The DSC measurements and temperature dependence of the IR and Raman spectra in the range 4-295 K show that it undergoes a reversible phase transition at ∼240 K. At room temperature it crystallizes in noncentrosymmetric space group P21. The unit-cell is built of the 2-amino-4-methyl-3-nitropyridinium cations and oxalate monoanions which are connected via the Nsbnd H⋯O and Osbnd H⋯O hydrogen bonds. The geometrical and hydrogen bond parameters are similar for non-deuterated (at 120 and 293 K) and deuterated compounds (at 90 K). The phase transition is probably a consequence of order-disorder transition inside of hydrogen network. The 6-311G(2d,2p) basis set with B3LYP functional have been used to discuss the structure and vibrational spectra of the studied compound.

  11. Cocrystal Screening of Ibuprofen with Oxalic Acid and Citric Acid via Grinding Method

    Science.gov (United States)

    Othman, M. F.; Anuar, N.; Rahman, S. Ad; Taifuddin, N. A. Ahmad

    2018-05-01

    Ibuprofen is a Class II Biological Safety Class (BSC) drugs used for relief of arthritis, as an analgesic and possesses the effect of antiplatelet. The major problem involves in ibuprofen is it has a low solubility and high permeability thus causes an unsatisfactory therapeutic effect to humans. Thus, in this work, alteration of ibuprofen’s physicochemical properties is conducted by means of cocrystallization technique. Co-crystallizations of ibuprofen were prepared with selected coformers using dry grinding and liquid assisted grinding (LAG) techniques in different molar ratios while ethanol and propanol were used as a solvent. The new crystalline forms were identified and characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). Analysis for Ibuprofen-Citric acid (IBP-CA) system, co-crystal was successfully formed in 1:2, 1:3, 2:1 and 3:1 molar ratios for neat grinding method although the co-crystal produced is unstable. Meanwhile, for Ibuprofen-Oxalic acid (IBP-OA) system, the co-crystal formation was identified only in 1:1, 1:2 and 1:3 molar ratios for the neat grinding method. LAG method shows that co-crystal formation was unsuccessful in both solvents for IBP-CA, while IBP-OA co-crystal was formed in the molar ratio 1:1, 2:1 and 3:1 in ethanol, and 2:1 and 3:1 in propanol.

  12. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid

    Directory of Open Access Journals (Sweden)

    C. Cheng

    2017-08-01

    Full Text Available The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM were studied using a single-particle aerosol mass spectrometer (SPAMS in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD region in China. Oxalic-acid-containing particles accounted for 2.5 and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carbon (EC, organic carbon (OC, elemental and organic carbon (ECOC, biomass burning (BB, heavy metal (HM, secondary (Sec, sodium-potassium (NaK, and dust. Oxalic acid was found predominantly mixing with sulfate and nitrate during the whole sampling period, likely due to aqueous-phase reactions. In summer, oxalic-acid-containing particle number and ozone concentration followed a very similar trend, which may reflect the significant contribution of photochemical reactions to oxalic acid formation. The HM particles were the most abundant oxalic acid particles in summer and the diurnal variations in peak area of iron and oxalic acid show opposite trends, which suggests a possible loss of oxalic acid through the photolysis of iron oxalato-complexes during the strong photochemical activity period. In wintertime, carbonaceous particles contained a substantial amount of oxalic acid as well as abundant carbon clusters and BB markers. The general existence of nitric acid in oxalic-acid-containing particles indicates an acidic environment during the formation process of oxalic acid. The peak areas of nitrate, sulfate and oxalic had similar temporal change in the carbonaceous type oxalic acid particles, and the organosulfate-containing oxalic acid particles correlated well with total oxalic acid particles during the haze episode, which suggests that the formation of oxalic acid is closely associated with the oxidation of organic precursors in the aqueous phase.

  13. Tetra­kis(aceto­nitrile)copper(I) hydrogen oxalate–oxalic acid–aceto­nitrile (1/0.5/0.5)

    Science.gov (United States)

    Royappa, A. Timothy; Stepherson, Jacob R.; Vu, Oliver D.; Royappa, Andrew D.; Stern, Charlotte L.; Müller, Peter

    2013-01-01

    In the title compound, [Cu(CH3CN)4](C2HO4)·0.5C2H2O4·0.5CH3CN, the CuI ion is coordinated by the N atoms of four aceto­nitrile ligands in a slightly distorted tetra­hedral environment. The oxalic acid mol­ecule lies across an inversion center. The aceto­nitrile solvent mol­ecule is disordered across an inversion center and was refined with half occupancy. In the crystal, the hydrogen oxalate anions and oxalic acid mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains along [010]. PMID:24098175

  14. Studies on the decomposition of oxalic acid by nitric acid in presence of catalysts

    International Nuclear Information System (INIS)

    Noronha, D.M.; Pius, I.C.; Chaudhury, S.

    2015-01-01

    Impure Plutonium oxalate generated from the recovery of plutonium from waste solutions may require further purification via anion exchange. Conventionally, plutonium oxalate is converted to oxide in a furnace and the oxide is dissolved in Conc. HNO 3 containing HF and purified by anion exchange route. Studies initiated on the decomposition of oxalic acid with Conc. HNO 3 to facilitate direct dissolution of plutonium oxalate and quantitative destruction of oxalate are discussed in this paper. (author)

  15. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen.

    OpenAIRE

    Dawson, K A; Allison, M J; Hartman, P A

    1980-01-01

    Obligately anaerobic oxalate-degrading bacteria were isolated from an enriched population of rumen bacteria in an oxalate-containing medium that had been depleted of other readily metabolized substrates. These organisms, which are the first reported anaerobic oxalate degraders isolated from the rumen, were gram negative, nonmotile rods. They grew in a medium containing sodium oxalate, yeast extract, cysteine, and minerals. The only substrate that supported growth was oxalate. Growth was direc...

  16. Preparation of calcium phosphate paste

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Norzita Yaacob; Idris Besar; Che Seman Mahmood; Rusnah Mustafa

    2010-01-01

    Calcium phosphate paste were prepared by mixing between calcium sodium potassium phosphate, Ca 2 NaK (PO 4 ) 2 (CSPP) and monocalcium phosphate monohydrate, Ca(H 2 PO 4 ) 2 .H 2 O (MCPM). CSPP were obtained by reaction between calcium hydrogen phosphate (CaHPO 4 ), potassium carbonate (K 2 CO 3 ) and sodium carbonate (Na 2 CO 3 ) in solid state sintering process followed by quenching in air at 1000 degree Celsius. The paste was aging in simulated body fluid (SBF) for 0.5, 1, 3, 6, 12, 24, 48 hrs, 3, 7 and 14 days. The morphological investigation indicated the formation of apatite crystal were first growth after 24 hours. The obvious growth of apatite crystal was shown at 3 days. The obvious growth of apatite crystal was shown in 7 and 14 days indicated the prediction of paste would have rapid reaction with bone after implantation. (author)

  17. Determination of alkaloids and oxalates in some selected food ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... MATERIALS AND METHODS. Source of samples. Samples ... until the colour of solution changed from salmon pink colour to a faint yellow colour. .... Effect of cooking on the soluble and insoluble oxalate content of some New ...

  18. Charge dynamics in conducting polyaniline–metal oxalate composites

    Indian Academy of Sciences (India)

    Unknown

    Polyaniline; metal oxalate composites; charge transport; mobile and fixed spins; VRH conduc- tion mechanism ... Al, Mn and Co on doping into Pani improve the poly- merization ... dopants on charge dynamics with EPR and other tech- niques.

  19. The effect of processing and preservation methods on the oxalate ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    vegetables and consequently the associated food safety problems. Keywords: .... vegetables prepared in slightly two different ... Table 2: Oxalate levels of selected leafy vegetables as a function of cooking method and the interplay of freezing.

  20. Crystals seen on CSF microscopy in a case of suspected subarachnoid haemorrhage

    Science.gov (United States)

    Weiand, Daniel; Hanning, Ian; Mouhamadou, Moussa; Wearmouth, Debbie

    2015-01-01

    Although crystals are rarely identified on cerebrospinal fluid (CSF) microscopy, their presence can be of significant diagnostic value. We report a case of oxalate crystals seen on CSF microscopy of a 43-year-old woman. The patient presented with headaches, nausea and vomiting. CT of the head showed a small focus of hyper-density, suspicious of haemorrhage, in the right side of the pontine cistern. CSF cell count was within the normal range. Although no organisms were seen on microscopy, copious oxalate crystals were seen. The same crystals were seen on microscopy of CSF collected in a fluoride oxalate container used for glucose analysis. A follow-up contrast-enhanced CT angiogram did not demonstrate any abnormalities. It transpired that excess CSF had been collected into a fluoride oxalate container. This had subsequently been decanted into a plain container for microbiological analysis. Correct specimen collection should be emphasised when teaching lumbar puncture technique. PMID:26139652

  1. Measurement of plutonium oxalate in thermal neutron coincidence counters

    International Nuclear Information System (INIS)

    Marshall, R.S.; Erkkila, B.H.

    1979-01-01

    A coincidence neutron counting method has been developed for assaying batches of plutonium oxalate. Using counting data from two concentric rings of 3 He detectors, corrections are made for the effects that water has on the coincidence neutron count rate. Batches of plutonium oxalate varying from 750 to 1000 g of plutonium and from 34 to 54% water are assayed with an average accuracy of +-3%

  2. Oxalate Encapsulation in Aqueous Medium by Tripodal Urea ...

    Indian Academy of Sciences (India)

    1H-NMR titration studies: All 1H-NMR titration experiments for L1 and L2 were conducted on a Bruker 300 MHz spectrometer at 298 K respectively. Potassium oxalate dihydrate (K2C2O4.2H2O) was used to prepare the stock solution of anion in DMSO-d6:D2O (1:1.1) solvent system. Lower solubility of potassium oxalate in ...

  3. Optimization of precipitation conditions of thorium oxalate precipitate

    International Nuclear Information System (INIS)

    Pazukhin, Eh.M.; Smirnova, E.A.; Krivokhatskij, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1986-01-01

    Thorium precipitation in the form of difficultly soluble oxalate has been investigated. The equation binding the concentration of metal with the nitric acid in the initial solution and quantity of a precipitator necessary for minimization of desired product losses is derived. The graphical solution of this equation for a case, when the oxalic acid with 0.78 mol/l concentration is the precipitator, is presented

  4. Two-stage precipitation of neptunium (IV) oxalate

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide

  5. Oxalate quantification in hemodialysate to assess dialysis adequacy for primary hyperoxaluria.

    Science.gov (United States)

    Tang, Xiaojing; Voskoboev, Nikolay V; Wannarka, Stacie L; Olson, Julie B; Milliner, Dawn S; Lieske, John C

    2014-01-01

    Patients with primary hyperoxaluria (PH) overproduce oxalate which is eliminated via the kidneys. If end-stage kidney disease develops they are at high risk for systemic oxalosis, unless adequate oxalate is removed during hemodialysis (HD) to equal or exceed ongoing oxalate production. The purpose of this study was to validate a method to measure oxalate removal in this unique group of dialysis patients. Fourteen stable patients with a confirmed diagnosis of PH on HD were included in the study. Oxalate was measured serially in hemodialysate and plasma samples in order to calculate rates of oxalate removal. HD regimens were adjusted according to a given patient's historical oxalate production, amount of oxalate removal at dialysis, residual renal clearance of oxalate, and plasma oxalate levels. After a typical session of HD, plasma oxalate was reduced by 78.4 ± 7.7%. Eight patients performed HD 6 times/week, 2 patients 5 times/week, and 3 patients 3 times/week. Combined oxalate removal by HD and the kidneys was sufficient to match or exceed endogenous oxalate production. After a median period of 9 months, pre-dialysis plasma oxalate was significantly lower than initially (75.1 ± 33.4 vs. 54.8 ± 46.6 mmol/l, p = 0.02). This methodology can be used to individualize the dialysis prescription of PH patients to prevent oxalosis during the time they are maintained on HD and to reduce risk of oxalate injury to a transplanted kidney.

