WorldWideScience

Sample records for calcium ion concentration

  1. High concentration of calcium ions in Golgi apparatus

    Institute of Scientific and Technical Information of China (English)

    XUESHAOBAI; M.ROBERTNICOUD; 等

    1994-01-01

    The interphase NIH3T3 cells were vitally fluorescentstained with calcium indicator fluo-3 and Glogi probe C6-NBD-ceramide,and then the single cells were examined by laser scanning confocal microscopy(LSCFM) for subcellular distributions of Ca2+ and the location of Golgi apparatus.In these cells,the intracellular Ca2+ were found to be highly concentrated in the Golgi apparatus.The changes of distribution of cytosolic high Ca2+ region and the Golgi apparatus coincided with the cell cycle phase.In calcium free medium,when the plasma membrane of the cells which had been loaded with fluo-3/AM were permeated by digitonin,the fluorescence of the Golgi region decreased far less than that of the cytosol.Our results indicated that the Glogi lumen retained significantly high concentration of free calcium.

  2. Identification of Premature Ventricular Contraction (PVC) Caused by Disturbances in Calcium and Potassium Ion Concentrations Using Artificial Neural Networks

    OpenAIRE

    Júlio César Dillinger Conway; Caroline Araújo Raposo; Sergio Diaz Contreras; Jadson Cláudio Belchior

    2014-01-01

    Abnormalities in the concentrations of metallic ions such as calcium and potassium can, in principle, lead to cardiac arrhythmias. Unbalance of these ions can alter the electrocardiogram (ECG) signal. Changes in the morphology of the ECG signal can occur due to changes in potassium concentration, and shortening or extension of this signal can occur due to calcium excess or deficiency, respectively. The diagnosis of these disorders can be complicated, making the modeling of such a system compl...

  3. Effects of coronal leakage on concentration of hydrogen ions and calcium release of several calcium hydroxide pastes over different periods of time

    Directory of Open Access Journals (Sweden)

    Mariana Pires Crespo

    2013-10-01

    Full Text Available PURPOSE: To evaluate the effects of coronal leakage on concentration of hydrogen ions (pH and calcium release of several calcium hydroxide pastes, over different periods of time. MATERIAL AND METHODS:  Fifty extracted human mandibular central incisors (n=10 were instrumented up to the F2 instrument and assigned to the following intracanal dressing: G1- Calen, G2- Calen with 0.4% chlorhexidine (CHX, G3- Calcium hydroxide with camphorated paramonochlorophenol (CPMC and glycerin, G4- Calen, but temporary filling material maintained during all test (positive control and G5- Root canal without intracanal dressing (negative control. All groups were immersed in distilled water for 7 days. In sequence, the temporary filling materials were removed, except in controls groups. All specimens were individually mounted on a specific device and only its root again immersed in distilled water. Concentration of hydrogen ions and calcium release by calcium hydroxide pastes in distilled water were evaluated in 24h, 7, 14 and 28 days. The results were submitted to ANOVA test (p = 0.05. After 28 days, root canals from experimental groups were examined in SEM. RESULTS: G1, G2, G3 and G4 presented similar pH values and calcium release and did not differ from each other (p>0.05, up to 7 days. After this time G1, G2 and G3 presented values lower values than G4 (p<0.05. In SEM analysis, calcium hydroxide residues were observed in all experimental groups. CONCLUSIONS: After 7 days, coronal leakage decreased the concentration of hydrogen ions and calcium ion release provided by all calcium hydroxide pastes.

  4. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Rassadina Valentina

    2009-04-01

    Full Text Available Abstract Background Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. Results An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+ was subjected to a magnetic field around 65 microtesla (0.65 Gauss and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed

  5. The hemodynamic effect of calcium ion concentration in the infusate during predilution hemofiltration in chronic renal failure

    DEFF Research Database (Denmark)

    Karamperis, N.; Sloth, E.; Jensen, Jens Dam

    2005-01-01

    BACKGROUND: It is the prevailing view that convective dialysis techniques stabilize blood pressure. Calcium concentration in the substitution fluid may be important in this respect. The aim of this study is to investigate the influence of calcium ion concentration in the substitution fluid on......Eq/L (1.25 mmol/L; low-calcium session [L-HF]) or 3.5 mEq/L (1.75 mmol/L; high-calcium session [H-HF]) during 4.5 hours of predilution HF with a volume of 1.24 +/- 0.09 L/kg dry body weight and a temperature of 37 degrees C. Ultrafiltration was kept constant in each patient. Blood pressure (mean, systolic...

  6. Metal cation/anion adsorption on calcium carbonate: Implications to metal ion concentrations in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, J.M.; Cowan, C.E.; Resch, C.T.

    1990-05-01

    This chapter evaluates the sorption behavior of metallic ions on specimen calcite as a basis for determining the importance of calcite relative to other subsurface sorbents, such as layer silicates and oxides, in controlling metal ion concentration in calcareous groundwaters. A review of the literature shows the sorption of both metallic cations and anions on calcite over ranges in pH and CO{sub 2} partial pressure to be consistent with a surface-exchange process where cations exchange with surface Ca and anions exchange with surface CO{sub 3}. A general surface-exchange model was developed to account for the effects of Ca and CO{sub 3} concentrations, pH, and calcite surface area on cation and anion sorption onto calcite. The model was applied to recently developed experimental sorption data of Zn and SeO{sub 3} on specimen calcite in equilibrium CaCO{sub 3}(aq) suspensions. The surface-exchange model was able to describe the effects of pH on both cation and anion sorption, and provided good predictions of the effects of variable CO{sub 2}(g) pressure on Zn sorption and of PO{sub 4} on SeO{sub 3} sorption. The surface-exchange model, combined with sorption constants for other phases, was used to calculate Cd sorption to a hypothetical aquifer material containing a mixture of sorbents. The sorbent concentrations were fixed to those expected in groundwater zones. The multi-sorbent calculation documented the importance of calcite as a sorbent for metallic ions in groundwater.93 refs., 18 figs., 5 tabs.

  7. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  8. Simultaneous determination of free calcium, magnesium, sodium and potassium ion concentrations in simulated milk ultrafiltrate and reconstituted skim milk using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Gao, R.; Temminghoff, E.J.M.; Leeuwen, van H.P.; Valenberg, van H.J.F.; Eisner, M.D.; Boekel, van M.A.J.S.

    2009-01-01

    This study focused on determination of free Ca2+, Mg2+, Na+ and K+ concentrations in a series of CaCl2 solutions, simulated milk ultrafiltrate and reconstituted skim milk using a recently developed Donnan Membrane Technique (DMT). A calcium ion selective electrode was used to compare the DMT results

  9. Indole-3-acetic acid-induced oxidative burst and an increase in cytosolic calcium ion concentration in rice suspension culture.

    Science.gov (United States)

    Nguyen, Hieu T H; Umemura, Kenji; Kawano, Tomonori

    2016-08-01

    Indole-3-acetic acid (IAA) is the major natural auxin involved in the regulation of a variety of growth and developmental processes such as division, elongation, and polarity determination in growing plant cells. It has been shown that dividing and/or elongating plant cells accompanies the generation of reactive oxygen species (ROS) and a number of reports have suggested that hormonal actions can be mediated by ROS through ROS-mediated opening of ion channels. Here, we surveyed the link between the action of IAA, oxidative burst, and calcium channel activation in a transgenic cells of rice expressing aequorin in the cytosol. Application of IAA to the cells induced a rapid and transient generation of superoxide which was followed by a transient increase in cytosolic Ca(2+) concentration ([Ca(2+)]c). The IAA-induced [Ca(2+)]c elevation was inhibited by Ca(2+) channel blockers and a Ca(2+) chelator. Furthermore, ROS scavengers effectively blocked the action of IAA on [Ca(2+)]c elevation. PMID:27149194

  10. Energy recovery from effluents of sugar processing industries in the UASB reactors seeded with granular sludge developed under low and high concentrations of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, D.M.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Dept. of Botany, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The digestion of wastewater from sugar processing industries in a single phase UASB reactor was evaluated by a step wise increase in organic loading rate. This study was conducted to compare the treatability of effluents from sugar processing industries in a single phase UASB reactors inoculated with granular sludge developed under low and high concentrations of calcium ions. At OLR of 11.34 g COD/l/day and HRT of 16 hours, UASB reactor R2 attained a COD removal efficiency of 90% with a maximum methane production rate of 3 l/l/day. From the results, the digestion of the wastewater from sugar industries in the UASB reactor inoculated with granular sludge developed under high calcium ion concentration seem feasible with regard to COD removal efficiency and methane production rate. (au) 24 refs.

  11. Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon.

    Science.gov (United States)

    Gonzalez, R J; Wood, C M; Wilson, R W; Patrick, M L; Bergman, H L; Narahara, A; Val, A L

    1998-01-01

    We examined the effects of acute low-pH exposure on ion balance (Na+, Cl-, K+) in several species of fish captured from the Rio Negro, a dilute, acidic tributary of the Amazon. At pH 5.5 (untreated Rio Negro water), the four Rio Negro species tested (piranha preta, Serrasalmus rhombeus; piranha branca, Serrasalmus cf. holandi; aracu, Leporinus fasciatus; and pacu, Myleus sp.) were at or near ion balance; upon exposure to pH 3.5, while Na+ and Cl- loss rates became significant, they were relatively mild. In comparison, tambaqui (Colossoma macropomum), which were obtained from aquaculture and held and tested under the same conditions as the other fish, had loss rates seven times higher than all the Rio Negro species. At pH 3.0, rates of Na+ and Cl- loss for the Rio Negro fish increased three- to fivefold but were again much less than those observed in tambaqui. Raising water Ca2+ concentration from 10 micromol L-1 to 100 micromol L-1 during exposure to the same low pH's had no effect on rates of ion loss in the three species tested (piranha preta, piranha branca, aracu), which suggests that either they have such a high branchial affinity for Ca2+ that all sites are saturated at 10 micromol L-1 and additional Ca2+ had no effect, or that Ca2+ may not be involved in regulation of branchial ion permeability. For a final Rio Negro species, the cardinal tetra (Paracheirodon axelrodi), we monitored body Na+ concentration during 5 d of exposure to pH 6.0, 4.0, or 3.5. These pH's had no effect on body Na+ concentration. These data together suggest that exceptional acid tolerance is a general characteristic of fish that inhabit the dilute acidic Rio Negro and raise questions about the role of Ca2+ in regulation of branchial ion permeability in these fish. PMID:9472808

  12. Complex formation ions calcium with macromolecules pectin

    International Nuclear Information System (INIS)

    In clause the mechanism of sorption of ions of calcium by macromolecules of pectin is opened. Is shown, that the linkage of ions of calcium descends on acid bunches of pectin, and process carries cooperative character

  13. An endogenous calcium-dependent, caspase-independent intranuclear degradation pathway in thymocyte nuclei: Antagonism by physiological concentrations of K+ ions

    International Nuclear Information System (INIS)

    Calcium ions have been implicated in apoptosis for many years, however the precise role of this ion in the cell death process remains incomplete. We have extensively examined the role of Ca2+ on nuclear degradation in vitro using highly purified nuclei isolated from non-apoptotic rat thymocytes. We show that these nuclei are devoid of CAD (caspase-activated DNase), and DNA degradation occurs independent of caspase activity. Serine proteases rather than caspase-3 appear necessary for this Ca2+-dependent DNA degradation in nuclei. We analyzed nuclei treated with various concentrations of Ca2+ in the presence of both a physiological (140 mM) and apoptotic (40 mM) concentration of KCl. Our results show that a 5-fold increase in Ca2+ is required to induce DNA degradation at the physiological KCl concentration compared to the lower, apoptotic concentration of the cation. Ca2+-induced internucleosomal DNA degradation was also accompanied by the release of histones, however the apoptotic-specific phosphorylation of histone H2B does not occur in these isolated nuclei. Interestingly, physiological concentrations of K+ inhibit both Ca2+-dependent DNA degradation and histone release suggesting that a reduction of intracellular K+ is necessary for this apoptosis-associated nuclear degradation in cells. Together, these data define an inherent caspase-independent catabolic pathway in thymocyte nuclei that is sensitive to physiological concentrations of intracellular cations

  14. Transport of Calcium Ions into Mitochondria.

    Science.gov (United States)

    Xu, Zhaolong; Zhang, Dayong; He, Xiaolan; Huang, Yihong; Shao, Hongbo

    2016-06-01

    To uptake calcium ions of mitochondria is of significant functional connotation for cells, because calcium ions in mitochondria are involved in energy production, regulatory signals transfer, and mitochondrial permeability transition pore opening and even programmed cell death of apoptosis, further playing more roles in plant productivity and quality. Cytoplasmic calcium ions access into outer mitochondrial membrane (OMM) from voltage dependent anion-selective channel (VDAC) and were absorbed into inner mitochondrial membrane (IMM) by mitochondrial calcium uniporter (MCU), rapid mitochondrial calcium uptake (RaM) or mitochondrial ryanodine receptor (mRyR). Although both mitochondria and the mechanisms of calcium transport have been extensively studied, but there are still long-standing or even new challenges. Here we review the history and recent discoveries of the mitochondria calcium ions channel complex involved calcium assimilation, and discuss the role of calcium ions into mitochondria. PMID:27252588

  15. Intracellular calcium ions as regulators of renal tubular sodium transport.

    Science.gov (United States)

    Windhager, E; Frindt, G; Yang, J M; Lee, C O

    1986-09-15

    This review addresses the putative role of intracellular calcium ions in the regulation of sodium transport by renal tubules. Cytoplasmic calcium-ion activities in proximal tubules of Necturus are less than 10(-7) M and can be increased by lowering the electrochemical potential gradient for sodium ions across the peritubular cell membrane, or by addition of quinidine or ionomycin to peritubular fluid. Whereas lowering of the peritubular Na concentration increases cytosolic [Ca++] and [H+], ionomycin, a calcium ionophore, raises intracellular [Ca++] without decreasing pHi. The intracellular calcium-ion level is maintained by transport processes in the plasma membrane and membranes of intracellular organelles, as well as by calcium-binding proteins. Calcium ions inhibit net transport of sodium by reducing the rate of sodium entry across the luminal cell membrane. In the collecting tubule this inhibition is caused, at least in part, by an indirect reduction in the activity of the amiloride-sensitive sodium channel. PMID:2430134

  16. Adsorption of Potassium and Calcium Ions by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    LIHONG-YAN; JIGUO-LIANG

    1992-01-01

    Interactions of potassium and calcium ions with four typical variable charge soils in South China were examined by measuring pK-0.5pCa value with a potassium ion-selective electrode and a calcium ion-selective electrode,and pK value with a potassium ion-selective electrode.The results showed that adsorption of potassium and calcium ions increased with soil suspension pH,and the tendency of the pK-0.5pCa value changing with pH differed with respect to pH range and potassium to calcium ratio.Adsorption of equal amount of calcium and potassium ions led to release of an identical number of protons,suggesting similar adsorption characteristics of these two ions when adsorbed by variable charge soils.Compared with red soil,latosol and lateritic red soil had higher adsorption selectivities for calcium ion.The red soil had a greater affinity for potassium ion than that for calcium ion at low concentration,which seems to result from its possession of 2:1 type minerals,such as vermiculite and mica with a high affinity for potassium ion.The results indicated that adsorption of potassium and calcium ions by the variable charge soils was chiefly caused by the electrostatic attraction between the cations and the soil surfaces.Moreover,it was found that sulfate could affect the adsorption by changing soil surface properties and by forming ion-pair.

  17. Selective Measurement of Calcium and Sodium Ion Conductance Using Sub-Micropipette Probes with Ion Filters

    Science.gov (United States)

    Deng, Xiao Long; Takami, Tomohide; Son, Jong Wan; Kawai, Tomoji; Park, Bae Ho

    2012-02-01

    Selective ion currents in aqueous calcium chloride and sodium chloride solutions with concentrations of up to 1.0 M were observed with sub-micropipettes in which poly(vinyl chloride) (PVC) films containing ionophores selectively filtered cations. Calcium bis[4-(1,1,3,3-tetramethylbutyl)phenyl] phosphate (HDOPP-Ca) and bis[(12-crown-4)methyl]-2-dodecyl-2-methylmalonate [bis(12-crown-4)] were used as the ionophores to filter calcium and sodium ions, respectively. The selective ion current was observed using a low-current detection system developed from scanning tunneling microscopy. The approximate linear relationship between the ion concentration and ion current suggests that the sub-micropipette probe can be used to detect the intracellular local concentration of a specific ion up to 1.0 M.

  18. Porous polymer film calcium ion chemical sensor and method of using the same

    Science.gov (United States)

    Porter, M.D.; Chau, L.K.

    1991-02-12

    A method of measuring calcium ions is disclosed wherein a calcium sensitive reagent, calcichrome, is immobilized on a porous polymer film. The reaction of the calcium sensitive reagent to the Ca(II) is then measured and concentration determined as a function of the reaction. 1 figure.

  19. Ion beam deposition of calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Calcium hydroxyapatite has been sputtered on glass and Ti-6Al-4V substrates using a 1.5 kV argon ion beam. The films have been examined by X- ray diffraction analysis, energy dispersive spectroscopy, scanning electron microscopy, and adhesion testing. Results of this experimentation are presented

  20. Arterial Stiffness and Dialysis Calcium Concentration

    Directory of Open Access Journals (Sweden)

    Fabrice Mac-Way

    2011-01-01

    Full Text Available Arterial stiffness is the major determinant of isolated systolic hypertension and increased pulse pressure. Aortic stiffness is also associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, hypertension, and general population. Hemodynamically, arterial stiffness results in earlier aortic pulse wave reflection leading to increased cardiac workload and decreased myocardial perfusion. Although the clinical consequence of aortic stiffness has been clearly established, its pathophysiology in various clinical conditions still remains poorly understood. The aim of the present paper is to review the studies that have looked at the impact of dialysis calcium concentration on arterial stiffness. Overall, the results of small short-term studies suggest that higher dialysis calcium is associated with a transient but significant increase in arterial stiffness. This calcium dependant increase in arterial stiffness is potentially explained by increased vascular smooth muscle tone of the conduit arteries and is not solely explained by changes in mean blood pressure. However, the optimal DCa remains to be determined, and long term studies are required to evaluate its impact on the progression of arterial stiffness.

  1. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology. PMID:26603282

  2. Calcium Ions in Inherited Cardiomyopathies.

    Science.gov (United States)

    Deftereos, Spyridon; Papoutsidakis, Nikolaos; Giannopoulos, Georgios; Angelidis, Christos; Raisakis, Konstantinos; Bouras, Georgios; Davlouros, Periklis; Panagopoulou, Vasiliki; Goudevenos, John; Cleman, Michael W; Lekakis, John

    2016-01-01

    Inherited cardiomyopathies are a known cause of heart failure, although the pathways and mechanisms leading from mutation to the heart failure phenotype have not been elucidated. There is strong evidence that this transition is mediated, at least in part, by abnormal intracellular Ca(2+) handling, a key ion in ventricular excitation, contraction and relaxation. Studies in human myocytes, animal models and in vitro reconstituted contractile protein complexes have shown consistent correlations between Ca(2+) sensitivity and cardiomyopathy phenotype, irrespective of the causal mutation. In this review we present the available data about the connection between mutations linked to familial hypertrophic (HCM), dilated (DCM) and restrictive (RCM) cardiomyopathy, right ventricular arrhythmogenic cardiomyopathy/dysplasia (ARVC/D) as well as left ventricular non-compaction and the increase or decrease in Ca(2+) sensitivity, together with the results of attempts to reverse the manifestation of heart failure by manipulating Ca(2+) homeostasis. PMID:26411603

  3. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  4. Reversible adsorption of calcium ions by imprinted temperature sensitive gels

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Guney, Orhan; Oya, Taro; Sakai, Yasuzo; Kobayashi, Masatoshi; Enoki, Takashi; Takeoka, Yukikazu; Ishibashi, Toru; Kuroda, Kenichi; Tanaka, Kazunori; Wang, Guoqiang; Grosberg, Alexander Yu.; Masamune, Satoru; Tanaka, Toyoichi

    2001-02-01

    With the aim of developing polymeric gels sensitive to external stimuli and able to reversibly adsorb and release divalent ions, copolymer gels of N-isopropylacrylamide (NIPA) and methacrylic (MAA) monomers were prepared. We chose calcium as a target divalent ion. Two MAAs form a complex with a calcium ion, and the NIPA component allows the polymers to swell and shrink reversibly in response to temperature. The adsorbing site develops an affinity to target ions when the adsorbing molecules come into proximity, but when they are separated, the affinity diminishes. To enhance the affinity to calcium, an imprinting technique was applied using Ca2+ and Pb2+ ions as templates in methylsulfoxide and dioxane media, respectively. The adsorption capacity of the imprinted gels was compared with that of the nonimprinted gels, and the effects of the templates, the solvents, and the amount of methacrylic monomers used in the synthesis and the medium temperature over the Ca2+ adsorption capacity of the gels from aqueous solutions were evaluated. The analysis of the adsorption revealed that (a) the adsorption can be described by the Langmuir isotherms; (b) there is an approximately linear relationship between saturation and methacrylic monomer concentration; (c) the affinity depends on the degree of gel swelling or shrinkage that can be switched on and off by temperature; (d) in the shrunken state, the affinity depends approximately linearly on the MAA concentration in the imprinted gels, whereas in the nonimprinted gels it is proportional to the square of MAA concentration; (e) the imprinted gels adsorb more than the nonimprinted gels when MAA concentration is less than that of permanent cross linkers. The success of imprinting of CaMAA2 and PbMAA2 complex is evidence for memory of such complex onto the weakly cross-linked gel.

  5. Electroreduction of uranyl ion in aqueous calcium nitrate solutions

    International Nuclear Information System (INIS)

    The electroreduction of uranyl ions in buffered and unbuffered 0.5 M calcium nitrate has been studied using polarography, cyclic voltammetry, chronopotentiometry, and chronoamperometry. The results are compared with those in molten calcium nitrate tetrahydrate. (author)

  6. Spectroscopic investigation of the influence of calcium ion on the structures of casein micelles.

    Science.gov (United States)

    Wang, Peng-Jie; Wu, Jian-Ping; Zhang, Hao; Guo, Hui-Yuan; Liu, Hong-Na; Ren, Fa-Zheng

    2014-01-01

    The effects of calcium ion on the structural properties of casein micelles in the course of heat treatment were synthetically examined by non-structure-invasive spectrometry. The hydrophobicity, reflected by extrinsic fluorescence (ANS fluorescence), was positively correlated with the concentration of the calcium ion, within the range of 0 to 12 mmol x L(-1). Meanwhile, the turbidity and stability of casein micelles also increased with the growth of calcium concentrations. However, opposite results were observed for hydrodynamic diameter and polydispersity index. Compared with the calcium ion, the calcium-chelator (citrate) has an opposite effect on the structural characteristics of casein micelles. Within the calcium concentrations range of 0 to 12 mmol x L(-1), the hydrophobicity, stability and turbidity were negatively correlated with the concentration of the calcium ion, nevertheless, opposite results were observed for hydrodynamic diameter and polydispersity index. All the results indicate that the calcium ion could be used to modify the structures of casein micelles during heat heatment. PMID:24783540

  7. What determines the calcium concentration of speleothem-forming drip waters?

    Science.gov (United States)

    Baker, Andy; Flemons, Ingrid; Andersen, Martin S.; Coleborn, Katie; Treble, Pauline C.

    2016-08-01

    Cave drip water calcium ion concentration is a primary determinant of speleothem deposition and growth rate. The factors that determine drip water calcium ion concentrations are the soil and vadose zone CO2 concentrations, and the hydrogeochemical evolution of the water from soil to cave. Here, we use a systematic literature review of cave drip water calcium concentrations, combined with PHREEQC equilibrium modelling, to investigate the global relationship between calcium concentration and surface climate. Our results are discussed in the context of understanding the climatic and environmental controls on drip water calcium concentration, speleothem growth rates and proxies of past climate and environmental change. We use an empirical, global soil CO2 concentration-temperature relationship to derive PHREEQC modelled cave drip water calcium concentrations. The global mean modelled drip water calcium concentration is close to that observed, but it over-predicts at high and low temperatures, and significantly under-predicts at temperate conditions. We hypothesise that closed system hydrochemical evolution due to water saturation is an important control on carbonate dissolution at colder temperatures. Under warmer conditions, for example temperate climates with a dry and hot or warm summer, seasonally-limited water availability can lead to: water-limitations on microbial and root respiration; wildfire; and prior calcite precipitation, all of which limit drip water calcium concentrations. In temperate climates with no dry season, higher CO2 concentrations than modelled from soil values are necessary to explain the observed drip water calcium values, which we propose is from an additional source of CO2 from microbial activity and root respiration in the vadose zone during open system hydrochemical evolution.

  8. Preparation, Properties and Mechanism of Inhomogeneous Calcium Alginate Ion Cross-linking Gel Microspheres

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Inhomogeneous calcium alginate ion cross-linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. Calcium alginate microspheres have uniform particle sizes, a smooth surface and a microporous structure. The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface, and the lowest concentration in the cores of the spheres. As a novel ion adsorbent, calcium alginate gel microspheres have a lower limiting adsorption mass concentration, a higher enrichment capacity and a higher adsorption capacity for Pb2+ than usual ion exchange resins. The highest percentage of the adsorption is 99.79%. The limiting adsorption mass concentration is 0.0426 mg/L. The adsorption capacity for Pb2+ is 644 mg/g. Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin. The moving boundary model was employed to interpret the ion exchange kinetics process, which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions. So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity. Alginate has a higher selectivity for Pb2+ than for Ca2+ and the selectivity coefficient KPbCa is 316. As an ion cross-linking gel, calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb2+ at a higher selectivity and a higher adsorption velocity. It is a novel and good ion adsorbent.

  9. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote

    2008-03-01

    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  10. Reevaluation of the effect of calcium ions on auxin-induced elongation

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, R.E. (Univ. of Washington, Seattle); Rayle, D.L.

    1977-01-01

    The mechanism by which calcium ions inhibit cell elongation has been reinvestigated. Growth-inhibiting levels of calcium, when applied to isolated walls (in vitro treatment) do not decrease cell wall extensibility as measured by the Instron technique. Thus, the hypothesis that calcium inhibits growth by forming wall-stiffening calcium bridges must be abandoned. Treatment of living auxin-treated sections with calcium (in vivo treatment) does cause a decrease in the subsequently measured wall extensibility, but this decline appears to be simply a consequence of the growth inhibition rather that its cause. Growth-inhibiting levels of calcium do not appreciably reduce the rate of auxin-enhanced H+ excretion. Pretreatment with calcium does not reduce the capacity of walls to undergo acid-activated wall loosening in the absence of calcium. High concentrations of CaC1/sub 2/ (0.02 M) cause an initial elastic shrinkage of Avena sections comparable to that caused by the same osmolarity of mannitol, but the subsequent growth inhibition is to great to be explained by an osmotic inhibition.Calcium ions do inhibit H+-induced extension of frozen-thawed sections under tension. The growth-inhibitory effects of calcium, then, may be ascribed to a direct inhibition exerted by calcium ions on the H+-induced wall-loosening process.

  11. Study on the complexation of humic substances with calcium ion by ion selective electrode method

    International Nuclear Information System (INIS)

    Introduction: Humic substances (HS), which are one of main organic components in soil and aquatic environment, can influence the migration and fate of nuclides through formation of complexes. To quantitatively describe such complex formation, it is essential to consider the formation of major dissolved constituents ions, such as alkali or alkali earth ions, with HSUI. This paper reports the result on the study of the complex formation of calcium ion with soil HS and polyacrylic acid, where polyacrylic acid is selected to observed the effect of heterogeneous composition of HS. Experimental: As an initial solution for the titration experiment, the fixed amounts of calcium ion, NaNO3 solution and HS or PAA were mixed in a 150 mL plastic bottle, which was covered with Laboatory Film (Parafilm 'M'). Then, a fixed amount of NaOH solution was added step by step and the concentration of calcium ion and pH in solution were measured (IM-40S ion meter, DKK.TOA CORP. Japan) simultaneously after each addition. All the experiments were conducted in the 0.01 mol/L NaNO3 solution at 298.2 K in temperature under Ar atmosphere. The humic substances, Elliott soil humic acid (HA) (Cat.No.1sl02H) and Elliott soil Fulvic acid (FA) (Cat.No. lsl02H ), were obtained from International Humic Substances Society(IHSS). Polyacrylic acids (PAA) were obtained from polyscience Inc.(M.W. ca. 450.000). The other chemicals are of analytical grade. De-ionized water (Milli-Q Pureline, Yamato, Japan) was used to prepare the solution. Results and discussion: Fig. 1. shows tile typical titration curves of 500 mg/L HA containing 0.00, 6.24, 20.4, 41.6 mg/L total calcium ion in 0.010 mol/L NaN3 at 298.2 K under Ar atmosphere. The differences between the titration curves of the solution with and without calcium ion indicate the formation of complex with HA. Fig. 1 also shows the plots of the concentration of free calcium ion versus the amounts of added NaOH obtained from the titration of the solution with

  12. Calcium hydroxide isotope effect in calcium isotope enrichment by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Jepson, B.E.; Shockey, G.C.

