WorldWideScience

Sample records for calcium lime mortars

  1. Calcium hydroxide based consolidation of lime mortars and stone

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana

    Lisabon : LNEC, 2008 - (kk, k.), s. 299-308 ISBN 978-972-49-2135-8. [Stone consolidation in cultural heritage. Lisabon (PT), 06.05.2008-07.05.2008] R&D Projects: GA ČR(CZ) GA103/06/1609 Institutional research plan: CEZ:AV0Z20710524 Keywords : lime water * lime mortar consolidation * nanotechnology Subject RIV: AL - Art, Architecture, Cultural Heritage

  2. Consolidation of weak lime mortars by means of saturated solution of calcium hydroxide or barium hydroxide

    Czech Academy of Sciences Publication Activity Database

    Slížková, Zuzana; Drdácký, Miloš; Viani, Alberto

    2015-01-01

    Roč. 16, č. 4 (2015), s. 452-460. ISSN 1296-2074 R&D Projects: GA MK(CZ) DF11P01OVV012; GA MŠk(CZ) LO1219 Keywords : lime water * barium water * lime mortar * consolidation * peeling test * mechanical characteristic * physical characteristic * metakaolin Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.568, year: 2014 http://www.sciencedirect.com/science/article/pii/S1296207414001150

  3. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    OpenAIRE

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  4. Lime mortars with natural fibres

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Michoinová, D.

    Varšava : ZTUREK, 2003 - (Brandt, A.; Li, V.; Marshall, I.), s. 523-532 ISBN 1-85573-769-8. [International Symposium of Brittle matrix /7./. Varšava (PL), 13.10.2003-15.10.2003] R&D Projects: GA MK PK00P04OPP015 Institutional research plan: CEZ:AV0Z2071913 Keywords : lime mortar * natural fibres * experimental research Subject RIV: JM - Building Engineering

  5. A nano approach to consolidation of degraded historic lime mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana; Ziegenbalg, G.

    2009-01-01

    Roč. 8, č. 2 (2009), s. 13-22. ISSN 1662-5250 R&D Projects: GA ČR(CZ) GA103/06/1609 Institutional research plan: CEZ:AV0Z20710524 Keywords : lime water * calcium hydroxide nanosuspension * lime mortar Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.571, year: 2009

  6. Simple Analysis of Historical Lime Mortars

    Science.gov (United States)

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  7. Simulation of self-healing of dolomitic lime mortar

    NARCIS (Netherlands)

    Lubelli, B.; Nijland, T.G.; Van Hees, R.P.J.

    2011-01-01

    In the present research a test procedure was set up to reproduce self-healing on lime-based (both pure calcium and magnesium-calcium) mortar specimens in laboratory. After few months testing, during which the specimens were subjected to wet-dry cycles, thin sections of the specimens were prepared an

  8. Simulation of the self-healing of dolomitic lime mortar

    NARCIS (Netherlands)

    Lubelli, B.; Nijland, T.G.; Hees, R.P.J. van

    2012-01-01

    A test procedure was set up to reproduce laboratory self-healing on lime-based (both pure calcium and magnesium-calcium) mortar specimens. After a few months of testing, during which time the specimens were submitted to wet-dry cycles, thin sections of the specimens were prepared and observed using

  9. Evaluation of Lime for Use in Mortar

    Directory of Open Access Journals (Sweden)

    Naktode P.L.

    2014-02-01

    Full Text Available Lime has been used in India as material of construction from very ancient days. The manner in which lime structures about 2000 years old have withstood the ravages of time bear irrefutable evidence to the durability of lime mortars. Lime mortars were the mortars of very recent years – used until the twentieth century. Although they are almost forgotten today, they still remain a viable and important construction method [1]. There is something about this material that remains just as valuable today as it was 150 years ago [2]. The lime belt of Vidarbha area is not of industrial grade. To use for construction purpose it needs some improvement and alteration in the ingredients. This calls the development of an alternative approach to make it suitable for construction in large extent. Keywords:

  10. Lime-water consolidation effects on poor lime mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana

    2012-01-01

    Roč. 43, č. 1 (2012), s. 31-36. ISSN 0044-9466 R&D Projects: GA ČR(CZ) GA103/09/2067 Institutional support: RVO:68378297 Keywords : lime mortars * lime-water consolidation * conservation Subject RIV: JN - Civil Engineering

  11. Comparative evaluation of aerial lime mortars for architectural conservation

    OpenAIRE

    Faria, Paulina; Henriques, Fernando M.A.; Rato, Vasco

    2008-01-01

    Journal of Cultural Heritage 9 (2008) 338-346 International bibliography on conservation usually refers that mortars made with lime putty with long extinction periods behave better than others made with the current dry hydrated limes. In order to evaluate this assess, an experimental study of lime mortars was carried out, using dry hydrated lime and two lime putties. It becomes clear that the use of lime putties with long extinction periods in mortars allow better performances, pa...

  12. Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars

    OpenAIRE

    Izaguirre, A.; Lanas, J.; Alvarez, J I

    2009-01-01

    Two different anionic surfactants, sodium oleate and calcium stearate, commercialized as water repellents for cement-based mortars, were added to lime-based mortars in order to check whether they were improved by these admixtures. Different properties of lime-based mortars were evaluated: fresh state behaviour through water retention, air content and setting time, hardened state properties such as density, water absorption through capillarity, water vapour permeability, long-term compressive ...

  13. Self-healing of lime based mortars: Microscopy observations on case studies

    OpenAIRE

    Lubelli, B.; Nijland, T.G.; Hees, R.P.J. van

    2011-01-01

    Lime mortars have, up to a certain extent, a self-healing capacity which may contribute to their durability. Self-healing in lime mortars consists of a process of dissolution, transport and re-precipitation of calcium compounds to heal cracks and fissures. The spontaneous occurrence of self-healing in lime-based mortars is a well known phenomenon; to date, however, little research has been done on its occurrence in the practice. This study aims at gaining a better understanding of the self-he...

  14. Role of different superplasticizers on hydrated lime pastes and mortars

    OpenAIRE

    Alvarez, J. I.; Fernandez, J M; Sirera, R. (Rafael); Perez-Nicolas, M. (María); Navarro-Blasco, I. (Íñigo); Duran, A

    2015-01-01

    The behaviour of different superplasticizers admixtures was assessed for hydrated lime pastes and mortars. Sometimes, air lime pastes and mortars were modified with two supplementary cementing materials (SCMs), namely nanosilica (NS) and metakaolin (MK). Two different polycarboxylate ethers, a lignosulfonate and a naphthalene condensed sulfonate superplasticizer were added to lime pastes and mortars and their effects on fresh-state properties as well as on the mechanical strengths were evalua...

  15. Mechanical properties of masonry repair dolomitic lime-based mortars

    OpenAIRE

    Lanas, J.; Perez, J. L.; Bello, M.A. (Miguel Ángel); Alvarez, J.I. (José Ignacio)

    2006-01-01

    180 different mortars made with a dolomitic lime and different aggregates were prepared in order to be used in restoration works. This paper focuses on the effect of technological variables on pore structure and mechanical properties of magnesian lime-based mortars. Compressive and flexural strengths of the specimens were discussed according to curing time, binder : aggregate ratios, attributes of the aggregates and porosity, at long-term tests. A strong increase in the strength of mortar...

  16. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.

    Science.gov (United States)

    Yang, Fuwei; Zhang, Bingjian; Ma, Qinglin

    2010-06-15

    mortar is a special organic-inorganic composite material. The inorganic component is calcium carbonate, and the organic component is amylopectin, which is presumably derived from the sticky rice soup added to the mortar. A systematic study of sticky rice-lime mortar technology was conducted to help determine the proper courses of action in restoring ancient buildings. Lime mortars with varying sticky rice content were prepared and tested. The physical properties, mechanical strength, and compatibility of lime mortar were found to be significantly improved by the introduction of sticky rice, suggesting that sticky rice-lime mortar is a suitable material for repairing mortar in ancient masonry. Moreover, the amylopectin in the lime mortar was found to act as an inhibitor; the growth of the calcium carbonate crystals is controlled by its presence, and a compact structure results, which may explain the enhanced performance of this organic-inorganic composite compared to single-component lime mortar. PMID:20455571

  17. Traditional methods of mortar preparation: the hot lime mix

    OpenAIRE

    Margalha, Goreti; Veiga, Rosário; Santos Silva, António; Brito, Jorge

    2011-01-01

    This paper studies the effect of maturation on mortars prepared according to a traditional method of slaking quicklime mixed with sand and kept wet until used (hot lime mix). Two lime/aggregate weight proportions were considered, a rich one (1:5) and a normal one (1:13). The quicklime was used as pieces of crushed calcined limestone and as micronized quicklime, both from industrial production. The mortars prepared with hot lime were kept wet for periods of 1, 7, 45 and 90 days, before mouldin...

  18. Experimental study of hot mixed mortars in comparison with lime putty and hydrate mortars

    Czech Academy of Sciences Publication Activity Database

    Válek, Jan; Matas, Tomáš

    Vol. 7. Dordrecht : Springer, 2012 - (Válek, J.; Hughes, J.; Groot, J.), s. 269-281 ISBN 978-94-007-4634-3 R&D Projects: GA MŠk(CZ) LA09008 Institutional support: RVO:68378297 Keywords : hot mixed mortars * lime putty * hydrate mortars Subject RIV: AL - Art, Architecture, Cultural Heritage

  19. Influence of curing conditions on lime and lime-metakaolin mortars

    OpenAIRE

    Faria, Paulina; Martins, A

    2011-01-01

    Comunicação apresentada ao XII DBMC - International Conference on Durability of Building Materials and Components, Porto, April 12th-15th, 2011 Air-lime mortars with or without pozzolanic components were largely used in historic buildings. Due to natural or accidental degradation it is often necessary the application of repair mortars, durable and compatible with the masonries of historic buildings. Within this context and associating the improvement of mortars characteristics to the ne...

  20. Luminescence quartz dating of lime mortars. A first research approach

    International Nuclear Information System (INIS)

    Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870±230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095±190 a. (author)

  1. Lime-pozzolana mortars in Roman catacombs: composition, structures and restoration

    International Nuclear Information System (INIS)

    Analyses of microsamples collected from Roman catacombs and samples of lime-pozzolana mortars hardened in the laboratory display higher contents in carbonated binder than other subaerial Roman monuments. The measured environmental data inside the Saint Callistus and Domitilla catacombs show a constant temperature of 15-17 deg C, a high CO2 content (1700 to 3500 ppm) and a relative humidity close to 100%. These conditions and particularly the high CO2 concentration speed-up the lime calcitization roughly by 500% and reduce the cationic diffusion to form hydrous calcium aluminosilicates. The structure of Roman catacomb mortars shows (i) coarser aggregates and thicker beds on the inside, (ii) thin, smoothed, light and fine-grained external surfaces with low content of aggregates and (iii) paintings and frescoes on the outside. The observed high porosity of the mortars can be attributed to cracking after drying linked with the high binder content. Hardened lime lumps inside the binder denote low water/mortar ratios for slaking. The aggregate tephra pyroclasts rich in aluminosilicate phases with accessorial amounts of Ba, Sr, Rb, Cu and Pb were analysed through X-ray diffraction (XRD), electron microprobe analysis (EMPA) and also by environmental scanning electron microscopy (ESEM) to identify the size and distribution of porosity. Results support procedures using local materials, special mortars and classic techniques for restoration purposes in hypogeal backgrounds

  2. Salt resistance of lime-based mortars with linseed oil

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana; Janotová, Dana

    Florence : University of Florence, 2013. [AMMC Conference on Ancient and Modern Mortars. 07.02.2013-08.02.2013, Florence] R&D Projects: GA MK(CZ) DF11P01OVV008 Keywords : linseed oil * lime * metakaolin * salt resistance Subject RIV: AL - Art, Architecture, Cultural Heritage

  3. Nano-materials for consolidation of degraded historic lime mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana; Ziegenbalg, G.

    - : -, 2008 - (Baxter, D.; Bay, B.). s. 86-86 ISBN N. [IC4N From nanoparticles and nanomaterial s to nanodevices and nanosystems /1./. 16.06.2008-18.06.2008, Halkidiki] Institutional research plan: CEZ:AV0Z20710524 Keywords : nanomaterial * consolidation * lime mortar Subject RIV: JN - Civil Engineering

  4. Traditional mortar represented by sticky rice lime mortar——One of the great inventions in ancient China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The development of traditional lime-based bond in ancient times was reviewed in this paper.It was proved by a lot of historical data that the application of organic materials in inorganic mortar was a sharp-cut characteristic during the developing process of construction gelled materials in ancient China.The important role sticky rice mortar ever played and the historical significance were revealed.Due to the excellent performance,such as high adhesive strength,good toughness,water-proof and so on,traditional mortar represented by sticky rice mortar should be one of the greatest technological contributions of the day in the world.Modern technology was employed in the study of the sticky rice lime mortar and the researching results of our laboratory and some researchers,including the compo-sition and the mechanism of solidification,were also presented.It was found that the sticky rice acted as a matrix of bio-mineralization which affected the microstructure of the calcium carbonate crystal and there was cooperation between sticky rice and calcite produced during the solidifying of the sticky rice mortar,which maybe lead to the excellent performance of the mortar.Because of excellent performance and importance in science,sticky rice mortar can be regarded as one of the greatest inventions in construction history of China.Relative research of sticky mortar will be of importance for the exploring of ancient momentous invention and the repairing of ancient construction.

  5. Traditional mortar represented by sticky rice lime mortar——One of the great inventions in ancient China

    Institute of Scientific and Technical Information of China (English)

    YANG FuWei; ZHANG BingJian; PAN ChangChu; ZENG YuYao

    2009-01-01

    The development of traditional lime-based bond in ancient times was reviewed in this paper. It was proved by a lot of historical data that the application of organic materials in inorganic mortar was a sharp-cut characteristic during the developing process of construction gelled materials in ancient China. The important role sticky rice mortar ever played and the historical significance were revealed. Due to the excellent performance, such as high adhesive strength, good toughness, water-proof and so on, traditional mortar represented by sticky rice mortar should be one of the greatest technological contributions of the day in the world. Modern technology was employed in the study of the sticky rice lime mortar and the researching results of our laboratory and some researchers, including the compo-sition and the mechanism of solidification, were also presented. It was found that the sticky rice acted as a matrix of bio-mineralization which affected the microstructure of the calcium carbonate crystal and there was cooperation between sticky rice and calcite produced during the solidifying of the sticky rice mortar, which maybe lead to the excellent performance of the mortar. Because of excellent performance and importance in science, sticky rice mortar can be regarded as one of the greatest inventions in construction history of China. Relative research of sticky mortar will be of importance for the exploring of ancient momentous invention and the repairing of ancient construction.

  6. Freezing and thawing resistance of aerial lime mortar with metakaolin\

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana

    2016-01-01

    Roč. 114, July (2016), s. 896-905. ISSN 0950-0618 R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : freeze-thaw * lime * metakaolin * linseed oil * mortar * water-repellency Subject RIV: JN - Civil Engineering Impact factor: 2.296, year: 2014 http://www.sciencedirect.com/science/article/pii/S0950061816305645

  7. Accelerator mass spectrometry 14C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy)

    International Nuclear Information System (INIS)

    Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) has, recently, obtained some promising results in testing the feasibility of mortar radiocarbon dating by means of an ad hoc developed purification procedure (CryoSoniC: Cryobraking, Sonication, Centrifugation) applied to a series of laboratory mortars. Observed results encouraged CryoSoniC accuracy evaluation on genuine mortars sampled from archeological sites of known or independently constrained age (i.e., other 14C dates on different materials). In this study, some 14C measurements performed on genuine mortars will be discussed and compared with independently estimated (i.e., radiocarbon/archaeometrical dating) absolute chronologies of two Spanish sites. Observed results confirm the agreement of the CryoSoniC mortar dates with the archaeological expectations for both examined cases. Several authors reported the possibility of obtaining accurate radiocarbon dates of mortar matrices by analyzing lime lumps: binder-related particles of different sizes exclusively composed of calcium carbonate. In this paper, preliminary data for the absolute chronology reconstruction of the Basilica of the cemetery complex of Ponte della Lama (Canosa di Puglia, Italy) based on lime lumps will also be discussed. Dating accuracy will be quantified by comparing 14C data on mortar lime lumps from a funerary inscription of known age found near the Basilica, in the same study site. For this site, a comparison between absolute chronologies performed by bulk and CryoSoniC purified lime lumps, and charcoal incased in mortars (when found) will also be discussed. Observed results for this site provide evidence of how bulk lime lump dating may introduce systematic overestimations of the analyzed sample while CryoSoniC purification allows accurate dating.

  8. Accelerator mass spectrometry {sup 14}C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Marzaioli, Fabio, E-mail: fabio.marzaioli@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali, Caserta (Italy); Nonni, Sara, E-mail: sara.nonni@uniroma1.it [Dipartimento di Scienze della Terra, ' Sapienza' Universita di Roma (Italy); Passariello, Isabella, E-mail: isabella.passariello@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali, Caserta (Italy); Capano, Manuela, E-mail: manuela.capano@unina2.it [CIRCE, INNOVA and Dipartimento di Studio delle Componenti Culturali del Territorio, Seconda Universita degli Studi di Napoli, Santa Maria Capua Vetere, Caserta (Italy); Ricci, Paola, E-mail: paola.ricci@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali, Caserta (Italy); Lubritto, Carmine, E-mail: carmine.lubritto@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali, Caserta (Italy); De Cesare, Nicola, E-mail: nicola.decesare@unina2.it [CIRCE, INNOVA and Seconda Universita degli Studi di Napoli, Dipartimento di Scienze della Vita, Caserta (Italy); Eramo, Giacomo, E-mail: giacomo.eramo@uniba.it [Dipartimento di Scienze della Terra e Geoambientali, Universita degli Studi di Bari ' Aldo Moro' , Bari (Italy); Quiros Castillo, Juan Antonio, E-mail: quiros.castillo@ehu.es [Universidad del Pais Vasco-Euskal Herriko Unibertsitatea, Dipartimento di Geografia, Prehistoria y Arqueologia, Vitoria-Gasteiz (Spain); and others

    2013-01-15

    Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) has, recently, obtained some promising results in testing the feasibility of mortar radiocarbon dating by means of an ad hoc developed purification procedure (CryoSoniC: Cryobraking, Sonication, Centrifugation) applied to a series of laboratory mortars. Observed results encouraged CryoSoniC accuracy evaluation on genuine mortars sampled from archeological sites of known or independently constrained age (i.e., other {sup 14}C dates on different materials). In this study, some {sup 14}C measurements performed on genuine mortars will be discussed and compared with independently estimated (i.e., radiocarbon/archaeometrical dating) absolute chronologies of two Spanish sites. Observed results confirm the agreement of the CryoSoniC mortar dates with the archaeological expectations for both examined cases. Several authors reported the possibility of obtaining accurate radiocarbon dates of mortar matrices by analyzing lime lumps: binder-related particles of different sizes exclusively composed of calcium carbonate. In this paper, preliminary data for the absolute chronology reconstruction of the Basilica of the cemetery complex of Ponte della Lama (Canosa di Puglia, Italy) based on lime lumps will also be discussed. Dating accuracy will be quantified by comparing {sup 14}C data on mortar lime lumps from a funerary inscription of known age found near the Basilica, in the same study site. For this site, a comparison between absolute chronologies performed by bulk and CryoSoniC purified lime lumps, and charcoal incased in mortars (when found) will also be discussed. Observed results for this site provide evidence of how bulk lime lump dating may introduce systematic overestimations of the analyzed sample while CryoSoniC purification allows accurate dating.

  9. ESR investigation of structure and dynamics of paramagnetic centres in lime mortars from Budinjak, Croatia

    International Nuclear Information System (INIS)

    This study presents the preliminary results of investigation of the types and dynamics of paramagnetic centres in lime mortars from Sveta Petka church in Budinjak, Croatia, using Electron Spin Resonance (ESR) spectroscopy. The excavation in Budinjak discovered a very unique four lobed plan object Sveta Petka, with no additional finds or reliable historical records about the time of its construction. The lime mortars from the church were chosen for analysis in order to characterize the building material and to verify the site chronology by dating them. Lime mortar is valuable but problematic material for luminescence and radiocarbon dating. This type of material has not been dated before using ESR; therefore, careful studies are required to identify the useful paramagnetic centres. The ESR approach suggested in this work concentrates on a calcium carbonate signal. All samples were γ-irradiated in 60C bomb with the doses of 1, 10, 20, 50, 80 and 100 kGy. In all spectra signals from Fe3+ and Mn2+ ions have been observed. Paramagnetic centres which give the ESR signals may be interpreted as CO2−, CO3−, CO33−, HCO32−, SO2−, SO3−, PO2− and PO32− species. However, all spectra are complex and signals are interfering; therefore, computer resolution enhancement method will be needed in further research. The changes in ESR signals amplitude measured at magnetic field range about 3440–3450 G were analysed versus the dose of irradiation, using Mn2+ signals as a reference. Exponential growth of the curve and saturation for doses above 20 kGy were observed; therefore, irradiation with smaller doses is required. These preliminary studies will be helpful in future attempts of dating lime mortars by ESR method.

  10. Chemical analysis of historic lime mortars: role of sample preparation

    Czech Academy of Sciences Publication Activity Database

    Ševčík, Radek; Šašek, Petr; Pérez-Estébanez, Marta; Viani, Alberto

    Zürich: Trans Tech Publications, 2015 - (Dvořák, K.; Gazdič, D.; Petránek, V.; Hájková, I.; Magrla, R.), s. 17-20 ISBN 978-3-03835-452-9. ISSN 1662-8985. [International Conference Binders and Materials (2nd ICBM) /2./. Brno (CZ), 04.12.2014] R&D Projects: GA MŠk(CZ) LO1219; GA ČR(CZ) GP14-20374P Institutional support: RVO:68378297 Keywords : lime * mortars * calcite * acid digestion * Rietveld method Subject RIV: AL - Art, Architecture, Cultural Heritage

  11. Influence of water-repellent treatment on the properties lime and lime pozzolan mortars

    Directory of Open Access Journals (Sweden)

    Fortes Revilla, C.

    2001-06-01

    Full Text Available The influence that water-repellent products can have on physical and micro-structural properties of lime mortars, and lime plus pozzolan mortars has been studied. Three water repellent products have been used. Mixes of the previously mentioned three water repellents plus a biocide product were also applied. Treatments make the total porosity and saturation coefficient of both mortars to decrease, while colorimetric coordinates bear little alteration. All treatments with water repellent products provided mortars with a hydrophobic property index close to 100%. Durability of such mortars has been also studied: salt crystallization test, frost-thaw and dry-wet cycles, as well as ultraviolet radiation test were carried out. Relationship between mortars behavior and their porosity and saturation coefficient were found.

    En el presente trabajo se ha estudiado la influencia de la aplicación de productos hidrofugantes a morteros de cal y morteros de cal y puzolana sobre sus propiedades físicas y microestructurales. Se han estudiado tres productos hidrofugantes. También han sido estudiados dichos productos junto con un biocida. La porosidad total y el coeficiente de saturación de ambos tipos de morteros se ve reducido por el efecto de los tratamientos mientras que las coordenadas colorimétricas se ven poco alteradas. Todos los tratamientos confieren un índice de hidrofobicidad a los morteros próximo al 100%. Asimismo, también se ha estudiado la durabilidad de dichos morteros frente a la cristalización de sales, hielo-deshielo, los ciclos de humedad-sequedad y radiaciones ultravioleta. Se relaciona el comportamiento de los morteros con su porosidad y el coeficiente de saturación.

  12. Lime-based mortars with linseed oil: sodium chloride resistance assessment and characterization of the degraded material

    OpenAIRE

    Nunes, C.; Slížková, Z. (Zuzana); Janotová, D. (Dana)

    2013-01-01

    Lime mortar is often used to repair historic buildings but is prone to salt crystallization with deleterious consequences. Lime mortar is a very susceptible material due to its high porosity and low mechanical resistance. Recent findings concerning mortar additives that impart hydrophobic properties to mortar show that by limiting water penetration, damage from frost and salt can be decreased. Linseed oil was commonly used in former times as an additive for mortar in order to grant hydrophobi...

  13. Characterization of historic lime mortars by neutron scattering and mercury porosimetry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Lime mortars were commonly used in building from ancient Greek times through to the beginning of the nineteenth century [1]. In the past few years, the increased interest in conservation and restoration of historic monuments requires a better knowledge of the structure and composition of lime mortars resulting from the various additives, as well as the preparation technique each time used. Lime mortars from ancient Greek monuments have been dated by using the radiocarbon method [2]. Furthermore, a wide selection of lime mortars from known historic periods and monuments in Greece has been examined by mercury porosimetry. It was found that their structure depends on the utilization of the monument which come from. In specific, lime mortars coming from residences have more or less the same structure, whereas the preparation technique differs for lime mortars coming from tombs and walls. The weathering effects on the porous system of the mortars are studied by neutron scattering. (author) [1] Brown, P.W., and Clifton, J.R., 'Air pollution and conservation', eds. J. Roswall and S. Aleby, 225 (1988), Elsevier, Amsterdam.; [2] N. Zouridakis, J.F. Sliege, A. Person et al., Archaeometry, 60 (1987) 29

  14. Carbonation kinetics in roman-like lime mortar

    Directory of Open Access Journals (Sweden)

    Sánchez-Moral, S.

    2004-09-01

    Full Text Available The kinetic parameterisation of lime mortar carbonation is a useful technique for understanding ancient building methods and the long-lived physical-chemical stability of roman monuments. Portlandite (Ca(OH2 binders harden in the air on contact with atmospheric CO2, producing CaCO3. Water evaporation and the presence of silicate aggregates have a three-fold effect: prompting the development of a pore system that permits CO2, self-diffusion, reducing shrinkage and cracking during drying and (possibly giving rise to subsequent pozzolanic reactions. The present survey involved air-hardening a series of roman-like lime mortars which differed in terms of: (i type of aggregate, volcanic tephra and arkose; (ii aggregate/binder ratio, 1:2 as used in the catacombs and 1:4 as found in standard roman construction and (iii temperature, the 17 ºC prevailing in underground environments and the 30 ºC typical of warm Mediterranean areas. The analyses that provided the most useful information were performed in a classic X-ray diffractometer adapted to accommodate an author-designed chamber in which temperature control was achieved by an internal refrigerant and a PID-governed electrical heater Additional data were obtained with DTA and environmental scanning electron microscopy (ESEM. The tests conducted on the Roman-like lime mortars manufactured for the experiment showed that the hardening temperature is a critical factor in the initial phases of carbonation. Calcite precipitation rates and total mineral precipitation increased with temperature, but fell very quickly as calcite precipitated. In theoretical calculations assuming an open reactor with continuous CO2, input, total calcitisation time was found to be 156 m in. at 30 ºC and 175 min. at 17 ºC, whilst in the mortars actually hardened in the experimental part of the study, calcitisation gradually blocked the flow or CO2, gas into the

  15. Lime-based repair mortars with water-repellent admixtures: laboratory durability assessment

    OpenAIRE

    Nunes, C.; Slížková, Z. (Zuzana)

    2015-01-01

    Conservation of architectural structures using lime binders is currently an important research topic aiming compatibility, durability and sustainability. In this study, lime (L) and lime-metakaolin (LM) mortars were prepared with the addition of water-repellent admixtures: linseed oil, stand oil and a silane based water-repellent. Experimental results demonstrate that oil imparts higher hydrophobicity to both L and LM mixtures. Durability was assessed through freeze-thaw and NaCl crystal...

  16. Addition of cement to lime-based mortars: Effect on pore structure and vapor transport

    International Nuclear Information System (INIS)

    The main focus of this work is to determine the effect of cement addition, a common practice in many restorations, on the pore structure of lime-based mortars. A second target is to establish correlations between microstructure and water vapor transport across the mortar, which is a key characteristic of building decay. In order to achieve these objectives, we prepared a set of mortars consisting of air-hardening lime with a progressively increasing cement content, as well as a mortar containing hydraulic lime. Several different techniques, most notably mercury intrusion porosimetry and scanning electron microscopy in the backscatter mode, were used to investigate the pore structure. The results from these procedures led to the conclusion that porosity and pore size are progressively reduced as cement content increases. Moreover, an excellent correlation between pore radius parameter and the vapor diffusion coefficient was established. Hydraulic lime mortar exhibited textural parameters and diffusivity values halfway between those of the different lime/cement mixes studied

  17. HEAT INSULATING LIME DRY MORTARS FOR FINISHING OF WALLS MADE OF FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    Loganina Valentina Ivanovna

    2016-05-01

    Full Text Available Different aerated mortars are used for pargeting of walls made of aerated concrete. Though the regulatory documents don’t specify the dependence of plaster density from the density grade of gas-concrete blocks. In case of facing of gas-concrete blocks with the grade D500 using plaster mortars with the density 1400…1600 km/m3 there occurs a dismatch in the values of thermal insulation and vapor permeability of the plaster and base. The authors suggest using dry mortars for finishing of gas-concrete block of the grades D500 и D600, which allow obtaining facing thermal insulating coatings. The efficiency of using four different high-porous additives in the lime dry mortar was compared. They were: hollow glass microspheres, aluminosilicate ash microspheres, expanded vermiculite sand, expanded pearlitic sand. The high efficiency of hollow glass microspheres in heat insulating finishing mortars compared to other fillers is proved.

  18. Influence of nanosilica and a polycarboxylate ether superplasticizer on the performance of lime mortars

    OpenAIRE

    Fernandez, J M; Duran, A; Navarro-Blasco, I. (Íñigo); Lanas, J. (Javier); Sirera, R. (Rafael); Alvarez, J. I.

    2013-01-01

    The effect of individual and combined addition of both nanosilica (NS) and polycarboxylate-ether plasticizer (PCE) admixtures on aerial lime mortars was studied. The sole incorporation of NS increased the water demand, as proved by the mini-spread flow test. An interaction between NS and hydrated lime particles was observed in fresh mixtures by means of particle size distribution studies, zeta potential measurements and optical microscopy, giving rise to agglomerates. On the other hand, the a...

  19. Strengthening of poor lime mortar with consolidation agents

    Czech Academy of Sciences Publication Activity Database

    Slížková, Zuzana; Frankeová, Dita; Drdácký, Miloš

    Glasgow: University of the West of Scotland, 2013 - (Hughes, J.) ISBN 978-1-903978-44-3. [Historic mortars conference /3./. Glasgow (GB), 11.09.2013-13.09.2013] R&D Projects: GA ČR(CZ) GA103/09/2067; GA MŠk(CZ) ED1.1.00/02.0060 Institutional support: RVO:68378297 Keywords : mortar * consolidation * strengthening * treatment * consolidant Subject RIV: JN - Civil Engineering

  20. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  1. Masonry repair lime-based mortars: factors affecting the mechanical behavior

    International Nuclear Information System (INIS)

    The increasing use of lime-based mortars for the restoration of historic buildings and structures justifies the research on these materials. The focus of this paper is the effect of technological variables on pore structure and mechanical properties of lime-based mortars. The influence of curing time, binder-aggregate (B/Ag) ratio, aggregate attributes and porosity is discussed. Mortars prepared with aerial lime, varying aggregate types and B/Ag ratios ranging from 1:1 to 1:5 by volume were tested. Compressive and flexural strength measurements, as well as X-ray diffraction (XRD) and thermal studies, were performed after 3, 7, 28, 91, 182 and 365 days. A strong increase in strength of mortar mixtures after 365 curing days (as compared to 28 curing days) is found. In spite of the fact that larger amounts of binder increase the total porosity, the strength of these mixtures is also increased. A good interlocked structure is obtained as binder contents increase. Also, higher porosities allow better portlandite carbonation. A relationship between mechanical properties and pore structure was established. However, in case of binder excess, the increase in voids leads to a strength reduction. The use of calcareous aggregates improves strength more as compared to the use of siliceous aggregates. Factors as grain size distribution and grain shape of the aggregates have also been considered

  2. Frost resistance of lime-based mortars with linseed oil

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana; Janotová, Dana

    Praha : Czech Technical University, Faculty of Transportation Sciences, 2012 - (Jiroušek, O.; Kytýř, D.), s. 23-26 ISBN 978-80-01-05062-0. [Bilateral Czech/German Symposium /13./. Telč (CZ), 05.06.2012-08.06.2012] Grant ostatní: MK CR(CZ) DF11P01OVV008 Keywords : mortar * linseed oil * durability Subject RIV: JM - Building Engineering

  3. Linseed oil for durability improvement of lime-metakaolin mortar

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana

    Tokyo: Japan Concrete Institute, 2013, s. 351-358. ISBN 978-4-86384-041-6. [International conference on concrete sustainability /1./. Tokyo (JP), 27.05.2013-29.05.2013] R&D Projects: GA MK(CZ) DF11P01OVV008 Keywords : linseed oil * hydrophobicity * durability * lime-metakaolin Subject RIV: AL - Art, Architecture, Cultural Heritage

  4. Experimental Investigation of Lime Mortar Used in Historical Buildings in Becin, Turkey

    Directory of Open Access Journals (Sweden)

    Adem SOLAK

    2016-03-01

    Full Text Available It is of great importance that the architectural and engineering disciplines work together in the restoration studies of historical buildings which are our cultural heritages. It is required that the bearing system and the materials of the structures should be investigated in detail prior to any conservation. The determination of the properties and compositions of the mortar material used in the construction of the historical building is one of the most important phases of the conservation studies and it is the main purpose of this study. In the scope of the study, the basic physical and mechanical properties, micro structures, raw material compositions, mineralogical and chemical properties of historical mortars taken from Kizil Khan, Karapasah Madrasah and Yelli Mosque structures in Becin antique city are determined. As a result of the study, it is determined that all mortar samples have hydraulic properties that is a result of hydraulic properties of binder lime.

  5. Mortar and concrete based on calcium sulphate binders

    OpenAIRE

    Bakker, J.J.F.; Brouwers, H. J. H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For the calcinations of Portland cement, temperatures up to 1480 oC are needed, while the calcination of for instance hemihydrate requires a temperature of 170 oC

  6. Freeze-thaw durability of fiber-reinforced lime-based mortars

    Czech Academy of Sciences Publication Activity Database

    Přinosil, Michal

    Plzeň: University of West Bohemia, 2016 - (Plánička, F.; Krystek, J.) ISBN 978-80-261-0624-1. [Experimental Stress Analysis 2016 /54./. Srní (CZ), 20.5..30.0-02.06.2016] R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : freeze-thaw durability * lime-based mortar * fiber composite * fiber reinforcement Subject RIV: AL - Art, Architecture, Cultural Heritage

  7. Physical-mechanical characterization of hydraulic and non-hydraulic lime based mortars for a French porous limestone

    CERN Document Server

    Al-Mukhtar, M

    2006-01-01

    The focus of the study presented in this paper is to provide reliable criteria that can be used to estimate the degree of compatibility between the French limestone tuffeau and mortar. It is suggested through this study to use the same parent material (i.e., tuffeau) as mortar. The mortar used in this study is composed of non-hydraulic (hydrated) lime or hydraulic lime and aggregates obtained from fragments and powder of the tuffeau stone. Water transfer properties and mechanical behaviour of the mortars are evaluated and compared with the original stone Tuffeau. Based on these studies, some key guidelines are provided such that a mortar that is compatible with properties of Tuffeau and can be prepared and used as construction material of monuments and maintenance purposes.

  8. Experimental Investigation of Lime Mortar Used in Historical Buildings in Becin, Turkey

    Directory of Open Access Journals (Sweden)

    Adem SOLAK

    2016-05-01

    Full Text Available It is of great importance that the architectural and engineering disciplines work together in the restoration studies of historical buildings which are our cultural heritages. It is required that the bearing system and the materials of the structures should be investigated in detail prior to any conservation. The determination of the properties and compositions of the mortar material used in the construction of the historical building is one of the most important phases of the conservation studies and it is the main purpose of this study. In the scope of the study, the basic physical and mechanical properties, micro structures, raw material compositions, mineralogical and chemical properties of historical mortars taken from Kizil Khan, Karapasah Madrasah and Yelli Mosque structures in Becin antique city are determined. As a result of the study, it is determined that all mortar samples have hydraulic properties that is a result of hydraulic properties of binder lime.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.9022

  9. Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2015-06-01

    Full Text Available This work focuses on the chemical-mineralogical, textural and physical-mechanical properties of hydraulic lime mortars made with siliceous and calcareous aggregate. Mortars were cured at 60% and 90% of relative humidity, so as to assess the variability of mortar petrophysical properties in the hardened state due to the moisture conditions. The final aim was to determine the most adequate moisture conditions to be maintained during application and hardening of hydraulic mortars intended for repair interventions. We found out that using a calcareous aggregate and curing mortar at 90% of relative humidity give place to better textural and mechanical properties. However, these characteristics mostly depend on the maximum size of the aggregate grains, which should be smaller than 6 mm, in order to avoid the occurrence of mechanical discontinuities in the mortar.En este trabajo se han estudiado las propiedades químico-mineralógicas, texturales y físico-mecánicas de morteros de cal hidráulica elaborados con áridos silíceo y calcítico. Estos morteros se han curado al 60% y 90% de humedad relativa, con el fin de evaluar las eventuales diferencias en las propiedades petrofísicas de los morteros una vez endurecidos y así establecer cuál de los dos ambientes es recomendable durante la aplicación y fraguado de morteros de cal hidráulica destinados a obras de restauración. Se ha encontrado que el uso de un árido de composición calcítica y el curado al 90% de humedad relativa dan lugar a morteros hidráulicos con mejores características texturales y propiedades mecánicas. De todas formas, estas características dependen principalmente del tamaño máximo del árido empleado, que debería ser inferior a 6 mm para evitar discontinuidades mecánicas en el mortero.

  10. Lime mud from cellulose industry as raw material in cement mortars

    Directory of Open Access Journals (Sweden)

    Modolo, R. C.E.

    2014-12-01

    Full Text Available This study reports the use of lime mud (LM in cement-based-mortars. Lime mud is a waste generated in the production of cellulose by the kraft mill process. It is mainly composed of CaCO3, a small amount of magnesium carbonate and other trace minerals. Mortars were prepared by adding different amounts of LM (10, 20 and 30% by weight of cement in dry weight. The mortar compositions were evaluated through rheology and flow table measurements, assuring that all the samples exhibited adequate conditions for testing in both equipments. The hardened state properties were also evaluated through mechanical strengths at 7, 28 and 90 days of curing. Following a waste management solution perspective, this work intend to provide a general evaluation of LM application in cement based mortars, looking at both fresh and hardened properties in order to guarantee that the final application requirements are not hindered.Este estudio revela el uso de lodo de carbonato (LM en morteros de cemento. El LM es un residuo compuesto principalmente por CaCO3 generado en la producción de pasta de papel por el método Kraft. Los morteros se prepararon a partir de la adición de diferentes niveles de LM (10, 20 y 30% en peso de cemento en peso seco. Las composiciones de los morteros fueron caracterizadas através de mediciones de reología de mesa y de flujo, asegurando que las muestras exhibían condiciones adecuadas para su caracterización en ambos equipamientos. Las propiedades en estado endurecido también se evaluaron através de resistencias mecánicas a los 7, 28 y 90 días de cura. Con objeto de gestión de residuos, este trabajo tiene la intención de proporcionar una visión general de la aplicación de LM en los morteros, haciendo hincapié en las propiedades con el fin de garantizar que los requisitos para su aplicación final no se vean obstaculizados.

  11. Properties, characterization, and decay of sticky rice–lime mortars from the Wugang Ming dynasty city wall (China)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Ya [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Cultural Relics and Archaeology Institute of Hunan, Changsha 410083 (China); Fu, Xuan; Gu, Haibing [Cultural Relics and Archaeology Institute of Hunan, Changsha 410083 (China); Gao, Feng [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Shaojun, E-mail: liumatthew@csu.edu.cn [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2014-04-01

    Urgent restoration of the Wugang Ming dynasty city wall brings about the need for a study of the formulation and properties of mortars. In the present paper, mortar samples from the Wugang Ming dynasty city wall were characterized in a combination of sheet polarized light optical microscopy, scanning electron microscopy with X-ray energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma emission spectroscopy. Results show that mortars are mainly built up from inorganic calcium carbonate based organic–inorganic hybrid material with a small amount of sticky rice, which plays a crucial role in forming dense and compact microstructure of mortars and effectively hindering penetration of water and air into mortars. Analysis of decayed products shows that the detrimental soluble salts originates from ambient environment. - Highlights: • Mortars used in the Wugang city wall are a calcium carbonate-sticky rice hybrid bonding material. • Carbonation processing is extremely slow due to dense and compact microstructure of mortars. • Decying of mortars results from the appearance of soluble salt from ambient environment.

  12. Properties, characterization, and decay of sticky rice–lime mortars from the Wugang Ming dynasty city wall (China)

    International Nuclear Information System (INIS)

    Urgent restoration of the Wugang Ming dynasty city wall brings about the need for a study of the formulation and properties of mortars. In the present paper, mortar samples from the Wugang Ming dynasty city wall were characterized in a combination of sheet polarized light optical microscopy, scanning electron microscopy with X-ray energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma emission spectroscopy. Results show that mortars are mainly built up from inorganic calcium carbonate based organic–inorganic hybrid material with a small amount of sticky rice, which plays a crucial role in forming dense and compact microstructure of mortars and effectively hindering penetration of water and air into mortars. Analysis of decayed products shows that the detrimental soluble salts originates from ambient environment. - Highlights: • Mortars used in the Wugang city wall are a calcium carbonate-sticky rice hybrid bonding material. • Carbonation processing is extremely slow due to dense and compact microstructure of mortars. • Decying of mortars results from the appearance of soluble salt from ambient environment

  13. Effect of a biodegradable natural polymer on the properties of hardened lime-based mortars

    Directory of Open Access Journals (Sweden)

    Izaguirre, A.

    2011-06-01

    Full Text Available As an environmentally friendly and energy-saving alternative to cement-based materials and to some chemically obtained water-reducers, a commercialized starch was incorporated into aerial lime-based matrix. Different dosages were tested in order to study the influence that the amount of additive exerted on the properties of the material. Density, shrinkage, water absorption through capillarity, water vapour permeability, mechanical strengths, porosity, pore size distribution, and durability in the face of freezing-thawing cycles were studied in the mortars. The tested starch acted as a thickener for dosages up to 0.30%, and changed its behaviour for the largest dosage (0.50%: in that case it behaved as a plasticizer, dispersing the lime through the fresh mass and generating a more workable material. As a result, the matrix of the hardened mortar presented great coherence, owing to its large density and low porosity, characteristics which led to lower capillarity and permeability, better mechanical properties and durability.

    Como alternativa a los materiales con base cemento y a plastificantes obtenidos por vía química, se estudió el efecto de un almidón comercial incorporado a morteros de cal aérea. Se ensayaron dosificaciones diferentes para analizar su influencia sobre las propiedades del material. En los morteros se determinaron densidad, retracción, absorción de agua por capilaridad, permeabilidad, resistencias mecánicas, porosidad, distribución de tamaños de poro y durabilidad frente a ciclos de hielo-deshielo. El almidón actuó como espesante hasta la dosis de 0,30%, pero cambió al añadirlo en la dosis más alta (0,50%: en este caso, se comportó como un plastificante, dispersando la cal a través de la mezcla en fresco, dando lugar a un material más trabajable. Como resultado, en la dosis 0,50%, la matriz del mortero endurecido presentó gran coherencia, por su mayor densidad y menor porosidad, lo que implicó una

  14. Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars

    Directory of Open Access Journals (Sweden)

    Ince, C.

    2015-06-01

    Full Text Available The purpose of this paper is an investigation of the possible role of supplementary cementitious materials (SCMs on water transport kinetics and mechanical properties of hydrated lime (CL90 and Portland cement (PC mortars. The properties of hydrated lime are significantly different from those of cement and therefore modifying fresh and hardened properties of these mortars are vital for mortar/substrate optimisation in masonry construction. The parameters investigated in this paper often are the main barriers to the use of hydrated lime in construction practice. The results show that transfer sorptivity and time to dewater freshly-mixed hydrated lime mortars can be modified when binder is partially replaced with SCMs. Compressive strength of CL90 mortars is increased systematically with the increased replacement levels of SCMs and the results are supported with the microstructural images. The ability to modify the water transport kinetics and mechanical properties allows compatibility between the mortar and the substrate unit in masonry construction.El objetivo de este artículo es investigar el papel de los materiales cementantes suplementarios (SCMs en la cinética de transporte del agua y en las propiedades mecánicas de los morteros de cal hidratada (CL90 y cemento Portland. Las propiedades de la cal hidratada son significativamente diferentes a las del cemento y por lo tanto el control de las propiedades de los morteros frescos y endurecidos es fundamental en la optimización mortero/substrato en albañilería. Los parámetros estudiados en este trabajo son a menudo las principales barreras para el uso de la cal hidratada en la práctica de la construcción. Los resultados indican que la absortividad y el tiempo necesario para deshidratar morteros de cal hidratada recién mezclados pueden ser controlados cuando el conglomerante es parcialmente remplazado por SCMs. La resistencia a compresión de los morteros CL90 aumenta sistem

  15. Changes in Properties of Cement and Lime Mortars When Incorporating Fibers from End-of-Life Tires

    Directory of Open Access Journals (Sweden)

    Lluís Gil

    2016-02-01

    Full Text Available This paper studies the addition of fibers from end-of-life tires to commercial mortar mixtures. Two different types of mortar, one lime-plastic and other cement-fluid, are mixed with different percentage of fibers ranging from 0% to 1%. The changes in bulk density, consistency, compressive and flexural strength, dynamic Young modulus and water absorption are studied. According to the results, consistency is the property that shows more relevant changes for an addition of 0.25% fibers. Consistency is related to workability and affects the water absorption and the Young modulus values. On the contrary, bulk density and mechanical properties did not change with the addition of fibers. The results prove that this fiber, considered a waste from recycling of end-of-life tires, can be used in commercial mixtures without losing strength. On the other hand, mortar workability limits the amount of fibers that can be included in the mixture and this parameter determines the performance of the mortar.

  16. Differences in the rheological properties of calcitic and dolomitic lime slurries: influence of particle characteristics and practical implications in lime-based mortar manufacturing

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2012-06-01

    Full Text Available The study of the rheological properties of lime suspensions is a useful means to evaluate the workability of lime mortars. In this work, we studied the flow behaviour of two industrial hydrated limes, one of calcitic and the other of dolomitic composition, by means of two types of rheometer with different geometry and setup mode. The obtained results were interpreted taking into account the differences in microstructure and surface properties of the suspended particles. Calcitic lime dry particles are formed by angular and polydisperse clusters and, once dispersed in water, they behave like thixotropic materials. On the other hand, the dolomitic lime is formed by nanoparticles and small round cluster and it shows a pronounced plastic behaviour in suspension. This fundamental difference between the two materials explains the traditional preference for dolomitic lime mortars for plastering and rendering applications.

    El estudio de las propiedades reológicas de suspensiones de cal es una herramienta muy útil para evaluar la trabajabilidad de morteros de cal. En este trabajo se ha estudiado el comportamiento en suspensión de dos cales hidratadas, de composición calcítica y dolomítica, mediante dos tipos de reómetros con geometría y modalidades distintas de medida. Los resultados obtenidos se han interpretado teniendo en cuenta las diferencias en la microestructura y las propiedades de superficie de las partículas en suspensión. Las partículas de cal calcítica están formadas por aglomerados angulares y polidispersos y, una vez dispersadas en agua, presentan un comportamiento tixotrópico. Por su parte, la cal dolomítica está formada por nanopartículas y pequeños agregados redondeados y muestra en suspensión un pronunciado comportamiento plástico. Esta importante diferencia entre las dos cales explica la preferencia tradicional de morteros de cal dolomítica para aplicaciones en revocos.

  17. Calcium absorption from corn tortilla is relatively high and is dependent upon calcium content and liming in Mexican women.

    Science.gov (United States)

    Rosado, Jorge L; Díaz, Margarita; Rosas, Angélica; Griffit, Ian; García, Olga P

    2005-11-01

    Corn tortillas are the staple food of Mexico. During their preparation, calcium is added to the tortillas; therefore, tortillas are the main source of calcium for a large proportion of the population. The bioavailability of calcium from lime-treated tortillas in humans is not known. The objectives of the present study were to determine calcium absorption from corn tortilla, to determine the effect of lime treatment on calcium absorption from corn tortilla, and to compare calcium absorption from tortilla prepared with a commercial corn flour and tortillas prepared with the traditional lime treatment at home. Nonpregnant, nonlactating women (n = 9) were administered 3 different treatments: 1) 180 g of corn tortilla prepared from corn flour with no lime treatment (CF), 2) 180 g of corn tortilla prepared from lime-treated commercial corn flour (LTCCF), or 3) 180 g of corn tortillas prepared from lime-treated home-prepared corn flour (LTHCF). Calcium absorption was measured using an established dual-tracer stable isotope technique. Calcium absorption of CF, LTCCF, and LTHCF was (mean +/- SD): 44 +/- 3.2, 32 +/- 4.4, and 30 +/- 2.4%, respectively; the fractional calcium absorption from CF differed from that of either LTCCF or LTHCF (P tortillas is high and dependent on calcium concentration. The addition of calcium during lime treatment increases calcium concentration and total calcium absorption. PMID:16251614

  18. 中国传统灰土灰浆强度增强方法研究%Research on the intensity strengthening of Chinese traditional lime-clay mortar

    Institute of Scientific and Technical Information of China (English)

    李博; 宋燕; 马清林; 梅建军

    2012-01-01

    The formation of hydraulic gel materials in the Chinese traditional lime-clay mortar, namely hydrated calcium silicate and hydrated alu- minum silicate, can significantly increase the strength of mortar. However, it will take an extremely long period to generate these kinds of water rigid compounds under natural conditions. Inspired by the idea of improving the pozzolanie activity by roasting the clay material, a basic principle modern cement technology, this paper explores a method to reduce the formation time of hard water compounds, and then, to improve the intensity of the mortar in a short time. The result of this research is expected to improve the physical properties of traditional lime-clay mortar for a better application in the conservation of traditional brickwork.%中国传统灰土灰浆中水硬性凝胶材料-水合硅酸钙和水合硅酸铝的形成可以大幅度提高其强度,但在自然条件下生成此类水硬性化合物需要很长时间。本文借鉴现代水泥工艺中利用焙烧黏土材料可提高火山灰活性的原理,从而有效缩短形成水硬性化合物的反应时间,在短时间内大大提高灰浆的强度。以此为出发点,加工制备性能优良的灰浆材料,为传统砌体建筑的保护提供适宜的保护修复材料。

  19. Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz Duran Atis; Alaettin Kilic; Umur Korkut Sevim [Cukurova University, Balcali-Adana (Turkey). Engineering and Architecture Faculty

    2004-01-01

    A laboratory study was undertaken to assess the compressive and flexural tensile strength and drying shrinkage properties of mortar mixtures containing high-calcium nonstandard Afsin-Elbistan fly ash (FA). Possibility of using Afsin-Elbistan FA in cement-based materials as shrinkage-reducing or compensation agent was also discussed. Five mortar mixtures including control Portland cement (PC) and FA mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 10%, 20%, 30% and 40%. Water-cementitious materials ratio was 0.4 for all mixtures. The mixtures were cured at 65% relative humidity and 20{+-}2{sup o}C. The compressive and flexural tensile strength and drying shrinkage values of the mortar mixtures were measured. The results show that Afsin-Elbistan FA reduced drying shrinkage of the mortar by 40%. Therefore, it was concluded that Afsin-Elbistan FA can be used as a shrinkage-reducing agent. The mortar containing 40% FA expanded. This indicates that Afsin-Elbistan FA may be utilized to compensate drying shrinkage of cement-based materials.