  6. Preparation, characterization and catalytic effects of copper oxalate nanocrystals

    International Nuclear Information System (INIS)

    Singh, Gurdip; Kapoor, Inder Pal Singh; Dubey, Reena; Srivastava, Pratibha

    2012-01-01

    Graphical abstract: Prepared copper oxalate nanocrystals were characterized by FE-SEM and bright field TEM micrographs. Its catalytic activity was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG-DSC techniques. Highlights: ► Preparation of nanocrystals (∼9.0 nm) of copper oxalate using Cu(NO 3 ) 2 ·2H 2 O, oxalic acid and acetone under thermal conditions. ► Method is simple and novel. ► Characterization using XRD, SEM, TEM, HRTEM and ED pattern. ► Catalytic activity of copper oxalate nanocrystals on AP thermal decomposition using thermal techniques (TG, TG-DSC and ignition delay). ► Kinetics of thermal decomposition of AP + CONs using isoconversional and model fitting kinetic approaches. - Abstract: Recent work has described the preparation and characterization of copper oxalate nanocrystals (CONs). It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and electron diffraction pattern (ED). The catalytic activity of CONs on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) has been done by thermogravimetry (TG), differential scanning calorimetry (DSC) and ignition delay measurements. Burning rate of CSPs was also found to be enhanced in presence of copper oxalate nanocrystals. Kinetics of thermal decomposition of AP with and without CONs has also been investigated. The model free (isoconversional) and model-fitting kinetic approaches have been applied to data for isothermal TG decomposition.

  7. Oxalic acid biosynthesis and oxalacetate acetylhydrolase activity in Streptomyces cattleya

    International Nuclear Information System (INIS)

    Houck, D.R.; Inamine, E.

    1987-01-01

    In addition to producing the antibiotic thienamycin, Streptomyces cattleya accumulates large amounts of oxalic acid during the course of a fermentation. Washed cell suspensions were utilized to determine the specific incorporation of carbon-14 into oxalate from a number of labeled organic and amino acids. L-[U- 14 C]aspartate proved to be the best precursor, whereas only a small percentage of label from [1,5- 14 C]citrate was found in oxalate. Cell-free extracts catalyzed the formation of [ 14 C]oxalate and [ 14 C]acetate from L-[U- 14 C]aspartate. When L-[4- 14 C]aspartate was the substrate only [ 14 C]acetate was formed. The cell-free extracts were found to contain oxalacetate acetylhydrolase, the enzyme that catalyzes the hydrolysis of oxalacetate to oxalate and acetate. The enzyme is constitutive and is analogous to enzymes in fungi that produce oxalate from oxalacetate. Properties of the crude enzyme were examined

  8. Acute oxalate nephropathy after ingestion of star fruit.

    Science.gov (United States)

    Chen, C L; Fang, H C; Chou, K J; Wang, J S; Chung, H M

    2001-02-01

    Acute oxalate nephropathy associated with ingestion of star fruit (carambola) has not been reported before. We report the first two cases. These patients developed nausea, vomiting, abdominal pain, and backache within hours of ingesting large quantities of sour carambola juice; then acute renal failure followed. Both patients needed hemodialysis for oliguric acute renal failure, and pathologic examinations showed typical changes of acute oxalate nephropathy. The renal function recovered 4 weeks later without specific treatment. Sour carambola juice is a popular beverage in Taiwan. The popularity of star fruit juice is not compatible with the rare discovery of star fruit-associated acute oxalate nephropathy. Commercial carambola juice usually is prepared by pickling and dilution processes that reduce oxalate content markedly, whereas pure fresh juice or mild diluted postpickled juice for traditional remedies, as used in our cases, contain high quantities of oxalate. An empty stomach and dehydrated state may pose an additional risk for development of renal injury. To avoid acute oxalate nephropathy, pure sour carambola juice or mild diluted postpickled juice should not be consumed in large amounts, especially on an empty stomach or in a dehydrated state.

  9. The comparability of oxalate excretion and oxalate:creatinine ratio in the investigation of primary hyperoxaluria: review of data from a referral centre.

    Science.gov (United States)

    Clifford-Mobley, Oliver; Tims, Christopher; Rumsby, Gill

    2015-01-01

    Urine oxalate measurement is an important investigation in the evaluation of renal stone disease. Primary hyperoxaluria (PH) is a rare inherited metabolic disease characterised by persistently elevated urine oxalate, but the diagnosis may be missed in adults until renal failure has developed. Urine oxalate results were reviewed to compare oxalate:creatinine ratio and oxalate excretion, and to estimate the potential numbers of undiagnosed PH. Urine oxalate results from August 2011 to April 2013 were reviewed. Oxalate excretion and oxalate:creatinine ratio were evaluated for 24 h collections and ratio alone for spot urine samples. Oxalate:creatinine ratio and oxalate excretion were moderately correlated (R=0.63) in 24-h urine collections from patients aged 18 years and above. Sex-related differences were found requiring implementation of male and female reference ranges for oxalate:creatinine ratio. Of samples with both ratio and excretion above the reference range, 7% came from patients with confirmed PH. There were 24 patients with grossly elevated urine oxalate who had not been evaluated for PH. Oxalate:creatinine ratio and oxalate excretion were discordant in many patients, which is likely to be a result of intra-individual variation in creatinine output and imprecision in the collection itself. Some PH patients had urine oxalate within the reference range on occasion, and therefore it is not possible to exclude PH on the finding of a single normal result. A significant number of individuals had urine oxalate results well above the reference range who potentially have undiagnosed PH and are consequently at risk of renal failure. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Hydrothermal synthesis of uranyl squarates and squarate-oxalates: hydrolysis trends and in situ oxalate formation.

    Science.gov (United States)

    Rowland, Clare E; Cahill, Christopher L

    2010-07-19

    We report the synthesis of two uranyl squarates and two mixed-ligand uranyl squarate-oxalates from aqueous solutions under hydrothermal conditions. These products exhibit a range of uranyl building units from squarates with monomers in (UO(2))(2)(C(4)O(4))(5).6NH(4).4H(2)O (1; a = 16.731(17) A, b = 7.280(8) A, c = 15.872(16) A, beta = 113.294(16) degrees , monoclinic, P2(1)/c) and chains in (UO(2))(2)(OH)(2)(H(2)O)(2)(C(4)O(4)) (2; a = 12.909(5) A, b = 8.400(3) A, c = 10.322(4) A, beta = 100.056(7) degrees , monoclinic, C2/c) to two squarate-oxalate polymorphs with dimers in (UO(2))(2)(OH)(C(4)O(4))(C(2)O(4)).NH(4).H(2)O (3; a = 9.0601(7) A, b = 15.7299(12) A, c = 10.5108(8) A, beta = 106.394(1) degrees , monoclinic, P2(1)/n; and 4; a = 8.4469(6) A, b = 7.7589(5) A, c = 10.5257(7) A, beta = 105.696(1) degrees , monoclinic, P2(1)/m). The dominance at low pH of monomeric species and the increasing occurrence of oligomeric species with increasing pH suggests that uranyl hydrolysis, mUO(2)(2+) + nH(2)O right harpoon over left harpoon [(UO(2))(m)(OH)(n)](2m-n) + nH(+), has a significant role in the identity of the inorganic building unit. Additional factors that influence product assembly include in situ hydrolysis of squaric acid to oxalic acid, dynamic metal to ligand concentration, and additional binding modes resulting from the introduction of oxalate anions. These points and the effects of uranyl hydrolysis with changing pH are discussed in the context of the compounds presented herein.

  11. A new method for the homogeneous precipitative separation of trace level lanthanides as oxalates: application to different types of geological samples

    International Nuclear Information System (INIS)

    Premadas, A.; Cyriac, Bincy; Kesavan, V.S.

    2013-01-01

    Oxalate precipitation of lanthanides in acidic medium is a widely used selective group separation method at percentage to trace level in different types of geological samples. Most of the procedures are based on the heterogeneous oxalate precipitation of lanthanides using calcium as carrier. In the heterogeneous precipitation, the co-precipitated impurities from the matrix elements are more, besides if the pH at the time of precipitation is not monitored carefully there is a chance of losing some of the lanthanides. In this report, we present a new homogeneous oxalate precipitation of trace level lanthanides from different types of geological samples using calcium as carrier. In the present method pH is getting adjusted (pH ∼1) on its own, after the hydrolysis of urea added to the sample solution. This acidic pH is essential for the complete precipitation of the lanthanides. Therefore, no critical parameter adjustment for the precipitation is involved in the proposed method. The oxalate precipitate obtained was in crystalline nature which facilitates the fast settlement, easy filtration; besides the co-precipitated matrix elements are very less as compared to normal heterogeneous oxalate precipitation of lanthanides. Another advantage is more quantity of the sample can be taken for the separation of lanthanides which is a limitation for other separation methods reported. Accuracy of the method was checked by analyzing nine international reference materials comprising different types of geological samples obtained from Canadian Certified Reference Project Materials such as syenite samples SY-2, SY-3 and SY-4; gabro sample MRG-1; soil samples SO-1 and SO-2; iron formation sample FeR-2; lake sediments LKSD-2 and LKSD-4. The values of the lanthanides obtained for these reference materials are comparable with recommended values, indicating that the method is accurate. The reproducibility is characterized by a relative standard deviation (RSD) of 1 to 6% (n=4). (author)

  12. Synthesis and X-ray diffraction study of new uranyl malonate and oxalate complexes with carbamide

    International Nuclear Information System (INIS)

    Medvedkov, Ya. A.; Serezhkina, L. B.; Grigor’ev, M. S.; Serezhkin, V. N.

    2016-01-01

    Two new malonate-containing uranyl complexes with carbamide of the formulas [UO 2 (C 3 H 2 O 4 )(Urea) 2 ] (I) and [UO 2 (C 3 H 2 O 4 )(Urea) 3 ] (II), where Urea is carbamide, and one uranyl oxalate complex of the formula [UO 2 (C 2 O 4 )(Urea) 3 ] (III) were synthesized, and their crystals were studied by X-ray diffraction. The main structural units in crystals I are the electroneutral chains [UO 2 (C 3 H 2 O 4 )(Urea) 2 ] ∞ belonging to the crystal-chemical group AT 11 M 2 1 (A = UO 2 2+ , T 11 = C 3 H 2 O 4 2- , M 1 = Urea) of uranyl complexes. Crystals II and III are composed of the molecular complexes [UO 2 (L)(Urea) 3 ], where L = C 3 H 2 O 4 2- or C 2 O 4 2- , belonging to the crystal-chemical group AB 01 M 3 1 (A = UO 2 2+ , B 01 = C 3 H 2 O 4 2- or C 2 O 4 2- , M 1 = Urea). The characteristic features of the packing of the uranium-containing complexes are discussed in terms of molecular Voronoi–Dirichlet polyhedra. The effect of the Urea: U ratio on the structure of uranium-containing structural units is considered.

  13. Atmospheric production of oxalic acid/oxalate and nitric acid/nitrate in the Tampa Bay airshed: Parallel pathways

    Science.gov (United States)

    Martinelango, P. Kalyani; Dasgupta, Purnendu K.; Al-Horr, Rida S.

    Oxalic acid is the dominant dicarboxylic acid (DCA), and it constitutes up to 50% of total atmospheric DCAs, especially in non-urban and marine atmospheres. A significant amount of particulate H 2Ox/oxalate (Ox) occurred in the coarse particle fraction of a dichotomous sampler, the ratio of oxalate concentrations in the PM 10 to PM 2.5 fractions ranged from 1 to 2, with mean±sd being 1.4±0.2. These results suggest that oxalate does not solely originate in the gas phase and condense into particles. Gaseous H 2Ox concentrations are much lower than particulate Ox concentrations and are well correlated with HNO 3, HCHO, and O 3, supporting a photochemical origin. Of special relevance to the Bay Region Atmospheric Chemistry Experiment (BRACE) is the extent of nitrogen deposition in the Tampa Bay estuary. Hydroxyl radical is primarily responsible for the conversion of NO 2 to HNO 3, the latter being much more easily deposited. Hydroxyl radical is also responsible for the aqueous phase formation of oxalic acid from alkenes. Hence, we propose that an estimate of rad OH can be obtained from H 2Ox/Ox production rate and we accordingly show that the product of total oxalate concentration and NO 2 concentration approximately predicts the total nitrate concentration during the same period.

  14. Calcium waves.

    Science.gov (United States)

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  15. Urinary metabonomics elucidate the therapeutic mechanism of Orthosiphon stamineus in mouse crystal-induced kidney injury.