    1984-01-01

    The enrichment of calcium isotopes has been observed in ion-exchange chromatography with an aqueous phase of calcium hydroxide and a solid phase of sulfonic acid resin. The band front was exceedingly sharp as a result of the acid-base reaction occuring at the front of the band. Single-stage separation coefficients were found to be epsilon(/sup 44/Ca//sup 40/Ca) = 11 x 10 /sup -4/ and epsilon(/sup 48/Ca//sup 40/Ca) = 18 x 10/sup -4/. The maximum column separation factors achieved were 1.05 for calcium-44 and 1.09 for calcium-48 with the heavy isotopes enriching in the fluid phase. The calcium isotope effect between fully hydrated aqueous calcium ions and undissociated aqueous calcium hydroxide was estimated. For the calcium-44/40 isotope pair the separation coefficient was 13 x 10/sup -4/. 20 references, 2 figures.

  13. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    Science.gov (United States)

    Kouyoumdjian, H.; Saliba, N. A.

    2006-05-01

    Levels of coarse (PM10-2.5) and fine (PM2.5) particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH4)2SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO3)2 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean countries, relatively

  14. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    Directory of Open Access Journals (Sweden)

    H. Kouyoumdjian

    2006-01-01

    Full Text Available Levels of coarse (PM10-2.5 and fine (PM2.5 particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH42SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO32 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean

  15. Coupling Effect of Ion Channel Clusters on Calcium Signalling

    International Nuclear Information System (INIS)

    Based on a modified intracellular Ca2+ model involving diffusive coupling of two calcium ion channel clusters, the effects of coupling on calcium signalling are numerically investigated. The simulation results indicate that the diffusive coupling of clusters together with internal noise determine the calcium dynamics of single cluster, and for either homogeneous or heterogeneous coupled clusters, the synchronization of clusters, which is important to calcium signalling, is enhanced by the coupling effect

  16. Coupling Effect of Ion Channel Clusters on Calcium Signalling

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; JIA Ya; YI Ming; MA Jun; YU Guang

    2008-01-01

    @@ Based on a modified intracellular Ca2+ model involving diffusive coupling of two calcium ion channel clusters,the effects of coupling on calcium signalling are numerically investigated.The simulation results indicate that the diffusive coupling of clusters together with internal noise determine the calcium dynamics of single cluster,and for either homogeneous or heterogeneous coupled clusters,the synchronization of clusters,which is important to calcium signalling,is enhanced by the coupling effect.

  17. Self-diffusion of calcium ions in soda-lime and slag glasses

    International Nuclear Information System (INIS)

    The self-diffusion coefficients of calcium ions in 16Na2O.12CaO.72SiO2(wt%) glass and 40CaO.20Al2O3.40SiO2(wt%) slag glass at temperatures near and below transition point have been measured employing radio-isotope 45Ca. The concentration gradient of radio-activity in surface layer of glass samples after diffusion annealing was determined by counting the residual activity with a GM-tube counter on the surface by progressively chemical etching away the material in steps of about 1 micron meter. It was found that the self-diffusion coefficients of calcium ions in both glasses below the transition point were of the order of 10-14 -- 10-16 cm2/s, suggesting that the mobility of calcium ions was extremely small in the solid glasses. The activation energy for diffusion of calcium ions in solid glasses was about 60 kcal/mol, which seemed to be reasonable in comparison with the electrostatic binding energy between cation and oxygen ion. The self-diffusion coefficients of calcium ions in the slag glass agrees closely with those of oxygen ions below the transition point, while the self-diffusion coefficients of calcium ions in the soda-lime glass are greater by one order of magnitude than those of oxygen ions in the same glass. The difference of diffusion behavior of calcium ions in the slag and the soda-lime glasses may be attributed to action of alkali ions on the mobility of calcium ions. (auth.)

  18. Effect of albumin and free calcium concentrations on calcium binding in vitro.

    OpenAIRE

    Besarab, A; DeGuzman, A; Swanson, J W

    1981-01-01

    In vivo equilibrium dialysis studies were performed to define further the characteristics of calcium binding to bovine albumin. The concentration range for albumin (1 to 9 g/dl) as well as ultrafilterable calcium (0.5 to 2.5 mM) studied encompassed those that might be ordinarily encountered in most clinical situations. Major differences in the regressions of total calcium on ultrafilterable calcium occurred at albumin concentrations of 1, 2, and 9 g/dl but only small differences at albumin co...

  19. Evaluation of calcium ion, hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments: An in vitro study

    OpenAIRE

    Punit Fulzele; Sudhindra Baliga; Nilima Thosar; Debaprya Pradhan

    2011-01-01

    Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized wat...

  20. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    Science.gov (United States)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  1. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    Science.gov (United States)

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. PMID:26614803

  2. Fluorescent indicator dyes for calcium ions

    Science.gov (United States)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor)

    1986-01-01

    The present invention discloses a new class of highly fluorescent indicator dyes that are specific for calcium ions. The new fluorescent indicator dyes combine a stilbene-type fluorophore with a tetracarboxylate parent Ca.sup.2+ chelating compound having the octacoordinate pattern of liganding groups characteristic of EGTA and BAPTA. Preferred forms contain extra heterocyclic bridges to reinforce the ethylenic bond of the stilbene and to reduce hydrophobicity. Compared to their widely used predecessor, quin2, the new dyes offer up to thirty-fold brighter fluorescence, major changes in wavelength (not just intensity) upon Ca.sup.2+ binding, slightly lower affinities for Ca.sup.2+, slightly longer wavelengths of excitation, and considerably improved selectivity for Ca.sup.2+ over other divalent cations. These properties, particularly the wavelength sensitivity to Ca.sup.2+, make the dyes useful indicators for many intracellular applications, especially in single cells, adherent cell layers, or bulk tissues. The present invention also discloses an improved method for synthesizing alpha-acyloxyalkyl bromides wherein the bromides so synthesized are free of contaminating bis(1-bromoalkyl)ether. The improved method is exemplified herein in the synthesis of acetoxymethyl bromide, a compound useful in preparing the acetoxymethyl esters disclosed herein as novel Ca.sup.2+ specific fluorescent indicators.

  3. Calcium and lithium ion production for laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Palm, K.; Stifler, C.; Steski, D.; Ikeda, S.; Kumaki, M.; Kanesue, T.

    2015-08-23

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to simulate the effects of cosmic radiation. To find out difficulties to provide such high reactive material as laser targets, the both species were experimentally tested. Plate-shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6ns, 1064nm Nd:YAG laser. We found significant oxygen contamination in both the Ca and Li high-charge-state beams due to the rapid oxidation of the surfaces. A large-spot-size, low-power-density laser was then used to analyze the low-charge-state beams without scanning the targets. The low-charge-state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely with a low-power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low-power shot. To measure the rate of oxidation, we shot the low-power laser at the target repeatedly at 10sec, 30sec, 60sec, and 120sec interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

  4. Calcium and lithium ion production for laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M., E-mail: okamura@bnl.gov [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Palm, K. [Department of Physics, Cornell University, Ithaca, New York 14853-2501 (United States); Stifler, C. [Engineering Physics Systems Department, Providence College, Providence, Rhode Island 02918 (United States); Steski, D.; Kanesue, T. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo (Japan)

    2016-02-15

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

  5. Calcium and lithium ion production for laser ion source

    International Nuclear Information System (INIS)

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam

  6. Calcium and lithium ion production for laser ion source

    Science.gov (United States)

    Okamura, M.; Palm, K.; Stifler, C.; Steski, D.; Ikeda, S.; Kumaki, M.; Kanesue, T.

    2016-02-01

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

  7. Circulating calcium concentrations, vascular disease and mortality: a systematic review.

    Science.gov (United States)

    Reid, I R; Gamble, G D; Bolland, M J

    2016-06-01

    Associations between serum calcium and vascular disease have been reported, but the consistency of these findings is unknown. We conducted a systematic review to determine whether circulating calcium concentrations are associated with risks of cardiovascular disease and death in normocalcaemic populations. We conducted PubMed searches up to 18 December 2014 and scrutinized reference lists of papers. Eligible studies related serum calcium to mortality or cardiovascular events in humans. A follow-up of at least one year was required for longitudinal studies. Studies in populations selected on the basis of renal disease or abnormal serum calcium were excluded. Two investigators performed independent data extraction. The results were tabulated and, where possible, meta-analysed. Five of 11 studies reported a statistically significant positive association between serum calcium and mortality. Meta-analysis of eight of these studies showed a hazard ratio of death of 1.13 (1.09, 1.18) per standard deviation of serum calcium. Eight of 13 studies reported a statistically significant positive association between serum calcium and cardiovascular disease. Meta-analysis of eight studies showed a hazard ratio of cardiovascular disease of 1.08 (1.04, 1.13) per standard deviation of serum calcium. For two studies reporting odds ratios, the pooled odds ratio per standard deviation was 1.22 (1.11, 1.32). When hazard ratios adjusted for cardiovascular risk factors were meta-analysed, the pooled hazard ratio was 1.04 (1.01, 1.08). Other studies demonstrated associations between serum calcium and stroke and between serum calcium and direct measurements of arterial disease and calcification. These observational data indicate that serum calcium is associated with vascular disease and death, but they cannot determine causality. PMID:26749423

  8. Mitochondrial response and calcium ion change in apoptotic insect cells induced by SfaMNPV

    Institute of Scientific and Technical Information of China (English)

    XIU Meihong; PENG Jianxin; HONG Huazhu

    2005-01-01

    Mitochondrial responses and changes of calcium ions in apoptotic insect SL-1 cells induced by Syngrapha falcifera multiple nuclear polyhedrosis virus (SfaMNPV) are reported in this paper. By using Rhodamine 123 as a fluorescent labeling probe, flow cytometry analysis and confocal laser scanning microscope observation we observed that the mitochondrial transmembrane potential (△Ψm) began to decrease in SL-1 cells at 4 h post infection and △Ψm reduced continuously with the extension of virus infection. Western blotting indicated that the Bcl-2 level in the mitochondria gradually declined and was down- regulated. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria, which indicated that cytochrome c was released from mitochondria into cytosol. These results suggest that mitochondrion-mediated apoptotic signal transduction pathway exists in apoptotic insect cell induced by SfaMNPV. Cytosolic free calcium ([Ca2+]i) concentration rapidly increased after SfaMNPV infection and the elevated calcium was tested to come partly from extracelllular calcium ion influx. Flow cytometry analysis indicated that the apoptosis in SL-1 cells was not influenced by established cytosolic calcium clamped conditions and the EGTA inhibiting calcium influx. Therefore, neither the elevation of cytosolic calcium ion nor extracellular calcium entry was the inducing factor of apoptosis, which hinted that the depletion of ER Ca2+ store contributed to SL-1 cell apoptosis induced by SfaMNPV.

  9. Potentiometric study on the complexation of calcium with some humic and fulvic acids - dependence of the interaction on calcium concentration

    International Nuclear Information System (INIS)

    Full text of publication follows: Humic substances are found as heterogeneous mixtures of organic macromolecular colloids even in deep underground environments used for the geological disposal of radioactive wastes and affect the migration behavior of radionuclides by forming complexes. The presence of higher concentrations of naturally-existing cations such as calcium and iron may affect their interaction with radionuclides. For example, the formation of pseudo-colloidal complexes of radionuclides may be suppressed by the formation of calcium humate complexes or the excess amount of calcium may promote the precipitation of the humate colloids. Thus, to understand and estimate the migration behavior of radionuclides in the presence of naturally-existing cations, it is essential to quantitatively describe the interaction of both radionuclides and naturally-existing cations in a wide range of their concentrations. In our previous study [1], we have proposed the very simplified expression to describe the interaction of humic substances with metal ions, log Kapp log K + a logα - b log[Na+] - m log[M] for Kapp = [ML]/([M][R]), where [ML] and [M] are the concentrations of bound and free metal ion, [R] is that of dissociated proton exchange site and a is the degree of dissociation (charges are omitted). However, since the expression has been derived from the limited experimental observations, the serious concern remained unresolved, that is, the relation of log Kapp to the metal ion concentration (the independence of m on log α) was not well examined. To check this point, the complexation of calcium was studied by potentiometry. Four kinds of humic and fulvic acids obtained from International Humic Substance Society were titrated by NaOH in the absence and presence of various total concentrations of calcium in 0.01 M NaNO3 solution. In the procedure, both pcH (= -log[H+]) and log[Ca2+] were simultaneously measured with glass and ion-selective electrodes. From the

  10. Effect of combining different calcium concentration dialysate on calcium balance in peritoneal dialysis patients

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui-ping; WU Bei; LU Li-xia; QIAO Jie; WU Xiang-lan; WANG Mei

    2012-01-01

    Background Calcium and phosphorus metabolic disturbance are common in dialysis patients and associated with increased morbidity and mortality.Therefore,maintaining the balance of calcium and phosphate metabolism and suitable intact parathyroid hormone(iPTH)level has become the focus of attention.We investigated the effects of different peritoneal dialysate calcium concentrations on calcium phosphate metabolism and iPTH in continuous ambulatory peritoneal dialysis(CAPD)patients.Methods Forty stable CAPD patients with normal serum calcium were followed for six months of treatment with 1.25 mmol/L calcium dialysate(DCa1.25,PD4,22 patients)or a combination of 1.75 mmol/L calcium dialysate(DCa1.75,PD2)and PD4(18 patients)twice a day respectively.Total serum calcium(after albumin correction),serum phosphorus,iPTH,alkaline phosphatase(ALP)and blood pressure were recorded before and 1,3 and 6 months after treatment commenced.Results No significant difference was found in baseline serum calcium,phosphorus between the two patient groups,but the levels of iPTH were significantly different.No significant changes were found in the dosage of calcium carbonate and active vitamin D during 6 months.In the PD4 group,serum calcium level at the 1st,3rd,6th months were significantly lower than the baseline(P<0.05).There was no significant difference in serum phosphorus after 6 months treatment.iPTH was significantly higher(P<0.001)at the 1st,3rd,and 6th months compared with the baseline.No differences were seen in ALP and blood pressure.In the PD4+PD2 group,no significant changes in serum calcium,phosphorus,iPTH,ALP and BP during the 6-month follow-up period.Conclusions Treatment with 1.25 mmol/L calcium dialysate for six months can decrease serum calcium,increase iPTH,without change in serum phosphorus,ALP,and BP.The combining of PD4 and PD2 can stabilize the serum calcium and avoid fluctuations in iPTH levels.

  11. Dose-Dependent ATP Depletion and Cancer Cell Death following Calcium Electroporation, Relative Effect of Calcium Concentration and Electric Field Strength

    OpenAIRE

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania; Frandsen, Stine Krog; Vernier, P. Thomas; Gehl, Julie

    2015-01-01

    Background Electroporation, a method for increasing the permeability of membranes to ions and small molecules, is used in the clinic with chemotherapeutic drugs for cancer treatment (electrochemotherapy). Electroporation with calcium causes ATP (adenosine triphosphate) depletion and cancer cell death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. Methods In three human ...

  12. EFFECT OF ELECTROACUPUNCTURE AND CALCIUM-CHANNEL INHIBITORS ON CYTOPLASMIC FREE CALCIUM CONCENTRATION OF MOUSE BRAIN CELLS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-mei; XIE Ji-min; CHEN Min; ZHANG Yan

    2005-01-01

    Objective: To study the effect of electroacupuncture (EA) and Verapamil and Nifedipine (calcium channel inhibitors) on free calcium concentrations of cells and intrasynaptosomes in hypothalamus (HT), periaqueductual grey matter (PAG) and hippocampus (HIP) of mice. Methods: The female ICR mice were randomly divided into control, EA, CaCl2 and CaCl2+EA groups (n=8 in each group). Pain threshold was detected by using radiation-heat irradiation-induced tail flick method. EA (8 Hz, a suitable stimulating strength, dense-sparse waves and duration of 30 min) was applied to"Shuigou" (水沟 GV 26) and "Chengjiang" (承浆CV 24). CaCl2 (10 μL, 0.2 μmol/L) was injected into the lateral cerebral ventricle of mice after EA. The concentrations of cytosolic free calcium ([Ca2+]i) in HIP, PAG, HT cell suspension specimen and hippocampal intrasynaptosome suspension of mice were determined by the fluorescent calcium indicator Fura-2-AM and a spectrofluorometer. Results: During EA analgesia, the intracellular free [Ca2+]i in HT and PAG specimens and intrsynaptosomal [Ca2+]i of the 3 cerebral regions decreased considerably (P<0.05~0.01), but that in hippocampal cell suspension increased significantly (P<0.01) in comparison with control group. The concentrations of hippocampal intrasynaptosomal free [Ca2+]i decreased significantly after adding Verapamil and Nifedipine to the extracted hippocampal intrasynaptosomal specimen. Microinjection of CaCl2 into lateral ventricle had no apparent influence on degree of analgesia (DA)% and intracellular and intrasynapsotomal [Ca2+]i, but significantly lower DA% and reduce changes of cytosolic and intrasynaptosomal [Ca2+]i induced by EA stimulation. Conclusion: Calcium ion in the neurons and intrasynaptosome of HT, PAG and HIP is involved in electroacupuncture analgesia.

  13. Functioning of catfish electroreceptors: Influence of calcium and sodium concentration on the skin potential

    OpenAIRE

    Schouten, V.J.A.; Bretschneider, F.

    1980-01-01

    1. 1. The skin potential of catfish was measured in order to test the hypothesis that it controls electroreceptor sensitivity. 2. 2. The skin potential depends on the “milieu extérieur” in the same way as reported lor goldfish (Fig. 2). 3. 3. The variation of the skin potential is very large compared with the normal stimulus range of electroreceptors. 4. 4. Calcium strongly influences the skin potential, but the latter “adapts” to calcium concentrations of 0.3-3.0 mM (Fig. 3). 5. 5. Ion-depen...

  14. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength.

    Directory of Open Access Journals (Sweden)

    Emilie Louise Hansen

    Full Text Available Electroporation, a method for increasing the permeability of membranes to ions and small molecules, is used in the clinic with chemotherapeutic drugs for cancer treatment (electrochemotherapy. Electroporation with calcium causes ATP (adenosine triphosphate depletion and cancer cell death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy.In three human cell lines--H69 (small-cell lung cancer, SW780 (bladder cancer, and U937 (leukaemia, viability was determined after treatment with 1, 3, or 5 mM calcium and eight 99 μs pulses with 0.8, 1.0, 1.2, 1.4 or 1.6 kV/cm. Fitting analysis was applied to quantify the cell-killing efficacy in presence of calcium. Post-treatment intracellular ATP was measured in H69 and SW780 cells. Post-treatment intracellular ATP was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells.Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field decrease in intracellular ATP (p<0.05 and reduced viability. The 50% effective cell kill was found at 3.71 kV/cm (H69 and 3.28 kV/cm (SW780, reduced to 1.40 and 1.15 kV/cm (respectively with 1 mM calcium (lower EC50 for higher calcium concentrations. Quinacrine fluorescence intensity of calcium-electroporated U937 cells was one third lower than in controls (p<0.0001.Calcium electroporation dose-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field.This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials.

  15. Effects of Exterior Abscisic Acid on Calcium Distribution of Mesophyll Cells and Calcium Concentration of Guard Cells in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    GUO Xiu-lin; MA Yuan-yuan; LIU Zi-hui; LIU Bin-hui

    2008-01-01

    In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca2+ concentration of mesophyll cells was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 min after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.

  16. Serum Calcium Concentration Is Inversely Associated With Radiographic Knee Osteoarthritis

    OpenAIRE

    Li, Hui; ZENG, CHAO; Wei, Jie; Yang, Tuo; GAO, SHU-GUANG; Li, Yu-Sheng; Luo, Wei; Xiao, Wen-feng; Xiong, Yi-lin; LEI, GUANG-HUA

    2016-01-01

    Abstract To examine the relationship between serum calcium (Ca) concentration and radiographic knee osteoarthritis (OA). This study covered a total of 2855 subjects. The serum Ca concentration was detected by the Arsenazo III method. The radiographic OA of the knee was defined as changes equivalent to Kellgren–Lawrence grade 2 on 1 side at least. The serum Ca concentration was categorized into 4 quartiles, which are ≤2.27, 2.28–2.34, 2.35–2.41, and ≥2.42 mmol/L, respectively. The relationship...

  17. The calcium concentration of public drinking waters and bottled mineral waters in Spain and its contribution to satisfying nutritional needs

    Directory of Open Access Journals (Sweden)

    Isidro Vitoria

    2014-07-01

    Full Text Available Introduction: A sufficient intake of calcium enables correct bone mineralization. The bioavailability of calcium in water is similar to that in milk. Objective: To determine the concentration of calcium in public drinking water and bottled mineral water. Methods: We used ion chromatography to analyse the calcium concentrations of public drinking waters in a representative sample of 108 Spanish municipalities (21,290,707 people and of 109 natural mineral waters sold in Spain, 97 of which were produced in Spain and 12 of which were imported. Results: The average calcium concentration of public drinking waters was 38.96 ± 32.44 mg/L (range: 0.40159.68 mg/L. In 27 municipalities, the water contained 50-100 mg/L of calcium and in six municipalities it contained over 100 mg/L. The average calcium concentration of the 97 Spanish natural mineral water brands was 39.6 mg/L (range: 0.6-610.1 mg/L. Of these, 34 contained 50-100 mg/L of calcium and six contained over 100 mg/L. Of the 12 imported brands, 10 contained over 50 mg/L. Assuming water consumption is as recommended, water containing 50-100 mg/L of calcium provides 5.4-12.8% of the recommended intake of calcium for children aged one to thirteen, up to 13.6% for adolescents, 5.8-17.6% for adults, and up to 20.8% for lactating mothers. Water with 100-150 mg/L of calcium provides 10-31% of the recommended dietary allowance, depending on the age of the individual. Discussion: Public drinking water and natural mineral water consumption in a third of Spanish cities can be considered an important complementary source of calcium.

  18. Loss on drying, calcium concentration and pH of fluoride dentifrices

    Directory of Open Access Journals (Sweden)

    Arella Cristina Muniz Brito

    2015-01-01

    Full Text Available Introduction: Fluoride dentifrices containing calcium carbonate have advantages such as control of dental plaque and progression of dental caries, also contributing to oral hygiene, represent most dentifrices marketed in Brazil. Aim: To evaluate the physicochemical properties of seven fluoride dentifrices containing calcium carbonate in relation to hydrogen potential (pH, loss on drying and calcium concentration. Materials and Methods: Data collection was performed using the potentiometric method for pH ranges, gravimetric analysis for loss on drying and atomic absorption spectrometry for the concentration of calcium ions. All tests were performed in triplicate and the analysis was performed entirely at random according to one-way analysis of variance at 5% significance level. Results: The pH values were alkaline and ranged from 8.67 (Oral-B 123® to 10.03 (Colgate Mαxima Proteηγo Anticαries® . The results of loss on drying ranged from 33.81% (Oral-B 123® to 61.13% (Close Up® , with significant differences between brands tested. In relation to the calcium content, the highest and lowest concentrations were found in dentifrices Even® (155.55 g/kg and Colgate Ultra Branco® (129 g/kg, respectively, with significant difference (P < 0.05. Conclusion: Fluoride dentifrices analyzed showed alkaline pH and high levels of loss on drying and calcium concentration. However, these physicochemical characteristics differed according to the different brands tested.

  19. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers

    International Nuclear Information System (INIS)

    Erythrocytes are the route of lead distribution to organs and tissues. The effect of lead on calcium homeostasis in human erythrocytes and other excitable cells is not known. In the present work we studied the effect of lead intoxication on the uptake and efflux (measured as (Ca2+-Mg2+)-ATPase activity) of calcium were studied in erythrocytes obtained from lead-exposed workers. Blood samples were taken from 15 workers exposed to lead (blood lead concentration 74.4 ± 21.9 μg/dl) and 15 non-exposed workers (9.9 ± 2 μg/dl). In erythrocytes of lead-exposed workers, the intracellular free calcium was 79 ± 13 nM, a significantly higher concentration (ANOVA, P 2+-Mg2+)-ATPase activity. Lipid peroxidation was 1.7-fold higher in erythrocytes of lead-exposed workers as compared with control. The alteration on calcium equilibrium in erythrocytes is discussed in light of the toxicological effects in lead-exposed workers

  20. Effects of oral administration of a calcium-containing gel on serum calcium concentration in postparturient dairy cows.

    Science.gov (United States)

    Queen, W G; Miller, G Y; Masterson, M A

    1993-02-15

    Various nutritious nutritional-supplement gels are being marketed for use in veterinary medicine. This study was designed to determine whether serum calcium, phosphorous, or magnesium concentrations were different between cows given a gel containing calcium chloride as its active ingredient (treated) and cows given inert carrier gel (control). The study revealed a significant (P < 0.01) increase in serum total calcium concentration within 5 minutes of administration of a calcium gel given to cows within 1 hour of parturition. Serum total calcium concentration had returned to baseline value by 24 hours after calcium gel administration. Serum inorganic phosphorus concentration also increased significantly (P < 0.05) after treatment. Significant changes in serum magnesium concentrations were not detected. PMID:8449800

  1. The extraction kinetics of calcium ions at hydrolyses of proto-pectin of sunflower heads

    International Nuclear Information System (INIS)

    The purpose of present work is studying of extraction kinetics of calcium ions at acid hydrolyses of proto-pectin of sunflower heads. Obtained experimental data in this article shows important role of calcium ions in stabilization of various component structures of proto-pectin hydrolysis and possibility of process regulation by selective removal of calcium ions

  2. Evaluation of calcium ion, hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments: An in vitro study

    Directory of Open Access Journals (Sweden)

    Punit Fulzele

    2011-01-01

    Full Text Available Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized water. The pH variation, Ca ++ and OH− release were monitored periodically for 1 week. Statistical Analysis Used: Statistical analysis was carried out using one-way analysis of variance and Tukey′s post hoc tests with PASW Statistics version 18 software to compare the statistical difference. Results: After 1 week, calcium hydroxide with distilled water and RC Cal raised the pH to 12.7 and 11.8, respectively, while a small change was observed for Metapex, calcium hydroxide gutta-percha points. The calcium released after 1 week was 15.36 mg/dL from RC Cal, followed by 13.04, 1.296, 3.064 mg/dL from calcium hydroxide with sterile water, Metapex and calcium hydroxide gutta-percha points, respectively. Conclusions: Calcium hydroxide with sterile water and RC Cal pastes liberate significantly more calcium and hydroxyl ions and raise the pH higher than Metapex and calcium hydroxidegutta-percha points.

  3. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania;

    2015-01-01

    BACKGROUND: Electroporation, a method for increasing the permeability of membranes to ions and small molecules, is used in the clinic with chemotherapeutic drugs for cancer treatment (electrochemotherapy). Electroporation with calcium causes ATP (adenosine triphosphate) depletion and cancer cell......-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....... death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability was...

  4. EFFECTS OF PDGF-BB ON INTRACELLULAR CALCIUM CONCENTRATION AND PROLIFERATION IN CULTURED GLOMERULAR MESANGIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    WEN Li-ping; ZHANG Chong; BIAN Fan; ZOU Jun; JIANG Geng-ru; ZHU Han-wei

    2006-01-01

    Objective To investigate the relationship between the alteration of intracellular calcium concentration and proliferation in cultured glomerular mesangial cells. Methods Rat mesangial cells were cultured.Intracellular calcium concentrations were measured by confocal Laser Scanning Microscopy and Fura-3 fluorescence dyeing techniques. Cell growth was measured by MTT assay. Results PDGF-BB increased intracellular calcium concentrations in a dose-dependent manner, and at the same time promote the proliferation of mesangial cells. After preincubation with calcium channel blocker nifedipine or angiotensin converting enzyme inhibitor captopril, both the increase of intracellular calcium concentrations and cell proliferations induced by PDGF-BB were inhibited. Tripterigium Wilfordii Glycosides (TMG) significantly inhibited the mesangial cell proliferations, but it had no significant effect on intracellular calcium concentrations. Conclusion There was a positive relationship between the elevation of intracellular calcium concentration and cell proliferation in glomerular mesangial cells, but the increase of in- tracellular calcium concentrations wasn't the only way for proliferation.