  20. Hydrophobic lime based mortars with linseed oil: Characterization and durability assessment

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana

    61-62, July-August (2014), s. 28-39. ISSN 0008-8846 R&D Projects: GA MK(CZ) DF11P01OVV008 Keywords : durability * transport properties * metakaolin * mortar Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.864, year: 2014 http://www.sciencedirect.com/science/article/pii/S0008884614000738

  1. {sup 14}C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in the mortar

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, Alf, E-mail: alf.lindroos@abo.fi [Geology and Mineralogy, Department of Natural Sciences, Åbo Akademi University (Finland); Art History, Faculty of Art, Åbo Akademi University (Finland); Ranta, Heikki [Diocese of Lund, Church of Sweden (Sweden); Heinemeier, Jan [AMS " 1" 4C Dating Laboratory, Department of Physics and Astronomy, University of Aarhus (Denmark); Lill, Jan-Olof [Accelerator Laboratory, Turku PET Centre, Åbo Akademi University (Finland)

    2014-07-15

    Mortar dating was applied to newly revealed, original mortar in the church of Dalby in Scania, southern Sweden which is considered to be the oldest still standing church in Scandinavia. Small white lime lumps were sampled by chipping from the supporting pillars in the interior of the church. Special emphasis was in sampling lime lumps because the church is situated in the Scania limestone area and aggregate limestone contamination was anticipated in the bulk mortars. Earlier studies have, however, shown that lime lumps do not contain aggregate material but only possible limestone rests from incomplete calcination. The sampled material was prepared for radiocarbon AMS dating. The carbonate in the lime lumps was hydrolyzed according to the sequential leaching technique developed for the Århus {sup 14}C laboratory in Denmark. Prior to the hydrolysis the lime lumps were examined for dead-carbon contamination using a stereo microscope and cathodoluminescence. The lime lumps displayed heterogeneous carbonate luminescence. This is, however, common and it was not considered a problem because carbonate growth in changing pH/Eh conditions often leads to changing luminescence colors. Two lumps had little dead carbon contamination and an early second millennium {sup 14}C signature. One lump, however, seemed to be heavily contaminated with dead carbon. Since the sample passed the microscopic screening, the leftovers of the lump was subjected to PIXE analysis and compared with the other two lumps. The well-defined, early 2nd millennium {sup 14}C age of the lime lumps of this particular church is an important contribution to the discussion on stone church chronology in Scandinavia.

  2. 14C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in the mortar

    Science.gov (United States)

    Lindroos, Alf; Ranta, Heikki; Heinemeier, Jan; Lill, Jan-Olof

    2014-07-01

    Mortar dating was applied to newly revealed, original mortar in the church of Dalby in Scania, southern Sweden which is considered to be the oldest still standing church in Scandinavia. Small white lime lumps were sampled by chipping from the supporting pillars in the interior of the church. Special emphasis was in sampling lime lumps because the church is situated in the Scania limestone area and aggregate limestone contamination was anticipated in the bulk mortars. Earlier studies have, however, shown that lime lumps do not contain aggregate material but only possible limestone rests from incomplete calcination. The sampled material was prepared for radiocarbon AMS dating. The carbonate in the lime lumps was hydrolyzed according to the sequential leaching technique developed for the Århus 14C laboratory in Denmark. Prior to the hydrolysis the lime lumps were examined for dead-carbon contamination using a stereo microscope and cathodoluminescence. The lime lumps displayed heterogeneous carbonate luminescence. This is, however, common and it was not considered a problem because carbonate growth in changing pH/Eh conditions often leads to changing luminescence colors. Two lumps had little dead carbon contamination and an early second millennium 14C signature. One lump, however, seemed to be heavily contaminated with dead carbon. Since the sample passed the microscopic screening, the leftovers of the lump was subjected to PIXE analysis and compared with the other two lumps. The well-defined, early 2nd millennium 14C age of the lime lumps of this particular church is an important contribution to the discussion on stone church chronology in Scandinavia.

  3. Effect of linseed oil on the mechanical properties of lime mortars

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana; Janotová, Dana; Frankeová, Dita

    Prague : ITAM AS CR, v. v. i., 2012 - (Náprstek, J.; Fischer, C.), s. 955-967 ISBN 978-80-86246-39-0. [Engineering Mechanics 2012. Svratka (CZ), 14.05.2012-17.05.2012] Grant ostatní: GA MK(CZ) DF11P01OVV008 Keywords : linseed oil * lime * metakaolin Subject RIV: JM - Building Engineering

  4. An Integrated Experimental-Numerical Study of the Performance of Lime-Based Mortars in Masonry Piers Under Eccentric Loading

    OpenAIRE

    Nežerka, Václav; Antoš, Jakub; Litoš, Jiří; Tesárek, Pavel; Zeman, Jan

    2015-01-01

    Architectural conservation and repair are becoming increasingly important issues in many countries due to numerous prior improper interventions, including the use of inappropriate repair materials over time. As a result, the composition of repair masonry mortars is now being more frequently addressed in mortar research. Just recently, for example, it has become apparent that Portland cement mortars, extensively exploited as repair mortars over the past few decades, are not suitable for repair...

  5. Influence of Curing on the Strength Development of Calcium-Containing Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Zhenzhen Jiao

    2013-11-01

    Full Text Available This paper investigated the curing effects on the mechanical properties of calcium-containing geopolymer mortar. Three precursors are used: Class C fly ash, Class F fly ash plus calcium hydroxide and Class F fly ash plus slag. Curing conditions included: (1 standard curing at 20 ± 3 °C and RH 95% (C; (2 steam curing at 60 °C for 24 h (S; (3 steam curing at 60 °C for 6 h (S6; and (4 oven curing at 60 °C for 24 h (O, then the latter three followed by the standard curing. Under the standard conditions, the flexural strength and compressive strength of Class C fly ash geopolymer mortars developed quickly until the age of 7 days, followed by a gradual increase. Specimens with Class F fly ash plus Ca(OH2 showed slow increase till the age of 28 days. Under these non-standard conditions (2–4, all specimens showed higher 3-day strength, while later strengths were either higher or lower than those in standard conditions, depending on the type of the precursor.

  6. Reactive Crystallization of Calcium Sulfate Dihydrate from Acidic Wastewater and Lime

    Institute of Scientific and Technical Information of China (English)

    邓立聪; 张亦飞; 陈芳芳; 曹绍涛; 游韶玮; 刘艳; 张懿

    2013-01-01

    The present work focused on the recycle of the sulfate and the metal ions from acidic wastewater dis-charged by nonferrous metallurgical industry. The effects of the temperature, the reactant concentration, the stirring speed and the metal ions on the reactive crystallization process of calcium sulfate between sulfuric acid and lime were systematically investigated. The morphology of the precipitated crystals evolved from platelet-like and nee-dle-like shape to rod-like shape when the temperature was increased from 25 to 70 °C. An increase in the agglom-eration of calcium sulfate was found with increasing lime concentration. Metal ions markedly retard the rate of crystallization of calcium sulfate dihydrate. The crystallization of gypsum was slowed with the existence of Mg2+in the solution, and the morphology of gypsum was transformed from platelet-like shape to rod-like shape when Mg2+concentration reached 0.08 mol·L-1. The amorphous ferric hydroxide was coated on the calcium sulfate after the co-precipitation process while Zn2+and Al3+ions in the solution enhanced the agglomeration of the calcium sulfate by absorbing on the surface of the crystals. Comprehensive acidic wastewater containing heavy metals was effi-ciently purified by the two stage lime neutralization technology, and highly agglomerated gypsum precipitates with needle-like shape were obtained. The precipitates could be purified by sulfuric acid washing, and the metal ions were effectively separated from the calcium sulfate by-products.

  7. Investigation of crushed brick-matrix interface in lime-based ancient mortar by microscopy and nanoindentation

    Czech Academy of Sciences Publication Activity Database

    Nežerka, V.; Němeček, J.; Slížková, Zuzana; Tesárek, P.

    2015-01-01

    Roč. 55, January (2015), s. 122-128. ISSN 0958-9465 R&D Projects: GA MK(CZ) DF11P01OVV008 Keywords : nanoindentation * historic mortars * cocciopesto * reaction rim * ITZ Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 3.330, year: 2014 http://www. science direct.com/ science /article/pii/S0958946514001619

  8. Self-diffusion of calcium ions in soda-lime and slag glasses

    International Nuclear Information System (INIS)

    The self-diffusion coefficients of calcium ions in 16Na2O.12CaO.72SiO2(wt%) glass and 40CaO.20Al2O3.40SiO2(wt%) slag glass at temperatures near and below transition point have been measured employing radio-isotope 45Ca. The concentration gradient of radio-activity in surface layer of glass samples after diffusion annealing was determined by counting the residual activity with a GM-tube counter on the surface by progressively chemical etching away the material in steps of about 1 micron meter. It was found that the self-diffusion coefficients of calcium ions in both glasses below the transition point were of the order of 10-14 -- 10-16 cm2/s, suggesting that the mobility of calcium ions was extremely small in the solid glasses. The activation energy for diffusion of calcium ions in solid glasses was about 60 kcal/mol, which seemed to be reasonable in comparison with the electrostatic binding energy between cation and oxygen ion. The self-diffusion coefficients of calcium ions in the slag glass agrees closely with those of oxygen ions below the transition point, while the self-diffusion coefficients of calcium ions in the soda-lime glass are greater by one order of magnitude than those of oxygen ions in the same glass. The difference of diffusion behavior of calcium ions in the slag and the soda-lime glasses may be attributed to action of alkali ions on the mobility of calcium ions. (auth.)

  9. Lime-based mortars with linseed oil: sodium chloride resistance assessment and characterization of the degraded material

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana; Janotová, Dana

    2013-01-01

    Roč. 82, č. 3 (2013), s. 411-427. ISSN 0369-8963 R&D Projects: GA MK(CZ) DF11P01OVV008 Keywords : linseed oil * lime * metakaolin * durability Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.804, year: 2013 http://www.periodicodimineralogia.it/index.php/mineralogia/issue/view/14/showToc

  10. Hardening of calcium hydroxide and calcium silicate binders due to carbonation and hydration

    OpenAIRE

    Cizer, Özlem; Campforts, J; Balen, Koenraad Van; Elsen, Jan; Gemert, Dionys van

    2006-01-01

    Hardening of calcium hydroxide and calcium silicate binders composed of cement, rice husk ash (RHA) and lime in different compositions were studied with mechanical strength, mercury intrusion porosimetry, thermal analysis and SEM. When cement is partially replaced with RHA and lime, hardening occurs as a result of combined hydration, pozzolanic reaction and carbonation reaction. While hydration of cement contributes to the early strength development of the mortars, carbonation is much more pr...

  11. Bactericidal and virucidal mechanisms in the alkaline disinfection of compost using calcium lime and ash.

    Science.gov (United States)

    Hijikata, Nowaki; Tezuka, Rui; Kazama, Shinobu; Otaki, Masahiro; Ushijima, Ken; Ito, Ryusei; Okabe, Satoshi; Sano, Daisuke; Funamizu, Naoyuki

    2016-10-01

    In the present study, the bactericidal and virucidal mechanisms in the alkaline disinfection of compost with calcium lime and ash were investigated. Two indicator microorganisms, Escherichia coli and MS2 coliphage, were used as surrogates for enteric pathogens. The alkaline-treated compost with calcium oxide (CaO) or ash resulted primarily in damage to the outer membrane and enzyme activities of E. coli. The alkaline treatment of compost also led to the infectivity loss of the coliphage because of the partial capsid damage and RNA exteriorization due to a raised pH, which is proportional to the amount of alkaline agents added. These results indicate that the alkaline treatment of compost using calcium oxide and ash is effective and can contribute to the safe usage of compost from a mixing type dry toilet. PMID:27562698

  12. Sodium sulphate test on lime-based mortars: attaining degraded material to test conservation products and assessing salt resistance

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana; Delgado Rodrigues, J.

    Brusel: Royal Institute for Cultural Heritage KIK, 2014 - (De Clercq, H.), s. 389-404 ISBN 978-2-930054-24-7. [International Conference on Salt Weathering of Buildings and Stone Sculptures /3./. Brusel (BE), 14.10.2014-16.10.2014] R&D Projects: GA MK(CZ) DF11P01OVV008 Keywords : sodium sulphate * lime * metakaolin * microporosity * hydrophobicity Subject RIV: AL - Art, Architecture, Cultural Heritage http://193.175.110.91/repository/images/f/f0/28_SWBSS-2014_Nunes_etal.pdf

  13. Some masonary mortar from Hellenistic and Roman period Greece

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, H.H.G.

    1985-01-01

    The Mineral Resources Research Center at the University of Minnesota has been engaged for the past six years in projects to synthesize various hydraulic cements by plasma fusion. An analytical scheme was developed to examine the plasma products. The techniques used to examine these cements were applied to five masonary mortar samples of Hellenistic and Roman periods from three sites in Greece (Olympia, Larissa, and Trikkala). These were examined by chemical, microscopical (polarized light and scanning electron), x-ray diffraction, and differential thermal analysis methods. These samples are typical sand-lime mortars: The aggregates consist of quartz with small amounts of microcline or orthoclase and, in several of the samples, rock and chert fragments. The matrix is largely fine grained calcite and a small amount of calcium silicate hydrate, a typical phase found in hydraulic cements. The sample from the Altis in Olympia (160 to 170 A.D.) is a pink, dense mortar with medium to fine grained aggregate and shows excellent workmanship. This specimen contains reddish fragments which are probably pieces of ceramics which either are used as fill or are poorly crushed material added as a pozzolana. The samples were probably emplaced as a sand and slaked-lime mixture. The limes are impure and thus have feebly hydraulic properties.

  14. Rendering mortars in Medina Azahara, Part I: Material characterization and alteration process

    OpenAIRE

    Blanco-Varela, M. T.; Puertas, F.; Palomo, A.

    1997-01-01

    Rendering mortars, which are still exposed to the open air on some of the walls of Medina Azahara, are studied and characterized in this work. Some repairing mortars used in different previous restorations are also characterized. Those rendering mortars are of different make considering the composition of their binder: lime, gypsum and mixed lime/ gypsum. Repairing mortars used in previous interventions are made of lime, excepting for a portland cement used by Félix Hernández in the rest...

  15. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community

    OpenAIRE

    Lijuan Liu; Chengliang Sun; Xingxing Liu; Xiaolin He; Miao Liu; Hao Wu; Caixian Tang; Chongwei Jin; Yongsong Zhang

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the ...

  16. Physico-chemical characterization of mortars as a tool in studying specific hydraulic components: application to the study of ancient Naxos aqueduct

    Science.gov (United States)

    Maravelaki-Kalaitzaki, P.; Galanos, A.; Doganis, I.; Kallithrakas-Kontos, N.

    2011-07-01

    Mortars and plasters from the ancient aqueduct on the island of Naxos, Greece, were studied with regard to mineralogical and chemical composition, grain size distribution, raw materials and hydraulic properties, in order to assess their characteristics and design compatible repair mortars. The authentic materials contained lime, crushed-brick, siliceous and calcitic aggregates, in different proportions according to mortar type. Crushed-bricks fired at low temperatures and lightweight volcanic aggregates contained amorphous phases, which upon reaction with lime yielded hydraulic components capable of protecting the construction from the continuous presence of water. Hydraulic calcium silicate/aluminate hydrates, the proportions and the perfect packing of the raw materials, along with the diligent application justify the longevity and durability of the studied samples. The hydraulic properties of samples were pointed out through (a) the well-established CO2/H2O ratio derived from the thermogravimetric analysis and (b) by introducing two powerful indices issued from the chemical analysis, namely CaOhydr and soluble SiO2 hydr. These indices improved the clustering of hydraulic mortars and provided better correlation between mortars, plasters and their binders. By comparing grain size distribution and hydraulicity indices it was possible to distinguish among the construction phases. Based on this study, repair mortars were formulated by hydraulic lime, siliceous sand, calcareous and crushed-brick aggregates, with the optimal water content, ensuring optimum workability and compatible appearance with the authentic ones.

  17. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the fo

  18. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    Science.gov (United States)

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  19. Determination of metallic iron in a mixture of lime, calcium sulphide and pyrrhotite.

    Science.gov (United States)

    Sastri, V S

    A method is described for the determination of metallic iron in a complex matrix consisting of calcium oxide, calcium sulphide, carbon and pyrrhotite. The procedure consists of leaching the sample with 5% ammonium chloride solution (10% sucrose solution in some cases) followed by treatment with mercury(II) chloride solution and titration with dichromate solution. PMID:18962353

  20. Preparation of Lime by Roasting the Limestone Deposits of Strezovci (Republic of Kosovo and Its Use for the Aluminothermic Production of Calcium Metal

    Directory of Open Access Journals (Sweden)

    Hoda, S.

    2013-03-01

    Full Text Available The goal of producing and processing limestone ore (mostly CaCO3 is to obtain high-quality refractory materials based on lime (CaO. Lime is the raw material for obtaining calcium metal as a strategic and fundamental component in lead metallurgy (production of refined lead, Pb-Ca alloys in the battery and cable industry, ferroalloys production with the addition of silicon and calcium, production of alloy steel and high-quality steel. This paper explores the preparation of lime by roasting the limestone deposits of Strezovci (Republic of Kosovo and its use for obtaining calcium through the aluminothermic process. Through research and analysis of the chemical composition of certain types of lime, its suitabi- lity for obtaining calcium metal was determined, and by analyzing the samples of the slag, determined was the possibility of its use in the production of fire-resistant cement for which the evaluation is needed. Based on previous research, the following was chosen: optimal composition of the cast, volume of added reducing agents, and conditions of the reduction process performance: temperature-time and initial vacuum. According to the authors’ knowledge, not one Southeast European country has applied this method, and it includes the use of by-products (slag, which can cause environmental pollution. The goal of this research was to prepare lime by roasting limestone of domestic origin in order to obtain calcium metal through the aluminothermic process. The procedure of calcium metal production includes the following operations: decarbonatization of limestone ore (CaCO3 , grinding of the obtained lime (CaO, homogenization of CaO and alumina, agglomeration, and aluminothermic reduction in vacuum furnaces. For the efficiency of the process, the most important technological operations are decarbonatization and reduction, provided the other operations are performed correctly. The estimated total world capacity for production of calcium metal is 25

  1. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community.

    Science.gov (United States)

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2(-) contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg(-1) soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt. PMID:26738601

  2. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  3. Design and development of a small scale lime kiln for production of custom-made lime binder

    Czech Academy of Sciences Publication Activity Database

    Válek, Jan; Matas, Tomáš; Jiroušek, Josef

    Glasgow: University of the West of Scotland, 2013 - (Hughes, J.) ISBN 978-1-903978-44-3. [Historic mortars conference /3./. Glasgow (GB), 11.09.2013-13.09.2013] R&D Projects: GA MK(CZ) DF11P01OVV010 Keywords : experimental lime kiln * small scale lime production * replicas of historic mortars * cultural heritage protection Subject RIV: AL - Art, Architecture, Cultural Heritage

  4. Trichloroethylene decomposition and in-situ dry sorption of Cl-products by calcium oxides prepared from hydrated limes.

    Science.gov (United States)

    Gotoh, Yoshimi; Iwata, Goichi; Choh, Kyaw; Kubota, Mitsuhiro; Matsuda, Hitoki

    2011-10-01

    A comparison of CaOs produced by calcining two types of hydrated lime and calcium carbonate was made for decomposition of trichloroethylene and in-situ dry sorption of the decomposed Cl-products using a lab-scale gas flow type tubular packed bed reactor. About 20 mg of CaO sample was mixed with about 2 g of Al2O3 particles and packed in the reactor and allowed to react with a flowing standard gas containing 500 ppm of C2HCl3 (N2 balance) at 673 and 873 K, under the condition that the reaction of CaO with C2HCl3 might be completed within a few hours. It was found that no thermal decomposition of C2HCl3 at or below 673 K was observed in a reactor packed only with Al2O3 particles. However, a considerable amount of decomposition of C2HCl3 was obtained in a reactor packed with CaO and Al2O3, even at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 673 K, decomposition of 0.42 mol of C2HCl3 and in-situ absorption product of 0.53 mol of CaCl2 were obtained. At 873 K, about 46% of C2HCl3 was thermally decomposed. The total amount of C2HCl3 decomposed in CaO-Al2O3 particle bed at 873 K became nearly twice larger than that at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 873 K, decomposition of 0.59 mol of C2HCl3 and in-situ absorption product of 0.67 mol of CaCl2 were obtained. Small amounts of C2Cl2, C2Cl4, CCl4, etc. were detected during decomposition of C2HCl3 at 673 and 873 K. It was recognized that the data on decomposition of C2HCl3 as well as in-situ dry sorption of Cl-products in CaO particle bed were correlated with specific surface area of the CaO employed. PMID:21821273

  5. Mørtelegenskaber og billedbehandling (Mortar properties and image processing)

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1998-01-01

    The properties of lime mortars can be essentially improved by adding fillers to the mortars in an intelligent way. This is shown in the thesis of Thorborg von Konow (1997).The changes in the pore structure and the following changes in properties can be treated by means of the rules in materials m...... mechanics developed by Lauge Fuglsang Nielsen on this institute. The necessary pore characteristics are measured by means of image processing....

  6. Characterisation of lime putties made of quicklime calcined under different conditions

    Czech Academy of Sciences Publication Activity Database

    Matas, Tomáš; Válek, Jan; Machová, Dita; Petráňová, Veronika; Fabeš, Roman

    Glasgow : University of the West of Scotland, 2013 - (Hughes, J.) ISBN 978-1-903978-44-3. [Historic mortars conference /3./. Glasgow (GB), 11.09.2013-13.09.2013] R&D Projects: GA MK(CZ) DF11P01OVV010 Keywords : lime putty aging * lime putty particle size distribution * lime putty SEM observations Subject RIV: AL - Art, Architecture, Cultural Heritage

  7. Ancient gypsum mortars from Cyprus: characterization and reinvention

    Science.gov (United States)

    Theodoridou, M.; Ioannou, I.

    2012-04-01

    Mortars with various binding materials have been used across different pre-historic and historic periods to meet several construction applications, such as jointing masonry blocks, finishing walls and isolating water bearing structures. In the framework of an ongoing research programme (NEA ΥΠOΔOMH/NEKΥΠ/0308/17) funded by the Cyprus Research Promotion Foundation, the Republic of Cyprus and the European Union Regional Development Fund, 25 samples of gypsum mortars from different archaeological sites in Cyprus were collected and characterized following a systematic analytical approach. Petrographic observations of thin sections were carried out using polarizing optical microscope. Scanning electron microscopy equipped with energy dispersive X-ray microanalyser (SEM-EDX) was used to examine the microstructure and texture of the mortar samples and to determine semi-quantitatively the chemical composition and interface of their binders. X-ray diffraction (XRD) was performed to identify the main mineral crystalline phases of the specimens' binder and aggregates. Thermal analyses (TG/DTA) were used as a further confirmation of the material composition. The pore structure and volume of the ancient mortars were also determined by mercury intrusion porosimetry (MIP) analysis. Last but not least, a portable drilling resistance measurement system (DRMS) was used for micro-destructive assessment of the mechanical state of the samples. The results confirmed the predominant presence of hydrous calcium sulphate in all samples. Calcite was also found both in the binder and aggregates. Small proportions of SiO2 were also detected. The common ratio of binder to aggregates was 1:2.5. MIP showed porosity values between 14-48% and real densities between 1-1.7 g/cm3. The average pore diameters were smaller in the case of mortars with lower porosity. The use of DRMS indicated lower resistance to drilling for the case of joint mortars (as opposed to analysed gypsum plasters). This

  8. Effect of gypsum content on sulfoaluminate mortars stability

    OpenAIRE

    DESBOIS, Tiffany; Le Roy, Robert; PAVOINE, Alexandre; PLATRET, Gérard; FERAILLE-FRESNET, Adélaïde; ALAOUI, Amina

    2010-01-01

    Calcium sulfoaluminate clinker is one of the most promising cements that would lower the greenhouse gas effect accompanying cement production. This article examines the effect of gypsum content on the dimensional stability of sulfoaluminate mortars. Mechanical properties as chemical evolution are studied. Our results show that the mortar with the greatest gypsum content expands without a decrease of its mechanical properties when it is cured in water. Two hypotheses about the mortars hydratio...

  9. 电位滴定法测定石灰中有效氧化钙含量%Potentiotitrimetric Determination of Available Calcium Oxide in Lime

    Institute of Scientific and Technical Information of China (English)

    马兵兵

    2013-01-01

    Content of available calcium oxide in lime was determined by potentiometric titration using HC1 standard solution as titrant. Conditions of titration were optimized and given as follow: ① acidity at endpoint of titration: pH 7. 00; ② maximum rate of titration: 10 mL · min-1 ; ③ minimum rate of titration: 100 μL · min-1; (4) delay time: 5 s. The proposed method was applied to the analysis of lime sample, and the results obtained were checked quite well with those obtained by manual titration. Values of RSD's (n=5) were found in the range of 0. 10%-0. 19%.%采用电位滴定法,用盐酸标准溶液作为滴定剂,测定石灰中有效氧化钙含量.优化的滴定条件为:①滴定终点pH为7.00;②最大馈液速率10 mL·min-1;③最小馈液速率100 μL·min-1;④滞后时间5s;⑤搅拌时间1 min.方法用于石灰样品分析,测定值与手工滴定法测定值相符,相对标准偏差(n=5)在0.10%~0.19%之间.

  10. [Study on Archaeological Lime Powders from Taosi and Yinxu Sites by FTIR].

    Science.gov (United States)

    Wei, Guo-feng; Zhang, Chen; Chen, Guo-liang; He, Yu-ling; Gao, Jiang-tao; Zhang, Bing-jian

    2015-03-01

    Archaeological lime powders samples from Taosi and Yinxu sites, natural limestone and experimentally prepared lime mortar were investigated by means of Fourier transform infrared spectrometry (FTIR) to identify the raw material of lime powders from Taosi and Yinxu sites. Results show that ν2/ν4 ratio of calcite resulted from carbonation reaction of man-made lime is around 6.31, which is higher than that of calcite in natural limestone and reflects the difference in the disorder of calcite crystal structure among the natural limestone and prepared lime mortar. With additional grinding, the values of v2 and ν4 in natural limestone and prepared lime mortar decrease. Meanwhile, the trend lines of ν2 versus ν4 for calcite in experimentally prepared lime mortar have a steeper slope when compared to calcite in natural limestone. These imply that ν2/ν4 ratio and the slope of the trend lines of ν2 versus ν4 can be used to determine the archaeological man-made lime. Based on the experiment results, it is possible that the archaeological lime powder from Taosi and Yinxu sites was prepared using man-made lime and the ancient Chinese have mastered the calcining technology of man-made lime in the late Neolithic period about 4 300 years ago. PMID:26117865

  11. A new surface-modified technology of cement mortar using calcium carbonate biodeposition%一种基于微生物沉积的水泥砂浆表面改性技术

    Institute of Scientific and Technical Information of China (English)

    朱飞龙; 李庚英; 杜虹; 崔鹏飞; 吴亚庆; 刘海峰

    2013-01-01

    The paper presents a new surface modification of cement mortar using biodeposition involving a method employing sporosarcina pasteurii (bacillus pasteurii) bacteria and using cement mortar power as covering layer. It was possible to obtain reduction in water absorption of cement mortars. The effect was more visible in case of using nutrient medium containing urea, and the coefficient of capillary suction of the treated cement mortar was reduced by 58%. Presence of spherical and columnar vaterite and calcite calcium carbonate crystals filling-voids in cement mortar was confirmed by observations under SEM and XRD. The total porosity reduced by 40% was demonstrated by using mercury intrusion porosimetry (MIP).%某些微生物能诱导沉积出具有胶凝和矿化作用的碳酸钙,可以用来修复和密实水泥基材料.但是目前微生物沉积技术工艺复杂,成本高,不利于推广和工程应用.尝试采用水泥砂浆粉作为覆膜载体,利用巴斯德芽孢杆菌对水泥砂浆进行表面处理.研究结果表明,采用该方法能使巴斯德芽孢杆菌在水泥试块表面诱导沉积出碳酸钙,有效减少水泥砂浆的吸水性能.当微生物采用含有尿素的培养基培养时,表面改性后的水泥砂浆吸水系数降低了58%.采用压汞测试仪(MIP)分析了处理前后水泥试块表层的孔隙率以及孔结构特征.发现采用巴斯德芽孢杆菌处理后,样品孔隙率显著降低,大孔的含量显著减少,当微生物采用含有尿素的培养基培养时,总孔隙率降低了40%.X射线衍射仪(XRD)和场发射扫描电镜(SEM)分析表明,经微生物技术处理后水泥试块内部的孔洞和裂缝被球霰石和方解石填充.

  12. Local development of affordable lime in southern Africa

    OpenAIRE

    Mitchell, C. J.; Inglethorpe, S.D.J.; Tawodzera, P.; Bradwell, S.; Evans, E. J.

    1997-01-01

    Lime is an important and versatile chemical used in a wide range of applications. The term lime, which is strictly calcium oxide (CaO), is applied to a range of products arising from the processing of limestone and dolomite. Many less developed countries do not have adequate lime production and this leads to problems associated with under-utilisation of lime. In particular, insufficient application of agricultural lime (aglime) can lead to soil acidification, with associated aluminium / manga...

  13. AMS radiocarbon dating of mortar: The case study of the medieval UNESCO site of Modena

    Science.gov (United States)

    Carmine, Lubritto; Caroselli, Marta; Lugli, Stefano; Marzaioli, Fabio; Nonni, Sara; Marchetti Dori, S.; Terrasi, Filippo

    2015-10-01

    The carbon dioxide contributing to binder formation during the set of a lime mortar reflects the atmospheric 14C content at the time of construction of a building. For this reason, the 14C dating of mortars is used with increasing frequencies in archaeological and architectural research. Mortars, however, may also contain carbonaceous contaminants potentially affecting radiocarbon dating. The Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) of the Second University of Naples (SUN) has recently obtained some promising results in mortar radiocarbon dating thanks to the development of a procedure (i.e. CryoSoniC/Cryo2SoniC) aiming to eliminate exogenous C contamination that may occur in a mortar. The construction history of the UNESCO World Heritage Site of Modena (Italy) is still controversial and represents a challenging case study for the application of absolute dating methodologies for different reasons. From the point of view of 14C dating, for example, given the high percentage of carbonate aggregates composing these samples, Modena mortars represent an experimental test particularly indicative of exogenous carbon sources suppression ensuring methodology accuracy. In this paper several AMS Radiocarbon dates were carried out on lime lumps with the aim to: (i) verify procedure accuracy by a comparison of the results obtainable from lime lumps dated after different treatments (i.e. bulk lime lumps vs. CryoSoniC purified lime lumps); (ii) compare different building phases absolute chronology for the medieval UNESCO site of Modena, with that assumed by historical sources in order to assess preliminary the 14C dating feasibility for of the site. Historical temporal constraints and mortar clustering, based on petrography, have been applied to define a temporal framework of the analyzed structure. Moreover, a detailed petrographic characterization of mortars was used both as a preliminary tool for the choice of samples and to infer about the

  14. Uso do residuo de beneficiamento de rochas ornamentais na producao de argamassa de multiplo uso; Use of the ornamental rock waste in mortar multiple-use

    Energy Technology Data Exchange (ETDEWEB)

    Faial, Alline Silveira Ribeiro; Xavier, Gustavo de Castro; Alexandre, Jonas; Maia, Paulo Cesar de Almeida; Albuquerque Junior, Fernando Saboya, E-mail: gxavier@uenf.br [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF/LECIV), Campos dos Goytacazes, RJ (Brazil). Lab. de Engenharia Civil

    2012-07-01

    The municipal district of Itapemirim-ES is the largest producer of ornamental stones in Brazil. The processing of these rocks for the manufacture of floor and produces a large amount of waste approximately 15,000 tons/month, which still are responsible for damage to the environment. Aiming at the use of this waste, this paper studies experimentally the production of mortars of multiple use, making the replacement of the use of hydrated lime, widely used in the manufacture of mortars in construction, by the waste of the processing of a marble industry Itapemirim -ES. The mortar waste was characterized and evaluated by comparing performance with mortar with the addition of hydrated lime. We used a slurry with lime as a reference, ie the mixture was made of 1:1:8 (cement: waste / lime sand), where the workability and the properties of the hardened condition were evaluated and compared with the mortars made with the waste of marble. The compressive strength results showed that the waste with lime mortars were 1.6 ± 0.5 MPa and 1.4 MPa respectively ± 0.6 after 28 days of curing, two were classified as P1 (ABNT 13279, 2005), can replace the waste lime, thereby reducing the cost of manufacture of the mortar. (author)

  15. Influences of Carboxyl Methyl Cellulose on Performances of Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Yuli; ZHOU Mingkai; SHAN Junhong; XU Fang; YANG Yuhui

    2007-01-01

    Carboxyl methyl cellulose (CMC) was mixed into mortar to improve the waterretention performance of mortar, the quality of floated coat of aerated concrete became better. The consistency and compression strength of mortar with CMC were studied. The water absorption was studied with the method of filter paper. The micro mechanism was researched with X-ray diffraction and scanning electron microscopy(SEM). The experimental results show the water-holding performance of mortar with CMC is largely improved and it is better when the mixed amount is about 1.5%; the compression strength had a descending trend with the increase of CMC; CMC reacted with calcium hydroxide(CH) into the deposition of calcium carboxyl methyl cellulose.

  16. Divisions S-4 - soil fertility and plant nutrition: residual value of lime and leaching of calcium in a kaolinitic ultisol in the high rainfall tropics

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, D.K.; Juo, A.S.R.; Miller, M.H.

    1982-01-01

    A long-term experiment was conducted on a highly acidic (pH 4.6), coarse-textured Ultisol in the high rainfall region of southeastern Nigeria in order to evaluate the requirement for and residual value of lime (Ca(OH)/sub 2/) to a continuous crop rotation, and to determine the fate of applied Ca in the soil profile. The initial lime rates used were 0, 0.5, 1, 2, and 4 t of Ca(OH)/sub 2/ per hectare. Maize (Zea mays) was planted in the first season and cowpea (Vigna unguiculata) in the second season under a no-tillage, stubble conservation system. Relatively low rates of lime are adequate to sustain yields in a continuous maize-cowpea rotation system. Liming at a rate of 0.5 t/ha maintained maize yield near maximum for 2 years after application. Sustained maize yields for 5 years or more were possible with a lime rate of 2 t/ha. Cowpeas performed well and showed strong tolerance to soil acidity when planted as a late second-season crop after maize without additional fertilizer application. The critical level of exchangeable Al ranged from 25 to 55% depending upon rate of chemical fertilizer as well as cowpea variety used. Leaching losses of Ca from the surface soil during the first 3 years were <0.5 t/ha of Ca(OH)/sub 2/-equivalents in the 0- to 2-t/ha treatments. Exchangeable-Al saturation in all subsoil layers of all treatments 3 years after liming exceeded 40% and soil pH (H/sub 2/O) was <4.3 indicating that lime was leached as neutral Ca salts and had little effect in ameliorating subsoil acidity. 17 references, 5 figures, 5 tables.

  17. Tangential adhesion strength of cement mortars in masonry

    Directory of Open Access Journals (Sweden)

    Derkach V.N.

    2012-05-01

    Full Text Available The initial shear strength (tangential adhesion and the angle of internal friction in the horizontal plane of mortar joints are among important characteristics, determining the masonry strength and stiffness qualities in case of share. These characteristics influence largely over the limit state approach of buildings and facilities during seismic activity and over wind, crane and other load, causing the panel frame distortion in frame buildings with masonry infill.In the paper the experimental studies results of tangential adhesion strength of cement mortars with solid and hollow ceramic bricks, porous stones, calcium silicate bricks and cellular concrete blocks are presented. This research gives experimental dependences of mortar adhesive strength with mentioned types of masonry units on compressive strength of cement mortar. There is also the comparison of the obtained results with Russian and foreign standards in this paper.

  18. Local development of affordable lime in southern Africa: Project Summary Report

    OpenAIRE

    Mitchell, C. J.; Inglethorpe, S.D.J.; Tawodzera, P.; Bradwell, S.; Evans, E. J.

    1998-01-01

    Lime is an important and versatile chemical used in a wide range of industrial and other applications. The term lime, which strictly refers to calcium oxide (CaO), is applied to a range of products arising from the grinding, calcination and hydration of limestone and dolomite. Many less developed countries do not have adequate lime production and this leads to problems associated with under-utilisation of lime. In particular, insufficient application of agricultural lime can lead to soil acid...

  19. Mineralogical and microstructural studies of mortars from the bath complex of the Roman villa rustica near Mosnje (Slovenia)

    International Nuclear Information System (INIS)

    This study deals with the characterization of mortars collected from bath complex of the Roman villa rustica from an archeological site near Mosnje (Slovenia). The mortar layers of the mosaics, wall paintings and mortar floors were investigated. A special aggregate consisting of brick fragments was present in the mortars studied. The mineralogical and petrographic compositions of the mortars were determined by means of optical microscopy, X-ray powder diffraction and FTIR spectroscopy. Analysis of aggregate-binder interfaces using SEM-EDS revealed various types of reactivity rims. In order to assess the hydraulic characteristics of the mortars, the acid-soluble fractions were determined by ICP-OES. Furthermore, the results of Hg-porosimetry and gas sorption isotherms showed that mortars with a higher content of brick fragments particles exhibited a higher porosity and a greater BET surface area but a lower average pore diameter compared to mortars lacking this special aggregate. - Highlights: → Mineral and microstructural characterizations of brick-lime mortars. → Hydraulic character of mortars in Roman baths complex. → Reaction rims were observed around brick fragments and dolomitic grains. → Higher content of brick particles yielded a higher BET surface area. → Addition of brick particles increased porosity and diminished pore size diameter.

  20. Lime rendering of the houses of historical core of Maracaibo, Venezuela

    OpenAIRE

    Pineda Muñoz, Susana; Bustamante Montoro, Rosa Alejandrina

    2008-01-01

    An advance of the study undertaken of the plastering of the few dwellings that still exist in the historical area of Maracaibo is presented, with a base of restoration mortar of the plastering of sandstone known as “piedra de ojo”. The mortars are made of lime with a ferruginous stone aggregate that gives them a pinkish color, with additions of ceramics, bamboo, sand, wood and straw, and kneaded with salty water from ...

  1. Lime pretreatment of lignocellulosic biomass

    Science.gov (United States)

    Chang, Shushien

    Lignocellulose is a valuable alternative energy source. The susceptibility of lignocellulosic biomass to enzymatic hydrolysis is constrained due to its structural features, so pretreatment is essential to enhance enzymatic digestibility. Of the chemicals used as pretreatment agents, it has been reported that alkalis improve biomass digestibility significantly. In comparison with other alkalis such as NaOH and ammonia, lime (calcium hydroxide) has many advantages; it is very inexpensive, is safe, and can be recovered by carbonating wash water. The effects of lime pretreatment were explored on switchgrass and poplar wood, representing herbaceous and woody biomass, respectively. The effects of pretreatment conditions (time, temperature, lime loading, water loading, particle size, and oxygen pressure) have been systematically studies. Lime alone enhances the digestibility of switchgrass significantly; under the recommended conditions, the 3-d total sugar (glucose + xylose) yields of lime-treated switchgrass were 7 times that of untreated sample. When treating poplar wood, lime must be combined with oxygen to achieve high digestibility; oxidative lime pretreatment increased the 3-d total sugar yield of poplar wood to 12 times that of untreated sample. In a fundamental study, to determine why lime pretreatment is effective, the effects of three structural features on enzymatic digestibility were studied: lignin content, acetyl content, and crystallinity index (CrI). Poplar wood was treated with peracetic acid, potassium hydroxide, and ball milling to produce model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and CrI, respectively. Enzymatic hydrolysis was performed on the model lignocelluloses to determine the digestibility. Correlations between lignin/carbohydrate ratio, acetyl/carbohydrate ratio, CrI and digestibility were developed. The 95% prediction intervals show that the correlations predict the 1-h and 3-d total sugar conversions of

  2. Rendering mortars in Medina Azahara, Part I: Material characterization and alteration process

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    1997-03-01

    Full Text Available Rendering mortars, which are still exposed to the open air on some of the walls of Medina Azahara, are studied and characterized in this work. Some repairing mortars used in different previous restorations are also characterized. Those rendering mortars are of different make considering the composition of their binder: lime, gypsum and mixed lime/ gypsum. Repairing mortars used in previous interventions are made of lime, excepting for a portland cement used by Félix Hernández in the restoration of one of the rooms back in the 50's. Biological colonization is the main cause of decay in lime mortars, while in mortars made of gypsum, decay is a result of the solubilizating action of rain water.

    En este trabajo se analizan y caracterizan los revocos que, todavía hoy, permanecen sobre algunos paramentos de los muros de la ciudad de Medina Azahara, expuestos a la intemperie. También se caracterizan algunos de los molleros de reparación aplicados en las distintas restauraciones de los revocos. Los revocos están formados por tres clase de morteros, atendiendo a la composición de su ligante: de cal, de yeso y bastardos de cal y yeso. Los morteros de reparación que se han utilizado son de cal, a excepción del utilizado en la restauración de Félix Hernández (década de 1950, en una de las salas, que es de cemento portland. La colonización biológica es la principal causa de deterioro de los morteros de cal, en tanto que la solubilización por las aguas de lluvia lo es en los morteros que contienen yeso.

  3. 2nd Historic Mortars Conference

    CERN Document Server

    Hughes, John; Groot, Caspar; Historic Mortars : Characterisation, Assessment and Repair

    2012-01-01

    This volume focuses on research and practical issues connected with mortars on historic structures. The book is divided into four sections: Characterisation of Historic Mortars, Repair Mortars and Design Issues, Experimental Research into Properties of Repair Mortars, and Assessment and Testing. The papers present the latest work of researchers in their field. The individual contributions were selected from the contributions to the 2nd Historic Mortars Conference, which took place in Prague, September, 22-24, 2010. All papers were reviewed and improved as necessary before publication. This peer review process by the editors resulted in the 34 individual contributions included in here. One extra paper reviewing and summarising State-of-the-Art knowledge covered by this publication was added as a starting and navigational point for the reader. The editors believe that having these papers in print is important and they hope that it will stimulate further research into historic mortars and related subjects. 

  4. Rootstocks for 'Tahiti' lime

    OpenAIRE

    Neusa Maria Colauto Stenzel; Carmen Silvia Vieira Janeiro Neves

    2004-01-01

    The 'Tahiti' lime (Citrus latifolia Tanaka) is an important commercial citrus cultivar in Brazil. 'Rangpur' lime has being used as its main rootstock, but it is susceptible to root rot caused by Phytophthora, reducing tree longevity. An experiment was set up in a randomized block design, with three trees per plot of each rootstock and four replicates, and run for 12 years, aiming to compare the performance of 'IAC-5 Tahiti' lime, budded on 'Rangpur' lime (Citrus limonia Osb.); 'C-13' citrange...

  5. Ancient mortars from Cape Verde: mineralogical and physical characterization

    Science.gov (United States)

    Rocha, Fernando; Costa, Cristiana; Velosa, Ana; Quintela, Ana; Terroso, Denise; Marques, Vera

    2014-05-01

    Times and locations of different building constructions means different knowledge, habits, different construction methods and materials. The study and safeguarding of the architectural heritage takes nowadays a progressive importance as a vehicle for transmission of cultures and history of nations. The coatings are of great importance in the durability of a building due to the protective role of the masonry. The compatibility between the materials with which they are executed (masonry, mortar and grout settlement) promotes the proper functioning of the wall and a consequent increase in durability. Therefore, it becomes important to study and characterize the mortar coating of buildings to know its characteristics and to use compatible materials in the rehabilitation and maintenance of buildings. This study aims to characterize the chemical, physical, mechanical and mineralogical mortar samples collected in buildings in three islands of Cape Verde, for the conservation, rehabilitation and preservation of them. The collected samples belong to buildings constructed in the end of XIX century and in the beginning of XX century. In order to characterize the mortar samples some tests was made, such as X-Ray Diffraction, X- Ray Fluorescence, acid attack and mechanical strength. The samples were divided into three groups depending on origin; so we have a first group collected on the island of Santiago, the second on the island of Saint Vincent and the third on the island of Santo Antao. The samples are all carbonated, but Santiago samples have a lower carbonates content. In terms of insoluble residue (from the acid attack) it was concluded that the samples have similar value ranging from 9 to 26%. The compressive strength of the mortars have a range between 1.36 and 4.55 MPa, which is related to the presence of more binder in samples with higher resistance. The chemical and mineralogical analyzes showed that these consist of lime mortars (binder), natural pozzolan and

  6. Thermal conductivity of foam mortar; Waermeleitfaehigkeit von Porenbeton

    Energy Technology Data Exchange (ETDEWEB)

    Lippe, K.F.; Schwab, H. [Ytong AG, Entwicklungszentrum Schrobenhausen (Germany)

    1999-07-01

    Foam mortar in its present-day form was developed during the 20s in Sweden. It consists of porosified calcium silicate hydrates. Porosification is achieved by adding aluminium powder. Optimization of the micro and macro structure of foam mortar resulted in a construction material of low apparent density, high consistency and dimension stability as well as low thermal conductivity. Foam mortar has the lowest thermal conductivity of all massive wall construction materials. (orig.) [German] Porenbeton in der heutigen Form wurde in den 20iger Jahren in Schweden entwickelt. Er besteht aus porosierten Calciumsilicathydraten. Die Porosierung erfolgt durch Zusatz von Aluminiumpulver. Durch die Optimierung der Mikro- und Makrostruktur des Porenbetons, ist ein Baustoff mit niedriger Rohdichte, hoher Festigkeit und Dimensionsstabilitaet sowie niedriger Waermeleitfaehigkeit entstanden. Porenbeton ist der wandbildende Massivbaustoff mit der niedrigsten Waermeleitfaehigkeit. (orig.)

  7. Removal of phosphate from greenhouse wastewater using hydrated lime.

    Science.gov (United States)

    Dunets, C Siobhan; Zheng, Youbin

    2014-01-01

    Phosphate (P) contamination in nutrient-laden wastewater is currently a major topic of discussion in the North American greenhouse industry. Precipitation of P as calcium phosphate minerals using hydrated lime could provide a simple, inexpensive method for retrieval. A combination of batch experiments and chemical equilibrium modelling was used to confirm the viability of this P removal method and determine lime addition rates and pH requirements for greenhouse wastewater of varying nutrient compositions. Lime: P ratio (molar ratio of CaMg(OH)₄: PO₄‒P) provided a consistent parameter for estimating lime addition requirements regardless of initial P concentration, with a ratio of 1.5 providing around 99% removal of dissolved P. Optimal P removal occurred when lime addition increased the pH from 8.6 to 9.0, suggesting that pH monitoring during the P removal process could provide a simple method for ensuring consistent adherence to P removal standards. A Visual MINTEQ model, validated using experimental data, provided a means of predicting lime addition and pH requirements as influenced by changes in other parameters of the lime-wastewater system (e.g. calcium concentration, temperature, and initial wastewater pH). Hydrated lime addition did not contribute to the removal of macronutrient elements such as nitrate and ammonium, but did decrease the concentration of some micronutrients. This study provides basic guidance for greenhouse operators to use hydrated lime for phosphate removal from greenhouse wastewater. PMID:25176490

  8. NMR relaxometry study of plaster mortar with polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Jumate, E.; Manea, D. [Technical University of Cluj-Napoca, Faculty of Civil Engineering. 15 C Daicoviciu Str., 400020, Cluj-Napoca (Romania); Moldovan, D.; Fechete, R. [Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., 400027, Cluj-Napoca (Romania)

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.

  9. Mineralogical and textural characterization of mortars and plasters from the archaeological site of Barsinia, northern Jordan

    Directory of Open Access Journals (Sweden)

    Mustafa Mohammad AL-Naddaf

    2014-12-01

    Full Text Available Twelve mortar and plaster samples excavated in the archaeological site of Barsinia were mineralogically and petrographically examined by XRay Diffraction (XRD and Stereo and Polarized Light Microscopy, while the total carbonate content was measured using a DietrichFruhling Calcimeter. The physical properties of the samples, such as water uptake under atmospheric pressure and under vacuum, together with density and porosity, were measured. Only twelve samples were available for the purposes of this study: 8 plaster samples and 4 mortar samples. Eleven samples out of the total number of samples were mortars or plasters with lime binder and silica aggregate; calcite and quartz were identified in all of these samples. In most of the samples one or more pozzolanic components were detected; a hydraulic effect therefore exists in practically most of the studied mortars. Excluding the plasters taken from waterbearing constructions such as cisterns, and the mortar sample from the compact floor, the binder content is high; in general, the overall porosity of the studied samples is high. Porosity and petrographic investigation results suggest that the burning temperature of the limestone was low and/or the duration of the combustion was short; such preparation conditions produce a desirable quicklime. Owing to the significant compositional and textural differences between the samples that were reported, there is consequently no suitable general mortar that can be adopted for the restoration of the whole site.

  10. Hygroscopic slaking of lime with steam or humid air. New energy effective lime slaking technology in kraft pulping; Hygroskopisk slaeckning av kalk med aanga eller fuktig luft. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2005-12-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional slaking method is that heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant. The forecasted method means that lime is slaked with steam or humid air, for example combined with a lime mud drier and a lime kiln. The task has included slaking of burned lime with steam or humid hot air, on purpose to test a specific machine equipment in pilote scale, and to investigate temperatures and hydratization rates able to reach. Also the lime slaked with steam/humid air should be compared with burned lime slaked in green liquor when green liquor is causticized, and to investigate the dewatering properties of formed lime mud. The target group is pulp and paper industry using the kraft process. The tests have been performed at SMA Svenska Mineral AB plant (lime burning) at Sandarne Sweden in years 2004-2005. Hydrated lime of varying slaking rates has been produced at temperatures up to 270 deg C. Caustizicing being performed show that dewatering properties of lime mud formed is quite up to the standard of lime mud from burned lime slaked in green liquor. The apprehension, that the hygroscopic slaked lime should result in lime mud difficult to dewater, has not become true. Important experiences have come out which could be used as a base in further investigations.