    Science.gov (United States)

    Gao, Songyan; Chen, Wei; Peng, Zhongjiang; Li, Na; Su, Li; Lv, Diya; Li, Ling; Lin, Qishan; Dong, Xin; Guo, Zhiyong; Lou, Ziyang

    2015-05-26

    Orthosiphon stamineus (OS), a traditional Chinese herb, is often used for promoting urination and treating nephrolithiasis. Urolithiasis is a major worldwide public health burden due to its high incidence of recurrence and damage to renal function. However, the etiology for urolithiasis is not well understood. Metabonomics, the systematic study of small molecule metabolites present in biological samples, has become a valid and powerful tool for understanding disease phenotypes. In this study, a urinary metabolic profiling analysis was performed in a mouse model of renal calcium oxalate crystal deposition to identify potential biomarkers for crystal-induced renal damage and the anti-crystal mechanism of OS. Thirty six mice were randomly divided into six groups including Saline, Crystal, Cystone and OS at dosages of 0.5g/kg, 1g/kg, and 2g/kg. A metabonomics approach using ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was developed to perform the urinary metabolic profiling analysis. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were utilized to identify differences between the metabolic profiles of mice in the saline control group and crystal group. Using partial least squares-discriminant analysis, 30 metabolites were identified as potential biomarkers of crystal-induced renal damage. Most of them were primarily involved in amino acid metabolism, taurine and hypotaurine metabolism, purine metabolism, and the citrate cycle (TCA). After the treatment with OS, the levels of 20 biomarkers had returned to the levels of the control samples. Our results suggest that OS has a protective effect for mice with crystal-induced kidney injury via the regulation of multiple metabolic pathways primarily involving amino acid, energy and choline metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Laser-assisted one-pot fabrication of calcium phosphate-based submicrospheres with internally crystallized magnetite nanoparticles through chemical precipitation.

    Science.gov (United States)

    Nakamura, Maki; Oyane, Ayako; Sakamaki, Ikuko; Ishikawa, Yoshie; Shimizu, Yoshiki; Kawaguchi, Kenji

    2015-04-14

    In this paper, we have further developed our simple (one-pot) and rapid (short irradiation time) laser fabrication process of submicrometer spheres composed of amorphous calcium iron phosphate. In our previous process, laser irradiation was applied to a calcium phosphate (CaP) reaction mixture supplemented with ferric ions (Fe(3+)) as a light-absorbing agent. Because the intention of the present study was to fabricate magnetite-encapsulated CaP-based submicrometer spheres, ferrous ions (Fe(2+)) were used as a light-absorbing agent rather than ferric ions. The ferrous ions served as a light-absorbing agent and facilitated the fabrication of submicrometer and micrometer spheres of amorphous calcium iron phosphate. The sphere formation and growth were better promoted by the use of ferrous ions as compared with the use of ferric ions. The chemical composition of the spheres was controllable through adjustment of the experimental conditions. By the addition of sodium hydroxide to the CaP reaction mixture supplemented with ferrous ions, fabrication of CaP-based magnetic submicrometer spheres was successfully achieved. Numerous magnetite and wüstite nanoparticles were coprecipitated or segregated into the CaP-based spherical amorphous matrix via light-material interaction during the CaP precipitation process. The magnetic properties of the magnetite and wüstite formed in the CaP-based spheres were investigated by magnetization measurements. The present process and the resulting CaP-based spheres are expected to have great potential for biomedical applications.

  17. Surface analysis of transition metal oxalates: Damage aspects

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@imp.kiev.ua [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Institute of Metal Physics, Nat. Acad. Sci. of Ukraine, Akad. Vernadsky Blvd. 36, 03680 Kiev (Ukraine); Szukiewicz, R. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Barbosa, R.; Kruse, N. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Voiland School of Chemical Engineering and Bioengineering, Washington State University, 155 Wegner Hall, Pullman, WA 99164-6515 (United States)

    2016-05-15

    Highlights: • Gas evolution from the Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation is studied. • A comparative study of the damage caused by X-rays in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} is carried out. • Effect of Ar{sup +} bombardment on the structure and composition of CoC{sub 2}O{sub 4} is studied. - Abstract: The behavior of transition metal oxalates in vacuum, under X-ray irradiation and low-energy Ar{sup +} ion bombardment was studied. A comparative mass-spectrometric analysis was carried out of gas evolution from the surface of Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation. The rates of H{sub 2}O and CO{sub 2} liberation from the oxalates were found to be in an inverse correlation with the temperatures of dehydration and decomposition, respectively. X-ray photoelectron spectroscopy (XPS) was employed to study the X-ray induced damage in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} by measuring the various XP spectral characteristics and surface composition of the oxalates as a function of time of exposure to X-rays. It was shown that Cu oxalate underwent a significantly faster degradation than Ni oxalate and demonstrated a high degree of X-ray induced reduction from the Cu{sup 2+} to the Cu{sup 1+} chemical state. 500 eV Ar{sup +} sputter cleaning of CoC{sub 2}O{sub 4} for 10 min was found to cause a strong transformation of the oxalate structure which manifested itself in an appreciable alteration of the XP core-level and valence band spectra. The analysis of changes in stoichiometry and comparison of XP spectra of bombarded oxalate with respective spectra of a reference carbonate CoCO{sub 3} implied that the bombardment-induced decomposition of CoC{sub 2}O{sub 4} gave rise to the formation of CoO-like and disordered CoCO{sub 3}-like phases.

  18. Inositol trisphosphate and thapsigargin discriminate endoplasmic reticulum stores of calcium in rat brain

    DEFF Research Database (Denmark)

    Verma, A; Hirsch, D J; Hanley, M R

    1990-01-01

    ATP dependent Ca2+ accumulation into oxalate-loaded rat brain microsomes is potently inhibited by thapsigargin with an IC50 of 2 nM and maximal inhibition at 10 nM. Approximately 15% of the total A23187-releasable microsomal calcium store is insensitive to thapsigargin concentrations up to 100 mi...

  19. Phosphocitrate inhibits mitochondrial and cytosolic accumulation of calcium in kidney cells in vivo.

    OpenAIRE

    Tew, W P; Malis, C D; Howard, J E; Lehninger, A L

    1981-01-01

    Synthetic 3-phosphocitrate, an extremely potent inhibitor of calcium phosphate crystallization as determined in a nonbiological physical-chemical assay, has many similarities to a mitochondrial factor that inhibits crystallization of nondiffracting amorphous calcium phosphate. In order to determine whether phosphocitrate can prevent uptake and crystallization of calcium phosphate in mitochondria in vivo, it was administered intraperitoneally to animals given large daily doses of calcium gluco...

  20. Corrosion and impedance studies on magnesium alloy in oxalate solution

    International Nuclear Information System (INIS)

    Fekry, A.M.; Tammam, Riham H.

    2011-01-01

    Highlights: → Corrosion behavior of AZ91E alloy was investigated in 0.1 M Na 2 C 2 O 4 containing different additives as Br - , Cl - or Silicate. → The corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na 2 C 2 O 4 ). This was confirmed by scanning electron microscope (SEM) observations. → For the other added ions Br - or Cl - , the corrosion rate is higher than the blank. - Abstract: Corrosion behavior of AZ91E alloy was investigated in oxalate solution using potentiodynamic polarization and electrochemical impedance measurements (EIS). The effect of oxalate concentration was studied, where the corrosion rate increases with increasing oxalate concentration. The effect of added ions (Br - , Cl - or SiO 3 2- ) on the electrochemical behavior of magnesium alloy in 0.1 M Na 2 C 2 O 4 solution at 298 K, was investigated. It was found that the corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na 2 C 2 O 4 ). This was confirmed by scanning electron microscope (SEM) observations. However, for the other added ions Br - or Cl - , the corrosion rate is higher than the blank.

  1. Corrosion and impedance studies on magnesium alloy in oxalate solution

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M., E-mail: hham4@hotmail.com [Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613 (Egypt); Tammam, Riham H. [Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613 (Egypt)

    2011-06-15

    Highlights: > Corrosion behavior of AZ91E alloy was investigated in 0.1 M Na{sub 2}C{sub 2}O{sub 4} containing different additives as Br{sup -}, Cl{sup -} or Silicate. > The corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na{sub 2}C{sub 2}O{sub 4}). This was confirmed by scanning electron microscope (SEM) observations. > For the other added ions Br{sup -} or Cl{sup -}, the corrosion rate is higher than the blank. - Abstract: Corrosion behavior of AZ91E alloy was investigated in oxalate solution using potentiodynamic polarization and electrochemical impedance measurements (EIS). The effect of oxalate concentration was studied, where the corrosion rate increases with increasing oxalate concentration. The effect of added ions (Br{sup -}, Cl{sup -} or SiO{sub 3}{sup 2-}) on the electrochemical behavior of magnesium alloy in 0.1 M Na{sub 2}C{sub 2}O{sub 4} solution at 298 K, was investigated. It was found that the corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na{sub 2}C{sub 2}O{sub 4}). This was confirmed by scanning electron microscope (SEM) observations. However, for the other added ions Br{sup -} or Cl{sup -}, the corrosion rate is higher than the blank.

  2. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  3. 2,4-Diamino-6-methyl-1,3,5-triazin-1-ium hydrogen oxalate

    Directory of Open Access Journals (Sweden)

    Bohari M. Yamin

    2012-05-01

    Full Text Available The title compound, C4H8N5+·C2HO4−, was obtained from the reaction of oxalic acid and 2,4-diamino-6-methyl-1,3,5-triazine. The protonated triazine ring is essentially planar with a maximum deviation of 0.035 (1 Å, but the hydrogen oxalate anion is less planar, with a maximum deviation of 0.131 (1 Å for both carbonyl O atoms. In the crystal, the ions are linked by intermolecular N—H...O, N—H...N, O—H...O and C—H...O hydrogen bonds, forming a three-dimensional network. Weak π–π [centroid–centroid distance = 3.763 Å] and C—O...π interactions [O...centroid = 3.5300 (16 Å, C—O...centroid = 132.19 (10°] are also present.

  4. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Science.gov (United States)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  5. Oxalate Content of the Herb Good-King-Henry, Blitum Bonus-Henricus

    Directory of Open Access Journals (Sweden)

    Wanying Li

    2015-05-01

    Full Text Available The total, soluble and insoluble oxalate contents of the leaves, stems and buds of Good-King-Henry (Blitum Bonus-Henricus were extracted and measured using HPLC chromatography. The large, mature leaves contained 42% more total oxalate than in the small leaves and the soluble oxalate content of the large leaves was 33% higher than the smaller leaves. Cooking the mixed leaves, stems and buds in boiling water for two minutes significantly (p < 0.05 reduced the total oxalate when compared to the raw plant parts. Pesto sauce made from mixed leaves contained 257 mg total oxalate/100 g fresh weight; this was largely made up of insoluble oxalates (85% of the total oxalate content. Soup made from mixed leaves contained lower levels of total oxalates (44.26 ± 0.49 mg total oxalate/100 g fresh weight and insoluble oxalate made up 49% of the oxalate contents. The levels of oxalates in the Good-King-Henry leaves were high, suggesting that the leaves should be consumed occasionally as a delicacy because of their unique taste rather than as a significant part of the diet. However, the products made from Good-King-Henry leaves indicated that larger amounts could be consumed as the oxalate levels were reduced by dilution and processing.

  6. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  7. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    International Nuclear Information System (INIS)

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, Francois; Whittaker, James W.

    2007-01-01

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an α-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 10 4 U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions

  8. NDA technique for the assay of wet plutonium oxalate

    International Nuclear Information System (INIS)

    Marshall, R.S.; Canada, T.R.

    1980-01-01

    A method has been developed to quantitatively measure batches of wet plutonium oxalate. The method is based on a count of coincidence neutrons to which a correction is applied for the effects of neutron moderation by water. A therma-neutron coincidence counter (TNC) with two concentric rings of 3 He detectors provides the signal needed for the water correction. The signal is the ratio of neutron counts between the detector rings that changes with the percent of water in plutonium oxalate. To evaluate the measurement technique, 26 batches of plutonium oxalate were measured in an in-line TNC. The evaluation showed the measurements to be essentially unbiased and precise to 2.2%

  9. The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Clausen, Carol. A.

    2006-01-01

    The dry rot fungus, Serpula lacrymans, is one of the most destructive copper-tolerant fungi causing timber decay in buildings in temperate regions. Calcium and oxalic acid have been shown to play important roles in the mechanism of wood decay. The effect of calcium on growth and decay was evaluated...... for 12 strains of S. lacrymans and compared to five brown-rot fungi. This was done by treating copper citrate (CC)-treated Southern yellow pine (SYP) wood with a CaCl2 solution and estimating the decay rate and amount of soluble oxalic acid in an ASTM soil block test. Decay by S. lacrymans was found....... In summary, a marked decrease was observed in the decay capacity of S. lacrymans in pine treated with CC+CaCl2. The amount of soluble oxalic acid was measured in CC-treated blocks and blocks also treated with CaCl2. Of the comparative brown-rot fungi, both Antrodia vaillantii (TFFH 294) and Postia placenta...