  5. Investigation into the role of NaOH and calcium ions in the synthesis of calcium phosphate nanoshells

    Directory of Open Access Journals (Sweden)

    C. H. Yeo

    2012-03-01

    Full Text Available Calcium phosphate (CaP nanoshells were prepared using negatively charged liposomes (1,2-dioleoyl-sn-glycero-3-phosphate sodium salt (DOPA as a template by base titration synthesis at various concentrations of NaOH and calcium ions. The elemental composition, morphology, particle size, particle size distribution and zeta potential of the products were determined via various characterisation techniques, such as energy-dispersive X-ray spectrometry (EDX, transmission electron microscopy (TEM, dynamic light scattering (DLS, laser Doppler velocimetry (LDV and Fourier transform infrared spectroscopy (FTIR. The best results showed that stable spherical CaP nanoshells with a mean particle size of 197.5 ± 5.8 nm and a zeta potential of -34.5 ± 0.6 mV were successfully formed when 0.100 M sodium hydroxide (NaOH and 0.100 M calcium ions were used. Moreover, an optimal pH of 10.52 and a final Ca/P molar ratio of 0.97 were achieved under these conditions.

  6. Quantitative imaging of subcellular calcium stores in mammalian LLC-PK1 epithelial cells undergoing mitosis by SIMS ion microscopy.

    Science.gov (United States)

    Chandra, Subhash

    2005-09-01

    Quantitative 3-D total calcium gradients, representing subcellular stored calcium, were imaged with a CAMECA IMS-3f SIMS ion microscope in cryogenically prepared frozen freeze-dried LLC-PK1 cells captured in interphase and various stages of mitosis. 39K and 23Na concentrations were also measured in the same cells. Correlative optical (or SEM) and SIMS analysis of cells revealed a redistribution of the interphase Golgi calcium store in prophase and prometaphase cells. In metaphase cells, simultaneous SIMS imaging of total calcium in both the spindle and the non-spindle cytoplasm of individual cells revealed a gradual and dynamic alignment of calcium stores in both half-spindles prior to the onset of anaphase. The anaphase cells revealed the highest local total calcium concentrations in the spindle regions behind the daughter chromosomes and the lowest in the central spindle region. The pericentriolar material in telophase cells contained calcium stores. Quantitatively, a typical metaphase cell with well-aligned calcium stores in the spindle region contained 1.1 mM total calcium in each half-spindle, 0.8 mM total calcium in the non-spindle cytoplasm, and 0.5mM total calcium in the chromosomes. At the submicron scale, the distribution of total calcium was heterogeneous in the chromosomes, metaphase spindle, and non-spindle cytoplasm. An increased binding of calcium to chromosomes is not a physiological requirement for chromosomal condensation in mitosis, since interphase nuclei and mitotic chromosomes contained comparable total calcium concentrations measured per unit volume. A significant reduction of total calcium in the non-spindle cytoplasm was observed in the metaphase, anaphase, and telophase cells, which is indicative of the limited storage of the releasable calcium pool in these specific stages of mitosis. Direct total calcium measurements in subcellular regions confirmed that both the spindle and the non-spindle cytoplasm of metaphase cells contained inositol

  7. Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of low energy nitrogen ion implantation on Ca2+ concentration and membrane potential of lily (lilium davidii Duch) pollen cell have been studied. The results showed that the Ca2+ concentration was increased when pollen grain was implanted by nitrogen ion with energy 100keV and dose 1013 ions/cra2. However, the increase of Ca2+ concentration was partly inhibited by the addition of Ca2+channel inhibitor depending on dose. And nitrogen ion implantation caused depolarization of pollen cell membrane potential. In other words, membrane potential was increased,but the effect decreased by adding Ca2+ channel inhibitor.However, it was still significantly higher than the membrane potential of control cells. It was indicated that the depolarization of cell membrane potential opened the calcium channel on the membrane that caused the increasing of intraceilular calcium concentration. This might be an earlier step of the effect of low energy nitrogen ion implantation on pollen germination.

  8. Study of Cold Potassium Atom - Calcium Ion Reactions

    Science.gov (United States)

    Egodapitiya, Kisra; Gang, Shu; Clark, Robert; Brown, Kenneth

    2016-05-01

    We report on our progress towards constructing a hybrid system for studying reactions between cold Potassium (K) atoms and cold Calcium (Ca+) ions. Ca+ ions will be trapped and Doppler-cooled inside a linear quadrupole ion trap. Cold K atoms will be created inside a magneto optical trap, such that the ion and the atoms are in an overlapping volume. Trapping and re-pumping beams for the Potassium MOT are derived from the same laser with wavelength 766 nm using two acousto optic modulators. The reaction products will be detected using a time-of- flight mass spectrometer that is designed to detect radially ejected ions. The main objective of this experiment is to study the rate coefficients, and identification of reaction channels between cold K atoms and Ca+ ions. Subsequently this setup will be used to study reactions between cold K atoms and sympathetically cooled molecular ions such as CaO+, and to study internal state quenching of molecular ions.

  9. Multi-ion conduction bands in a simple model of calcium ion channels

    CERN Document Server

    Kaufman, I; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2012-01-01

    We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters (SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the fixed negative charge Qf at the SF. This structure comprises distinct regions of high conductance (conduction bands) M0, M1, M2 separated by regions of zero-conductance (stop-bands). Two of these conduction bands, M1 and M2, demonstrate high calcium selectivity and prominent anomalous mole fraction effects and can be identified with the L-type and RyR calcium channels.

  10. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    The coprecipitation of alkali metal ions Li+, Na+, K+ and Rb+ with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na+ which has approximately the same ionic radius as Ca2+. (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li+, Na+, K+ and Rb+) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li+, K+ and Rb+) into the aragonite. (author)

  11. Multi-ion conduction bands in a simple model of calcium ion channels

    International Nuclear Information System (INIS)

    We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters (SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the fixed negative charge Qf at the SF. With increasing Qf, there are distinct regions of high conductance (conduction bands) M0, M1, M2 separated by regions of almost zero-conductance (stop-bands). Two of these conduction bands, M1 and M2, are related to the saturated calcium occupancies of P = 1 and P = 2, respectively and demonstrate self-sustained conductivity. Despite the model's limitations, its M1 and M2 bands show high calcium selectivity and prominent anomalous mole fraction effects and can be identified with the L-type and RyR calcium channels. The non-selective band M0 can be identified with a non-selective cation channel, or with OmpF porin. (paper)

  12. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections

    Directory of Open Access Journals (Sweden)

    Sampath Kumar eT.S.

    2015-05-01

    Full Text Available Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant (MDR bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA nanoparticles has been developed. Antibacterial ions such as zinc, silver and strontium have been incorporated into CDHA at concentrations of 6 at. %, 0.25-0.75 at. % and 2.5-7.5 at. % respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for five days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on S.aureus and E.coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria while SrCDHA was weakly active against S.aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  13. Continuous reaction crystallization of struvite from phosphate(V) solutions containing calcium ions

    Energy Technology Data Exchange (ETDEWEB)

    Hutnik, N.; Wierzbowska, B.; Matynia, A. [Wroclaw University of Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Piotrowski, K. [Silesian University of Technology, Department of Chemical and Process Engineering, ks. M. Strzody 7, 44-101 Gliwice (Poland)

    2011-05-15

    Continuous reaction crystallization of struvite from water solutions containing phosphate(V) (1.0 mass%) and calcium ions (from 0.01 to 0.20 mass%) was investigated. Process was carried out in temperature 298 K in continuous DT MSMPR type crystallizer with internal circulation of suspension. Influence of pH (from 9 to 11) and mean residence time of suspension in crystallizer (from 900 to 3600 s) on product crystal size distribution, mean size, population homogeneity and shape of crystals, as well as chemical composition of solid phase was tested. Within the investigated process parameter ranges struvite crystals of mean size from 18 to ca. 50 {mu}m were produced. With the increase in calcium ions concentration in a feed mean crystal size decreased from 34.2 to 18.4 {mu}m (pH 9, {tau} 900 s). Coexistence of struvite and hydroxyapatite crystals in the solid product was confirmed analytically (Ca content in solid product from 0.3 to 8.4 mass%). Presence of calcium ions favoured crystallization of struvite in a form of tubular crystals, characterized by lengthwise cracks and irregular edges. Co-precipitated hydroxyapatite particles showed relatively small sizes, even below 1 {mu}m, forming agglomerates on the surface of larger struvite crystals and individual agglomerates. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Polar fluxes of calcium ions and growth of plant tissues

    International Nuclear Information System (INIS)

    The authors studied the action exerted by auxin transport inhibitors (2,3,5-triiodobenzoic acid, 10-4 M; 1-N-naphthylphthalamic acid, 10-4 M), inhibitors of membrane-bound ATPases (sodium orthovanadate, 10-4 M; diethylstilbestrol, 10-5 M), and a blocker of Ca-channels (verapamil, 1.3 x 10-4 M) on growth processes (lengthwise growth, the gravitropic response) and translocation of 45Ca in segments of corn (Zea mays L.) coleoptiles and pea (Pisum sativum L.) internodes. Calcium in vertically oriented and gravistimulated segments was polarly translocated in a direction opposite the vector of gravitational force. It is hypothesized that the polar fluxes of Ca2+ ions which arise in tissues with a change in position of the plant organism in space are capable of correcting the direction of active basipetal transport of IAA and thereby able to induce polarization of growth processes. In studying transport of Ca2+ ions on plasmalemma vesicles with the aid of chlorotetracycline, it was found that creation of a potassium diffusion potential on the membrane (as a results of valinomycin treatment) induces entry of calcium into the vesicles. Since this effect was removed by verapamil and ruthenium red, it is postulated that potential-dependent Ca-channels are present on the plasma membrane of corn coleoptile cells

  15. Irreversible effects of calcium ions on the plasma membrane calcium pump.

    Science.gov (United States)

    Ward, D G; Walton, T J; Cavieres, J D

    1993-12-01

    The calcium pump of human red cells can be irreversibly activated by preincubation of the membranes in the presence of calcium ions, with a pattern reminiscent of that produced by controlled trypsin attack. With 1 mM Ca2+, the activity of the basal enzyme increases three to fourfold over 30 to 60 min, to levels about half those obtained in the presence of calmodulin. On the whole, the effect occurs slowly, with a very low Ca2+ affinity at 37 degrees C and is unaffected by serine-protease inhibitors. The activation caused by 1 mM Ca2+ is little affected by leupeptin (a thiol-protease inhibitor) and that obtained at 10 microM Ca2+ is not inhibited. Preincubations at 0 degrees C also lead to activation, to a level up to half that seen at 37 degrees C, and the effect is not affected by leupeptin or antipain. No activation is observed by preincubating soluble purified Ca,Mg-ATPase in Ca(2+)-containing solutions at 37 degrees C. Instead, calcium ions protect the detergent-solubilized enzyme from thermal inactivation, the effect being half-maximal between 10 and 20 microM Ca2+. We conclude that the activation of the membrane-bound Ca,Mg-ATPase by Ca2+ should result from an irreversible conformational change in the enzyme and not from attack by a membrane-bound protease, and that this change presumably arises from the release of inhibitory particles existing in the original membrane preparations. PMID:8114081

  16. Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery.

    Science.gov (United States)

    Xie, Yanyan; Zhao, Jun; Huang, Renliang; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2016-12-01

    We report a new approach to constructing a peptide-polysaccharide hybrid hydrogel via the calcium-ion-triggered co-assembly of fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) peptide and alginate. Calcium ions triggered the self-assembly of Fmoc-FF peptide into nanofibers with diameter of about 30 nm. Meanwhile, alginate was rapidly crosslinked by the calcium ions, leading to the formation of stable hybrid hydrogel beads. Compared to alginate or Fmoc-FF hydrogel alone, the hybrid Fmoc-FF/alginate hydrogel had much better stability in both water and a phosphate-buffered solution (PBS), probably because of the synergistic effect of noncovalent and ionic interactions. Furthermore, docetaxel was chosen as a drug model, and it was encapsulated by hydrogel beads to study the in vitro release behavior. The sustained and controlled docetaxel release was obtained by varying the concentration ratio between Fmoc-FF peptide and alginate. PMID:27067732

  17. Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery

    Science.gov (United States)

    Xie, Yanyan; Zhao, Jun; Huang, Renliang; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2016-04-01

    We report a new approach to constructing a peptide-polysaccharide hybrid hydrogel via the calcium-ion-triggered co-assembly of fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) peptide and alginate. Calcium ions triggered the self-assembly of Fmoc-FF peptide into nanofibers with diameter of about 30 nm. Meanwhile, alginate was rapidly crosslinked by the calcium ions, leading to the formation of stable hybrid hydrogel beads. Compared to alginate or Fmoc-FF hydrogel alone, the hybrid Fmoc-FF/alginate hydrogel had much better stability in both water and a phosphate-buffered solution (PBS), probably because of the synergistic effect of noncovalent and ionic interactions. Furthermore, docetaxel was chosen as a drug model, and it was encapsulated by hydrogel beads to study the in vitro release behavior. The sustained and controlled docetaxel release was obtained by varying the concentration ratio between Fmoc-FF peptide and alginate.

  18. Ciliary neurotrophic factor-treated astrocyte-conditioned medium increases the intracellular free calcium concentration in rat cortical neurons

    OpenAIRE

    SUN, MEIQUN; Liu, Hongli; MIN, SHENGPING; Wang, Hongtao; Wang, Xiaojing

    2016-01-01

    Ciliary neurotrophic factor (CNTF) is involved in the activation of astrocytes. A previous study showed that CNTF-treated astrocyte-conditioned medium (CNTF-ACM) contributed to the increase of the calcium current and the elevation of corresponding ion channels in cortical neurons. On this basis, it is reasonable to assume that CNTF-ACM may increase the intracellular free calcium concentration ([Ca2+]i) in neurons. In the present study, the effects of CNTF-ACM on [Ca2+]i in rat cortical neuron...

  19. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    Science.gov (United States)

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  20. The effect of theophylline and dibutyryl cyclic AMP on the uptake of radioactive calcium and phosphate ions by boar and human spermatozoa

    International Nuclear Information System (INIS)

    Radioactive calcium uptake by suspensions of washed boar and human spermatozoa was inhibited by the mitochondrial uncoupling agent carbonylcyanide-p-trifluoromethoxy-phenylhydrazone (FCCP). Theophylline + dibutyryl cyclic AMP also inhibited calcium uptake in the presence or absence of FCCP. Uptake of low concentrations of calcium (0.1 mM) was inhibited by the calcium ionophore A23187, but at high calcium concentrations the ionophore stimulated calcium uptake. These observations are explained in terms of a mechanism for the regulation of calcium uptake in spermatozoa based on competing mitochondrial and plasma membrane pumps. Uptake of 32P was also inhibited. These effects provide evidence that cyclic AMP plays a role in the transport of ions across the plasma membrane of spermatozoa. (author)

  1. Effect of high calcium concentration influents on enhanced biological phosphorus removal process

    International Nuclear Information System (INIS)

    In this work, the effect of calcium concentration in wastewater on the polyphosphate accumulating organisms (PAO) is investigated as well as its influence in PAO metabolism, specifically in the YPO4 (ratio between phosphorus release and acetic acid uptake). For this study a sequencing batch reactor (SBR) anaerobic-aerobic was used, in which the PAO enriched biomass was exposed to different calcium concentrations in the influent wastewater. The results indicate that until a given calcium level in the influent wastewater (35 mg Ca/l) the metabolism is not affect, but higher calcium concentrations lead to significant YPO4 decline. (Author) 18 refs.

  2. Quantitative radiological determination of calcium concentrations in the skeleton

    International Nuclear Information System (INIS)

    A simple and practical apparatus and method has been developed in which the Ca concentration in a region 2.5 mm wide in the centre of the middle phalanx of the fourth finger is determined by densitometric evaluation of X-ray pictures. The following results were obtained. Screen films were better suited for densitometric pictures than non-screen films. Two methods of printing were compared. The object of measurement and the object of reference must be similar, with regard to structure and material. An accurate determination of the content of lime salts is possible only with two biological objects of reference. In spite of standardized imaging techniques, there were deviations in radiation absorption higher than 20% with the screen film. This is assumed to be due to inconstant X-ray doses. The range of applications of the method is limited by irregularities of the X-ray screens and by imaging errors due to inconstant X-ray doses. Changes in the calcium content of the finger bones can be detected above a value of +-7%. (orig./MG)

  3. Determination of calcium and magnesium in nuclear grade alumina by ion chromatography technique

    International Nuclear Information System (INIS)

    A simple method for solubilization of alumina and separation of magnesium and calcium from alumina matrix was developed by initial coprecipitation of those elements with iron(III) hydroxide. Calcium and magnesium were later separated from iron chloride anionic complex in a Dowex 1-X 10 anionic exchange resin. The ion chromatography tecnnique was employed for the analysis of calcium and magnesium. One hundred percent recovery for calcium and magnesium was obtained in their separation from alumina. A precision of 6% and 10% for magnesium and calcium, respectively, was obtained in alumina samples analysis which contain less than 0,02% of magnesium and less than 0,08% of calcium. (Author)

  4. Recent advancements in ion concentration polarization.

    Science.gov (United States)

    Li, Min; Anand, Robbyn K

    2016-06-21

    In this minireview, we discuss advancements in ion concentration polarization (ICP)-based preconcentration, separation, desalination, and dielectrophoresis that have been made over the past three years. ICP as a means of controlling the distribution of the ions and electric field in a microfluidic device has rapidly expanded its areas of application. Recent advancements have focused on the development of ion-permselective materials with tunable dimensions and surface chemistry, adaptation to paper microfluidics, higher-throughput device geometries, and coupling ICP with other separation (isotachophoresis and dielectrophoresis) and fluidic (valve and droplet microfluidic) strategies. These studies have made great strides toward solving real-world problems such as low-cost and rapid analysis, accessible desalination technology, and single-cell research tools. PMID:26965754

  5. Relating a calcium indicator signal to the unperturbed calcium concentration time-course

    Directory of Open Access Journals (Sweden)

    Abarbanel Henry DI

    2007-02-01

    Full Text Available Abstract Background Optical indicators of cytosolic calcium levels have become important experimental tools in systems and cellular neuroscience. Indicators are known to interfere with intracellular calcium levels by acting as additional buffers, and this may strongly alter the time-course of various dynamical variables to be measured. Results By investigating the underlying reaction kinetics, we show that in some ranges of kinetic parameters one can explicitly link the time dependent indicator signal to the time-course of the calcium influx, and thus, to the unperturbed calcium level had there been no indicator in the cell.

  6. Distribution of calcium ions in hydrolyses products of proto-pectin of sunflower head

    International Nuclear Information System (INIS)

    The purpose of present work is determination calcium ions containing in hydrolyses products of proto-pectins of sunflowers heads which let elaborate optimal method of high quality pectin obtaining. Obtained data in this article indicate that at least one of chemical reactions at hydrolysis passes with participations calcium ions

  7. Role of Calcium Ion in Apoptosis of MD Cancer Cells Induced by Arsenic Trioxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiuli; WANG Jintao; XU Shiwen

    2008-01-01

    In order to observe the role of calcium ion in apoptosis of MD cancer cells induced by arsenic trioxide, inhibition percentage was detected by MTT assay;morphology changes were examined by fluorescence microscope;apoptosis was examined by DNA Ladder;[Ca2+]i was investigated by spectrofluorimeter in vitro on MDCC-MSB1 cells. The results showed that As2O3 inhibited the proliferation of MDCC-MSB1 cells in concentration dependent manner (P<0.05 or P<0.01);typical apoptosis character was observed by fluorescence microscope;DNA Ladder was observed;the [Ca2+]i was elevated significantly after the treatment of As203 (P<0.05 or P<0.01) and showed a dose-dependent manner. It is concluded that the calcium may play an important role in apoptosis of MD cancer cells induced by arsenic trioxide.

  8. Evaluation of pH, calcium ion release and antimicrobial activity of a new calcium aluminate cement

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2013-07-01

    Full Text Available This study evaluated the pH, calcium ion release and antimicrobial activity of EndoBinder (EB, containing different radiopacifiers: bismuth oxide (Bi2O3, zinc oxide (ZnO or zirconium oxide (ZrO2, in comparison to MTA. For pH and calcium ion release tests, 5 specimens per group (n = 5 were immersed into 10 mL of distilled and deionized water at 37°C. After 2, 4, 12, 24, 48 h; 7, 14 and 28 days, the pH was measured and calcium ion release quantified in an atomic absorption spectrophotometer. For antimicrobial activity, the cements were tested against S. aureus, E. coli, E. faecalis and C. albicans, in triplicate. MTA presented higher values for pH and calcium ion release than the other groups, however, with no statistically significant difference after 28 days (p > 0.05; and the largest inhibition halos for all strains, with no significant difference (E. coli and E. faecalis for pure EB and EB + Bi2O3 (p > 0.05. EB presented similar performance to that of MTA as regards pH and calcium ion release; however, when ZnO and ZrO2 were used, EB did not present antimicrobial activity against some strains.

  9. Mass spectrometric isotope dilution analysis of small calcium concentrations in minerals

    International Nuclear Information System (INIS)

    A mass spectrometric isotope dilution analysis for the determination of small calcium contents is developed. The different steps (decomposition of the mineral including isotope dilution technique, calcium separation and mass spectrometric measurement) of the analytical procedure are described. For a 42Ca spike the optimum spike addition is calculated. The dependence of the analysis error on the mass spectrometric measurements is discussed. Using a chromatographic method with a strong acidic ion exchanger calcium can be completely separated from potassium. The calcium content in the range of 0.15-0.004% of two feldspars and of one lepidolite is determined with external relative standard deviations of 0.9-5.1%. (orig.)

  10. Macromolecular recognition directs calcium ions to coccolith mineralization sites.

    Science.gov (United States)

    Gal, Assaf; Wirth, Richard; Kopka, Joachim; Fratzl, Peter; Faivre, Damien; Scheffel, André

    2016-08-01

    Many organisms form elaborate mineralized structures, constituted of highly organized arrangements of crystals and organic macromolecules. The localization of crystals within these structures is presumably determined by the interaction of nucleating macromolecules with the mineral phase. Here we show that, preceding nucleation, a specific interaction between soluble organic molecules and an organic backbone structure directs mineral components to specific sites. This strategy underlies the formation of coccoliths, which are highly ordered arrangements of calcite crystals produced by marine microalgae. On combining the insoluble organic coccolith scaffold with coccolith-associated soluble macromolecules in vitro, we found a massive accretion of calcium ions at the sites where the crystals form in vivo. The in vitro process exhibits profound similarities to the initial stages of coccolith biogenesis in vivo. PMID:27493186

  11. Ion Association versus Ion Interaction Models in Examining Electrolyte Solutions: Application to Calcium Hydroxide Solubility Equilibrium

    Science.gov (United States)

    Menéndez, M. Isabel; Borge, Javier

    2014-01-01

    The heterogeneous equilibrium of the solubility of calcium hydroxide in water is used to predict both its solubility product from solubility and solubility values from solubility product when inert salts, in any concentration, are present. Accepting the necessity of including activity coefficients to treat the saturated solution of calcium…

  12. Formation of calcium phosphates by vapour diffusion in highly concentrated ionic micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Iafisco, M. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy); Universita del Piemonte Orientale, Dipartimento di Scienze Mediche, Via Solaroli 4, 28100 Novara (Italy); Delgado-Lopez, J.M.; Gomez-Morales, J.; Hernandez-Hernandez, M.A.; Rodriguez-Ruiz, I. [Laboratorio de Estudios Cristalograficos, IACT CSIC-UGR, Edificio Lopez Neyra, Avenida del Conocimiento, s/n 18100 Armilla (Spain); Roveri, N. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy)

    2011-08-15

    In this work we have used the sitting drop vapour diffusion technique, employing the ''crystallization mushroom '' to analyze the evolution of calcium phosphate crystallization in micro-droplets containing high initial concentrations of Ca{sup 2+} and HPO{sub 4}{sup 2-}. The decomposition of NH{sub 4}HCO{sub 3} solution produces vapours of NH{sub 3} and CO{sub 2} which diffuse through the droplets containing an aqueous solution of Ca(CH{sub 3}COO){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4}. The result is the increase of pH by means of the diffusion of NH{sub 3} gas and the doping of the calcium phosphate with CO{sub 3}{sup 2-} ions by means of the diffusion of CO{sub 2} gas. The pH of the crystallization process is monitored and the precipitates at different times are characterized by XRD, FTIR, TGA, SEM and TEM techniques. The slow increase of pH and the high concentration of Ca{sup 2+} and HPO{sub 4}{sup 2-} in the droplets induce the crystallization of three calcium phosphate phases: dicalcium phosphate dihydrate (DCPD, brushite), octacalcium phosphate (OCP) and carbonate-hydroxyapatite (HA). The amount of HA nanocrystals with needle-like morphology and dimensions of about 100 nm, closely resembling the inorganic phase of bones, gradually increases, with the precipitation time up to 7 days, whereas the amount of DCPD, growing along the b axis, increases up to 3 days. Then, DCDP crystals start to hydrolyze yielding OCP nanoribbons and HA nanocrystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Effect of calcium ion on the adsorption of dissolved humic acid onto TiO2 particles in water

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to clarify the role of HA (humic acid)-TiO2 adsorption in the photocatalytic process, a series of experiments were performed to investigate the adsorption mechanisms in the absence or presence of calcium according to the intermolecular interaction force theory. Based on the experimental results, the models of adsorption mechanism were designed, which were useful in explaining the phenomena that happened during adsorption processes. The adsorption of humic acid onto the TiO2 particles was desperately pH-dependent; however, calcium could increase the amount of adsorption, which was mainly attributed to the calcium ion bridging. The effects of calcium concentration and TiO2 dosage on the adsorption process are also discussed.

  14. STUDY OF SERUM TOTAL CALCIUM, IO NIZED CALCIUM AND TOTAL PROTEIN CONCENTRATIONS IN POSTMENOPAUSAL WOMEN

    Directory of Open Access Journals (Sweden)

    SK.Deepthi

    2015-05-01

    Full Text Available Menopause and ageing is associated with accelerated loss of cortical bone. Osteoporotic fractures are common cause of morbidity and mortality in adult Indian women due to ageing. This study was conducted to evaluate the levels of serum calcium, ionized calcium and total protein levels in postmenopausal women and to assess its relation with ageing. Study includes 70 women (40 post menopausal and 30 prem enopausal women serum alkaline phosphatase, serum calcium, ionized calcium and total proteins, serum albumin were estimated in both cases and controls. There is decrease in serum calcium in postmenopausal; wo men when compared to premenopausal women. There was no significant change in ionized calcium in both cases and controls. ALP is highly significant P<0.001. In postmenopausal women suggesting there is high alkaline phosphotase activity in postmenopausal women as a result of the inhibitory effects of estrogen on bone turnover rate which is dependent on age and body mass index. Decrease in serum albumin was seen in postmenopausal wo men which is the reason for decrease in serum calcium level which is inturn related to ageing effect.

  15. Effects of changes in acid base and calcium concentration on fasting serum insulin, proinsulin, and glucose concentrations.

    OpenAIRE

    Smellie, W S; O'Donnell, J; Davidson, H.; Couper, J; Logue, F. C.

    1994-01-01

    AIMS--To test the hypothesis that alterations in acid base or calcium concentration may affect proinsulin processing or the insulin secretion mechanism. METHODS--Changes in proinsulin secretion or cleavage were assessed by measuring serum intact proinsulin and immunoreactive insulin concentrations in three models of acid base and calcium disturbance: (1) subacute changes in acid base status in six volunteers who received oral placebo, ammonium chloride, or sodium bicarbonate for three five da...

  16. Enhancement of CdSe quantum dots luminescence by calcium ions

    International Nuclear Information System (INIS)

    Water soluble functionalized CdSe quantum dots (QDs) have been prepared via water based route technique by using safe and low cost materials at low temperature 75 °C. The XRD measurements of the functionalized CdSe quantum dots showed that these quantum dots have a cubic phase with zinc blend structure. The TEM measurements depicted that these quantum dots are mono-dispersed with spherical shape size about 4 nm. The HRTEM measurements confirmed that the prepared quantum dots have single crystalline cubic structure with lattice parameter 0.61 nm. The EDX measurements indicated that the prepared quantum dots are highly pure and there are no impurities in the structures. The influence of calcium metal ions on the FL intensity of the functionalized CdSe QDs was enhanced the FL intensity by 5-times at concentration 0.8 μM. The enhancement effect of Ca2+ ion on the fluorescence emission of CdSe QDs is found to be concentration dependence. - Highlights: ► Water soluble CdSe QDs have been prepared via a water based route technique. ► These QDs have a cubic phase with zinc blend structure. ► The FL intensity of CdSe QDs is enhanced due to Ca ions effect. ► The enhancement effect of Ca2+ ion FL of CdSe QDs is concentration dependence.

  17. Molecular dynamics simulation exploration of cooperative migration mechanism of calcium ions in sarcoplasmic reticulum Ca2+-ATPase.