  11. Compatibility of repair mortars in restoration projects

    OpenAIRE

    Schueremans, Luc; Van Balen, Koenraad; Cizer, Özlem; Janssens, Elke; Serré, Gerty; Elsen, Jan; Brosens, Kris; Ignoul, Sven

    2010-01-01

    Mortars used for restoration must be highly compatible with historic materials in terms of physical, chemical and mechanical properties in order to assure the durability of masonry on the long term. Compatibility criteria are defined based on the original mortar characteristics but the efficiency and the performance of the repair mortar after application on masonry are not generally evaluated. From this perspective, historic mortars and repair mortars from 3 historic masonry structures were a...

  12. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    Science.gov (United States)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  13. STUDY OF HYDRATION PRODUCTS IN THE MODEL SYSTEMS METAKAOLIN-LIME AND METAKAOLIN-LIME-GYPSUM

    OpenAIRE

    Matus Zemlicka; Eva Kuzielova; Kuliffayova Marta; Tkacz Jakub; Palou Martin

    2015-01-01

    Possible preferential formation of ettringite instead of required calcium silicate hydrate (CSH) and calcium aluminosilicate hydrate (CASH) phases when aluminosilicates were added to the blended cements was investigated on the model systems comprising of metakaolin, lime and gypsum. Compressive strength, microstructure and phase composition of the samples were evaluated after 7 days of curing at 50oC, using thermal analysis, X-ray diffraction techniques and scanning electronic microscopy. Sam...

  14. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    Science.gov (United States)

    Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R.

    2014-01-01

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  15. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  16. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    International Nuclear Information System (INIS)

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process

  17. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.

  18. Altered cement hydration and subsequently modified porosity, permeability and compressive strength of mortar specimens due to the influence of electrical current

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2014-01-01

    This paper reports on the influence of stray current flow on microstructural prop-erties, i.e. pore connectivity and permeability of mortar specimens, and link these to the observed alterations in mechanical properties and cement hydration. Mortar specimens were partly submerged in water and calcium

  19. Evaluation of electric properties of cement mortars containing pozzolans

    Directory of Open Access Journals (Sweden)

    Cruz, J. M.

    2011-03-01

    Full Text Available In this paper the evolution of the microstructure of Portland cement mortar is analyzed, by using electrical impedance measurements. Cement mortars are compared without and with two pozzolanic substitutions: spent fluid catalytic cracking catalyst (FCC and metakaolin (MK. The measurement method is described and the model for analyzing the electrical impedance spectra is developed. Three electrical parameters are defined: electrical resistivity, capacitance exponent, and capacitive factor. The results show a significant increase in resistivity of the mortars with pozzolans after 7 days of curing, especially in mortars with MK. This increase is correlated with lime-fixing by the pozzolans. The capacitive properties evolve differently at early age, but reach the same values after 148 days. The electrical and mineralogical data show that the evolution of the microstructure in the mortar with MK starts before it does in the mortars with FCC and that the final microstructure becomes different.

    En este trabajo se analiza la microestructura de morteros de cemento Portland, mediante medidas de impedancia eléctrica. Se comparan morteros de cemento sin y con dos sustituciones puzolánicas: residuo de catalizador de craqueo catalítico (FCC y metacaolín (MK. Se describe el método de medida y se desarrolla el modelo de análisis de los espectros de impedancia eléctrica. Se definen tres parámetros eléctricos: resistividad eléctrica, exponente capacitivo, y factor capacitivo. Se observa un aumento importante de la resistividad de los morteros con puzolana a partir de los 7 días de curado, sobre todo en morteros con MK. Este aumento está correlacionado con la fijación de cal de las puzolanas. Las propiedades capacitivas son diferentes a edad temprana, pero se igualan a los 148 días. Los resultados eléctricos y mineralógicos muestran que la evolución microestructural comienza antes en los morteros con MK que con FCC y que la microestructura

  20. Synthesis of Expansive Mortar Developed in Laboratory for Dismounting of Ornamental Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lucena D V [Graduate in Materials Engineering, UAEMa/ CCT/ UFCG, Campina Grande -P B (Brazil); Campos D B C [Graduate in Materials Engineering, UAEMa/ CCT/ UFCG, Campina Grande-PB (Brazil); Lira H L; Neves G A, E-mail: daniellymateriais@yahoo.com.br [Teacher Doctor UAEMa/ CCT/ UFCG, Campina Grande-PB (Brazil)

    2011-03-15

    The expansive mortar is constituted by a mixture of watery phase with an agent expander, when hydrated, presents volume increase and the generation of fictions in the rock due to generated pressure. The objective of this work is to synthecize expansive mortar that they present enough expansive pressure for the dismounting of granite and marble. They had been used as raw materials: carbonate of calcium, Portland cement and additives for control of the expansion. The formularizations had been synthecized on the basis of the chemical analysis of a mortar commercial and characterized by XRD, laser particle size measurements and evaluation of expansive pressure. All the developed formularizations had presented similar characteristics to the ones of the commercial mortar.

  1. Material properties of hollow clay tile and existing mortar characterization study

    International Nuclear Information System (INIS)

    Several Buildings at the Department of Energy (DOE) Oak Ridge Y-12 Plant were constructed (circa 1950) using unreinforced hollow clay tile masonry walls, which act as shear walls to resist lateral forces. A comprehensive test program, managed by the Center for Natural Phenomena Engineering (CNPE) of Martin Marietta Energy Systems, Inc. (MMES), is under way to determine material properties of existing hollow clay tile walls that will be used to help determine the structural strength of those buildings. This paper presents the results of several types of material property tests of 4-in.- and 8-in.-thick hollow clay tiles. These tests include determination of weight, size, void area, net area and gross area, initial rate of absorption, absorption, modulus of rupture, splitting tensile strength, and compressive strength. The tests were performed on old, reclaimed tiles and new tiles. A total of 336 tiles were tested. The stress-strain relationship for 40 specimens was also obtained. All testing was performed in accordance with ASTM standards and procedures developed by CNPE. This paper also presents the results of an investigation of mortar removed from the existing walls. The mortar characterization study was performed by Testwell Craig Materials Consultants under subcontract to MMES. Petrographic and chemical investigations were conducted on 18 mortar samples removed from four buildings at the plant. The primary purpose of the investigations was to evaluate the properties of existing mortar and provide a similar specification for the mortar to be used for construction of test specimens and test walls for the test program. The study showed variability in the mortars among buildings and among different locations within a building; however, it was concluded that an average mortar mix conforming to ASTM type N proportioned by volume of Portland cement, hydrated lime, and Tennessee river sand would be used to conduct further laboratory studies of masonry assemblages

  2. Characterisation of historic mortars for conversation diagnosis

    Czech Academy of Sciences Publication Activity Database

    Hauková, Petra; Frankeová, Dita; Slížková, Zuzana

    Glasgow: University of the West of Scotland, 2013 - (Hughes, J.) ISBN 978-1-903978-44-3. [Historic mortars conference /3./. Glasgow (GB), 11.09.2013-13.09.2013] R&D Projects: GA MK(CZ) DF12P01OVV018 Keywords : mortar analysis * mortar characterisation * binder * aggregate Subject RIV: AL - Art, Architecture, Cultural Heritage

  3. Rootstocks for 'Tahiti' lime

    Directory of Open Access Journals (Sweden)

    Stenzel Neusa Maria Colauto

    2004-01-01

    Full Text Available The 'Tahiti' lime (Citrus latifolia Tanaka is an important commercial citrus cultivar in Brazil. 'Rangpur' lime has being used as its main rootstock, but it is susceptible to root rot caused by Phytophthora, reducing tree longevity. An experiment was set up in a randomized block design, with three trees per plot of each rootstock and four replicates, and run for 12 years, aiming to compare the performance of 'IAC-5 Tahiti' lime, budded on 'Rangpur' lime (Citrus limonia Osb.; 'C-13' citrange (Citrus sinensis (L. Osb. × Poncirus trifoliata (L. Raf.; 'African' rough lemon (Citrus jambhiri Lush.; 'Volkamer' lemon (Citrus volkameriana Ten. & Pasq.; trifoliate orange (Poncirus trifoliata (L. Raf.; 'Sunki' mandarin (Citrus sunki Hort. ex Tan. and 'Cleopatra' mandarin (Citrus reshni Hort. ex Tan.. Eleven years after the establishment of the orchard, trees with the greatest canopy development were budded on 'C-13' citrange and 'African' rough lemon, and both differed significantly from trees budded on trifoliate orange, 'Sunki' and 'Cleopatra' mandarins, which presented the smallest canopy development. Trees budded on 'Rangpur' lime and 'C-13' citrange had the highest cumulative yields, and were different from trees budded on trifoliate orange, 'Cleopatra' and 'Sunki' mandarins. There was no rootstock effect on mean fruit weight and on the total soluble solid/acid ratio in the juice. The 'Rangpur' lime and the 'Cleopatra' mandarin rootstocks reduced longevity of plants.

  4. Behavior of Clayey Soil Stabilized with Rice Husk Ash & Lime

    Directory of Open Access Journals (Sweden)

    B.Suneel Kumar

    2014-05-01

    Full Text Available In India the soil mostly present is Clay, in which the construction of sub grade is problematic. In recent times the demands for sub grade materials has increased due to increased constructional activities in the road sector and due to paucity of available nearby lands to allow excavate fill materials for making sub grade. In this situation, a means to overcome this problem is to utilize the different alternative generated waste materials, which cause not only environmental hazards and also the depositional problems. Keeping this in view stabilization of weak soil in situ may be done with suitable admixtures to save the construction cost considerably. The present investigation has therefore been carried out with agricultural waste materials like Rice Husk Ash (RHA which was mixed with soil to study improvement of weak sub grade in terms of compaction and strength characteristics. Silica produced from rice husk ashes have investigated successfully as a pozzolanic material in soil stabilization. However, rice husk ash cannot be used solely since the materials lack in calcium element. As a result, rice husk ash shall be mixed with other cementitious materials such as lime and cement to have a solid chemical reaction in stabilization process. Lime is calcium oxide or calcium hydroxide. It is the name of the natural mineral (native lime CaO occurs as a product of coal seam fires and in altered lime stone xenoliths in volcanic ejection. In this study RHA and Lime is mixed in different percentage like (RHA as 5%, 10%, and 15% and (Lime as 3%, 6%, 9% and laboratory test CBR is done with a curing period of 4, 7 and 14 days with different percentages of RHA & Lime and Lime+ RHA.

  5. Possibility of Lime as a Stabilizer in Compressed Earth Brick (CEB

    Directory of Open Access Journals (Sweden)

    Fetra Venny Riza

    2011-01-01

    Full Text Available This paper highlights the production of lime, chemical reaction during the production process, lime reaction with the soil and the prospective use of lime in the future. The research works that has been carried out showed lime has superior properties than cement in enhancing soil structure and also exhibits less embodied energy than cement. The lime through its chemical composition, calcium hydroxide, able to reacts with the pozzolanic materials that presents in the clay soil. This pozzolanic reaction resulted to the formation C-S-H cementitious gel that will further stabilize the soil. The application of lime will also promote healthier environment since carbonation process that occur during carbonation period absorb carbon dioxide in the air. The production of compressed stabilized earth brick using lime will also contributes to greener environment as compared to normal brick production method which consumed extensive energy.

  6. Nutritional value of organic acid lime juice (Citrus latifolia T.), cv. Tahiti

    OpenAIRE

    Carolina Netto Rangel; Lucia Maria Jaeger de Carvalho; Renata Borchetta Fernandes Fonseca; Antonio Gomes Soares; Edgar Oliveira de Jesus

    2011-01-01

    Acid lime can be used as fresh fruit or as juice to increase the flavor of drinks. Therefore, it is necessary to analyze organic acid lime nutritional composition in order to evaluate if there are important differences among those conventionally produced. No significant differences in total titrable acidity, pH, ascorbic acid, sucrose, calcium, and zinc were found between the acid lime juice from organic biodynamic crops and conventional crops. However, the organic biodynamic fruits presented...

  7. Resilience of acid subalpine grassland to short-term liming and fertilisation

    OpenAIRE

    Spiegelberger, T.; Deléglise, C.; DeDanieli, S.; Bernard-Brunet, C.

    2010-01-01

    A fertilisation experiment was started in the French Alps on an acid grassland at 2000 m in 1989 where lime as calcium carbonate (liming) and Thomas Slag enriched by potassium chloride (fertilisation) was added in a random block design until 1992. Since then, no further amendments were applied. Fifteen years after the last application, we revisited the experiment and observed that soil pH was still significantly higher on limed plots, while nitrogen (N) concentrations were lower. On fertilise...

  8. A Study on the Properties of Carbon Black Mortar Using Granulated Blast Furnace Slag and Polymer.

    Science.gov (United States)

    Jang, Hong-Seok; Jeon, Ui-Hyeon; So, Seung-Young

    2015-11-01

    White Portland Cement (WPC) and inorganic pigment have been used in colored concrete, but there are some physical problems such as increases in efflorescence, and poor workability and low economics. The aim of this study was to investigate the effects of GBFS and polymer (methyl cellulose) on the physical properties of carbon black mortar. For this purpose, a flow test, compressive strength test and color evaluation and was carried out on cement mortar mixed with polymer by changing the proportion of cement and ratio of GBFS. The results show that the addition of polymer influences significantly the color value efficiency in colored mortar. This is due to the reduction of overall amount of micro pore. This polymer films prevent the transport of soluble calcium towards the surface, and decreases efflorescence. And the flow of colored mortar was increased in proportion to the addition rate of the GBFS. In addition the strength of colored mortars with GBFS at the long-term aged (after 28 days) was higher than that of the general WPC mortar, although its strength was developed slowly at the early ages. PMID:26726652

  9. PROPERTIES OF LIGHTWEIGHT MASONRY MORTARS WITH HOLLOW GLASS MICROSPHERES FOR WINTER CONDITIONS

    Directory of Open Access Journals (Sweden)

    Semenov Vyacheslav Sergeevich

    2012-10-01

    reduction fillers (such as inflated pearlite, vermiculite etc. demonstrate low strength properties, as such fillers have a high water content. Hollow glass (or ceramic microspheres are known as efficient fillers for lightweight mortars. Multiple research undertakings contain information on the masonry mortar that has the following properties: average density of dry mortar - 450 kg/m3, thermal conductivity factor - 0.17 W/(m·°C, compressive strength at the age of 28 days - 3.2 MPa, water retention rate - over 90 %. The climatic conditions of Russia determine the need to perform masonry works at negative temperatures. Adding antifreeze admixtures is an easy and cheap method that guarantees hydration of the Portland-cement at negative temperatures. The subject of this research covers masonry mortars that have a 15 % hollow glass microsphere content and antifreeze admixtures. Contemporary antifreeze admixtures are multifunctional. Therefore, traditional antifreeze admixtures such as sodium chloride, calcium chloride, sodium nitrite, sodium nitrate, sodium formate, potash were used in the research. The per-cent content of antifreeze admixtures was calculated. The following properties of masonry mortars with a 15 % content of hollow glass microspheres and antifreeze admixtures were identified: average mortar and mortar mixture density, setting time, water retention, compressive and bending strength, and water absorption. Standard research methods were employed. Every mortar has an 8 cm mobility. The benchmark mixture has an average density of 1.085 kg/ m3, average cement stone density of 980 kg/m3, compressive strength at the age of 28 days - 19.8 MPa, water retention rate - 97 %, setting time - 4.5 hours. The attention was driven to the strength analysis of mortars with hollow glass microspheres and antifreeze admixtures at positive and negative temperatures. The authors proved that antifreeze admixtures demonstrated a negative influence on the strength and setting

  10. LIMING AND FERTILIZING FOR MAHOGANI (Switenia macrophylla King. SEEDLING FORMATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Franco Tucci

    2007-09-01

    Full Text Available The production of seedlings is one of the most important phases of the cultivation of forest species. Seedlings ofappropriate quality are fundamental in the growth and development of the species. In the production of seedlings, the substratum isfundamental for the good development of the plants. However, the subsoil in general, is acid and it contains low levels of nutritious.The acidity of the soil and the deficiency of nutrients can be corrected through liming and mineral fertilization. The objective of thepresent work was to evaluate the effect of liming and of the fertilization of the soil for the production of mahogany seedlings. Theexperiment was carried out in the period of 120 days, in the Federal University of Amazonas, UFAM. The experimental design wasrandomized complete blocks with statistical analysis in split plot. The plots were composed with eight treatments and four repetitionsand the subplots were eight sampling times of the plants. The treatments were control (natural soil, liming, corrective phosphate,fertilizing with NPK, liming + corrective phosphate, corrective phosphate + fertilizing with NPK, liming + fertilizing with NPK andliming + corrective phosphate + fertilizing with NPK. It was concluded that the associated liming and corrective phosphate and withthe fertilizing with nitrogen, phosphorous and potassium promoted the smallest levels of exchangeable aluminum and the largestlevels of calcium, magnesium, phosphorous and potassium in the soil. These levels of nutrients in the soil caused larger levels ofnutrients in the plants, providing larger growth rate. The liming, corrective phosphate and fertilizing are a fundamental practices inthe formation of mahogany seedlings.

  11. Incorporation of titanium dioxide nanoparticles in mortars — Influence of microstructure in the hardened state properties and photocatalytic activity

    International Nuclear Information System (INIS)

    The environmental pollution in urban areas is one of the causes for poor indoor air quality in buildings, particularly in suburban areas. The development of photocatalytic construction materials can contribute to clean the air and improve sustainability levels. Previous studies have focused mainly in cement and concrete materials, disregarding the potential application in historic buildings. In this work, a photocatalytic additive (titanium dioxide) was added to mortars prepared with aerial lime, cement and gypsum binders. The main goal was to study the way that microstructural changes affect the photocatalytic efficiency. The photocatalytic activity was determined using a reactor developed to assess the degradation rate with a common urban pollutant, NOx. The laboratory results show that all the compositions tested exhibited high photocatalytic efficiency. It was demonstrated that photocatalytic mortars can be applied in new and old buildings, because the nanoadditives do not compromise the mortar hardened state properties.

  12. Effect of liquid liming on sorghum growth in an Ultisol.

    Directory of Open Access Journals (Sweden)

    Manuel E. Camacho

    2015-06-01

    Full Text Available   The aim of this study was to evaluate the effects of the application of liquid lime on sorghum growth in an Ultisol. This research was conducted between August and November, 2011 at the Agricultural Research Center, San José, Costa Rica. In an Ultisol planted with sorghum, in pots of 800 ml, the following treatments where applied: control without lime, calcium carbonate at doses of 10 and 20 l/ha, magnesium oxide at doses of 10 and 20 l/ha, calcium carbonate + magnesium oxide at doses of 5 + 5 and 10 + 10 l/ha, respectively. Six weeks after planting, sorghum was harvested, measuring leaf area, dry and fresh weight of the aerial and root biomass, nutrient absorption and the soil chemical characteristics. Treatments using calcium carbonate and calcium carbonate + magnesium oxide obtained the best values of leaf area and the higher weight of the aerial and root biomass of sorghum. Even though there were no significant differences between liquid lime treatments, there were regarding control without lime and weight biomass variables. Liquid calcium carbonate significantly increased Ca absorption, and the calcium carbonate + magnesium oxide treatment at doses of 10 l/h showed the highest Mg absorption. All amendment treatments caused an improvement of the soil fertility, the most notable being the application of 20 l/ha of magnesium oxide that dropped the exchangeable acidity from 9.02 to 0.36 cmol(+/l, acidity saturation dropped from 95 to 3.3%, and pH increased from 5 to 5.7. It was concluded that the liquid liming amendments had a positive effect over the crop and the soil fertility.

  13. Chemical composition influence of cement based mortars on algal biofouling

    Science.gov (United States)

    Estelle, Dalod; Alexandre, Govin; Philippe, Grosseau; Christine, Lors; René, Guyonnet; Denis, Damidot

    2013-04-01

    The main cause of building-facade biodegradation is the growth of microorganisms. This phenomenon depends on several parameters such as the geographical situation, the environmental conditions and the surface state of the substrate. Several researches have been devoted to the study of the effect of porosity and roughness on the biofouling of stones and mortars. However, none of them have addressed the influence of the mortar chemistry on the microorganism growth kinetic. The main objective of this study is to highlight the influence of the mortar chemistry in relationship with its physical properties on biological weathering. Earlier work showed a good resistance of Calcium Aluminate Cements to biodeterioration by acidogenic bacteria (Thiobacillus) and fungi (Alternaria alternata, Aspergillus Niger and Coniosporium uncinatum). In order to characterize the influence of the mortar chemistry on biofouling, two Portland cements and two alumina cements are used. Among micro-organisms able to grow, green algae are most involved in the aesthetic deterioration of facades. Indeed, they can colonize any type of media and can be a source of nutrients for other micro-organisms such as fungi. The green algae Klebsormidium flaccidum is chosen because of its representativeness. It is indeed the species the most frequently identified and isolated from samples taken on sites. The biofouling kinetic is followed on samples exposed outdoor and on samples tested in a laboratory bench which consists in spraying an algae culture on mortar specimens. The results obtained by in situ trials are compared with the results obtained on the laboratory bench. The microorganism growth kinetic is measured by image analysis. To improve the detection of algae on the surface of the cementitious samples, the raw image is converted in the YIQ color space. Y, I and Q correspond respectively to luminance, in-phase, and quadrature. On the Q channel, the areas covered by algae and the areas of clean mortar

  14. COMPRESSIVE STRENGTH TESTING OF EARTH MORTARS

    Directory of Open Access Journals (Sweden)

    Givanildo Alves Azeredo

    2007-06-01

    Full Text Available This paper discusses the compressive strength of earth mortars. The goal is to use these mortars for masonry construction. Although it is necessary to study the whole masonry behaviour, the scope of this paper refers to the mortar only, without taking into account the blocks. As with other masonry units, compressive strength is a basic measure of quality for masonry mortars. However, there is a great variety of methodology for determining their parameters and properties, such as different samples geometry, the way strains are measured and also the platen restraint effect adopted. The present paper outlines certain experimental devices used to determine compressive strength of earth mortars and tries to show their influence on the properties determined. Proposals for the future development of testing earth mortars are outlined.

  15. Leaching of 90-year old concrete mortar in contact with stagnant water

    International Nuclear Information System (INIS)

    Concrete and other cementitious materials will be used for different purposes in the underground repositories for radioactive waste in the form of spent fuel according to the Swedish concept. Cementitious materials are fundamentally unstable in water and will change properties with time. Thus it is important to know the long-term interaction between the cement-based materials, groundwater and the other materials in the repository that are important for the safety. This report concerns a study of diffusion controlled dissolution of mortar in a case study. In 1906 a water tank was installed in one of the towers in the castle of Uppsala, Sweden. A 20 mm thick layer of concrete mortar was placed on the inner walls of a steel canister which comprised the water tank. It was demolished in 1991 and pieces of the mortar were taken for analysis. The water tank has been refilled periodically with fresh water, which means that the mortar has been leached by drinking water for nearly 85 years. As the steel hinders the penetration of water, diffusion processes must have controlled the leaching. The concrete has been investigated by several methods including thin sections in a polarising microscope, SEM, SEM-EDS, image analysis and chemical analysis. The result shows that the mortar is covered by a thin shell of carbonates presumably reaction products between the cement paste and bicarbonates from the water. Behind the carbonated surface to a depth of around 5-8 mm the mortar shows a distinct porous zone decreasing calcium contents. At the same time there is a relative increase in the sulphate, aluminium and iron concentrations. This indicates that the leaching is fairly complicated and linked to a recrystallisation and redistribution of element. Behind this depth the paste is dense and has a fairly normal composition except for a slight calcium depletion. The SEM analysis shows that there is no distinct portlandite (calcium hydroxide crystals) depletion front. Portlandite is

  16. Leaching of 90-year old concrete mortar in contact with stagnant water

    Energy Technology Data Exchange (ETDEWEB)

    Traegaardh, J.; Lagerblad, B. [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1998-07-01

    Concrete and other cementitious materials will be used for different purposes in the underground repositories for radioactive waste in the form of spent fuel according to the Swedish concept. Cementitious materials are fundamentally unstable in water and will change properties with time. Thus it is important to know the long-term interaction between the cement-based materials, groundwater and the other materials in the repository that are important for the safety. This report concerns a study of diffusion controlled dissolution of mortar in a case study. In 1906 a water tank was installed in one of the towers in the castle of Uppsala, Sweden. A 20 mm thick layer of concrete mortar was placed on the inner walls of a steel canister which comprised the water tank. It was demolished in 1991 and pieces of the mortar were taken for analysis. The water tank has been refilled periodically with fresh water, which means that the mortar has been leached by drinking water for nearly 85 years. As the steel hinders the penetration of water, diffusion processes must have controlled the leaching. The concrete has been investigated by several methods including thin sections in a polarising microscope, SEM, SEM-EDS, image analysis and chemical analysis. The result shows that the mortar is covered by a thin shell of carbonates presumably reaction products between the cement paste and bicarbonates from the water. Behind the carbonated surface to a depth of around 5-8 mm the mortar shows a distinct porous zone decreasing calcium contents. At the same time there is a relative increase in the sulphate, aluminium and iron concentrations. This indicates that the leaching is fairly complicated and linked to a recrystallisation and redistribution of element. Behind this depth the paste is dense and has a fairly normal composition except for a slight calcium depletion. The SEM analysis shows that there is no distinct portlandite (calcium hydroxide crystals) depletion front. Portlandite is

  17. Durability of expanded polystyrene mortars

    OpenAIRE

    Ferrándiz Mas, Verónica; García Alcocel, Eva María

    2013-01-01

    The influence of the addition of various types and various concentrations of expanded polystyrene foam (both commercial and recycled) on the durability of Portland cement mortars is studied. In particular, the microstructure is studied utilizing the following methods: capillary absorption of water, mercury intrusion porosimetry, impedance spectroscopy and open porosity. In addition, the effects of heat cycles and freeze–thaw cycles on compressive strength are examined. Scanning electron micro...

  18. LimeLight

    OpenAIRE

    Rushforth, Bruno

    2005-01-01

    An exhibition showcasing the work of the arts and health organisation Lime CUBE (Centre for the Understanding of the Built Environment), 113-115 Portland Street, Manchester M1 6FB, from 10 to 29 October 2005 www.cube.org.uk Admission free

  19. Action time effect of lime on its depressive ability for pyrite

    Institute of Scientific and Technical Information of China (English)

    Tichang Sun

    2004-01-01

    Two sample groups of bulk concentrates consisting mainly of pyrite and chalcopyrite from Daye and Chenghchao Mines in Hubei Province of China were used to investigate the effect of the action time of lime on its depressive ability for pyrite. The experimental results conducted with different samples and collectors showed that the action time between lime and pyrite markedly influences the depressive ability of lime. The depressive ability of lime increased with the action time increasing. It was also proved that the depressive results obtained at a large lime dosage after a shorter action time are similar to those obtained at a small lime dosage after a longer action time. The increase of depressive ability of lime after a longer action time is because that there are different mechanisms in different action time. The composition on the surface of pyrite acted for different time with lime was studied by using ESCA (Electron Spectroscopic Chemical Analysis). The results showed that iron hydroxide and calcium sulphate formed on the pyrite surface at the presence of lime in the pulp but the amounts of iron hydroxide and calcium sulphate were different at different action time. At the beginning action time the compound formed on the pyrite surface was mainly calcium sulphate and almost no iron hydroxide formed; but with the action time increasing, iron hydroxide formed. The longer the action time, the more iron hydroxide and the less calcium sulphate formed. It was considered that the stronger depressive ability of lime after a longer action time is because more iron hydroxide forms on the pyrite surface.

  20. Hygroscopic slaking of lime with steam or humid air. New energy effective lime slaking technology in kraft pulping; Hygroskopisk slaeckning av kalk med aanga eller fuktig luft. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2003-07-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional slaking method is that heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant. The forecasted method means that lime is slaked with steam or humid air, for example combined with a lime mud drier and a lime kiln. The task has included slaking of burned lime with steam or humid hot air, on purpose to test a specific machine equipment in pilote scale, and to investigate temperatures and hydratization rates able to reach. Also the lime slaked with steam/humid air should be compared with burned lime slaked in green liquor when green liquor is causticized, and to investigate the dewatering properties of formed lime mud. The target group is pulp and paper industry using the kraft process. The tests have been performed at SMA Svenska Mineral AB plant (lime burning) at Sandarne Sweden in years 2004-2005. Project owner has been the Swedish company Torkapparater AB, and the project is performed inside the 'Vaermeforsk Program for Pulp and Paper Industry 2004-2005'. Other partners, besides SMA Svenska Mineral AB, has been Stora Enso Skoghalls Bruk, Carnot AB, AaF Process AB and KTH Energiprocesser. Hydrated lime of varying slaking rates has been produced at temperatures up to 270 deg C. Caustizicing being performed show that dewatering properties of lime mud formed is quite up to the standard of lime mud from burned lime slaked in green liquor. The apprehension, that the hygroscopic slaked lime should result

  1. THE HIGH VOLUME REUSE OF HYBRID BIOMASS ASH AS A PRIMARY BINDER IN CEMENTLESS MORTAR BLOCK

    Directory of Open Access Journals (Sweden)

    Cheah Chee Ban

    2014-01-01

    Full Text Available High Calcium Wood Ash (HCWA and Pulverised Fuel Ash (PFA are by-products from the wood biomass and coal energy production which are produced in large quantity with combined annual production of 500 million tonnes. This poses a serious problem for disposal of the waste material especially at places where land is scarce. The prescribed study was aimed to examine the mineralogical phases and their respective amount present in the industrial wastes which governs the hydration mechanism towards self-sustained solidification of the ashes when used in combination. Besides, the influence of various forming pressure and hydrothermal treatment temperature on mechanical strength performance of HCWA-PFA cementless mortar blocks was also examined. In the study, the mechanical strength of the HCWA-PFA cementless mortar block produced using various forming pressure and hydrothermal treatment temperature was assessed in terms of compressive strength and dynamic modulus. The results of the study are indicative that HCWA is rich in calcium oxide and potassium oxide content. This enables the hybridization of HCWA with the amorphous silica and alumina rich PFA to form a solid geopolymer binder matrix for fabrication of cementless mortar block. Throughout the study, dimensionally and mechanically stable HCWA-PFA geopolymer mortar blocks were successfully produced by press forming and hydrothermal treatment method. Based on statistical analysis, the hydrothermal treatment temperature has a statistically insignificant effect on the mechanical strength of the HCWA-PFA cementless mortar blocks. The dominant factor which governs the mechanical strength of the HCWA-PFA cementless mortar blocks was found to be the hydraulic forming pressure. Moreover, it was found that hybridized HCWA-PFA can be recycled as the sole binder for fabrication of cementless concrete block which is a useful construction material.

  2. Lime-induced phytophotodermatitis

    Directory of Open Access Journals (Sweden)

    Andrew Hankinson

    2014-09-01

    Full Text Available This case describes a scenario of lime-induced phytophotodermatitis. Phytophotodermatitis is a dermatitis caused after the skin is exposed to photosensitizing compounds in plants and then exposed to sunlight. Many common plants including citrus fruits, celery, and wild parsnip contain these photosensitizing compounds which cause phytophotodermatitis. It is important for a physician to be aware of phytophotodermatitis because it may often be misdiagnosed as other skin conditions including fungal infection, cellulitis, allergic contact dermatitis, and even child abuse.

  3. Lime-induced phytophotodermatitis.

    Science.gov (United States)

    Hankinson, Andrew; Lloyd, Benjamin; Alweis, Richard

    2014-01-01

    This case describes a scenario of lime-induced phytophotodermatitis. Phytophotodermatitis is a dermatitis caused after the skin is exposed to photosensitizing compounds in plants and then exposed to sunlight. Many common plants including citrus fruits, celery, and wild parsnip contain these photosensitizing compounds which cause phytophotodermatitis. It is important for a physician to be aware of phytophotodermatitis because it may often be misdiagnosed as other skin conditions including fungal infection, cellulitis, allergic contact dermatitis, and even child abuse. PMID:25317269

  4. Lime-induced phytophotodermatitis

    OpenAIRE

    Hankinson, Andrew; Lloyd, Benjamin; Alweis, Richard

    2014-01-01

    This case describes a scenario of lime-induced phytophotodermatitis. Phytophotodermatitis is a dermatitis caused after the skin is exposed to photosensitizing compounds in plants and then exposed to sunlight. Many common plants including citrus fruits, celery, and wild parsnip contain these photosensitizing compounds which cause phytophotodermatitis. It is important for a physician to be aware of phytophotodermatitis because it may often be misdiagnosed as other skin conditions including fung...

  5. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    Science.gov (United States)

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such. PMID:18068299

  6. A systematic review of the effectiveness of liming to mitigate impacts of river acidification on fish and macro-invertebrates

    International Nuclear Information System (INIS)

    The addition of calcium carbonate to catchments or watercourses – liming – has been used widely to mitigate freshwater acidification but the abatement of acidifying emissions has led to questions about its effectiveness and necessity. We conducted a systematic review and meta-analysis of the impact of liming streams and rivers on two key groups of river organisms: fish and invertebrates. On average, liming increased the abundance and richness of acid-sensitive invertebrates and increased overall fish abundance, but benefits were variable and not guaranteed in all rivers. Where B-A-C-I designs (before-after-control-impact) were used to reduce bias, there was evidence that liming decreased overall invertebrate abundance. This systematic review indicates that liming has the potential to mitigate the symptoms of acidification in some instances, but effects are mixed. Future studies should use robust designs to isolate recovery due to liming from decreasing acid deposition, and assess factors affecting liming outcomes. -- Highlights: •In a systematic review and meta-analysis, we asked how river liming affected fish and invertebrates. •On average, liming increased fish abundance. •Liming also increased average abundance and richness of acid-sensitive invertebrates. •However, benefits were variable and not guaranteed in all acidified rivers. -- A systematic review showed lime application to acidified rivers increased average fish abundance, and abundance and richness in acid-sensitive invertebrates, but not always

  7. Incorporation of limestone residue from marble processing plant in the city of Cachoeiro do Itapemirim, Espirito Santo, Brazil, in the production of mortars

    International Nuclear Information System (INIS)

    Cachoeiro do Itapemirim city (ES), located 136 km from Vitoria, the state's capital, is the largest ornamental stones producer in Brazil, whose beneficiation produces a large amount of waste that, even today, is responsible for major damages done to the environment. This article aims the experimental study of hydrated lime use (product marketed to be used in mortar) by a residue from marble beneficiation from an industry located in that city. Two mixes were made with cement:sand:hydrated lime and cement:sand:residue. The mortars were evaluated by their properties comparisons in fresh and hardened states, namely: consistency index, mass density and incorporated air content, compressive strength, tensile and bending grip for traction. Chemical and mineralogical analysis by X-ray diffraction were also made. The obtained results met the requirements prescribed by ABNT NBR 13 281 (2005). (author)

  8. Evaluation of red mud as pozzolanic material in replacement of cement for production of mortars

    International Nuclear Information System (INIS)

    Red mud is a by-product of the alkaline extraction of aluminum from the bauxite and represents a renewed environmental problem due the significant annual throughput by the plants. In the present work, the pozzolanic properties of Brazilian red mud fired at 600, 700, 800 and 900 deg C were investigated by monitoring lime consumption using DTA analysis and Brazilian standard methodology NBR 5772 (1992). Products and kinetics of hydration were determined in cement pastes produced with 5 and 15% red mud using x-ray diffraction and DTA analysis. Compressive strength and capillary absorption tests were realized on mortars constituted by 5, 10 and 15% red mud in replacement of cement. When calcined at 600 deg C, the red mud develops good pozzolanic properties, and the compressive strength of mortars produced with this waste meet values in accordance with regulatory standard. These results shown than red mud can be used, in partial replacement of cement, as new construction material to produce sustainable mortars with low environmental impact. (author)

  9. Examination of solidified and stabilized matrices as a result of solidification and stabilization process of arseniccontaining sludge with portland cement and lime

    Directory of Open Access Journals (Sweden)

    Tanapon Phenrat

    2004-02-01

    Full Text Available By solidification and stabilization (S/S with Portland cement and lime, it is possible to reduce arsenic concentration in leachate of the arsenic-containing sludge from arsenic removal process by coagulation with ferric chloride. From the initial arsenic concentration in leachate of unsolidified /unstabilized sludge which was around 20.75 mg/L, the arsenic concentrations in leachate of solidified/stabilized waste were reduced to 0.3, 0.58, 1.09, and 1.85 mg/L for the waste-to-binder ratios of 0.15, 0.25, 0.5, and 1, respectively, due tothe formation of insoluble calcium-arsenic compounds. To be more cost effective for the future, alternative uses of these S/S products were also assessed by measurement of compressive strength of the mortar specimens. It was found that the compressive strengths of these matrices were from 28 ksc to 461 ksc. In conclusion, considering compressive strength and leachability of the solidified matrices, some of these solidified/ stabilized products have potential to serve as an interlocking concrete paving block.

  10. ASSESSMENT OF FINE RECYCLED AGGREGATES IN MORTAR

    OpenAIRE

    Feys, Charles; Joseph, Miquel; Boehme, Luc; Zhang, Yunlian

    2016-01-01

    In this study, the influence of fine recycled concrete aggregates as replacement for sand in mortar and the use as cement replacement and filler is investigated. Mortar with fine recycled aggregates is examined on its mechanical and physical properties. The samples are also examined on a microscopic scale. The fine recycled concrete aggregates are made with one-year old concrete made in the laboratory. Fine recycled aggregates (FRCA) are added as a cement replacement (0 %, 10 %...

  11. Modeling of Degradation Processes in Historical Mortars

    OpenAIRE

    Sýkora, J

    2014-01-01

    The aim of presented paper is modeling of degradation processes in historical mortars exposed to moisture impact during freezing. Internal damage caused by ice crystallization in pores is one of the most important factors limiting the service life of historical structures. Coupling the transport processes with the mechanical part will allow us to address the impact of moisture on the durability, strength and stiffness of mortars. This should be accomplished with the help of a complex thermo-h...

  12. Performance and repair requirements for flooring mortars

    Czech Academy of Sciences Publication Activity Database

    Válek, Jan; Groot, C.; Hughes, J.J.

    Cachan Cedex : RILEM Publications S.A.R.L, 2010, s. 1365-1376 ISBN 978-2-35158-112-4. [Historic mortars conference HMC2010 /2./ and RILEM TC 203-RHM Final Workshop. Prague (CZ), 22.09.2010-24.09.2010] R&D Projects: GA MŠk(CZ) LA09008 Institutional research plan: CEZ:AV0Z20710524 Keywords : masonry * mortar properties * technical requirements Subject RIV: JN - Civil Engineering

  13. Differentiating seawater and groundwater sulfate attack in Portland cement mortars

    International Nuclear Information System (INIS)

    The study reported in this article deals with understanding the physical, chemical and microstructural differences in sulfate attack from seawater and groundwater. Portland cement mortars were completely immersed in solutions of seawater and groundwater. Physical properties such as length, mass, and compressive strength were monitored periodically. Thermal analysis was used to study the relative amounts of phases such as ettringite, gypsum, and calcium hydroxide, and microstructural studies were conducted by scanning electron microscopy. Portland cement mortars performed better in seawater solution compared to groundwater solution. The difference in performance could be attributed to the reduction in the quantity of the expansive attack products (gypsum and ettringite). The high Cl concentration of seawater could have played an important role by binding the C3A to form chloroaluminate compounds, such as Friedel's salt (detected in the microstructural studies), and also by lowering the expansive potential of ettringite. Furthermore, the thicker layer of brucite forming on the specimens in seawater could have afforded better protection against ingress of the solution than in groundwater

  14. A technical and economic evaluation of the lime spray dryer process

    Energy Technology Data Exchange (ETDEWEB)

    Jao, Yung-Wo.

    1986-06-01

    A technical and economic evaluation of the lime spray dryer process for the control of SO{sub 2} emissions from utility boilers is presented. The study evaluated retrofitting two 500 MW boilers burning bituminous coal containing 2-3% sulfur. In the lime spray dryer process, a slurry of slaked lime is finely atomized into the flue gas inside a spray dryer absorber located downstream of the air heaters. Sulfur dioxide is absorbed into the slurry droplets where it reacts with the lime to produce calcium sulfite and sulfate. All of the water in the droplets is evaporated by the hot flue gas, leaving a dry particulate. The dry reaction products are collected with the flyash in an electrostatic precipitator or fabric filter downstream of the spray dryer. Part of the waste is mixed with the fresh lime slurry and recycled to the spray dryer to improve lime utilization. The mixture of SO{sup 2} removal waste and flyash is then landfilled. It was concluded that due to the limited experience with the lime spray dryer process on high sulfur coal and electrostatic precipitators, there is some uncertainty with respect to the lime stoichiometry required, precipitator sizing and maintenance cost. With the benefit of favourable assumptions with respect to lime stoichiometry and maintenance, the lime spray dryer process appears to be competitive in cost with limestone slurry scrubbing on 2.5% sulfur coal. The lime spray dryer process offers the promise of higher reliability and of lower costs, particularly if future regulations require wet scrubbing processes to eliminate process wastewater streams or incorporate expensive wastewater treatment. 21 refs., 27 figs., 21 tabs.

  15. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    Directory of Open Access Journals (Sweden)

    Sarah E Pabian

    Full Text Available Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.

  16. Effects of environmental factor on gas evolution behavior from Al in simulating mortar environments

    International Nuclear Information System (INIS)

    Dry Low-Level Radioactive Wastes (LLW) which mean incombustible solid LLW generated from nuclear power stations are scheduled to be packed in steel drums followed by solidification with mortar. The solidified dry LLW is then to be disposed to shallow under-ground at Rokkasho LLW Disposal Center. Dry LLW includes some amphoteric metals among which aluminum is the most corrosive with gas evolution in high alkaline media such as mortar. The evolved gas may accelerate the leaching of solidified dry LLW with mortar. Despite the planned removal of aluminum from dry LLW, small inclusion of aluminum is unavoidable. The present study focuses on the effect of environmental factors such as pH and temperature on gas evolution behavior caused by aluminum corrosion. Large effects of pH and temperature on corrosion rate of aluminum and gas evolution were recognized. Principal corrosion product of aluminum was calcium aluminate compound when it was immersed in simulated mortar environments. It is demonstrated that 1.5 mol hydrogen gas evolves with the corrosion of 1 mol aluminum in environments of 12 < pH < 13 at temperatures below 60degC. (author)

  17. Durability of Polymer Modified Repair Mortars on Concrete Structures

    OpenAIRE

    TCHETGNIA NGASSAM, Inès-Léana; Marceau, Sandrine; Chaussadent, Thierry

    2013-01-01

    Polymer modified mortars (PMM) used as repair products present higher intrinsic properties than classic mortar due to polymer effect in the cementitious matrix. But evolution of their adhesives properties is not well known. This article deals with adhesive behavior of two PMMs made in laboratory with styrene acrylate (SA) and ethylene vinyl acetate (EVA) polymers. It is highlighted that adhesion of these mortars depends on polymer amount in the mortar, on the environmental conditions, and on...

  18. The aggressiveness of pig slurry to cement mortars

    OpenAIRE

    Massana Guitart, Jordi; Guerrero Bustos, Ana; Antón Fuentes, Rebeca; Garcimartin Molina, Miguel Angel; Sanchez Espinosa, Elvira

    2013-01-01

    The aim was to measure the behaviour of various mortars employed in livestock media in central Spain and to analyse the aggressiveness of pig slurry to cement blended with fly ash mortars. To achieve this, mortar specimens were immersed in ponds storing pig slurry. Mortar specimens, of 40 ? 40 ? 160 mm, were made from four types of cement commonly used and recommended for rural areas. The types were a sulphate-resistant Portland cement and three cements blended in different proportions with ...

  19. High-Performance Grouting Mortar Based on Mineral Admixtures

    OpenAIRE

    2015-01-01

    A study on high-performance grouting mortar is reported. The common mortar was modified by mineral admixtures such as gypsum, bauxite, and alunite. The effects of mineral admixtures on the fluidity, setting time, expansion, strength, and other properties of mortar were evaluated experimentally. The microstructure of the modified mortar was characterized by X-ray diffraction, scanning electron microscopy, and mercury intrusion porosimetry. Moreover, the expansive performance and strength of th...

  20. MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Chun-jia Bi; Li-kang Li

    2004-01-01

    In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.

  1. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  2. Properties of Mortar Incorporating Iron Slag

    Directory of Open Access Journals (Sweden)

    Tamara HUMAM

    2013-11-01

    Full Text Available In the present study effects of replacement of fine aggregate (sand with high percentages of iron slag on the properties of Mortar. Cement mortars of mix proportion 1:3 with incorporating various percentage of iron slag was designed. Fine aggregate were replace with five percentage of iron slag. The percentages of replacements were 0, 10, 20, 30, and 40% by weight of fine aggregate. Tests were performed for compressive strength, split tensile strength, sulphate resistance, Rapid Chloride Permeability Test. Test for all replacement levels of iron slag at different curing periods (7, 28, 56 days . Test result indicates that inclusion of iron slag as partial replacement with fine aggregate enhances the properties of Mortar.

  3. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  4. Combined effect of expansive and shrinkage reducing admixtures to obtain stable and durable mortars

    International Nuclear Information System (INIS)

    In order to improve the dimensional stability of cement based mortars, the effects produced on cement hydration of a shrinkage reducer (propyleneglycol ether based-SRA) and an expansive admixture (calcium oxide based-EXP) were investigated. Mortar samples (prepared without admixtures or with SRA or EXP or SRA and EXP) were compared through compressive strength measurements, water evaporation, restrained shrinkage and restrained expansion measurements. Setting time and free expansion were also detected on cement paste specimens. A synergistic effect on the shrinkage reduction was observed when the shrinkage reducing admixture and the expansive agent were used together. In order to clarify this phenomenon, the hydration of cement pastes containing these kinds of admixtures was followed by ESEM-FEG (environmental scanning electron microscopy-field emission gun), TG (thermogravimetry), specific surface area measurements (by BET-Brunauer-Emmet-Teller-method) and XRDS (X-ray diffraction spectroscopy)

  5. R7T7 glass alteration in the presence of mortar: effect of the cement grade

    International Nuclear Information System (INIS)

    R7T7 glass alteration was investigated in the presence of four mortars prepared from four different cement grades: 'CPA' Portland cement (mortar M1), CPA with pozzolana additive (M2), CPA with amorphous silica additive (M3) and 'CLK' blast furnace slag cement (M4). Glass specimens were also altered in Volvic mineral water and in a cement effluent. Glass corrosion in the cement media was greater than in Volvic water, but well below what could be expected from the high pH (approx 12.5). The relatively low alteration was probably related to the protective action of the calcium-enriched gel layer that formed at the glass surface. The glass corrosion rate was 2 to 3 times lower with cement containing pozzolana or silica gel additives or with CLK cement than with CPA cement alone. 8 refs., 8 figs

  6. Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon

    International Nuclear Information System (INIS)

    Serapis temple, which was constructed in the Roman period in the city of Pergamon (Bergama/Turkey), is one of the most important monuments of the world heritage. In this study, the characteristics of bricks and mortars used in the temple have been determined in order to define the necessary characteristics of the intervention materials, which will be used in the conservation works of the temple. Several analyses were carried out to determine their basic physical properties, raw material compositions, mineralogical and microstructural properties using X-ray diffraction, Scanning Electron Microscope and a Thermo Gravimetric Analyzer. Analysis results indicated that the mortars are stiff, compact and hydraulic due to the use of natural pozzolanic aggregates. The Roman bricks are of low density, high porosity and were produced from raw materials containing calcium poor clays fired at low temperatures.

  7. Sulfate resistance of high calcium fly ash concrete

    Science.gov (United States)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  8. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  9. Freeze concentration of lime juice

    Directory of Open Access Journals (Sweden)

    Ampawan Tansakul

    2008-11-01

    Full Text Available The main objective of this research was to study the effects of processing conditions, i.e. cooling medium temperature (-6, -12 and -18C and scraper blade rotational speed (50, 100 and 150 rpm on the freeze concentration of lime juice. The initial soluble solid content of lime juice was 7.6 Brix. Results showed that soluble solid content of lime juice increased as cooling medium temperature decreased while scraper blade rotational speed increased. It was also found that the processing condition with -18˚C cooling medium temperature and 150 rpm rotational speed of the scraper blade was the best among all studied conditions, although the loss of the soluble solids with ice crystals during ice separation was relatively high at 35%.

  10. Steam slaking of lime - kinetics and technology. New energy effective lime slaking technology in kraft pulping; Aangslaeckning av kalk - kinetik och teknik. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2008-06-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional lime burning and slaking methods are that heat recovery is bad and heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant, and to recover heat at higher temperatures. The forecasted method means that lime is slaked with water vapour, for example combined with an indirect heated lime mud drier and a lime kiln. This project is a follow-up to pilot tests performed in a specific machine equipment at year 2006. The target group is pulp and paper industry using the kraft process. The owner of this new project is Carnot AB and the project is performed inside the Vaermeforsk Program for Pulp and Paper Industry 2006-2008. Partners and advisers in project group have been KTH Energy Processes, CTH Energy and Environment, LTH Chemical Technology, SMA Mineral AB, and reference group from STORA Enso Skoghall, Sodra Cell, M-Real Husum and SCA Packaging Piteaa. The task in this stage has included market investigations and laboratory tests. Contacts have been made with suppliers, preliminary dimensioning of process equipment and budget offers are received. Economic calculations have been made out of the offers. The laboratory tests are done as an examination paper at KTH Energiprocesser on the reactivity of burned lime from kraft lime kiln when it is slaked with water vapour instead of green liquor. The vapour intended to be used is at atmospheric pressure or even down to 0,2 atm. Complementary addition to these laboratory

  11. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.; Glasser, Fred P.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements are...

  12. Characteristics of mortars from ancient bridges

    Czech Academy of Sciences Publication Activity Database

    Frankeová, Dita; Slížková, Zuzana; Drdácký, Miloš

    Vol. 7. Dordrecht : Springer, 2012 - (Válek, J.; Hughes, J.; Groot, J.), s. 165-174 ISBN 978-94-007-4634-3 R&D Projects: GA ČR(CZ) GA103/09/2067; GA MŠk(CZ) LA09008 Institutional support: RVO:68378297 Keywords : mortars * ancient bridges * analytical methods Subject RIV: AL - Art, Architecture, Cultural Heritage

  13. FarmLime manual: for small-scale production of agricultural lime

    OpenAIRE

    Mitchell, C. J.; Mwanza, M.