  10. Synthesis and characterization of polymorphs of photoluminescent Eu(III)-(2,5-furandicarboxylic acid, oxalic acid) MOFs

    International Nuclear Information System (INIS)

    Shi, Fa-Nian; Ananias, Duarte; Yang, Ting-Hai; Rocha, João

    2013-01-01

    A novel metal organic framework (MOF) formulated as [Eu(H 2 O) 2 (fdc)(ox) 0.5 ·(H 2 O)] n (1, fdc 2− =2,5-furandicarboxylate, ox 2− =oxalate), was hydrothermally synthesized via in situ ox 2− generation from the partial decomposition of the fdc 2− ligand. This material crystallizes in the monoclinic space group C2/c, unit cell parameters of 1: a=16.7570(10), b=10.5708(7), c=13.5348(14) Å, β=116.917(2)° (Z=8), and exhibits a three-dimensional (3D)-porous framework, with guest water molecules residing in the channel linking all other ligands (H 2 O, ox 2− and fdc 2− ) via hydrogen bonding interactions. Compound 2 is a polymorph of 1 crystallizing in monoclinic P21/c space group. The photoluminescence properties of 1 and 2 were studied at room temperature. The spectra show the typical Eu 3+ red emission and the differences observed reflects the slightly different structures of these polymorphs. - Graphical abstract: Exploring metal organic framework polymorphism in the system Eu(H 2 O) 2 (fdc)(ox) 0.5 ·(H 2 O)] n (fdc 2− =2,5-furandicarboxylate, ox 2− =oxalate) for tuning light emission. Display Omitted - Highlights: • Synthesis of Eu(III)-(2,5-furandicarboxylic acid, oxalic acid) MOF polymorphs. • Detailed single-crystal study of polymorphs including hydrogen-bonding networks. • Photoluminescence spectroscopy show subtle differences light emission properties

  11. Interaction of Celestine Concentrate and Reagent Grade SrSO4 with Oxalate Solutions

    Directory of Open Access Journals (Sweden)

    Abdullah Obut

    2012-12-01

    Full Text Available The interaction of reagent grade strontium sulphate and celestine concentrate with aqueous solutions of oxalic acid, sodiumoxalate and ammonium oxalate for the production of strontium carbonate were investigated for different oxalate compound:SrSO4 moleratios and reaction times using x-ray diffraction analysis and dissolution tests. Under the same experimental conditions, it was foundthat aqueous oxalic acid and sodium oxalate solutions had no or little effect on reagent grade strontium sulphate or celestineconcentrate, but aqueous ammonium oxalate solution converted them into strontium oxalate hydrate. Strontium carbonate was obtainedat conversion ratios of 74.7% for the celestine concentrate and 84.6 % for the reagent grade strontium sulphate by the decompositionof the obtained strontium oxalate hydrate at 600 °C under air atmosphere.

  12. X-ray fluorescence analysis of erbium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.; Thomas, A.

    1981-01-01

    A method for the determination of Tb, Dy, Ho, Tm, Yb, Lu and Y oxides in Er 2 O 3 is described. 450 mg sample in the oxalate form is mixed with 150 mg boric acid binding material and pressed into a 1.25 inch diameter pellet over a supporting pellet of boric acid. The sample is then irradiated by X-rays from a tungsten tube and the fluorescent X-rays are dispersed by a LiF (200) crystal in a Philips PW 1220 semiautomatic X-ray fluorescence spectrometer. The intensities of characteristic X-rays of the impurity elements are measured by a flow proportional counter for all elements except yttrium for which the intensities are measured by a scintillation counter. The lowest determination limit is 0.005% for all impurities except for Yb for which it is 0.01%. Calculations for theoretical detection limit are given. (author)

  13. X-ray fluorescence analysis of ytterbium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.; Thomas, A.

    1982-01-01

    An XRF method for the determination of Ho, Er, Tm, Lu and Y oxides in Yb 2 O 3 is described. 450 mg sample in the oxalate form is mixed with 150 mg boric acid binding material and pressed into 1.25 inch diameter pellet over a supporting pellet of boric acid. The sample is irradiated by X-rays from a tungsten tube and the fluorescent X-rays are dispersed by a LiF(200) crystal in a Philips PW 1220 semiautomatic X-ray fluorescence spectrometer. The intensities of characteristic X-rays of the impurity elements are measured by a flow proportional counter or a scintillation counter. The lowest determination limit is 0.005% for Ho, Er, Tm and Y and 0.01% for Lu. Calculations for theoretical detection limit, standard deviation and uncertainty are done and presented. (author)

  14. Effect of aqueous extract of Tribulus terrestris on oxalate-induced oxidative stress in rats

    Science.gov (United States)

    Kamboj, P.; Aggarwal, M.; Puri, S.; Singla, S. K.

    2011-01-01

    The present study was aimed at studying the effect of Tribulus terrestris on different parameters of oxidative stress and gene expression profiles of antioxidant enzymes in renal tissues of male wistar rats after induction of hyperoxaluria. The animals were divided into three groups. The animals in group I (control) were administered vehicle only. In group II, the animals were treated with ethylene glycol (hyperoxaluric agent) and those in group III were administered T. terrestris plant extract in addition to ethylene glycol. All treatments were continued for a period of seven weeks. Ethylene glycol feeding resulted in hyperoxaluria as well as increased excretion of calcium and phosphate. Serum creatinine, uric acid and blood urea nitrogen levels were also altered in hyperoxaluric animals. Various oxidative stress parameters viz. lipid peroxidation and activity of antioxidant enzymes were used to confirm the peroxidant state. Reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to confirm whether steady-state transcription level of different antioxidant enzymes was altered. T. terrestris significantly reduced the excretion of oxalate, calcium, and phosphate along with decreased levels of blood urea nitrogen, uric acid and creatinine in serum. T. terrestris also reduced hyperoxaluria- caused oxidative stress, and restored antioxidant enzyme activity and their expression profile in kidney tissue. Histological analysis depicted that T. terrestris treatment decreased renal epithelial damage, inflammation, and restored normal glomerular morphology. PMID:21886973

  15. Novel organic NLO material bis(N-phenylbiguanidium(1+)) oxalate - A combined X-ray diffraction, DSC and vibrational spectroscopic study of its unique polymorphism

    Science.gov (United States)

    Matulková, Irena; Císařová, Ivana; Vaněk, Přemysl; Němec, Petr; Němec, Ivan

    2017-01-01

    Three polymorphic modifications of bis(N-phenylbiguanidium(1+)) oxalate are reported, and their characterization is discussed in this paper. The non-centrosymmetric bis(N-phenylbiguanidium(1+)) oxalate (I), which was obtained from an aqueous solution at 313 K, belongs to the monoclinic space group Cc (a = 6.2560(2) Å, b = 18.6920(3) Å, c = 18.2980(5) Å, β = 96.249(1)°, V = 2127.0(1) Å3, Z = 4, R = 0.0314 for 4738 observed reflections). The centrosymmetric bis(N-phenylbiguanidium(1+)) oxalate (II) was obtained from an aqueous solution at 298 K and belongs to the monoclinic space group P21/n (a = 6.1335(3) Å, b = 11.7862(6) Å, c = 14.5962(8) Å, β = 95.728(2)°, V = 1049.90(9) Å3, Z = 4, R = 0.0420 for 2396 observed reflections). The cooling of the centrosymmetric phase (II) leads to the formation of bis(N-phenylbiguanidium(1+)) oxalate (III) (a = 6.1083(2) Å, b = 11.3178(5) Å, c = 14.9947(5) Å, β = 93.151(2)°, V = 1035.05(8) Å3, Z = 4, R = 0.0345 for 2367 observed reflections and a temperature of 110 K), which also belongs to the monoclinic space group P21/n. The crystal structures of the three characterized phases are generally based on layers of isolated N-phenylbiguanidium(1 +) cations separated by oxalate anions and interconnected with them by several types of N-H...O hydrogen bonds. The observed phases generally differ not only in their crystal packing but also in the lengths and characteristics of their hydrogen bonds. The thermal behaviour of the prepared compounds was studied using the DSC method in the temperature range from 90 K up to a temperature near the melting point of each crystal. The bis(N-phenylbiguanidium(1+)) oxalate (II) crystals exhibit weak reversible thermal effects on the DSC curve at 147 K (heating run). Further investigation of this effect, which was assigned to the isostructural phase transformation, was performed using FTIR, Raman spectroscopy and X-ray diffraction analysis in a wide temperature range.

  16. How calcium makes endocytic receptors attractive

    DEFF Research Database (Denmark)

    Andersen, Christian B F; Moestrup, Søren K

    2014-01-01

    of the receptor. Endosomal acidification and calcium efflux lead to the essential ligand-receptor affinity switch and separation. Recent data, including crystal structures of receptor-ligand complexes, now reveal how calcium, in different types of domain scaffolds, functions in a common way as a removable...... 'lynchpin' that stabilizes favorable positioning of ligand-attractive receptor residues. In addition to explaining how calcium depletion can cause ligand-receptor dissociation, the new data add further insight into how acidification contributes to dissociation through structural changes that affect...... the receptor calcium sites....

  17. Two novel 3-D bismuth oxalates with organic amines protruding in channels

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Hu Zhongjian; Chen Yiping; Wang Zhen

    2006-01-01

    Two novel 3-D oxalate-containing bismuth compounds of formula (C 3 N 2 H 5 ) 2 [Bi 2 (C 2 O 4 ) 4 (H 2 O) 2 ].2H 2 O 1 and [NH(C 2 H 5 ) 3 ][Bi 3 (C 2 O 4 ) 5 ] 2 were obtained by hydrothermal synthesis and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic P2/n space group with a=9.7541(13)A, b=17.7404(15)A, c=14.6321(6)A, β=97.280(3) o , Z=4, R 1 =0.0340 and wR 2 =0.0766 for unique 4734 reflections I>2σ(I). Compound 2 belongs to the orthorhombic Pbcn space group with a=14.803(4)A, b=19.783(7)A, c=8.202(2)A, Z=4, R 1 =0.0222 and wR 2 =0.0568 for unique 2472 reflections I>2σ(I). The Bi III centers have nine-fold coordination for 1 and eight-fold for 2 with the Bi atoms in distorted monocapped square antiprism and distorted dodecahedron, respectively. And oxalate ligands adopt different coordination modes: bidentate for 1, bidentate and tricoordinate for 2. Compounds 1 and 2 are both 3-D open-framework structures containing channels with guest molecules. These two compounds exhibit intense blue luminescence with the emission peaks at 419nm for 1 and 442nm for 2, respectively, in the solid state at room temperature. These compounds with novel structural frameworks could be useful in the field of photoactive materials

  18. Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi

    Science.gov (United States)

    Anne Christine Steenkjær Hastrup; Frederick Green III; Patricia K. Lebow; Bo Jensen

    2012-01-01

    Oxalic acid is a key component in the initiation of brown-rot decay and it has been suggested that it plays multiple roles during the degradation process. Oxalic acid is accumulated to varying degrees among brown-rot fungi; however, details on active regulation are scarce. The accumulation of oxalic acid was measured in this study from wood degraded by the four brown-...

  19. A new method for the analysis of soluble and insoluble oxalate in pulp and paper matrices

    CSIR Research Space (South Africa)

    Sithole, Bruce

    2013-11-01

    Full Text Available A novel method has been developed for determining soluble and insoluble forms of oxalate in pulp and paper samples by ion chromatography. Methanesulphonic acid is used to dissolve insoluble oxalate, and total oxalate is then determined by ion...