    Science.gov (United States)

    Huang, Yongqi; Li, Huifang; Bu, Yuxiang

    2009-10-01

    Calcium ATPase is a member of the P-type ATPase, and it pumps calcium ions from the cytoplasm into the reticulum against a concentration gradient. Several X-ray structures of different conformations have been solved in recent years, providing basis for elucidating the active transport mechanism of Ca2+ ions. In this work, molecular dynamics (MD) simulations were performed at atomic level to investigate the dynamical process of calcium ions moving from the outer mouth of the protein to their binding sites. Five initial locations of Ca2+ ions were considered, and the simulations lasted for 2 or 6 ns, respectively. Specific pathways leading to the binding sites and large structural rearrangements around binding sites caused by uptake of calcium ions were identified. A cooperative binding mechanism was observed from our simulation. Firstly, the first Ca2+ ion binds to site I, and then, the second Ca2+ ion approaches. The interactions between the second Ca2+ and the residues around site I disturb the binding state of site I and weaken its binding ability for the first bound Ca2+. Because of the electrostatic repulsion of the second Ca2+ and the electrostatic attraction of site II, the first bound Ca2+ shifts from site I to site II. Concertedly, the second Ca2+ binds to site I, forming a binding state with two Ca2+ ions, one at site I and the other at site II. Both of Glu908 and Asp800 coordinate with the two Ca2+ ions simultaneously during the concerted binding process, which is believed to be the hinge to achieve the concerted binding. In our simulations, four amino acid residues that serve as the channel to link the outer mouth and the binding sites during the binding process were recognized, namely Tyr837, Tyr763, Asn911, and Ser767. The analyses regarding the activity of the proteins via mutations of some key residues also supported our cooperative mechanism. PMID:19242958

  18. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    Science.gov (United States)

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions. PMID:26861499

  19. A vacuole-like compartment concentrates a disordered calcium phase in a key coccolithophorid alga

    Science.gov (United States)

    Sviben, Sanja; Gal, Assaf; Hood, Matthew A.; Bertinetti, Luca; Politi, Yael; Bennet, Mathieu; Krishnamoorthy, Praveen; Schertel, Andreas; Wirth, Richard; Sorrentino, Andrea; Pereiro, Eva; Faivre, Damien; Scheffel, André

    2016-01-01

    Coccoliths are calcitic particles produced inside the cells of unicellular marine algae known as coccolithophores. They are abundant components of sea-floor carbonates, and the stoichiometry of calcium to other elements in fossil coccoliths is widely used to infer past environmental conditions. Here we study cryo-preserved cells of the dominant coccolithophore Emiliania huxleyi using state-of-the-art nanoscale imaging and spectroscopy. We identify a compartment, distinct from the coccolith-producing compartment, filled with high concentrations of a disordered form of calcium. Co-localized with calcium are high concentrations of phosphorus and minor concentrations of other cations. The amounts of calcium stored in this reservoir seem to be dynamic and at a certain stage the compartment is in direct contact with the coccolith-producing vesicle, suggesting an active role in coccolith formation. Our findings provide insights into calcium accumulation in this important calcifying organism. PMID:27075521

  20. All three Ca[superscript 2+]-binding loops of photoproteins bind calcium ions: The crystal structures of calcium-loaded apo-aequorin and apo-obelin

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lu; Vysotski, Eugene S.; Markova, Svetlana V.; Liu, Zhi-Jie; Lee, John; Rose, John; Wang, Bi-Cheng (Georgia)

    2010-07-13

    The crystal structures of calcium-loaded apoaequorin and apo-obelin have been determined at resolutions 1.7 {angstrom} and 2.2 {angstrom}, respectively. A calcium ion is observed in each of the three EF-hand loops that have the canonical calcium-binding sequence, and each is coordinated in the characteristic pentagonal bipyramidal configuration. The calcium-loaded apo-proteins retain the same compact scaffold and overall fold as the unreacted photoproteins containing the bound substrate, 2-hydroperoxycoelenterazine, and also the same as the Ca{sup 2+}-discharged obelin bound with the product, coelenteramide. Nevertheless, there are easily discerned shifts in both helix and loop regions, and the shifts are not the same between the two proteins. It is suggested that these subtle shifts are the basis of the ability of these photoproteins to sense Ca{sup 2+} concentration transients and to produce their bioluminescence response on the millisecond timescale. A mechanism of intrastructural transmission of the calcium signal is proposed.

  1. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses

    International Nuclear Information System (INIS)

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm (4T1g → 6A1g). • As the concentration of Mn2+ ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn2+ ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn2+ ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper 4T1g → 6A1g ground state of Mn2+ ions. As the concentration of Mn2+ ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of 4T1g level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn2+ concentrations. From the emission characteristic parameters of 6A1g (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices

  2. Plasma cytokine concentration changes induced by the antitumor agents dipterinyl calcium pentahydrate (DCP) and related calcium pterins.

    Science.gov (United States)

    Moheno, Phillip; Pfleiderer, Wolfgang; Fuchs, Dietmar

    2009-01-01

    Analysis of plasma cytokine concentration changes determined that oral dosing with the antitumor agent (1:4 mol:mol) calcium pterin (CaPterin) increased plasma IL-10, decreased plasma IL-6, and decreased plasma IFN-gamma concentrations in nude mice with MDA-MB-231 xenograph tumors [Moheno, P., Pfleiderer, W., Dipasquale, A.G., Rheingold, A.L., Fuchs, D., 2008. Cytokine and IDO metabolite changes effected by calcium pterin during inhibition of MDA-MB-231 xenograph tumors in nude mice. Int. J. Pharm. 355, 238-248]. A further analysis, reported here, of plasma cytokine concentration changes in nude mice with the same tumor xenographs treated with dipterinyl calcium pentahydrate (DCP), (1:2 mol:mol) calcium pterin, and CaCl(2).2H(2)O has been carried out. The measured cytokines included: IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-12, IFN-gamma, and TNF-alpha. The major preliminary findings from the analyses of these data are that (1) the overall relative tumor volumes for the treatments correlated significantly with a full study antitumor plasma cytokine pattern (fsAPCP), a composite measure consisting of decreased plasma IL-6 and increased IL-4 concentrations, and (2) DCP induces a significant threshold antitumor response strongly correlated to a derived DCP antitumor plasma cytokine pattern (DCP/APCP) consisting of plasma IL-12, IL-6, and IL-4 concentration changes. This DCP/APCP composite measure identifies plasma IL-12 concentration increases, plasma IL-6 concentration decreases, and plasma IL-4 concentration increases correlated to relative tumor volume decreases caused by DCP dosing. The finding that the novel calcium pterins and CaCl(2).2H(2)O treatments decrease plasma IL-6 concentrations corroborates the previous finding that CaPterin dosing decreases plasma IL-6 concentrations in this mouse/tumor system [Moheno, P., Pfleiderer, W., Dipasquale, A.G., Rheingold, A.L., Fuchs, D., 2008. Cytokine and IDO metabolite changes effected by calcium pterin during inhibition

  3. Accurate Description of Calcium Solvation in Concentrated Aqueous Solutions

    Czech Academy of Sciences Publication Activity Database

    Kohagen, Miriam; Mason, Philip E.; Jungwirth, Pavel

    2014-01-01

    Roč. 118, č. 28 (2014), s. 7902-7909. ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LH12001 Institutional support: RVO:61388963 Keywords : calcium chloride * aqueous solution * molecular dynamics * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.302, year: 2014

  4. Energy transfer and luminescence properties of Tm3+ ions in calcium fluoroborate glasses for fiber amplifiers

    International Nuclear Information System (INIS)

    Calcium fluoroborate glasses doped with Tm2O3 (CFBTm) were prepared by the conventional melt quenching method. Optical absorption and the photoluminescence spectra were recorded in UV–vis–NIR regions. Free-ion and Judd–Ofelt (J–O) parameters have been evaluated from the energy level positions and the intensities of the absorption bands. Using the J–O parameters, several radiative parameters were calculated for different excited states of Tm3+ ions in CFB glasses. Stimulated emission cross-sections (σe) and effective bandwidths (Δλeff) were determined for the observed emission bands. The intensities of the emission peaks in the visible region increase with the increase of Tm2O3 concentration and then decrease at higher concentrations. The quenching of emission intensities has been attributed to the energy transfer through cross-relaxation mechanisms. The NIR emission spectrum recorded with the excitation of 808 nm laser diode (LD) exhibited an emission peak at 1.47 μm corresponding to the 3H4→3F4 transition. The intensity of NIR emission peak increases with increase of Tm2O3 concentration. Beer Lambert and McCumber theories were also implemented to evaluate the absorption and emission cross-sections for the prominent 3F4→3H6 transition at 1.82 μm emission wavelength. -- Highlights: ► Spectroscopic properties of Tm3+ ions in Calcium fluoroborate glasses were studied. ► Optical absorption and photoluminescence spectra were interpreted. ► Theoretical as well as experimental results were correlated. ► Quenching of emission intensities were explained using cross-relaxation mechanisms. ► Emission cross-sections were theoretically predicted

  5. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    Science.gov (United States)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  6. Interaction between Calcium Ions and Bacillus thuringiensis Toxin Activity against Sf9 Cells (Spodoptera frugiperda, Lepidoptera)

    OpenAIRE

    Monette, R.; Potvin, L.; Baines, D; Laprade, R; Schwartz, J. L.

    1997-01-01

    The effects of calcium ions and modulators of calcium movement on Bacillus thuringiensis insecticidal protein toxicity were investigated with Sf9 cells (Spodoptera frugiperda, fall armyworm) by a new B. thuringiensis toxicity assay based on measurement of fluorescence of ethidium homodimer, a high-affinity DNA stain. CryIC toxicity was substantially stimulated by extracellular calcium in a dose-dependent way (in the millimolar range), while toxicity enhancement could not be replicated when ca...

  7. Study of the Influence Between Barium Ions and Calcium Ions on Morphology and Size of Coprecipitation in Microemulsion

    Science.gov (United States)

    Wang, Nong; Meng, Qing Luo

    2015-03-01

    In this paper, we systematically drew a series of inverse-microemulsion quasi-ternary system phase diagrams of OP-10+C8H17OH+C6H12+brine (CaCl2/BaCl2) by adjusting the ratio of CaCl2 and BaCl2. On this basis, microemulsions have been prepared with seven different molar ratios of Ca2+/Ba2+, and calcium carbonate and barium carbonate coprecipitation products were obtained by reaction with an equimolar amount of sodium carbonate. The influence of barium ion to morphology and composition of nanometer calcium carbonate were studied. These samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The SEM photographs indicated that when the content of Ca2+ was higher, some incomplete large cube of coprecipitation particles were formed in solution, but with the content of Ba2+ increased gradually, they formed a large number of small spherical particles, with the further increase of Ba2+ concentration, the particles mainly had structures of irregular polyhedron eventually. The measurement results of FTIR and XRD indicated that CaCO3 coprecipitation products gradually changed from calcite to the vaterite, eventually turned into being aragonite with the further increase of Ba2+ concentration.

  8. Physiological responses of osteoblasts to cyclic stretching and the change of intracellular calcium concentration

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The development of bone tissues is regulated by mechanical stimulation. Cyclic stretching was applied to the osteoblasts that were delivered from rat calvarie. The results showed that stretching at 500 με increased the cell proliferation while loading at 1000 με and 1500 με inhabited cell growth. Loading alsoincreased the adhesive force between cells and substrate as well as spreading areas of osteobalsts. Furthermore, the fluorescence probe Fluo-3/AM was used to investigate the effect of stretching stimulation on the intracellular calcium concentration of osteoblasts. The intracellular calcium concentration of osteoblasts that were stretched at 500 με for 5 min was 92.9% higher than the control. After being treated with the panax ontoginseng saponins, the stretched osteoblasts still expressed 28.6% higher intracellular calcium concentration than that of the control, which proved that both the influx of extracellular calcium and the release of intracellular calcium store were involved in the increase of intracellular calcium concentration when osteoblasts responded to the cyclic stretching. And the influx of extracellular calcium through transmembrance channel played a main role.

  9. Actin filaments as the fast pathways for calcium ions involved in auditory processes

    Indian Academy of Sciences (India)

    Miljko V Sataric; Dalibor L Sekulic; Bogdan M Sataric

    2015-09-01

    We investigated the polyelectrolyte properties of actin filaments which are in interaction with myosin motors, basic participants in mechano-electrical transduction in the stereocilia of the inner ear. Here, we elaborated a model in which actin filaments play the role of guides or pathways for localized flow of calcium ions. It is well recognized that calcium ions are implicated in tuning of actin-myosin cross-bridge interaction, which controls the mechanical property of hair bundle. Actin filaments enable much more efficient delivery of calcium ions and faster mechanism for their distribution within the stereocilia. With this model we were able to semiquantitatively explain experimental evidences regarding the way of how calcium ions tune the mechanosensitivity of hair cells.

  10. Development of Model for the Prediction of Ions Concentration in Soil Water

    Directory of Open Access Journals (Sweden)

    O. D. ADENIYI

    2005-01-01

    Full Text Available This paper proposes a mathematical model for the prediction of different ion concentration in soil water used for irrigational purposes in Niger State of Nigeria. The various ions considered are sodium (Na+, potassium (K+, calcium (Ca2+, nitrogen in form of nitrate (NO3-, and phosphorus in form of phosphate (PO43-. The model was simulated for different concentration readings using different adsorption fractions. The results obtained compared favourably with that of the experimental, though with slight variations which were attributed to some of the basic assumptions used during the process of model development.

  11. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems. PMID:27003087

  12. Calcium nitrate miscible displacement at different concentrations in packed soil columns

    Science.gov (United States)

    Previatello da Silva, Livia; Alves de Oliveira, Luciano; Honorio de Miranda, Jarbas

    2015-04-01

    Studies on miscible displacement provide us with rational means to understand the important physical phenomena involved leaching in soils, fertilizers, movement of ions and other similar processes. With current environmental concerns and the need to understand the processes that govern movement of water and solutes in soil, studies are needed to allow increasing the efficiency of input use in agriculture that somehow can mitigate the impact of activities of this sector on groundwater contamination. Contamination of soil and groundwater and surface water in areas with fertilizer application and reuse of effluent is closely linked to materials chemical characteristics, and retention and transmission of water and soil solutes. Solute mobility in soil is inversely related to their adsorption to solid fraction or to environmental conditions that favor ions precipitation. Ion adsorption to soil exchange complex makes ion maintains exchange with the soil solution, providing once their retention by the solid fraction, another its availability in aqueous medium. Nitrate leaching is a physical phenomenon, favored by low energy involved in adsorption to soil particles and also by its high solubility in water. This high solubility and the weak interaction with soil matrix to allow anion follow the wetting front. Therefore, the objective was determine nitrate transport parameters in soil, through Breakthrough Curves (BTC) development under conditions of disturbed soil samples (saturated soil and steady state conditions) in columns (20.0 cm in height and 5 cm in diameter), by calcium nitrate solution application at two concentrations, 50 and 130 g m-3 NO3-, in two tropical soil types, Yellow Oxisol (S1) and Anfisol (S2). Research was carried out in laboratory. Transport parameters for both soils and nitrate concentrations were obtained by numerical fit using STANMOD software, by the inverse modelling. Results showed predominance of convective transport in S1, which had a higher

  13. Calcium Ion Detection Using Miniaturized InN-based Ion Sensitive Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Kun-Wei Kao

    2012-03-01

    Full Text Available An Ultrathin (~10 nm InN ion sensitive field effect transistor (ISFET with gate regions functionalized with phosphotyrosine (p-Tyr is proposed to detect calcium ions (Ca2+ in aqueous solution. The ISFET was miniaturized to a chip size of 1.1 mm by 1.5 mm and integrated at the tip of a hypodermic injection needle (18 G for real-time and continuous monitoring. The sensor shows a current variation ratio of 1.11% with per decade change of Ca2+ and a detection limit of 10-6 M. The response time of 5 sec. reveals its great potential for accomplishing fast detection in chemical and physiological sensing applications. The sensor would be applied in medical diagnosis and used to monitor continuous and real-time variations of Ca2+ levels in human blood in the near future.

  14. Interactions between calcium phosphate and heavy metal ions in aqueous solution

    OpenAIRE

    Fernane F.; Boudia S.; Saouli H.

    2013-01-01

    Synthetic and natural calcium phosphates were tested for removal metallic pollution in aqueous solution. Calcium phosphates with Ca/P ratio between 1,33 and 1,67 are fluently called apatite. They have a strong capacity to immobilize metallic ions when they are brought into contact with aqueous solutions. Ca2+ ions can substituted completely or partly by cations such as metallic ions (Ni2+; Cu2+; Co2+ and Cd2+). PO43− ions can be replaced by anions such as AsO43−, CO32−, … etc. Sorption of Cu2...

  15. Assessment of ion diffusion from a calcium hydroxide-propolis paste through dentin

    OpenAIRE

    Janaina Corazza Montero; Graziela Garrido Mori

    2012-01-01

    This study evaluated the ability of ions from a non-alcoholic calcium hydroxide-propolis paste to diffuse through dentinal tubules. Thirty-six single-rooted bovine teeth were used. The tooth crowns were removed, and the root canals were instrumented and divided into 3 groups: Group 1 - calcium hydroxide-propylene glycol paste; Group 2 - calcium hydroxide-saline solution paste; Group 3 - calcium hydroxide-propolis paste. After the root canal dressings were applied, the teeth were sealed and pl...

  16. Effect of Calcium Ions on the Disintegration of Enteric-Coated Solid Dosage Forms.

    Science.gov (United States)

    Al-Gousous, Jozef; Langguth, Peter

    2016-02-01

    To investigate the effect of calcium ions on the disintegration of enteric-coated dosage forms, disintegration testing was performed on enteric-coated aspirin tablets in the presence and absence of calcium in the test media. The results show that the presence of calcium ions retards the disintegration of enteric-coated dosage forms. This finding, which has not been reported in scientific literature, sheds light on the importance of conducting well-designed detailed investigations into the potential of calcium from dietary sources, calcium supplements, antacids, and/or phosphate binders affecting the absorption of drugs formulated into enteric-coated dosage forms. Moreover, it shows the necessity to investigate the potential of the occurrence of additional nutrient-excipient interactions. PMID:26523769

  17. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates.

    Science.gov (United States)

    Eshpari, H; Jimenez-Flores, R; Tong, P S; Corredig, M

    2015-12-01

    Milk protein concentrate powders (MPC) with improved rehydration properties are often manufactured using processing steps, such as acidification and high-pressure processing, and with addition of other ingredients, such as sodium chloride, during their production. These steps are known to increase the amount of serum caseins or modify the mineral equilibrium, hence improving solubility of the retentates. The processing functionality of the micelles may be affected. The aim of this study was to investigate the effects of partial acidification by adding glucono-δ-lactone (GDL) to skim milk during membrane filtration on the structural changes of the casein micelles by observing their chymosin-induced coagulation behavior, as such coagulation is affected by both the supramolecular structure of the caseins and calcium equilibrium. Milk protein concentrates were prepared by preacidification with GDL to pH 6 using ultrafiltration (UF) and diafiltration (DF) followed by spray-drying. Reconstituted UF and DF samples (3.2% protein) treated with GDL showed significantly increased amounts of soluble calcium and nonsedimentable caseins compared with their respective controls, as measured by ion chromatography and sodium dodecyl sulfate-PAGE electrophoresis, respectively. The primary phase of chymosin-induced gelation was not significantly different between treatments as measured by the amount of caseino-macropeptide released. The rheological properties of the reconstituted MPC powders were determined immediately after addition of chymosin, both before and after dialysis against skim milk, to ensure similar serum composition for all samples. Reconstituted samples before dialysis showed no gelation (defined as tan δ=1), and after re-equilibration only control UF and DF samples showed gelation. The gelation properties of reconstituted MPC powders were negatively affected by the presence of soluble casein, and positively affected by the amount of both soluble and insoluble

  18. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  19. Effect of Calcium Concentration on the Structure of Casein Micelles in Thin Films

    OpenAIRE

    Müller-Buschbaum, P.; Gebhardt, R.; Roth, S. V.; Metwalli, E.; Doster, W.

    2007-01-01

    The structure of thin casein films prepared with spin-coating is investigated as a function of the calcium concentration. Grazing incidence small-angle x-ray scattering and atomic force microscopy are used to probe the micelle structure. For comparison, the corresponding casein solutions are investigated with dynamic light-scattering experiments. In the thin films with added calcium three types of casein structures, aggregates, micelles, and mini-micelles, are observed in coexistence with ato...

  20. Studies on Calcium Ion Selectivity of ZnO Nanowire Sensors Using Ionophore Membrane Coatings

    Directory of Open Access Journals (Sweden)

    M. H. Asif

    2008-01-01

    Full Text Available Zinc oxide nanorods with 100 nm diameter and 900 nm length were grown on the surface of a silver wire (0.25 mm in diameter with the aim to produce electrochemical nanosensors. It is shown that the ZnO nanorods exhibit a Ca2+-dependent electrochemical potentiometric behavior in an aqueous solution. The potential difference was found to be linear over a large logarithmic concentration range (1 M to 0.1 M using Ag/AgCl as a reference electrode and the response time was less than one minute. In order to adapt the sensors for calcium ion measurements in biological fluids with sufficient selectivity and stability, plastic membrane coatings containing ionophores were applied. These functionalized ZnO nanorods sensors showed a high sensitivity (26.55 mV/decade and good stability.

  1. Simultaneous determination of inorganic anions, calcium and magnesium by suppressed ion chromatography.

    Science.gov (United States)

    García-Fernández, Ruben; García-Alonso, J Ignacio; Sanz-Medel, Alfredo

    2004-04-01

    Suppressed conductimetric detection ion chromatography (IC) was investigated for the separation and detection of common inorganic anions, calcium and magnesium by anion-exchange chromatography using a sodium carbonate-EDTA mobile phase. The formation of anionic Ca2+ -EDTA and Mg2+ -EDTA complexes allowed its separation from other inorganic anions opening the way for their simultaneous determination in a single chromatographic run. The effect of the pH, carbonate and EDTA concentrations in the eluent and the previous addition of EDTA to the samples has been studied. The optimised experimental conditions were applied to the determination of Ca2+ and Mg2+ in mineral waters with results in agreement with alternative ICP-MS methodologies. PMID:15072297

  2. Studies on Calcium Ion Selectivity of ZnO Nano wire Sensors Using Ionophore Membrane Coatings

    International Nuclear Information System (INIS)

    Zinc oxide nano rods with 100 nm diameter and 900?nm length were grown on the surface of a silver wire (0.25 mm in diameter) with the aim to produce electrochemical nano sensors. It is shown that the ZnO nano rods exhibit a Ca2+ dependent electrochemical potentiometric behavior in an aqueous solution. The potential difference was found to be linear over a large logarithmic concentration range (1μ M to 0.1 M) using Ag/AgCl as a reference electrode and the response time was less than one minute. In order to adapt the sensors for calcium ion measurements in biological fluids with sufficient selectivity and stability, plastic membrane coatings containing ionophores were applied. These functionalized ZnO nano rods sensors showed a high sensitivity (26.55 mV/decade) and good stability

  3. A First Principles Molecular Dynamics Study Of Calcium Ion In Water

    Energy Technology Data Exchange (ETDEWEB)

    Lightstone, F; Schwegler, E; Allesch, M; Gygi, F; Galli, G

    2005-01-28

    In this work we report on Car-Parrinello simulations of the divalent calcium ion in water, aimed at understanding the structure of the hydration shell and at comparing theoretical results with a series of recent experiments. Our paper shows some of the progress in the investigation of aqueous solutions brought about by the advent of ab initio molecular dynamics and highlights the importance of accessing subtle details of ion-water interactions from first-principles. Calcium plays a vital role in many biological systems, including signal transduction, blood clotting and cell division. In particular, calcium ions are known to interact strongly with proteins as they tend to bind well to both negatively charged (e.g. in aspartate and glutamate) and uncharged oxygens (e.g. in main-chain carbonyls). The ability of calcium to coordinate multiple ligands (from 6 to 8 oxygen atoms) with an asymmetric coordination shell enables it to cross-link different segments of a protein and induce large conformational changes. The great biochemical importance of the calcium ion has led to a number of studies to determine its hydration shell and its preferred coordination number in water. Experimental studies have used a variety of techniques, including XRD, EXAFS, and neutron diffraction to elucidate the coordination of Ca{sup 2+} in water. The range of coordination numbers (n{sub C}) inferred by X-ray diffraction studies varies from 6 to 8, and is consistent with that reported in EXAFS experiments (8 and 7.2). A wider range of values (6 to 10) was found in early neutron diffraction studies, depending on concentration, while a more recent measurement by Badyal, et al. reports a value close to 7. In addition to experimental measurements, many theoretical studies have been carried out to investigate the solvation of Ca{sup 2+} in water and have also reported a wide range of coordination numbers. Most of the classical molecular dynamics (MD) and QM/MM simulations report n{sub C} in the

  4. Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants.

    Science.gov (United States)

    Sunarso; Toita, Riki; Tsuru, Kanji; Ishikawa, Kunio

    2016-11-01

    In this work, to elevate weak osteoconductivity of titanium (Ti) implant, we prepared a Ti implant having both calcium and phosphate ions on its surface. To modify calcium and phosphate ions onto Ti, phosphate ions were first immobilized by treating the Ti with a NaH2PO4 solution, followed by CaCl2 treatment to immobilize calcium ions, which created the calcium and phosphate ions-modified Ti (Ca-P-Ti). X-ray photoelectron spectroscopy and thin-layer X-ray diffraction measurement confirmed that both phosphate and calcium ions were co-immobilized onto the Ti surface on the molecular level. Three-hour after seeding MC3T3-E1 murine pre-osteoblast cells on substrates, cell number on Ca-P-Ti was much larger than that of Ti and phosphate-modified Ti (P-Ti), but was similar to that of calcium-modified Ti (Ca-Ti). Also, MC3T3-E1 cells on Ca-P-Ti expressed larger amount of vinculin, a focal adhesion protein, than those on other substrates, probably resulting in larger cell size as well as greater cell proliferation on Ca-P-Ti than those on other substrates. Alkaline phosphatase activity of cells on Ca-P-Ti was greater than those on Ti and P-Ti, but was almost comparable to that of Ca-Ti. Moreover, the largest amount of bone-like nodule formation was observed on Ca-P-Ti. These results provide evidence that calcium and phosphate ions-co-immobilization onto Ti increased the osteoconductivity of Ti by stimulating the responses of pre-osteoblast cells. This simple modification would be promising technique for bone tissue implant including dental and orthopedic implants. PMID:27524023

  5. [K-strophanthin-beta complexing with calcium, magnesium and dysprosium ions].

    Science.gov (United States)

    Chekman, I S; Budarin, L I; Gorchakova, N A; Suchkova, R V; Tishura, T A

    1978-01-01

    Nuclear magnetic resonance, microcalorimetry and the use of the ion-selecting electrode evidenced that k-strophanthine-beta forms complexes with the calcium, magnesium and disprosium ions. Changes in the position of the k-strophanthine-beta carbohydrate parts and aglycones signals bear witness to their participation in the complexing. PMID:700079

  6. Selectivity of calcium channels in rat uterine smooth muscle: interactions between sodium, calcium and barium ions.

    Science.gov (United States)

    Jmari, K; Mironneau, C; Mironneau, J

    1987-03-01

    1. Action potentials and membrane currents were recorded by means of a double sucrose-gap technique from Cs-loaded strips from pregnant rats superfused in Ca-free EGTA-containing solutions. 2. When external Ca was reduced below 1 microM in the presence of 1 mM-EGTA, step depolarizations from a holding potential close to the normal resting potential produced tetrodotoxin-resistant inward currents. These currents were suppressed after removal of external Na and blocked by a variety of Ca-channel blockers such as Mn, Co, Ni and nifedipine. 3. Inactivation of the inward Na current was studied using a double-pulse protocol. The degree of inactivation of the Na current was almost maximal for depolarizations of +50 mV. Application of stronger depolarizations did not significantly increase it and had no effect on recovery from inactivation. Similarly, increasing the duration of the conditioning pulse from 30 to 250 ms had no further effect on both amplitude and kinetics of the Na current. These results suggest that the Na current inactivation reflects a pure voltage-dependent mechanism. 4. The effects of external Ca were studied over a 10(9)-fold range in concentration. When external Ca was gradually increased from 1 nM to 1 microM, the inward Na current was reduced and finally abolished. As the external Ca was increased over 0.5 mM, inward current reappeared and increased as Ca became the charge carrier. 5. When Na was the charge carrier, external Ca was the most effective divalent cation in blocking the Ca channel with a half-blockage concentration of 0.1 microM. Addition of millimolar concentrations of Ca and Sr also reduced the Ba current while adding Ba to Ca-containing solution produced no increase in current. 6. Membrane currents in solutions containing both Ba and Ca ions were less than in solutions containing either Ca or Ba at the same concentration, suggesting that Ca channels are single-file multi-ion pores. 7. We conclude that the selectivity of uterine Ca

  7. Capillarity ion concentration polarization as spontaneous desalting mechanism

    Science.gov (United States)

    Park, Sungmin; Jung, Yeonsu; Son, Seok Young; Cho, Inhee; Cho, Youngrok; Lee, Hyomin; Kim, Ho-Young; Kim, Sung Jae

    2016-04-01

    To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the material, in contrast to electrokinetic ion concentration polarization which achieves the same ion-depletion zone by an external d.c. bias. This capillarity ion concentration polarization device is shown to be capable of desalting an ambient electrolyte more than 90% without any external electrical power sources. Theoretical analysis for both static and transient conditions are conducted to characterize this phenomenon. These results indicate that the capillarity ion concentration polarization system can offer unique and economical approaches for a power-free water purification system.