    2005-01-01

    This manual is a concise guide to the small-scale production of agricultural lime. It was developed as part of a research project, ‘Low-cost lime for small-scale farming’ otherwise known as FarmLime (Mitchell, CJ, 2005). The ideal agricultural lime is a ground dolomite or dolomitic limestone with a particle size of 100%

  14. Loch fleet: liming to restore a brown trout fishery.

    Science.gov (United States)

    Howells, G; Dalziel, T R; Turnpenny, A W

    1992-01-01

    This project has been successful in meeting its objectives in terms of demonstrating that catchment liming techniques can restore acidified waters to conditions suitable for fish populations for relatively long periods. This improvement in conditions has extended to the inlet stream, which provides vital fish spawning and nursery areas, which are difficult to treat effectively be other means in remote locations. The project has also provided an assessment of the effectiveness of differing rates and modes of lime application, which suggest that only quite restricted parts of a catchment require treatment. This not only maximizes the cost-effectiveness of the treatments, but also helps to minimize any side-effects on, for example, moorland vegetation. The biological monitoring programme at Loch Fleet has also provided an assessment of the overall ecological consequences of adding limestone to naturally acidic and calcium-deficient ecosystems. PMID:15091939

  15. The efficacy assessment of water repellent agent POLYMEMBRAN applied on natural stone and hardened lime mortar

    OpenAIRE

    Hasníková, Hana

    2014-01-01

    The subject of the study was assess the influence of water repellent agent on the properties of four different natural stones that are frequently used building material in the Czech Republic. Besides color change were primarily assessed changes in the microstructure, which significantly influences the transport of water and water vapour through treated material.

  16. Monitoring of self-healing phenomena towards enhanced sustainability of historic mortars

    Science.gov (United States)

    Amenta, M.; Karatasios, I.; Maravelaki, P.; Kilikoglou, V.

    2016-05-01

    Mortars are known for their ability to heal their defects in an autogenic way. This phenomenon is expressed by the filling of microcracks by secondary products, restoring or enhancing the material's performance. Parameterization of self-healing phenomenon could be a key factor for the enhanced sustainability of these materials in terms of reduced repair cost and consumption of natural raw materials and thus reduced environmental fingerprint. The fact that this phenomenon takes place autogenously suggests that the material can self-repair its defects, without external intervention, thus leading to a prolonged life cycle. In the present study, the autogenic self-healing phenomenon was studied in natural hydraulic lime mortars, considering aspects of curing time before initial cracking, duration and conditions of the healing period. Furthermore, strength recovery due to autogenic self-healing was measured under high humidity conditions, and thermo-gravimetric analysis (DTA/TG) was performed in all specimens in order to quantitatively assess the available unreacted components in the binder at all ages. Regarding the microstructure of the healing phases, the main products formed during healing consist of calcite and various C-S-H/C-A-H phases. Depending on the parameters mentioned above, there is a wide diversity in the intensity, typology and topography of the secondary phases inside the cracks. The main differences discussed were observed between specimens cracked at very early age and those damaged after 30 days of curing. Similarly, the mechanical properties of the crack-healed specimens were associated with the above findings and especially with the available each-time amount of lime, determined by thermo-gravimetric analysis.

  17. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    Science.gov (United States)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  18. Composite cement mortars based on marine sediments and oyster shell powder

    OpenAIRE

    Ez-zaki, H.; Diouri, A.; Kamali-Bernard, S.; Sassi, O.

    2016-01-01

    Additions of dredged marine sediments and oyster shell powder (OS) as cement substitute materials in mortars are examined by several techniques. The sediments have high water and chloride contents and calcite, quartz, illite and kaolinite as principal minerals. The OS powders are entirely composed of calcium carbonate and traces of other impurities. Four mixtures of treated sediments and OS powders at 650 °C and 850 °C are added to Portland cement at 8%, 16% and 33% by weight. The hydration o...

  19. Effect of Anti-freezing Admixtures on Alkali-silica Reaction in Mortars

    Institute of Scientific and Technical Information of China (English)

    LIU Junzhe; LI Yushun; LV Lihua

    2005-01-01

    The influence of anti-freezing admixture on the alkali aggregate reaction in mortar was analyzed with accelerated methods. It is confirmed that the addition of sodium salt ingredients of anti-freezing admixture accelerates the alkali silica reaction to some extent, whereas calcium salt ingredient of anti-freezing admixture reduces the expansion of alkali silica reaction caused by high alkali cement. It is found that the addition of the fly ash considerably suppresses the expansion of alkali silica reaction induced by the anti-freezing admixtures.

  20. Development of low weight self-levelling mortars

    International Nuclear Information System (INIS)

    This work shows the development of self levelling mortars, using micro bubbles based on aluminium silicate with a density of 0.25 g/cm3. Mortars formulations are composed by 8 different components in order to achieve properties balance between fresh and solid state. The mean objective is development light weight mortars with high fluidity and compression strength using micro bubbles and some additives. Formulations were designed employing Taguchi DOE of 8 variables and 3 states. Result analysis according to Taguchi method lets indentify the preponderant effect of each variable on the cited properties. Several formulations reached fluidity higher than 250%, with compression strength around 100 kg/cm2 and a low volumetric weigh. Obtained volumetric weights are 20% less than commercial self levelling mortars weight. Finally some relations are presented such: as relation water/cement with fluidity, and micro bubble content versus mortars volumetric weight, and finally compression strength versus the volumetric weight of mortars

  1. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    strength of masonry depends only on the strength of the bricks. A compression failure in masonry made with weak mortars occurs as a tension failure in the bricks, as they seek to prevent the mortar from being pressed out of the joints. The expression is derived by assuming hydrostatic pressure in the...... mortar joints, which is the most unfavourable stress distribution with respect to tensile stresses in bricks. The expression is compared with the results of compression tests of masonry made with weak mortars. It can take into account bricks with arbitrary dimensions as well as perforated bricks. For a...... stronger mortar (fm≈6 N/mm2) compression tests of masonry with perforated bricks show that the EC6 expression is not always safe for Danish masonry. This is probably because the tensile strength of the bricks also has an effect on the compressive strength of masonry when the mortar is stronger than weak...

  2. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials.

    Science.gov (United States)

    Kaszowska, Zofia; Malek, Kamilla; Staniszewska-Slezak, Emilia; Niedzielska, Karina

    2016-12-01

    This work presents an in-depth study on Raman spectra excited with 1064 and 532nm lasers of lime binders employed in the past as building materials and revealed today as valuable conservation materials. We focus our interest on the bands of strong intensity, which are present in the spectra of all binders acquired with laser excitation at 1064nm, but absent in the corresponding spectra acquired with laser excitation at 532nm. We suggest, that the first group of spectra represents fluorescence phenomena of unknown origin and the second true Raman scattering. In our studies, we also include two other phases of lime cycle, i.e. calcium carbonate (a few samples of calcite of various origins) and calcium oxide (quicklime) to assess how structural and chemical transformations of lime phases affect the NIR-Raman spectral profile. Furthermore, we analyse a set of carbonated limewashes and lime binders derived from old plasters to give an insight into their spectral characteristics after excitation with the 1064nm laser line. NIR-Raman micro-mapping results are also presented to reveal the spatial distribution of building materials and fluorescent species in the cross-section of plaster samples taken from a 15th century chapel. Our study shows that the Raman analysis can help identify lime-based building and conservation materials, however, a caution is advised in the interpretation of the spectra acquired using 1064nm excitation. PMID:27314909

  3. Low Carbon Footprint Mortar from Pozzolanic Waste Material

    OpenAIRE

    Taha Mehmannavaz; Salihuddin Radin Sumadi; Muhammad Aamer Rafique Bhutta; Mostafa Samadi; Seyed Mahdi Sajjadi

    2014-01-01

    Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of...

  4. Effect of kaolin treatment temperature on mortar chloride permeability

    OpenAIRE

    Puertas, F.; Mejía de Gutiérrez, R.; J. Torres

    2007-01-01

    The present paper discusses the results of chloride resistance tests conducted on ordinary Portland cement (OPC) mortars containing a Colombian kaolin pre-treated at temperatures of from 600 to 800 ºC. The resulting metakaolin (MK) was added to OPC mortar mixes in proportions of 10 and 20% by cement weight. The mortars were compared for physical and chemical properties, including capillary absorption, chloride permeability and pore microstructure as assessed by mercury porosimetry....

  5. Influence of Pore Structure on Compressive Strength of Cement Mortar

    OpenAIRE

    Haitao Zhao; Qi Xiao; Donghui Huang; Shiping Zhang

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement r...

  6. Alkaline cement mortars. Chemical resistance to sulfate and seawater attack

    OpenAIRE

    Puertas, F.; Gutiérrez, R.; Fernández-Jiménez, A.; Delvasto, S.; Maldonado, J.

    2002-01-01

    The durability and chemical resistance of alkali activated slag and fly ash/slag mortars in contact with sulfates and seawater media have been studied. Two methods were used in the evaluation of such durability: Kock-Steinegger and ASTM C1012. A mineralogical and a microstructural characterization of mortars were done at different ages of their conservation in aggressive media through XRD, SEM/ EDX and mercury porosimetry. Results showed a high durability of activated cement mortars in s...

  7. Flexural reinforcement of concrete with textile reinforced mortar TRM

    OpenAIRE

    Gil Espert, Lluís; Escrig Pérez, Christian; Bernat Masó, Ernest

    2013-01-01

    This work presents a method of strengthening concrete structures based on textiles of high strength and mortars. The combination of textiles and mortars produces a new composite material of cementitic matrix. This material can be used for the reinforcement of concrete beams under bending loads. We tested several combinations of fibers: glass, PBO, steel and carbon fibers with mortar and we used them to reinforce precast concrete beams. All the specimens were tested with a four-point load test...

  8. Durability of Lightweight Concrete and Mortar Exposed under Some Environment

    OpenAIRE

    Hiroshi, SAKURAI; Koichi, AYUTA; Noboru, SAEKI; Yoshio, Fujita; Seiji, Kaneko; Mikito, IKEDA

    1991-01-01

    In this experiment, identically composed specimens of lightweight concrete and of a mortar material were exposed to a cold (coastal) environment (Monbetsu), warm sea environment (Izu) and used in the roof of a building in a warm-climate city (Yokohama) for 3years. The physical and chemical properties of the lightweight concrete specimens and those of the mortar specimens were examined. The results are as follows : (1) The lightweight concrete specimen contained more salt than the same mortar ...

  9. Estimating compressive strength of concrete by mortar testing

    OpenAIRE

    Camões, Aires; Aguiar, J. L. Barroso de; Jalali, Said

    2005-01-01

    Concrete mix design laboratory tests which time consuming and entails considerable effort. This study presents a method of reducing mix design testing costs by testing mortar instead of concrete specimens. The experimental programme consisted of defining mortar mixes equivalent to concrete mixes, moulding specimens of both mortar and concrete mixes studied and finally evaluating the compressive strength of specimens cured at different curing time. Results obtained indicate that a goo...

  10. Rendering mortars with incorporation of ceramic aggregates

    OpenAIRE

    Mª Rosário Veiga; João Silva; Jorge Brito

    2008-01-01

    In this paper the experimental evaluation of the water-related performance of rendering mortars with incorporation of recycled products is presented, based on three different research vectors: addition of fine recycled aggregates; reduction of the cement content (with simultaneous addition of fines); and replacement of sand with recycled material, with the same overall grading curve. The material presented here as recyclable is brick waste from the ceramics and construction industries.

  11. Domain decomposition methods for mortar finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  12. A Comparison between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production

    Science.gov (United States)

    Rabelo, Sarita C.; Filho, Rubens Maciel; Costa, Aline C.

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/ sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

  13. Micro-Raman study of the carbonation depth of a lime paste produced by a traditional technology

    Czech Academy of Sciences Publication Activity Database

    Mácová, Petra; Ševčík, Radek; Pérez-Estébanez, Marta; Válek, Jan; Viani, Alberto

    Wroclaw: Beta-druk, 2015 - (Czarnecka, M.; Łydżba-Kopczyńska, B.), s. 148-149 ISBN 978-83-60043-27-1. [Congress on Application of Raman Spectroscopy in Art and Archeology /8./. Wrocław (PL), 01.09.2015-05.09.2015] R&D Projects: GA ČR(CZ) GP14-20374P; GA MŠk(CZ) LO1219 Keywords : lime mortar * carbonation depth * CaCO3 polymorphs * micro-Raman Subject RIV: AL - Art, Architecture, Cultural Heritage

  14. Carbonatation Influence on Fly Ash and Portland Cement Mortars

    Directory of Open Access Journals (Sweden)

    P.L. Valdez–Tamez

    2009-01-01

    Full Text Available The influence of carbonation on mortars containing 25% of fly ash instead of the cementitious materials was studied. Mortar cylinder specimens were fabricated for 4 different W/C ratios: 0.35, 0.45, 0.55 and 0.65. Mortars with and without fly ash were subjected to an accelerated carbonation process. Volumetric weight, water absorption, compressive strength, water permeability, pH and mercury intrusion porosimetry of the mortar specimens were determined. Due to the fly ash pozzolanic potential, for all W/C ratios, results of the compressive strength tests at 28 days of the mortars with and without fly ash were similar. Mortars with fly ash presented similar water permeability as mortars without fly ash. PH results showed that alkalinity reduction is lower in mortars with fly ash compared to those containing cement only. In all the mortars, the porosimetric analysis indicated that porosity is reduced due to carbonation. Further more, it is showed the predominance of the macro and mesopores.

  15. Carbonatation Influence on Fly Ash and Portland Cement Mortars

    OpenAIRE

    P.L. Valdez–Tamez; A. Durán–Herrera; G. Fajardo–San Miguel; C.A. Juárez–Alvarado

    2009-01-01

    The influence of carbonation on mortars containing 25% of fly ash instead of the cementitious materials was studied. Mortar cylinder specimens were fabricated for 4 different W/C ratios: 0.35, 0.45, 0.55 and 0.65. Mortars with and without fly ash were subjected to an accelerated carbonation process. Volumetric weight, water absorption, compressive strength, water permeability, pH and mercury intrusion porosimetry of the mortar specimens were determined. Due to the fly ash pozzolanic potential...

  16. High-Performance Grouting Mortar Based on Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Cong Ma

    2015-01-01

    Full Text Available A study on high-performance grouting mortar is reported. The common mortar was modified by mineral admixtures such as gypsum, bauxite, and alunite. The effects of mineral admixtures on the fluidity, setting time, expansion, strength, and other properties of mortar were evaluated experimentally. The microstructure of the modified mortar was characterized by X-ray diffraction, scanning electron microscopy, and mercury intrusion porosimetry. Moreover, the expansive performance and strength of the grouting mortar were verified by anchor pullout test. The results show that the best conditions for gypsum-bauxite grouting mortar are as follows: a water-to-binder ratio of 0.3, a mineral admixture content of ~15%, and a molar ratio K of 2. The ultimate bearing capacity of the gypsum-bauxite grouting mortar anchor increased by 39.6% compared to the common mortar anchor. The gypsum-bauxite grouting mortar has good fluidity, quick-setting, microexpansion, early strength, and high strength performances.

  17. Comparison of surface properties between kaolin and metakaolin in concentrated lime solutions.

    Science.gov (United States)

    Konan, K L; Peyratout, C; Smith, A; Bonnet, J-P; Rossignol, S; Oyetola, S

    2009-11-01

    The surface adsorption of calcium hydroxide onto kaolin and metakaolin was investigated by monitoring with atomic emission spectroscopy and pH measurements the amounts of ions left in solution after exposing clays to calcium hydroxide solutions of various concentrations. Both clays adsorb calcium and hydroxyl ions but differently. Kaolin adsorbs calcium hydroxide not only at the edges of the clay particles but also onto the basal faces. The adsorbed hydrated calcium ions form a layer on the clay particle surfaces, preventing further dissolution of the clay mineral platelet. Metakaolin shows high pozzolanic activity, which provides the quick formation of hydrated phases at the interfaces between metakaolin and lime solutions. The nature of the hydration products has been investigated using X-ray diffraction (XRD) and differential thermal analysis (DTA). The most important hydrated phases like CSH (hydrated calcium silicate) and C(2)ASH(8) (gehlenite) have been identified. PMID:19682702

  18. Mortar cohesión. The effect of additives

    Directory of Open Access Journals (Sweden)

    Castro, J. H.

    1975-12-01

    Full Text Available This study was concerned with the hydration of clinker compounds in the presence of different additives; it appeared that accelerating additives, such as calcium chloride and silicic acid, produce longer fibers of tobermorite, whereas inhibitors, such as sugar, produce shorter fibers of tobermorite. This same effect was observed in the hydration of anhydrite, in which large crystals of gypsum were produced in the presence of sodium sulphate. So the cohesion in mortars of cement and anhydrite is explained in terms of the role of fibers.Se estudia la hidratación del clínker en presencia de diferentes aditivos encontrándose que los aceleradores, como el cloruro cálcico y el ácido salicílico, producen tobermorita de fibra larga y los inhibidores, como el azúcar, tobermorita de fibra corta. Este mismo efecto se encuentra en la anhidrita, produciéndose cristales de yeso largo, en presencia del sulfato de sodio, y cristales cortos en ausencia del catalizador. La cohesión de un mortero depende luego del largo de sus fibras. Así la cohesión de los morteros de cemento y anhidrita se explican en función del rol de la fibra.

  19. FarmLime Project Summary Report

    OpenAIRE

    Mitchell, C. J.; Simukanga, S.; Shitumbanuma, V.; Banda, D.; Walker, B; Steadman, E. J.; Muibeya, B.; Mwanza, M.; Mtonga, M.; Kapindula, D.

    2003-01-01

    This report summarises work funded by the Department for International Development Knowledge and Research programme, as part of the British Government’s programme of aid to developing countries. The ‘FarmLime: Low-cost lime for small-scale farming’ project (R7410) set out to investigate a way of improving the agricultural performance of small scale farms through the use of low-cost agricultural lime produced within the farming district using locally occurring dolomite. The main technical rese...

  20. FarmLime: Low-cost lime for small-scale farming

    OpenAIRE

    Mitchell, C. J.

    2005-01-01

    FarmLime (Low-cost lime for small-scale farming) is a multidisciplinary research project that aims to increase the food security of small-scale farmers by improving their access to agricultural lime which neutralises soil acidity and adds nutrients. This project focused on farming districts in northern Zambia that have highly acidic soils with poor crop yields. The aim was to locate suitable carbonate rocks in these farming districts and produce agricultural lime using a low cost method, elim...

  1. Liming can decrease legume crop yield and leaf gas exchange by enhancing root to shoot ABA signalling.

    Science.gov (United States)

    Rothwell, Shane A; Elphinstone, E David; Dodd, Ian C

    2015-04-01

    To meet future requirements for food production, sustainable intensive agricultural systems need to optimize nutrient availability to maximize yield, traditionally achieved by maintaining soil pH within an optimal range (6-6.5) by applying lime (calcium carbonate). However, a field trial that applied recommended liming rates to a sandy loam soil (increasing soil pH from 5.5 to 6.2) decreased pod yield of field bean (Vicia faba L. cv. Fuego) by ~30%. Subsequent pot trials, with liming that raised soil pH to 6.3-6.7, reduced stomatal conductance (g(s)) by 63, 26, and 59% in V. faba, bean (Phaseolus vulgaris), and pea (Pisum sativum), respectively. Furthermore, liming reduced shoot dry biomass by 16-24% in these species. Ionomic analysis of root xylem sap and leaf tissue revealed a decrease in phosphorus concentration that was correlated with decreased g(s): both reductions were partially reversed by adding superphosphate fertilizer. Further analysis of pea suggests that leaf gas exchange was reduced by a systemic increase (roots, xylem sap, and leaves) in the phytohormone abscisic acid (ABA) in response to lime-induced suboptimal plant phosphorus concentrations. Supplying synthetic ABA via the transpiration stream to detached pea leaves, at the same xylem sap concentrations induced by liming, decreased transpiration. Furthermore, the g(s) of the ABA-deficient mutant pea wilty was unresponsive to liming, apparently confirming that ABA mediates some responses to low phosphorus availability caused by liming. This research provides a detailed mechanistic understanding of the physiological processes by which lime application can limit crop yields, and questions the suitability of current liming recommendations. PMID:25740925

  2. Métodos de determinação de cálcio e magnésio trocáveis e estimativa do calcário residual em um Latossolo submetido à aplicação de calcário e gesso em superfície Methods for determining soil exchangeable calcium and magnesium and residual lime in an oxisol submitted to surface application of lime and phosphogypsum

    Directory of Open Access Journals (Sweden)

    Rogério Peres Soratto

    2008-04-01

    Full Text Available A determinação da fração do calcário remanescente no solo ("calcário residual", em área onde foi realizada aplicação de calcário em superfície, sem incorporação, na implantação do sistema plantio direto, pode ser uma ferramenta importante para auxiliar na definição do momento em que se faz necessária a reaplicação de calcário. Nesse sentido, os objetivos deste trabalho foram avaliar: quais os teores de Ca e Mg trocáveis, extraídos por percolação com solução de KCl e resina trocadora de íons; a quantidade do calcário aplicado que ainda não havia reagido no solo, mediante a determinação dos teores de Ca e Mg não-trocáveis; e qual a influência do gesso nos teores de Ca e Mg trocáveis e na dissolução do calcário, 18 meses após a aplicação em superfície. O experimento foi realizado em um Latossolo Vermelho distroférrico, em Botucatu (SP. O delineamento experimental foi de blocos casualizados com parcelas subdivididas e quatro repetições. Nas parcelas, foram aplicadas quatro doses de calcário dolomítico (0, 1.100, 2.700 e 4.300 kg ha-1, com PRNT = 71,2 %, e nas subparcelas, duas doses de gesso agrícola (0 e 2.100 kg ha-1. O calcário e o gesso foram aplicados em superfície, sem incorporação. Houve alta correlação na determinação de Ca e Mg trocável entre os métodos de percolação com solução de KCl e resina trocadora de íons. A extração pelo método da resina trocadora de íons superestimou os teores de Ca e Mg trocáveis em solo com recente aplicação de calcário em superfície. A aplicação de gesso em superfície reduziu a dissolução do calcário na camada superficial (0-0,10 m. Os teores de Ca e Mg não-trocáveis podem ser utilizados para estimar a quantidade de calcário residual no solo.The determination of the non-reacted lime fraction in the soil ("residual lime" after initial surface application of lime without incorporation in no-tillage systems can be important to

  3. EQUIVALENT MODEL OF EXPANSION OF CEMENT MORTAR UNDER SULPHATE EROSION

    Institute of Scientific and Technical Information of China (English)

    Jue Zhu; Minqiang Jiaug; Jiankang Chen

    2008-01-01

    The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods.First,cement mortars are fabricated with the ratio of water to cement of 0.4,0.6,and 0.8.Secondly,the expansion of specimen immerged in sulphate solution is measured at different times.Thirdly,a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method.In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account.Finally,the numerical calculation is performed.The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.

  4. Assessment of chemical analyses by means of portable XRF in the Roman mortars of Complutum archaeological site (Spain)

    Science.gov (United States)

    Ergenç, Duygu; Freire, David; Fort, Rafael

    2016-04-01

    The chemical characterization of lime mortars used in Roman period has a great significance and plays a key role in the acquisition of knowledge with respect to construction technology, raw materials and, accordingly, in its conservation works. When it comes to cultural heritage studies, sampling is always complicated since the minimum damage is the primary concern. The use of non-destructive techniques and direct measurements with portable devices reduce the amount of samples and time consumed in analyses, consequently it could be stated that such techniques are extremely useful in conservation and restoration works. In this study, the portable XRF device was used to determine the composition of chemical elements which compose the Roman lime mortars in the archaeological site of Complutum, Alcalá de Henares (Madrid, Spain) which is listed as a World Heritage Site by UNESCO since 1998. Portable XRF devices have some detection limits below the ones of the laboratory equipment that are immovable and require sampling. In order to correlate the results, sampling and grinding were initially done to prepare the powders for the laboratory XRF analysis with the following elements: Si, Al, Fe, Ca, Mg, K, Ti, Nb, Zr, Sr, Rb, Pb, Zn and Cr. The analyses of the powdered samples were conducted with the laboratory equipment PHILIPS Magix Pro (PW-2440) from the Centre of Scientific Instrumentation CIC in the University of Granada, and the results were compared to the results gathered with X Ray Florescence (EDTRX) THERMO NITON model XL3T from the Petrophysics Laboratory Geosciences Institute IGEO (CSIC-UCM). Analyses were performed on the surfaces of the samples -without any previous preparation-, and on the powdered samples to compare the variations between both traditional XRF analyses and the portable XRF. A good correlation was found among the results obtained by the laboratory equipment, the portable device as well as the surface measurements. The results of this study

  5. The central tower of the cathedral of Schleswig - New investigations to understand the alcali-silica reaction of historical mortars

    Science.gov (United States)

    Wedekind, Wanja; Protz, Andreas

    2016-04-01

    The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.

  6. Dating mortars: three medieval Spanish architectures

    Directory of Open Access Journals (Sweden)

    Quirós Castillo, Juan Antonio

    2011-12-01

    Full Text Available One of the major issues in building archaeology is finding the age of elements and structures discovered. Mortars represent a class of material basically constituted by a mixture of different phases (i.e. binder, aggregates, water and are widely used for constructive uses and artworks. Current scientific literature regarding the possibility of accurate radiocarbon dating for mortars reports different and still contradictory results. In this study, a new protocol for radiocarbon dating of mortar developed at the Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE is used to perform 14C measurements on archaeological mortars coming from three medieval architectures of northern Spain (two churches and the walls of a castle. Results observed will be discussed and compared with independent age estimations (i.e. radiocarbon dating performed on organic materials found in the same study site, archaeological analyses in order to frame experimental observations in the actual site knowledge by means of a multidisciplinary approach.Una de las principales problemáticas a las que se enfrenta la arqueología de la arquitectura es datar los elementos y las estructuras. Las argamasas son un tipo de material constituido por una mezcla de diferentes elementos (agregados, agua y empleadas en muchos tipos de construcciones. Los estudios realizados hasta la actualidad en torno a la posibilidad de realizar dataciones radiocarbónicas precisas han proporcionado resultados contradictorios. El objetivo de este artículo es el de presentar un nuevo protocolo para datar la arquitectura histórica desarrollado por el Centre for Isotopic Research on Cultural and Enviromental Heritage (CIRCE, basado en la realización de dataciones radiocarbónicas de argamasas a partir del análisis de tres arquitecturas medievales del norte del España, dos iglesias y la muralla de un castillo. Los resultados obtenidos han sido confrontados y comparados con otros

  7. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  8. RILEM TC 203-RHM: Repair mortars for historic masonry The role of mortar in masonry: an introduction to requirements for the design of repair mortars

    Czech Academy of Sciences Publication Activity Database

    Groot, C.; van Balen, K.; Bicer-Simsir, B.; Binda, L.; Elsen, J.; van Hees, R.; von Konow, T.; Lindqvist, J.; Mauerbrecher, P.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.; Thompson, M.; Válek, Jan; Veiga, R.

    2012-01-01

    Roč. 45, č. 9 (2012), s. 1287-1294. ISSN 1359-5997 Institutional support: RVO:68378297 Keywords : mortar * classification * requirements Subject RIV: JN - Civil Engineering Impact factor: 1.184, year: 2012

  9. RECOVERY OF CALCIUM CARBONATE AND SULFUR FROM FGD SCRUBBER WASTE

    Science.gov (United States)

    The report gives results of a demonstration of key process steps in the proprietary Kel-S process for recovering calcium carbonate and sulfur from lime/limestone flue gas desulfurization (FGD) scrubber waste. The steps are: reduction of the waste to calcium sulfide (using coal as...

  10. LANDSCAPE ARCHAEOLOGY ALONG LIMES TRANSALUTANUS

    Directory of Open Access Journals (Sweden)

    Eugen S. Teodor

    2014-09-01

    Full Text Available The project addresses the historical monuments comprised in the longest Roman ‘linear defence’ structure present on the Romanian territory.Despite it being the longest, this historic structure is the least protected and the least known in its technical details. Was indeed Limes Transalutanus an incomplete limes (lacking civilian settlements, for example, an odd construction (a vallum without fossa, an early-alarm line rather than a proper defensive line? Taking on these historical and archaeological challenges, the team attempts to develop an investigation technology applicable to large scale archaeological landscapes - a full evaluation chain, involving aerial survey, surface survey, geophysical investigation, multispectral images analysis, statistic evaluation and archaeological diggings. This technological chain will be systematically applied on the whole length of the objective, that is, on a 155 km distance. The attempt to find answers to issues related to the earth works’ functionality, layout, structure, chronology and relation with adjacent sites will be grounded on exploring the relations of the monument with the surrounding environment, by focussing on finding methods to reconstruct the features of the ancient landscapes, like systematic drilling, palynological tests and toponymical studies.

  11. Development of a three-dimensional CFD model for rotary lime kilns

    Energy Technology Data Exchange (ETDEWEB)

    Lixin Tao; Blom, Roger (FS Dynamics Sweden AB, Goeteborg (Sweden)); Nordgren, Daniel (Innventia, Stockholm (Sweden))

    2010-11-15

    In the calcium loop of the recovery cycle in a Kraft process of pulp and paper production, rotary lime kilns are used to convert the lime mud, mainly CaCO3, back to quick lime, CaO, for re-use in the causticizing process. The lime kilns are one of the major energy consumption devices for paper and pulp industry. Because of the rising oil price and new emission limits, the pulp mills have been forced to look for alternative fuels for their lime kilns. One interesting alternative to oil, often easily available at pulp mills, is biofuels such as sawdust and bark. However the practical kiln operation often encounters some difficulties because of the uncertainties around the biofuel impact on the lime kiln performance. A deeper understanding of the flame characteristics is required when shifting from oil to biofuels. Fortunately recent advances in modern Computational Fluid Dynamics, CFD, have provided the possibility to study and predict the detailed flame characteristics regarding the lime kiln performance. In this project a three-dimensional CFD model for rotary lime kilns has been developed. To simulate a rotary lime kiln the developed CFD model integrates the three essential sub-models, i.e. the freeboard hot flow model, the lime bed model and the rotating refractory wall model and it is developed based on the modern CFD package: FLUENT which is commercially available on the market. The numerical simulations using the developed CFD model have been performed for three selected kiln operations fired with three different fuel mixtures. The predicted results from the CFD modelling are presented and discussed in order to compare the impacts on the kiln performance due to the different firing conditions. During the development, the lime kiln at the Soedra Cell Moensteraas mill has been used as reference kiln. To validate the CFD model, in-plant measurements were carried out in the Moensteraas lime kiln during an experiment campaign. The results obtained from the

  12. Sources of uncertainties in OSL dating of archaeological mortars: The case study of the Roman amphitheatre “Palais-Gallien” in Bordeaux

    International Nuclear Information System (INIS)

    Archaeological mortars are more convenient and much more representative for the chronology of buildings than brick or wood constructions that can be re-used from older buildings. Before dating unknown samples of mortars, further investigation of OSL from mortars is required and the most efficient methodology needs to be established. In this study we compared the ages obtained by OSL dating of quartz extracted from mortars of the Roman amphitheatre Palais-Gallien in Bordeaux with independent age information. Resetting of the OSL signal occurred during the preparation of mortar when grains of sand (quartz) were extracted and mixed with lime and water. The mortar was subsequently hidden from light by embedding within the structure which is the event to be dated. Various factors contribute to uncertainties in the age determination. The frequency of measured equivalent doses reveals a large scattering. Optical bleaching of certain grains can be partial due to the short duration of the exposure to light. We worked with the single grain technique in order to find and select the grains that were sufficiently exposed to daylight. To determine the average equivalent dose, we tried three different approaches: a calculation of an arithmetic mean and one following either the central age model or the 3-parameter minimum age model, the latter turned out to be the only relevant way to evaluate the experimental data. The proportion of grains included in the calculation of the average equivalent dose represents 2.7–4.7 % of the overall analysed grains. The results obtained for the three out of four samples are approaching the expected age, however, the minimum doses and the corresponding ages are significantly over-estimated in case of two samples. The studied material is very coarse, which causes heterogeneity of irradiation at the single grain scale, and contributes to a dispersion of equivalent doses. Different analytical methods (scanning electron microscopy with energy

  13. Composition of mortar as a function of distance to the brick-mortar interface : A study on the formation of cured mortar structure in masonry using NMR, PFM and XRD

    NARCIS (Netherlands)

    Brocken, H.J.P.; Larbi, J.A.; Pel, L.; Pers, N.M. van der

    1999-01-01

    The formation of cured mortar structure in masonry was studied using multiple experimental techniques. Starting with fresh mortar, nuclear magnetic resonance (NMR) was used to measure the water extraction during brick laying. After curing, the composition of cured mortar was investigated with polari

  14. Composition of mortar as a function of distance to the brick-mortar interface: A study on the formation of cured mortar structure in masonry using NMR, PFM and XRD

    NARCIS (Netherlands)

    Brocken, H.J.P.; Larbi, J.A.; Pel, L.; Van der Pers, N.M.

    1999-01-01

    The formation of cured mortar structure in masonry was studied using multiple experimental techniques. Starting with fresh mortar, nuclear magnetic resonance (NMR) was used to measure the water extraction during brick laying. After curing, the composition of cured mortar was investigated with polari

  15. The colour potentials of SSA-containing mortar

    DEFF Research Database (Denmark)

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie;

    2015-01-01

    few exceptions landfilled and thus, wasted.The purpose of the experiments was to examine the influence of SSA and how it affected the colour of mortar samples. SSA was ground in 6 different intervals and added to mortar mixes by replacing 20% of the cement. An additional focus was to examine the...... possibilities to accentuate the colours of the hardened mortar by using paper cuttings in the production of the samples. The result of the experiments showed that a colour scale can be developed from ground SSA, and that paper may have the potential of providing divers textural qualities when it is used in...

  16. Effect of Reactivity of Quick Lime on the Properties of Hydrated Lime Sorbent for SO2 Removal

    Institute of Scientific and Technical Information of China (English)

    H.G.Shin; H.Kim; Y.N.Kim; H.S.Lee

    2009-01-01

    The hydration of quick lime and the sulfation of hydrated lime were carried out for verification of relationship between the reactivity of quick lime and the properties of hydrated lime as a sorbent.The effect of reactivity of quick lime was investigated with the change of calcination temperature and time.Results obtained showed that the temperature rise during the hydration of quick limes varied from 31 to 69℃ with the variation of calcination temperature and time.The specific surface area and the sulfation ability of hydrated lime prepared by hydration of quick lime showed a proportional relationship with the reactivity of quick lime.The hydrated lime which was prepared by hydration of quick lime calcined at 1100℃ had the highest reactivity and showed 41.53 m2/g of the specific surface area, 0.16 cm3/g of the pore volume and 87% of the removal efficiency for SO2 removal.

  17. Incorporation of limestone residue from marble processing plant in the city of Cachoeiro do Itapemirim, Espirito Santo, Brazil, in the production of mortars; Incorporacao de residuo proveniente de usina de beneficiamento de marmore do municipio de Cachoeiro do Itapemirim, ES, Brasil, na confeccao de argamassas

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, G.P.; Alexandre, J.; Dias, D.P.; Dias Junior, N.S.; Anderson, R.B., E-mail: gabrielkgbs@gmail.co [Universidade Estadual do Norte Fluminense (LECIV/UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Ciencia e Tecnologia. Lab. de Engenharia Civil

    2010-07-01

    Cachoeiro do Itapemirim city (ES), located 136 km from Vitoria, the state's capital, is the largest ornamental stones producer in Brazil, whose beneficiation produces a large amount of waste that, even today, is responsible for major damages done to the environment. This article aims the experimental study of hydrated lime use (product marketed to be used in mortar) by a residue from marble beneficiation from an industry located in that city. Two mixes were made with cement:sand:hydrated lime and cement:sand:residue. The mortars were evaluated by their properties comparisons in fresh and hardened states, namely: consistency index, mass density and incorporated air content, compressive strength, tensile and bending grip for traction. Chemical and mineralogical analysis by X-ray diffraction were also made. The obtained results met the requirements prescribed by ABNT NBR 13 281 (2005). (author)

  18. A chemometric approach to the characterisation of historical mortars

    International Nuclear Information System (INIS)

    The compositional knowledge of historical mortars is of great concern in case of provenance and dating investigations and of conservation works since the nature of the raw materials suggests the most compatible conservation products. The classic characterisation usually goes through various analytical determinations, while conservation laboratories call for simple and quick analyses able to enlighten the nature of mortars, usually in terms of the binder fraction. A chemometric approach to the matter is here undertaken. Specimens of mortars were prepared with calcitic and dolomitic binders and analysed by Atomic Spectroscopy. Principal Components Analysis (PCA) was used to investigate the features of specimens and samples. A Partial Least Square (PLS1) regression was done in order to predict the binder/aggregate ratio. The model was applied to historical mortars from the churches of St. Lorenzo (Milan) and St. Abbondio (Como). The accordance between the predictive model and the real samples is discussed

  19. Atmospheric deterioration of ancient and modern hydraulic mortars

    Science.gov (United States)

    Sabbioni, C.; Zappia, G.; Riontino, C.; Blanco-Varela, M. T.; Aguilera, J.; Puertas, F.; Balen, K. Van; Toumbakari, E. E.

    Different types of ancient and recent hydraulic mortars were collected from well-documented archaeological, historic and modern buildings in various geographical locations (urban, suburban, rural and maritime) of Italy, Spain and Belgium, representative of different environmental impacts, types and degrees of deterioration. A synthesis of the characteristics of the collected samples is presented, along with the identification of the formation products that occurred on the sample surfaces as a result of the reaction of the mortars with atmospheric pollutants. The analyses were performed by means of optical microscopy (OM), X-ray diffractometry (XRD), scanning electron microscopy (SEM-EDX) and ion chromatography (IC). The results obtained prove that sulphation processes takes place on hydraulic mortars, leading to gypsum formation on the external surface of the samples. Through the reaction of gypsum with the aluminate hydrate of the binder, ettringite formation was found to occur on a cement-based restoration mortar sampled in Antwerp.

  20. Optimization Problem of Mortar Barrel and Bomb Clearances

    Directory of Open Access Journals (Sweden)

    J. P. Sirpal

    1987-07-01

    Full Text Available Optimum mortar windage to achieve maximum accuracy and required velocity for impacting the firing stud under two conditions of constraint is considered. These control constraints are considered to be bounded and the extremals have been studied.

  1. Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard

    Directory of Open Access Journals (Sweden)

    Miguel A. Olego

    2016-06-01

    Full Text Available Aluminium toxicity has been recognized as one of the most common causes of reduced grape yields in vineyard acid soils. The main aim of this study was to evaluate the effect of two liming materials, i.e. dolomitic lime and sugar foam, on a vineyard cultivated in an acid soil. The effects were studied in two soil layers (0-30 and 30-60 cm, as well as on leaf nutrient contents, must quality properties and grape yield, in an agricultural soil dedicated to Vitis vinifera L. cv. ‘Mencía’ cultivation. Data management and analysis were performed using analysis of variance (ANOVA. As liming material, sugar foam was more efficient than dolomitic limestone because sugar foam promoted the highest decrease in soil acidity properties at the same calcium carbonate equivalent dose. However, potassium contents in vines organs, including leaves and berries, seemed to decrease as a consequence of liming, with a concomitant increase in must total acidity. Soil available phosphorus also decreased as a consequence of liming, especially with sugar foam, though no effects were observed in plants. For these reasons fertilization of this soil with K and P is recommended along with liming. Grape yields in limed soils increased, although non-significantly, by 30%. This research has therefore provided an important opportunity to advance in our understanding of the effects of liming on grape quality and production in acid soils.

  2. Volume Change Measurement Of Collapsible Soil Stabilized With Lime And Waste Lime

    Directory of Open Access Journals (Sweden)

    Khawla A. Al-Juari

    2013-05-01

    Full Text Available This paper presents a series of laboratory tests to evaluate the effects of lime and waste lime on the volume change and strength characteristics of moderately collapsible soil selected from Al-Rashidia in Mosul city. The tests are performed at different percentages of lime and waste lime of 0, 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 6.0 and 8.0% by dry weight of soil. One dimensional compression tests are conducted to clarify the influences of relative compaction, compaction water content, vertical stress level and curing time on the volume change and strength characteristics.The results of this study indicated a decrease in the plasticity, swelling potential and swelling pressure of treated soil. The soil became non-plastic at (3&6% of lime and waste lime respectively. Swelling pressure and swelling potential reached to zero at 2% lime and  2&7 days of curing time.Unconfined compressive strength (UCS reached to maximum value at optimum stabilizers content. The UCS of lime treated soil is more than that treated by waste lime at different curing time. The collapse index and potential of treated soil are found less than that of natural soil and decrease with increasing stabilizer content until drop to zero at 2% lime. Collapsing increased continuously with applied stresses, but with curing time reached a maximum value at 2 day. On the other hand, collapsing of treated soil with lime is less than that  of waste lime treated soil at different curing time and stresses.

  3. Characteristics of Bamboo Leaf Ash Blended Cement Paste and Mortar

    OpenAIRE

    Umoh A.A.; Odesola I.

    2015-01-01

    The use of bamboo leaf ash as cement supplement can contribute to reduction in cost and environmental hazard associated with cement production as well as waste pollution caused by the littered bamboo leaves. Therefore, the characteristics of cement paste and mortar incorporating bamboo leaf ash were investigated. The results of the physical properties of the pastes were within the requirements stipulated by relevant standards while that of the mortar cubes indicated that the compressive stren...

  4. The colour potentials of SSA-containing mortar

    OpenAIRE

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie; Bache, Anja Margrethe; Goltermann, Per

    2015-01-01

    This paper reports an experimental study of aesthetical qualities of mortar containing sewage sludgeash (SSA). SSA is the residue produced at water treatment plants where incineration of the sludge is applied in order to decrease volume and to prevent pathogens from spreading. Today SSA is with a few exceptions landfilled and thus, wasted.The purpose of the experiments was to examine the influence of SSA and how it affected the colour of mortar samples. SSA was ground in 6 different intervals...

  5. Neutron radiography of heated high-performance mortar

    OpenAIRE

    Weber B; Wyrzykowski M.; Griffa M.; Carl S.; Lehmann E.; Lura P.

    2013-01-01

    Neutron radiography was applied to investigate the water distribution in mortar samples heated from one side to 600 °C. In mortar, aggregates and anhydrous cement are almost transparent to neutrons, while hydration products and water-filled capillary pores bear the largest attenuation. The evolution of the moisture profile shows a sharp dehydration front and accumulation of water due to condensation of water vapor behind this front.

  6. Neutron radiography of heated high-performance mortar

    Directory of Open Access Journals (Sweden)

    Weber B.

    2013-09-01

    Full Text Available Neutron radiography was applied to investigate the water distribution in mortar samples heated from one side to 600 °C. In mortar, aggregates and anhydrous cement are almost transparent to neutrons, while hydration products and water-filled capillary pores bear the largest attenuation. The evolution of the moisture profile shows a sharp dehydration front and accumulation of water due to condensation of water vapor behind this front.

  7. The Mortar Element Method with Lagrange Multipliers for Stokes Problem

    Institute of Scientific and Technical Information of China (English)

    Yaqin Jiang

    2007-01-01

    In this paper, we propose a mortar element method with Lagrange multiplier for incompressible Stokes problem, i.e., the matching constraints of velocity on mortar edges are expressed in terms of Lagrange multipliers. We also present P1 nonconforming element attached to the subdomains. By proving inf-sup condition, we derive optimal error estimates for velocity and pressure. Moreover, we obtain satisfactory approximation for normal derivatives of the velocity across the interfaces.

  8. Estimation of masonry mortars strength during stone buildings investigation (rus)

    OpenAIRE

    Derkach V.N.; Orlovich R.B.

    2011-01-01

    In this article the analysis of estimation methods of the masonry mortars strength applied in Russia and other countries during stone buildings and constructions investigation was carried out. Advantages and disadvantages of these methods are considered.The new technique of masonry mortars strength estimation is offered. It is based on trials of bored from a masonry body cylindrical samples. It is pointed, that this method is the most universal and informative from all methods considered in t...

  9. Mortar for covering structural elements, with high acustic performance levels

    OpenAIRE

    Sanchez de Rojas, M.I.; Olaya Adán, Manuel; Frías Rojas, Moisés; Olmeda, J.; Frutos Vázquez, Borja; Rivera Lozano, Julián; Esteban, J. Luis

    2011-01-01

    [EN] The incorporation of a covering mortar based on cement and granulated coke with particle diameters between 1 and 6 mm, into structural elements such as a brickwork extrados, gives a dual effect of enhanced acoustic insulation. This effect is due to the increase in the mass by the spraying of the mortar and to acoustic absorption as a consequence of the porous network of the material applied. The acoustic performance levels achieved exceed those of the same configuration as a double wall ...

  10. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  11. Volume Change Measurement Of Collapsible Soil Stabilized With Lime And Waste Lime

    OpenAIRE

    Khawla A. Al-Juari

    2013-01-01

    This paper presents a series of laboratory tests to evaluate the effects of lime and waste lime on the volume change and strength characteristics of moderately collapsible soil selected from Al-Rashidia in Mosul city. The tests are performed at different percentages of lime and waste lime of 0, 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 6.0 and 8.0% by dry weight of soil. One dimensional compression tests are conducted to clarify the influences of relative compaction, compaction water content, vertical s...

  12. Applicability of Carbonated Electric Arc Furnace Slag to Mortar

    Science.gov (United States)

    Yokoyama, S.; Arisawa, R.; Hisyamudin, M. N. N.; Murakami, K.; Maegawa, A.; Izaki, M.

    2012-03-01

    Authors have been studying the absorption of CO2 in the steelmaking slag. In this study, an application of the electric arc furnace slag after the carbonation to admixture of mortar was investigated with the JIS (A6206-1997) method for ground granulated blast-furnace slag for concrete. The percent flows for the test mortar were smaller than that for the standard mortar. The percent flow of the carbonated slag whose average particle size of more than approximately 4 μm increased with an increase in the average size of the particles. Because the compressive strengths of the test mortar cured for 91 days were almost the same as those cured 28 days, the slag after the carbonation was thought not to have self-hardening property for a medium and long term. The compressive strength for the test mortar was almost unchanged within a range of approximately 2 to 7 μm of the average particle size, and it in this range was highest. The activity indexes for the test mortar prepared with the slag after the carbonation ranged from approximately 40 to 60 %.

  13. High performance superplasticized silica fume mortars for ferrocement works

    Directory of Open Access Journals (Sweden)

    Rathish Kumar P.

    2010-01-01

    Full Text Available Ferrocement works demand cement mortars of good workability and high strength. Reduction in water-cement ratio combined with a refined pore structure increases the compressive strength in addition to the enhancement of durability characteristics, but the workability decreases. Workability becomes important, as the mortar has to easily penetrate between the layers of the mesh wires. A reasonably workable high strength cement mortar can be obtained by using a high cement content coupled with the use of superplasticizers. These were also found to retain the cohesiveness and check undesirable bleeding and segregation. An experimental program was conducted to study the functional efficacy of an SNF condensate used as a water reducing superplasticizer. The compressive strength and flow characteristics of the mortars were determined to decide their suitability for ferrocement works. The parameters included the mix proportions, the grade of cement, age of curing and the dosage of superplasticizer. It was concluded from the study that the addition of an optimum dosage of superplasticizer improved the workability and strength characteristics of silica fume mortars. There was a late gain in the compressive strength of silica fume mortars.

  14. Applicability of Carbonated Electric Arc Furnace Slag to Mortar

    International Nuclear Information System (INIS)

    Authors have been studying the absorption of CO2 in the steelmaking slag. In this study, an application of the electric arc furnace slag after the carbonation to admixture of mortar was investigated with the JIS (A6206-1997) method for ground granulated blast-furnace slag for concrete. The percent flows for the test mortar were smaller than that for the standard mortar. The percent flow of the carbonated slag whose average particle size of more than approximately 4 μm increased with an increase in the average size of the particles. Because the compressive strengths of the test mortar cured for 91 days were almost the same as those cured 28 days, the slag after the carbonation was thought not to have self-hardening property for a medium and long term. The compressive strength for the test mortar was almost unchanged within a range of approximately 2 to 7 μm of the average particle size, and it in this range was highest. The activity indexes for the test mortar prepared with the slag after the carbonation ranged from approximately 40 to 60%.

  15. Properties of wastepaper sludge in geopolymer mortars for masonry applications.

    Science.gov (United States)

    Yan, Shiqin; Sagoe-Crentsil, Kwesi

    2012-12-15

    This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products. PMID:22868380

  16. Inactivation of Adenovirus Type 5, Rotavirus WA and Male Specific Coliphage (MS2 in Biosolids by Lime Stabilization

    Directory of Open Access Journals (Sweden)

    Aaron B. Margolin

    2007-03-01

    Full Text Available The use of lime to reduce or eliminate pathogen content is a cost-effective treatment currently employed in many Class B biosolids production plants in the United States. A bench scale model of lime stabilization was designed to evaluate the survival of adenovirus type 5, rotavirus Wa, and the male specific bacteriophage, MS2, in various matrices. Each virus was initially evaluated independently in a reverse osmosis treated water matrix limed with an aqueous solution of calcium hydroxide for 24-hr at 22 ± 5°C. In all R/O water trials, adenovirus type 5, rotavirus Wa and MS2 were below detectable levels (<100.5 TCID50/mL and <1 PFU/mL respectively following 0.1-hr of liming. Adenovirus type 5, rotavirus Wa, and MS2, were inoculated into composted, raw and previously limed matrices, representative of sludge and biosolids, to achieve a final concentration of approximately 104 PFU or TCID50/mL. Each matrix was limed for 24-hr at 22 ± 5°C and 4 ± 2°C. In all trials virus was below detectable levels following a 24-hr incubation. The time required for viral inactivation varied depending on the temperature and sample matrix. This research demonstrates reduction of adenovirus type 5, rotavirus Wa, and male-specific bacteriophage, in water, sludge and biosolids matrices following addition of an 8% calcium hydroxide slurry to achieve a pH of 12 for 2-hr reduced to 11.5 for 22-hr by addition of 0.1 N HCl. In these trials, MS2 was a conservative indicator of the efficacy of lime stabilization of adenovirus Type 5 and rotavirus Wa and therefore is proposed as a useful indicator organism.

  17. Oxyfuel combustion in rotary kiln lime production

    OpenAIRE

    Eriksson, Matias; Hökfors, Bodil; Backman, Rainer

    2014-01-01

    The purpose of this article is to study the impact of oxyfuel combustion applied to a rotary kiln producing lime. Aspects of interest are product quality, energy efficiency, stack gas composition, carbon dioxide emissions, and possible benefits related to carbon dioxide capture. The method used is based on multicomponent chemical equilibrium calculations to predict process conditions. A generic model of a rotary kiln for lime production was validated against operational data and literature. T...

  18. Corrosion effects on soda lime glass

    OpenAIRE

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different degrees of damage has resulted in a inore clear picture of the stress-conosion luechanisms involved. The effects of these on long tenn strength are discussed.