  20. Oxaloacetate hydrolase, the C-C bond lyase of oxalate secreting fungi

    NARCIS (Netherlands)

    Han, Y.; Joosten, H.J.; Niu, W.; Zhao, Z.; Mariano, P.S.; McCalman, M.; Kan, van J.; Schaap, P.J.; Dunaway-Mariano, D.

    2007-01-01

    Oxalate secretion by fungi is known to be associated with fungal pathogenesis. In addition, oxalate toxicity is a concern for the commercial application of fungi in the food and drug industries. Although oxalate is generated through several different biochemical pathways, oxaloacetate

  1. Self-diffusion of calcium and yttrium in pure and YF/sub 3/-doped CaF/sub 2/ single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kucheria, C.S.

    1979-07-01

    Self-diffusion coefficients for Ca and Y were measured in pure and YF/sub 3/-doped CaF/sub 2/ crystals for dopant levels ranging from 2 to 10 mole %. Diffusion data were analyzed as a function of temperature and as a function of composition. Comparison of Arrhenius relationships for both Ca and Y showed that the activation energy for cation diffusion decreased approximately linearly as the YF/sub 3/ dopant level increased. Atomic jump pathways were considered and the decrease in the activation energy was explained by an increase in the constriction sizes due to Willis cluster formation. Diffusion coefficients for both cations were found to increase approximately linearly with square of the mole percent YF/sub 3/. A comparison of activation energies and diffusion coefficients for both cations in doped crystals indicated that Y required lower activation energy for diffusion than Ca but the diffusion coefficient was also lower for Y compared to Ca. The smaller activation energy for Y was explained by the smaller ionic size of Y, whereas the smaller diffusion coefficient for Y was explained on the basis of highly correlated jumps of Y ions because of interaction between Y/sub Ca/ and V/sub Ca/.

  2. Interaction of bovine gallbladder mucin and calcium-binding protein: effects on calcium phosphate precipitation

    NARCIS (Netherlands)

    Afdhal, N. H.; Ostrow, J. D.; Koehler, R.; Niu, N.; Groen, A. K.; Veis, A.; Nunes, D. P.; Offner, G. D.

    1995-01-01

    Gallstones consist of calcium salts and cholesterol crystals, arrayed on a matrix of gallbladder mucin (GBM), and regulatory proteins like calcium-binding protein (CBP). To determine if interactions between CBP and GBM follow a biomineralization scheme, their mutual binding and effects on CaHPO4

  3. Computational and experimental studies on oxalic acid imprinted ...

    Indian Academy of Sciences (India)

    e-mail: rkkawadkar@chm.vnit.ac.in. MS received 13 ... vent or porogen to form a pre-polymerization complex, followed by .... tered off and the filtrate was analysed for oxalic acid by. UV/VIS ... The experimental binding data were fitted to the.

  4. Competitive adsorption and photodegradation of salicylate and oxalate on goethite

    Czech Academy of Sciences Publication Activity Database

    Krýsa, J.; Jirkovský, Jaromír; Bajt, O.; Mailhot, G.

    2011-01-01

    Roč. 161, č. 1 (2011), s. 221-227 ISSN 0920-5861 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : goethite * oxalate * salicylate Subject RIV: CG - Electrochemistry Impact factor: 3.407, year: 2011

  5. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  6. Pseudomonas fluorescens ATCC 13525 Containing an Artificial Oxalate Operon and Vitreoscilla Hemoglobin Secretes Oxalic Acid and Solubilizes Rock Phosphate in Acidic Alfisols

    OpenAIRE

    Yadav, Kavita; Kumar, Chanchal; Archana, G.; Naresh Kumar, G.

    2014-01-01

    Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah), Fomitopsis plaustris oxalate transporter (FpOAR) and Vitreoscilla hemoglobin (vgb) in various combinations. Pf (pKCN2) transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4) s...

  7. Co-precipitation of plutonium(IV) and americium(III) from nitric acid-oxalic acid solutions with bismuth oxalate

    International Nuclear Information System (INIS)

    Pius, I.C.; Noronha, D.M.; Chaudhury, Satyajeet

    2017-01-01

    Co-precipitation of plutonium and americium from nitric acid-oxalic acid solutions with bismuth oxalate has been investigated for the removal of these long lived α-active nuclides from waste solutions. Effect of concentration of bismuth and oxalic acid on the co-precipitation of Pu(IV) from 3 M HNO_3 has been investigated. Similar experiments were also carried out from 3.75 M HNO_3 on co-precipitation of Am(III) to optimize the conditions of precipitation. Strong co-precipitation of Pu(IV) and Am(III) with bismuth oxalate indicate feasibility of treatment of plutonium and americium bearing waste solutions. (author)

  8. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... women, don't get enough calcium. How much calcium do I need every day? Women: If you ...

  9. Calcium - urine

    Science.gov (United States)

    ... Female urinary tract Male urinary tract Calcium urine test References Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, PA: Elsevier; ...

  10. Synthesis and X-ray diffraction study of new uranyl malonate and oxalate complexes with carbamide

    Energy Technology Data Exchange (ETDEWEB)

    Medvedkov, Ya. A.; Serezhkina, L. B., E-mail: Lserezh@samsu.ru [Samara State University (Russian Federation); Grigor’ev, M. S. [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); Serezhkin, V. N. [Samara State University (Russian Federation)

    2016-05-15

    Two new malonate-containing uranyl complexes with carbamide of the formulas [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}] (I) and [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 3}] (II), where Urea is carbamide, and one uranyl oxalate complex of the formula [UO{sub 2}(C{sub 2}O{sub 4})(Urea){sub 3}] (III) were synthesized, and their crystals were studied by X-ray diffraction. The main structural units in crystals I are the electroneutral chains [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}]{sub ∞} belonging to the crystal-chemical group AT{sup 11}M{sub 2}{sup 1} (A = UO{sub 2}{sup 2+}, T{sup 11} = C{sub 3}H{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea) of uranyl complexes. Crystals II and III are composed of the molecular complexes [UO{sub 2}(L)(Urea){sub 3}], where L = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, belonging to the crystal-chemical group AB{sup 01}M{sub 3}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea). The characteristic features of the packing of the uranium-containing complexes are discussed in terms of molecular Voronoi–Dirichlet polyhedra. The effect of the Urea: U ratio on the structure of uranium-containing structural units is considered.

  11. A hybrid lithium oxalate-phosphinate salt.

    Science.gov (United States)

    Shaffer, Andrew R; Deligonul, Nihal; Scherson, Daniel A; Protasiewicz, John D

    2010-12-06

    The novel organophosphorus-containing lithium salt Li(THF)[(C(2)O(4))B(O(2)PPh(2))(2)] (1; THF = tetrahydrofuran) was synthesized and characterized using a variety of spectroscopic techniques. An X-ray structural analysis on crystals of 1 grown from THF reveals a dimeric structure [Li(THF)(C(2)O(4))B(O(2)PPh(2))(2)](2)·THF, whereby the two units of 1 are bridged via P-O···Li interactions. Compound 1 displays high air and water stability and is also thermally robust, properties needed of electrolytes for their possible use as electrolytes and/or additives in lithium-ion battery applications.

  12. Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Xixi Cai

    2016-12-01

    Full Text Available Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 μg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives.

  13. Applications in environmental bioinorganic: Nutritional and ultrastructural evaluation and calculus of thermodynamic and structural properties of metal-oxalate complexes.

    Science.gov (United States)

    Tolentino, Terezinha Alves; Bertoli, Alexandre Carvalho; dos Santos Pires, Maíra; Carvalho, Ruy; Labory, Claudia Regina Gontijo; Nunes, Janaira Santana; Bastos, Ana Rosa Ribeiro; de Freitas, Matheus Puggina

    2015-01-01

    Lead (Pb) is known by its toxicity both for animals and plants. In order to evaluate its toxicity, plants of Brachiaria brizantha were cultivated on nutritive solution of Hoagland during 90 days and submitted to different concentrations of Pb. The content of macro and micronutrients was evaluated and there was a reduction on root content of Ca, besides the lowest dosages of Pb had induced an increase of N, S, Mn, Cu, Zn and Fe. The cell ultrastructure of leaves and roots were analyzed by transmission electronic microscopy (TEM). Among the main alterations occurred there were invaginations on cell walls, the presence of crystals on the root cells, accumulation of material on the interior of cells and vacuolar compartmentalization. On the leaves the degradation of chloroplasts was observed, as well as the increase of vacuoles. Structures for the formation of oxalate crystals were proposed through molecular modeling and thermodynamic stability. Calculi suggest the formation of highly stable metal-oxalate complexes. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C. Justin; Varma, K.B.R. [Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Joshi, R.K. [Special Center for Nano Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2011-11-15

    We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Study of Factors Related to Magnetic Treatment of Calcium Carbonate Saturated Water

    National Research Council Canada - National Science Library

    Lambert, Kevin

    1998-01-01

    ..., calcium carbonate concentration and number of magnetic device attached. XRD of crystals gave relative proportions of calcite and aragonite present and XRF measured transition metals and elements known to substitute for calcium in scale...

  16. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2009-05-01

    Full Text Available Atmospheric mineral dust particles can alter cloud properties and thus climate by acting as cloud condensation nuclei (CCN that form cloud droplets. The CCN activation properties of various calcium mineral dust particles were studied experimentally to investigate the consequences of field observations showing the segregation of sulphate from nitrate and chloride between individual aged Asian dust particles, and the enrichment of oxalic acid in Asian dust. Each mineral's observed apparent hygroscopicity was primarily controlled by its solubility, which determines the degree to which the mineral's intrinsic hygroscopicity can be expressed. The significant increase in hygroscopicity caused by mixing soluble hygroscopic material with insoluble mineral particles is also presented. Insoluble minerals including calcium carbonate, representing fresh unprocessed dust, and calcium sulphate, representing atmospherically processed dust, had similarly small apparent hygroscopicities. Their activation is accurately described by a deliquescence limit following the Kelvin effect and corresponded to an apparent single-hygroscopicity parameter, κ, of ~0.001. Soluble calcium chloride and calcium nitrate, representing atmospherically processed mineral dust particles, were much more hygroscopic, activating similar to ammonium sulphate with κ~0.5. Calcium oxalate monohydrate (κ=0.05 was significantly less CCN-active than oxalic acid (κ=0.3, but not as inactive as its low solubility would predict. These results indicate that the common assumption that all mineral dust particles become more hygroscopic and CCN-active after atmospheric processing should be revisited. Calcium sulphate and calcium oxalate are two realistic proxies for aged mineral dust that remain non-hygroscopic. The dust's apparent hygroscopicity will be controlled by its chemical mixing state, which is determined by its mineralogy and the chemical reaction pathways it experiences

  17. Novel Inorganic Coordination Polymers Based on Cadmium Oxalates

    Science.gov (United States)

    Prasad, P. A.; Neeraj, S.; Vaidhyanathan, R.; Natarajan, Srinivasan

    2002-06-01

    Three new cadmium oxalate coordination polymers, I-III, with extended layered structures have been synthesized in the presence of imidazole. While I was prepared by the reaction between imidazolium oxalate and Cd, II and III were synthesized from their constituents using hydrothermal methods. [Cd(C2O4)(C3N2H4)]∞ (I): monoclinic, space group P21/c (no. 14), a=8.7093(1) Å, b=9.9477(3) Å, c=8.4352 Å, β=93.796(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)]∞ (II): monoclinic, space group P21/c (no. 14), a=7.8614(2) Å, b=14.9332(3) Å, c=15.9153(4) Å β=94.587(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)]∞ (III): monoclinic, space group P21/c (no. 14), a=11.844(2) Å, b=9.066(1) Å, c=18.583(2) Å, β=103.84(2)°, Z=4. While the structure of I is made from CdO5N distorted octahedra linked with oxalate, II and III are built-up from CdO6N, CdO5N2 distorted pentagonal bi-pyramids connected to oxalate units. The framework formulas of II and III are identical and their structures closely related. In all the cases, the networking between the Cd-O/N polyhedra and oxalates give rise to layered architectures with the amine molecules pointing in a direction perpendicular to the layers (in the inter-lamellar region). The difference in the linkages between the oxalates and the Cd atoms in I-III, produces unusual Cd-O-Cd one-dimensional chains, which have been observed for the first time.