  8. Structural and luminescence properties of Mn{sup 2+} ions doped calcium zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming Hua, E-mail: wanminghua819@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Wong, Poh Sum, E-mail: pohsumwong@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Hussin, Rosli, E-mail: roslihussin@utm.my [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Lintang, Hendrik O., E-mail: hendrik@ibnusina.utm.my [Catalytic Science and Technology (CST) Research Group, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Endud, Salasiah, E-mail: salasiah@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-05-15

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ({sup 4}T{sub 1g} → {sup 6}A{sub 1g}). • As the concentration of Mn{sup 2+} ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn{sup 2+} ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn{sup 2+} ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper {sup 4}T{sub 1g} → {sup 6}A{sub 1g} ground state of Mn{sup 2+} ions. As the concentration of Mn{sup 2+} ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of {sup 4}T{sub 1g} level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn{sup 2+} concentrations. From the emission characteristic parameters of {sup 6}A{sub 1g} (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices.

  9. Effect of Eu{sub 2}O{sub 3} concentration on luminescent properties of Ce/Tb/Eu co-doped calcium borosilicate glass for white LED

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Linjiao; Lei, Xiaohua, E-mail: xhlei@cqu.edu.cn; Du, Xiaoqing; Jin, Lei; Chen, Weimin; Feng, Yong’an

    2013-10-15

    Luminescent properties of Ce/Tb/Eu co-doped calcium borosilicate glass were investigated through excitation and emission spectra, fluorescence lifetimes and colorimetric analysis. The spectra results show that the concentration quenching of Eu{sup 3+} ions occurs when the concentration of Eu{sub 2}O{sub 3} ranges from 0.75 mol% to 1.00 mol% and Ce{sup 3+}, Tb{sup 3+} and Eu{sup 2+} ions are all the donors which can transfer energy to Eu{sup 3+}. It can be indicated from the analysis of lifetimes that through nonradiative transition, Tb{sup 3+} ions can accept energy from Eu{sup 2+} ions and also transfer energy to Eu{sup 3+} ions. Furthermore, the colorimetric analysis show that the correlated color temperatures (CCT) of Ce/Tb/Eu co-doped calcium borosilicate glass can be adjusted from cold white to warm white by controlling the concentration of Eu{sub 2}O{sub 3}. -- Highlights: • Effect of Eu{sub 2}O{sub 3} concentration was investigated from the excitation and emission spectra, the fluorescence lifetimes and the colorimetric analysis. • The energy transfers from Ce{sup 3+}, Tb{sup 3+} and Eu{sup 2+} ions to Eu{sup 3+} ions were discussed. • Tb{sup 3+} can accept energy from Eu{sup 2+} and transfer energy to Eu{sup 3+} with different Eu{sub 2}O{sub 3} concentrations. • The CCTs of Ce/Tb/Eu co-doped calcium borosilicate glass can be adjusted from cold white to warm white by controlling the concentration of Eu{sub 2}O{sub 3}.

  10. Effects of high concentrations of calcium salts in the substrate and its pH on the growth of selected rhododendron cultivars

    Directory of Open Access Journals (Sweden)

    Piotr Giel

    2011-07-01

    Full Text Available For proper growth and development, rhododendrons need acidic soils, whereas calcium carbonate (CaCO3 in the substrate markedly limits their growth. In this study, we analysed the reactions of rhododendrons to high concentrations of calcium salts and pH in the substrate. We used 4-month-old seedlings of Rhododendron 'Cunningham's White' and 1.5-year-old seedlings and rooted cuttings of R. 'Cunningham's White' and R. 'Catawbiense Grandiflorum'. Their reactions depended mostly on calcium salt type added to the substrate (sulphate or carbonate. An increase in concentrations of phenolic compounds was detected mostly in roots of the plants grown in a substrate with a high calcium carbonate content. Addition of calcium salts to the substrate caused a significant rise in total nonstructural carbohydrates in leaves and roots of the studied plants. As compared to the control, an increase in substrate pH in the variant with calcium carbonate limited the activity of acid phosphatase, while lowering of substrate pH in the variant with calcium sulphate, significantly increased its activity. Along with the rise in substrate pH, a remarkable increase was observed in the activity of nonspecific dehydrogenase (DHA in the substrate with CaCO3, as compared to the control. Unfavourable soil conditions (high calcium content and alkaline pH caused a decrease in assimilation of minerals by the studied plants (mostly phosphorus and manganese. Our results show that the major factor limiting rhododendron growth is an increase in substrate pH, rather than an increase in the concentration of calcium ions.

  11. Individual variations of pH, buffer capacity, and concentrations of calcium and phosphate in unstimulated whole saliva.

    Science.gov (United States)

    Larsen, M J; Jensen, A F; Madsen, D M; Pearce, E I

    1999-02-01

    In order to evaluate the risk of development of dental caries and/or of formation of dental calculus, salivary variables have often been used, but not with particular success. A reason for the apparent lack of association could be that the individual temporal variation of a characteristic was so substantial relative to the overall variation that it is not possible to characterize an individual by a single salivary measurement. The aim here was to examine the individual variation of pH, buffer capacity, and concentrations of calcium and phosphate and to compare it with the overall variation of the characteristics in order to shed light on the above problem. Eight weekly samples of up to 4 ml of unstimulated whole saliva were collected from 11 dental students before tooth brushing on their arrival at 8 a.m. in the dental school. Calcium was determined by atomic absorption spectroscopy, phosphate colorimetrically, and pH electrometrically. The buffer capacity was assessed by titration of the saliva sample from the pH initially observed to pH 3. It was found that within each individual the concentration of calcium and of phosphate, pH, the hydroxyapatite ion product and the buffer capacity varied considerably over the 7 weeks. The individual range frequently covered more than a third of the total range. Further, within each of the variables, single individuals could be found whose samples covered 60% or more of the overall range, whilst others covered less than 10% of the range. It was therefore concluded that, although collected at the same time of the day, pH, buffer capacity and concentrations of calcium and phosphate in unstimulated whole saliva in the single individual vary so much that characterization of individuals and of their saliva based on a single salivary analysis is unreliable and hazardous. PMID:10206329

  12. Calcium, amylase, glucose, total protein concentrations, flow rate, pH and buffering capacity of saliva in patients undergoing orthodontic treatment with fixed appliances

    Directory of Open Access Journals (Sweden)

    Hellen Soares Teixeira

    2012-04-01

    Full Text Available OBJECTIVE: To evaluate qualitative and quantitative changes in the saliva of individuals undergoing orthodontic treatment with fixed appliances. METHODS: Salivary samples were collected from 50 individuals divided in two groups: Experimental Group - patients with fixed orthodontic appliances (n=25; and Control Group - subjects with no orthodontic appliances (n=25. Salivary flow rate, pH, buffering capacity, amylase activity, concentrations of total proteins, calcium and glucose were measured in all salivary samples. RESULTS: There was a reduction in salivary pH and buffering capacity and an increase in the concentration of calcium ions in the experimental group (p<0.05; there was also an increase in glucose, amylase and protein concentrations in the saliva of the Experimental Group, but the differences were insignificant. There was insignificant correlation between calcium ion concentration and salivary flow or between buffering capacity and salivary flow. CONCLUSION: The saliva of individuals with fixed orthodontic appliances had lower pH, buffering capacity and calcium concentration than that of individuals without any type of orthodontic appliance. These oral changes are enough to cause tooth demineralization. Patients with orthodontic appliances should adopt additional oral hygiene procedures.

  13. Solvatation and ion association in calcium nitrate solutions in acetone on sound data

    International Nuclear Information System (INIS)

    Present article is devoted to solvatation and ion association in calcium nitrate solutions in acetone on sound data. The results of measurement of the rate of distribution and peak value of coefficient of adsorption of supersonic waves in the calcium nitrate solutions in acetone were considered. Measurements were carried out on impulse ultrasonic unit in the frequency range 9.7-106.7 MHz and at temperature range 289-313 K.

  14. Microanalyses of the hydroxyl—poly—calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Yang; WANGChang-Xing; 等

    2002-01-01

    Thin calcium phosphate catings on titanium alloy substrates were prepared by Ar+ ion beam assisted deposition(IBAD) from hydroxyl-poly-calcium sodium phosphate(HPPA) target.The coatings were analyzed by XRD,FTIR,XPS,These analyses revealed that the as-deposited films were amorphous or no apparent crystallinity.No distinct absorption band of the hydroxyl group was observed in FTIR spectra of the coatings but new absorption bands were presented for CO3-2,The calcium to phosphorous ratio of these catings in different IBAD conditions varied from 0.46 to 3.36.

  15. The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy.

    Science.gov (United States)

    Potapova, E; Grahn, M; Holmgren, A; Hedlund, J

    2010-05-01

    Previous studies have shown that agglomeration of the magnetite concentrate after reverse flotation of apatite is negatively affected by the collector species adsorbed on the surface of magnetite. In this work, the effect of ionic strength, calcium ions and sodium silicate on the unwanted adsorption of a model anionic flotation collector on synthetic magnetite was studied in situ using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The amount of collector adsorbed was found to increase with increasing ionic strength at pH 8.5 providing evidence to the contribution of electrostatic forces to the adsorption of the collector. Adding sodium silicate to the system resulted in a threefold decrease in the amount of collector adsorbed compared to when no sodium silicate was added, confirming the depressing activity of sodium silicate on magnetite. Calcium ions were shown to increase the adsorption of both the collector and sodium silicate on magnetite. The depressing effect of sodium silicate on collector adsorption was completely suppressed in the presence of calcium ions under the conditions studied. Furthermore, the amount of collector adsorbed on magnetite from the silicate-collector solution increased 14 times upon addition of calcium ions suggesting that calcium ions in the process water may increase undesired adsorption of the collector on the iron oxide. PMID:20153478

  16. Determination of cytoplasmic calcium concentration in Dryopteris spores: a developmentally non-disruptive technique for loading of the calcium indicator fura-2

    Science.gov (United States)

    Scheuerlein, R.; Schmidt, K.; Poenie, M.; Roux, S. J.

    1991-01-01

    Germination of Dryopteris spores is mediated by the physiologically active, far-red-absorbing form of phytochrome, Pfr, and external Ca2+ is necessary for the transduction of the light signal. Because knowledge about the cytoplasmic calcium ion concentration, [Ca2+]i, is of great importance for understanding the role of calcium during signal transduction, this value was measured using fura-2 in fern spores undergoing the normal developmental progression into germination. Fura-2 was loaded into the spores by electroporation, which does not disrupt the normal process of germination. The intensity of the fluorescence emission of the loaded fura-2 was analysed by a microspectrophotometric assay of single spores, and successful loading could be obtained by the application of ten electrical pulses (field strength 7.5 kV cm-1, half-life (time constant) 230 microseconds). Fura-2 was alternately excited by light of wavelengths 355 and 385 nm through an inverted fluorescence microscope, and the emitted fura-2 fluorescence was collected by a silicon-intensified video camera. The cytoplasmic calcium ion concentration was calculated from the ratio of the camera output obtained for both wavelengths and displayed by a pseudo-color technique. Spores responded to changes of the extracellular Ca2+ concentration, and this observation is considered as evidence that fura-2 is loaded into the cytoplasm. The substitution of a low external [Ca2+] (1 mM ethyleneglycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA)) by 1 mM CaCl2 caused a fast increase of [Ca2+]i from approx. 50 nM to above 500 nM. In contrast, the subsequent substitution of CaCl2 by EGTA decreased [Ca2+]i again below 100 nM within 0.5 h. Furthermore, the application of ionomycin could initiate a change in [Ca2+]i according to the Ca2+ gradient established between the extracellular medium and cytoplasm. In spores sown on a Ca(2+) -free medium, [Ca2+]i, analysed in a buffer containing EGTA, was found to be around

  17. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein.

    Science.gov (United States)

    Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr

    2015-10-27

    Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins. PMID:26445027

  18. Study of changes in phosphate, calcium and fluoride ions in plaque and saliva after the administration of a fluoride mouth rinse

    Directory of Open Access Journals (Sweden)

    Poureslami H

    2007-09-01

    Full Text Available In this study, the effects of 0.2% sodium fluoride mouthwash solution on calcium, phosphate and fluoride ion contents of saliva and microbial plaque was assessed. Fourteen volunteer students (7-12 years of age of a boarding educational centre in Kerman City (Iran were selected and under defined conditions, their saliva and plaque samples were collected. The concentrations of fluoride, calcium and phosphate ions of the samples were determined, and after 14 days, under the same conditions, the students were asked to rinse their mouth with 0.2% sodium fluoride mouthwash solution. The second set of saliva and plaque samples were collected and the concentrations of the ions were determined. Data was analyzed using paired t-test and the results were presented as tables. P < 0.05 was considered as statistically significant. After using 0.2% sodium fluoride mouthwash solution, a significant increase was observed in the F 2 ion concentration both plaque ( P < 0.000 and saliva ( P < 0.000 of all the studied subjects, while the concentration of phosphate decreased in both saliva and plaque; however, this decrease was significant only in plaque ( P < 0.01. The calcium ion concentration decreased in both plaque and saliva; however, in none of them, the decrease was significant ( P >0.09 and P >0.2, respectively.

  19. Variability of air ion concentrations in urban Paris

    OpenAIRE

    V. N. Dos Santos; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; T. Nieminen; Aalto, P. P.; Merkel, M; A. Wiedensohler; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-01-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size dis...

  20. Effect of solute concentration on fibroin regulated biomineralization of calcium phosphate

    International Nuclear Information System (INIS)

    In this paper we used UV/Visible method to study the effect of solute concentration on fibroin regulated biomineralization of calcium phosphate. During the reaction process, ultraviolet-visible spectrophotometer was used to track the extinction in the reaction solution. It is found that kinetics of the biomineralization can be strongly affected by the presence of fibroin. Fibroin with higher concentration has more positive effect on the biomineralization process. Under the appropriate reaction conditions, wave crest and wave trough appear in the kinetic curves of fibroin biomineralization. The wave crest and wave trough phenomenon is mainly related with the process of phase separation. X-ray Diffraction (XRD) result shows the calcium phosphate before the wave trough is mainly amorphous calcium phosphate, while after the wave trough crystal of hydroxyapatite (HA) and brushite (DCPD) are the mainly ingredients

  1. A coated-wire ion-selective electrode for ionic calcium measurements

    Science.gov (United States)

    Hines, John W.; Arnaud, Sara; Madou, Marc; Joseph, Jose; Jina, Arvind

    1991-01-01

    A coated-wire ion-selective electrode for measuring ionic calcium was developed, in collaboration with Teknektron Sensor Development Corporation (TSDC). This coated wire electrode sensor makes use of advanced, ion-responsive polyvinyl chloride (PVC) membrane technology, whereby the electroactive agent is incorporated into a polymeric film. The technology greatly simplifies conventional ion-selective electrode measurement technology, and is envisioned to be used for real-time measurement of physiological and environment ionic constituents, initially calcium. A primary target biomedical application is the real-time measurement of urinary and blood calcium changes during extended exposure to microgravity, during prolonged hospital or fracture immobilization, and for osteoporosis research. Potential advanced life support applications include monitoring of calcium and other ions, heavy metals, and related parameters in closed-loop water processing and management systems. This technology provides a much simplified ionic calcium measurement capability, suitable for both automated in-vitro, in-vivo, and in-situ measurement applications, which should be of great interest to the medical, scientific, chemical, and space life sciences communities.

  2. Measurement of the strontium and calcium concentrations in the Mumbai Harbour Bay

    International Nuclear Information System (INIS)

    Strontium and calcium concentration (mg/l) measurements were done in the surface sea water samples collected from six different locations of Mumbai Harbour Bay (MHB). Samples were analysed by Atomic Absorption spectrophotometer. Standard addition method was used to get the concentration of one sample. Secondary standards were prepared based on this. All the samples were analysed using the secondary standards. The results showed the variation of Strontium and Calcium as 5.9-9.3 mg/l and 331-480 mg/I respectively, as against the universally accepted values of Strontium (ie. 8 mg/l) and Calcium (ie. 400 mg/I). It was found that though the concentration of Strontium and Calcium varied, the ratio Ca/Sr remained nearly the same (49.8 to 54.8), hence it may not affect the radiochemical procedure of nitrate separation used for separation of 90Sr from Ca in MHB. Final recovery calculation of Strontium should take into account the variations in concentration of Strontium. (author)

  3. Calcium is required for swimming by the nonflagellated cyanobacterium Synechococcus strain WH8113.

    OpenAIRE

    Pitta, T P; Sherwood, E E; Kobel, A M; Berg, H C

    1997-01-01

    The marine cyanobacterium Synechococcus strain WH8113 swims in the absence of any recognizable organelles of locomotion. We have found that calcium is required for this motility. Cells deprived of calcium stopped swimming, while addition of calcium completely restored motility. No other divalent ions tested could replace calcium. Terbium, a lanthanide ion, blocked motility even when calcium was present at 10(5)-fold-higher concentrations, presumably by occupying calcium binding sites. Calcium...

  4. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation.

    Science.gov (United States)

    Lu, Tao; Qian, Shi; Meng, Fanhao; Ning, Congqin; Liu, Xuanyong

    2016-06-01

    As a promising implantable material, poly ether ether ketone (PEEK) possesses similar elastic modulus to that of cortical bones yet suffers from bio-inertness and poor osteogenic properties, which limits its application as orthopedic implants. In this work, calcium is introduced onto PEEK surface using calcium plasma immersion ion implantation (Ca-PIII). The results obtained from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirm the modified layer with varying contents of calcium are formed on PEEK surfaces. Water contact angle measurements reveal the increasing hydrophobicity of both Ca-PIII treated surfaces. In vitro cell adhesion, viability assay, alkaline phosphatase activity and collagen secretion analyses disclose improved the adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs) on Ca-PIII treated surfaces. The obtained results indicate that PEEK surface with enhanced osteogenic activity can be produced by calcium incorporation. PMID:26954085

  5. Heterotrimeric G protein participated in modulation of cytoplasmic calcium concentration in pollen cells

    Institute of Scientific and Technical Information of China (English)

    SHANG Zhonglin; MA Ligeng; WANG Xuechen; SUN Daye

    2003-01-01

    Cytoplasmic free calcium concentration([Ca2+]c) in pollen cells of Lilium daviddi is measured with confocal laser scanning microscopy to investigate the effect of heterotrimeric G protein (G protein) on [Ca2+]c and the possible signal transduction pathway of G protein triggering cellular calcium signal. After application, cholera toxin (CTX), an agonist of G protein, triggers a transient increase of [Ca2+]c in pollen cells, and evokes a spatial-temporal characteristic calcium dynamics; while pertussis toxin (PTX), a G protein antagonist, leads to the decrease of [Ca2+]c. Both L-type Ca2+ channel blocker verapamil and inhibitor of IP3 receptor heparin inhibit CTX-induced [Ca2+]c increase. The results show that G protein may play a role in the modulation of [Ca2+]c through enhancing the extracellular Ca2+ influx and releasing of Ca2+ from intracellular stores.

  6. Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Aronova, M.A. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Kim, Y.C. [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Pivovarova, N.B.; Andrews, S.B. [Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States); Leapman, R.D. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 9000 Rockville Pike, Bethesda, MD 20892 (United States)], E-mail: leapmanr@mail.nih.gov

    2009-02-15

    Although electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) provides high sensitivity for measuring the important element, calcium, in biological specimens, the technique has been difficult to apply routinely, because of long acquisition times required. Here we describe a refinement of the complementary analytical technique of energy-filtered transmission electron microscopy (EFTEM), which enables rapid imaging of large cellular regions and measurement of calcium concentrations approaching physiological levels. Extraction of precise quantitative information is possible by averaging large numbers of pixels that are contained in organelles of interest. We employ a modified two-window approach in which the behavior of the background signal in the EELS spectrum can be modeled as a function of specimen thickness t expressed in terms of the inelastic mean free path {lambda}. By acquiring pairs of images, one above and one below the Ca L{sub 2,3} edge, together with zero-loss and unfiltered images, which are used to determine a relative thickness (t/{lambda}) map, it is possible to correct the Ca L{sub 2,3} signal for plural scattering. We have evaluated the detection limits of this technique by considering several sources of systematic errors and applied this method to determine mitochondrial total calcium concentrations in freeze-dried cryosections of rapidly frozen stimulated neurons. By analyzing 0.1 {mu}m{sup 2} areas of specimen regions that do not contain calcium, it was found that the standard deviation in the measurement of Ca concentrations was about 20 mmol/kg dry weight, corresponding to a Ca:C atomic fraction of approximately 2x10{sup -4}. Calcium concentrations in peripheral mitochondria of recently depolarized, and therefore stimulated and Ca loaded, frog sympathetic neurons were in reasonable agreement with previous data.

  7. Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens

    International Nuclear Information System (INIS)

    Although electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) provides high sensitivity for measuring the important element, calcium, in biological specimens, the technique has been difficult to apply routinely, because of long acquisition times required. Here we describe a refinement of the complementary analytical technique of energy-filtered transmission electron microscopy (EFTEM), which enables rapid imaging of large cellular regions and measurement of calcium concentrations approaching physiological levels. Extraction of precise quantitative information is possible by averaging large numbers of pixels that are contained in organelles of interest. We employ a modified two-window approach in which the behavior of the background signal in the EELS spectrum can be modeled as a function of specimen thickness t expressed in terms of the inelastic mean free path λ. By acquiring pairs of images, one above and one below the Ca L2,3 edge, together with zero-loss and unfiltered images, which are used to determine a relative thickness (t/λ) map, it is possible to correct the Ca L2,3 signal for plural scattering. We have evaluated the detection limits of this technique by considering several sources of systematic errors and applied this method to determine mitochondrial total calcium concentrations in freeze-dried cryosections of rapidly frozen stimulated neurons. By analyzing 0.1 μm2 areas of specimen regions that do not contain calcium, it was found that the standard deviation in the measurement of Ca concentrations was about 20 mmol/kg dry weight, corresponding to a Ca:C atomic fraction of approximately 2x10-4. Calcium concentrations in peripheral mitochondria of recently depolarized, and therefore stimulated and Ca loaded, frog sympathetic neurons were in reasonable agreement with previous data.

  8. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells

    International Nuclear Information System (INIS)

    The authors have shown, with an optimized [14C]leucine-labeling and chasing procedure, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent. Sodium arsenate, sodium azide, carbonyl cyanide m-chlorophenylhydrozone, and N,N'-dicyclohexylcarbodiimide, at levels which did not induce appreciable lysis (≤ 10%) over 10-h periods of sporulation, inhibited intracellular proteolysis by 13 to 93%. Exponentially growing cells acquired arsenate resistance. In contrast to earlier reports, the authors found that chloramphenicol strongly inhibited proteolysis even when added 6 h into the sporulation process. Restricting the calcium ion concentration in the medium had no effect on rates or extent of vegetative growth, strongly inhibited sporulation, and inhibited rates of proteolysis by 60% or more. Inhibitors of energy metabolism, at the same levels which inhibited proteolysis, did not affect the rate or degree of uptake of Ca2+ by cells. Restricting the Ca2+ concentration in the medium reduced by threefold of the specific activity in cells of the major intracellular serine proteinase after 12 h of sporulation. finally, cells of a mutant of B. subtilis bearing an insertionally inactivated gene for the Ca2+-dependent intracellular proteinase-1 degraded protein in chemically defined sporulation medium at a rate indistinguishable from that of the wild-type cells for period of 8 h

  9. Three-dimensional structure of recombinant carboxypeptidase T from Thermoactinomyces vulgaris without calcium ions

    International Nuclear Information System (INIS)

    Crystals of recombinant carboxypeptidase T (CPT) from Thermoactinomyces vulgaris were grown in a capillary by the counterdiffusion method in the absence of calcium ions. The three-dimensional structure of CPT was solved at 1.69-Å resolution using the X-ray diffraction data collected from the crystals of the enzyme on the SPring-8 synchrotron radiation facility and was then refined to Rfact = 16.903% and Rfree = 18.165%. The coordinates of the refined model were deposited in the Protein Data Bank (PDB ID: 3QNV). A comparison of this structure with the structure of wild-type CPT containing bound calcium ions, which was determined earlier, revealed a number of conformational changes both in the calcium-binding sites and the enzyme active site. Based on the results of this comparison, the possible factors responsible for the difference in the catalytic activity of the two forms of the enzyme are considered.

  10. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions.

    Science.gov (United States)

    Huang, Xiujie; Shen, Jing; Qian, Xueren

    2013-10-15

    To mitigate the negative effect of filler addition on paper strength and improve filler retention, filler modification with hydrogen bonding polymers (e.g., starch) or their composites is an interesting research topic. Differing from previous reports, the concept related to the deposition of starch/oleic acid complexes on precipitated calcium carbonate (PCC) with the aid of calcium ions was demonstrated. The introduction of calcium ions resulted in effective starch deposition. As a result of filler modification, filler retention and the tensile strength of the filled paper were simultaneously improved essentially due to the aggregation of PCC particles in filler modification process as well as improved filler bondability. The concept demonstrated in this brief study may provide an alternative approach to filler bondability enhancement for improved papermaking performances. PMID:23987430

  11. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows.

    Science.gov (United States)

    Laporta, Jimena; Moore, Spencer A E; Weaver, Samantha R; Cronick, Callyssa M; Olsen, Megan; Prichard, Austin P; Schnell, Brian P; Crenshaw, Thomas D; Peñagaricano, Francisco; Bruckmaier, Rupert M; Hernandez, Laura L

    2015-07-01

    A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism. PMID:26099356

  12. Variability of air ion concentrations in urban Paris

    Science.gov (United States)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  13. Inhibition of Escherichia coli chemotaxis by omega-conotoxin, a calcium ion channel blocker.

    OpenAIRE

    Tisa, L S; Olivera, B M; Adler, J

    1993-01-01

    Escherichia coli chemotaxis was inhibited by omega-conotoxin, a calcium ion channel blocker. With Tris-EDTA-permeabilized cells, nanomolar levels of omega-conotoxin inhibited chemotaxis without loss of motility. Cells treated with omega-conotoxin swam with a smooth bias, i.e., tumbling was inhibited.

  14. Experiments towards quantum information with trapped Calcium ions

    CERN Document Server

    Leibfried, D; Barton, P; Rohde, H; Gulde, S T; Mundt, A B; Reymond, G; Lederbauer, M; Schmidt-Kaler, F; Eschner, J; Blatt, R

    2000-01-01

    Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap is the prerequisite for quantum information experiments with trapped ions. With resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we have cooled one and two 40Ca+ ions to the ground state of vibration with up to 99.9% probability. With a novel cooling scheme utilizing electromagnetically induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the motional ground state we have demonstrated coherent quantum state manipulation on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations within 1.4 ms have been observed in the motional ground state and in the n=1 Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more than 5 micron for up to 4 ions. We are able to cool two ions to the ground state in...

  15. Effect of heparin calcium different concentrations on some physical properties and structure in polyacrylamide matrix

    International Nuclear Information System (INIS)

    Films of polyacrylamide (PAAm) doped with different concentrations of heparin calcium, from 0.0 to 8 wt%, have been prepared by casting method. Studies were carried out utilizing X-ray, FT-IR, UV/VIS, DSC and DC electrical conduction to characterize the structural, optical and thermal properties of the films. Results revealed that the structural and chemical characterizations of PAAm films are affected by the addition of heparin calcium content. XRD spectra revealed that the amorphous phases increase with increase in filling levels of heparin (FLs). FT-IR analysis revealed that incorporation of heparin calcium leads to a small modification in the spectra of films. The optical absorption spectra in the UV/VIS region revealed structural variation increases with increase in concentration, which is reflected in the form of decrease in the energy band gap Eg. Significant changes of DSC curves of the films suggest that strong interaction established between heparin calcium and PAAm molecules. The DC electric conduction data were interpreted on the basis of an intrachain one-dimensional interpolaron hopping model of Kuivalainen.