  19. Balancing guava nutrition with liming and fertilization

    Directory of Open Access Journals (Sweden)

    Amanda Hernandes

    2012-12-01

    Full Text Available Guava response to liming and fertilization can be monitored by tissue testing. Tissue nutrient signature is often diagnosed against nutrient concentration standards. However, this approach has been criticized for not considering nutrient interactions and to generate numerical biases as a result of data redundancy, scale dependency and non-normal distribution. Techniques of compositional data analysis can control those biases by balancing groups of nutrients, such as those involved in liming and fertilization. The sequentially arranged and orthonormal isometric log ratios (ilr or balances avoid numerical bias inherent to compositional data. The objectives were to relate tissue nutrient balances with the production of "Paluma" guava orchards differentially limed and fertilized, and to adjust the current patterns of nutrient balance with the range of more productive guava trees. It was conducted one experiment of 7-yr of liming and three experiments of 3-yr with N, P and K trials in 'Paluma' orchards on an Oxisol. Plant N, P, K, Ca and Mg were monitored yearly. It was selected the [N, P, K | Ca, Mg], [N, P | K], [N | P] and [Ca | Mg] balances to set apart the effects of liming (Ca-Mg and fertilizers (N-K on macronutrient balances. Liming largely influenced nutrient balances of guava in the Oxisol while fertilization was less influential. The large range of guava yields and nutrient balances allowed defining balance ranges and comparing them with the critical ranges of nutrient concentration values currently used in Brazil and combined into ilr coordinates.

  20. Electrodialytically treated MSWI APC residue as substitute for cement in mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Geiker, Mette Rica; Jensen, Pernille Erland

    2014-01-01

    /or electrodialytic remediation, were used in Portland cement mortar. Mortar bars with 15 % weight replacement of cement by APC residues showed compressive strengths up to 40 MPa after 28/32 days. Heavy metal and salt leaching from both crushed and monolithic mortars with APC residues was generally similar and...... comparable to both the reference mortar and mortar with coal fly ash. These results indicate that electrodialytic remediation could be used a pre-treatment method for MSWI APC residues prior to reuse in mortar....

  1. Innovative method and apparatus for the deep cleaning of soluble salts from mortars and lithic materials

    Science.gov (United States)

    Gaggero, Laura; Ferretti, Maurizio; Torrielli, Giulia; Caratto, Valentina

    2016-04-01

    Porous materials (e.g. plasters, mortars, concrete, and the like) used in the building industry or in artworks fail to develop, after their genesis, salts such as nitrates, carbonates (e.g. potassium carbonate, magnesium carbonate, calcium carbonate), chlorides (e.g. sodium chloride) and/or others, which are a concurrent cause of material deterioration phenomena. In the case of ancient or cultural heritage buildings, severe damage to structures and works of art, such as fresco paintings are possible. In general, in situ alteration pattern in mortars and frescoes by crystallization of soluble salts from solutions is caused by capillar rise or circulation in damp walls. Older buildings can be more subject to capillary rise of ion-rich waters, which, as water evaporates, create salt crystals inside the walls. If this pattern reveals overwhelming upon other environmental decay factors, the extraction of salts is the first restoration to recover the artpiece after the preliminary assessment and mitigation of the causes of soaking. A new method and apparatus, patented by University of Genoa [1] improves the quality and durability of decontamination by soluble salts, compared with conventional application of sepiolite or cellulose wraps. The conventional application of cellulose or sepiolite requires casting a more or less thick layer of wrap on the mortar, soaking with distilled water, and waiting until dry. The soluble salts result trapped within the wrap. A set of artificial samples reproducing the stratigraphy of frescoes was contaminated with saline solution of known concentration. The higher quality of the extraction was demonstrated by trapping the salts within layers of Japanese paper juxtaposed to the mortar; the extraction with the dedicated apparatus was operated in a significantly shorter time than with wraps (some hours vs. several days). Two cycles of about 15 minutes are effective in the deep cleaning from contaminant salts. The decontamination was

  2. A decade of studies at Loch Fleet, Galloway (Scotland): A catchment liming project and restoration of a brown trout fishery

    OpenAIRE

    Howells, Gwyneth; Dalziel, Tom

    1995-01-01

    Loch Fleet is a small upland lake in the hills of Galloway in southwest Scotland. In the 1970s the waters of the loch became more acidic and a brown trout fishery failed. This account summarises an experimental project, the "Loch Fleet Project" initiated in 1984, designed to reverse acidification of the loch by liming parts of the catchment. Liming about 40% of the catchment in 1986 and 1987 raised the pH and calcium levels, and reduced toxic aluminium concentrations. The improved conditions ...

  3. The role of calcium hydroxide in the formation of thaumasite

    International Nuclear Information System (INIS)

    It has recently been derived by thermodynamic calculation that the presence or absence of calcium hydroxide plays a vital role in the resistance of cement paste or concrete against the formation of thaumasite. To obtain experimental data on this matter, special binders have been mixed and used for the preparation of mortar bars. These specimens were exposed to moderate sulphate attack for a period of 18 months at a temperature of 8 deg. C. Mortar bars containing calcium hydroxide showed visual signs of attack a few months after exposure, leading to expansion, mass loss and complete failure. In contrast to this, no signs of attack were observed when no calcium hydroxide was present in the microstructure. These results confirm the conclusions of earlier thermodynamic calculations that the presence of calcium hydroxide has an important impact on the formation of thaumasite. Calcium-rich C-S-H formed in the presence of calcium hydroxide is vulnerable against sulphate attack and the formation of thaumasite. In the absence of calcium hydroxide, C-S-H has a much lower calcium/silicon ratio and a higher resistance against the formation of thaumasite

  4. Lime-enhanced hydrogen reduction of molybdenite

    Science.gov (United States)

    Mankhand, T. R.; Prasad, P. M.

    1982-06-01

    Kinetics of the direct hydrogen reduction of a high-grade (59 pct Mo) molybdenite (MoS2) concentrate was investigated in the presence of lime as a function of the quantity of lime in the charge, hydrogen flow rate, temperature, and time of reduction. Lime was found to enhance tremendously the reduction rate of MoS2 and drastically reduce H2S emission into the off gas to negligible levels. Successful application of the lime-hydrogen reduction technique was found to depend on the employment of low hydrogen flow rate and moderate temperatures of reduction. In these laboratory studies, best results were obtained with a lime addition ≥ three times the theoretical requirement and at 1173 K in 3.6 ks employing a hydrogen flow rate of 3.33 cm3s-1. The results were tested for the treatment of a low-grade (41 pct Mo) molybdenite concentrate. In this latter case, the procedure consisted of upgrading the concentrate by acid leaching (with dil HC1+HF) followed by lime-hydrogen reduction. The influence of quantity of acids, temperature, and time of leaching were investigated to optimize the conditions required for upgrading the MoS2 concentrate. The molybdenum powders obtained from the highgrade as well as upgraded molybdenite concentrates had 96 to 97 pct purity and could be further refined to 99.9 pct by electron-beam melting. Based on this lime-enhanced hydrogen reduction concept, a new ‘Leach-Reduction-Melting’ approach has been suggested as an alternative to the traditional methods of molybdenum extraction.

  5. Nutritional value of organic acid lime juice (Citrus latifolia T., cv. Tahiti

    Directory of Open Access Journals (Sweden)

    Carolina Netto Rangel

    2011-12-01

    Full Text Available Acid lime can be used as fresh fruit or as juice to increase the flavor of drinks. Therefore, it is necessary to analyze organic acid lime nutritional composition in order to evaluate if there are important differences among those conventionally produced. No significant differences in total titrable acidity, pH, ascorbic acid, sucrose, calcium, and zinc were found between the acid lime juice from organic biodynamic crops and conventional crops. However, the organic biodynamic fruits presented higher peel percentage than the conventional ones leading to lower juice yield. On the other hand, fructose, glucose, total soluble solids contents, potassium, manganese, iron, and copper were higher in the conventional samples. These results indicated few nutritional differences between organic and conventional acid lime juices in some constituents. Nevertheless, fruit juice from biodynamic crops could be a good choice since it is free from pesticides and other agents that cause problems to human health maintaining the levels similar to those of important nutritional compounds.

  6. Distribution of arsenic and mercury in lime spray dryer ash

    Energy Technology Data Exchange (ETDEWEB)

    Panuwat Taerakul; Ping Sun; Danold W. Golightly; Harold W. Walker; Linda K. Weavers [Ohio State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

    2006-08-15

    The partitioning of As and Hg in various components of lime spray dryer (LSD) ash samples from a coal-fired boiler was characterized to better understand the form and fate of these elements in flue gas desulfurization byproducts. LSD ash samples, collected from the McCracken Power Plant on the Ohio State University campus, were separated by a 140-mesh (106 {mu}m) sieve into two fractions: a fly-ash-/unburned-carbon-enriched fraction (> 106 {mu}m) and a calcium-enriched fraction (< 106 {mu}m). Unburned carbon and fly ash in the material > 106 {mu}m were subsequently separated by density using a lithium heteropolytungstate solution. The concentrations of As and Hg were significant in all fractions. The level of As was consistently greater in the calcium-enriched fraction, while Hg was evenly distributed in all components of LSD ash. Specific surface area was an important factor controlling the distribution of Hg in the different components of LSD ash, but not for As. Comparing the LSD ash data to samples collected from the economizer suggests that As was effectively captured by fly ash at 600{sup o}C, while Hg was not. Leaching tests demonstrated that As and Hg were more stable in the calcium-enriched fraction than in the fly-ash- or carbon-enriched fractions, potentially because of the greater pH of the leachate and subsequently greater stability of small amounts of calcium solids containing trace elements in these fractions. 37 refs., 8 figs., 2 tabs.

  7. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett

    2012-02-03

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.

  8. Use of rubble from building demolition in mortars.

    Science.gov (United States)

    Corinaldesi, V; Giuggiolini, M; Moriconi, G

    2002-01-01

    Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength. PMID:12423051

  9. Detachment analysis of dehumidified repair mortars applied to historical masonry walls

    OpenAIRE

    Bocca, Pietro Giovanni; Valente, Silvio; Grazzini, Alessandro; Alberto, Andrea

    2014-01-01

    An innovative laboratory procedure for the pre-qualification of repair mortars is described. The tested mortars are suitable for use with new dehumidified plasters applied to historical masonry walls. Long-term plaster detachment frequently occurs because of the mechanical incompatibility of mortar. The procedure consists of the application of static loads to mixed stone block-mortar specimens with particular characteristics, in terms of geometry and adhesion at the interface. A numerical sim...

  10. Calcium - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003603.htm Calcium - urine To use the sharing features on this ... enable JavaScript. This test measures the amount of calcium in urine. All cells need calcium in order ...

  11. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  12. Historic mortars: Characterisation, assessment and repair. A state-of-the-art summary

    Czech Academy of Sciences Publication Activity Database

    Válek, Jan; Hughes, J.J.; Groot, C.

    Vol. 7. Dordrecht : Springer, 2012 - (Válek, J.; Hughes, J.; Groot, J.), s. 1-12 ISBN 978-94-007-4634-3 R&D Projects: GA MŠk(CZ) LA09008 Institutional support: RVO:68378297 Keywords : historic mortars * 2nd Historic mortars conference 2010, Prague * repair mortars Subject RIV: AL - Art, Architecture, Cultural Heritage

  13. Calcium Oscillations

    OpenAIRE

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlyin...

  14. Boron Speciation in Soda-Lime Borosilicate Glasses Containing Zirconium

    International Nuclear Information System (INIS)

    Boron speciation was investigated in soda-lime borosilicate glass containing zirconium. In such compositions, competition between charge compensators (here, sodium and calcium) can occur for the compensation of tetrahedral boron or octahedral zirconium units. 11B MAS NMR is particularly suitable for obtaining data on preferential compensation behavior that directly affects the boron coordination number. In addition to the classical proportions of tri- and tetrahedral boron, additional data can be obtained on the contributions involved in these two coordination numbers. An approach is described here based on simultaneous MAS spectrum analysis of borosilicate glass with variable Zr/Si and Ca/Na ratios at two magnetic field strengths (11. 7 and 18. 8 T), with constraints arising from MQMAS spectroscopy, detailed analysis of satellite transitions, and spin-echo experiments. New possibilities of 11B NMR were presented for improving the identification and quantification of the different contributions involved in tri- and tetrahedral boron coordination. Both NMR and Raman revealed a trend of decreased tetrahedral boron proportion with the increase of Ca/Na ratio or the Zr/Si ratio. This strongly suggests that zirconium compensation takes preference over boron compensation, and that zirconium and boron are both compensated mainly by sodium rather than calcium. (authors)

  15. Use of red mud as addition for portland cement mortars

    International Nuclear Information System (INIS)

    The aim of the present research work was to investigate the possibility of adding red mud, an alkaline leaching waste that is obtained from bauxite during the Bayer process for alumina production, in the raw meal of Portland cement mortars. The red mud is classified as dangerous, according to NBR 10004/2004, and world while generation reached over 117 million tons/year. This huge production requires high consuming products to be used as incorporation matrix and we studied the influence of red mud addition on the characteristics of cement mortars and concrete. In this paper the properties of Portland cement mortars incorporating high amounts of red mud was evaluated: pH variation, fresh (setting time, workability or normal consistency and water retention), and hardened state (mechanical strength, capillary water absorption, density and apparent porosity). Results seem promising for red mud additions up to 20 wt%. (author)

  16. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  17. Influence of Pore Structure on Compressive Strength of Cement Mortar

    Directory of Open Access Journals (Sweden)

    Haitao Zhao

    2014-01-01

    Full Text Available This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  18. Properties of Cement Mortar with Phosphogpysum under Steam Curing Condition

    Directory of Open Access Journals (Sweden)

    Kyoungju Mun

    2008-01-01

    Full Text Available The purpose of this study is to utilize waste PG as an admixture for concrete products cured by steam. For the study, waste PG was classified into 4 forms (dehydrate, β-hemihydrate, III-anhydrite, and II-anhydrite, which were calcined at various temperatures. Also, various admixtures were prepared with PG, fly-ash (FA, and granulated blast-furnace slag (BFS. The basic properties of cement mortars containing these admixtures were analyzed and examined through X-ray diffraction, scanning electron microscopy, compressive strength, and acid corrosion resistance. According to the results, cement mortars made with III-anhydrite of waste PG and BFS exhibited strength similar to that of cement mortars made with II-anhydrite. Therefore, III-anhydrite PG calcined at lower temperature can be used as a steam curing admixture for concrete second production.

  19. Durability of waste glass flax fiber reinforced mortar

    International Nuclear Information System (INIS)

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  20. Estimation of masonry mortars strength during stone buildings investigation (rus

    Directory of Open Access Journals (Sweden)

    Derkach V.N.

    2011-11-01

    Full Text Available In this article the analysis of estimation methods of the masonry mortars strength applied in Russia and other countries during stone buildings and constructions investigation was carried out. Advantages and disadvantages of these methods are considered.The new technique of masonry mortars strength estimation is offered. It is based on trials of bored from a masonry body cylindrical samples. It is pointed, that this method is the most universal and informative from all methods considered in this article. The offered testing procedure allows to gain not only a compression strength, but also a shearing strength along horizontal masonry seams. Results of experimental researches of masonry mortars compression strength executed on various techniques are presented.

  1. Preparation of calcium silicate absorbent from iron blast furnace slag.

    Science.gov (United States)

    Brodnax, L F; Rochelle, G T

    2000-09-01

    Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 degrees C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition. PMID:11055162

  2. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  3. Various mortars for anti-fouling purposes in marine environments

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Hideyuki; Masuda, Tomoka [Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Miura, Yoko; Kuroda, Daisuke [Department of General Education, The Company, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Hirai, Nobumitsu [Department of Chemistry and Biochemistry, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Yokoyama, Seiji [Department of Mechanical Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580 (Japan)

    2014-02-20

    The antifouling properties for some mortars with steel making slags were investigated by real marine immersion tests and a unique laboratory acceleration tests with a specially devised biofilm acceleration reactors. Mortars mixed with steel making slags containing abundant iron elements tended to form biofilm and also bifouling. The two kinds of biofilm formation tests were used in this study. Real immersion in marine environments and laboratory test with a specially devised biofilm acceleration reactor. The former evaluated the biofouling characteristics more properly, while the latter did the biofilm formation characteristics more effectively.

  4. Continuous Production of Lime Juice by Vacuum Freeze Drying

    OpenAIRE

    Wasan Theansuwan; Kitichai Triratanasirichai; Kiatfa Tangchaichit

    2008-01-01

    An experimental dryer was developed to determine the characteristics of lime juice powder that produced from freeze-drying processes on continuous production. The experimental process consists of two processes, freezing process (the air blast freezer type) and freeze-drying process (tray method with heating plate type). NaHCO3 (2% by weight of lime juice) was dissolved in lime juice as solid aid. The result was found that this experimental dryer can produce lime juice powder which has the sim...

  5. Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.).

    Science.gov (United States)

    Ambrosini, Vítor Gabriel; Rosa, Daniel José; Corredor Prado, Jenny Paola; Borghezan, Marcelo; Bastos de Melo, George Wellington; Fonsêca de Sousa Soares, Cláudio Roberto; Comin, Jucinei José; Simão, Daniela Guimarães; Brunetto, Gustavo

    2015-11-01

    Frequent applications of copper (Cu)-based fungicides on vines causes the accumulation of this metal in vineyard soils, which can cause toxicity in young vines. However, liming may reduce these toxic effects. The present study aimed to evaluate the effects of Cu toxicity on the root anatomy of young vines and the alleviation of Cu toxicity by lime applications to contaminated sandy soil. The treatments consisted of the addition of lime (0.0, 1.5 and 3.0 Mg ha(-1)) and two Cu concentrations (0 and 50 mg kg(-1)) to Typic Hapludalf soil. Young vines 'Niágara Branca' (Vitis labrusca L.) were obtained by micropropagation and cultivated for 70 days. The young vines grown with Cu and without liming presented a disorganized root structure; reduced root cap size; increased diameter (47%), cortex area (128%), vascular cylinder area (93%), and number of cortical layers and cells containing phenolic compounds (132%); and reduced root (41%), stem (44%) and leaf dry mass (21%) and height increase (55%). Moreover, Cu exposure reduced Ca concentrations (13%) and increased Cu concentrations (371%) in the roots. Liming, primarily with the highest tested dose, increased the soil pH (from 4.4 to 5.4-6.1), decreased the Cu concentration in the soil (extracted by CaCl2), increased the calcium (Ca) and magnesium (Mg) uptake by plants, prevented root anatomical changes and benefited young vine growth in soil with higher Cu concentrations. PMID:26318144

  6. Corrosion Behaviour of a New Low-Nickel Stainless Steel Reinforcement: A Study in Simulated Pore Solutions and in Fly Ash Mortars

    Directory of Open Access Journals (Sweden)

    M. Criado

    2012-01-01

    Full Text Available The present paper studies the corrosion behaviour of a new lower-cost type of austenitic stainless steel (SS with a low nickel content in alkaline-saturated calcium hydroxide solution (a simulated concrete pore (SCP solution with sodium chloride (0.0%, 0.4%, 1.0%, 2.0%, 3.0%, and 5.0% NaCl and embedded in alkali-activated fly ash (AAFA mortars manufactured using two alkaline solutions, with and without chloride additions (2% and 5%, in an environment of constant 95% relative humidity. Measurements were performed at early age curing up to 180 days of experimentation. The evolution with time of electrochemical impedance spectroscopy was studied. Rct values obtained in SCP solution or in fly ash mortars were so high that low-nickel SS preserved its passivity, exhibiting high corrosion resistance

  7. Solidification/stabilization of toxic metals in calcium aluminate cement matrices

    International Nuclear Information System (INIS)

    Highlights: • Reliable encapsulation and effective sorption of Pb, Zn and Cu on CAC was proved. • Cu and Pb were fully retained in the CAC mortar, while Zn was retained in 99.99%. •A maximum sorption capacity ca. 60 mg/g CAC was attained for Cu. • Three different PSD patterns were established as a function of XRD phase assemblage. • Some metal-loaded mortars achieved suitable mechanical strengths for landfilling. -- Abstract: The ability of calcium aluminate cement (CAC) to encapsulate toxic metals (Pb, Zn and Cu) was assessed under two curing conditions. Changes in the consistency and in the setting time were found upon the addition of the nitrates of the target metals. Both Pb and Cu caused a delay in CAC hydration, while Zn accelerated the stiffening of the mortar. Compressive strengths of the metal-doped mortars, when initially cured at 60 °C/100% RH, were comparable with that of the free-metal mortar. Three different pore size distribution patterns were identified and related to the compounds identified by XRD and SEM. Sorbent capacities of CAC for the toxic metals were excellent: a total uptake was achieved for up to 3 wt.% loading of the three metals. In this way, CAC mortars were perfectly able to encapsulate the toxic metals, allowing the use of CAC for waste management as proved by the leaching tests

  8. Microstructure evolution of lime putty upon aging

    Science.gov (United States)

    Mascolo, Giuseppe; Mascolo, Maria Cristina; Vitale, Alessandro; Marino, Ottavio

    2010-08-01

    The microstructure evolution of lime putty upon aging was investigated by slaking quicklime (CaO) with an excess of water for 3, 12, 24, 36, 48 and 66 months. The as-obtained lime putties were characterized in the water retention and in the particle size distribution using the static laser scattering (SLS). The same lime putties, dehydrated by lyophilization, were also investigated in the pore size distribution by mercury intrusion porosimetry, in the surface area by the BET method and, finally, in particle morphology by scanning electron microscopy (SEM). The effect of the extended exposure of quicklime to water confirms a shape change from prismatic crystals of portlandite, Ca(OH) 2, into platelike ones. Simultaneously a growth of larger hexagonal crystals at the expense of the smallest ones (Ostwald ripening) favours a secondary precipitation of submicrometer platelike crystals of portlandite. The shape change and the broader particles size distribution of portlandite crystals upon aging seem to contribute to a better plasticity of lime putty.

  9. Fertilizer and Lime: Why They Are Used.

    Science.gov (United States)

    McCaslin, Judith Strand

    This unit teaching guide is designed to help teachers explain the principles of fertilizer and lime use. The first of four major sections is a teaching outline keyed to transparency masters and student handouts. Thirteen major areas are covered in the teaching outline: (1) plant needs; (2) uses of fertilizer; (3) nutrients for plant growth; (4)…

  10. Modeling the thermal characteristics of masonry mortar containing recycled materials

    Science.gov (United States)

    Laney, Morgan Gretchen

    As the building industry in the United States rapidly expands, the reuse of recycled demolition waste aggregates is becoming increasingly more important. Currently, the building industry is the largest consumer of natural resources. The constant use of raw virgin aggregate is resulting in depleting resources, lack of space for landfills, increasing costs, and heightened levels of pollution. The use of these recycled aggregates in building envelopes and the study of thermal properties are becoming a popular area of research in order to improve building energy usage. The construction of Zero Energy Buildings (ZEB) is encouraged by the United States government as a result of the unresolved finite resources and environmental pollution. The focus of this research is on the impact of using recycled demolition waste aggregates on thermal properties, including specific heat capacity and thermal conductivity, in masonry mortar applications. The new forms of aggregate were analyzed for efficiency and practical utilization in construction in seven locations across the United States by embedding the new material into the building envelope of a strip mall mercantile build model from the National Renewable Energy Laboratory (NREL) in the EnergyPlus Building Energy Simulation Program (BESP). It was determined that the recycled aggregate mortar mixtures performed as well as or better than the traditional mortar mix. Opportunities for future research in recycled aggregate mortar mixtures exist in a regional analysis, a regional recycled aggregate cost analysis, and a life cycled cost analysis (LCCA).

  11. The colour potentials of SSA-containing mortar

    DEFF Research Database (Denmark)

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie;

    2015-01-01

    This paper reports an experimental study of aesthetical qualities of mortar containing sewage sludgeash (SSA). SSA is the residue produced at water treatment plants where incineration of the sludge is applied in order to decrease volume and to prevent pathogens from spreading. Today SSA is with a...

  12. Low Carbon Footprint Mortar from Pozzolanic Waste Material

    Directory of Open Access Journals (Sweden)

    Taha Mehmannavaz

    2014-04-01

    Full Text Available Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA and Pulverized Fuel Ash (PFA as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  13. TECHNOLOGICAL PROPERTIES OF CONCRETES AND MORTARS FOR UNDERWATER CONCRETING

    OpenAIRE

    O. V. Anufrieva; B. H. Klochko

    2009-01-01

    The article is about the results of experimental-and-theoretical research of usefulness of mortar and concrete mixes for underwater repair works. It is shown that the developed compositions of hydraulic engineering concretes are characterized by high effectiveness in the corrosive medium.

  14. TECHNOLOGICAL PROPERTIES OF CONCRETES AND MORTARS FOR UNDERWATER CONCRETING

    Directory of Open Access Journals (Sweden)

    O. V. Anufrieva

    2009-03-01

    Full Text Available The article is about the results of experimental-and-theoretical research of usefulness of mortar and concrete mixes for underwater repair works. It is shown that the developed compositions of hydraulic engineering concretes are characterized by high effectiveness in the corrosive medium.

  15. Non-standard testing of mechanical characteristics of historic mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš

    2011-01-01

    Roč. 5, 4-5 (2011), s. 383-394. ISSN 1558-3058 R&D Projects: GA ČR(CZ) GA103/09/2067 Institutional research plan: CEZ:AV0Z20710524 Keywords : non-standard test specimen * historic mortar * compressive strength Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.235, year: 2011

  16. Deep placement of lime nitrogen promotes nitrogen fixation and seed yield of soybean with efficient utilization rates

    OpenAIRE

    Ohyama, Takuji; Takahashi, Yoshihiko; Nagumo, Yoshifumi; Tanaka, Kazuya; Sueyoshi, Kuni; Ohtake, Norikuni; Ishikawa, Shinji; Kamiyama, Satoshi; Saito, Masaki; Tewari, Kaushal

    2010-01-01

    Average soybean yield is low compared with the potential yield. N is derived from three sources; N_2 fixation, soil N, and fertilizer N. A heavy supply of N fertilizer often depresses nodule development and N_2 fixation activity, which sometimes results in the reduction of seed yield. We developed a new fertilization technique for soybean cultivation by deep placement (at 20 cm depth from the soil surface) of slow release N fertilizers, coated urea and lime nitrogen (calcium cyanamide) at the...

  17. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  18. The adherence in the union stone-mortar

    Directory of Open Access Journals (Sweden)

    Rodríguez García, María Reyes

    1994-06-01

    Full Text Available Stones placates present a wide of problems that result in the fall of plates. One of the causes is the lack of adherence stone-mortar. We considered a study to determine the adherence between several cement mortars (1:3, 1:5, 1:7, 1:9 and a especial mortar prepared with latex and stones (white granite, pink granites, black granites, white marble and cream limestones. The results obtained suggest that only adequate adherence rates (higher than 3 kgf/cm2 achieved with cement mortar 1:3 and especial mortar. Besides it is observed that in the stones studied there is no relation between adherence and the absorption values.

    Los aplacados de piedra presentan una extensa patología que se traduce en la caída de las placas colocadas. Una de las causas es la falta de adherencia mortero-piedra. El estudio se realiza para determinar la tensión de adherencia entre diversos morteros de cemento (1:3, 1:5, 1:7, 1:9 y otro compuesto por mortero y látex y piedras (granito blanco, granitos rosa, granitos negros, mármol blanco y calizas crema. De los resultados obtenidos se deduce que los únicos morteros que permiten valores de adherencia aceptables (superiores a 3 kp/cm2 son el mortero de cemento 1:3 y el especial. Igualmente se comprueba que, en las piedras estudiadas, no existe relación alguna entre la adherencia y la absorción de agua.

  19. Argamassas mistas para alvenaria utilizando resíduo de caulim - Parte I: comportamento mecânico Masonry mortars using kaolin processing waste -Part I: mechanical property

    Directory of Open Access Journals (Sweden)

    Aretuza K. A. da Rocha

    2008-12-01

    Full Text Available O caulim é um material com vasta gama de aplicações nos mais diversos setores industriais, como a indústria de papel e a cerâmica. No entanto, sua extração e beneficiamento provocam a geração de enorme quantidade de resíduos. Assim, esse trabalho tem por objetivo analisar a utilização do resíduo do beneficiamento do caulim como matéria-prima alternativa em argamassas para a construção civil. O resíduo foi caracterizado através da determinação de sua composição química, difração de raios X e determinação da distribuição granulométrica. Foram formuladas argamassas substituindo parcialmente a cal hidratada por resíduo. Em seguida, foram confeccionados corpos-de-prova e determinada sua resistência à compressão simples e à tração indireta. A substituição da cal por adições de até 20% de resíduo de caulim possibilitou o aumento da resistência das argamassas estudadas em até 80%. Com base nos resultados, pode-se concluir que o resíduo de caulim pode ser utilizado para a produção de argamassas para construção civil com propriedades mecânicas de acordo com a normalização e que a adição do resíduo pode melhorar a resistência mecânica das argamassas convencionais.Kaolin is a material used in a wide range of applications in many industrial sectors, as the paper and the ceramic industry. However, the kaolin processing industry generates large amounts of waste. Thus, the aim of this work is to evaluate the kaolin processing waste suitability as an alternative raw material for the production of mortars. The waste was characterized by determining its chemical composition, particle size distribution, and X-ray diffraction. Mortars were prepared by partially substituting kaolin waste for hydrated lime. Test specimens were prepared and their compression and indirect tension strength determined. The substitution of the lime by additions of up to 20% of kaolin waste improved the mechanical strength of masonry

  20. Comparing the Environmental Impacts of Alkali Activated Mortar and Traditional Portland Cement Mortar using Life Cycle Assessment

    Science.gov (United States)

    Matheu, P. S.; Ellis, K.; Varela, B.

    2015-11-01

    Since the year 1908 there has been research into the use alkali activated materials (AAM) in order to develop cementitious materials with similar properties to Ordinary Portland Cement. AAMs are considered green materials since their production and synthesis is not energy intensive. Even though AAMs have a high compressive strength, the average cost of production among other issues limits its feasibility. Previous research by the authors yielded a low cost AAM that uses mine tailings, wollastonite and ground granulated blast furnace slag (GGBFS). This mortar has an average compressive strength of 50MPa after 28 days of curing. In this paper the software SimaPro was used to create a product base cradle to gate Life Cycle Assessment (LCA). This compared the environmental impact of the AAM mortar to an Ordinary Portland Cement mortar (PCHM) with similar compressive strength. The main motivation for this research is the environmental impact of producing Ordinary Portland Cement as compared to alkali activated slag materials. The results of this LCA show that the Alkali Activated Material has a lower environmental impact than traditional Portland cement hydraulic mortar, in 10 out of 12 categories including Global Warming Potential, Ecotoxicity, and Smog. Areas of improvement and possible future work were also discovered with this analysis.

  1. Measurement of lime/silica ratio in concrete using PGNAA technique

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-12-01

    Prompt gamma neutron activation analysis (PGNAA) technique has been used to determine lime/silica ratio in concrete samples using an accelerator-based PGNAA facility. The ratio was determined from the measured yield of 6.42 MeV prompt {gamma}-rays of calcium and 4.93 MeV {gamma}-rays of silicon from the six concrete samples. The experimental results were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the two. The study has demonstrated successful use of the accelerator-based PGNAA setup in non-destructive analysis of the concrete samples.

  2. Measurement of lime/silica ratio in concrete using PGNAA technique

    International Nuclear Information System (INIS)

    Prompt gamma neutron activation analysis (PGNAA) technique has been used to determine lime/silica ratio in concrete samples using an accelerator-based PGNAA facility. The ratio was determined from the measured yield of 6.42 MeV prompt γ-rays of calcium and 4.93 MeV γ-rays of silicon from the six concrete samples. The experimental results were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the two. The study has demonstrated successful use of the accelerator-based PGNAA setup in non-destructive analysis of the concrete samples

  3. Measurement of lime/silica ratio in concrete using PGNAA technique

    Science.gov (United States)

    Naqvi, A. A.; Nagadi, M. M.; Al-Amoudi, O. S. B.

    2005-12-01

    Prompt gamma neutron activation analysis (PGNAA) technique has been used to determine lime/silica ratio in concrete samples using an accelerator-based PGNAA facility. The ratio was determined from the measured yield of 6.42 MeV prompt γ-rays of calcium and 4.93 MeV γ-rays of silicon from the six concrete samples. The experimental results were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the two. The study has demonstrated successful use of the accelerator-based PGNAA setup in non-destructive analysis of the concrete samples.

  4. Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production

    OpenAIRE

    V. W. Francis Thoo; N. Zainuddin; Matori, K. A.; S.A. Abdullah

    2013-01-01

    Glass ionomer cements (GIC) are produced through acid base reaction between calcium-fluoroaluminosilicate glass powder and polyacrylic acid (PAA). Soda lime silica glasses (SLS), mainly composed of silica (SiO2), have been utilized in this study as the source of SiO2 for synthesis of Ca-fluoroaluminosilicate glass. Therefore, the main objective of this study was to investigate the potential of SLS waste glass in producing GIC. Two glasses, GWX 1 (analytical grade SiO2) and GWX 2 (replacing Si...

  5. Evaluation of red mud as pozzolanic material in replacement of cement for production of mortars; Avaliacao da lama vermelha como material pozolanico em substituicao ao cimento para producao de argamassas

    Energy Technology Data Exchange (ETDEWEB)

    Manfroi, E.P.; Cheriaf, M.; Rocha, J.C., E-mail: elizmanfroi@yahoo.com.b, E-mail: malik@valores.ufsc.b [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Civil

    2010-07-01

    Red mud is a by-product of the alkaline extraction of aluminum from the bauxite and represents a renewed environmental problem due the significant annual throughput by the plants. In the present work, the pozzolanic properties of Brazilian red mud fired at 600, 700, 800 and 900 deg C were investigated by monitoring lime consumption using DTA analysis and Brazilian standard methodology NBR 5772 (1992). Products and kinetics of hydration were determined in cement pastes produced with 5 and 15% red mud using x-ray diffraction and DTA analysis. Compressive strength and capillary absorption tests were realized on mortars constituted by 5, 10 and 15% red mud in replacement of cement. When calcined at 600 deg C, the red mud develops good pozzolanic properties, and the compressive strength of mortars produced with this waste meet values in accordance with regulatory standard. These results shown than red mud can be used, in partial replacement of cement, as new construction material to produce sustainable mortars with low environmental impact. (author)

  6. Influence of Superplasticizers on Strength and Shrinkage Cracking of Cement Mortar under Drying Conditions

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; WANG Xin'gang; LI Xiangguo; YANG Lei

    2007-01-01

    The effects of polynaphthalene series superplasticizers(PNS) with a low content of sodium sulfate (H-UNF),with a high content of sodium sulfate(C-UNF) and polycarboxylate type superplasticizer (PC) on strength and shrinkage cracking of cement mortar under drying conditions were investigated by means of multi-channel ellipse ring shrinkage cracking test, free shrinkage and strength test. The general effect of PNS and PC is to increase the initial cracking time of mortars, and decrease the cracking sensitivity of mortars. As for decreasing the cracking sensitivity of mortars, PC>H-UNF>C-UNF. To incorporate superplasticizers is apparently to increase the free shrinkage of mortars when keeping the constant w/b ratio and the content of cement pastes. As for the effect of controlling the volume stability of mortars, PC>C-UNF>H-UNF. Maximum crack width of mortars containing PC is lower, but the development rate of maximum crack width of mortars containing H-UNF is faster in comparison with control mortars. The flexural and compressive strengths of mortars at 28-day increase with increasing superplasticizer dosages under drying conditions. PC was superior to PNS in the aspect of increasing strength.

  7. Influence Of Volcanic Scoria On Mechanical Strength, Chemical Resistance And Drying Shrinkage Of Mortars

    Directory of Open Access Journals (Sweden)

    Al-Swaidani A.

    2014-09-01

    Full Text Available In the study, three types of cement have been prepared; one CEM I type (the control sample and two blended cements: CEM II/A-P and CEM II/B-P (EN 197-1, each of them with three replacement levels of volcanic scoria: (10 %, 15 %, 20 % wt. and (25 %, 30 %, 35 % wt., respectively. Strength development of mortars has been investigated at 2, 7, 28 and 90 days curing. Evaluation of chemical resistance of mortars containing scoria-based cements has been investigated through exposure to 5 % sulphate and 5 % sulphuric acid solutions in accordance with ASTM C1012 & ASTM 267, respectively. Drying shrinkage has been evaluated in accordance with ASTM C596. Test results showed that at early ages, the mortars containing CEM II/B-P binders had strengths much lower than that of the control mortar. However, at 90 days curing, the strengths were comparable to the control mortar. In addition, the increase of scoria significantly improved the sulphate resistance of mortars. Further, an increase in scoria addition improved the sulphuric acid resistance of mortar, especially at the early days of exposure. The results of drying shrinkage revealed that the CEM II/B-P mortar bars exhibited a greater contraction when compared to the control mortar, especially at early ages. However, drying shrinkage of mortars was not influenced much at longer times.

  8. Inhibition of Cracks on the Surface of Cement Mortar Using Estabragh Fibers

    Directory of Open Access Journals (Sweden)

    Tahereh Soleimani

    2013-01-01

    Full Text Available The influence of adding Estabragh fibers into the cement composites of mortar on surface cracks and mechanical properties of mortar has been studied at various fiber proportions of 0.25%, 0.5%, and 0.75%. The mortar shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of mortar specimens. Although the Estabragh fibers loss their strength in an alkali environment of cement composites, the ability of Estabragh fibers to bridge on the microcracks in the mortar matrix causes a decrease in the number of cracks and in their width on the surface of the mortar samples in comparison with the plain mortar. However, considering the mechanical properties of specimens such as bending strength and compressive strength, among all fiber proportions, only the specimens with 0.25% of Estabragh fiber performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of mortar. Consequently, by adding 0.25% of Estabragh fibers to the cement mortar, a remarkable inhibition in crack generation on fiber-containing cement composite of mortar is achieved.

  9. Interaction of calcium with sugar type ligands in solutions related to the Bayer process

    OpenAIRE

    Pallagi Attila

    2012-01-01

    The calcium ion (particularly in the form of lime) is one of the most useful processing aids available to alumina refinery operators. In some cases the benefits provided arises through the actions of some soluble form of the calcium cation. Sugar derivatives increase the concentration of the calcium in the liquor phase, therefore investigating their complexation with compounds relevant to the Bayer process (i. e. Ca2+, Al(OH)4−) is important to the industry. Investigating the H+/Gluc– syst...

  10. Imperial Limes - Projections in Medieval Imperial Idea

    Directory of Open Access Journals (Sweden)

    Z.Z. Zhekov

    2015-08-01

    Full Text Available Roman imperial limes from I - V BC was the first state border in world history, which in some sense corresponds to the modern concept of political boundary. It represents sustainable political, military and economic barrier between the Romans and the rest of the world. With minor modifications it retains their basic strategic concept during the period as expressed from the emperors Augustus and Tiberius. Limes become powerful barrier that separates cultural Roman Hellenistic world of the wild barbarian but at the same time limits the constructed infrastructure of roads, forts and towns became a natural cultural, commercial and political mediator between these two initially hostile worlds. In border towns developed a lively trade between Romans and barbarians. Roman traders penetrate inside the barbarian lands getting to know their culture and history. Studying foreign peoples and countries they convey information gathered imperial legate of the Roman population. The same process was developed and of course in the opposite direction. Exchange of information on the other promotes mutual understanding and open living on both sides of the Roman Limes.

  11. Zooplankton of Lake Orta after liming: an eleven years study

    Directory of Open Access Journals (Sweden)

    Andrea PASTERIS

    2001-02-01

    Full Text Available Lake Orta (N. Italy was severely polluted from 1927 by an effluent from a rayon factory, which discharged great amounts of ammonium nitrogen and copper into the lake. In the mid nineteen fifties, some plating factories also started dumping chromium and aluminum. As a result of ammonium oxidation, the lake became very acid and the concentration of metals in the waters reached very high values. Phytoplankton, zooplankton and fish disappeared suddenly from the lake which was by 1930 classified as “sterile”. Later on, about the fifties, a small population of Cyclops abyssorum re-colonised the lake together with some rotifers, in particular Hexarthra fennica. In mid eighties following the introduction of anti-pollution legislation, ammonium loads were greatly reduced and Daphnia obtusa was recorded. The lake waters however were still very acid, prompting the proposal of the Istituto Italiano di Idrobiologia to lime the lake with calcium carbonate to neutralise the excess acidity and reconstruct the alkaline reserve. This was done successfully from May 1989 to June 1990. pH values began to rise and in the same time the metal concentrations decreased, so that at present the lake waters are almost “normal”. In the meantime, due to the increased pH values, D. obtusa was replaced by D. longispina and, as toxic metal concentrations became lower, Megacyclops viridis, Bosmina longirostris, Diaphanosoma brachyurum, Keratella quadrata, Asplanchna priodonta. and other Brachionidae species appeared. Diaptomidae are still absent, except for some specimens of Arctodiaptomus wierzejskii.

  12. Long-term biogeochemical impacts of liming the ocean

    Science.gov (United States)

    Ilyina, T.; Wolf-Gladrow, D.; Munhoven, G.; Heinze, C.

    2011-12-01

    Fossil fuel CO2 emissions result in large-scale long-term perturbations in seawater chemistry. Oceans take up atmospheric CO2, and several geo-engineering approaches have been suggested to mitigate impacts of CO2 emissions and resulting ocean acidification that are based on this property. One of them is to enhance weathering processes to remove atmospheric CO2. This method involves dissolving rocks (i.e. limestone) or adding strong bases (i.e. calcium hydroxide) in the upper ocean and is termed as liming the oceans. The net effect of this approach is to increase ocean alkalinity, thereby increasing the oceanic capacity to store anthropogenic CO2. Another effect of adding alkalinity would be to drive seawater to higher pH values and thus counteract the ongoing ocean acidification. However, whereas adding bases only alter alkalinity of seawater, dissolution of carbonates perturb both, alkalinity and dissolved inorganic carbon budgets. Thus, on longer time scales, these two methods will likely have different biogeochemical effects in the ocean. Here we test enduring implications of the two approaches for marine carbon cycle using the global ocean biogeochemical model HAMOCC. In our model scenarios we add alkalinity in the amounts proportional to fossil fuel emissions. We compare the long-term effectiveness of the two geo-engineering approaches to decrease atmospheric CO2.

  13. Corrosion Behaviour of a New Low-Nickel Stainless Steel Reinforcement: A Study in Simulated Pore Solutions and in Fly Ash Mortars

    OpenAIRE

    Bastidas, J. M.; M. Criado; Fajardo, S.

    2012-01-01

    The present paper studies the corrosion behaviour of a new lower-cost type of austenitic stainless steel (SS) with a low nickel content in alkaline-saturated calcium hydroxide solution (a simulated concrete pore (SCP) solution) with sodium chloride (0.0%, 0.4%, 1.0%, 2.0%, 3.0%, and 5.0% NaCl) and embedded in alkali-activated fly ash (AAFA) mortars manufactured using two alkaline solutions, with and without chloride additions (2% and 5%), in an environment of constant 95% relative humidity. M...

  14. Homogeneity and Strength of Mortar Joints in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Arvidsson, Michael; Hansen, Kurt Kielsgaard

    2015-01-01

    been tested and compared by measuring compressive strength, variation in rebound value, variation in density, and separation. In addition, the appearance of the surface texture has been visually assessed. The measurements indicate that, for all three mortars tested, it is possible to cast homogeneous 2......The load carrying mortar joints in Pearl-Chain Bridges are cast vertically which means that they have a placing depth of up to 2.40 m. In the present paper, the feasibility of casting 2.40 m high homogeneous vertical mortar joints is examined. Three high-strength, expansive, self-compacting, ready......-to-mix mortar products are tested. To the authors’ knowledge, no previous published work has documented the homogeneity and properties of mortar joints of such a height. Hence, the present study documents a practical test procedure where the homogeneity of three mortar joints measuring 20 x 220 x 2400 mm has...

  15. Pozzolanic mortars based on waste building materials for the restoration of historical buildings

    Directory of Open Access Journals (Sweden)

    Pašalić Snežana

    2012-01-01

    Full Text Available The environmental aspects of waste building materials have been of great interest in recent years. For the sector of building materials this means increased recycling, reduction of energy consumption and natural resources preservation. This also presents an important contribution in the field of environmental protection. The work deals with the development of pozzolanic mortars made of waste building materials, ground red structure bricks and raw clay materials of inadequate characteristics for the production of ceramic materials. Based on the results of historical mortar characterizations, a group of mortars with specific characteristics (satisfied durability, good compatibility with a historical mortar was prepared. The potential of the waste materials and domestic clay materials application in the production of pozzolanic mortars was confirmed. In addition to the waste management, pozzolanic mortars were designed taking into account the existing conventions in the area of culture heritage.

  16. Mechanism and Durability of Repair Systems in Polymer-Modified Cement Mortars

    Directory of Open Access Journals (Sweden)

    Ru Wang

    2015-01-01

    Full Text Available This paper investigated the mechanism and durability of repair systems made of ordinary cement-based repair mortar and three kinds of polymer-modified repair mortars with old concrete, SBR dispersion, SAE dispersion, and SAE powder. By comparing the bonding properties of mortars before and after erosion, it was found that polymers could effectively improve the durability of the repair system and SAE powder had the best improvement. Micromorphology study of the repair mortar and the interface of repair mortar with old concrete through SEM showed that the polymer film formed from SAE powder whatever in the mortar or at the interface was dense and tough, the film formed from SAE dispersion was loose and weak, while the film formed from SBR dispersion was in between them, which explained the difference in the tensile bond strength and the durability of the repair systems.

  17. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Trtik, Pavel [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Münch, Beat [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Weiss, Jason [Purdue University, School of Civil Engineering, West Lafayette (United States); Vontobel, Peter [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Lura, Pietro [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); ETH Zurich, Institute for Building Materials (IfB), Zurich (Switzerland)

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.

  18. The long term effect on cement mortar by admixture of spray drying absorption products

    International Nuclear Information System (INIS)

    Preliminary investigations have shown that the substitutions of up to 10% fly ash (FA), with spray drying absorption products (SDA), in cement mortars (cement: 80% rapid portland cement (RPC), 10-20% FA, 0-10% SDA) results in low early strength of the same magnitude as in mortar with 80% RPC + 20% FA. Use of the modified instructions for preparation of mortar prisms containing SDA resulted in satisfactory early strengths. A series of mortar prisms with increasing content of SDA (x% RPC, (100-x)% SDA in cements; 0 80% cannot be stored wet. The effects on mortars of the individual constituents of the SDA-products are studied by XRD, development in strength and density. Fragments of 2 year old SDA containing cement mortars and SDA containing concrete from a parking place have been studied

  19. Analytical characterisation of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain)

    International Nuclear Information System (INIS)

    Analytical characterisation of historic mortars from the Roman city of Pollentia (Mallorca) has been carried out by means of thermal analysis (thermogravimetry (TG) and derivative thermogravimetry (DTG)), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). The aim of this research is to provide useful information about the construction mode of the mortars which served for lining purposes in duct drains, cisterns, swimming pools, flooring mortars and wall renderings. The reported results converge to reveal the hydraulic nature of the majority of the mortars used for several hundred years to cover the diverse needs of the inhabitants of Pollentia. A fair correlation between the chemical characteristics of the studied mortars and the results of ancient Roman mortars from other archaeological sites has been established

  20. ESTIMATION OF CREEPING RESISTANCE OF AN ADHESIVE LAYER BASED ON DRY MORTAR

    Directory of Open Access Journals (Sweden)

    Loganina Valentina Ivanovna

    2016-04-01

    Full Text Available The development of construction materials with increased operational properties is a priority direction of Russian modern structural material science. Dry mortars are among such materials. Various modifiers are added to the formulae of such mixes in order to control their structure formation and increase the operational properties. Previous investigations proved the efficiency of adding synthetic zeolites to the composition of dry mortars. The authors of the article have developed a formula of a dry mortar to be used as a tile adhesive for facades’ and inner walls’ facing. The authors evaluated the operational properties of tile adhesive layer based on dry cement mortar. The authors calculated the value of adhesive layer creep based on the developed dry cement mortar formula, which was spread over a vertical surface. The experimental data is presented in the article. The calculations and the experimental data proved that the adhesive layer based on dry cement mortar possesses a high creeping resistance.

  1. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    International Nuclear Information System (INIS)

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation

  2. Quantitative Assessment of Citric Acid in Lemon Juice, Lime Juice, and Commercially-Available Fruit Juice Products

    Science.gov (United States)

    PENNISTON, KRISTINA L.; NAKADA, STEPHEN Y.; HOLMES, ROSS P.; ASSIMOS, DEAN G.

    2009-01-01

    Background and Purpose Knowledge of the citric acid content of beverages may be useful in nutrition therapy for calcium urolithiasis, especially among patients with hypocitraturia. Citrate is a naturally-occurring inhibitor of urinary crystallization; achieving therapeutic urinary citrate concentration is one clinical target in the medical management of calcium urolithiasis. When provided as fluids, beverages containing citric acid add to the total volume of urine, reducing its saturation of calcium and other crystals, and may enhance urinary citrate excretion. Information on the citric acid content of fruit juices and commercially-available formulations is not widely known. We evaluated the citric acid concentration of various fruit juices. Materials and Methods The citric acid content of 21 commercially-available juices and juice concentrates and the juice of three types of fruits was analyzed using ion chromatography. Results Lemon juice and lime juice are rich sources of citric acid, containing 1.44 and 1.38 g/oz, respectively. Lemon and lime juice concentrates contain 1.10 and 1.06 g/oz, respectively. The citric acid content of commercially available lemonade and other juice products varies widely, ranging from 0.03 to 0.22 g/oz. Conclusions Lemon and lime juice, both from the fresh fruit and from juice concentrates, provide more citric acid per liter than ready-to-consume grapefruit juice, ready-to-consume orange juice, and orange juice squeezed from the fruit. Ready-to-consume lemonade formulations and those requiring mixing with water contain ≤6 times the citric acid, on an ounce-for-ounce basis, of lemon and lime juice. PMID:18290732

  3. Effects of slag fineness on durability of mortars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In recent years, the usages of by-products and wastes in industry have become more important. The importance of the sustainable development is also of increasing. The utilizations of wastes, as mineral admixture or fine aggregate, reduce the consumption of the natural resources and improve the durability of concrete. In this study, the effect of the fineness on the high temperature and sulphate resistances of concrete mortar specimens, produced with ground granulated blast-furnace slag (GBFS)replacing cement, is investigated. The compressive and flexural strength test results for all series related to durability effects,exposing temperature and solutions, exposure times for these durability effects, slag content and fineness are discussed. Consequently, the optimum slag contents are determined for producing the sulphate and high temperature resistant mortars.

  4. Fracture mechanics of polymer mortar made with recycled raw materials

    Directory of Open Access Journals (Sweden)

    Marco Antonio Godoy Jurumenha

    2010-12-01

    Full Text Available The aim of this work is to show that industrial residues could be used in construction applications so that production costs as well as environmental protection can be improved. The fracture properties of polymer mortar manufactured with recycled materials are investigated to evaluate the materials behaviour to crack propagation. The residues used in this work were spent sand from foundry industry as aggregate, unsaturated polyester resin from polyethylene terephthalate (PET as matrix and polyester textile fibres from garment industry, producing an unique composite material fully from recycled components with low cost. The substitution of fresh by used foundry sand and the insertions of textile fibres contribute to a less brittle behaviour of polymer mortar.