  18. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  19. Synthesis, structure and magnetic behavior of a new three-dimensional Manganese phosphite-oxalate: [C2N2H10][Mn2II(OH2)2(HPO3)2(C2O4)

    International Nuclear Information System (INIS)

    Ramaswamy, Padmini; Mandal, Sukhendu; Natarajan, Srinivasan

    2009-01-01

    A novel manganese phosphite-oxalate, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO 3 )] ∞ , formed by MnO 6 octahedra and HPO 3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one-dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn 2+ ions. - Abstract: A new antiferromagnetic three-dimensional inorganic-organic hybrid compound, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been prepared hydrothermally. The compound has neutral manganese layers pillared by oxalate units. The neutral manganese layers are shown here. Display Omitted

  20. Translocation and bonding of calcium (45Ca) in two-year-old seedlings of spruce (Picea abies[L.] Karst.) and pine (Pinus sylvestris L.)

    International Nuclear Information System (INIS)

    Tuerk, S.H.

    1995-12-01

    Within the framework of the project ''Effect of liming and magnesium fertilization on the uptake, transport, and chemical bonding form of calcium and magnesium in conifers'', experiments regarding the calcium budget of two-year-old spruce and pine seedlings under conditions of controlled nutrition in a gravel culture were carried out. Two variants of calcium nutrition demonstrated which of the mechanisms in the calcium metabolism of trees are dependent on changes in element availability. Root labelling using the radioactive tracer 45 Ca permitted aimed investigation of the uptake and translocation of calcium during shoot formation in May. The functional importance of the investigated nutritive element was characterized by breaking up the total calcium contents ( 45 Ca) into the three essential chemical bonding forms (water-soluble Ca, Ca-pectate, Ca-oxalate) for the different tree fractions.- The culture experiments led to the conclusion that the root tips are most important as sites of calcium uptake. Translocation within the roots to the shoot took place via diffusion and exchange displacement as a function of calcium supply in the nutritive solution. There is no clue to support the assumption of a regulation of calcium uptake in spruces; in pines, by contrast, it cannot be excluded.- From a nutrition-physiological viewpoint, a total calcium content of 2 mg per gramme of dry mass is to be considered as sufficient. As this target is always attained, even where calcium supply is scarce, it is not appropriate to equate increased calcium availability with enhanced nutrient supply. Rather, the results discussed seem to support the theory that the trees now need to detoxicate excessively high calcium concentrations, which are liable to endanger the physiological cell metabolism, by a reaction with oxalic acid resulting in the formation of calcium oxalate. (orig.) [de

  1. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  2. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers.

    Science.gov (United States)

    Pinheiro, Vivian Barbosa; Baxmann, Alessandra Calábria; Tiselius, Hans-Göran; Heilberg, Ita Pfeferman

    2013-07-01

    To evaluate the effects of oral sodium bicarbonate (NaBic) supplementation upon urinary citrate excretion in calcium stone formers (CSFs). Sixteen adult calcium stone formers with hypocitraturia were enrolled in a randomized, double-blind, crossover protocol using 60 mEq/day of NaBic during 3 days compared to the same period and doses of potassium citrate (KCit) supplementation. Blood and 24-hour urine samples were collected at baseline and during the third day of each alkali salt. NaBic, similarly to KCit supplementation, led to an equivalent and significant increase in urinary citrate and pH. Compared to baseline, NaBic led to a significant increase in sodium excretion without concomitant increases in urinary calcium excretion, whereas KCit induced a significant increase in potassium excretion coupled with a significant reduction in urinary calcium. Although NaBic and KCit both reduced calcium oxalate supersaturation (CaOxSS) significantly vs baseline, KCit reduced calcium oxalate supersaturation significantly further vs NaBic. Both KCit and NaBic significantly reduced urinary phosphate and increased calcium phosphate supersaturation (CaPSS) compared to baseline. Finally, a significantly higher sodium urate supersaturation (NaUrSS) was observed after the use of the 2 drugs. This short-term study suggests that NaBic represents an effective alternative for the treatment of hypocitraturic calcium oxalate stone formers who cannot tolerate or afford the cost of KCit. In view of the increased sodium urate supersaturation, patients with pure uric acid stones and high urate excretion may be less suited for treatment with NaBic. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules.

    Science.gov (United States)

    Chung, Vera Y; Konietzny, Rebecca; Charles, Philip; Kessler, Benedikt; Fischer, Roman; Turney, Benjamin W

    2016-04-02

    Kidney stone disease is a major health burden with a complex and poorly understood pathophysiology. Drosophila Malpighian tubules have been shown to resemble human renal tubules in their physiological function. Herein, we have used Drosophila as a model to study the proteomic response to crystal formation induced by dietary manipulation in Malpighian tubules. Wild-type male flies were reared in parallel groups on standard medium supplemented with lithogenic agents: control, Sodium Oxalate (NaOx) and Ethylene Glycol (EG). Malpighian tubules were dissected after 2 weeks to visualize crystals with polarized light microscopy. The parallel group was dissected for protein extraction. A new method of Gel Assisted Sample Preparation (GASP) was used for protein extraction. Differentially abundant proteins (p<0.05) were identified by label-free quantitative proteomic analysis in flies fed with NaOx and EG diet compared with control. Their molecular functions were further screened for transmembrane ion transporter, calcium or zinc ion binder. Among these, 11 candidate proteins were shortlisted in NaOx diet and 16 proteins in EG diet. We concluded that GASP is a proteomic sample preparation method that can be applied to individual Drosophila Malpighian tubules. Our results may further increase the understanding of the pathophysiology of human kidney stone disease.

  4. Precipitation behavior of uranium in multicomponent solution by oxalic acid

    International Nuclear Information System (INIS)

    Shin, Y.J.; Kim, I.S.; Lee, W.K.; Shin, H.S.; Ro, S.G.

    1996-01-01

    A study on the precipitation of uranium by oxalic acid was carried out in a multicomponent solution. The precipitation method is usually applied to the treatment of radioactive waste and the recovery of uranium from a uranium-scrap contaminated with impurities. In these cases, the problem is how to increase the precipitation yield of target element and to prevent impurities from coprecipitation. The multicomponent solution in the present experiment was prepared by dissolving U, Nd, Cs and Sr in nitric acid. The effects of concentrations of oxalic acid and ascorbic acid on the precipitation yield and purity of uranium were observed. As results of the study, the maximum precipitation yield of uranium is revealed to be about 96.5% and the relative precipitation ratio of Nd, Cs and Sr versus uranium are discussed at the condition of the maximum precipitation yield of uranium, respectively. (author). 11 refs., 5 figs., 1 tab

  5. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut.

    Science.gov (United States)

    Miller, Aaron W; Dearing, Denise

    2013-12-06

    Oxalate-degrading bacteria comprise a functional group of microorganisms, commonly found in the gastrointestinal tract of mammals. Oxalate is a plant secondary compound (PSC) widely produced by all major taxa of plants and as a terminal metabolite by the mammalian liver. As a toxin, oxalate can have a significant impact on the health of mammals, including humans. Mammals do not have the enzymes required to metabolize oxalate and rely on their gut microbiota for this function. Thus, significant metabolic interactions between the mammalian host and a complex gut microbiota maintain the balance of oxalate in the body. Over a dozen species of gut bacteria are now known to degrade oxalate. This review focuses on the host-microbe and microbe-microbe interactions that regulate the degradation of oxalate by the gut microbiota. We discuss the pathways of oxalate throughout the body and the mammalian gut as a series of differentiated ecosystems that facilitate oxalate degradation. We also explore the mechanisms and functions of microbial oxalate degradation along with the implications for the ecological and evolutionary interactions within the microbiota and for mammalian hosts. Throughout, we consider questions that remain, as well as recent technological advances that can be employed to answer them.

  6. Photoluminescent lanthanide-organic bilayer networks with 2,3-pyrazinedicarboxylate and oxalate.

    Science.gov (United States)

    Soares-Santos, Paula C R; Cunha-Silva, Luís; Paz, Filipe A Almeida; Ferreira, Rute A S; Rocha, João; Carlos, Luís D; Nogueira, Helena I S

    2010-04-05

    The hydrothermal reaction between lanthanide nitrates and 2,3-pyrazinedicarboxylic acid led to a new series of two-dimensional (2D) lanthanide-organic frameworks: [Ln(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)](n) [where 2,3-pzdc(2-) = 2,3-pyrazinedicarboxylate, ox(2-) = oxalate, and Ln(III) = Ce, Nd, Sm, Eu, Gd, Tb, or Er]. The structural details of these materials were determined by single-crystal X-ray diffraction (for Ce(3+) and Nd(3+)) that revealed the formation of a layered structure. Cationic monolayers of {(infinity)(2)[Ln(2,3-pzdc)(H(2)O)](+)} are interconnected via the ox(2-) ligand leading to the formation of neutral (infinity)(2)[Ln(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)] bilayer networks; structural cohesion of the crystalline packing is reinforced by the presence of highly directional O-H...O hydrogen bonds between adjacent bilayers. Under the employed hydrothermal conditions 2,3-pyrazinedicarboxylic acid can be decomposed into ox(2-) and 2-pyrazinecarboxylate (2-pzc(-)), as unequivocally proved by the isolation of the discrete complex [Tb(2)(2-pzc)(4)(ox)(H(2)O)(6)].10H(2)O. Single-crystal X-ray diffraction of this latter complex revealed its co-crystallization with an unprecedented (H(2)O)(16) water cluster. Photoluminescence measurements were performed for the Nd(3+), Sm(3+), Eu(3+), and Tb(3+) compounds which show, under UV excitation at room temperature, the Ln(3+) characteristic intra-4f(N) emission peaks. The energy level of the triplet states of 2,3-pyrazinedicarboxylic acid (18939 cm(-1)) and oxalic acid (24570 cm(-1)) was determined from the 12 K emission spectrum of the Gd(3+) compound. The (5)D(0) and (5)D(4) lifetime values (0.333 +/- 0.006 and 0.577 +/- 0.017 ms) and the absolute emission quantum yields (0.13 +/- 0.01 and 0.05 +/- 0.01) were determined for the Eu(3+) and Tb(3+) compounds, respectively. For the Eu(3+) compound the energy transfer efficiency arising from the ligands' excited states was estimated (0.93 +/- 0.01).

  7. Binding abilities of copper to phospholipids and transport of oxalate

    Czech Academy of Sciences Publication Activity Database

    Jaklová Dytrtová, Jana; Jakl, M.; Nováková, Kateřina; Navrátil, Tomáš; Šádek, Vojtěch

    2015-01-01

    Roč. 146, č. 5 (2015), s. 831-837 ISSN 0026-9247 R&D Projects: GA ČR GP13-21409P; GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : copper cations * dipalmitoylphosphatidylcholine (lecithin) * ESI-MS * impedance spectroscopy * oxalic acid * voltammetry * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.131, year: 2015

  8. Hafnium(IV) complexation with oxalate at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Friend, Mitchell T.; Wall, Nathalie A. [Washington State Univ., Pullmanm, WA (United States). Dept. of Chemistry

    2017-08-01

    Appropriate management of fission products in the reprocessing of spent nuclear fuel (SNF) is crucial in developing advanced reprocessing schemes. The addition of aqueous phase complexing agents can prevent the co-extraction of these fission products. A solvent extraction technique was used to study the complexation of Hf(IV) - an analog to fission product Zr(IV) - with oxalate at 15, 25, and 35 C in 1 M HClO{sub 4} utilizing a {sup 175+181}Hf radiotracer. The mechanism of the solvent extraction system of 10{sup -5} M Hf(IV) in 1 M HClO{sub 4} to thenoyltrifluoroacetone (TTA) in toluene demonstrated a 4{sup th}-power dependence in both TTA and H{sup +}, with Hf(TTA){sub 4} the only extractable species. The equilibrium constant for the extraction of Hf(TTA){sub 4} was determined to be log K{sub ex}=7.67±0.07 (25±1 C, 1 M HClO{sub 4}). The addition of oxalate to the aqueous phase decreased the distribution ratio, indicating aqueous Hf(IV)-oxalate complex formation. Polynomial fits to the distribution data identified the formation of Hf(ox){sup 2+} and Hf(ox){sub 2(aq)} and their stability constants were measured at 15, 25, and 35 C in 1 M HClO{sub 4}. van't Hoff analysis was used to calculate Δ{sub r}G, Δ{sub r}H, and Δ{sub r}S for these species. Stability constants were observed to increase at higher temperature, an indication that Hf(IV)-oxalate complexation is endothermic and driven by entropy.