  16. Serca1 Truncated Proteins Unable to Pump Calcium Reduce the Endoplasmic Reticulum Calcium Concentration and Induce Apoptosis

    OpenAIRE

    Chami, Mounia; Gozuacik, Devrim; Lagorce, David; Brini, Marisa; Falson, Pierre; Peaucellier, Gérard; Pinton, Paolo; Lecoeur, Hervé; Gougeon, Marie-Lyse; le Maire, Marc; Rizzuto, Rosario; Bréchot, Christian; Paterlini-Bréchot, Patrizia

    2001-01-01

    By pumping calcium from the cytosol to the ER, sarco/endoplasmic reticulum calcium ATPases (SERCAs) play a major role in the control of calcium signaling. We describe two SERCA1 splice variants (S1Ts) characterized by exon 4 and/or exon 11 splicing, encoding COOH terminally truncated proteins, having only one of the seven calcium-binding residues, and thus unable to pump calcium. As shown by semiquantitative RT-PCR, S1T transcripts are differentially expressed in several adult and fetal human...

  17. Variations of ion concentrations in the deep ice core and surface snow at NEEM, Greenland

    Science.gov (United States)

    Goto-Azuma, K.; Wegner, A.; Hansson, M.; Hirabayashi, M.; Kuramoto, T.; Miyake, T.; Motoyama, H.; NEEM Aerosol Consortium members

    2012-04-01

    Discrete samples were collected from the CFA (Continuous Flow Analysis) melt fractions during the field campaign carried out at NEEM, Greenland in 2009-2011, and were distributed to different laboratories. Ionic species were analyzed at National Institute of Polar Research (Japan) and Alfred Wegener Institute for Polar and Marine Research (Germany). Here we present and compare the ion concentration data obtained by both institutes. Most of the ions show good agreement between the two institutes. As is indicated with the CFA data (Bigler and the NEEM Aerosol Consortium members, EGU 2012), ion chromatograph data also display that calcium and sodium, mainly originated from terrestrial dust and sea-salt, respectively, show large variations associated with Dansgaard-Oeschger (DO) events. Chloride, fluoride, sulfate, sodium, potassium and magnesium also show such variations, as has been already reported for other Greenland ice cores. New ion data obtained from the NEEM deep core also show large variability of oxalate and phosphate concentrations during DO events. Acetate, which is thought to be mainly derived from biomass burning, as is oxalate, appears to show variability associated with DO events, but to a lesser extent. On the other hand, nitrate, ammonium and methanesulfonate do not show such variations. Together with ion data from the deep ice core, we present those from the pits dug during the NEEM field campaign to discuss seasonal variations of ionic species. The seasonal and millennial scale variations of ions are thought to be caused by changes in atmospheric circulation and source strength.

  18. Capillary Ion Concentration Polarization for Power-Free Salt Purification

    Science.gov (United States)

    Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae

    2014-11-01

    In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.

  19. Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters

    Directory of Open Access Journals (Sweden)

    Patrick G Sullivan

    2013-12-01

    Full Text Available Mitochondrial dysfunction following traumatic brain and spinal cord injury (TBI and SCI plays a pivotal role in the development of secondary pathophysiology and subsequent neuronal cell death. Previously, we demonstrated a loss of mitochondrial bioenergetics in the first 24 h following TBI and SCI initiates a rapid and extensive necrotic event at the primary site of injury. Within the mitochondrial derived mechanisms, the cross talk and imbalance amongst the processes of excitotoxicity, Ca2+ cycling/overload, ATP synthesis, free radical production, and oxidative stress damage ultimately leading to mitochondrial damage followed by neuronal cell death and loss of behaviors. Mitochondria are one of the most important organelles that regulate for intracellular calcium (Ca2+ homeostasis; and are equipped with a tightly regulated Ca2+ transport system. However, owing to the lack of consensus and the link between the downstream effects of calcium in published literature, we undertook a systematic in vitro study for measuring concentration dependent effects of calcium (100-1000 nmols/mg mitochondrial protein on mitochondrial respiration, enzyme activities, reactive oxygen/nitrogen species (ROS/RNS generation, membrane potential (∆Ψ and oxidative damage markers in isolated brain mitochondria. We observed a dose- and time-dependent inhibition of mitochondrial respiration by calcium without influencing mitochondrial pyruvate dehydrogenase complex (PDHC and NADH dehydrogenase (Complex I enzyme activities. We observed dose-dependent decreased production of hydrogen peroxide and total ROS/RNS species generation by calcium and no significant changes in protein and lipid oxidative damage markers. These results may shed new light on the prevailing dogma of the direct effects of calcium on mitochondrial bioenergetics, free radical production and oxidative stress parameters that are primary regulatory mitochondrial mechanisms following neuronal injury.

  20. Acetate biodegradation by anaerobic microorganisms at high pH and high calcium concentration

    International Nuclear Information System (INIS)

    Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14C compounds in cementitious repositories. Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 oC. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity. Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration. - Research highlights: → Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14C compounds in cementitious repositories. → Nitrate-reducing bacteria can biodegrade acetate at pH ≤ 11. → Kinetics of acetate biodegradation by anaerobic microorganisms might be lowered by a high Ca concentration.

  1. Procedure for reducing hydrogen ion concentration in acidic anion eluate

    International Nuclear Information System (INIS)

    A procedure is suggested for reducing the concentration of hydrogen ions in the acidic anionic eluate formed during the separation of uranium. The procedure involves anex elution, precipitation, filtration, precipitate rinsing, and anex rinsing. The procedure is included in the uranium elution process and requires at least one ion exchanger column and at least one tank in the continuous or discontinuous mode. Sparing the neutralizing agent by reducing the hydrogen ion concentration in the acidic anionic eluate is a major asset of this procedure. (Z.S.). 1 fig

  2. Erythropoietin stimulates a rise in intracellular free calcium concentration in single early human erythroid precursors.

    OpenAIRE

    Miller, B A; Scaduto, R C; Tillotson, D L; Botti, J J; Cheung, J Y

    1988-01-01

    Erythropoietin and granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulate the differentiation and proliferation of erythroid cells. To determine the cellular mechanism of action of these growth factors, we measured changes in intracellular free calcium concentration [( Cac]) in single human erythroid precursors in response to recombinant erythropoietin and GM-CSF. [Cac] in immature erythroblasts derived from cultured human cord blood erythroid progenitors was measured with fluore...

  3. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell.

    OpenAIRE

    Langer, G. A.; Peskoff, A

    1996-01-01

    We model the space between the junctional sarcoplasmic reticulum (JSR) membrane and the inner leaflet of the transverse tubular ("T") sarcolemmal (SL) membrane, the diadic cleft, with respect to calcium (Ca) concentration and movement. The model predicts the following: 1) Ca influx via the "L" channel increases [Ca] to 1 microM within a distance of 50 nm from the channel mouth in < 500 microseconds. This is sufficient to trigger Ca release from a domain of 9 "feet." 2) By contrast, "reverse" ...

  4. Chronic hypocalcemia of vitamin D deficiency leads to lower intracellular calcium concentrations in rat hepatocytes.

    OpenAIRE

    Gascon-Barré, M; Haddad, P.; Provencher, S J; Bilodeau, S.; Pecker, F; Lotersztajn, S; Vallières, S

    1994-01-01

    Several lines of evidence indicate that calcium deficiency is associated with cellular defects in many tissues and organs. Owing to the large in vivo gradient between ionized extra- and intracellular Ca2+ concentrations ([Ca2+]i), it is generally recognized that the prevailing circulating Ca2+ does not significantly affect resting cytosolic Ca2+. To probe the consequences of hypocalcemia on [Ca2+]i, a model of chronic hypocalcemia secondary to vitamin D (D) deficiency was used. Hepatocytes we...

  5. Formaldehyde increases intracellular calcium concentration in primary cultured hippocampal neurons partly through NMDA receptors and T-type calcium channels

    Institute of Scientific and Technical Information of China (English)

    Ye-Nan Chi; Xu Zhang; Jie Cai; Feng-Yu Liu; Guo-Gang Xing; You Wan

    2012-01-01

    Objective Formaldehyde at high concentrations is a contributor to air pollution.It is also an endogenous metabolic product in cells,and when beyond physiological concentrations,has pathological effects on neurons.Formaldehyde induces mis-folding and aggregation of neuronal tau protein,hippocampal neuronal apoptosis,cognitive impairment and loss of memory functions,as well as excitation of peripheral nociceptive neurons in cancer pain models.Intracellular calcium ([Ca2+]i) is an important intracellular messenger,and plays a key role in many pathological processes.The present study aimed to investigate the effect of formaldehyde on [Ca2+]i and the possible involvement of N-methyl-D-aspartate receptors (NMDARs) and T-type Ca2+ channels on the cell membrane.Methods Using primary cultured hippocampal neurons as a model,changes of [Ca2+]i in the presence of formaldehyde at a low concentration were detected by confocal laser scanning microscopy.Results Formaldehyde at 1 mmol/L approximately doubled [Ca2+]i.(2R)-amino-5-phosphonopentanoate (AP5,25 μtmol/L,an NMDAR antagonist) and mibefradil (MIB,1 μtmol/L,a T-type Ca2+ channel blocker),given 5 min after formaldehyde perfusion,each partly inhibited the formaldehyde-induced increase of [Ca2+]i,and this inhibitory effect was reinforced by combined application of AP5 and MIB.When applied 3 min before formaldehyde perfusion,AP5 (even at 50 μmol/L) did not inhibit the formaldehyde-induced increase of [Ca2+]i,but MIB (1 μmol/L) significantly inhibited this increase by 70%.Conclusion These results suggest that formaldehyde at a low concentration increases [Ca2+]i in cultured hippocampal neurons; NMDARs and T-type Ca2+ channels may be involved in this process.

  6. Dynamic changes in calcium and phosphate plasma concentrations in the patients on peritoneal dialysis

    Directory of Open Access Journals (Sweden)

    Jovanović Nataša

    2006-01-01

    Full Text Available Background/Aim. The disturbances of active forms of vitamin D synthesis and disturbances in calcium and posphate metabolism develop early in chronic renal failure, when creatinine clearance is about 30 ml/min. Chronic hemodialysis and peritoneal dialysis only partially correct the biochemical environment of patients on chronic renal replacement therapy because of end-stage renal disease. These dialysis modalities can’t significantly affect the endocrine disturbances of chronic renal failure and they have minimal modulatory effect. The management of disturbed calcium (Ca and phosphate (P metabolism and the maintainance of Ca × P product below 4.4 mmol/l thanks to the use of dialysate solutions with the appropriate calcium concentration and the careful dosage of phosphate binders, calcium and active vitamin D metabolits, are extremely important for the prevention of renal osteodystrophy, secondary hyperparathyroidism as well as low-bone turnover disease. The aim of the study was to analyze the plasma levels of calcium, phosphate, albumin, alkaline phosphatase and parathormon (PTH in 58 patients who were treated with continuous ambulatory peritoneal dialysis (CAPD from March to August 2003. The use of phosphate binders and the substitution with active vitamin D metabolits were also analyzed. Methods. We examined 58 patients, 30 males and 28 female, mean-age 52 years (range, 26-78 years, affected by end-stage renal disease of the different leading cause. The average time on peritoneal dialysis program was 20 months (2-66 months. Most of the patients were treated by CAPD, while only few of them performed automatic, cyclic or intermittent peritoneal dialysis. Most of the patients used a dialysate with 1.75 mmol/l calcium concentration. Results. The study showed that our patients on chronic CAPD program during several months had normal calcemia, phosphatemia and the level of alkaline phosphatase, and that they had Ca × P product in the recommended

  7. Bone calcium turnover during pregnancy and lactation in women with low calcium diets is associated with calcium intake and circulating insulin-like growth factor 1 concentrations

    Science.gov (United States)

    BACKGROUND: Few data exist on longitudinal changes in bone calcium turnover rates across pregnancy and lactation. OBJECTIVE: Our aim was to characterize calcium kinetic variables and predictors of these changes across pregnancy and early lactation in women with low calcium intakes. DESIGN: Stable ca...

  8. The speciation of actinide ions in concentrated salt solutions

    International Nuclear Information System (INIS)

    Many separations of actinide ions involve concentrated solutions. There is additional interest in actinide behavior in brine solutions in the WIPP salt repository. Unfortunately, little understanding exists on the speciation of actinides in concentrated solutions. The author has studied the extraction distribution of Am(III) as a function of concentration of NX salts (N-, Li+, Na+, K+, NH4+ and X = ClO4-, Cl-, NO3-). Analyses of the distribution curves are discussed in terms of hydration, complexation, etc. effects on the Am(III). The variation of the calculated stability constants with ionic strength is compared with the expected variation using Specific-Ion Interaction Theory (SIT)

  9. Assessing toxicity of varying major ion concentrations to marine organisms

    International Nuclear Information System (INIS)

    Recent regulatory developments have required that produced waters discharged in the Gulf of Mexico be monitored for toxicity to marine organisms. While produced water may contain a variety of indigenous and introduced chemicals, virtually all have moderate to high concentrations of major ions. Although seawater is also rich in these ions, excessive salinity can cause toxicity to marine organisms. Perhaps more importantly, toxicity to marine organisms can be caused by deviations from normal ion ratios even if the total salinity is within organism tolerances. To provide a better understanding of marine organism responses to variations in major ion concentrations, the authors conducted a series of laboratory experiments to quantify the responses of mysid shrimp (Mysidopsis bahia) and sheepshead minnows (Cyprinodon variegatus) to modifications of normal seawater chemistry. Acute testing included both increasing and decreasing the concentrations of individual ions relative to seawater, as well as altering total salinity. Results show these organisms can be adversely affected by this altered chemistry and their sensitivity is dependent upon the individual ions that are manipulated. Results from these studies are being incorporated into an overall strategy for evaluating the influence of major ion chemistry on produced water toxicity tests

  10. Ion Induced Changes in Phosphoinositide Monolayers at Phisiological Concentrations

    Science.gov (United States)

    Kazadi Badiambile, Adolphe; Forstner, Martin

    2013-03-01

    Phosphoinositides (PIPs) play a crucial role in many cellular process that occur at the plasma membrane such as calcium release, exocytosis or endocytosis. In order to specifically regulate these functions PIPs must segregate in pools at the plasma membrane. A possible mechanism that could induce and regulate such organization of phosphoinositides is their interaction with bivalent cations. Understanding the physicochemical mechanism that can regulate membrane structure is a crucial step in the development of adaptive biomimetic membrane systems. Using Langmuir monolayers, we investigated the effect of calcium and magnesium on the surface pressure-area/lipid isotherm of monolayer of phosphatidylinositol (PI), phosphatidylinositol bisphosphate (PIP2), dioleoylphosphatidylglycerol (DOPG) and palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). It is found that the decrease of area per lipid, i.e. the increase in aggregation, is mostly dependent on the lipid's head group charge but ion specific. In addition, we discuss changes in free energy and compressibility of these monolayer-ion systems. NSF

  11. Effects of ELF fields on calcium-ion efflux from brain tissues in vitro

    International Nuclear Information System (INIS)

    It has been previously demonstrated that carrier waves of 50 and 147 MHz, when sinusoidally amplitude modulated at 16 Hz (ELF), can cause enhanced efflux of radiolabeled calcium ions from chick brain tissue in vitro. This phenomenon occurs only when the samples are exposed to specific intensity ranges of the carrier wave. Unmodulated carrier waves do not affect the ion efflux. Since the ELF signal must be demodulated from the carrier wave to be effective, a study of the efflux ehnancement due to the ELF signal alone may lead to an identification of the site of demodulation, as well as provide clues to the underlying mechanism. We report here that 16-Hz sinusoidal fields in the absence of a carrier wave can alter the efflux rate of calcium ions. The results show a frequency-dependent, field-induced enhancement of calcium-ion efflux within the ranges 5 to 7.5 V/m and 35 to 50 V/m (peak-to-peak incident field in air) with no enhancement within the ranges 1 to 2, 10 to 30, and 60 to 70 V/m

  12. Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery

    OpenAIRE

    Xie, Yanyan; Zhao, Jun; Huang, Renliang; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2016-01-01

    We report a new approach to constructing a peptide–polysaccharide hybrid hydrogel via the calcium-ion-triggered co-assembly of fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) peptide and alginate. Calcium ions triggered the self-assembly of Fmoc-FF peptide into nanofibers with diameter of about 30 nm. Meanwhile, alginate was rapidly crosslinked by the calcium ions, leading to the formation of stable hybrid hydrogel beads. Compared to alginate or Fmoc-FF hydrogel alone, the hybrid Fmoc-FF...

  13. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  14. Meta-Analysis of Genome-Wide Association Studies Identifies Six New Loci for Serum Calcium Concentrations

    NARCIS (Netherlands)

    C.M. O'Seaghdha (Conall); H. Wu (Hongsheng); Q. Yang (Qiong); K. Kapur (Karen); I. Guessous (Idris); P. Zuber (Patrick); A. Köttgen (Anna); C. Stoudmann (Candice); A. Teumer (Alexander); Z. Kutalik (Zoltán); M. Mangino (Massimo); A. Dehghan (Abbas); W. Zhang (Weihua); G. Eiriksdottir (Gudny); G. Li (Guo); T. Tanaka (Toshiko); L. Portas (Laura); L.M. Lopez (Lorna); C. Hayward (Caroline); K. Lohman (Kurt); K. Matsuda (Koichi); S. Padmanabhan (Sandosh); D. Firsov (Dmitri); R. Sorice; S. Ulivi (Shelia); A.C. Brockhaus (A. Catharina); M.E. Kleber (Marcus); A. Mahajan (Anubha); F.D.J. Ernst (Florian); V. Gudnason (Vilmundur); L.J. Launer (Lenore); A. Mace (Aurelien); E. Boerwinckle (Eric); D.E. Arking (Dan); C. Tanikawa (Chizu); Y. Nakamura (Yusuke); M.J. Brown (Morris); J.-M. Gaspoz (Jean-Michel); J.-M. Theler (Jean-Marc); D.S. Siscovick (David); B.M. Psaty (Bruce); S.M. Bergmann (Sven); P. Vollenweider (Peter); V. Vitart (Veronique); A.F. Wright (Alan); T. Zemunik (Tatijana); M. Boban (Mladen); I. Kolcic (Ivana); P. Navarro (Pau); E.M. Brown (Edward); K. Estrada Gil (Karol); J. Ding (Jinhui); T.B. Harris (Tamara); S. Bandinelli (Stefania); D.G. Hernandez (Dena); A. Singleton (Andrew); S. Girotto; D. Ruggiero; A.P. d' Adamo (Adamo Pio); A. Robino (Antonietta); T. Meitinger (Thomas); C. Meisinger (Christa); G. Davies (Gail); J.M. Starr (John); J.C. Chambers (John); B.O. Boehm (Bernhard); B. Winkelmann; J. Huang (Jian); D. Murgia (Daniela); S.H. Wild (Sarah); H. Campbell (Harry); A.D. Morris (Andrew); O.H. Franco (Oscar); A. Hofman (Albert); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); U. Vol̈ker (Uwe); M. Hannemann (Mario); R. Biffar (Reiner); W. Hoffmann (Wolfgang); S.-Y. Shin; P. Lescuyer (Pierre); H. Henry (Hughes); C. Schurmann (Claudia); P. Munroe (Patricia); P. Gasparini (Paolo); N. Pirastu (Nicola); M. Ciullo; C. Gieger (Christian); W. März (Winfried); L. Lind (Lars); T.D. Spector (Timothy); G.D. Smith; I. Rudan (Igor); J.F. Wilson (James); O. Polasek (Ozren); I.J. Deary (Ian); M. Pirastu (Mario); L. Ferrucci (Luigi); Y. Liu (Yongmei); B. Kestenbaum (Bryan); J.S. Kooner (Jaspal); J.C.M. Witteman (Jacqueline); M. Nauck (Matthias); W.H.L. Kao (Wen); H. Wallaschofski (Henri); O. Bonny (Olivier); C. Fox (Craig); M. Bochud (Murielle)

    2013-01-01

    textabstractCalcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 populati

  15. Concentration variations of several ions in stream after a wildfire

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; HU Hai-qing

    2007-01-01

    In May 2006, a high intensity wildfire occurred in Songling forest region in Daxing'an Mountains, China. The concentration changes of eight ions (K+, Na+, Ca2+, Mg2+, Cl-, Br-, NO3- and SO42-) were measured in burned and unburned streams after fire from May to Oct., 2006. Results show that the most ions flux were higher in burned stream than that in unburned stream during the sampling period, and the greatest concentrations of most ions transported from burned stream occurred in July. After fire, the most amplitude chemical ion was Ca2+, whose average concentration was 5.50 mg·L-1 higher than that in unburned stream, and the total concentration of every chemical ion presents a trend Ca2+> SO42- >Na+> Mg2+> NO3- . The average concentrations of Ca2+, SO42-, Na+ Mg2+, NO3- showed an increase trend,but those of K+, Cl-, Br- had a decreased trend. SO42- had the largest loss among these anions, followed by NO3-. Overall, the increase degree of cation was greater than that of anion after burning.

  16. Effect of Hypergravity on Localization Calcium Ions in Plant Cells Grown in Vivo and in Vitro

    Science.gov (United States)

    Nedukha, Olena

    Using plant callus tissues and Arabidopsis thaliana plants as model systems we have been investigated the effect of hypergravity on the localization and relative content of calcium ions in photosynthesizing cells. The tobacco callus cells in log stage of growth and mesophyll cells from developed A. thaliana leaves were used in the experiments. Plant samples were exposed to hypergravity at 6.5 g, 10g and 14 g for 15-60 min. After centrifugation, dye Fluo-4 was loaded in the control leaves and the centrifuged samples by the standard cytochemical method. Observation of calcium fluorescence was carried out with a laser confocal microscope LSM 5 Pascal at the excitation wave 488 nm (by the argon laser), at emission wavelength 516 nm. The data of the calcium ion distribution and quantification in cells were obtained using software "Pascal" (Carl Zeiss). The effect of hypergravity on redistribution of calcium ions in plant cells has been established. This effect is depended from exposure time and from the value of hypergravity. The cells cultivated in vitro is showed fast response to hypergravity influence. Plasmolysis cells and calcium domains formation have been observed in most of callus cells. This influence was like to that, which was wrote in Funaria hygrometrica protonema cells after 8.5 g influence (Sytnik et al., 1984). Leaf cells of A. thaliana were of less responsively to hypergravity than callus cells. Sytnik K, Kordyum E, Nedukha O. et al. 1984. Plant Cell Under Change of Geophysical Factors. Kiev: Naukova Dumka, 1-134 p.

  17. SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis.

    Science.gov (United States)

    Chami, M; Gozuacik, D; Lagorce, D; Brini, M; Falson, P; Peaucellier, G; Pinton, P; Lecoeur, H; Gougeon, M L; le Maire, M; Rizzuto, R; Bréchot, C; Paterlini-Bréchot, P

    2001-06-11

    By pumping calcium from the cytosol to the ER, sarco/endoplasmic reticulum calcium ATPases (SERCAs) play a major role in the control of calcium signaling. We describe two SERCA1 splice variants (S1Ts) characterized by exon 4 and/or exon 11 splicing, encoding COOH terminally truncated proteins, having only one of the seven calcium-binding residues, and thus unable to pump calcium. As shown by semiquantitative RT-PCR, S1T transcripts are differentially expressed in several adult and fetal human tissues, but not in skeletal muscle and heart. S1T proteins expression was detected by Western blot in nontransfected cell lines. In transiently transfected cells, S1T homodimers were revealed by Western blot using mildly denaturing conditions. S1T proteins were shown, by confocal scanning microscopy, to colocalize with endogenous SERCA2b into the ER membrane. Using ER-targeted aequorin (erAEQ), we have found that S1T proteins reduce ER calcium and reverse elevation of ER calcium loading induced by SERCA1 and SERCA2b. Our results also show that SERCA1 variants increase ER calcium leakage and are consistent with the hypothesis of a cation channel formed by S1T homodimers. Finally, when overexpressed in liver-derived cells, S1T proteins significantly induce apoptosis. These data reveal a further mechanism modulating Ca(2+) accumulation into the ER of nonmuscle cells and highlight the relevance of S1T proteins to the control of apoptosis. PMID:11402072

  18. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    Science.gov (United States)

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. PMID:25388287

  19. Effect of casein phosphopeptide - amorphous calcium phosphate containing chewing gum on salivary concentration of calcium and phosphorus: An in-vivo study

    Directory of Open Access Journals (Sweden)

    B P Santhosh

    2012-01-01

    Full Text Available Aim: Caries clinical trials of sugar-free chewing gum have shown that the gum is noncariogenic and in fact has anticariogenic effect through the stimulation of saliva. Sugar-free gums, therefore, may be an excellent delivery vehicle for safe and effective additive, capable of promoting enamel remineralization. Casein phosphopeptide - amorphous calcium phosphate (CPP-ACP nanocomplexes incorporated into sugar-free chewing gum have shown to remineralize enamel subsurface lesions in situ. So this study was conducted to evaluate the effect of CPP-ACP containing sugar-free chewing gum on salivary concentration of calcium and phosphorous. Materials and Methods : Unstimulated saliva from each 24 selected subjects was collected. Then each subject was given two pellets of chewing gum containing CPP-ACP and asked to chew for a period of 20 min, after which saliva samples were collected from each individual. Once all the samples were collected they were assessed for calcium and phosphorous concentration using affiliated reagent kits and photometer. Statistical Analysis Used: Data obtained were analyzed using student′s paired t test. Results: Significant difference was found in the calcium and phosphorus concentration of saliva before and after chewing CPP-ACP containing chewing gum. Conclusions: Chewing of CPP-ACP containing chewing gum showed a significant increase in the salivary concentration of calcium for a prolonged period of time hence it may help in the remineralization of tooth surfaces.

  20. Effect of different concentrations of potassium silicate, nano-silicon and calcium chloride on concentration of potassium, calcium and magnesium, chlorophyll content and number of florets of Asiatic lily cv. ‘Brunello’

    OpenAIRE

    N. Mirabbasi; A. Nikbakht; N. Etemadi; M.R. Sabzalian

    2013-01-01

    Production of many cut flowers, such as lilium, is very common in Iran. Flower quality has special importance in lilium flower production process, and proper nutrition is one of the major effective factors. This research was conducted to investigate the effect of different concentrations of potassium silicate, nano-silicon and calcium chloride on concentration of potassium, calcium and magnesium, chlorophyll index and number of florets of Asiatic lily 'Brunello'. The experiment was carried ou...

  1. Structure-Property of Metal Organic Frameworks Calcium Terephthalates Anodes for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Graphical Abstract: Effects of hydration water in calcium terephthalates anodes on the structure, operational voltage and electrochemical performance are systematically studied. Display Omitted -- Highlights: •Metal organic frameworks CaC8H4O4·3H2O and CaC8H4O4 are applied as anodes for lithium ion batteries. •Appearance of hydration water leads different crystallography structures and electrochemical performance. •Anhydrous CaC8H4O4 has a spacious ordered layer structure, a higher Ca-O chemical bonding interaction and a higher transparent lithium ion diffusion coefficient, delivering a higher capacity, better cycling performance and rate performance than CaC8H4O4·3H2O. -- Abstract: Metal organic frameworks have attracted considerable interest as electrode materials for lithium ion batteries. In this paper, the metal organic frameworks hydrated calcium terephthalate (CaC8H4O4·3H2O) and anhydrous calcium terephthalate (CaC8H4O4) as anodes for lithium ion batteries are comparatively studied. Crystallography and local chemical bond analysis are combined to interpret the structure-property of calcium terephthalates. Results show that the anhydrous CaC8H4O4 has a spacious ordered layer structure and a higher Ca-O chemical bonding interaction, delivering a higher capacity, better cycling performance and rate performance than CaC8H4O4·3H2O

  2. Mechanism for Calcium Ion Sensing by the C2A Domain of Synaptotagmin I

    OpenAIRE

    Gauer, Jacob W.; Sisk, Ryan; Murphy, Jesse R.; Jacobson, Heathere; Sutton, R. Bryan; Gillispie, Gregory D.; Hinderliter, Anne

    2012-01-01

    The C2A domain is one of two calcium ion (Ca2+)- and membrane-binding domains within synaptotagmin I (Syt I), the identified Ca2+ sensor for regulated exocytosis of neurotransmitter. We propose that the mechanistic basis for C2A's response to Ca2+ and cellular function stems from marginal stability and ligand-induced redistributions of protein conformers. To test this hypothesis, we used a combination of calorimetric and fluorescence techniques. We measured free energies of stability by globa...

  3. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    International Nuclear Information System (INIS)

    Highlights: ► LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. ► The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln3+ contents. ► A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0–0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y3+, Gd3+, Dy3+, Er3+ and Yb3+) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([XLn]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [XY] ≤ 0.10 for substituting Y system and at [XLn] ≤ 0.01–0.03 for substituting the other Ln systems. LnPO4 was mixed with LnCaHap at higher [XLn] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [XY] = 0–0.10 were investigated using XRD, TEM, ICP-AES, IR and TG–DTA in detail.