  5. Effect of temperature on the mechanical properties of polymer mortars

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2012-08-01

    Full Text Available This paper presents the results of an experimental program to investigate the effect of temperature on the performance of epoxy and unsaturated polyester polymer mortars (PM. PM is a composite material in which polymeric materials are used to bond the aggregates in a fashion similar to that used in the preparation of Portland cement concrete. For this purpose, prismatic and cylindrical specimens were prepared for flexural and compressive tests, respectively, at different temperatures. Measurements of the temperature-dependent elastic modulus and the compressive and flexural strength were conducted using a thermostatic chamber attached to a universal test machine for a range of temperatures varying from room temperature to 90 ºC. The flexural and compressive strength decreases as temperature increases, especially after matrix HDT. Epoxy polymer mortars are more sensitive to temperature variation than unsaturated polyester ones.

  6. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  7. Carbonation process in lime pastes with different water/binder ratio

    Directory of Open Access Journals (Sweden)

    Álvarez, J. I.

    2006-03-01

    Full Text Available Most research on binder carbonation is based on the analysis of depth changes in the carbonation front. Moreover, previous studies have dealt with mortars, where aggregates play a role in the variations in carbonation patterns. In the approach adopted in the present study, carbonation was determined in terms of the variation in weight resulting from CO2 absorption, and a new parameter (independent of the drying process, denominated A, was established. This parameter was assessed in several lime pastes with different W/B (water/binder ratios and its variations were correlated to paste microstructure. Due to the type of porosity prevailing in lime pastes, diffusion took place according to Fick's law; water was retained not by capillarity but by surface adsorption. Drying did not retard carbonation in lime pastesLa mayoría de las investigaciones sobre el proceso de carbonatación en materiales conglomerantes estudia el movimiento del frente de carbonatación. Además, los trabajos previos han sido llevados a cabo en morteros, lo que implica variaciones en el comportamiento de la carbonatación debido a la presencia del agregado. En este trabajo, la carbonatación es discutida teniendo en cuenta la variación del peso como consecuencia de la absorción de CO2, al establecer un nuevo parámetro A (independiente del proceso de secado. Este parámetro ha sido evaluado en varias pastas de cal con distinta relación A/C (agua/conglomerante, y su variación se ha correlacionado con la microestructura de las pastas. Durante el proceso de la carbonatación, y debido al tipo de porosidad de las pastas de cal, tiene lugar la difusión de Fick: el agua no es retenida por capilaridad sino por adsorción sobre la superficie. El proceso de secado no retrasa la carbonatación en las pastas de cal.

  8. Fracture mechanics applied to the determination of adhesion strength between epoxies and hydraulic mortars

    OpenAIRE

    Aguiar, J. L. Barroso de

    2001-01-01

    The determination of adhesion strength between polymers and mortars always creates problems. The use of traditional tests like direct tension, flexure or shear, normally doesn`t make possible the correct determination of the adhesion strength. If the adhesive is good and the mortar surfaces are well prepared, the failure is in the mortar. With this kind of failures it is possible to say that adhesion strength is higher than the failure stress. But is not possible to give a numerical value of ...

  9. CASCADIC MULTIGRID METHODS FOR MORTAR WILSON FINITE ELEMENT METHODS ON PLANAR LINEAR ELASTICITY

    Institute of Scientific and Technical Information of China (English)

    陈文斌; 汪艳秋

    2003-01-01

    Cascadic multigrid technique for mortar Wilson finite element method ofhomogeneous boundary value planar linear elasticity is described and analyzed. Firstthe mortar Wilson finite element method for planar linear elasticity will be analyzed,and the error estimate under L2 and H1 norm is optimal. Then a cascadic multigridmethod for the mortar finite element discrete problem is described. Suitable grid trans-fer operator and smoother are developed which lead to an optimal cascadic multigridmethod. Finally, the computational results are presented.

  10. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    OpenAIRE

    López-Zaldívar, O.; Mayor-Lobo, P. L.; Fernández-Martínez, F.; Hernández-Olivares, F.

    2015-01-01

    This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA) stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates ...

  11. Dry and wet "deposition" studies of the degradation of cement mortars

    OpenAIRE

    Martínez-Ramírez, S.; Thompson, G.E.

    1998-01-01

    The reaction of portland cement mortars with SO2 gaseous pollutant and artificial 'acid rain' solution has been examined using laboratory exposure chambers, with realistic presentation rates of pollutants. The mortar were previously carbonated to produce superficial carbonation. Two mortars with different w/c ratio and hence specific surface were prepared and exposed into the chambers. For dry deposition of SO2 pollutant gas, the important ro...

  12. The compatibility of earth-based repair mortars with rammed earth substrates

    OpenAIRE

    Gomes, M. Idália; Gonçalves, Teresa D.; Faria, Paulina

    2013-01-01

    Earth constructions are susceptible to degradation due to natural or human causes. The degradation of the exterior surface of earth walls is very common, either due to lack of maintenance or to the use of incompatible materials, and often requires the application of a repair mortar. This work analyses experimentally the performance of earth-based repair mortars applied on rammed earth surfaces. The mortars are based on earth collected from rammed earth buildings in south Portugal or on a c...

  13. Bending performance of concrete beams strengthened with textile reinforced mortar TRM

    OpenAIRE

    Gil Espert, Lluís; Escrig Pérez, Christian; Bernat Masó, Ernest

    2013-01-01

    This work presents a method of strengthening concrete structures based on textiles of high strength and mortars. The combination of textiles and mortars produces a new composite material with cementitious matrix. This material can be used for the reinforcement of concrete beams under bending loads. We tested several combinations of fibers: glass, Poliparafenil Benzobisoxazol (PBO), steel and carbon fibers with mortar and we used them to reinforce precast concrete beams. All the specimens were...

  14. Clay content of argillites: Influence on cement based mortars

    OpenAIRE

    Habert, Guillaume; CHOUPAY, Nathalie; Escadeillas, Gilles; MONTEL, Jean Marc; Guillaume, D

    2009-01-01

    The pozzolanic activity of four heated powders containing different clays has been tested. Mineral transformations during calcination from 20 to 900 °C have been followed by X-ray diffraction (XRD) and Differential Scanning Calorimetry (DSC). Compressive strength tests were performed at 1, 7 and 28 days on cement-clay mortars using 30% of pozzolanic material as a replacement by mass for cement. Calcination temperatures corresponded to the stages of potentially high reactivity identified by XR...

  15. Hydrothermal interactions of cement or mortar with zeolites or montmorillonites

    International Nuclear Information System (INIS)

    Concretes, grouts, clays and/or zeolites are candidate borehole, shaft or tunnel plugging materials for any nuclear waste repository. Interactions between these plugging materials may take place under mild hydrothermal conditions during the life of a repository. Class H cement or motar (PSU/WES mixture) was reacted with one of two montmorillonites, clinoptilolite or mordenite at 1000 and 2000C for different periods under a confining pressure of 30 MPa. The solid reaction products were characterized by x-ray powder diffraction and scanning electron microscopy after the hydrothermal treatments. When zeolites were in contact (not intimate mixture) with class H cement, they did not seem to alter but clinoptilolite altered to analcime, and mordenite became poorly crystalline in the presence of mortar (containing NaCl) at both 1000 and 2000C. When cement or mortar was intimately mixed with zeolites or montmorillonites and reacted hydrothermally, the reaction resulted in the formation of Al substituted tobermorite (11A type) in all cases (this type of reaction is expected at the interface) at both 1000 and 2000C. The mechanism of tobermorite formation includes the decomposition of zeolites or montmorillonites in the presence of alkaline (pH approx. = 12) cement or mortar and recrystallization to form Al substituted tobermorite. Cesium sorption measurements in 0.01N CaCl2 on the reaction products revealed that selective Cs sorption increased in most cases, even though little or none of the original zeolites and montmorillonites remained in the products. For example, Cs sorption K/sub d/ (mL/g) increased from 80 in the untreated mortar + Ca montmorillonite mixture to 1700 in the interaction product which is Al substituted tobermorite. Thus, we discover here that Al substituted tobermorite has good selectivity for Cs

  16. Alkaline cement mortars. Chemical resistance to sulfate and seawater attack

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2002-09-01

    Full Text Available The durability and chemical resistance of alkali activated slag and fly ash/slag mortars in contact with sulfates and seawater media have been studied. Two methods were used in the evaluation of such durability: Kock-Steinegger and ASTM C1012. A mineralogical and a microstructural characterization of mortars were done at different ages of their conservation in aggressive media through XRD, SEM/ EDX and mercury porosimetry. Results showed a high durability of activated cement mortars in sulfates and seawater media. NaOH activated mortars are the most sensitive to environment attack with formation of expansive products as gypsum and ettringite, although in very low proportion.

    Se ha estudiado la estabilidad química en medios sulfáticos y de agua de mar de morteros de escorias activadas alcalinamente y morteros de mezclas de escoria y cenizas volantes activadas alcalinamente. Se han empleado dos métodos para evaluar dicha estabilidad: Kock-Steinegger y la norma ASTM C1012. Se ha realizado una caracterización mineralógica y micro estructural de los morteros (a diferentes edades de permanencia en los medios agresivos a través de DRX, SEM/EDX y porosimetría de mercurio. Los resultados obtenidos han demostrado la elevada durabilidad de todos los morteros de cementos activados estudiados frente a la agresividad de los sulfatos y del agua de mar Los morteros de escoria activada con NaOH son los más susceptibles al ataque por esos medios, conformación de productos expansivos como el yeso y la etringita, aunque en proporciones muy bajas.

  17. Use of Cassava Starch Waste as Adjoined of Covering Mortar

    OpenAIRE

    Eliane Hermes; Patrícia Gracieli Zembrzuski Pelissari; Djuliano Paz; Luana Boron; Carlos Alberto Mucelin

    2010-01-01

    This work aimed to study the reuse of the residual fiber of the cassava as material excels in civil construction, as adjoined of covering mortar. The waste used was obtained from an industry located in Missal - Paraná. Four different treatments were applied with 0, 10, 20 and 30% of fiber adding, assessing the mechanical and physical performance with respect to compression resistance, water retention, mass density, incorporated air content and retraction test. The compression resistance test ...

  18. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica

    OpenAIRE

    Ahmed Ghazy; Mohamed T. Bassuoni; Eugene Maguire; Mark O’Loan

    2016-01-01

    Repair and rehabilitation of deteriorating concrete elements are of significant concern in many infrastructural facilities and remain a challenging task. Concerted research efforts are needed to develop repair materials that are sustainable, durable, and cost-effective. Research data show that fiber-reinforced mortars/concretes have superior performance in terms of volume stability and toughness. In addition, it has been recently reported that nano-silica particles can generally improve the m...

  19. Modelling anisotropic damage and permeability of mortar under dynamic loads

    OpenAIRE

    Chen, W.; MAUREL, O.; REESS, T.; MATALLAH, M.; FERRON, A.; C. La Borderie; G. Pijaudier-Cabot

    2011-01-01

    This paper deals with the development of a model for concrete subjected to dynamic loads. Shock waves are generated by Pulsed Arc Electro-hydraulic Discharges (PAED) in water and applied to mortar samples. A diphasic model (liquid water and vapour) is implemented in order to describe the electrical discharge and the propagation of shock waves in water. An anisotropic damage model is devised, which takes account of the strain rate effect and the crack closure effect. Coupling between anisotrop...

  20. Recycling of copper tailings as an additive in cement mortars

    OpenAIRE

    Onuaguluchi, Obinna; EREN, Özgür

    2012-01-01

    Increasing demands for copper and copper allied products have made the processing of low grade ores with high volume waste output unavoidable. Presently, billions of tons of copper tailings can be found in major copper producing countries. The impact of copper tailings at 0%, 5% and 10% addition level by mass of cement on the fresh and hardened properties of mortars were determined. Results showed that dry copper tailings affect mixture consistency negatively. However, the use of pre-wetted t...

  1. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  2. Link between microstructure and tritiated water diffusivity in mortars

    Directory of Open Access Journals (Sweden)

    Dangla P.

    2013-07-01

    Full Text Available Ions and radionuclide diffusivity in concrete is one of the most important factors that determine service life and safety assessment of cement based structures in nuclear power plants and radioactive-waste repositories. Apart from the influence of cement paste microstructure, the presence of aggregates may have an impact on transport properties of the material. The well-known interfacial transition zone, denoted by ITZ, is created near the aggregates and characterized by a greater porosity. The goal of this study is to investigate the competition between the more diffusing ITZ zone and the less diffusing aggregates. To this end, several series of tritiated water diffusion tests are conducted on mortars characterized by different water-to-cement ratios and sand volume fractions. In parallel, microstructure of these materials is explored by mercury and water porosimetry. It was observed that at low sand content (0% – 50%, diffusion properties of mortars are dominated by aggregates dilution effect. At 60% sand, diffusion increases significantly suggesting that percolation’s pores threshold has been reached. Results indicate also that sand particle size distribution has a great impact on the diffusivity of mortars.

  3. Link between microstructure and tritiated water diffusivity in mortars

    Science.gov (United States)

    Larbi, B.; Dridi, W.; Le Bescop, P.; Dangla, P.; Petit, L.

    2013-07-01

    Ions and radionuclide diffusivity in concrete is one of the most important factors that determine service life and safety assessment of cement based structures in nuclear power plants and radioactive-waste repositories. Apart from the influence of cement paste microstructure, the presence of aggregates may have an impact on transport properties of the material. The well-known interfacial transition zone, denoted by ITZ, is created near the aggregates and characterized by a greater porosity. The goal of this study is to investigate the competition between the more diffusing ITZ zone and the less diffusing aggregates. To this end, several series of tritiated water diffusion tests are conducted on mortars characterized by different water-to-cement ratios and sand volume fractions. In parallel, microstructure of these materials is explored by mercury and water porosimetry. It was observed that at low sand content (0% - 50%), diffusion properties of mortars are dominated by aggregates dilution effect. At 60% sand, diffusion increases significantly suggesting that percolation's pores threshold has been reached. Results indicate also that sand particle size distribution has a great impact on the diffusivity of mortars.

  4. Use of Cassava Starch Waste as Adjoined of Covering Mortar

    Directory of Open Access Journals (Sweden)

    Eliane Hermes

    2010-04-01

    Full Text Available This work aimed to study the reuse of the residual fiber of the cassava as material excels in civil construction, as adjoined of covering mortar. The waste used was obtained from an industry located in Missal - Paraná. Four different treatments were applied with 0, 10, 20 and 30% of fiber adding, assessing the mechanical and physical performance with respect to compression resistance, water retention, mass density, incorporated air content and retraction test. The compression resistance test demonstrated that the fibers addition decreased the mortar resistance, while concentrations of 10 and 20% have values close to the resistance offered by full mortar (0%. The addition of fibers caused a small decrease in the specific mass of composites with 20 and 30% of fibers and the incorporated air content showed a low variability in relation of the composites with fiber added and the full cementations matrix. In the test on the water retention the composition with the addition of 10% of fiber is that most resembles the full cementations matrix. The retraction tests showed that no had mass retraction in the differents percentages tested.

  5. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica

    Directory of Open Access Journals (Sweden)

    Ahmed Ghazy

    2016-02-01

    Full Text Available Repair and rehabilitation of deteriorating concrete elements are of significant concern in many infrastructural facilities and remain a challenging task. Concerted research efforts are needed to develop repair materials that are sustainable, durable, and cost-effective. Research data show that fiber-reinforced mortars/concretes have superior performance in terms of volume stability and toughness. In addition, it has been recently reported that nano-silica particles can generally improve the mechanical and durability properties of cement-based systems. Thus, there has been a growing interest in the use of nano-modified fiber-reinforced cementitious composites/mortars (NFRM in repair and rehabilitation applications of concrete structures. The current study investigates various mechanical and durability properties of nano-modified mortar containing different types of fibers (steel, basalt, and hybrid (basalt and polypropylene, in terms of compressive and flexural strengths, toughness, drying shrinkage, penetrability, and resistance to salt-frost scaling. The results highlight the overall effectiveness of the NFRM owing to the synergistic effects of nano-silica and fibers.

  6. Fatigue behaviour analysis for the durability prequalification of strengthening mortars

    International Nuclear Information System (INIS)

    An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).

  7. Cement-mortar pipes as a source of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Berend, K. [Diatel Curacao (Netherlands Antilles); Trouwborst, T. [EHCON b.v., Reeuwijk (Netherlands)

    1999-07-01

    In 1996 in Curacao, acute aluminum (Al) intoxication sickened patients in a dialysis center that used tap water to prepare dialysate. The mortality rate was 32%. A new factory-lined cement-mortar water distribution pipe had recently been installed. It is known that substantial amounts of barium, cadmium, and chromium can leach from cement-mortar linings. This article shows that high concentrations of Al can leach from cement mortars for at least two years in soft, aggressive water. The newly installed pipe, cement containing four times as much Al as usual, corrosive water, the high pH and temperature of the water, long residence time, and perhaps the corrosion inhibitor polyphosphate may have promoted this leaching. Certification of cements used to line water pipes is warranted. Central water treatment plants must distribute noncorrosive water, especially plants that use membrane desalination or other reverse osmosis or nanofiltration processes. Dialysis units should be promptly informed of any impending change in water treatment that might increase the Al content of tap water and also of any accidental pollution of the water distributed. Dialysis centers should always practice extended purification of tap water used for dialysate. Although Al as a risk factor for Alzheimer`s disease in the general population is still debated, there is no doubt that Al causes dialysis encephalopathy.

  8. Link between microstructure and tritiated water diffusivity in mortars

    International Nuclear Information System (INIS)

    Ions and radionuclide diffusivity in concrete is one of the most important factors that determine service life and safety assessment of cement based structures in nuclear power plants and radioactive-waste repositories. Apart from the influence of cement paste microstructure, the presence of aggregates may have an impact on transport properties of the material. The well-known interfacial transition zone, denoted by ITZ, is created near the aggregates and characterized by a greater porosity. The goal of this study is to investigate the competition between the more diffusing ITZ zone and the less diffusing aggregates. To this end, several series of tritiated water diffusion tests are conducted on mortars characterized by different water-to-cement ratios and sand volume fractions. In parallel, microstructure of these materials is explored by mercury and water porosimetry. It was observed that at low sand content (0% - 50%), diffusion properties of mortars are dominated by aggregates dilution effect. At 60% sand, diffusion increases significantly suggesting that percolation's pores threshold has been reached. Results indicate also that sand particle size distribution has a great impact on the diffusivity of mortars. (authors)

  9. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial......-strength DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....

  10. Analysis of main parameters affecting substrate/mortar contact area through tridimensional laser scanner.

    Science.gov (United States)

    Stolz, Carina M; Masuero, Angela B

    2015-10-01

    This study assesses the influence of the granulometric composition of sand, application energy and the superficial tension of substrates on the contact area of rendering mortars. Three substrates with distinct wetting behaviors were selected and mortars were prepared with different sand compositions. Characterization tests were performed on fresh and hardened mortars, as well as the rheological characterization. Mortars were applied to substrates with two different energies. The interfacial area was then digitized with 3D scanner. Results show that variables are all of influence on the interfacial contact in the development area. Furthermore, 3D laser scanning proved to be a good method to contact area measurement. PMID:26046982

  11. Capture of gas-phase arsenic oxide by lime: kinetic and mechanistic studies.

    Science.gov (United States)

    Jadhav, R A; Fan, L S

    2001-02-15

    Trace metal emission from coal combustion is a major concern for coal-burning utilities. Toxic compounds such as arsenic species are difficult to control because of their high volatility. Mineral sorbents such as lime and hydrated lime have been shown to be effective in capturing arsenic from the gas phase over a wide temperature range. In this study, the mechanism of interaction between arsenic oxide (As2O3) and lime (CaO) is studied over the range of 300-1000 degrees C. The interaction between these two components is found to depend on the temperature; tricalcium orthoarsenate (Ca3As2O8) is found to be the product of the reaction below 600 degrees C, whereas dicalcium pyroarsenate (Ca2As2O7) is found to be the reaction product in the range of 700-900 degrees C. Maximum capture of arsenic oxide is found to occur in the range of 500-600 degrees C. At 500 degrees C, a high reactivity calcium carbonate is found to capture arsenic oxide by a combination of physical and chemical adsorption. Intrinsic kinetics of the reaction between calcium oxide and arsenic oxide in the medium-temperature range of 300-500 degrees C is studied in a differential bed flow-through reactor. Using the shrinking core model, the order of reaction with respect to arsenic oxide concentration is found to be about 1, and the activation energy is calculated to be 5.1 kcal/mol. The effect of initial surface area of CaO sorbent is studied over a range of 2.7-45 m2/g using the grain model. The effect of other major acidic flue gas species (SO2 and HCl) on arsenic capture is found to be minimal under the conditions of the experiment. PMID:11349294

  12. Recycling alternatives of converter slag in concrete and mortars

    International Nuclear Information System (INIS)

    The objective of this work is the study of the use of a residue of a steel plant (COSIPA-SP), constituted by magnetite, in components of the civil construction, aiming to increase the recycling and, consequently, to decrease the impact of that residue in the environment. To reach this objective, additions of this residue were tested in the formulation of concrete with the purpose of radiation shielding, as pellets in coarse aggregate, and as substitute of the fine fraction of sand in the composition of a coating mortar. The concrete produced with purpose of radiation shielding showed that for small residue additions (up to 30%), there was not significant variation in the mechanical properties, nor in the attenuation properties to the radiation. Therefore, it did not justify its addition for purpose of heavy concrete. The results obtained on pelletizing process show that the obtained pellets presented value of specific gravity (2,75 g.cm-3) very close to the one of the common crushed stone (2,55 g.cm-3 ), however, they presented a low resistance to the compression, (0,2 KN) for the pellets when compared to regular crushed stones (5,8 KN). These results show that its use could commit the mechanical resistance of the concrete without bringing any advantage on density increase or increment of radiation attenuation. The mortars produced by the addition of the fine residue in substitution to the sand, showed an improvement in the retention of water in green (95%), in comparison to the produced without residue (41%). Also, for ali the tested proportions of substitutions, the same resistance to the compression (approximately 40 MPa) was achieved The results of the leaching and solubility tests showed that even in case of largest amount of substitution of sand for residue (14,55%), there were not great variations on the analyzed elements in the extract, allowing to conclude that the residue behaved satisfactorily to the mortar. Its use as part of mortar composition showed

  13. The chemistry and expansion of limestone - Portland cement mortars exposed to sulphate containing solutions

    International Nuclear Information System (INIS)

    Some concretes in sulphate-bearing groundwaters can deteriorate slowly through chemical reactions which cause expansion and stress. The overall process involves diffusion of sulphate into the concrete, chemical reaction with some cement constituents, internal expansion and, finally, physical disruption of the reacted zone. This work addresses the chemical reactions and the expansion resulting from them so that the overall process of sulphate attack can be modelled eventually. The extent and rate of reaction of calcium sulphate with ordinary and sulphate resisting Portland cements (OPC and SRPC) have been measured under various conditions. Additionally, mortar bars were fabricated from OPC, OPC/BFS (blast furnace slag) and SRPC cements with carboniferous limestone and exposed to various sulphate-containing solutions. The linear expansion of the bars was continuously monitored over a period of about 200 days and, after exposure, the bars were analysed in detail. The results show that the bulk expansion during sulphate attack is proportional to sulphur taken up in insoluble ettringite and magnesium (when present) precipitated as brucite. The results are used to rationalise the behaviour of concretes in sulphate-bearing environments. (author)

  14. The refilling of pores in cement mortars treated by chemicals and desiccation at different temperatures

    Directory of Open Access Journals (Sweden)

    Menéndez Pazos, Ignacio

    1992-09-01

    Full Text Available Bases under the law of solubility product, the pores of the cement mortar are refilled by impregnation with two salts that form another insoluble salt. The number of treatments to be underdone and the drying temperatures more suitable in each case. The calcium salts like impregnants and urea sodium oxalate and sugar like precipitates are employed, obtained in each case the corresponding pores are occupied, which depends generally on the number of treatments and in particular the drier temperature.

    Basados en los principios del producto de solubilidad, se rellenan los poros de las probetas de mortero de cemento por impregnación con dos sales que forman otra insoluble. Se determina el número de tratamientos a realizar y las temperaturas de secado más idóneas en cada caso. Se emplean sales cálcicas como impregnantes, y urea, oxalato sódico y azúcar como precipitantes, obteniéndose en cada caso las correspondientes ocupaciones de poros que dependen, por lo general, del número de tratamientos y, en particular, de la temperatura de secado.

  15. Evaluating and quantifying the liming potential of phosphate rocks

    International Nuclear Information System (INIS)

    The liming potential of phosphate rock was evaluated with theoretical calculations and quantified by laboratory titration and soil incubation. Three anions present in the carbonate apatite structure of phosphate rock that can consume protons and cause an increase in pH when dissolved from apatite are PO43-, CO32-, and F-. The pKa for HF is so low that F- has very little effect on increasing pH. The pKa for 2 protons on H2PO4- and H2CO3 are sufficiently high enough to cause an increase in pH with PO43- and CO32- released into solution if the pH range is between 4 and 6. Because of the greater molar quantity of PO43- compared toCO32-, PO43- exerts a greater affect on the liming potential of P rock. For a variety of phosphate rocks with a axes ranging from 9.322 to 9.374 A in the carbonate apatite structure, the theoretical % calcium carbonate equivalence (CCE) ranges from 59.5 to 62%. With the presence of gangue carbonate minerals from 2.5 to 10% on a weight basis in the phosphate rocks, the theoretical %CCE ranges from 59.5 to 63.1%. Use of AOAC method 955.01 for quantifying the %CCE of North Carolina phosphate rock (NCPR) and Idaho phosphate rock (IDPR) resulted in %CCE ranging from 39.9 to 53.7% which were less than the theoretical values. The lower values measured in the AOAC method was presumed to be due to formation of CaHPO4 or CaHPO4·2H2O precipitates which would result in less than 2 protons neutralized per mole of PO43- released from carbonate apatite. The highly concentrated solution formed in the method was considered not indicative of a soil solution and thus determined %CCE values would be suspect. A soil incubation study was conducted to determine a more appropriate %CCE value in a soil environment using Copper Basin, Tennessee soil with a soil pH of 4.2. Agricultural limestone, NCPR, IDPR, and a granulated IDPR were added to 100 g of soil at rates of 0.1, 0.3, 1, 3, and 10 g/kg soil, incubated for 105 days at field moisture capacity, and analyzed for

  16. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    Science.gov (United States)

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  17. Engineering Properties of Bentonite Stabilized with Lime and Phosphogypsum

    Directory of Open Access Journals (Sweden)

    Kumar Sujeet

    2014-12-01

    Full Text Available Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.

  18. Bioconversion of lime pretreated wheat straw to fuel ethanol

    Science.gov (United States)

    Lime pretreatment and enzymatic saccharification methods were evaluated for conversion of wheat straw cellulose and hemicellulose to fermentable sugars. The maximum yield of monomeric sugars from wheat straw (8.6%, w/v) by lime pretreatment (100 mg/g straw, 121 deg C, 1 h) and enzymatic hydrolysis ...

  19. Some studies on the reaction between fly ash and lime

    Indian Academy of Sciences (India)

    A Basumajumdar; A K Das; N Bandyopadhyay; S Maitra

    2005-04-01

    The reaction between fly ash (FA) and lime is extensively exploited for the manufacture of building bricks, blocks and aggregates. To get a better idea of this reaction, FA from different sources were mixed in different ratios with lime and compacted. The compacts were treated both by ordinary water and hydrothermal curing to promote lime bearing hydrate bond formation e.g. CaO–SiO2–H2O (C–S–H), CaO–Al2O3–H2O (C–A–H) etc. The decrease in free lime content in these compacts was measured as a function of curing time and curing process. This drop in this content was correlated to the chemical composition of the fly ashes. The mathematical relationships between free lime remaining in the compacts after its maximum decrease in concentration and lime binding modulus (a ratio between the amount of added lime and the total amount of lime binding constituents present in FA) for both types of curing were developed. Further, the rate of decrease in free CaO content under both types of curing conditions was compared from kinetic study. From this study the orders of the reactions and rate constants were found out.

  20. Liming and forest production. Vad haender med skogdproduktionen

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Budimir (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research)

    1988-01-01

    The growth reaction to the liming registered in different liming experiments could be defined as very weak and of longterm character. One of the most relevant factors was an initial decline of forest growth during the first 10-15 years after liming, followed by a slight increase in growth for the rest of the experimental period. The length of period varied depending on the tree species and site quality. Results obtained from shorter observation periods cannot give a complete picture of the liming effect on forest growth. The liming effect on growth might, like the soil effect, be of very long duration, perhaps as long as 70 years. The combination of liming with other fertilization might be a good solution, especially on poor sites with nitrogen deficiency as a factor limiting tree growth. The experiences of evaluated experiments indicate a deteriorated availability of nitrogen with liming. The air pollution influences forest soil and trees and in this situation it could be reasonable to discuss forest liming as a measure to counter air pollutants by improving soil conditions in a way which is not only beneficial to forest growth but also to ground and surface water. (author) (10 ills., 14 tabs., 12 refs.).

  1. Mineral phases of green liquor dregs, slaker grits, lime mud and wood ash of a Kraft pulp and paper mill

    International Nuclear Information System (INIS)

    Four residues generated in a Kraft, pulp and paper plant, were characterized by X-ray fluorescence spectroscopy (XFA), powder X-ray diffraction (XRD), thermogravimmetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR). A quantitative phase composition model, that accounts for the observed data and for the physico-chemical conditions of formation, was postulated for each material. Emphasis was given on the identification of the mineral components of each material. The green liquor dregs and the lime mud contain Calcite and Gipsite. The slaker grits contains Calcite, Portlandite, Pirssonite, Larnite and Brucite. The Calcite phase, present in the dregs and in the lime mud, has small amounts of magnesium replacing calcium. The wood ash contains Quartz as the major crystalline mineral phase

  2. Root distribution of rootstocks for 'Tahiti' lime

    Directory of Open Access Journals (Sweden)

    Neves Carmen Silvia Vieira Janeiro

    2004-01-01

    Full Text Available Field studies on citrus roots are important for genetic selection of cultivars and for management practices such as localized irrigation and fertilization. To characterize root systems of six rootstocks, taking into consideration chemical and physical characteristics of a clayey Typic Hapludox of the Northern State of Paraná, this study was performed having as scion the 'IAC-5 Tahiti' lime [Citrus latifolia (Yu. Tanaka]. The rootstocks 'Rangpur' lime (C. limonia Osbeck, 'Africa Rough' lemon (C. jambhiri Lush., 'Sunki' mandarin [C. sunki (Hayata hort. ex Tan.], Poncirus trifoliata (L. Raf., 'C13' citrange [C. sinensis (L. Osb. x P. trifoliata (L. Raf] and 'Catânia 2' Volkamer lemon (C. volkameriana Ten. & Pasq. were used applying the trench profile method and the SIARCS® 3.0 software to determine root distribution. 'C-13' citrange had the largest root system. 'Volkamer' lemon and 'Africa Rough' lemon presented the smallest amount of roots. The effective depth for 80 % of roots was 31-53 cm in rows and 67-68 cm in inter-rows. The effective distance of 80 % of roots measured from the tree trunk exceeded the tree canopy for P. trifoliata, 'Sunki' mandarin, and 'Volkamer' and 'Africa Rough' lemons.

  3. Mortar Upwind Finite Volume Element Method with Crouzeix-Raviart Element for Parabolic Convection Diffusion Problems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H1- and L2-norms.

  4. The Roman mortars used in the construction of the Ponte di Augusto (Narni, Italy)

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Fratini, F.; Frankeová, Dita; Slížková, Zuzana

    2013-01-01

    Roč. 38, č. 1 (2013), s. 1117-1128. ISSN 0950-0618 R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : historic mortar * roman mortar * Narni bridge Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.265, year: 2013

  5. RILEM TC 203-RHM: Repair mortars for historic masonry Repair mortars for historic masonry. From problem to intervention: a decision process

    Czech Academy of Sciences Publication Activity Database

    Groot, C.; van Balen, K.; Bicer-Simsir, B.; Binda, L.; Elsen, J.; van Hees, R.; von Konow, T.; Lindqvist, J.; Mauerbrecher, P.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.; Thompson, M.; Válek, Jan; Veiga, R.

    2012-01-01

    Roč. 45, č. 9 (2012), s. 1295-1302. ISSN 1359-5997 Institutional support: RVO:68378297 Keywords : mortars * repair * intervention Subject RIV: JN - Civil Engineering Impact factor: 1.184, year: 2012

  6. Carbon fibre-reinforced, alkali-activated slag mortars

    Directory of Open Access Journals (Sweden)

    Garcés, P.

    2007-12-01

    Full Text Available The paper describes the effect of carbon fibre on alkaliactivated slag mortar (AAS mechanical strength, volume stability and reinforcing steel corrosion, compared to its effect on the same properties in Portland cement (PC properties. Mechanical strength and volume stability tests were performed as set out in the respective Spanish UNE standards. The corrosion rate of steel embedded in the specimens studied was determined from polarization resistance analysis. One of the findings of the study performed was that carbon fibre failed to improve AAS or CP mortar strength. As far as volume stability is concerned, the inclusion of carbon fibres in AAS with a liquid/solid ratio of 0.5 reduced drying shrinkage by about 50%. The effect of carbon fibre on PC mortars differed from its effect on AAS mortars. Studies showed that in the presence of carbonation, steel corrosion reached higher levels in carbon-fibre reinforced AAS mortars; the inclusion of 1% carbon fibre improved corrosion resistance perceptibly in these same mortars, however, when exposed to chloride attack.Se ha estudiado el efecto de la incorporación de fibras de carbón en el comportamiento mecánico, estabilidad de volumen y nivel de corrosión de la armadura en morteros de escorias activadas alcalinamente (AAS. Se evalúa la influencia de las fibras de carbón en el comportamiento de morteros alcalinos en comparación con el efecto que producen en morteros de Portland (CP. Los ensayos mecánicos y de estabilidad de volumen se han realizado según lo establecido en la norma UNE que los regula. Se ha utilizado la técnica de la Resistencia a la Polarización para determinar la velocidad de corrosión del acero embebido en las muestras estudiadas. Como consecuencia del estudio realizado, se ha podido concluir que la adición de fibras de carbón a morteros de AAS y CP no mejora las características resistentes de los mismos. En relación con la estabilidad de volumen, la incorporación de

  7. The Influence of Calcium Chloride Salt Solution on the Transport Properties of Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Yaghoob Farnam

    2015-01-01

    Full Text Available The chemical interaction between calcium chloride (CaCl2 and cementitious binder may alter the transport properties of concrete which are important in predicting the service life of infrastructure elements. This paper presents a series of fluid and gas transport measurements made on cementitious mortars before and after exposure to various solutions with concentrations ranging from 0% to 29.8% CaCl2 by mass. Fluid absorption, oxygen diffusivity, and oxygen permeability were measured on mortar samples prepared using Type I and Type V cements. Three primary factors influence the transport properties of mortar exposed to CaCl2: (1 changes in the degree of saturation, (2 calcium hydroxide leaching, and (3 formation of chemical reaction products (i.e., Friedel’s salt, Kuzel’s salt, and calcium oxychloride. It is shown that an increase in the degree of saturation decreases oxygen permeability. At lower concentrations (~12%, the formation of chemical reaction products (mainly calcium oxychloride is a dominant factor decreasing the fluid and gas transport in concrete.

  8. Wetland vegetation responses to liming an Adirondack watershed

    Energy Technology Data Exchange (ETDEWEB)

    Mackun, I.R.

    1993-01-01

    Watershed liming as a long-term mitigation strategy to neutralize lake acidity, from increasing acid deposition, was initiated in North America at Woods Lake in the west central Adirondack region of New York. In October 1989, a dose of 10 MT lime (83.5% CaCO[sub 3]) ha[sup [minus]1] was aerially applied to 48% of the watershed. The wetlands adjacent to Woods Lake showed two distinct community types: one dominated by Chamaedaphne calyculata, and one dominated by graminoids and other herbaceous species. Within two years, liming did not alter the structure of either community type, and changed the cover or frequency of only 6 of 64 individual taxa. Most of these changes occurred in the herbaceous community type. The only strong positive response to liming was a nearly threefold increase in cover of the rhizomatous sedge Cladium mariscoides. The cover of Carex interior and Sphagnum spp. benefited from lime addition, while cover of Drosera intermedia and Muhlenbergia uniflora, and frequency of Hypericum canadense responded negatively to lime. Liming influenced the competitive release of only three taxa, all forbs with small growth forms. The tissue chemistry of foliage and twigs of Myrica gale, Chamaedaphne calyculata, and Carex stricta in the Chamaedaphne calyculata community type clearly illustrated species-specific patterns of nutrient accumulation and allocation both before and after liming. Concentrations of 17 of 20 elements responded to liming, although the responses varied among species and plant parts. Carex foliage was least responsive to liming, and Chamaedaphne twigs were most responsive. Elemental changes in plant tissues will be reflected in litter and many influence long-term nutrient dynamics in the wetland community.

  9. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    KAUST Repository

    Hamzaoui, Rabah

    2014-04-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time. The cement phase is replaced by different percentages of dry or wet hemp fibres ranging from 1.1. wt% up to 3.1. wt% whereas carbon nanotubes are dispersed in the aqueous solution. Our experimental results show that compressive and flexural strengths of wet fibres modified mortar are higher than those for dry hemp-mortar material. The achieved optimal percentage of wet hemp fibres is 2.1. wt% allowing a flexural strength higher than that of reference mortar. The addition of an optimal CNT concentration (0.01. wt%) combined with wet hemp has a reinforcing effect which turns to be related to an improvement of compressive and flexural strengths by 10% and 24%, respectively, in comparison with reference condition. © 2013 Elsevier Ltd.

  10. An electrochemical and microstructural characterization of steel-mortar admixed with corrosion inhibitors

    Institute of Scientific and Technical Information of China (English)

    Tuan; Anh; Nguyen; Recep; AVCI

    2009-01-01

    The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCl and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mortar interfacial region. The admixing of the inhibitors increased the risk of carbonation of cement hydrates at the steel-mortar interfacial region, but partially displaced chloride ions. Chloride and the admixed inhibitors facilitated the formation of different cement hydrates and affected chloride binding at the steel-mortar interfacial region. The admixing of all three inhibitors was found to increase the polarization resistance of steel, indicating reduced corrosion rate of the steel over 48-day exposures to salt ponding.

  11. Mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions

    Institute of Scientific and Technical Information of China (English)

    熊良宵; 虞利军

    2015-01-01

    To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation, and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the 420th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.

  12. Composite cement mortars based on marine sediments and oyster shell powder

    Directory of Open Access Journals (Sweden)

    Ez-zaki, H.

    2016-03-01

    Full Text Available Additions of dredged marine sediments and oyster shell powder (OS as cement substitute materials in mortars are examined by several techniques. The sediments have high water and chloride contents and calcite, quartz, illite and kaolinite as principal minerals. The OS powders are entirely composed of calcium carbonate and traces of other impurities. Four mixtures of treated sediments and OS powders at 650 °C and 850 °C are added to Portland cement at 8%, 16% and 33% by weight. The hydration of composite pastes is followed by calorimetric tests, the porosity accessible to water, the bulk density, the permeability to gas, the compressive strength and the accelerated carbonation resistance are measured. In general, the increase of addition amounts reduced the performance of mortars. However, a reduction of gas permeability was observed when the addition was up to 33%. Around 16% of addition, the compressive strength and carbonation resistance were improved.En este trabajo se ha valorado la sustitución de cemento en morteros por sedimentos marinos dragados y polvo de concha de ostra (OS. Los sedimentos tienen altos contenidos de agua, cloruros, calcita, cuarzo, illita y caolinita como minerales principales. Los polvos OS están compuestos de carbonato cálcico y trazas de otras impurezas. Se añadieron a un cemento Portland, cuatro mezclas de los sedimentos y polvos de OS tratados a 650 °C y 850 °C en proporciones del 8%, 16% y 33% en peso. La hidratación de pastas se estudió a través de calorimetría. Se estudió además la porosidad accesible al agua, densidad aparente, permeabilidad al gas, resistencia a compresión y carbonatación acelerada. En general, un aumento en la adición produjo una reducción del rendimiento de los morteros. Se observó, sin embargo, una reducción de la permeabilidad a los gases con porcentajes de adición de hasta el 33%. Con valores del 16% de sustitución, mejoraron las resistencias mecánicas y la

  13. Effect of kaolin treatment temperature on mortar chloride permeability

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2007-03-01

    Full Text Available The present paper discusses the results of chloride resistance tests conducted on ordinary Portland cement (OPC mortars containing a Colombian kaolin pre-treated at temperatures of from 600 to 800 ºC. The resulting metakaolin (MK was added to OPC mortar mixes in proportions of 10 and 20% by cement weight. The mortars were compared for physical and chemical properties, including capillary absorption, chloride permeability and pore microstructure as assessed by mercury porosimetry. The best performance was recorded for the samples containing 20% of the material treated at 800 ºC.En el presente trabajo se incluyen los resultados de la resistencia a la penetración de cloruros de morteros de Cemento Portland Ordinario (OPC adicionados con un caolín colombiano sometido a tratamiento térmico en un rango de temperaturas entre 600 y 800 °C. Los productos del tratamiento térmico, metacaolín (MK, son incorporados en mezclas de morteros de OPC en proporciones del 10 y 20% en relación al peso del cemento. Se comparan sus características físico-químicas, entre las cuales se incluye la microestructura de poros evaluada por la técnica de porosimetría de mercurio, con la absorción capilar y la permeabilidad a cloruros. Se concluye que las muestras adicionadas con un 20% del material tratado térmicamente a 800 °C presentan el mejor desempeño en sus propiedades finales.

  14. Thermographic measurement of the effect of humidity in mortar porosity

    Science.gov (United States)

    Poblete, A.; Acebes Pascual, M.

    2007-01-01

    The objective of this analysis is to examine the influence of the moisture in the porosity measurement by means of thermal non-destructive test and ultrasound techniques. It is possible to determine the concrete durability by the calculation of its porosity. Porosity is determined in an indirect way, measuring mortar diffusivity by means of active thermography. Using ultrasound techniques, the porosity is related with the ultrasonic propagation of velocity. The diffusivity has been calculated using the W.J. Parker equation. In the ultrasound technique, using the pulse transmission method, ultrasonic propagation velocity was measured as a function of the water content. The conclusions express the correlation between both methods.

  15. Measurement of mortar permittivity during setting using a coplanar waveguide

    International Nuclear Information System (INIS)

    A sensor based on a coplanar waveguide structure was designed to perform non-destructive tests for material characterization in which the measurement can be done only on one side of the sample. The measurements were compared with the impedance of a capacitor filled with the same material. The permittivity and insertion loss of the sensor showed valuable information about the setting process of a mortar slab during the first 28 days of the hardening process, and a good correlation between both measurements was obtained, so the proposed setup can be useful for structural surveillance and moisture detection in civil structures

  16. Innovative technologies and materials for stone and mortar conservation

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana

    Vol. 2. Sarajevo: CICOPBH, 2015 - (Popovac, M.; Idrizbegović-Zgonić, A.; Klarić, S.; Rustempašić, N.; Čausević, A.), s. 181-192 ISBN N. ISSN 2232-965X. [International conference The importance of place /3./. Sarajevo (BA), 21.10.2015-24.10.2015] R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : stone conservation * mortar conservation * architectural heritage Subject RIV: AL - Art, Architecture, Cultural Heritage

  17. Performance of fly ash-based geopolymer mortar

    OpenAIRE

    Abdollahnejad, Zahra; Félix, T.; Torgal, Fernando Pacheco; Aguiar, J. L. Barroso de

    2015-01-01

    This study has investigated the joint effect of several mix parameters on the properties of foam geopolymers. The mix parameters analysed through a laboratory experiment of 54 different mortar mixes were, sodium silicate/sodium hydroxide mass ratio (2.5, 3.5, 4.5), activator/binder mass ratio (0.6, 0.8, 1.0), chemical foaming agent type (hydrogen peroxide (H2O2) and sodium perborate (NaBO3)) and foaming agent mass ratio content (1%, 2%, 3%). Properties, SEM and FTIR analysis and c...

  18. Incorporation of the Spinning Wastes in Cement and Mortars

    International Nuclear Information System (INIS)

    The study falls within the scope of the general problem of management of accumulated solid cellulose based wastes originating from textile industry especially those coming from the spinning process. The present investigation aims at studying the wet oxidative degradation technique as a method for treating cellulose-based wastes generated by the textile spinning industries. The resulting treated wastes were incorporated into cement or mortar. The mechanical integrity and the weight change of the final products were evaluated at the end of setting and hardening

  19. Hidrólise da cana-de-açúcar com cal virgem ou cal hidratada Hydrolysis of cane sugar with lime or hydrated lime

    Directory of Open Access Journals (Sweden)

    Diego Azevedo Mota

    2010-06-01

    , mineral matter, total carbohydrates, and hemicellulose as well as the contents of neutral detergent fiber and total digestible nutrients. Times of storage changed contents of crude protein, organic matter, total carbohydrates and hemicellulose. Among the minerals, only content of calcium showed an increase for the sugarcane processing forms. Coeficients of digestibility of dry matter and neutral detergent fiber increased with hydrolises of sugar cane when compared to in natura sugarcane. Hydrolisis with hydrated lime or with virgin lime keeps the nutrional value of sugarcane making its use possible up to 60 hours after storage.

  20. Stabilization of Expansive Soil by Lime and Fly Ash

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-ru; CAO Xing

    2002-01-01

    An experimental program was undertaken to study the individual and admixed effects of lime and fly ash on the geotechnical characteristics of expansive soil. Lime and fly ash were added to the expansive soil at 4% -6% and 40% - 50% by dry weight of soil, respectively. Testing specimens were determined and examined in chemical composition, grain size distribution, consistency limits, compaction, CBR ,free swell and swell capacity. The effect of lime and fly ash addition on reducing the swelling potential of an expansive soil is presented.It is revealed that a change of expansive soil texture takes place when lime and fly ash are mixed with expansive soil. Plastic limit increases by mixing lime and liquid limit decreases by mixing fly ash, which decreases plasticity index. As the amount of lime and fly ash is increased, there are an apparent reduction in maximum dry density,free swell and swelling capacity under 50 kPa pressure, and a corresponding increase in the percentage of coarse particles, optimum moisture content and CBR value. Based on the results, it can be concluded that the expansive soil can be successfully stabilized by lime and fly ash.

  1. Phytochemical fingerprints of lime honey collected in serbia.

    Science.gov (United States)

    Gašić, Uroš; Šikoparija, Branko; Tosti, Tomislav; Trifković, Jelena; Milojković-Opsenica, Dušanka; Natić, Maja; Tešić, Živoslav

    2014-01-01

    Composition of phenolic compounds and the sugar content were determined as the basis for characterization of lime honey from Serbia. Particular attention was given to differences in phytochemical profiles of ripe and unripe lime honey and lime tree nectar. Melissopalynological analysis confirmed domination of Tilia nectar in all analyzed samples. Phenolic acids, abscisic acid, flavonoids, and flavonoid glycosides were determined by means of ultra-HPLC coupled with a hybrid mass spectrometer (UHPLC-OrbiTrap). Sugar content was determined using high-performance anion-exchange chromatography with amperometric detection. Similar phenolic compounds characterized unripe and ripe honeys, while the lime tree nectar profile showed notable differences. Compared to lime tree nectar, a high amount of chrysin, pinocembrin, and galangin were detected in both ripe and unripe lime honey. Fructose and glucose were the major constituents of all investigated samples, and amounts were within the limits established by European Union legislation. Sucrose content in the nectar sample was up to two-fold higher when compared to all honey samples. Isomaltose and gentiobiose with turanose content were different in analyzed production stages of lime honey. PMID:25902974

  2. Effects of different liming agencies in forests. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Nihlgaard, B.; Budimir, P.

    1984-07-01

    In the introduction of this report the different reasons for acidification of forest soils are summarized. The buffering systems of the soil are reviewed: the carbonate, silicate, aluminium and the iron buffering systems and the cation exchange system. Results of soil acidification are mentioned. Different liming agencies in use are described. Changes in the chemical soil processes due to liming are described. From a soil biology point of view liming means that the turnover of carbon and nitrogen is increased, with lowered C/N-ratio as a consequence. The tree production might be influenced, sometimes strongly positively but more often with slightly lowered volume production. This decrease is mainly interpreted as a result of disturbed mycorrhiza, possibly a negative nitrate-effect, and sometimes as a relative magnesium or bor deficiency. Increased production seems mainly to appear when liming is done in young stands or before reforestation. The conclusions are - that liming has a long term positive effect on the chemical soil status in preventing the resolution of aluminum and other metals, subsequently with positive effects on the soil and ground water in the long run - that one has to be careful with liming in old stands, in order not to get a decreased volume production - that one probably has to compensate for the acidification leaching effects in the soil by adding eg magnesium and bor together with lime in many forest soils.

  3. Coupling nonlinear Stokes and Darcy flow using mortar finite elements

    KAUST Repository

    Ervin, Vincent J.

    2011-11-01

    We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We recast the coupled Stokes-Darcy system as a reduced matching problem on the interface using a mortar space approach. We prove a number of properties of the nonlinear interface operator associated with the reduced problem, which directly yield the existence, uniqueness and regularity of a variational solution to the system. We further propose and analyze a numerical algorithm based on mortar finite elements for the interface problem and conforming finite elements for the subdomain problems. Optimal a priori error estimates are established for the interface and subdomain problems, and a number of compatibility conditions for the finite element spaces used are discussed. Numerical simulations are presented to illustrate the algorithm and to compare two treatments of the defective boundary conditions. © 2010 Published by Elsevier B.V. on behalf of IMACS.

  4. Liming and electrochemical attributes of an oxisol under no tillage

    Directory of Open Access Journals (Sweden)

    Alleoni Luís Reynaldo Ferracciú

    2003-01-01

    Full Text Available No tillage areas are increasing in Brazil especially due to a general improvement in water and nutrient availability to plants. Few results have reported the effect of liming on soil electrochemical attributes in areas under the no tillage system. This study was conducted to evaluate the effect of liming (at the soil surface and incorporated to 0.2 m on soil pH, point of zero salt effect (PZSE, electric potential, soil organic matter (SOM, and yield of soybean and corn, cultivated on an Typic Hapludox, submitted 12 years to no tillage. Rates of lime of 1/3, 2/3 and the total amount calculated for soil to reach a base saturation of 70 % (2.5 ton ha-1 were applied on soil surface. The full rate was also applied and incorporated to the 0.2 m depth. The effect of liming on PZSE was low due, most likely, to the low lime rates used in the experiment. SOM contents decreased as rates of applied lime increased, with the highest variation occurring between the control and the full rate of lime when incorporated. No clear effect of the lower values of SOM was observed in the PZSE values. The lack of interaction among lime rates and soil depth contributed for this situation, once the effect of SOM was diluted when considering the values of PZSE as the average for the soil layers (0-0.1; 0.1-0.2 and 0.2-0.3 m. There was no variation in the soil electric potential and in the yield of soybean and corn as a function of lime rates.