  9. Rare calcium oxalate monohydrate calculus attached to the wall of the renal pelvis.

    Science.gov (United States)

    Grases, Felix; Costa-Bauza, Antonia; Prieto, Rafael M; Saus, Carlos; Servera, Antonio; García-Miralles, Reyes; Benejam, Joan

    2011-04-01

    Most renal calculi can be classified using well-established criteria in a manner that reflects both composition and fine structure under specific pathophysiological conditions. However, when a large patient population is considered, rare renal calculi invariably appear, some of which have never been classified; careful study is required to establish stone etiology in such cases. The patient in the present case report formed two types of calculi. One was attached on the wall of the renal pelvis near the ureter and part of the calculus was embedded inside pelvic renal tissue. The calculus developed on an ossified calcification located in the pelvis tissue. Current knowledge on the development of calcification in soft tissues suggests a pre-existing injury as an inducer of its development. A mechanism of calculus formation is proposed. The second stone was a typical jack-stone calculus. © 2011 The Japanese Urological Association.

  10. Synthesis of CaTiO3 from calcium titanyl oxalate hexahydrate (CTO ...

    Indian Academy of Sciences (India)

    TECS

    2.2 Thermogravimetry (TG), derivative thermogravimetry. (DTG) and differential .... nology for medical processing—A promising option for tomor- row, Mumbai ... E J 1988 in Radioactive waste forms for future (eds) W Lutre and R C Ewing ...

  11. Effect of heat treatment on the structure of incorporated oxalate species and photoluminescent properties of porous alumina films formed in oxalic acid

    Science.gov (United States)

    Vrublevsky, I.; Jagminas, A.; Hemeltjen, S.; Goedel, W. A.

    2008-09-01

    The present work focuses on the use of IR spectroscopy and photoluminescence spectral measurements for studying the treatment temperature effect on the compositional and luminescent properties of oxalic acid alumina films. In line with the recent researches we have also found that heat treatment of porous alumina films formed in oxalic acid leads to considerable changes in their photoluminescence properties: upon annealing the intensity of photoluminescence (PL) increases reaching a maximum at the temperature of around 500 °C and then decreases. IR spectra of as-grown and heat-treated films have proved that PL emission in the anodic alumina films is related with the state of 'structural' oxalate species incorporated in the oxide lattice. These results allowed us to conclude that PL behavior of oxalic acid alumina films can be explained through the concept of variations in the bonding molecular orbitals of incorporated oxalate species including σ- and π-bonds.

  12. Liquid waste processing from plutonium (III) oxalate precipitation

    International Nuclear Information System (INIS)

    Esteban, A.; Cassaniti, P.; Orosco, E.H.

    1990-01-01

    Plutonium (III) oxalate filtrates contain about 0.2M oxalic acid, 0.09M ascorbic acid, 0.05M hydrazine, 1M nitric acid and 20-100 mg/l of plutonium. The developed treatment of liquid wastes consist in two main steps: a) Distillation to reduce up to 10% of the initial volume and refluxing to destroy organic material. Then, the treated solution is suitable to adjust the plutonium at the tetravalent state by addition of hydrogen peroxide and the nitric molarity up to 8.6M. b) Recovery and purification of plutonium by anion exchange using two columns in series containing Dowex 1-X4 resin. With the proposed process, it is possible to transform 38 litres of filtrates with 40mg/l of Pu into 0.1 l of purified solution with 15-20g/l of Pu. This solution is suitable to be recycled in the Pu (III) oxalate precipitation process. This process has several potential advantages over similar liquid waste treatments. These include: 1) It does not increase the liquid volume. 2) It consumes only few reagents. 3) The operations involved are simple, requiring limited handling and they are feasible to automatization. 4) The Pu recovery factor is about 99%. (Author) [es

  13. Pseudomonas fluorescens ATCC 13525 Containing an Artificial Oxalate Operon and Vitreoscilla Hemoglobin Secretes Oxalic Acid and Solubilizes Rock Phosphate in Acidic Alfisols

    Science.gov (United States)

    Archana, G.; Naresh Kumar, G.

    2014-01-01

    Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah), Fomitopsis plaustris oxalate transporter (FpOAR) and Vitreoscilla hemoglobin (vgb) in various combinations. Pf (pKCN2) transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4) secreted 13.6 mM oxalate in the medium while 3.6 mM remained inside. This transformant solubilized 509 μM of phosphorus from rock phosphate in alfisol which is 4.5 fold higher than the Pf (pKCN2) transformant. Genomic integrants of P. fluorescens (Pf int1 and Pf int2) containing artificial oxalate operon (plac-FpOAR-oah) and artificial oxalate gene cluster (plac-FpOAR-oah, vgb, egfp) secreted 4.8 mM and 5.4 mM oxalic acid, released 329 μM and 351 μM P, respectively, in alfisol. The integrants showed enhanced root colonization, improved growth and increased P content of Vigna radiata plants. This study demonstrates oxalic acid secretion in P. fluorescens by incorporation of an artificial operon constituted of genes for oxalate synthesis and transport, which imparts mineral phosphate solubilizing ability to the organism leading to enhanced growth and P content of V. radiata in alfisol soil. PMID:24705024

  14. Pseudomonas fluorescens ATCC 13525 containing an artificial oxalate operon and Vitreoscilla hemoglobin secretes oxalic acid and solubilizes rock phosphate in acidic alfisols.

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    Full Text Available Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah, Fomitopsis plaustris oxalate transporter (FpOAR and Vitreoscilla hemoglobin (vgb in various combinations. Pf (pKCN2 transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4 secreted 13.6 mM oxalate in the medium while 3.6 mM remained inside. This transformant solubilized 509 μM of phosphorus from rock phosphate in alfisol which is 4.5 fold higher than the Pf (pKCN2 transformant. Genomic integrants of P. fluorescens (Pf int1 and Pf int2 containing artificial oxalate operon (plac-FpOAR-oah and artificial oxalate gene cluster (plac-FpOAR-oah, vgb, egfp secreted 4.8 mM and 5.4 mM oxalic acid, released 329 μM and 351 μM P, respectively, in alfisol. The integrants showed enhanced root colonization, improved growth and increased P content of Vigna radiata plants. This study demonstrates oxalic acid secretion in P. fluorescens by incorporation of an artificial operon constituted of genes for oxalate synthesis and transport, which imparts mineral phosphate solubilizing ability to the organism leading to enhanced growth and P content of V. radiata in alfisol soil.

  15. Atomic layer deposition of calcium oxide and calcium hafnium oxide films using calcium cyclopentadienyl precursor

    International Nuclear Information System (INIS)

    Kukli, Kaupo; Ritala, Mikko; Sajavaara, Timo; Haenninen, Timo; Leskelae, Markku

    2006-01-01

    Calcium oxide and calcium hafnium oxide thin films were grown by atomic layer deposition on borosilicate glass and silicon substrates in the temperature range of 205-300 o C. The calcium oxide films were grown from novel calcium cyclopentadienyl precursor and water. Calcium oxide films possessed refractive index 1.75-1.80. Calcium oxide films grown without Al 2 O 3 capping layer occurred hygroscopic and converted to Ca(OH) 2 after exposure to air. As-deposited CaO films were (200)-oriented. CaO covered with Al 2 O 3 capping layers contained relatively low amounts of hydrogen and re-oriented into (111) direction upon annealing at 900 o C. In order to examine the application of CaO in high-permittivity dielectric layers, mixtures of Ca and Hf oxides were grown by alternate CaO and HfO 2 growth cycles at 230 and 300 o C. HfCl 4 was used as a hafnium precursor. When grown at 230 o C, the films were amorphous with equal amounts of Ca and Hf constituents (15 at.%). These films crystallized upon annealing at 750 o C, showing X-ray diffraction peaks characteristic of hafnium-rich phases such as Ca 2 Hf 7 O 16 or Ca 6 Hf 19 O 44 . At 300 o C, the relative Ca content remained below 8 at.%. The crystallized phase well matched with rhombohedral Ca 2 Hf 7 O 16 . The dielectric films grown on Si(100) substrates possessed effective permittivity values in the range of 12.8-14.2

  16. The influence of Al2O3, MgO and ZnO on the crystallization characteristics and properties of lithium calcium silicate glasses and glass-ceramics

    International Nuclear Information System (INIS)

    Salman, S.M.; Darwish, H.; Mahdy, E.A.

    2008-01-01

    The crystallization characteristics of glasses based on the Li 2 O-CaO-SiO 2 eutectic (954 ± 4 deg. C) system containing Al 2 O 3 , MgO and ZnO has been investigated by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). The partial replacement of Li 2 O by Al 2 O 3 and CaO by MgO or ZnO in the studied glass-ceramics led to the development of different crystalline phase assemblages, including lithium meta- and di-silicates, lithium calcium silicates, α-quartz, diopside, clinoenstatite, wollastonite, β-eucryptite ss, β-spodumene, α-tridymite, lithium zinc orthosilicate, hardystonite and willemite using various heat-treatment processes. The dilatometric thermal expansion of the glasses and their corresponding glass-ceramics were determined. A wide range of thermal expansion coefficient values were obtained for the investigated glasses and their corresponding crystalline products. The thermal expansion coefficients of the investigated glasses were decreased by Al 2 O 3 , MgO or ZnO additions. The α-values of the investigated glasses were ranged from (+18) to (+108) x 10 -7 K -1 (25-300 deg. C), while those of the glass-ceramics were (+3) to (+135) x 10 -7 K -1 (25-700 deg. C). The chemical durability of the glass-ceramics, towards the attack of 0.1N HCl solution, was markedly improved by Al 2 O 3 with MgO replacements. The composition containing 11.5 mol% Al 2 O 3 and 6.00 mol% MgO exhibited low thermal expansion values and good chemical durability

  17. A Novel Method for Fabricating Double Layers Porous Anodic Alumina in Phosphoric/Oxalic Acid Solution and Oxalic Acid Solution

    Directory of Open Access Journals (Sweden)

    Yanfang Xu

    2016-01-01

    Full Text Available A novel method for fabricating ordered double layers porous anodic alumina (DL-PAA with controllable nanopore size was presented. Highly ordered large pore layer with interpore distance of 480 nm was fabricated in phosphoric acid solution with oxalic acid addition at the potential of 195 V and the small pore layer was fabricated in oxalic acid solution at the potential from 60 to 100 V. Experimental results show that the thickness of large pore layer is linearly correlative with anodizing time, and pore diameter is linearly correlative with pore widening time. When the anodizing potential in oxalic acid solution was adjusted from 60 to 100 V, the small pore layers with continuously tunable interpore distance from 142 to 241 nm and pore density from 1.94×109 to 4.89×109 cm−2 were obtained. And the interpore distance and the pore density of small pore layers are closely correlative with the anodizing potential. The fabricated DL-PAA templates can be widely utilized for fabrication of ordered nanomaterials, such as superhydrophobic or gecko-inspired adhesive materials and metal or semiconductor nanowires.

  18. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-03-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added /sup 14/CO/sub 2/ was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.

  19. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    International Nuclear Information System (INIS)

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-01-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added 14 CO 2 was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle

  20. Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids

    International Nuclear Information System (INIS)

    Koo, Su-Jin; Ju, Chang-Sik

    2013-01-01

    Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, 80 .deg. C, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination

  1. Removal of plutonium from nitric acid-oxalic acid solutions using anion exchange method

    International Nuclear Information System (INIS)

    Kasar, U.M.; Pawar, S.M.; Joshi, A.R.