  4. Concrete Durability. Influence of chloride ions concentrations in mixing water and dissolution

    Directory of Open Access Journals (Sweden)

    López Villarino, Begoña

    1995-03-01

    Full Text Available The most aggressive situation which is responsible for most of the cases of steel reinforcement corrosion in concrete, takes place when chlorides are present in the environment. These chlorides destroy the passivating film of steel and promote the denominated pitting corrosion. In order to study the demonstrated corrosive action of chloride ions on concrete structures, a number of experiments have been designed, to quantify the effect of different amounts of this ion in concrete. Several mixes have been prepared with portland cement type II-C-35 to which it has been added, as an additive in mixing water, NaCl in increasing concentrations. The samples obtained were submerged in different dissolutions of NaCl. From the results obtained it is clear that the chloride content in mixing water does not affect the flux of calcium ions; however, its influence on the flux of chloride ions is significant. Likewise, it is confirmed that the existence of chloride ions in dissolution influences the migration of calcium and chloride ions.

    La situación más agresiva, y la responsable del mayor número de casos de corrosión de armaduras en el hormigón, se da cuando en el ambiente hay presencia de cloruros, pues éstos destruyen de forma puntual la capa pasivante del acero, lo que provoca la denominada corrosión por picaduras. Con objeto de estudiar la demostrada acción perniciosa de los cloruros sobre las estructuras de hormigón, se ha diseñado un conjunto de ensayos con el fin de cuantificar el efecto de las distintas cantidades de este ion en la masa de hormigón. Se han realizado diversas amasadas con cemento tipo II-C-35 a las que se añadió, como aditivo en el agua de amasado, NaCl en concentraciones crecientes. Las probetas obtenidas se sumergieron en disoluciones de NaCl de distintas concentraciones. De los resultados obtenidos se deduce que la presencia de cloruros en el agua de amasado no afecta al flujo de iones cálcicos, mientras

  5. Methods for obtaining a uniform volume concentration of implanted ions

    International Nuclear Information System (INIS)

    Three simple practical methods of irradiations with high energy particles providing the conditions for obtaining a uniform volume concentration of the implanted ions in the massive samples are described in the present paper. Realization of the condition of two-sided irradiation of a plane sample during its rotation in the flux of the projectiles is the basis of the first method. The use of free air as a filter with varying absorbent ability due to movement of the irradiated sample along ion beam brought to the atmosphere is at the basis of the second method of uniform ion alloying. The third method for obtaining a uniform volume concentration of the implanted ions in a massive sample consists of irradiation of a sample through the absorbent filter in the shape of a foil curved according to the parabolic law moving along its surface. The first method is the most effective for obtaining a great number of the samples, for example, for mechanical tests, the second one - for irradiation in different gaseous media, and the third one - for obtaining high concentrations of the implanted ions under controlled (regulated) thermal and deformation conditions. 2 refs., 7 figs

  6. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    Full Text Available The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+-concentration to increase by several millimolars. The clearance of this excess K(+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i increases the local astrocytic uptake of K(+, (ii suppresses extracellular transport of K(+, (iii increases axial transport of K(+ within astrocytes, and (iv facilitates astrocytic relase of K(+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+.

  7. Red Liriope platyphylla stimulated the insulin secretion through the regulation of calcium concentration in rat insulinoma cells and animal models.

    Science.gov (United States)

    Lee, Hye-Ryun; Kim, Ji-Eun; Lee, Young-Ju; Kwak, Moon-Hwa; Im, Dong-Soon; Hwang, Dae-Youn

    2013-06-01

    The aim of this study was to investigate the effects of Red L. platyphylla (RLP) on calcium and glucose levels during insulin secretion. To achieve this, alteration of insulin and calcium concentrations was measured in rat insulinoma-1 (INS-1) cells and animal models in response to RLP treatment. In INS-1 cells, maximum secretion of insulin was detected upon treatment with 200 µg/mL of RLP for 20 min. Nifedipine, an L-type calcium channel blocker, effectively inhibited insulin secretion from INS-1 cells. Regarding calcium levels, the maximum concentration of intracellular calcium in INS-1 cells was obtained by treatment with 100 µg/mL of RLP, whereas this level was reduced under conditions of 200 µg/mL of RLP. Further, RLP-treated INS-1 cells showed a higher level of intracellular calcium than that of L. platyphylla (LP), Korea White Ginseng (KWG), or Korea Red Ginseng (KRG)-treated cells. This RLP-induced increase in intracellular calcium was abrogated but not completely abolished upon treatment with 40 µM nifedipine in a dose-dependent manner. Furthermore, the insulin level was dramatically elevated upon co-treatment with high concentrations of glucose and RLP, whereas it was maintained at a low level in response to glucose and RLP co-treatment at low concentrations. In an animal experiment, the serum concentration of calcium increased or decreased upon RLP treatment according to glucose level compared to vehicle treatment. Therefore, these results suggest that insulin secretion induced by RLP treatment may be tightly correlated with calcium regulation, which suggests RLP is an excellent candidate for diabetes treatment. PMID:23825481

  8. Influence of Structure, Charge, and Concentration on the Pectin-Calcium-Surfactant Complexes.

    Science.gov (United States)

    Joshi, Nidhi; Rawat, Kamla; Bohidar, H B

    2016-05-12

    Polymer-surfactant complex formation of pectin with different types of surfactants, cationic (cetyltrimethylammonium bromide, CTAB and dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS), and neutral (Triton X-100, TX-100), was investigated at room temperature in the presence and absence of cross-linker calcium chloride using light scattering, zeta potential, rheology, and UV-vis spectroscopic measurements where the surfactant concentration was maintained below their critical micellar concentration (CMC). Results indicated that the interaction of cationic surfactant with pectin in the presence and absence of calcium chloride was much stronger compared to anionic and neutral surfactants. The neutral surfactant showed identifiable interaction despite the absence of any charged headgroup, while anionic surfactant showed feeble or very weak interaction with the polymer. The pectin-CTAB or DTAB complex formation was attributed to associative electrostatic and hydrophobic interactions. On comparison between the cationic surfactants, it was found that CTAB interacts strongly with pectin because of its long hydrocarbon chain. The morphology of complexes formed exhibited random coil structures while at higher concentration of surfactant, rod-like or extended random coil structures were noticed. Thus, functional characteristics of the complex could be tuned by varying the type of surfactant (charge and structure) and its concentration. The differential network rigidity (pectin-CTAB versus pectin-DTAB gels) obtained from rheology measurements showed that addition of a very small amount of surfactant (concentration ≪ CMC) was required for enhancing network strength, while the presence of a large amount of surfactant resulted in the formation of fragile gels. No gel formation occurred when the surfactant concentration was close to their CMC values. Considering the importance of pectin in food and pharmaceutical industry, this study is relevant

  9. Ion microscopic imaging of calcium transport in the intestinal tissue of vitamin D-deficient and vitamin D-replete chickens: A 44Ca stable isotope study

    International Nuclear Information System (INIS)

    The intestinal absorption of calcium includes at least three definable steps; transfer across the microvillar membrane, movement through the cytosolic compartment, and energy-dependent extrusion into the lamina propria, Tracing the movement of calcium through the epithelium has been hampered by lack of suitable techniques and, in this study, advantage was taken of ion microscopy in conjunction with cryosectioning and use of the stable isotope 44Ca to visualize calcium in transit during the absorptive process. The effect of vitamin D, required for optimal calcium absorption, was investigated. Twenty millimolar 44Ca was injected into the duodenal lumen in situ of vitamin D-deficient and vitamin D-replete chickens. At 2.5, 5.0, and 20.0 min after injection, duodenal tissue was obtained and processed for ion microscopic imaging. At 2.5 min. 44Ca was seen to be concentrated in the region subjacent to the microvillar membrane in tissue from both groups. At 5.0 and 20.0 min, a similar pattern of localization was evident in D-deficient tissues. In D-replete tissues, the distribution of 44Ca became more homogenous, indicating that vitamin D increased the rate of transfer of Ca2+ from the apical to the basolateral membrane, a function previously ascribed to the vitamin D-induced calcium-binding protein (28-kDa calbindin-D). Quantitative aspects of the calcium absorptive process were determined in parallel experiments with the radionuclide 47Ca. Complementary information on the localization of the naturally occurring isotopes of calcium (40Ca) and potassium (39K) is also described

  10. Plants sensitivity on nickel under different conditions of iron or calcium concentration in the nutrient medium

    Directory of Open Access Journals (Sweden)

    Renata Matraszek

    2013-12-01

    Full Text Available The sensitivity of six vegetable plants on nickel at early stages of their growth was investigated by index of tolerance. Besides the possibility of nickel fitostabilization by additional application of iron or calcium was tested. The experiment was conducted on Petri dishes. Different concentrations of nickel (0; 0,03; 0,06mM Ni as nickel sulphate, iron (0,05; O,OlmM Fe as Fe2+ citrate and calcium (0,50; 0,75; lmM Ca as calcium carbonate were added. Taking into consideration the sensitivity, investigated vegetables can be ordered in the following way: Cucurbita pepo conv. giromontiina L.>Lactuca sativa L.>Sinapis alba L.>Spinacia oleracea L.=Zea mays var. saccharata Kcke.>Phaseolus vulgaris L. Positive, statistically significant effect ofnickel fitostabilization (0,03 or 0,06mM Ni on elongative growth by the iron application (0,10mM Fe was shown for Zea mays var. saccharata Kcke independently of Ni concentration in the nutrient medium as well as for Sinapis alba L. and Phaseolus vulgaris L. in 0,06mM Ni. Addition as much as 0,75mM Ca in the presence 0,03mM Ni had positive result on Sinapis alba L and Phaseolus vulgaris L. seedlings as well as on Zea mays var. saccharata Kcke and Lactuca sativa L. roots and Cucurbita pepo convar. giromontiina L. shoots. Addition of 0,75mM Ca in the presence 0,06mM Ni promoted elongative growth of Zea mays var. saccharata Kcke seedlings. Application lmM Ca resulted in the promotion of elongative growth of Zea mays var. saccharata Kcke. roots (0,03mM Ni as well as Spinacia oleracea L. roots (0,06mM Ni.

  11. Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom’s particle insertion method

    OpenAIRE

    Boda, Dezső; Giri, Janhavi; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk

    2011-01-01

    The selectivity filter of the L-type calcium channel works as a Ca2 + binding site with a very large affinity for Ca2 + versus Na+. Ca2 + replaces half of the Na+ ions in the filter even when these ions are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom’s particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulati...

  12. Interaction of calcium with the human divalent metal-ion transporter-1

    International Nuclear Information System (INIS)

    Iron deficiency is the most prevalent micronutrient deficiency worldwide. Whereas dietary calcium is known to reduce the bioavailability of iron, the molecular basis of this interaction is not understood. We tested the hypothesis that divalent metal-ion transporter-1 (DMT1)-the principal or only mechanism by which nonheme iron is taken up at the intestinal brush border-is shared also by calcium. We expressed human DMT1 in RNA-injected Xenopus oocytes and examined its activity using radiotracer assays and the voltage clamp. DMT1 did not mediate 45Ca2+ uptake. Instead, we found that Ca2+ blocked the Fe2+-evoked currents and inhibited 55Fe2+ uptake in a noncompetitive manner (Ki ∼ 20 mM). The mechanism of inhibition was independent of voltage and did not involve intracellular Ca2+ signaling. The alkaline-earth metal ions Ba2+, Sr2+, and Mg2+ also inhibited DMT1-mediated iron-transport activity. We conclude that Ca2+ is a low-affinity noncompetitive inhibitor-but not a transported substrate-of DMT1, explaining in part the effect of high dietary calcium on iron bioavailability.

  13. Interaction of calcium with the human divalent metal-ion transporter-1

    Energy Technology Data Exchange (ETDEWEB)

    Shawki, Ali [Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, P.O. Box 670576, Cincinnati, OH 45267-0576 (United States); Mackenzie, Bryan, E-mail: bryan.mackenzie@uc.edu [Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, P.O. Box 670576, Cincinnati, OH 45267-0576 (United States)

    2010-03-12

    Iron deficiency is the most prevalent micronutrient deficiency worldwide. Whereas dietary calcium is known to reduce the bioavailability of iron, the molecular basis of this interaction is not understood. We tested the hypothesis that divalent metal-ion transporter-1 (DMT1)-the principal or only mechanism by which nonheme iron is taken up at the intestinal brush border-is shared also by calcium. We expressed human DMT1 in RNA-injected Xenopus oocytes and examined its activity using radiotracer assays and the voltage clamp. DMT1 did not mediate {sup 45}Ca{sup 2+} uptake. Instead, we found that Ca{sup 2+} blocked the Fe{sup 2+}-evoked currents and inhibited {sup 55}Fe{sup 2+} uptake in a noncompetitive manner (K{sub i} {approx} 20 mM). The mechanism of inhibition was independent of voltage and did not involve intracellular Ca{sup 2+} signaling. The alkaline-earth metal ions Ba{sup 2+}, Sr{sup 2+}, and Mg{sup 2+} also inhibited DMT1-mediated iron-transport activity. We conclude that Ca{sup 2+} is a low-affinity noncompetitive inhibitor-but not a transported substrate-of DMT1, explaining in part the effect of high dietary calcium on iron bioavailability.

  14. Calcium Oscillations

    OpenAIRE

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlyin...

  15. Estimate of negative complex ion concentration on troposphere contamination

    International Nuclear Information System (INIS)

    Basic ion-molecular reactions taking place in a lower atmosphere under ionizing radiation are presented. Charge particle kinetic equations are solved for value of electron generation rate Q=108 cm-3s-1 which corresponds to NPP emergency stack radioactive release into the atmosphere. Calculation results are given for the concentration of complex ions types NO3- · (H2O)n and CO3- · (H2O)n. A simplified model of charge particle generation in the troposphere with radioactive contamination is suggested

  16. Ambient sesquiterpene concentration and its link to air ion measurements

    Directory of Open Access Journals (Sweden)

    B. Bonn

    2006-12-01

    Full Text Available Ambient air ion size distributions have been measured continuously at the Finnish boreal forest site in Hyytiälä since spring 2003. In general, these measurements show a maximum of air ions below 1.0 nm in diameter. But this physical characterization does not provide any information about the ion's chemical composition, which is one key question regarding the explanation of nucleation events observed. In this study we propose a link of the observed maximum of negative air ions between 0.56 and 0.75 nm to the so-called stabilised Criegee biradical, formed in the reaction of biogenic sesquiterpenes with ozone and predominantly destroyed by its reaction with ambient water vapour. Calculations of the electron and proton affinities of 120 kJ mol−1 (1.24 eV and of 960 kJ mol−1 support this link. Other possible candidates such as sulphuric acid derived clusters are unable to explain the observations made. By using this approach, we are able to calculate the ambient concentration of sesquiterpenes at the air ion instrument inlet with a high time resolution on the daily and seasonal scale. The estimated concentration is found to reveal the same seasonal pattern as emission measurements conducted at shoot level. As expected for biogenic VOCs, the concentration is obtained highest during summer (maximum values of about 100 pptv and smallest during winter (minimum less than 1 pptv. Because of the sesquiterpenes high reactivity and its low ambient concentrations, this approach can be a first step in understanding their emission and their impact on atmospheric chemistry in more detail. The findings presented are highly relevant for emission budgets too, since boreal forests are extended over large areas of the globe.

  17. Fabrication and characterization of graded calcium phosphate coatings produced by ion beam sputtering/mixing deposition

    International Nuclear Information System (INIS)

    Ion beam sputtering/mixing deposition was used to produce thin calcium phosphate coatings on titanium substrate from the hydroxyapatite target. It was found that as-deposited coatings were amorphous. No distinct absorption band of the hydroxyl group was observed in FTIR spectra of the coatings but new absorption bands were present for CO32-, which was brought about during the deposition process. Scanning electron microscopy revealed that the deposited coatings had a uniform and dense structure. The calcium to phosphorous ratio of these coatings varied between 2.0 and 8.0. Analyses of XPS data revealed that the coating could be divided into four distinctive zones, and a graded structure was achieved in the as-received coating. Scratch tests showed that the coatings adhered well to the substrate

  18. Influence of Calcium Ion on Ethanol Tolerance of Saccharomyces bayanus and Alcoholic Fermentation by Yeasts

    OpenAIRE

    Nabais, Regina C.; Sá-Correia, Isabel; Viegas, Cristina A.; Novais, Júlio M.

    1988-01-01

    The addition of Ca2+ (as CaCl2) in optimal concentrations (0.75 to 2.0 mM) to a fermentation medium with a trace contaminating concentration of Ca2+ (0.025 mM) led to the rapid production of higher concentrations of ethanol by Saccharomyces cerevisiae, Saccharomyces bayanus, and Kluyveromyces marxianus. The positive effect of calcium supplementation (0.75 mM) on alcoholic fermentation by S. bayanus was explained by the increase in its ethanol tolerance. The ethanol inhibition of growth and fe...

  19. Effects of Different Concentrations and Applications of Calcium on Storage Life and Physicochemical Characteristics of Papaya (Carica Papaya L.

    Directory of Open Access Journals (Sweden)

    T. M. M. Mahmud

    2008-01-01

    Full Text Available Papaya (Carica Papaya L. fruits index 2 were treated with 1.5, 2.5 and 3.5% solutions of calcium chloride by dipping and vacuum infiltration (-33 Kpa or untreated (0% as control. Effects of these treatments were evaluated on storage life and postharvest quality characteristics of papaya. After 21 days of storage at 13±1°C, the fruits were removed from storage for physicochemical analysis. Following additional five days holding in the storage condition for fruits used for evaluation of the rate of disease incidence and storage life. Postharvest dip treatments at different concentrations of calcium prolonged storage life, slowed down the ripening processes and maintained the quality of papaya. Whereas, it was effectively greater with calcium infiltration treatments than that for dip treatments. Calcium infiltration extended the storage life and retained the quality as calcium concentrations increased up to 2.5% and then declined. The desired effect was obtained at 2.5% infiltration compared with other treatments. The least disease incidence was found in those fruits infiltrated with 2.5% calcium. Hence, it can be concluded that postharvest infiltration of calcium at 2.5% has the potential to control disease incidence, prolong the storage life and preserve valuable attributes of postharvest papaya, presumably because of its effects on inhibition of ripening and senescence process and loss of the fruit firmness of papaya.

  20. Red Liriope platyphylla stimulated the insulin secretion through the regulation of calcium concentration in rat insulinoma cells and animal models

    OpenAIRE

    Lee, Hye-Ryun; Kim, Ji-Eun; Lee, Young-Ju; Kwak, Moon-Hwa; Im, Dong-Soon; Hwang, Dae-Youn

    2013-01-01

    The aim of this study was to investigate the effects of Red L. platyphylla (RLP) on calcium and glucose levels during insulin secretion. To achieve this, alteration of insulin and calcium concentrations was measured in rat insulinoma-1 (INS-1) cells and animal models in response to RLP treatment. In INS-1 cells, maximum secretion of insulin was detected upon treatment with 200 µg/mL of RLP for 20 min. Nifedipine, an L-type calcium channel blocker, effectively inhibited insulin secretion from ...

  1. The effect of GlycoPEGylation on the physical stability of human rFVIIa with increasing calcium chloride concentration

    DEFF Research Database (Denmark)

    Plesner, Bitten; Westh, Peter; Hvidt, Søren;

    2011-01-01

    The effects of calcium chloride on the structural, kinetic and thermal stability of recombinant human factor VIIa (rFVIIa) were investigated using rFVIIa and two GlycoPEGylated recombinant human FVIIa derivatives, a linear 10 kDa PEG and a branched 40 kDa PEG, respectively. Three different CaCl(2...... thermally induced aggregation of the GlycoPEGylated rFVIIa compounds is unaffected by an increasing calcium chloride concentration....

  2. Influence of calcium chelators on concentrated micellar casein solutions : from micellar structure to viscosity and heat stability

    OpenAIRE

    Kort, de, YAW Yvonne

    2012-01-01

    In practice it is challenging to prepare a concentrated medical product with high heat stability and low viscosity. Calcium chelators are often added to dairy products to improve heat stability, but this may increase viscosity through interactions with the casein proteins. The aim of this thesis was to obtain a better understanding of the influence of different calcium chelators on the physico-chemical properties of casein micelles and the resulting effect on viscosity and heat stability of c...

  3. Oscillatory and ion-correlation forces observed in direct force measurements between silica surfaces in concentrated CaCl2 solutions

    NARCIS (Netherlands)

    Fielden, ML; Hayes, RA; Ralston, J

    2000-01-01

    The force between silica spheres and naturally oxidised silicon wafer has been measured in calcium chloride solutions at concentrations between 1 and 5 M using an atomic force microscope. An oscillatory force, consistent in periodicity with the expulsion of layers of ions, was found to overlay the e

  4. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, Akemi, E-mail: yasukawa@cc.hirosaki-u.ac.jp [School of Home Economics, Faculty of Education, Hirosaki University, 1-bunkyo, Hirosaki, Aomori 036-8560 (Japan); Kandori, Kazuhiko [School of Chemistry, Osaka University of Education, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582 (Japan); Tanaka, Hidekazu [Department of Material Science, Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 (Japan); Gotoh, Keiko [Faculty of Human Life and Environment, Nara Women' s University, Kita-uoya-nishi, Nara 630-8506 (Japan)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.

  5. Batroxobin reduces intracellular calcium concentration and inhibits proliferation of vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    SONG Qing-bin 宋清斌; WEI Min-jie 魏敏杰; DUAN Zhi-quan 段志泉; ZHANG Hai-qiang 张海强; LB Schwartz; XIN Shi-jie 辛世杰

    2004-01-01

    Background Batroxobin (BX), a serine protease used in defibrinogenation and thrombolysis, also has an effect on c-fos gene and growth factor. This study attempted to determine the effects of BX on the proliferation of vascular smooth muscle cells (VSMCs) and calcium metabolism. Methods VSMCs were treated with BX at concentrations of 0.1, 0.3, or 1.0 mmol/L and cell numbers were determined at 0, 24, 48, and 72 hours. Intracellular calcium concentration ([Ca2+]I) was measured using direct fluorescence methods. Results BX was found to suppress proliferation of VSMCs in a dose-dependent fashion with inhibition rates of 18% and 31% by 48 and 72 hours, respectively. In addition, BX decreases basal [Ca2+]I significantly. The basal level in untreated cells was 162.7±33.8 nmol/L, and decreased to 131.5±27.7 nmol/L, 128.3±28.5 nmol/L, and 125.6±34.3 nmol/L with the three concentrations of BX, respectively. Noradrenaline (NE)-induced [Ca2+]I stimulation was also attenuated by BX (0.1 mmol/L BX, 20%±8% inhibition; 0.3 mmol/L BX, 54%±11% inhibition; 1.0 mmol/L BX, 62%±15% inhibition). The ability of NE to stimulate [Ca2+]I was attenuated in cultures in Ca2+-free medium, as was the ability of BX to blunt NE-induced stimulation. Conclusion These findings demonstrate that BX can effectively inhibit proliferation of VSMCs, probably by blocking the release and uptake of Ca2+, thus influencing [Ca2+]I.

  6. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. PMID:23892312

  7. Reactivity of the cadmium ion in concentrated phosphoric acid solutions.

    Science.gov (United States)

    De Gyves, J; Gonzales, J; Louis, C; Bessiere, J

    1989-07-01

    The solvation transfer coefficients which characterize the changes of ion reactivity with phosphoric acid concentration have been calculated for cadmium from the constants of the successive chloride complexes, and for silver and diethyldithiophosphate from potentiometric measurements. They evidence the strong desolvation of the cadmium species in concentrated phosphoric acid media, causing a remarkable increase of its reactivity. They allow the results of liquid-liquid extraction, precipitation and flotation reactions to be correctly interpreted and their changes to be foreseen when the reagents are modified. PMID:18964794

  8. Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration

    NARCIS (Netherlands)

    Brink, van den P.; Zwijnenburg, A.; Smith, G.; Temmink, B.G.; Loosdrecht, van M.C.

    2009-01-01

    Extracellular polymeric substances (EPS) are generally negatively charged polymers. Membrane fouling in membrane bioreactors (MBRs) by EPS is therefore influenced by the water chemistry of the mixed liquor (calcium concentration, foulant concentration and ionic strength). We used alginate as a model

  9. Calcium montmorillonite clay in dairy feed reduces aflatoxin concentrations in milk without interfering with milk quality, composition or yield

    Science.gov (United States)

    This study was designed to determine if a calcium montmorillonite clay (Novasil Plus, NSP), can significantly reduce aflatoxin M1 (AFM1) concentrations in milk without affecting dry matter intake (DMI), milk yield, milk composition, vitamin A, or riboflavin concentrations. The study was designed us...

  10. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl‑ = 2.03[10‑9m2s‑1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D‑ ‑ D+)/(D‑ + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  11. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-01-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl− = 2.03[10−9m2s−1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D− − D+)/(D− + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis). PMID:27158057

  12. Experimental Study on Surface Reactions of Heavy Metal Ions With Quartz—Aqueous Ion Concentration Dependence

    Institute of Scientific and Technical Information of China (English)

    吴宏海; 吴大清; 等

    1999-01-01

    Adsorption of divalent metal ions,including Cu2+,Pb2+,Zn2+,Cd2+ and Ni2+,on quartz surface was measured as a function of metal ion concentration at 30℃under condi tions of solution pH=6.5 and ion strength I=0.1mol/L.Results of the experimental measuements can be described very well by adsorption isoterm dquations of Freudlich.The correlation coefficients(r)of adsorption isotherm lines are>0.96.Moreover,the exprimental data were interpreted on the basis of surface complexation model.Te experimental results showed that the monodentate-coordinated metal ion surface complex species(SOM+)are predominant over the bidentate-coordinated metal ion surface complex species[(SO)2M]formed only by the ions Cu2+,Zn2+ and Ni2+,And the relevant apparent surface complexation constants are lgKM=2.2-3.3 in order of KCd≥KPb>KZn>KNi≥KCu,and lgβM=5.8-6.8 in oder of βNi>βZn>βCu.Therefore,the reactive ability of the ions onto mineral surface of quartz follows the order of Cd>Pb>Zn>Ni>Cu under the above-mentioned solution conditions.The apparent surface complexation constants,influenced by the surface potential,surface species and hydrolysis of metal ions,depend mainly on the Born solvation coefficeient of the metal ions.

  13. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination.

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-01-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10(-9)m(2)s(-1)]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D- - D+)/(D- + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis). PMID:27158057

  14. Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells.

    Science.gov (United States)

    Seo, Hyunhyo; Lee, Kyungmin

    2016-02-01

    Astrocytes play a critical role in normal brain functions and maintaining the brain microenvironment, and defects in astrocytogenesis during neurodevelopment could give rise to severe mental illness and psychiatric disorders. During neuro-embryogenesis, astrocytogenesis involves astrocytic differentiation of neural precursor cells (NPCs) induced by signals from ciliary neurotrophic factor (CNTF) or pituitary adenylate cyclase-activating peptide (PACAP). However, in contrast to the CNTF signaling pathway, the exact mechanism underlying astrocytic differentiation induced by PACAP is unknown. In the present study, we aimed to verify a signaling pathway specific to PACAP-induced astrocytogenesis, using exchange protein directly activated by cAMP2 (Epac2)-knockout mice. We found that PACAP could trigger astrocytic differentiation of NPCs via Epac2 activation and an increase in the intracellular calcium concentration via a calcium ion influx. Taken together, we concluded that astrocytogenesis stimulated by PACAP occurs through a novel signaling pathway independent from CNTF-JAK/STAT signaling, that is the well-known pathway of astrocytogenesis. [BMB Reports 2016; 49(2): 128-133]. PMID:26645637

  15. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?

    Science.gov (United States)

    Sumner, D. Y.; Grotzinger, J. P.

    1996-01-01

    Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.

  16. Kinetic study of the effects of calcium ions on cationic artichoke (Cynara scolymus L.) peroxidase: calcium binding, steady-state kinetics and reactions with hydrogen peroxide.