  5. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite

    International Nuclear Information System (INIS)

    Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum lowered the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite

  6. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Craig W. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States); Telesca, Antonio [School of Engineering, University of Basilicata, Potenza (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States)

    2014-11-15

    Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum lowered the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite.

  7. Liming and phosphorus fertilization in soils under cerrado

    International Nuclear Information System (INIS)

    The effects of liming and phosphorus fertilizer (300 Kg P2O5/ha) application on dry matter accumulation and P-uptake by sorghum plants were studied under greenhouse conditions. Plants were grown in four Oxisols originally under cerrado vegetation. There was a positive correlation between P-fertilization and liming on dry matter accumulation and P-uptake by plants. The results showed that the main effect of liming in these soils was on the elimination of phytotoxicity, mainly due to exchangeable aluminum. (M.A.C.)

  8. Kinetic study of hydrated lime reaction with HCl.

    Science.gov (United States)

    Yan, Rong; Chin, Terence; Liang, David Tee; Laursen, Karin; Ong, Wan Yean; Yao, Kaiwen; Tay, Joo Hwa

    2003-06-01

    Hydrochloride (HCl) is an acidic pollutant present in the flue gas of most municipal or hazardous waste incinerators. Hydrated lime (Ca(OH)2) is often used as a dry sorbent for injection in a spray reactor to remove HCI. However, due to the short residence time encountered, this control method has generally been found to have low conversion efficiencies which results in the high lime usage and generates large amount of fly ash as solid wastes. A fundamental study was carried outto investigate the kinetics of HCl-lime reaction under simulated flue gas conditions in order to better understand the process thereby providing a basis for an optimized lime usage and reduced fly ash production. The initial reaction rate and conversion of three limes were studied using a thermogravimetric analyzer by varying the gas flow rate, temperature (170-400 degrees C), and HCI concentrations (600-1200 mg/m3) as well as the associated particle size and surface area of the limes. The initial lime conversions were found to rely mostly on the residence time, while the ultimate lime conversions were strongly influenced by temperature and the reaction products. CaOHCI was found to be the primary product in most cases, while for one specific lime, CaCl2 was the ultimate conversion product after an extended time period. The true utilization of lime in flue gas cleanup is thus higher when CaOHCl is considered as the final product than those based on CaCl2 as the final product, which has been commonly used in previous studies. The initial reaction was controlled by diffusion of HCl in gas phase and the subsequent reaction by gaseous diffusion through the developing product layer. Increasing the HCI concentration raised the initial rate as well as conversion. However, overloading the lime with excessive HCI caused clogging at its surface and a drop in the ultimate conversion. Limes with smaller particle diameters and higher surface areas were found to be more reactive. The effect of gas

  9. Pore structure and carbonation in blended lime-cement pastes

    OpenAIRE

    Álvarez, J. I.; Arandigoyen, M.

    2006-01-01

    The present study aims to gain a fuller understandingof the curing process in lime pastes (100, 90, 80, 70,60, 50 and 40% lime) blended with cement by analyzingcarbonation in these materials. A hydrated, airslaked lime powder and CEM II A/L 32.5 Portlandcement were used for the blends. These materialswere singled out for research primarily because theymay be used in the restoration of heritage monuments.Variation in weight was used as an indicator for carbonation.A new parameter, A, was found...

  10. EFFECT OF CALCIUM NITRATE, TRIETHANOLAMINE AND TRIISOPROPANOLAMINE ON COMPRESSIVE STRENGTH OF MORTARS

    OpenAIRE

    GÖK, Saadet Gökçe; KILINÇ, Kadir

    2015-01-01

    Chemical admixtures are used in concrete for various purposes such as water reducing, plasticizing, air entraining, bonding, viscosity modifying, colouring, corrosion inhibiting, permeability reducing, accelerating or retarding the initial setting time, and shrinkage reducing. The use of chemical admixtures in concrete helps to improve workability of fresh concrete and durability properties of hardened concrete as well as reducing the total cost of concrete production. In this study, three di...

  11. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  12. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p<0.0001) or...

  13. Calcium Calculator

    Science.gov (United States)

    ... Latvia - Lebanon - Libya - Lithuania - Luxembourg - Macedonia, Republic of - Malaysia - Malta - Mexico - Moldova - Morocco - Netherlands - New Zealand - Nigeria - ... and Statistics Popular content Calcium content of common foods What is Osteoporosis? The Board Introduction to Bone ...

  14. ALKALI-ACTIVATED CEMENT MORTARS CONTAINING RECYCLED CLAY-BASED CONSTRUCTION AND DEMOLITION WASTE

    Directory of Open Access Journals (Sweden)

    F. Puertas

    2015-09-01

    Full Text Available The use of clay-based waste as an aggregate for concrete production is an amply studied procedure. Nonetheless, research on the use of this recycled aggregate to prepare alkaline cement mortars and concretes has yet to be forthcoming. The present study aimed to determine: the behaviour of this waste as a pozzolan in OPC systems, the mechanical strength in OPC, alkali-activated slag (AAS and fly ash (AAFA mortars and the effect of partial replacement of the slag and ash themselves with ground fractions of the waste. The pozzolanic behaviour of clay-based waste was confirmed. Replacing up to 20 % of siliceous aggregate with waste aggregate in OPC mortars induced a decline in 7 day strength (around 23 wt. %. The behaviour of waste aggregate in AAMs mortars, in turn, was observed to depend on the nature of the aluminosilicate and the replacement ratio used. When 20 % of siliceous aggregate was replaced by waste aggregate in AAS mortars, the 7 day strength values remained the same (40 MPa. In AAFA mortars, waste was found to effectively replace both the fly ash and the aggregate. The highest strength for AAFA mortars was observed when they were prepared with both a 50 % replacement ratio for the ash and a 20 % ratio for the aggregate.

  15. Reuse of de-inking sludge from wastepaper recycling in cement mortar products.

    Science.gov (United States)

    Yan, Shiqin; Sagoe-Crentsil, Kwesi; Shapiro, Gretta

    2011-08-01

    This paper presents results of an investigation into the use of de-inking sludge from a paper recycling mill as feedstock material in the manufacture of cement mortar products, including masonry blocks and mortar renders. Both physical and mechanical properties of mortar specimens containing various amounts of de-inking sludge were investigated. It was observed that the addition of de-inking sludge to cement mortar at a fixed water-to-cement ratio significantly reduced flow properties and increased setting time. Water absorption and volume of permeable voids of cement mortar increased with increased dosage of de-inking sludge, with a corresponding reduction of bulk density. The 91-day compressive strength of mortar samples with 2.5 wt% and 20 wt% de-inking sludge loadings retained 83% and 62% respectively of the reference mortar strength. The corresponding drying shrinkage increased by up to 160% compared to reference samples. However, a de-inking sludge loading of up to 2.5 wt% did not significantly alter measured physical and mechanical properties. The results demonstrate that despite the high moisture absorbance of de-inking sludge due to its organic matter and residual cellulose fibre content, it serves as a potential supplementary additive and its cellulosic content proving to be an active set retardant to cementitious masonry products. PMID:21507557

  16. Carbonation and pH in mortars manufactured with supplementary cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    McPolin, D.O.; Basheer, P.A.M.; Long, A.E. [Queens University Belfast, Belfast (United Kingdom)

    2009-05-15

    An investigation of carbonation in mortars and methods of measuring the degree of carbonation and pH change is presented. The mortars were manufactured using ordinary portland cement, pulverized fuel ash, ground granulated blast-furnace slag, metakaolin, and microsilica. The mortars were exposed to a carbon dioxide-rich environment (5% CO{sub 2}) to accelerate carbonation. The resulting carbonation was measured using phenolphthalein indicator and thermogravimetric analysis. The pH of the pore fluid and a powdered sample, extracted from the mortar, was measured to give an accurate indication of the actual pH of the concrete. The pH of the extracted powder mortar sample was found to be similar to the pH of the pore fluid expressed from the mortars. The thermogravimetric analysis suggested two distinct regions of transport of CO{sub 2} within mortar, a surface region where convection was prevalent and a deeper region where diffusion was dominant. The use of microsilica has been shown to decrease the rate of carbonation, while pulverized fuel ash and ground granulated blast-furnace slag have a detrimental effect on carbonation. Metakaolin has little effect on carbonation.

  17. Compression Sensibility of Magnetic-concentrated Fly Ash Mortar under Uniaxial Loading

    Institute of Scientific and Technical Information of China (English)

    JIA Xingwen; ZHANG Yajie; QIAN Jueshi

    2012-01-01

    The electrical conductivity,compression sensibility,workability and cost are factors that affect the application of conductive smart materials in civil structures.Consequently,the resistance and compression sensibility of magnetic-concentrated fly ash (MCFA) mortar were investigated using two electrode method,and the difference of compression sensibility between MCFA mortar and carbon fiber reinforced cement (CFRC)under uniaxial loading was studied.Factors affecting the compression sensibility of MCFA mortar,such as MCFA content,loading rate and stress cycles,were analyzed.Results show that fly ash with high content of Fe3O4 can be used to prepare conductive mortar since Fe3O4 is a kind of nonstoichiometric oxide and usually acts as semiconductor.MCFA mortar exhibits the same electrical conductivity to that of CFRC when the content of MCFA is more than 40% by weight of sample.The compression sensibility of mortar is improved with the increase of MCFA content and loading rate.The compression sensibility of MCFA mortar is reversible with the circling of loading.Results show that the application of MCFA in concrete not only provides excellent performances of electrical-functionality and workability,but also reduces the cost of conductive concrete.

  18. Properties of Cement Mortar by Use of Hot-Melt Polyamides as Substitute for Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Xiongzhou Yuan

    2015-06-01

    Full Text Available This paper presents an experimental study on use of hot-melt polyamide (HMP to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD and Fourier transform infrared spectra (FTIR technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ of HMP mortar was conducted through environmental scanning electron microscopy (ESEM. Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.

  19. The calcium oxide influence on formation of manganese, calcium pyrovanadate solid solutions

    International Nuclear Information System (INIS)

    The X-ray graphic, derivatographic, microscopic and chemical methods are used to study solid solutions of manganese, calcium pyrovanadates containing 1-10 mass% CaO and the products of interaction of reprocessing charges of vanadium-containing converter slags intended for he formation of manganese and calcium pyrovanadates with additions of calcium oxide within 10-90 mass%. It is established that in the case of 1-6 mass% CaO content in manganese pyrovanadate solid interstitial solutions appear, while at 6-20 mass% CaO - solid substitution solutions form. The results of calculating elementary cell parameters as well as melting temperatures and pyrovanadate solid solution solubility depending on CaO content are presented. The best solubility of introduction solid solutions during vanadium extraction according to the lime technology is found

  20. Variability of inorganic and organic constituents in lime spray dryer ash

    Energy Technology Data Exchange (ETDEWEB)

    Panuwat Taerakul; Ping Sun; Harold Walker; Linda Weavers; Danold Golightly; Tarunjit Butalia [Ohio State University, Columbus, OH (US). Department of Civil and Environmental Engineering and Geodetic Science

    2005-10-01

    Flue gas desulfurization (FGD) by-products, including lime spray dryer (LSD) ash, have many demonstrated uses. However, concern about the temporal variability in the chemical properties of this material has limited widespread utilization. To determine the variability in inorganic and representative model organic constituents, this study measured elemental composition, leaching properties, polycyclic aromatic hydrocarbon (PAH) concentrations, available lime index (ALI), calcium carbonate equivalent (CCE), and total neutralization potential (TNP) for a representative LSD ash. All parameters investigated showed little variability over different time periods (e.g., daily to yearly) and little variability between samples collected from different particle collection hoppers. Metal concentrations including As, Se, and Hg in LSD ash and in the leachate did not surpass limits for land application (EPA 503 Rule) or limits for the determination of hazardous waste as specified in the Resource Conservative and Recovery Act (RCRA). While a number of PAHs were detected, including naphthalene and phenanthrene, the levels were low and in the range of natural soils. The low variability in ALI, CCE, TNP, and inorganic and organic composition suggests that LSD ash is a consistent and environmentally benign material for agricultural and other engineering applications. 28 refs., 7 figs., 5 tabs.

  1. Amelioration of ultrafiltration process by lime treatment: Case of landfill leachate

    International Nuclear Information System (INIS)

    Nowadays membrane ultrafiltration process is generally used in effluents treatment. However, at industrial level, this process has major limitations such as important membrane fouling. In this study, a pre-treatment with lime upstream ultrafiltration was envisaged. The effluent considered is landfill leachate. The final waste storage centres produce leachates resulting from the percolation of waters through the hidden waste mass. These effluents strongly charged in mineral and organic matters, must be treated before their release into natural environment. Concerning the cleaning up, results have shown that the selectivity of membranes has an important influence on elimination of pollution from organic source. As expected, any action of retention on salts and heavy metals has been shown. During the filtration of raw leachate, the fouling of membranes turns to be very important and does not allow reaching satisfactory productivity no matter the cut-off limit. There seems to be no impact from hydrodynamics on velocity circulation higher than 4 m.s-1; this shows the existence of a dense and adhesive deposit on the membrane. The pre-treatment by lime allows (i) to precipitate carbonates under calcium carbonates form and ii) to eliminate by co-precipitation humic acids that are responsible for irreversible membrane fouling. industrially, the implementation of the pre-treatment may allow reducing the costs of an ultrafiltration unit at about 50% in terms of investment and from 5 to 30% for operating costs. (authors)

  2. INFLUENCE OF FLY ASH REPLACEMENT ON STRENGTH PROPERTIES OF CEMENT MORTAR

    OpenAIRE

    AMARNATH YERRAMALA; BHASKAR DESAI V; RAMA CHANDURDU C

    2012-01-01

    Strength properties of fly ash mortars were evaluated through laboratory investigations. OPC of 53 grade replaced with class F fly ash with 5 - 25 % in the increments of 5 %. The results shown that at early age at all fly ash replacements the strength decreased with respect to normal mortar. However, after 28 days and above themortars made with fly ash replacement up to 15% resulted higher strength than normal OPC mortar. Fly ash replacement of 20 and 25% always had lower strength than normal...

  3. SIMULTANEOUS CONTROL OF HGO, SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS

    Science.gov (United States)

    The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). (NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents...

  4. SIMULTANEOUS CONTROL OF HG(0), SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS

    Science.gov (United States)

    The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). {NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents ...

  5. Analysis on soil compressibility changes of samples stabilized with lime

    Directory of Open Access Journals (Sweden)

    Elena-Andreea CALARASU

    2016-12-01

    Full Text Available In order to manage and control the stability of buildings located on difficult foundation soils, several techniques of soil stabilization were developed and applied worldwide. Taking into account the major significance of soil compressibility on construction durability and safety, the soil stabilization with a binder like lime is considered one of the most used and traditional methods. The present paper aims to assess the effect of lime content on soil geotechnical parameters, especially on compressibility ones, based on laboratory experimental tests, for several soil categories in admixture with different lime dosages. The results of this study indicate a significant improvement of stabilized soil parameters, such as compressibility and plasticity, in comparison with natural samples. The effect of lime stabilization is related to an increase of soil structure stability by increasing the bearing capacity.

  6. Researches concerning influence of magnesium, aluminum and titanium lime on steel desulfurization

    Science.gov (United States)

    Putan, V.; Putan, A.; Josan, A.; Vilceanu, L.

    2016-02-01

    The paper presents the results of laboratory experiments on steel desulphurisation with slag from the system MgO-Al2O3-TiO2. To determine the influence, on the desulphurisation process, of the titanium oxide added in calcium aluminate slag, we experimented, in the laboratory phase, the steel treatment with a mechanical mixture consisting of lime, aluminous slag and slag obtained from the titanium making process through the aluminothermic technology. The steel melting was carried out in an induction furnace of 10 kg capacity, existent in the "Metallic Melts" laboratory of the Engineering Faculty of Hunedoara. During the research, we aimed to establish correlation equations between the sulphur distribution coefficient and the slag components (MgO, Al2O3, TiO2). The data obtained in the experiments were processed in MATLAB programs, resulting multiple correlation equations, which allowed the elucidation of some physical-chemical phenomena specific to the desulphurisation processes.

  7. DEVELOPMENT OF TECHNIQUES FOR QUANTITATIVE ANALYSIS OF LIME FLOWERS

    OpenAIRE

    Demyanenko DV; Demyanenko VG; Breusova SV

    2016-01-01

    Introduction. The article is devoted to the development of techniques for quantitative analysis of lime flower in order to make amendments to existing pharmacopoeian monographs for this herbal drug. Lime inflorescences contain lipophilic biologically active substances (BAS) causing notable antimicrobial and anti-inflammatory effects and also more polar phenolic compounds with antiulcer activity. Considering this, it’s necessary to regulate all these groups of BAS quantitatively. Materials and...

  8. Evaluation of Hydrated Lime Filler in Asphalt Mixtures

    OpenAIRE

    Mohammed Abbas Hasan Al-Jumaily

    2008-01-01

    Mineral filler is one of important materials and affecting on properties and quality of asphalt mixtures .There are different types of mineral filler depended on cost and quality , the matter encourages us to achieve this study to evaluate hydrated lime filler effects on properties of asphalt mixes related with strength and durability. Conventional asphaltic concrete mixtures with Portland cement and soft sandstone fillers and mixtures modified with hydrated lime were evaluated for their fund...

  9. Local development of affordable lime in southern Africa

    OpenAIRE

    Mitchell, C. J.; Inglethorpe, S.D.J.; Evans, E. J.

    1998-01-01

    In many less developed countries, especially in southern Africa, there is a shortage of locally available, low-cost lime. This has serious implications, especially for farming where insufficient application of agricultural lime can lead to soil acidification, with associated aluminium / manganese toxicity and poor crop yields. As part of the UK Government’s programme of technical aid to developing countries, the British Geological Survey (BGS) has recently carried out a project ‘Local develop...

  10. Liming of acid soils in Osijek-Baranja county

    OpenAIRE

    Dolijanović Željko; Andrijačić Martina; Đurđević Boris; Vukadinović Vladimir; Vukadinović Vesna; Jurišić Mladen; Bertić Blaženka; Jug Irena

    2011-01-01

    The negative trend of soil degradation process increases with intensive agricultural production. Therefore, there is a need for soil conditioning like liming, humification, fertilization, etc. to improve soil quality. One of the major problems that occur on agricultural soils of Croatia is acidification. A downward trend of soil pH is mainly present in soils of poor structure with intensive agricultural production. In agricultural practice liming often need...

  11. Micromachining soda-lime glass by femtosecond laser pulses

    Science.gov (United States)

    Jia, Wei; Yu, Jian; Chai, Lu; Wang, Ching-Yue

    2015-08-01

    The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.

  12. Shock, release, and tension response of soda lime glass

    International Nuclear Information System (INIS)

    This work describes the result of shock wave experiments on soda lime glass in which the shock wave profiles were recorded simultaneously at or near the impact surface and the free surface of the glass specimen by means of multi-beam VISAR. Since earlier work indicated that the glass under shock compression does not follow the Gladstone-Dale model, these profiles provide accurate and self consistent values of transit times for shock, release, and tensile waves propagating in soda lime glass

  13. Utilization of Lime Fines as an Effective Binder as well as Fluxing Agent for Making Fluxed Iron Ore Pellets

    Science.gov (United States)

    Mandal, Arup Kumar; Sarkar, Alok; Sinha, Om Prakash

    2016-04-01

    A laboratory study was carried out to characterize the physical, chemical and mechanical properties of lime fluxed (varying basicity 0-2) hematite iron ore pellets. Lime was used as additive as well as fluxing agent for making iron ore pellets. The effect of additives on different properties of pellets was studied. The findings show that on increasing the addition of lime, more of calcium-alumino-silicate phases were produced as confirmed by SEM-EDAX analysis. These phases have low melting points, which enhances sticking behaviour of pellets, as well as imparts strength to the pellets (resulting increasing compressive strength, tumbler, abrasion and shatter index) but decreases the porosity. The low basicity pellets were found predominantly oxide-bonded, while the high basicity pellets were mostly slag-bonded. This means that the pellet should be fired at sufficiently high enough temperature to generate liquid phases to get the sufficient strength but not so high as to cause the pellets to stick to each other. The obtained properties of these fluxed pellets were compared with the properties of iron ore lump and pellets, which are being used conventionally in the blast furnace for production of iron and steel.

  14. Mechanical properties of high performance concrete made with high calcium high sulfate fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Sun, W. [Southeast Univ., Nanjing (China). Dept. of Materials Science and Engineering; Shang, L. [Nanjing Ningyuan Science and Technology Development Co., Nanjing (China)

    1997-07-01

    A high calcium fly ash with high SO{sub 3} content was used to produce high performance concrete. In all the mixes, the fly ash contents of 50% and 60% by weight were applied. Although fly ash cement pastes showed severe volume instability and poor pore structure development, mortars and concretes incorporating high mass high calcium fly ash exhibited good performance in both fresh and hardened state as those with low calcium fly ash did. The 3d and 28d compressive strength of mortars reached 25.2--42.2MPa respectively with the water binder ratio varying from 0.30 to 0.24. What is noticeable is that all the mortars and concretes showed good strength developing tendency with the 90d compressive strength up to 67.3--85.5MPa. This investigation reveals once more the fact that some materials which are not up to standard can still play a special role so long as the components are carefully chosen and proportions properly designed.

  15. Calcium pyrophosphate arthritis

    Science.gov (United States)

    Calcium pyrophosphate dihydrate deposition disease; CPPD disease; Acute CPPD arthritis; Pseudogout ... Calcium pyrophosphate arthritis is caused by the collection of salt called calcium pyrophosphate dihydrate (CPPD). The buildup ...

  16. DURABILITY OF MIXED MORTAR LINING CONTAINING DREGS-GRITS

    Directory of Open Access Journals (Sweden)

    B. P. Zanella

    2014-01-01

    Full Text Available The improper disposal of industrial waste and exploitation of natural resources has resulted in the scarcity of river sand and environmental degradation, such as river erosions and pollution. This study aimed to assess the durability of mixed mortar lining walls and ceilings, containing 0 (default, 10 and 20% of dregs-grits compounds-waste of the pulp industry-in substitution with river sand. This was done with tests that simulated both natural and artificial conditions: Direct solar incidence (testing ultraviolet radiation, attack by spraying solution (salt spray test, natural warming of the walls and ceilings incidence by indirect solar (thermal degradation and residential fires (thermogravimetric test, in compliance with both national and/or international standards. The grout containing dregs-grits compounds showed similarity to standard (0% for testing thermal degradability, thermogravimetric and ultraviolet radiation, but shows significantly less durability when exposed to salty environments.

  17. Effect of crushed sand on mortar and concrete rheology

    Directory of Open Access Journals (Sweden)

    Cabrera, O. A.

    2011-09-01

    Full Text Available This article describes an experimental study conducted on fresh mortars and concretes made with crushed sand. The aim of this research was to assess the effect of aggregate particle shape and surface texture as well as dust content on mortar and concrete rheology. The experimental programme also addressed the impact of angular grains on chemical admixture performance and concrete bleeding. The findings showed that the use of crushed sand induces rheological behaviour that differs from the behaviour observed in natural sand and that superplasticisers can improve this behaviour considerably.

    En el presente trabajo se plantea un estudio experimental del estado fresco de morteros y hormigones con arenas de machaqueo, orientado a la evaluación de la incidencia de la forma y textura superficial de los granos del árido fino y del contenido de polvo sobre la reología de las mezclas. El programa experimental comprendió el estudio del estado fresco de hormigones con arenas con partículas angulares, la influencia de este tipo de partículas sobre la efectividad de los aditivos químicos y la evaluación de la influencia de las características físicas del árido fino sobre la exudación. Los resultados muestran que el empleo de arenas de machaqueo provoca un comportamiento reológico diferente al de hormigones con arenas naturales, y que el efecto de los aditivos superfluidificantes mejora notablemente este comportamiento.

  18. First evidence of lime burning in southern Scandinavia: lime kilns found at the royal residence on the west bank of Lake Tissø

    DEFF Research Database (Denmark)

    Henriksen, Peter Steen; Holst, Sandie

    corresponds well with the dating of the erection of the hall in the third construction phase at Fugledegård. Finds of mud-and-wattle with whitewashing show that the lime was used to whitewash the halls at Tissø in both the Germanic Iron Age and the Viking Age. Analyses of lime from the lime kilns and the...

  19. CASCADIC MULTIGRID METHOD FOR THE MORTAR ELEMENT METHOD FOR P1 NONCONFORMING ELEMENT

    Institute of Scientific and Technical Information of China (English)

    Chun-jia Bi; Dan-hui Hong

    2005-01-01

    In this paper, we consider the cascadic multigrid method for the mortar P1 nonconforming element which is used to solve the Poisson equation and prove that the cascadic conjugate gradient method is accurate with optimal complexity.

  20. Nitride Bonded Refractory Products and Their Matching Mortars GB/T 23293-2009

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui

    2009-01-01

    @@ 1 Scope This standard specifies the definition, classification, brand, shape, dimension, technical requirements, test methods, quality appraisal procedures, packing, marking, storage, transportation and quality certificate of nitride bonded refractory products and their matching mortars.

  1. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  2. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape

    Energy Technology Data Exchange (ETDEWEB)

    Ciecko, Zdzislaw; Wyszkowski, Miroslaw; Krajewski, Wladyslaw; Zabielska, Jadwiga [Department of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Plac Lodzki 4, 10-718 Olsztyn (Poland)

    2001-12-17

    The aim of the study conducted on triticale and spring oilseed rape was to determine the role of liming, brown coal and compost medium in reducing the effect of cadmium contamination (at the rates of 0, 7.5, 15 and 22.5 mg Cd kg{sup -1} of soil) on yield and chemical composition of the crop. In the series of experiments without liming, a considerable decline in the yield of spring triticale grain, straw, root weight and green mass yield of rape was observed in response to the soil contamination with cadmium. Brown coal and especially compost medium added to soil neutralised the negative effect of cadmium on the grain yield and reduced a decrease in the yield of straw and roots of triticale. Soil liming proved to reduce the yield drop in oilseed rape caused by the contamination of soil with cadmium. The content of cadmium in roots and grain of spring triticale far exceeded that determined in triticale straw. The pollution of soil with cadmium caused a 26-fold increase in the content of this metal in grain, a 10-fold increase in roots of triticale and a twofold in oil-seed rape. Application of compost medium, brown coal and, to a smaller extent, liming reduced the level of cadmium in the parts of triticale brought to investigation. The soil contamination with cadmium caused certain modifications in the content of nitrogen, potassium, magnesium, calcium and sodium in spring triticale and in the content of N-total, potassium and magnesium in spring oilseed rape.

  3. Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control

    OpenAIRE

    Elie Kamseu; Isabella Lancellotti; Sglavo, Vincenzo M.; Luca Modolo; Cristina Leonelli

    2016-01-01

    Amorphous silica and alumina of metakaolin are used to adjust the bulk composition of black (BSS) and white (WSS) steel slag to prepare alkali-activated (AAS) mortars consolidated at room temperature. The mix-design also includes also the addition of semi-crystalline matrix of river sand to the metakaolin/steel powders. The results showed that high strength of the steel slag/metakaolin mortars can be achieved with the geopolymerization process which was particularly affected by the metallic i...

  4. Recycling Glass Cullet from Waste CRTs for the Production of High Strength Mortars

    OpenAIRE

    Stefano Maschio; Gabriele Tonello; Erika Furlani

    2013-01-01

    The present paper reports on the results of some experiments dealing with the recycling of mixed cathode ray tube (CRT) glass waste in the production of high-strength mortars. Waste CRT glass cullet was previously milled, and sieved, and the only fine fraction was added to the fresh mortar in order to replace part of the natural aggregate. The addition of superplasticizer was also investigated. All hydrated materials displayed high compressive strength after curing. Samples containing CRT mix...

  5. The colour potentials of SSA-containing mortar:the long version

    OpenAIRE

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie; Bache, Anja Margrethe; Goltermann, Per

    2015-01-01

    This paper reports an experimental study of aesthetical qualities of mortar containing sewage sludgeash (SSA). SSA is the residue produced at water treatment plants where incineration of the sludge is applied in order to decrease volume and to prevent pathogens from spreading. Today SSA is with a few exceptions landfilled and thus, wasted.The purpose of the experiments was to examine the influence of SSA and how it affected the colour of mortar samples. SSA was ground in 6 different intervals...

  6. Performance of Polymer Modified Mortar with Different Dosage of Polymeric Modifier

    OpenAIRE

    Ganesan Shankar; Othuman Mydin Md Azree; Sani Norazmawati Md.; Che Ani Adi Irfan

    2014-01-01

    Polymer modified mortar system is defined as hydraulic cement combined at the time of mixing with organic polymers that are dispersed or re-dispersed in water, with or without aggregates. The compressive strength and flexural strength of polymer modified mortar obtained at early age are low and it required prolong curing period for the strength enhancement. In order to enhance the mechanical properties of cementitious mixture as well as its durability, hybridization of polymeric modifiers are...

  7. Effect of carbonation on the chloride diffusion of mortar specimens exposed to cyclic wetting and drying

    OpenAIRE

    Malheiro, Raphaele Lira Meireles Castro; Camões, Aires; Ferreira, Rui Miguel; Meira, Gibson; Amorim, M. T. Pessoa de

    2014-01-01

    Carbonation and chloride ingress are the two main causes of corrosion in reinforced concrete structures. Despite the combined action of these mechanisms being a reality, there is little research on the effect of carbonation on the chloride diffusion in concrete. This work intends to study the influence of carbonation on chloride diffusion of mortar specimens. Cubic mortar specimens were cast with 0.55 of water-cement ratio. After curing, the specimens were subjected to 56 days of wetting and ...

  8. Determination of Chlorinated Solvent Sorption by Porous Material—Application to Trichloroethene Vapor on Cement Mortar

    OpenAIRE

    Musielak, Marion; Brusseau, Mark L.; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-01-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L−1) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnit...

  9. Equilíbrio de bases no solo e produção de matéria seca de milho (Zea mays L. em solos tratados com lodo de esgoto, carbonato de cálcio e cal virgem = Balance of basis in the soil and dry matter production in maze (Zea mays L. in soils treated with sewage sludge, calcium carbonate and unslaked lime

    Directory of Open Access Journals (Sweden)

    Graziela Moraes de Cesare Barbosa

    2007-12-01

    Full Text Available O lodo de esgoto pode ter diferentes disposições finais, dentre os quais o uso agronômico. Nesse caso, é necessário conhecer as características do lodo, do solo, da planta e suas interações, bem como o clima e o local a ser aplicado. Este trabalho teve o objetivo de verificar a influência do lodo de esgoto, com e sem adição de cal, no equilíbrio do solo e na produção de matéria seca do milho. O experimento foi conduzido em vasos e em ambiente de casa devegetação, utilizando-se terra da camada superficial (0-15 cm de dois solos: a primeira amostra (S1, com textura argilosa, foi coletada em um Latossolo Vermelho eutroférrico sob plantiodireto, e a segunda amostra (S2, com textura arenosa, foi coletada em um Latossolo Vermelho distrófico sob pastagem. Utilizaram-se os seguintes tratamentos no solo S1: T1A – testemunha; T2A – 9 t ha-1 lodo de esgoto; T3A – 18 t ha-1 lodo de esgoto caleado (9 t ha-1 de lodo de esgoto + 9 t ha-1 de cal virgem; T4A – 9 t ha-1 cal virgem; e para o solo S2: T1B – testemunha; T2B – 9 t ha-1 lodo de esgoto; T3B – 18 t ha-1 lodo de esgoto caleado (9 t ha-1 de lodo de esgoto + 9 t ha-1 de cal virgem; T4B – 9 t ha-1 cal virgem; T5B – calagem recomendada. A produção de matéria seca de plantas de milho cultivadas em Latossolo Vermelho, textura arenosa, aumentou com aaplicação de lodo de esgoto sem cal. A aplicação de lodo de esgoto caleado, nos dois solos, elevaram os teores de Mg e P (S1 e S2 e Na (S2. O aumento nos valores de pH poderá ser um fator limitante para a sua aplicação.Sewage sludge may have different uses, among which the agronomic use. In this case, it is necessary to know the characteristics of the sludge, the soil, the plant and its interactions, as well as the climate and the site where it will be applied. This work aimed at investigating the influence of sewage sludge, with or without addition of lime, in the balance of the soil and in the maize dry matter

  10. Elastic and Transport Properties of Steam-Cured Pozzolanic-Lime Rock Composites Upon CO2 Injection

    Science.gov (United States)

    Emery, Dan; Vanorio, Tiziana

    2016-04-01

    Understanding the effect of pozzolanic ash-lime reactions on the rock physics properties of the resulting rock microstructure is important for monitoring unrest conditions in volcanic-hydrothermal systems as well as for devising concrete with enhanced performance. By mixing pozzolana ash with lime, the ancient Romans unwittingly incorporated these reactions in the production of their famous concrete. Recently, it has been discovered that a fiber-reinforced, concrete-like rock is forming naturally at depth of 1.5 km within the Campi Flegrei volcanic-hydrothermal systems due to upwelling lime-rich fluids permeating a pozzolana rich layer. This study aims to investigate possible physico-chemical conditions contributing to both enhance and undermine the properties of the subsurface rocks of volcanic-hydrothermal systems and, in turn, build upon those processes that the ancient Romans exploited to create their famous concrete. We prepared samples by mixing the pozzolana volcanic ash, slaked lime, aggregates of Neapolitan Yellow tuff, and seawater from Campi Flegrei in the same ratios as the ancient Romans. To mimic the conditions of the caldera, we used alkaline water from a well in the Campi Flegrei region rich in sulfate, bicarbonate, calcium, potassium, and magnesium ions. Yet, the samples were cured for 28 days in steam-rich environment to favor hydration and hence, enhancing the stability of calcium- alumino-silicate hydrates and setting strength of the rock samples. We measured baseline properties of porosity, permeability, P-wave velocity, and S-wave velocity of the samples as well as imaged the fibrous microstructure. P and S-wave velocities were used to derive bulk, shear, and Young's moduli. Subsequently, samples were injected with an aqueous carbon dioxide, CO2 (aq), solution and the changes in their microstructure and physical properties measured. Exposure of the concrete-like rock samples to CO2 -rich fluid lowers pH below 12.5, thus affecting the stability

  11. Study on Strength of Innovative Mortar Synthesis with Epoxy Resin, Fly Ash and Quarry Dust

    Directory of Open Access Journals (Sweden)

    P. Sudheer

    2016-06-01

    Full Text Available Generally, mortar is a uniform combination of Fine aggregate and cement. In this study an innovative concept adopts to synthesis a hybrid mortar with Epoxy resin, Fly ash and quarry dust which are replacing the fine aggregate and cement. The alternative materials are preferably waste products such as quarry dust and fly ash in order to moderate the cost of mortar. The main objective of this work is to study the compressive strength of mortar cubes by various combinations of cement and fine aggregate replaced by Epoxy resin, fly ash, and quarry dust at the age of 7 days. The results of mortarmade with cement replaced with 20%, 25%, and 30% (w/w of Epoxy resin, and fine aggregate replaced by (0% QD - 100% FA (100% QD - 0% FA and (70% QD - 30% FA of quarry dust and fly ash were compared with conventional mortar cubes. It was observed that all mortar cubes made with Epoxy resin, fly ash, and quarry dust had found to have a compressive strength of more than 150% when compared to compressive strength with normal cement of OPC53 grade at the age of 7 days (Approx.35.5Mpa

  12. The Effect of Mortar Grade and Thickness on the Impact Resistance of Ferrocement Slab

    Science.gov (United States)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Sulleman, Sorefan; Beddu, Salmia; Thiruchelvam, Sivadass; Ismail, Firas B.; Usman, Fathoni; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Itam, Zarina; Zaroog, O. S.

    2016-03-01

    This paper investigate the effect of the thickness and mesh spacing on the impact of ferrocement for the concrete slab of 300mm × 300mm size reinforced subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at height of 150 mm, 350mm, and 500mm has been used in this research work. The objective of this research is to study the relationship of impact resistance of ferrocement against the mortar grade and slab thickness. There is a good linear correlation between impact resistance of ferrocement against the mortar grade and the thickness of ferrocement slab. The first and ultimate crack impact resistance of mortar grade 43 (for 40 mm thick slab with mesh reinforcement) are 1.60 times and 1.53 times respectively against the mortar grade 17 slab (of same thickness with mesh reinforcement). The first and ultimate crack impact resistance for 40 mm thick slab (mortar grade 43 with mesh reinforcement) are 3.55 times and 4.49 times respectively against the 20 mm thick slab (of same mortar grade with mesh reinforcement).

  13. Utilization of ground waste seashells in cement mortars for masonry and plastering.

    Science.gov (United States)

    Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn

    2012-11-30

    In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar. PMID:22841935

  14. Dynamic Mechanical Characterizations and Road Performances of Flame Retardant Asphalt Mortars and Concretes

    Institute of Scientific and Technical Information of China (English)

    QIN Xiantao; ZHU Siyue; LI Zuzhong; CHEN Shuanfa

    2015-01-01

    To research the dynamic mechanical properties and road performances of flame retardant asphalt mortars and mixtures, four different asphalt mortars/mixtures were prepared: a reference group and three asphalt mortars/mixtures containing composite lfame retardant materials (M-FRs) of different proportions. Temperature sweep, frequency sweep, repeated creep test, force ductility test and bending beam rheological test were carried out to research the dynamic mechanical properties of asphalt mortars containing M-FRs; wheel-tracking test, low-temperature bending test and freeze-thaw split test were used to study the road performances of asphalt mixtures containing M-FRs. The results show that high-temperature performances of the three lfame retardant asphalt mortars improve greatly, while low-temperature cracking resistances decline. Both high-temperature performances and water stabilities of asphalt mixtures containing M-FRs are quite good and exceed the speciifcation requirements. However, their low-temperature performances decline in different degrees. In summary, besides their good lfame retardancy, the lfame retardant asphalt mortars and mixtures also exhibit acceptable road performance.

  15. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  16. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  17. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  18. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  19. Wood residues as fuel source for lime kilns. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Philip, R.J.; Azarniouch, M.K.

    1982-11-01

    Despite flow problems encountered when feeding wet hog fuel with mill-produced lime mud directly into the cold end of a pilot kiln, a decrease in fossil fuel consumption of approximately 20%, based on long term average product flow rates, was obtained. The flow problems consisted of material adherence onto the kiln wall, increased dusting and feed-end losses. The lime produced with hog fuel showed higher reactivity than lime produced without hog fuel. Upon causticizing a high-sulphidity mill green liquor, the equilibrium causticizing efficiency was not affected by the use of wood residues in calcining. However, there was some deterioration in the settling and filtration characteristics of the lime mud due to the presence of hog fuel contaminants. The normal fuel requirement per ton of lime in mill kilns is only about one third of that in the pilot kiln. Because most of the problems and limitations encountered in the pilot kiln were associated with the very high mass ratio of hog fuel to lime mud required to achieve even 20% replacement, fossil fuel substitution of 30 to 50% might be attainable in commercial-scale lime kilns. The ultimate goal of complete or near-complete substitution of fossil fuel by wood residues can be achieved by additional firing of dried (moisture content 10-15%) fines from the hot end of the kiln. Since this latter type of fuel is substantially more costly than wet, non-comminuted hog fuel, its usage should be minimized. 14 refs., 9 figs., 11 tabs.

  20. Lime and gypsum application on the wheat crop

    Directory of Open Access Journals (Sweden)

    Caires Eduardo Fávero

    2002-01-01

    Full Text Available Root growth and crop yield can be affected by chemical modifications of the soil profile owing to lime and gypsum applications. A field trial was carried out on a dystrophic Clayey Rhodic Hapludox at Ponta Grossa, PR, Brazil, aiming to evaluate lime (without or with incorporation into the soil and gypsum effects on root growth, mineral nutrition and grain yield of wheat (cv. OR 1. A randomized complete block design was used, with three replications, in a split-plot experiment. Treatments with dolomitic limestone (without lime and 4.5 t ha-1 of lime applied on the surface, in total rate and 1/3 of the requirement per year during 3 years, or incorporated into the soil were applied in July 1998 (main plots and the rates of gypsum (0, 3, 6 and 9 t ha-1 in October 1998 (subplots. Wheat was evaluated in the 2000 winter season. In conditions of water deficit absence, there was no limitation in root growth in depth, for exchangeable Ca of 6 mmol c dm-3. Lime incorporation of lime increased the Mg concentration in the leaves, but wheat yield was not influenced by the correction of soil acidity through liming treatments. Gypsum increased the concentrations of Ca and S in wheat leaves, with significant effects on grain yield. The critical level of S-SO4(2- in the 0-20 cm soil layer, extracted by ammonium acetate 0.5 mol L-1 in acetic acid 0.25 mol L-1, was 25.8 mg dm-3.

  1. First results about effects of liming on saprophytic fungal communities in the Ah-horizon of a spruce forest soil in France (Vosges)

    International Nuclear Information System (INIS)

    Soil fungi, including mycorrhiza, are strongly affected by zoil chemical parameters such as the ratio of calcium and/or magnesium to aluminium and the pH-value. So, it was very interesting to compare the rhizospheric microfungal flora between a declining spruce stand and a healthy spruce stand. The site chosen for this investigation was situated in the Vosges in the northeast of France. The rhizospheric soil, from the Ah-horizon of a sandy loam podzol, limed (the healthy spruce stand) or unlimed (the declining spruce stand) was sampled in a 65-year-old Norway spruce forest. The study was made 7 years after liming. Fungal isolations were performed using the dilution plate method. Pronounced differences in species abundance and composition were found between the limed and the unlimed stands. Of the 49 isolated species (24 from declining spruce plot and 34 from healthy spruce plot) only nine were found at both plots. The greatest diversity is observed at the healthy spruce stand; it may be due to the liming. This study indicates that soil microfungi could be sensitive to increased acidity of the rain with subsequent effects. (orig.)

  2. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    Science.gov (United States)

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters. PMID:27483913

  3. Avrami's law based kinetic modeling of colonization of mortar surface by alga Klebsormidium flaccidum

    OpenAIRE

    Tran, Thu Hien; Govin, Alexandre; Guyonnet, René; Grosseau, Philippe; Lors, Christine; Damidot, Denis; Devès, Olivier; Ruot, Bertrand

    2013-01-01

    International audience The aim of this research was to modelize the colonization of mortar surface by green algae using Avrami's law. The resistance of mortars, with different intrinsic characteristics (porosity, roughness, carbonation state), to the biofouling was studied by means of an accelerated lab-scale test. A suspension of green alga Klebsormidium flaccidum, was performed to periodically sprinkle the mortar surfaces. The covered surface rate followed a sigmoidal type curve versus t...

  4. Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a self-healing agent in blast furnace slag mortar

    OpenAIRE

    Sisomphon, K.; Copuroglu,O.; Fraaij, A.

    2011-01-01

    This paper studies the potential of using expanded clay lightweight aggregate impregnated with sodium monofluorophosphate (Na2FPO3) solution which is eventually encapsulated by a cement paste layer to produce a self-healing system in blast furnace slag cement mortars. It was found that the technique significantly improved the quality of the interfacial transition zone in mortars subjected to carbonation shrinkage. Consequently the frost salt scaling durability of blast furnace slag mortars wa...

  5. Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route

    OpenAIRE

    Mellado Romero, Ana María; CATALAN, C; Bouzón, N.; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Paya Bernabeu, Jorge Juan

    2014-01-01

    CO2 emissions associated with geopolymeric mortar prepared using spent fluid catalytic cracking catalyst (FCC) were compared to those calculated for plain ordinary Portland cement (OPC) mortar. Commercial waterglass used for preparing the alkaline activating solution for geopolymeric mortar was the main contributing component related to CO2 emission. An alternative route for formulating alkaline activating solution in the preparation of the geopolymeric binder was proposed: refluxing of rice ...

  6. Corrugated stainless steels embedded in mortar for 9 years: corrosion results of non-carbonated, chloride-contaminated samples

    OpenAIRE

    Bautista, A.; Paredes, E. C.; Velasco, F.; Álvarez, S. M.

    2015-01-01

    Mortar samples reinforced with 5 different corrugated stainless steels were tested for 9 years in 2 different conditions: partial immersion (PI) in 3.5% NaCl, and chloride addition to the mortar and exposure to high relative humidity (HRH). The monitoring during the exposures was carried out with corrosion potential (E-corr) and electrochemical impedance spectroscopy (EIS) measurements. A year before finishing (after 8 years of exposure), the reinforced mortar samples were anodically polarise...

  7. Relation between Modulus of Elasticity and Compressive Strength of Ultrahigh-Strength Mortar with Mixed Silicon Carbide as Fine Aggregate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elasticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant.

  8. LIME EFFECTIVENESS OF SOME FERTILIZERS IN A TROPICAL ACID ALFISOL

    Directory of Open Access Journals (Sweden)

    Mercy Omogbohu Anetor

    2007-11-01

    Full Text Available Liming increases production costs and environmentally unfriendly. Effectiveness of crystalliser (CRYS, single super phosphate (SSP and organic fertilizer (OF for liming was evaluated by determining pH and phosphorus- (P- availability in an acid alfisol incubated with the amendments, Ca(OH2 being reference. Treatments were replicated thrice in completely randomised design. Un-amended soil remained acidic (pH 4.8 but liming raised pH (6.1-6.6, enhancing maximum (15.09-17.33 mg kg-1 P–release (un-amended having 4.24-7.09 mg P kg-1. Lime (L and L+P treatments resulted in maximum pH increases (7.0-7.2, decreasing with incubation. Fertilizer treatments also raised pH (5.0-5.5 for OF, CRYS or SSP; 5.6-5.8 for CRYS +SSP, CRYS+OF and OF+SSP relative to control (5.2. Acid soil infertility-ameliorating potential of CRYS and OF was revealed. They could be used multi-purposely as lime and P fertilizers by poor-resource farmers challenged by acid soil infertility factors.

  9. Correction of Excessive Soil Acidity with Different Liming Materials

    Directory of Open Access Journals (Sweden)

    Milan Mesić

    2001-06-01

    According to the changes of soil pH, hydrolytic acidity, base saturation level and mobile aluminium content in soil for all investigation years, the differences in rapidity and duration of activity of particular liming material were recorded. Hydrated lime, sugar factory waste lime, ground soft lithothamnium limestone, hard limestone and dolomite influenced the soil chemical properties on the similar way, but not equally. When higher doses of these materials were applied the excessive soil acidity was almost completely neutralised. Compared to the other liming materials the efficacy of not ground lithothamnium limestone was somewhat lower, and that of phosphogypsum and special natural substrata was considerably lower. Winter wheat and corn were used as test crops and they were grown in the crop sequence winter wheat – corn – corn – winter wheat. According to the winter wheat and corn grain yield recorded at different trial treatments, the trial was statistically significant in all 4 years of investigation. At the first investigation year the highest yield of winter wheat was recorded at the treatment with higher dose of sugar factory waste lime. At the second, third and fourth year highest yields of test crops were obtained at trial treatment with higher dose of ground soft lithothamnium limestone.

  10. A study of fly ash-lime granule unfired brick

    Energy Technology Data Exchange (ETDEWEB)

    P. Chindaprasirt; K. Pimraksa [Khon Kaen University (Thailand). Department of Civil Engineering

    2008-02-15

    In this paper, the properties of fly ash-lime granule unfired bricks are studied. Granules were prepared from mixtures of fly ash and lime at fly ash to hydrated lime ratios of 100:0 (Ca/Si = 0.2), 95:5 (Ca/Si = 0.35) and 90:10 (Ca/Si = 0.5). After a period of moist curing, the microstructure and mineralogy of the granules were studied. Microstructure examination reveals that new phases in the form of needle-like particles are formed at the surface of granule. The granules were used to make unfired bricks using hydrothermal treatment at temperature of 130 {+-} 5{sup o}C and pressure of 0.14 MPa. The microstructures, mineralogical compositions, mechanical properties and environmental impact of bricks were determined. The results reveal that the strengths of unfired bricks are dependent on the fineness of fly ash. The strength is higher with an increase in fly ash fineness. The strengths of the fly ash-lime granule unfired brick are excellent at 47.0-62.5 MPa. The high strength is due to the formation of new products consisting mainly of hibschite and Al-substituted 11 {angstrom} tobermorite. The main advantage of utilization of granule is the ability to increase the pozzolanic reaction of fly ash through moisture retained in the granule. In addition, the heavy elements, in particular Cd, Ni, Pb and Zn are efficiently retained in the fly ash-lime granule unfired brick.

  11. 无机矿物纤维增强水泥砂浆抗氯离子渗透的试验研究%Experimental Study on Resistance to Chloride Permeability of Inorganic Mineral Fiber Reinforced Mortar

    Institute of Scientific and Technical Information of China (English)

    曹明莉; 张会霞; 许玲

    2014-01-01

    借助扫描电镜(SEM)、水银压汞法等,将碳酸钙晶须和玄武岩纤维等两种新型无机矿物纤维引入水泥砂浆,通过RCM 法研究了单掺晶须、不同长度与掺量玄武岩纤维以及晶须和纤维复掺时对水泥砂浆抗氯离子渗透性能的影响。结果表明,适宜掺量的晶须和纤维有效改善了水泥砂浆的抗氯离子渗透性能,且当晶须掺量固定在10%,纤维长度为6 mm,体积掺量为0.05%时,水泥砂浆抵抗氯离子渗透的效果最佳。%By means of Scanning Electron Microscopy (SEM)and mercury intrusion method,two kinds of new type of inorganic mineral fiber( calcium carbonate whisker and basalt fiber)are mixed with mortar in this paper,and single - doped whiskers,different basalt fiber of length and quantity,whisker mixed with fiber have effect on the properties of mortar resistance to chloride ion penetration by RCM method are studied. The results show that the optimal dosage of whiskers and fibers improve the resistance to chloride permeability of cement mortar,and when the content of whisker is fixed at 10% ,the length of fiber is 6 mm, the volume content is 0. 05% ,and the cement mortar has the best resistance to chloride permeability.

  12. THE INFLUENCE OF TEMPERATURE AND ADMIX- TURES ON ACTIVATION OF LOW CALCIUM FLY ASH

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    According to composition and structure properties of low calcium fly ash, the activation and reaction degree of fly ash-lime and fly ash-lime-gypsum system were studied in different alkali surroundings and temperatures by thermal-gravity analysis.The degree of reaction and pore structure analysis test results show that composite alkali play an important role in the activation and degree of reaction of fly ash at room temperature. But when increasing curing temperature, gypsum would play an important role in activation and hydration of fly ash.