    1999-01-01

    An anion exchange method using Amberlyst A-26 (MP) resin was developed for removal of Pu from nitric acid-oxalic acid solutions without destroying oxalate. The method consists of sorption of Pu(IV) on Amberlyst A-26, a macroporous anion exchange resin, from nitric acid-oxalic acid medium in the presence of Al(NO 3 ) 3 . Pu(IV) breakthrough capacity of Amberlyst A-26 using synthetic feed solution was determined. (author)

  2. Synthesis, structure and characterization of two new open-framework gallium phosphite-oxalates of varying dimensionality

    International Nuclear Information System (INIS)

    Li, Caixia; Huang, Liangliang; Zhou, Mingdong; Xia, Jing; Ma, Hongwei; Zang, Shuliang; Wang, Li

    2013-01-01

    Using N, N-dimethyl-piperazine as structure directing agent, two new gallium phosphite-oxalates [Ga 2 (HPO 3 ) 2 (H 2 PO 3 ) 2 (C 2 O 4 )](C 6 N 2 H 16 ) (I) and [Ga 2 (HPO 3 ) 2 (H 2 PO 3 )(C 2 O 4 )](C 6 N 2 H 16 ) 0.5 (II) have been synthesized under solvothermal and hydrothermal conditions, respectively and further characterized by powder X-ray diffraction, IR spectroscopy, TGA, ICP-AES and elemental analyses. Single crystal X-ray diffraction reveals that the striking feature of I and II is that they possess the same second building unit (SBU) Ga 2 P 2 constructed from two GaO 6 octahedra and two [HPO 3 2− ] pseudo-pyramids sharing oxygen atoms. However, due to the different connecting fashions of SBUs, [C 2 O 4 2− ] groups and [H 2 PO 3 − ] pseudo-pyramids, the final frameworks of them are distinctly different. Compound I shows 2D layered structures with 8-membered ring (8-MR) windows in the ab plane while compound II presents a 3D open-framework with 8-MR channels along the b axis. - Graphical abstract: Using N, N-dimethyl-piperazine as structure directing agent, two new gallium phosphite-oxalates I showing 2D layered structure and II presenting 3D open-framework have been synthesized under solvothermal and hydrothermal conditions, respectively. - Highlights: • Using N, N-dimethyl-piperazine as structure directing agent, two new gallium phosphite-oxalates have been synthesized under solvothermal and hydrothermal conditions, respectively. • The same second building unit (SBU) is displayed in both compounds. • Compound I shows 2D layered structure with 8-MR windows while compound II presents 3D open-framework with 8-MR channels. • The solvent plays an important role on the formation of microporous compounds

  3. Photodegradation of 2-mercaptobenzothiazole in the γ-Fe2O3/oxalate suspension under UVA light irradiation

    International Nuclear Information System (INIS)

    Wang Xugang; Liu Chengshuai; Li Xiaomin; Li Fangbai; Zhou Shungui

    2008-01-01

    The aim of this study is to investigate the effect of various factors on the photodegradation of organic pollutants in natural environment with co-existence of iron oxides and oxalic acid. 2-Mercaptobenzothiazole (MBT) was selected as a model pollutant, while γ-Fe 2 O 3 was selected as iron oxide. The crystal structure and morphology of the prepared γ-Fe 2 O 3 was determined by X-ray diffractograms (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area was 14.36 m 2 /g by Brunauer-Emmett-Teller (BET) method. The adsorption behavior of γ-Fe 2 O 3 was evaluated by Langmuir model. The effect of the dosage of iron oxide, initial concentration of oxalic acid (C ox 0 ), initial pH value, the light intensity and additional transition metal cations on MBT photodegradation was investigated in the γ-Fe 2 O 3 /oxalate suspension under UVA light irradiation. The optimal γ-Fe 2 O 3 dosage was 0.4 g/L and the optimal C ox 0 was 0.8 mM with the UVA light intensity of 1800 mW/cm 2 . And the optimal dosage of γ-Fe 2 O 3 and C ox 0 for MBT degradation also depended strongly on the light intensity. The optimal γ-Fe 2 O 3 dosage was 0.1, 0.25 and 0.4 g/L, and the optimal C ox 0 was 1.0, 0.8, and 0.8 mM with the light intensity of 600, 1200 and 1800 mW/cm 2 , respectively. The optimal initial pH value was at 3.0. The additional transition metal cations including Cu 2+ , Ni 2+ or Mn 2+ could significantly accelerate MBT degradation. This investigation will give a new insight to understanding the MBT photodegradation in natural environment

  4. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)].6.5H2O

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Chen Yiping; Wang Zhen

    2006-01-01

    A novel 3-D compound of (enH 2 ) 1.5 [Bi 3 (C 2 O 4 ) 6 (CO 2 CONHCH 2 CH 2 NH 3 )].6.5H 2 O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with a=31.110(8)A, b=11.544(3)A, c=22.583(6)A, β=112.419(3) o , V=7497(3)A 3 , Z=8, R 1 =0.0463 and wR 2 =0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group - CO 2 CONHCH 2 CH 2 NH 3 + , which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445nm

  5. Determination of calcium salt solubility with changes in pH and P(CO(2)), simulating varying gastrointestinal environments.

    Science.gov (United States)

    Goss, Sandra L; Lemons, Karen A; Kerstetter, Jane E; Bogner, Robin H

    2007-11-01

    The amount of calcium available for absorption is dependent, in part, on its sustained solubility in the gastrointestinal (GI) tract. Many calcium salts, which are the calcium sources in supplements and food, have pH-dependent solubility and may have limited availability in the small intestine, the major site of absorption. The equilibrium solubility of four calcium salts (calcium oxalate hydrate, calcium citrate tetrahydrate, calcium phosphate, calcium glycerophosphate) were determined at controlled pH values (7.5, 6.0, 4.5 and solubility of calcium carbonate was also measured at pH 7.5, 6.0 and 4.5 with two CO(2) environments (0.3 and 152 mmHg) above the solution. The precipitation profile of CaCO(3) was calculated using in-vivo data for bicarbonate and pH from literature and equilibrium calculations. As pH increased, the solubility of each calcium salt increased. However, in distilled water each salt produced a different pH, affecting its solubility value. Although calcium citrate does have a higher solubility than CaCO(3) in water, there is little difference when the pH is controlled at pH 7.5. The partial pressure of CO(2) also played a role in calcium carbonate solubility, depressing the solubility at pH 7.5. The calculations of soluble calcium resulted in profiles of available calcium, which agreed with previously published in-vivo data on absorbed calcium. The experimental data illustrate the impact of pH and CO(2) on the solubility of many calcium salts in the presence of bicarbonate secretions in the intestine. Calculated profiles using in-vivo calcium and bicarbonate concentrations demonstrate that large calcium doses may not further increase intestinal calcium absorption once the calcium carbonate solubility product has been reached.

  6. Studies on removal of plutonium from oxalic acid containing hydrochloric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghadse, D R; Noronha, D M; Joshi, A R [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Solution containing hydrochloric acid, oxalic acid and considerable quantities of plutonium may be generated while recycling of scrap produced during the metallic fuel fabrication. Plutonium from such waste is normally recovered by anion exchange method after the destruction of oxalic acid using suitable oxidising agent. Solvent extraction and ion exchange methods are being explored in this laboratory for recovery of Pu from oxalic acid containing HCl solutions without prior destruction of oxalic acid. This paper describes the results on the determination of distribution ratios for extraction of Pu(IV) from hydrochloric acid using Aliquot-336 or HDEHP under varying experimental conditions. (author). 5 refs., 5 tabs.

  7. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    International Nuclear Information System (INIS)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox) 0.5 (H 2 O)] n ·2n(H 2 O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H 2 sfpip)(ox)(H 2 O) 4 ] n ·2n(H 2 O) (Ln=Nd (8) Sm (9)), [H 2 ox=oxalic acid, H 3 sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H 3 sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox 2− anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  8. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  9. Calcium blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003477.htm Calcium blood test To use the sharing features on this page, please enable JavaScript. The calcium blood test measures the level of calcium in the blood. ...

  10. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  11. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Products that contain calcium carbonate are certain: Antacids (Tums, Chooz) Mineral supplements Hand lotions Vitamin and mineral supplements Other products may also contain ...

  12. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  13. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  14. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1999-01-01

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitation process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec

  15. Comparison of the method of classes and the quadrature of moment for the modelling of neodymium oxalate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, J.P.; Lalleman, S.; Bertrand, M. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Process Department, F-30207 Bagnols sur Ceze (France); Plasari, E. [Ecole Nationale Superieure des Industries Chimiques, Laboratoire Reactions et Genie des Procedes, Universite de Lorraine - CNRS,1 rue Grandville, BP 20451, 54001, Nancy Cedex (France)

    2016-07-01

    Oxalic precipitation is generally used in the nuclear industry to deal with radioactive waste and recover the actinides from a multicomponent solution. To facilitate the development of experimental methods and data acquisitions, actinides are often simulated using lanthanides, gaining experience more easily. The purpose of this article is to compare the results achieved by two methods for solving the population balance during neodymium oxalate precipitation in a continuous MSMPR (Mixed Suspension Mixed Product Removal). The method of classes, also called discretized population balance, used in this study is based on the method of Litster. Whereas, the Quadrature Method of Moment (QMOM) is written in terms of the transport equations of the moments of the number density function. All the integrals are solved through a quadrature approximation thanks to the product-difference algorithm or the Chebyshev algorithm. Primary nucleation, crystal growth and agglomeration are taken into account. Agglomeration phenomena have been found to be represented by a loose agglomerates model. Thermodynamic effects are modeled by activity coefficients which are calculated using the Bromley model. The sizes of particles predicted by the two methods are in good agreement with experimental measurements. (authors)

  16. Calcium in Urine Test

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Calcium, Serum; Calcium and Phosphates, Urine; ...

  17. Transcellular transport of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Terepka, A R; Coleman, J R; Armbrecht, H J; Gunter, T E

    1976-01-01

    Studies of two calcium transporting epithelia, embryonic chick chorioallantoic membrane and the small intestine of rat and chick, have strongly suggested that the transfer of calcium across a cell involves processes distinctly different from intracellular calcium ion regulation. In the proposed model, transcellular calcium transport is considered as a specialized process developed only by certain cells in those tissues charged with bulk transfer of calcium. The overall effect of the endocytotic mechanism is bulk calcium movement across a cell, protection of mitochondria from exposure to high concentrations of calcium, and the avoidance of wide and potentially toxic fluctuations in cytosol ionic calcium levels. (MFB)

  18. Synthesis and characterization of tungsten or calcium doped PZT ceramics

    International Nuclear Information System (INIS)

    Santos, D.M.; Caracas, L.B.; Noronha, R.G.; Santos, M.M.T. dos; Paiva-Santos, C.O.

    2009-01-01

    Pure and doped (tungsten or calcium) PZT ceramics were prepared by association of the polymeric precursor and partial oxalate method. The phase formation was investigated by thermal analysis (TG/DSC) and X-ray diffraction (XRD). The affect of W or Ca doping PZT and their electrical properties was evaluated. Substitution of W by Ti and Ca by Pb leads to an increase of Curie temperature and broadening of dielectric constant. A typical hysteresis loop was observed at room temperature and the remnant polarization was increased with the content of W and Ca. (author)

  19. Function and X-ray crystal structure of Escherichia coli YfdE.

    Directory of Open Access Journals (Sweden)

    Elwood A Mullins

    Full Text Available Many food plants accumulate oxalate, which humans absorb but do not metabolize, leading to the formation of urinary stones. The commensal bacterium Oxalobacter formigenes consumes oxalate by converting it to oxalyl-CoA, which is decarboxylated by oxalyl-CoA decarboxylase (OXC. OXC and the class III CoA-transferase formyl-CoA:oxalate CoA-transferase (FCOCT are widespread among bacteria, including many that have no apparent ability to degrade or to resist external oxalate. The EvgA acid response regulator activates transcription of the Escherichia coli yfdXWUVE operon encoding YfdW (FCOCT, YfdU (OXC, and YfdE, a class III CoA-transferase that is ~30% identical to YfdW. YfdW and YfdU are necessary and sufficient for oxalate-induced protection against a subsequent acid challenge; neither of the other genes has a known function. We report the purification, in vitro characterization, 2.1-Å crystal structure, and functional assignment of YfdE. YfdE and UctC, an orthologue from the obligate aerobe Acetobacter aceti, perform the reversible conversion of acetyl-CoA and oxalate to oxalyl-CoA and acetate. The annotation of YfdE as acetyl-CoA:oxalate CoA-transferase (ACOCT expands the scope of metabolic pathways linked to oxalate catabolism and the oxalate-induced acid tolerance response. FCOCT and ACOCT active sites contain distinctive, conserved active site loops (the glycine-rich loop and the GNxH loop, respectively that appear to encode substrate specificity.

  20. Total, Soluble and Insoluble Oxalate Contents of Ripe Green and Golden Kiwifruit

    Directory of Open Access Journals (Sweden)

    Hà Vũ Hồng Nguyễn

    2013-03-01

    Full Text Available Three bulk samples of two different cultivars of kiwifruit, green (Actinidia deliciosa L. and golden (Actinidia ch