  13. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  14. Shock response of soda lime glass at 6 GPA

    Science.gov (United States)

    Dandekar, Dattatraya

    2012-03-01

    This paper describes the results of a variety of shock wave experiments performed on soda lime glass to understand the modifying influence of so called "Failure wave" on its compression, under single shock, release, and tension. These experiments were done to a peak shock induced stress of around 6-7 GPa. Shock induced response was recorded by means of VISAR. The results of these experiments performed on soda lime glass at 6-7 GPa indicate that: (i) The effect of failure wave propagation is to lower the impedances of failed glass under both shocked compressed and released states and the effect is not initiated instantaneously at the impact surface. (ii) Failure wave velocity is determined to be 1.42 km/s. (iii) The spall strength of soda lime glass in the region transversed by failure wave is not negligible i.e., the pull-back velocity is around 50 m/s.

  15. Thermodynamic investigation of lime-enhanced molybdenite reduction using methane-containing gases

    International Nuclear Information System (INIS)

    Lime-enhanced molybdenite reduction (LEMR) with methane-containing gases has been thermodynamically studied. The reaction proceeds through the direct oxidation of MoS2 by CaO to form intermediate molybdenum oxidized species, MoO2 and CaMoO4. The thermodynamics of Mo-O-C-H and Mo-Ca-O-C-H systems has been investigated instead of Mo-Ca-S-O-C-H system, as the sulfur is captured by calcium and forms a neutral compound (i.e. calcium sulfide). The role of reducing agent is the reduction of these oxidized species. Reduction of oxidized species by methane will yield Mo, Mo2C or MoC. The thermodynamic investigation resulted in construction of stability diagrams of molybdenum compounds. These diagrams were constructed for CH4-H2, CH4-H2-Ar and CH4-CO2-H2O gas mixtures. In addition to stability regions of Mo, Mo2C and MoC, the carbon deposition area was also identified. The results showed that by using appropriate gas composition and temperature, different molybdenum-containing phases would be stable thermodynamically while soot formation can be avoided.

  16. Thermodynamic investigation of lime-enhanced molybdenite reduction using methane-containing gases

    Energy Technology Data Exchange (ETDEWEB)

    Najafabadi, Samad Ghasemi, E-mail: samad_ghasemi@yahoo.com [Materials Engineering Department, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Abbasi, Mohammad Hasan; Saidi, Ali [Materials Engineering Department, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2010-05-20

    Lime-enhanced molybdenite reduction (LEMR) with methane-containing gases has been thermodynamically studied. The reaction proceeds through the direct oxidation of MoS{sub 2} by CaO to form intermediate molybdenum oxidized species, MoO{sub 2} and CaMoO{sub 4}. The thermodynamics of Mo-O-C-H and Mo-Ca-O-C-H systems has been investigated instead of Mo-Ca-S-O-C-H system, as the sulfur is captured by calcium and forms a neutral compound (i.e. calcium sulfide). The role of reducing agent is the reduction of these oxidized species. Reduction of oxidized species by methane will yield Mo, Mo{sub 2}C or MoC. The thermodynamic investigation resulted in construction of stability diagrams of molybdenum compounds. These diagrams were constructed for CH{sub 4}-H{sub 2}, CH{sub 4}-H{sub 2}-Ar and CH{sub 4}-CO{sub 2}-H{sub 2}O gas mixtures. In addition to stability regions of Mo, Mo{sub 2}C and MoC, the carbon deposition area was also identified. The results showed that by using appropriate gas composition and temperature, different molybdenum-containing phases would be stable thermodynamically while soot formation can be avoided.

  17. Sulfates removal by the GYP-CIX process following lime treatment

    International Nuclear Information System (INIS)

    The treatment of acid mine drainage by limiting results in the discharge of water saturated in gypsum and containing residual metal concentrations. These waters may exceed drinking and irrigation water standards for TDS, sulfates and some metals. The scaling nature of the saturated gypsum solution makes it unsuitable for industrial use and makes further processing difficult and costly. This paper discusses a novel ion exchange process that is suitable to desalinate large volumes of mine and industrial waters with a TDS of up to 6,500 mg/l which is also high in calcium and sulfates, to meet effluent discharge specifications. The GYP-CIX process is a continuous fluidized bed ion-exchange process that effectively removes calcium sulfate from gypsum saturated waters. It uses low cost chemicals such as lime and sulfuric acid for resin regeneration. The only waste product is gypsum and the treated water produced meets standards for reuse or discharge. This process consists of a two stage operation. The first is the removal of cations in a multistage continuous loading train, using cation exchange resin. The second operation is the removal of anions, again in a multistage continuous loading train using anion exchange resin

  18. OPTIMIZATION OF BACTERIOLOGICAL QUALITY OF BIOSOLIDS BY LIME ADDITION

    Directory of Open Access Journals (Sweden)

    M. Farzadkia ، N. Jaafarzadeh ، L. Loveimi Asl

    2009-01-01

    Full Text Available Lack of well-stabilized biosolids is a basic problem for many municipal wastewater treatment plants in Iran. Disposed biosolids from west Ahvaz wastewater treatment plant were generally used for agricultural activities. Initial evidence showed that these biosolids were untreated and had the potential to transmit many pollutants to the environment and create hazards for public health, although anaerobic digester was selected for this wastewater treatment plant. The main objective of this research was to evaluate and optimize the bacteriological quality of biosolids by lime addition in west Ahvaz wastewater treatment plant. The stability and reuse potential of biosolids from existing anaerobic digester and lime added biosolids were investigated. Lime addition to biosolids was performed in the reactor with 30 L capacity. Averge amounts of fecal coliforms and viable helminthes ova in disposal biosolids from anaerobic digester were 1.3×1015 MPN / g of dry solids and 314 ova / 4 g of dry solids, respectively. By lime addition with the ratio about 0.265 g Ca (OH2 per g of dry solids, pH was not dropped under 12 and growth of fecal coliform was not detected after 30 days. In this regard, discharged biosolids from this plant was unstable and very dangerous for reuse or disposal. Lime addition could stabilize the biosolids and reduce fecal coliforms more than 99.99% and had concordance with class B of United State Environmental Protection Agency criteria. Lime-stabilized biosolids could hence be well used for reconditioning the poor soil and for covering of solid waste landfill-sites.

  19. Preparation and characterization of calcium aluminate by chemical synthesis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Saturated Ca(OH)2 and AlCl3 solutions were used to synthesize calcium aluminate hydrate precipitates at room temperature; high purity calcium aluminate powders with stable phases were made by calcination of the precursors at a temperature as low as1100℃. PSD and BET analysis revealed the particles with sizes ranging from submicrometer to several micrometers and with a specific area of 13 m2/g. The measurement of hydraulic exotherm revealed that the exothermal rate is in peak for about 2 h. The exothermal quantities are 449.24 J/g at 12 h and 488.38 J/g at 24 h. Its strength development is quick and the 1 day curing strength is almost equal to 100% of the 3 days curing strength in the mortar test.

  20. EVALUATION OF BIOAEROSOL COMPONENTS, GENERATION FACTORS, AND AIRBORNE TRANSPORT ASSOCIATED WITH LIME TREATMENT OF CONTAMINATED SEDIMENT

    Science.gov (United States)

    Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...

  1. Soil Stabilization Using Lime: Advantages, Disadvantages and Proposing a Potential Alternative

    Directory of Open Access Journals (Sweden)

    Ibtehaj Taha Jawad

    2014-07-01

    Full Text Available This study is an overview of previous studies on lime (quick and hydrated -treated soil. Lime is the oldest traditional stabilizer used for soil stabilization. The mechanism of soil-lime treatment involves cation exchange, which leads to the flocculation and agglomeration of soil particles. The high pH environment then causes a pozzolanic reaction between the free Ca+2 cations and the dissolved silica and alumina. Lime-treated soil effectively increases the strength, durability and workability of the soil. Such treatment also improves soil compressibility. A fluctuation behavior was observed on the influence of lime on soil permeability. However, the factors affecting the permeability of the soil-lime mixture should be extensively studied. Nonetheless, lime treatment has a number of inherent disadvantages, such as carbonation, sulfate attack and environment impact. Magnesium oxide/hydroxide are thus proposed as a suitable alternative stabilizer to overcome at least some of the disadvantages of using lime in soil stabilization.

  2. Thermo-Mechanical Compatibility of Viscoelastic Mortars for Stone Repair

    Directory of Open Access Journals (Sweden)

    Thibault Demoulin

    2016-01-01

    Full Text Available The magnitude of the thermal stresses that originate in an acrylic-based repair material used for the reprofiling of natural sandstone is analyzed. This kind of artificial stone was developed in the late 1970s for its peculiar property of reversibility in an organic solvent. However, it displays a high thermal expansion coefficient, which can be a matter of concern for the durability either of the repair or of the underlying original stone. To evaluate this risk we propose an analytical solution that considers the viscoelasticity of the repair layer. The temperature profile used in the numerical evaluation has been measured in a church where artificial stone has been used in a recent restoration campaign. The viscoelasticity of the artificial stone has been characterized by stress relaxation experiments. The numerical analysis shows that the relaxation time of the repair mortar, originating from a low T g , allows relief of most of the thermal stresses. It explains the good durability of this particular repair material, as observed by the practitioners, and provides a solid scientific basis for considering that the problem of thermal expansion mismatch is not an issue for this type of stone under any possible conditions of natural exposure.

  3. Study on Overall Concept Planning of Terminal Correction Mortar Projectiles

    Institute of Scientific and Technical Information of China (English)

    XU Jin-xiang

    2008-01-01

    The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuration layout for TCMP are made in this paper, and its aerodynamic coefficients are calculated by using computational fluid dynamics (CFD) software. Test results of TCMP simulated ballistic projectiles indicate the designed TCMP can satisfy the interior ballistic demand and has a fine flight stability. The drag coefficients identified from the radar velocity-time data are in accord with the CFD computed results. According to the exposure frequency of the ground laser designator, a four-quadrant impulse correction scheme and a high exposure frequency impulse correction scheme are brought. The latter can calculate the target azimuth angle by counting the times of the facula passing through one quadrant. Simulation results also show that the guidance precision of the velocity pursuit is higher than that of the body pursuit, and the detector axis is less circuitous. Researches on the typical trajectory indicate that the terminal impulse correction can improve the hit precision of TCMP remarkably.

  4. Thaumasite-ettringite solid solutions in degraded mortars

    International Nuclear Information System (INIS)

    The thaumasite form of sulfate attack (TSA) has been observed in mortar prisms made from Portland-limestone cements after laboratory storage in 1.8% magnesium sulfate solution at 5 deg. C for 5 years. The prisms all showed evident signs of degradation, which increased with increasing limestone content. X-ray powder diffraction indicated that a solid solution was formed in all the prisms, which was based on the crystal structure of thaumasite, but extended towards the chemical composition of ettringite. The prism made from the cement with the highest level (35%) of limestone replacement gave the greatest amount of the thaumasite solid solution and had a composition close to the thaumasite end member, whereas those cements with lower (15%, 5% and 0%) levels of replacement gave reduced amounts of the solid solution and had greater lattice parameters. The solid solutions that have been observed are compared with those reported by Barnett et al. for synthetic thaumasite samples grown from sucrose solution

  5. The guard-mortars in the defence of Odessa (1941

    Directory of Open Access Journals (Sweden)

    Ovcharenko Nikolay Vasilyevich

    2013-11-01

    Full Text Available The author of the article analyzes the use and improvement of BM-8 and BM-13 Soviet land multiple launch rocket system. The author studied the fast tempo of evolution of reactive artillery of the Soviet Union in the years of the Great Patriotic War. The author cited history of the first battle using of reactive shells: RS-82 and RS-132 of “air-air” and “airland” on the Soviet Il-2 aircrafts and SB bombers; using RS-82 with I-16 aircrafts and with artillery-lorry “Komsomolets” during the defense of Odessa. The author investigated the secret see-transportation of the 48-th special force guards mortars to Odessa, the special ways for secret of new weapons; the technical-tactic characteristics of reactive weapons and battle activity 48-th force’s in the Odessa Defense Area. The article presents the analysis of the organization of the battle using of guardmortars force; sudden concentration strikes against enemy, which was preparing to attack. The author tells about reactive artillery support, fast chancing positions of reactive artillery, fire maneuvering on different sectors of the Odessa defense system, cooperation between reactive and other artillery.

  6. Effects of the restoration mortar on chalk stone buildings

    Science.gov (United States)

    Ion, R. M.; Teodorescu, S.; Ştirbescu, R. M.; Dulamă, I. D.; Şuică-Bunghez, I. R.; Bucurică, I. A.; Fierăscu, R. C.; Fierscu, I.; Ion, M. L.

    2016-06-01

    The monument buildings as components of cultural heritage are exposed to degradation of surfaces and chemical and mechanical degradation, often associated to soiling and irreversible deterioration of the building. In many conservative and restorative works, a cement-based mortar was used without knowing all the adverse effects of this material on the building. This paper deals with the study of the effects of natural cement used in restorative works in the particular case of the Basarabi-Murfatlar Churches Ensemble. Cement-based materials exposed to sulfate present in the chalk stone - gypsum (CaSO4.2H2O), can induce signs of deterioration, due to ettringite ([Ca3Al (OH)612H2O]2(SO4)32H2O) or thaumasite (Ca3[Si(OH)612H2O](CO3)SO4) formation. These phases contribute to strain within the material, inducing expansion, strength loss, spalling and severe degradation. Several combined techniques (XRD, EDXRF, ICP-AES, SEM, EDS, sulphates content, FT-IR and Raman analysis were carried out to put into evidence the effects of them on the building walls.

  7. Solidification of radioactive waste in a cement/lime mixture

    International Nuclear Information System (INIS)

    The suitability of a cement/lime mixture for use as a solidification agent for different types of wastes was investigated. This work includes studies directed towards determining the wasted/binder compositional field over which successful solidification occurs with various wastes and the measurement of some of the waste from properties relevant to evaluating the potential for the release of radionuclides to the environment. In this study, four types of low-level radioactive wastes were simulated for incorporation into a cement/lime mixture. These were boric acid waste, sodium sulfate wastes, aion exchange resins and incinerator ash. 7 references, 3 figures, 2 tables

  8. Liming and electrochemical attributes of an oxisol under no tillage

    OpenAIRE

    Alleoni Luís Reynaldo Ferracciú; Zambrosi Fernando César Bachiega; Moreira Silvino Guimarães; Prochnow Luís Ignácio; Pauletti Volnei

    2003-01-01

    No tillage areas are increasing in Brazil especially due to a general improvement in water and nutrient availability to plants. Few results have reported the effect of liming on soil electrochemical attributes in areas under the no tillage system. This study was conducted to evaluate the effect of liming (at the soil surface and incorporated to 0.2 m) on soil pH, point of zero salt effect (PZSE), electric potential, soil organic matter (SOM), and yield of soybean and corn, cultivated on an Ty...

  9. Glass forming ability of soda lime borate Liquids

    OpenAIRE

    Zheng, Qiuju; Mauro, J. C.; Smedskjær, Morten Mattrup; Potuzak, M.; Keding, Ralf; Yue, Yuanzheng

    2010-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein....

  10. Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack

    International Nuclear Information System (INIS)

    This work aims to contribute to the design of durable concrete structures exposed to external sulphate attacks (ESA). Following a preliminary study aimed at designing a representative test, the present paper suggests a study on the effect of the water-to-cement (w/c) ratio and the cement composition in order to understand the degradation mechanisms. Length and mass measurements were registered continuously, leached calcium and hydroxide ions were also quantified. In parallel, scanning electron microscopy observations as well as X-ray microtomography were realised at different times to identify the formed products and the crack morphology. Test results provide information on the basic aspects of the degradation mechanism, such as the main role of leaching and diffusion in the sulphate attack process. The mortar composition with a low w/c ratio leads to a better resistance to sulphate attack because the microstructure is less permeable. Reducing the C3A content results in a macro-cracking decrease but it does not prevent expansion, which suggests the contribution of other expansive products, such as gypsum, in damage due to ESA. The observation of the cracks network in the microstructure helps to understand the micro-mechanisms of the degradation process.

  11. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate (EVA

    Directory of Open Access Journals (Sweden)

    Luiza R. Brancher

    2016-01-01

    Full Text Available This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate (EVA to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  12. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  13. Use of waste brick as a partial replacement of cement in mortar

    International Nuclear Information System (INIS)

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  14. Superplasticized Portland cement: Production and compressive strength of mortars and concrete

    Energy Technology Data Exchange (ETDEWEB)

    Bouzoubaa, N.; Zhang, M.H.; Malhotra, V.M. [Natural Resources Canada, Ottawa, Ontario (Canada)

    1998-12-01

    This paper deals with the effect of intergrinding different percentages of a naphthalene-based superplasticizer with Portland cement clinker and gypsum on the fineness of the product, and on the water requirement and the compressive strength of the mortars made with the superplasticized cement. The properties of the fresh and hardened concrete made with the superplasticized cements were also investigated. The results showed that the intergrinding of a given amount of a naphthalene-based superplasticizer with Portland clinker and gypsum reduced the grinding time required for obtaining the same Blaine fineness as that of the control Portland cement without the superplasticizer. The water requirement of the mortars made with the superplasticized cements was similar to that of the mortars made with the control Portland cements when the same amount of the superplasticizer was added at the mortar mixer; for a given grinding time and a Blaine fineness of {approximately}4500 cm{sup 2}/g, the mortars made with the superplasticized cement had higher compressive strength than those made with the control Portland cement. For a given grinding time or Blaine fineness of cement {ge}5000 cm{sup 2}/g, the slump loss, air content stability, bleeding, autogenous temperature rise, setting times, and compressive strength of the concrete made with the superplasticized cements were generally comparable to those of the concrete made with the control Portland cements when the superplasticizer was added at the concrete mixer.

  15. Inlfuence of Specimen Size on Compression Behavior of Cement Paste and Mortar under High Strain Rates

    Institute of Scientific and Technical Information of China (English)

    CHEN Xudong; CHEN Chen; QIAN Pingping; XU Lingyu

    2016-01-01

    Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes (f68 mm×32 mm,f59 mm×29.5 mm andf32 mm×16 mm) to study the inlfuence of specimen size on the compression behavior of cement-based materials under high strain rates. The static tests were applied using a universal servo-hydraulic system, and the dynamic tests were applied by a spilt Hopkinson pressure bar (SHPB) system. The experimental results show that for mortar and paste specimens, the dynamic compressive strength is greater than the quasi-static one, and the dynamic compressive strength for specimens of large size is lower than those of small size. However, the dynamic increase factors (DIF) has an opposite trend. Obviously, both strain rate and size effect exist in mortar and paste. The test results were then analyzed using Weibull, Carpinteri and Bažant’s size effect laws. A good agreement between these three laws and the test results was reached on the compressive strength. However, for the experimental results of paste and cement mortar, the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.

  16. Experimental study on thermo-mechanical properties of Polymer Modified Mortar

    International Nuclear Information System (INIS)

    Highlights: • We studied thermal and mechanical properties of ordinary and Polymer Modified Mortars. • For ordinary and polymer samples with different contents of Portland cement were used. • XDM, DSC and SEM were conducted to examine the interaction of the polymer mortars used. • Real improvement of the polymer mortars thermal properties was observed in comparison with ordinary ones. • Decrease of the mechanical strength of polymer mortars was observed when HDPE is added. - Abstract: This paper presents the results of an experimental program devoted to the study of Polymer Modified Mortars’ (PMM) thermal conductivity, thermal diffusivity and calorific capacity at different temperatures and compressive and flexural strengths at room-temperature. For this purpose, Ordinary Mortar (OM) and PMM samples with different contents and through partial substitution of Portland cement were prepared. A real improvement of the PMM thermal properties was observed in comparison with those of OM despite the decrease of mechanical strength. X-rays Diffract Meter (XDM), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) were also conducted to show the interaction of the polymer material considered

  17. Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars

    Directory of Open Access Journals (Sweden)

    Vanissorn Vimonsatit

    2015-12-01

    Full Text Available In this paper, the influence of fly ash fineness on water requirement and shrinkage of blended cement mortar was studied. The results indicate that the water requirement and shrinkage characteristic of the blended cement mortar are dependent on fly ash fineness and replacement level. The use of coarse fly ash slightly reduces the water requirement but greatly reduced the drying and the autogenous shrinkage of the blended cement mortars and the reduction is more with an increase in the fly ash replacement level. The finer fly ashes further reduce the water requirement, but increase the drying and the autogenous shrinkages as compared with coarser fly ash. The incorporation of superplasticizer drastically reduces the water requirement, but the effect on the drying and autogenous shrinkages of the normal Portland cement mortar is small. However, for the fly ash mortar, the use of superplasticizer results in a decrease in drying shrinkage and in a substantial increase in the autogenous shrinkage particularly for the fine fly ash at a high replacement level.

  18. Mechanical Properties and Solidiifed Mechanism of Tailings Mortar with Waste Glass

    Institute of Scientific and Technical Information of China (English)

    NING Baokuan; XU Jingwen; CHEN Sili

    2015-01-01

    In order to improve the comprehensive utilization of solid waste such as iron tailings and waste glass and so on, mechanical property test of cement tailings mortar mixed waste glass and curing mechanism research were conducted in the key materials mechanics lab of Liaoning province. The experimental results show that adding waste glass particles can improve the grain size distribution of tailings. The effect is proportional to the content. The compressive strength of tailings mortar has increased signiifcantly. The ifneness modulus of tailings mortar mixture adding waste glass powder was gradually reducing with the increase of the dosage of waste glass powder, but the compressive strength of the mixture has gradually enhanced with the increase of the dosage. Microscopic analysis shows that the waste glass particles in the mortar mainly play a role of coarse aggregate and glass powder after grinding fine below a certain size shows strong volcanic activity, which can act hydration with tailings, at the same time glass powder also, plays a role in ifne aggregate iflling. Therefore, all of glass particles and glass powder can be used as the additive material for improving and optimizing the mechanical property of tailings mortar.

  19. Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material

    Science.gov (United States)

    Warid Wazien, A. Z.; Bakri Abdullah, Mohd Mustafa Al; Abd. Razak, Rafiza; Mohd Remy Rozainy, M. A. Z.; Faheem Mohd Tahir, Muhammad

    2016-06-01

    Geopolymers produced by synthesizing aluminosilicate source materials with an alkaline activator solution promised an excellent properties akin to the existing construction material. This study focused on the effect of various binder to sand ratio on geopolymer mortar properties. Mix design of geopolymer mortar was produced using NaOH concentration of 12 molars, ratio of fly ash/alkaline activator and ratio Na2SiO3/NaOH of 2.0 and 2.5 respectively. Samples subsequently ware cured at ambient temperature. The properties of geopolymer mortar were analysed in term of compressive strength and density at different period which are on the 3rd and 7th day of curing. Experimental results revealed that the addition of sand slightly increase the compressive strength of geopolymer. The optimum compressive strength obtained was up to 31.39 MPa on the 7th day. The density of geopolymer mortar was in the range between 2.0 g/cm3 to 2.23 g/cm3. Based on this findings, the special properties promoted by geopolymer mortar display high potential to be implemented in the field of concrete patch repair.

  20. Biological effects in limed forests; Biologiska effekter i kalkad skog. Aarsrapport 1998. Effektuppfoeljning av Skogsstyrelsens program foer kalkning och vitaliseringsgoedsling av skogsmark

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Per-Erik; Akselsson, Cecilia; Bengtsson, Roland; Bjelke, Ulf

    1999-10-01

    The Swedish Board of Forestry experimental work with liming and vitalising (nutrient compensation) of forest soil includes an extensive review program of the effects of this work. Results from the experimental work are presented in annual reports. This report gives an account of the review program carried out to indicate the results of the biological effects. The studies are performed within the Swedish Board of Forestry's large-scale experiments with the liming and vitalising fertilisation of forest soil. The report covers the time period, or parts of the period, from 1991 to 1998. The results in short are as follows: (1) Benthic invertebrate: The investigation revealed that a dose of 3 tonnes per hectare was insufficient to have a substantial effect on the fauna in acidified streams during the first seven years after treatment. An increase in the number of species and taxon or larger bio-diversity could not be confirmed. No indications of harmful effects on the fauna, caused by high lime concentrations, were found., (2) Benthic algae: Changes to benthic flora in streams after soil treatment was minimal. The total number of species increased slightly after lime treatment. At the same time the number of acid indicating species diminished. In other words, the decrease in acidity has improved the water quality. No negative effects, as a result of soil treatment were found., (3) Nutritional status in needles: The trees reacted quickly to the treatments. The soil treatment led to an increase in levels of calcium in the needles. Treatment using wood ash and the vitalising agent 'Skogvital' led to an increase in calcium and boron levels. Treatment using a mixture of wood ash and lime resulted in increased magnesium and manganese levels. Samples were taken one and three years respectively after treatment. A longer period of time is required to carry out a detailed evaluation of the nutritional status of the needles., and (4) Tree vitality: It is not

  1. Limitation of sulfur dioxide removal in a FGD spray dryer using once through slaked lime

    Energy Technology Data Exchange (ETDEWEB)

    Dantuluri, S.R.

    1988-01-01

    The present study discusses the importance of slaking operation and its effect on the removal efficiency in a spray dryer operated FGD system using slaked lime slurry. Laboratory scale slaking experiments were run to look into various characteristics of resulting slurry. Pilot plant tests were made to quantify the effects of different parameters on spray removal efficiency. A vertical tower mill was used to grind calcium hydroxide slurry to attain smaller particle size. X-ray diffraction and SEM techniques were used to visualize the crystallinity and surface area measurements were made for different slurries and an attempt was made to relate these parameters with the sorbent's performance in removing SO[sub 2] across the spray dryer. The findings of the present work indicate that increasing the surface area beyond certain values, the spray system can be operated under gas-phase controlled conditions, which should give maximum possible efficiency. The new version of the model SPRAYMOD-N was used to mimic these conditions to arrive at the gas phase controlled efficiency and corresponding particle size to achieve those conditions. It is found that slaked lime slurry particles around 2.3 microns size can give an efficiency of around 75 percent in the spray dryer for an inlet SO[sub 2] concentration of 1000 ppm, operated at a stoichiometric ratio (SR) of one and saturation approach temperature of 20F. Pilot tests conducted in this study with 2.4 micron Ca(OH)[sub 2] slurry achieved this efficiency. Predicted efficiency values (with constant rate period only) fell off at higher SR values, showing the significance of the falling rate period at those conditions.

  2. A crystal-chemical investigation of phases of relevance to lime-chromite roast reactions

    International Nuclear Information System (INIS)

    The aim of this investigation was to elucidate the crystal chemistry of phases in the CaO-chromium oxide-Si-O2 system, by single crystal x-ray diffractometry. The crystal chemistry of calcium and chromium-containing phases, with chromium valencies higher than trivalent, which occur in the chromite-lime roast process has been investigated. The phases include the monocalcium, tricalcium and pentacalcium ortho-chromates and the fluor and oxy-chromium apatites. The crystal structures of Ca5Cr3O12 and Ca5Cr1.8Si1.2O12, the chromium analogues of silico-carnotite, Ca5P2SiO12, have been determined. An alternative model for the structure of Ca3(CrO4)2 has been investigated in which some of the (CrO4) tetrahedra are positionally disordered. It is proposed that the structure determined may represent an average of two different structure types and the transformation from the one polymorph to the other involves the alternate flipping of the disordered tetrahedra. The disordered model implies an alternative stoichiometry Ca10(CrO4)7 in which 6/7 of the chromium is pentavalent and 1/7 is hexavalent. The phase chemistry of mixtures of lime and chromite has been examined at temperatures above 850 0C in air. Ca5Cr3O12' Ca5(CrO4)F and Ca3(CrO4)2 are produced as relatively pure phases. Optimum chromite: lime addition is in the order 1:1, such that the product phases include Ca5Cr3O12, Ca4Fe+32Al2O10 and MgO. Reaction kinetics are however unfavourable. By replacing 7% CaO with CaF2, the kinetics are improved. The product phases are fluor-chromium apatite Ca5Cr3O10F, Ca4Fe+32Al2O12 and MgO. The apatite, like Ca5Cr3O12, may be preferentially leached with dilute acid

  3. Evaluation of Hydrated Lime Filler in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Mohammed Abbas Hasan Al-Jumaily

    2008-01-01

    Full Text Available Mineral filler is one of important materials and affecting on properties and quality of asphalt mixtures .There are different types of mineral filler depended on cost and quality , the matter encourages us to achieve this study to evaluate hydrated lime filler effects on properties of asphalt mixes related with strength and durability. Conventional asphaltic concrete mixtures with Portland cement and soft sandstone fillers and mixtures modified with hydrated lime were evaluated for their fundamental engineering properties as defined by Marshall properties , index of retained strength , indirect tensile strength , permanent deformation characteristics , and fatigue resistance .A typical dense graded mixture employed in construction of surface course pavement in Iraq in accordance with SCRB specifications was used .The materials used in this study included mineral aggregate materials (coarse and fine sizes were originally obtained from Najaf Sea quarries and two grades of asphalt cements produced from Daurah refinery which are D47 and D66 . The physical properties , stiffness modulus and chemical composition are evaluated for the recovered asphalt cement from prepared asphalt mixes containing various filler types .The paper results indicated that the addition of hydrated lime as mineral filler improved the permanent deformation characteristics and fatigue life and the use of hydrated lime will decrease the moisture susceptibility of the asphalt mixtures.

  4. Observation of lime nanoparticles distribution during evaporation of transportation media

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jandejsek, Ivan; Slížková, Zuzana

    Ghent: University Press, 2013. s. 285-287 ISBN 9789461971302 R&D Projects: GA MK(CZ) DF11P01OVV012 Keywords : stone consolidation * digital radiography * lime nanoparticles Subject RIV: AL - Art, Architecture, Cultural Heritage http://www.itam.cas.cz/?pid=5

  5. LIME SPRAY DRYER FLUE GAS DESULFURIZATION COMPUTER MODEL USERS MANUAL

    Science.gov (United States)

    The report describes a lime spray dryer/baghouse (FORTRAN) computer model that simulates SO2 removal and permits study of related impacts on design and economics as functions of design parameters and operating conditions for coal-fired electric generating units. The model allows ...

  6. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    Energy Technology Data Exchange (ETDEWEB)

    Ping Sun; Panuwat Taerakul; Linda K. Weavers; Harold W. Walker [Ohio State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

    2005-10-01

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAH concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.

  7. A Model for Dissolution of Lime in Steelmaking Slags

    Science.gov (United States)

    Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu

    2016-08-01

    In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate

  8. A Model for Dissolution of Lime in Steelmaking Slags

    Science.gov (United States)

    Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu

    2016-04-01

    In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate

  9. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    Science.gov (United States)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  10. The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar

    Directory of Open Access Journals (Sweden)

    Cheng-Chih Fan

    2015-05-01

    Full Text Available The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1 a method that produces fine as well as coarse aggregate, and (2 a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.

  11. Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-07-01

    Full Text Available The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too.

  12. Effect of Functional Chemical Admixtures on the Performance of Cement Asphalt Mortar Used in Ballastless Track

    Institute of Scientific and Technical Information of China (English)

    JIANG Jinyang; SHE Wei; LI Wei; PAN Li

    2015-01-01

    Chemical admixtures are of paramount importance to the performance of modern cement based composites. In this paper, we performed a series of tests to investigate the effects of chemical admixtures on the cement asphalt mortar (CA mortar), i e, compressive strength, frost resistance, permeability, fatigue resistance, pore structure and microstructure. In particular, two types of chemical admixtures were tested,i e, defoamer (tributyl phosphate (TBP)) and polycarboxylate superplasticizer (PS). The results indicate that the addition of TBP and PS eliminates big bubbles and promotes small non-connected pores forming in matrix. Besides, an optimum dosage of TBP and PS may be determined with respect to the frost resistance, permeability and fatigue resistance of CA mortar. Further elaborative discussions are presented as well as experimental evidences from mercury intrusion porosimetry, scanning electron microscopy and energy dispersive spectroscopy.

  13. Application of a semi-empirical model for the evaluation of transmission properties of barite mortar

    International Nuclear Information System (INIS)

    The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H⁎(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H⁎(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility. - Highlights: • Barite mortar attenuation curves using X-ray spectra were calculated. • Optimized thickness of protective barrier was estimated. • An optimized model considers the energy spectra for protective barrier calculation

  14. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions

    International Nuclear Information System (INIS)

    This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposed in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.

  15. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kunther, W., E-mail: Wolfgang.Kunther@empa.ch [Empa, Laboratory for Concrete and Construction Chemistry, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, B. [Empa, Laboratory for Concrete and Construction Chemistry, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Scrivener, K. [EPFL, Laboratory of Construction Materials, CH-1015 Lausanne (Switzerland)

    2013-02-15

    This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposed in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.

  16. Mechanical interaction between historical brick and repair mortar: experimental and numerical tests

    International Nuclear Information System (INIS)

    An innovative laboratory procedure, developed at the Non Destructive Testing Laboratory of the Politecnico di Torino, as a preliminary design stage for the pre-qualification of repair mortars applied to historical masonry buildings is described. Tested repair mortars are suitable for new dehumidified plaster in order to stop the rising damp effects by capillary action on historical masonry walls. Long-term plaster delamination occurs frequently as a consequence of not compatible mechanical characteristics of mortar. Preventing this phenomenon is the main way to increase the durability of repair work. In this direction, it is useful to analyse, through the cohesive crack model, the evolutionary phenomenon of plaster delamination. The parameters used in the numerical simulation of experimental tests are able to characterize the mechanical behaviour of the interface. It is therefore possible to predict delamination in problems with different boundary conditions.

  17. Dry ripened mortar with quarry waste and rubber powder from unserviceable tires

    Directory of Open Access Journals (Sweden)

    José Aparecido Canova

    2015-01-01

    Full Text Available Stone-quarry fines have been evaluated in mortar and concrete, but have presented drying shrinkage and consequently higher incidence of cracks than those with natural sand. This study compared the dry ripened mortar in two types of aggregates added of 8% rubber powder. It was used quicklime, artificial and natural sand in volumetric proportions of 1:6. Mixtures were oven-dried, received the cement, establishing the volumetric proportion of 1: 1.5:9. Inplastic state, we evaluated aspects such as consistence, air content, water retention and bleeding; whereas compressive strength, static deformation modulus and water absorption by capillarity was determined in hardened state. Cracking aspects were evaluated in substrate. As a result, the mortar with artificial sand showed higher increases in compressive strength, capillarity rate and cracking, and greater reductions in air content and bleeding. As for the rubber powder, exhibited a greater reduction in the cracking rate and capillarity was found.

  18. EXPERIMENTAL STUDY ON THE APPLICATION OF HIGH STRENGTH FIBER REINFORCED MORTAR TO PRESTRESSED CONCRETE STRUCTURES

    Science.gov (United States)

    Sakurada, Michihiro; Mori, Takuya; Ohyama, Hiroaki; Seki, Hiroshi

    In order to study the application of high strength fiber reinforced mortar which has design compressive strength 120N/mm2 to prestressed concrete structures, the authors carried out material tests, bending tests and shear tests of prestressed concrete beam specimens. From the material tests, we obtained material properties for the design of prestressed concrete structures such as compressive strength, tensile strength, Young's modulus, coefficient of creep, dry shrinkage and so on. The results of the bending tests and the shear tests of prestressed concrete beam specimen shows that experimental flexural strength and shear strength of prestressed concrete beam using high strength fiber reinforced mortar exceeds strength calculated by traditional design method. It is confirmed that high strength fiber reinforced mortar can be applied to prestressed concrete structures.

  19. Simple Mechanical Beneficiation Method of Coarse Fly Ash with High LOI for Making HVFA Mortar

    Directory of Open Access Journals (Sweden)

    Antoni ,

    2015-01-01

    Full Text Available This study focusses on the effect of milling of fly ash obtained from four different sources on the properties of high volume fly ash (HVFA mortar. Two fly ash samples with low loss-on-ignition (LOI were taken from a coal-fired power plant, while the other two with high LOIs were obtained from a textile factory and from a paper mill, respectively. Milling was performed using a rod mill at a certain period of time. The workability of HVFA mortar with constant water to cementitious ratio was controlled by adjusting the superplasticizer content. The results show that the specific gravity of fly ash increases after milling. Utilizing milled fly ash ends up with significant strength increase of HVFA mortar, especially those utilizing high LOI fly ash. This shows that milling is an excellent fly ash beneficiation technique, especially on the one with high LOI value.

  20. Influence of Curing Condition on the Adhesive Strength of EVA Modified Mortar to Tile

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The reducing water effectiveness of EVA latex and powder was observed. Adhesive strength of EVA modified mortar to tile under different curing condition was studied. And the adhesive strengths of mortars modified by EVA latex and by EVA powder were compared. The results show that the reducing water effectiveness is improved by 36.12% and 21.55%, respectively, when the content of EVA latex and powder are 8% and 4%. EVA latex and powder can improve the adhesive strength of modified mortar to tile under the standard curing, high temperature curing, and freeze-thaw circle curing.EVA latex can improve the water resistance obviously, besides improve the adhesive strengths of standard curing and high temperature curing, comparing with EVA powder.

  1. Dating historical calcite mortar by blue OSL: results from known age samples

    International Nuclear Information System (INIS)

    The study investigates whether blue OSL, known as a dating tool for partially bleached materials, can also be used for dating calcite mortar from young constructions. Starting from samples of known age the aim of the study is to determine appropriate evaluation methods for dose distributions. Using a model-calculation we first try to answer the question of how far a mortar sample can possibly be bleached during the manufacturing process. We then deal with the question of optimizing the analytical process, especially in view of the most suitable grain size. In the focus of our investigations we have tested several methods of evaluating frequency distributions based on single aliquot/multiple grain measurements. Depending on grain size, two methods have proved sufficiently successful; optimal equivalent doses may be obtained either from radial plots or from maxima of weighted histograms. The comparison is based on measurements of 14 mortar samples from the last millennium

  2. Influence Of The Powder/Asphalt Ratio On The High Stress Responses Of Crumb Rubber Modified Asphalt Mortars

    Directory of Open Access Journals (Sweden)

    Ma Tengfei

    2016-04-01

    Full Text Available In order to study different powder/asphalt ratios effect on nonlinear viscoelastic responses of mortar, this paper choose limestone as the filler, and powder/asphalt ratio is 0.2,0.4,0.6,and 0.8.The tests were conducted using a Dynamic Shear Rheometer to perform multiple stress creep recovery (MSCR tests.The test results show that,with the increase of powder/asphalt ratio irrecoverable creep compliance(Jnr value of the mortar , decrease gradually, and the amplitude is larger.High temperature performance of the mortar are improve obviously.Using environmental scanning electron microscopy to scan those mortars,it analyzed the improvement of mortar from the microcosmic mechanism.

  3. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    International Nuclear Information System (INIS)

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO3, widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone

  4. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  5. Coronary Calcium Scan

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  6. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  7. Calcium in diet

    Science.gov (United States)

    Diet - calcium ... Calcium is one of the most important minerals for the human body. It helps form and maintain healthy teeth and bones. A proper level of calcium in the body over a lifetime can help ...

  8. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  9. The Evolution of Click-n-Mortar E-tailing in Denmark

    DEFF Research Database (Denmark)

    Bøge Sørensen, Lars; Holst, Lisa L.

    2003-01-01

    The paper at hand presents an extension and application of Kotzab & Madlbergers (Kotzab &Madlberger, 2001) original clicks-and-mortar web-scan framework, which is here used to reexaminethe click-and-mortar activities of the top 100 Danish retailers and compare with resultsfrom the identical study...... last year. The first part of the paper describes the development andrationale behind the model used, the second part describes the results obtained and describes theevolution by analysing data from 2001, 2002 and 2003. The empirical results show a shifttoward selling in the internet channel, and a...

  10. Energy absorption at high strain rate of glass fiber reinforced mortars

    Science.gov (United States)

    Fenu, Luigi; Forni, Daniele; Cadoni, Ezio

    2015-09-01

    In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF) was finally evaluated.

  11. Evaluation of durability of mortars and concretes used in ancient structures

    International Nuclear Information System (INIS)

    The data on historic mortars and concretes provide qualitative and quantitative information to evaluate long-term behavior of cement materials in repositories and to understand processes that may occur in repositories (e.g., interaction with other materials and radionuclide transfer). Beyond that, such information is important to demonstrate safety aspects of the repositories to the public and stakeholders. A number of reports have been devoted to study of historical mortars and concretes used in the Western countries. The purpose of this paper is to review studies on compositions and structures of analogs, located mainly over the former Soviet Union's territory. (authors)

  12. Corrugated stainless steels embedded in carbonated mortars with and without chlorides: 9-year corrosion results

    OpenAIRE

    Bautista, A.; Álvarez, S. M.; Paredes, E. C.; Velasco, F.; Guzmán, S.

    2015-01-01

    The corrosion behavior of 5 corrugated stainless steel bars was evaluated in carbonated mortars: UNS S20430, S30400, S31603, S31635 and S32205. The tests were carried out under 3 different exposure conditions: at high relative humidity (C-HRH); partially immersed in 3.5% NaCl (C-PD; and with CaCl2 added during mortar mixing and exposed to high relative humidity (C-HRHCl). Corrosion potential (Ecorr) measurements and electrochemical impedance spectroscopy (EIS) were used to monitor the behavio...

  13. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  14. MOBILE MORTAR CONCRETE PLANTS FOR BUILDING COMPLEX OF BELARUS: ADVANTAGES AND DISADVANTAGES

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available The paper considers main advantages and disadvantages of mobile mortar concrete plants in comparison with stationary concrete mixing units. The main idea of the mobility is to provide quick movement. In its turn, this approach imposes some restrictions on dimensions and weights of concrete mixing equipment. However in the context of the concrete mixing equipment and construction site as whole the mobility concept is considered in the form of three components: minimum expenses on site preparation for assembly of a mortar concrete plant, transportability, reduction in installation and startand-adjustment periods. In this regard processing chain for production of concrete and mortar mixes is divided in separate complete operations. Then it is necessary to develop modules which are performing the required operations. Every module is developed in accordance with the size of a shipping container in order to make transportation convenient. Detachable connections are stipulated in the place of module linkages, electrical wiring, pipelines for supply water and chemical admixtures, pneumatics. Henceforth, these connections make it possible to reduce time for on-site assembly and disassembly of the equipment.The paper presents a mobile mortar concrete unit of block-module arrangement which has been developed within the framework of the State Scientific Research Programme at the BNTU. The unit has been manufactured using production capacities of JSC “Viprotekh” and it has been successfully introduced in production process. One of the promising directions is to use the mobile mortar concrete plants which are located and which are operating directly on construction sites. Their economic efficiency becomes higher with an increase of distance to the nearest stationary mortar concrete unit and scope of concreting works. Mobile mortar concrete plants are mainly intended for construction organizations which are realizing construction projects away from urban

  15. Non-standard testing and characterisation of mortars from historic masonry

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana; O´Hagan, J.

    Auckland : University of Auckland, 2011 - (Ingham, J.; Dhanasekar, M.; Masia, M.), s. 493-502 ISBN 978-0-473-18069-0. [Australasian masonry conference /9./. Queenstown (NZ), 15.02.2011-18.02.2011] R&D Projects: GA ČR(CZ) GA103/09/2067 Grant ostatní: evropská komise(XE) SAHC Erasmus Mundus Programme Institutional research plan: CEZ:AV0Z20710524 Keywords : historic masonry * mortars * mortars modified with fibres Subject RIV: AL - Art, Architecture, Cultural Heritage

  16. ASR potential of quartz based on expansion values and microscopic characteristics of mortar bars

    Science.gov (United States)

    Stastna, Aneta; Sachlova, Sarka; Kuchynova, Marketa; Pertold, Zdenek; Prikryl, Richard

    2016-04-01

    The alkali-silica reaction (ASR) is one of the most damaging factors for concrete structures. Different analytical techniques are used to quantify ASR potential of aggregates. The accelerated mortar bar test (ASTM C1260) in combination with the petrographic examination of aggregates by microscopic techniques belongs to the frequently employed methods. Such a methodical approach enables quantification of the ASR potential, based on the expansion values of accelerated mortar bars; and also to identify deleterious components in aggregates. In this study, the accelerated mortar bar test (ASTM C1260) was modified and combined with the scanning electron microscopy of polished sections prepared from mortar bars. The standard 14-day test period of mortar bars was prolonged to 1-year. ASR potential of aggregates was assessed based on expansion values (both 14-day and 1-year) of mortar bars and microscopic analysis of ASR products (alkali silica gels, microcracks, dissolution gaps) detected in the sections. Different varieties of quartz-rich rocks including chert, quartz meta-greywacke, three types of quartzite and pegmatite were used as aggregate. Only quartz from pegmatite was assessed to be non reactive (14-day expansion of 0.08%, 1-year expansion of 1.25%). Aggregate sections exhibited minor ASR products even after 1-year of mortar bar immersion in 1 M NaOH. Expansion values of the rest of samples exceeded the limit of 0.10% after 14-day test period indicating aggregates as reactive. The highest ASR potential was detected in mortar bars containing chert (14-day expansion of 0.55%, 1-year expansion of 2.70%) and quartz meta-greywacke (14-day expansion of 0.46%, 1-year expansion of 2.41%). The high ASR potential was explained by presence of cryptocrystalline matrix in significant volumes (24 - 65 vol%). Influence of the lengths of the immersion in the alkaline solution was observed mainly in the microstructure of the cement paste and on the extension of ASR products. The

  17. The stability evaluation of lime mud as transesterification catalyst in resisting CO2 and H2O for biodiesel production

    International Nuclear Information System (INIS)

    Highlights: • Lime mud (LM) is pretreated with calcination, hydration and desiccation. • The alkali solubility is the amount of alkali compounds dissolved in methanol. • The soluble alkali amount in LM700-H is higher than that of CaO–H. • LM700 possesses a stronger capability than CaO in resisting H2O and CO2. - Abstract: The most outstanding property of the heterogeneous transesterification catalysts is recyclable, but their catalytic activity may be depressed for the absorption of moisture (H2O) and carbon dioxide (CO2) in air, especially for the basic ones. Lime mud (LM) is effective in catalyzing transesterification, yet its property in resisting H2O and CO2 is indistinct, which should be emphasized. In this study, the LM based transesterification catalyst is prepared through calcinations. Then, it is hydrated and desiccated to simulate the contamination by H2O and CO2. Further, the fresh and the contaminated catalysts are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Hammette indicator, Brunauer–Emmett–Teller (BET) surface area and soluble alkali examination, to reveal the mechanism of LM in resisting H2O and CO2. Meanwhile, the analytical grade calcium oxide (CaO) is chosen for comparison. Finally, to comprehensively investigate the influences of H2O and CO2 on LM in catalyzing transesterification, the factors of the catalyst addition percentage, molar ratio of methanol to oil and transesterification temperature are evaluated

  18. From lime to silica and alumina: systematic modeling of cement clinkers using a general force-field.

    Science.gov (United States)

    Freitas, A A; Santos, R L; Colaço, R; Bayão Horta, R; Canongia Lopes, J N

    2015-07-28

    Thirteen different cement-clinker crystalline phases present in the lime-silica-alumina system have been systematically modeled using a simple and general force field. This constitutes a new type of approach towards the study of lime-silica-alumina systems, where the simpler and more transferable Lennard-Jones potential was used instead of the more traditional Buckingham potential. The results were validated using experimental density and structural data. The elastic properties were also considered. Six amorphous phases (corresponding to calcium/silicon ratios corresponding to belite, rankinite, wollastonite and alumina-doped amorphous wollastonite with 5%, 10% and 15% alumina content) were also studied using molecular dynamics simulations. The obtained MD trajectories were used to characterize the different crystalline and amorphous phases in terms of the corresponding radial distribution functions, aggregate analyses and connectivity among silica groups. These studies allowed a direct comparison between the crystalline and amorphous phases and revealed how the structure of the silica network was modified in the amorphous materials or by the inclusion of other structural units such as alumina. The knowledge at an atomistic level of such modifications is paramount for the formulation of new cement-clinker phases. PMID:26109081

  19. Reciclagem de resíduos da construção civil para a produção de argamassas Granite sawing waste recycling for mortar production

    Directory of Open Access Journals (Sweden)

    R. R. Menezes

    2009-09-01

    Full Text Available O volume de resíduos inorgânicos gerados a cada ano vem crescendo em todo mundo e apresenta um dos maiores problemas da sociedade moderna. Este trabalho tem por objetivo analisar a viabilidade de utilização do resíduo da serragem do granito e de resíduos da construção civil como materiais alternativos para a produção de argamassas. Os resíduos foram caracterizados física e mineralogicamente por meio da determinação de distribuição e tamanho de partículas, massa e área específica, composição química, difração de raios X e análise térmica diferencial. Foi determinado o índice de atividade pozolânica com cal dos resíduos da construção. Foram formuladas composições de argamassas substituindo parcialmente a cal pelos resíduos, e moldados corpos-de-prova. Os corpos-de-prova foram curados por 7, 14, 28 e 60 dias e, em seguida, foi determinada a resistência à compressão simples. Os resíduos apresentam elevados teores de SiO2, Al2O3 e Fe2O3 e possuem as fases cristalinas quartzo, mica, feldspato, carbonato de cálcio e óxido de ferro. A substituição do aglomerante por resíduos na produção de argamassas pode ser efetuada com sucesso em teores de até 50% e os resíduos com atividade pozolânica propiciam aumentos significativos na resistência à compressão simples das argamassas.Around the world the amount of inorganic wastes has increased dramatically and is one of the most important issues for modern society. This work has as aim to analyze the suitability of granite sawing waste and construction wastes as alternative raw materials for the production of mortars. The wastes were physically and mineralogical characterized by the determination of particle size distribution, specific mass and specific area, chemical composition, X-ray diffraction, and differential thermal analysis. The pozzolanic activity index with hydrated lime of construction wastes was determined. Mortar compositions were formulated

  20. Ecological comparison of calcium hydroxide and sodium hydrogen carbonate as sorbents; Oekologischer Vergleich der Sorptionsmittel Calciumhydroxid und Natriumhydrogencarbonat

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, Christian; Weber-Blaschke, Gabriele [Technische Univ. Muenchen, Freising (Germany). Lehrstuhl fuer Rohstoff- und Energietechnologie; Mocker, Mario [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Faulstich, Martin [Technische Univ. Muenchen, Straubing (Germany). Wissenschaftszentrum Straubing

    2009-07-01

    Lime products have long been used with success for flue gas purification in waste incineration plants, where they serve to eliminate acid gas pollutants such as sulphur dioxide, hydrogen chloride and hydrogen fluoride. This article presents excerpts of a study commissioned by the German lime industry association for the purpose of obtaining an unbiased well-founded comparison of the environmental impact of the two sorbents calcium hydroxide and sodium hydrogen carbonate. The following questions were addressed by the study: Which of the two flue gas additives provides greater environmental benefit under specified conditions? What parameters influence the outcome? How can the results be viewed in regard to different plant configurations?.