    Science.gov (United States)

    Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2004-01-01

    The apparent catalytic constant (k(cat)) of artichoke (Cynara scolymus L.) peroxidase (AKPC) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) increased 130-fold in the presence of calcium ions (Ca2+) but the affinity (K(m)) of the enzyme for ABTS was 500 times lower than for Ca2+-free AKPC. AKPC is known to exhibit an equilibrium between 6-aquo hexa-coordinate and penta-coordinate forms of the haem iron that is modulated by Ca2+ and affects compound I formation. Measurements of the Ca2+ dissociation constant (K(D)) were complicated by the water-association/dissociation equilibrium yielding a global value more than 1000 times too high. The value for the Ca2+ binding step alone has now been determined to be K(D) approximately 10 nM. AKPC-Ca2+ was more resistant to inactivation by hydrogen peroxide (H(2)O(2)) and exhibited increased catalase activity. An analysis of the complex H(2)O(2) concentration dependent kinetics of Ca2+-free AKPC is presented. PMID:15556277

  17. Ions Release and pH of Calcium Hydroxide-, Chlorhexidine- and Bioactive Glass-Based Endodontic Medicaments.

    Science.gov (United States)

    Carvalho, Ceci Nunes; Freire, Laila Gonzales; Carvalho, Alexandre Pinheiro Lima de; Duarte, Marco Antonio Húngaro; Bauer, José; Gavini, Giulio

    2016-01-01

    This study evaluated pH and release of calcium, sodium and phosphate ions from different medications in human dentin. Fifty premolars were prepared and randomly divided into groups: (CHX) - 2% chlorhexidine gel; (CHX + CH) - CHX + calcium hydroxide PA; (CH) - CH + propylene glycol 600; (NPBG) - experimental niobium phosphate bioactive glass + distilled water; (BG) - bioactive glass (Bio-Gran) + distilled water. The specimens were immersed in deionized water and the pH variations were measured. The quantification of ions in the solutions was made by inductively coupled plasma - atomic emission spectroscopy (ICP/AES) at 10 min, 24 h, 7, 14, 21 and 30 days. The results were analyzed by ANOVA and Tukey`s test, with a significance level of 5%. CH had the highest level of calcium ions release at 30 days, while CHX and BG released more sodium ions. BG, NPBG and CHX released a higher amount of phosphate ions. The pH of CH was significantly higher compared with the other groups. CH favored the greatest increase of pH and calcium ions release. The bioactive glasses released more sodium and phosphate ions and presented an alkaline pH immediately and after 30 days. PMID:27224568

  18. Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models

    Science.gov (United States)

    Fathy, Mahmoud; Abdel Moghny, Th.; Mousa, Mahmoud Ahmed; El-Bellihi, Abdel-Hameed A.-A.; Awadallah, Ahmed E.

    2016-07-01

    Sorption of calcium ion from the hard underground water using novel oxidized graphene (GO) sheets was studied in this paper. Physicochemical properties and microstructure of graphene sheets were investigated using Raman spectrometer, thermogravimetry analyzer, transmission electron microscope, scanning electron microscope. The kinetics adsorption of calcium on graphene oxide sheets was examined using Lagergren first and second orders. The results show that the Lagergren second-order was the best-fit model that suggests the conception process of calcium ion adsorption on the Go sheets. For isothermal studies, the Langmuir and Freundlich isotherm models were used at temperatures ranging between 283 and 313 K. Thermodynamic parameters resolved at 283, 298 and 313 K indicating that the GO adsorption was exothermic spontaneous process. Finally, the graphene sheets show high partiality toward calcium particles and it will be useful in softening and treatment of hard water.

  19. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  20. Stability assessment of o/w parenteral nutrition emulsions in the presence of high glucose and calcium concentrations.

    Science.gov (United States)

    Télessy, I G; Balogh, J; Turmezei, J; Dredán, J; Zelkó, R

    2011-09-10

    The purpose of the present study was to examine how the colloid stability features of o/w parenteral nutrition emulsions made with SMOFlipid (lipid emulsion based on soybean oil, medium chain triglycerides, olive oil and fish oil) will change in the presence of high concentration of calcium and glucose if usual micronutrients are also present, according to the needs of the clinical nutrition patient. Particle size analysis, zeta potential, dynamic surface tension measurements and light microscopic screening were carried out to evaluate the possible changes in the kinetic stability of the emulsions. Our results indicate that the higher glucose concentration of 15 or 20% could not compensate the emulsion-destabilizing effect of higher (5 mM) calcium concentration even in the presence of a modern fat emulsion. Therefore calcium demand of undernourished patient requiring 5 mM or higher final Ca²⁺ content in nutrient solution should be supplemented in another way. PMID:21636233

  1. Fluoride concentrations in dental plaque and saliva after the use of a fluoride dentifrice preceded by a calcium lactate rinse.

    Science.gov (United States)

    Pessan, Juliano P; Sicca, Cristina M; de Souza, Tatiana S; da Silva, Salete M B; Whitford, Gary M; Buzalaf, Marília A R

    2006-12-01

    Plaque fluoride concentrations ([F]) are directly related to plaque calcium concentrations [Ca]. Attempts to increase plaque F uptake from dentifrices or rinses have used methods designed to increase plaque [Ca] but with inconsistent results. This double-blind, double-crossover study tested the effect of a 150 mM calcium lactate rinse used prior to brushing with placebo or fluoridated dentifrices (1030 p.p.m. as NaF) on plaque and salivary [F] and [Ca]. Sixteen children (8-10 yr of age) were randomly assigned to four different groups according to the four treatments (placebo dentifrice or fluoridated dentifrice preceded by calcium lactate or deionized water prerinses). Plaque and saliva were collected 1 and 12 h after brushing on day 7 after starting to use the dentifrices. F was determined using the electrode and Ca was determined using atomic absorption spectrometry. Plaque and salivary [Ca] were not significantly increased after use of the calcium lactate prerinse, except for plaque [Ca] 1 h after the use of the placebo dentifrice. A significant increase in salivary [F] was associated with the calcium lactate prerinse only at 1 h after the use of the fluoridated dentifrice. The the calcium lactate prerinse did not significantly affect plaque [F] under any condition. PMID:17184230

  2. Plasma and synovial fluid concentrations of calcium pentosan polysulphate achieved in the horse following intramuscular injection.

    Science.gov (United States)

    Fuller, C J; Ghosh, P; Barr, A R S

    2002-01-01

    Results from in vitro studies have indicated that calcium pentosan polysulphate (CaPPS) may be of therapeutic value in osteoarthritis (OA) in the horse. However, no controlled clinical trials using this drug in equine OA have yet been reported. If CaPPS is to be developed for such use, the relationship between the proposed i.m. dose of CaPPS to be used and the concentrations of drug attained in plasma and synovial fluid of the target joint should first be established. An investigation was undertaken to determine these concentrations after a single 2 mg/kg i.m. injection of CaPPS. Blood and synovial fluid samples were taken from 6 healthy, sound horses following i.m. CaPPS administration. Concentrations of CaPPS measured in the synovial fluid were, on the basis of published studies, sufficient to elicit a potential therapeutic effect on synoviocyte metabolism, and possibly also to stimulate proteoglycan synthesis and reduce matrix metalloproteinase activities in articular cartilage. It would therefore seem justified to investigate further the therapeutic effect of CaPPS in OA in the horse. PMID:11822373

  3. Effects of polymer concentration on the morphology of calcium phosphate crystals formed in polyacrylamide hydrogels

    Science.gov (United States)

    Yokoi, Taishi; Kawashita, Masakazu; Ohtsuki, Chikara

    2013-11-01

    Growing crystals in hydrogels is an attractive method to form inorganic solids with designed morphology under ambient conditions. Precipitation of the inorganic solids in a hydrogel matrix can be regarded as mimicking the process of biomineralization. In the construction of biominerals, an organic template composed of insoluble macromolecules is used to control the crystal growth of the inorganic compounds. The morphological control in biomineralization can be applied to artificial reaction systems. In this study, the morphology of calcium phosphate crystals formed in polymeric hydrogels of various polymer concentrations was investigated. Spherical octacalcium phosphate (OCP) precipitated in the polyacrylamide (PAAm) hydrogels. Fibrous crystals gradually covered the surface of the spherical crystals as the polymer concentration of the gel increased. The morphology of the OCP crystals changed from sea urchin shapes to wool-ball shapes with increasing PAAm concentration. The morphological change is generated by the template effect of the polymer wall, which is made up of stacked PAAm sheets, surrounding the spherical OCP crystals.

  4. Separation and concentration of uranium by ion flotation method

    International Nuclear Information System (INIS)

    The concentration of uranium from seawater has been investigated from the viewpoint of adsorption method and coprecipitation method. In this study a procedure is described for the separation of uranium present as a stable uranyl cation or a tricarbonatouranyl anion by ion flotation which utilizes dicarboxylate and quaternary ammonium chloride as a collector, respectively. When dicarboxylate was used, uranium floated in the pH region, 3--7 and the maximum recovery was 93% at pH 5. When quaternary ammonium chloride was used, uranium floated at pH values above about 4 and the maximum recovery was 95% at pH 8. The former has the high concentration ratio because the floated uranium forms a scum, while the latter has the lower concentration ratio because uranium floats with foam. (auth.)

  5. Calcium inhibition of ribonuclease H1 two-metal ion catalysis.

    Science.gov (United States)

    Rosta, Edina; Yang, Wei; Hummer, Gerhard

    2014-02-26

    Most phosphate-processing enzymes require Mg(2+) as a cofactor to catalyze nucleotide cleavage and transfer reactions. Ca(2+) ions inhibit many of these enzymatic activities, despite Ca(2+) and Mg(2+) having comparable binding affinities and overall biological abundances. Here we study the molecular details of the calcium inhibition mechanism for phosphodiester cleavage, an essential reaction in the metabolism of nucleic acids and nucleotides, by comparing Ca(2+)- and Mg(2+) catalyzed reactions. We study the functional roles of the specific metal ion sites A and B in enabling the catalytic cleavage of an RNA/DNA hybrid substrate by B. halodurans ribonuclease (RNase) H1 using hybrid quantum-mechanics/molecular mechanics (QM/MM) free energy calculations. We find that Ca(2+) substitution of either of the two active-site Mg(2+) ions substantially increases the height of the reaction barrier and thereby abolishes the catalytic activity. Remarkably, Ca(2+) at the A site is inactive also in Mg(2+)-optimized active-site structures along the reaction path, whereas Mg(2+) substitution recovers activity in Ca(2+)-optimized structures. Geometric changes resulting from Ca(2+) substitution at metal ion site A may thus be a secondary factor in the loss of catalytic activity. By contrast, at metal ion site B geometry plays a more important role, with only a partial recovery of activity after Mg(2+) substitution in Ca(2+)-optimized structures. Ca(2+)-substitution also leads to a change in mechanism, with deprotonation of the water nucleophile requiring a closer approach to the scissile phosphate, which in turn increases the barrier. As a result, Ca(2+) is less efficient in activating the water. As a likely cause for the different reactivities of Mg(2+) and Ca(2+) ions in site A, we identify differences in charge transfer to the ions and the associated decrease in the pKa of the oxygen nucleophile attacking the phosphate group. PMID:24499076

  6. Calcium carbonate phosphate binding ion exchange filtration and accelerated denitrification improve public health standards and combat eutrophication in aquatic ecosystems.

    Science.gov (United States)

    Yanamadala, Vijay

    2005-01-01

    Hektoen agar. Initial analyses suggest a strong correlation between phosphate concentrations and bacterial populations; a 66% decrease in phosphate resulted in a 35% reduction in bacterial populations and a 45% reduction in enteropathogenic populations. Likewise, a strong correlation was shown between calcium carbonate concentrations and bacterial reduction greater than that which can be attributed to the phosphate reduction alone. This was followed by the construction of various phosphate binding calcium carbonate filters, which used the ion exchange principle, including a spring loading filter, PVC pipe filter, and a galvanized filter. All were tested with the aid of Stoke's law formulation. The experiment was extremely successful in designing a working phosphate-binding and ammonia-reducing filter, and a large-scale agitator-clarifier filter system is currently being planned for construction in Madrona Marsh; this filter will reduce phosphate and ammonia levels substantially in the following years, bringing ecological, economical, and health-related improvements to the overall ecosystem and habitat. PMID:16381147

  7. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    International Nuclear Information System (INIS)

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon

  8. Regulation of proteolysis in Bacillus subtilis: effects of calcium ions and energy poisons

    International Nuclear Information System (INIS)

    Bacillus subtilis cells carry out extensive intracellular proteolysis (k = 0.15-0.23/h) during sporulation. Protein degradation was measured in cells growing in chemically defined sporulation medium, by following the release of [14C]-leucine from the cells during spore formation. Sodium arsenate, carbonyl cyanide 3-chlorophenyl hydrazone, and sodium azide strongly inhibited proteolysis without altering cell viability greatly, which suggested that bulk proteolysis in B. subtilis is energy dependent. The authors have tested the hypothesis that the energy requirement may be for pumping in Ca2+. When [Ca2+] was -6, rates of proteolysis in sporulating cells were reduced 4-8 times that in cells in calcium ion- sufficient medium. Further, omission of Ca2+ from the medium prevented the increase in the activity of the major intracellular serine protease. However, the presence of energy poisons in the media at levels which inhibited proteolysis, had no detectable effect on the uptake of by cells [45Ca]. The authors concluded that B. subtilis cells required both metabolic energy and calcium ions for normal proteolysis

  9. Effect of Calcium Ions on Dewaterability of Enzymatic-Enhanced Anaerobic Digestion Sludge.

    Science.gov (United States)

    Luo, Kun; Yang, Qi; Li, Xiao-Ming; Zhang, Shi-Ying; Pang, Ya; Li, Xue; Liao, Xing-Sheng

    2015-08-01

    Waste-activated sludge (WAS) solubilized remarkably after enzymatic-enhanced anaerobic digestion, but its dewaterability was deteriorated. In this study, a novel method was performed to improve the dewaterability of enzymatic-enhanced anaerobic digestion sludge by adding CaCl2 (0.01~1.00 g/g total sludge). The capillary suction time (CST), moisture content, and filtrate turbidity were employed to characterize the dewaterability of WAS, and the possible mechanisms involved were clarified. The results showed the dewaterability did not worsen when CaCl2 was added before sludge digestion, and the CST, moisture content, and filtrate turbidity were notably reduced with the increase of CaCl2 dosage. It also shown that calcium ions played an important role in the bioflocculation of digested sludge by neutralizing negative charges on the surface of sludge. In addition, soluble protein initially lowered a little and then observably improved with the addition of CaCl2, while soluble carbohydrate was reduced sharply first and then bounced back afterwards. The interactions between calcium ions and the biopolymer further enhanced the dewatering of sludge through bridging of colloidal particles together. PMID:26129703

  10. Tubular electrodeposition of chitosan-carbon nanotube implants enriched with calcium ions.

    Science.gov (United States)

    Nawrotek, Katarzyna; Tylman, Michał; Rudnicka, Karolina; Gatkowska, Justyna; Balcerzak, Jacek

    2016-07-01

    A new approach for obtaining chitosan-carbon nanotube implants enriched with calcium ions in the form of tubular hydrogels is fostered. The intended application of the hydrogels is tissue engineering, especially peripheral nervous tissue regeneration. The fabrication method, based on an electrodeposition phenomenon, shows significant advantages over current solutions as implants can now be obtained rapidly at any required dimensions. Thus, it may open a new avenue to treat patients with peripheral nerve injuries. Either single walled or multiwalled carbon nanotubes enhance the mechanical properties of the tubular hydrogels. The controlled presence of calcium ions, sourced from hydroxyapatite, is also expected to augment the regenerative response. Because in vitro cytotoxic assays on mouse cell lines (L929 fibroblasts and mHippoE-18 hippocampal cells) as well as pro-inflammatory tests on THP-1XBlue™ cells show that the manufactured implants are biocompatible, we next intend to evaluate their immune- and nervous-safety on an animal model. PMID:26913639

  11. Efficacy of etidronic acid, BioPure MTAD and SmearClear in removing calcium ions from the root canal: An in vitro study

    Science.gov (United States)

    Yadav, Hemant Kumar; Tikku, A. P.; Chandra, Anil; Yadav, Rakesh Kumar; Patel, Devendra Kumar

    2015-01-01

    Objective: The purpose of this study was to quantify the amount of calcium ions removed from the root canal by etidronic acid (HEBP), BioPure MTAD, and SmearClear using atomic absorption spectrophotometer. Materials and Methods: Fifty (n = 50) freshly extracted human mandibular premolar teeth were collected and decoronated at the cementoenamel junction. The canals were prepared in a crown down fashion using the rotary system and copiously irrigated with 1.0% sodium hypochlorite. All specimens were rinsed with the deionized water. Based on the type of chelating agent used, the samples (n = 10) were randomly divided into five (four test and one negative control) groups. Accordingly, Group I - 9% HEBP, Group II - 18% HEBP, Group III - SmearClear, Group IV - BioPure MTAD, and Group V - normal Saline. Subsequent to irrigation, the solution was collected in a test tube and subjected to atomic absorption spectrophotometer for the quantification of calcium ions removed from the root canal. Results: The mean concentration of calcium ions removed from the root canal (mean ± standard deviation) in all groups (I–V) were 13.32 ± 0.54 μg/ml, 16.36 ± 0.27 μg/ml, 20.04 ± 0.24 μg/ml, 18.15 ± 0.39 μg/ml, and 8.74 ± 0.49 μg/ml, respectively. Conclusions: SmearClear was the most effective agent for the removal of calcium ions from the root canal. Hence, its combined use with an organic solvent can be recommended for efficient smear layer removal. PMID:26929691

  12. Determination of cadmium, cobalt, manganese, copper, nickel, and chromium in concentrated solutions of calcium chloride by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A procedure is developed for the direct determination of Cd, Co, Cr, Cu, Mn, and Ni in concentrated solutions of calcium chloride by electrothermal atomic absorption spectrometry. Ascorbic and oxalic acids and magnesium nitrate were examined as chemical modifiers. Oxalic acid was found to be the best modifier. Although an atomic absorption spectrometer with a background correction system of relatively low efficiency (deuterium lamp) was used, elements under study can be reliably determined in the presence of oxalic acid at concentrations of calcium chloride in the solution up to 6%. Because cadmium is evaporated before the major part of the given matrix, it can be determined without modifier

  13. The spatial and temporal distribution and characteristics of inorganic ion concentrations of TSP in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    YuTing Zhong; XinChun Liu; ZiAng Fang; Qing He

    2014-01-01

    Based on Total Suspended Particulates (TSP) observations of Tazhong, Tikanli, Kashi and Minfeng in 2009, combined wa-ter-soluble inorganic ion analyses, this paper studied the spatial and temporal distribution of TSP in the Tarim Basin and analyzed concentration characteristics. The results are as follows:(1) monthly average TSP concentrations shows a similar trend in Tazhong, Tikanli, Kashi and Minfeng with peak values in April-May and low values in November-December. As for the quarter average mass concentration trends, spring has the highest value, followed by summer and autumn, and winter is the lowest;(2) total annual concentration trend of water-soluble inorganic ions in TSP is as follows:Tazhong>Tikanli>Minfeng>Kashi. SO42-concentra-tions are 58%, 50%, 54%and 51%of total ion concentration;Ca2+concentrations are 13%, 16%, 16%and 11%;Na+concentra-tions are 12%, 13%, 10%and 12%and Cl-concentrations are 12%, 16%, 11%and 22%, respectively. Therefore, sulfate, calcium, sodium and chloride ions are the main inorganic components of TSP in the Tarim Basin;(3) the correlation coefficients of anions and cations in Tikanli, Minfeng, Kashi and Tazhong are 0.99, 0.99, 0.25 and 0.91, respectively;the average anion concentrations are 2.57, 2.12, 2.15 and 3.02 times the average cation concentrations, indicating that ions were unbalanced;(4) SO42-/NO3-ratio is much larger than the ratio of coal-fired emissions SO42-/NO3-, thus the impact of fixed emission sources in the four regions on the atmosphere is far greater than that of mobile emission sources.

  14. The retention of calcium, barium, and strontium ions by a mollisol humic acid: Spectroscopic investigation

    Science.gov (United States)

    Oufqir, Sofia; Bloom, Paul R.; Torner, Brandy M.

    2014-05-01

    Humic substances have a major role in controlling the mobility and bioavailability of metallic ions in soils and natural waters. The alkaline earth metals, calcium, barium, and strontium, are broadly abundant in the crust of the earth, and Ca2+ ions are known to be important in the formation of structural aggregates in soils. Yet, direct spectroscopic evidence of how Ca, Ba, and Sr ions interact with soil organic matter, is minimal. To develop a deeper understanding of the interaction of the alkaline earth cations in soil, we studied the complexation behavior of strontium, barium and calcium by humic acid (HA) using solid-state 13C CP-MAS NMR, FTIR and extended x-ray absorption fine structure (EXAFS) spectroscopy. A HA sample was extracted from an agricultural mollisol (pH 6, 32.5% clay content, 3.7% organic carbon) located in southwestern Minnesota, USA, by the standard NaOH method. The HA sample was treated with chloride salts of Ca, Sr or Ba, then freeze-dried prior to spectroscopic measurements. The FTIR spectra, obtained using pressed KBr disks, and the 13C NMR spectra revealed spectral differences, stemming mainly from deprotonation reactions of the carboxylic and phenolic groups of the HA. The association of Ca, Ba, and Sr ions with the HA caused a marked FTIR shift of the carboxylate band, with the Ba shift being the most pronounced (HA 1604.7; HA-Ca 1595.1; HA-Sr 1597; HA-Ba 1579.6), which seems to imply that Ba is the strongest bound element. An NMR shift of the carbonyl peak at 171.8 ppm was also observed to 174.5 for Ca, 173.7 for Sr, and 174.4 for Ba confirming that these cations are behaving differently towards soil HA. The EXAFS spectra indicated back-scattering from oxygen atoms, in the first shell, for Ca, Sr, and Ba with varied coordination number. Our data prove that (1) the carboxylates and phenolates are the prevailing functional groups involved in the interactions between the extracted HA and alkali metal cations, (2) barium forms the

  15. The influence of statins on the free intracellular calcium concentration in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Figulla Hans R

    2004-05-01

    Full Text Available Abstract Background Statins are cholesterol-lowering drugs that are widely used to reduce the risk of cardiac infarction. Their beneficial clinical effects, however, are not restricted to their influence on cholesterol production. As several studies have shown that they have a potency of relaxing blood vessels. Methods We measured the effects of statins on the intracellular free calcium concentration ([Ca2+]i in human umbilical vein endothelial cells (HUVEC after acute application and 24-h-preincubation of statins. Results Incubation of the cells for 24 h with cerivastatin or fluvastatin significantly increased the resting [Ca2+]i. For cerivastatin this effect manifested at a concentration of 1 μM. Increase of resting [Ca2+]i in the presence of cerivastatin also occurred when the nitric oxide synthase was inhibited. Transient Ca2+ release induced by histamine was not affected. Conclusions The increase of resting [Ca2+]i after incubation with cerivastatin or fluvastatin may provide an explanation for the direct effects of statins on the endothelial-dependent vasodilatation and restoration of endothelial activity in vivo.

  16. Variation in the bone calcium concentration as a function of age and sex, studied by local neutron activation in vivo

    International Nuclear Information System (INIS)

    An original method of local activation on the hand, using isotopic neutron sources, was used to determine bone Ca and P simultaneously. The calcium concentration variation with age and sex was studied on 120 normal subjects men and women aged between 20 and 80, divided into 10 year age groups. These standards were chosen amongst subjects free from complaints liable to affect bone mineralisation and with more or less normal blood calcium and phosphorus contents. The results are as follows: between 20 and 50 the relative standard derivation observed within a 10 year age group averages 8% in men and 9% in women, after 50 this physiological scattering is much greater in both sexes, after 60 the bone calcium concentration decreases quickly in women at an average rate of 1.15% a year

  17. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    Science.gov (United States)

    Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S.

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Qf at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Qf=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Qf for the sodium-calcium channels family. An increase of Qf leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Qf(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca2+/Na+ valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  18. Judd-Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses

    Science.gov (United States)

    Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.

    2014-02-01

    Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.

  19. Concentrations of ions in blood or athletes using NAA

    International Nuclear Information System (INIS)

    Sodium (Na), chlorine (Cl) and potassium (K) are widely distributed in the body and are the mainly of body fluids electrolytes. K is the major intracellular ion. Na and Cl are the major extracellular ions. Therefore, Na and Cl can be regarded as the most important osmotically active electrolytes. The concentrations of these ions in body fluids are very tightly controlled. These electrolytes play central roles in electrolytic balances and current, in osmotic control, in the transport of organic metabolites by cells, and stabilization of poly electrolytes in cells. In this study Na, Cl and K levels were investigated in blood of athletes submitted to physical exercise at Laboratorio de Bioquimica do Exercicio (LABEX/UNICAMP - Brazil) using Neutron Activation Analyses (NAA) technique. The blood samples were collected from six male athletes, ranging from 18 to 26 years old, before and after the physical training. These results were compared with the rest condition (before start the physical exercise), as well as with the control group (subjects of same age but not involved with physical activities), for checking the performance of the athletes during and after the exercise. The nuclear procedure adopted as NAA, it can be an alternative procedure to perform biochemistry analyses in blood, mainly when the biological material is scarce. (author)

  20. Distribution of calcium ions at the interface between resin bonding materials and tooth dentin. Use of commercially available adhesive systems.

    Science.gov (United States)

    Hanaizumi, Y; Maeda, T; Takano, Y

    1998-01-01

    It has been proposed that calcium ions play a key role in chemical (chelate) binding between the adhesive resin and dentin surface. However, no data is available concerning how calcium ions are distributed at the binding sites. The aim of this study is to demonstrate calcium ions at the resin-dentin interface by means of X-ray microanalysis and calcium ion-sensitive histochemical staining. The dentin surface in human teeth was ground by use of 240 grit silicon carbide abrasive paper under running water and treated with the dentin-primer and adhesive resin in Clearfil Liner Bond System or IMPERVA Bond System according to the manufacturer's instructions. After removing dentin matrix and isolating adhesive resin by the KOH-digestion method, one half of the samples were processed for scanning electron microscopy. The rest were embedded in Epon 812 and processed either for glyoxal bis (2-hydroxyanil) (GBHA) staining or transmission electron microscopy combined with X-ray microanalysis. Transmission electron microscopy revealed Ca-phosphate deposits at the bottom of the resin-impregnated layer. The adhesive resin above the resin-impregnated layer was amorphous and showed no precipitates of Ca-phosphate. GBHA displayed intense calcium reactions throughout the resin-impregnated layer and also moderate ones in the 10 microns (Clearfil Liner Bond System) or 30 microns (IMPERVA Bonding System) thick boundary zone of the adhesive resin as well as in the resin tags. These data are the first to offer a distinct localization of calcium ions within the adhesive resin at the dentin-resin interface. PMID:9800373

  1. Study of the calcium carbonate scaling in the desalination units by electrodialysis: natural inhibition by magnesium ion

    International Nuclear Information System (INIS)

    The processes based on the separation by membranes seem to become very powerful tools for the purification and the retraining of the fluids. Competed by the inverse osmosis in the domain of the desalination of waters, the electrodialysis (ED) occupies a large place in the agro-alimentary industries to treat the co-products on the one hand and to contribute to the retraining of containing sewages of the heavy metals and toxic, on the other hand. Although it is appreciable for cost and reliability in several domains, the ED suffers to scaling problem caused by the concentration of some ions. Since the technique is used currently for the desalination of water in some industries, we have opted to study mechanisms of membrane scaling by calcium carbonate, one of salts the more frequently met in the stations of desalination in Tunisia. The survey uses a method of accelerated scaling of a pilot unit of electrodialysis. By means of this method, we studied the effect of the initial pH and the composition of water on the kinetics of the scaling formation. The treated waters are synthetic solutions. The results showed that the CO2 quantity initially dissolved in the solutions is an important factor in the scaling process. According to the composition of water, domains of CO2 pressure were defined in whom a small variation can generate the rupture of the metastability state in the compartment of concentration and provoke CaCO3 nucleation in the compartment of concentration and/or on the membranes and conducts. The presence in solution of magnesium in only a Ca/Mg ratio of 0,5 delayed considerably the CaCO3 nucleation. This ratio is considered like a low bottom limit of magnesium action, ion to natural inhibitory effect present in the natural waters.

  2. Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET.

    Science.gov (United States)

    Asif, M H; Nur, O; Willander, M; Danielsson, B

    2009-07-15

    Zinc oxide nanorod-extended gate field effect transistor (MOSFET) is demonstrated for the detection of calcium (Ca(2+)) ions. ZnO nanorods were grown on the surface of a silver wire to produce an electrochemical nanosensor for selectively detecting Ca(2+). The electrochemical response from the interaction between the ZnO nanorods and Ca(2+) in an aqueous solution is coupled directly to the gate of a field effect transistor (MOSFET). The induced voltage change on the gate results in a measureable current response. In order to adapt the sensors for Ca(2+) ions measurements in biological fluids with sufficient selectivity and stability, a plastic membrane coating containing ionophores was applied on the nanorods. The sensor exhibited a linear response within the range of interest from 1 microM to 1 mM. This work demonstrates a simple technique for sensitive detection of Ca(2+) ions by efficient transfer of the chemical response directly to a standard electronic component producing a low impedance signal. PMID:19442511

  3. Caffeine Alters Skeletal Muscle Contraction by Opening of Calcium Ion Channels

    Directory of Open Access Journals (Sweden)

    Kolawole Victor Olorunshola

    2011-09-01

    Full Text Available The aim of this study was to investigate the effect of caffeine on the amplitude and rate of skeletal muscle contraction using frog sciatic nerve-gastrocnemius muscle model. Caffeine is a xanthine alkaloid whose use is widely unregulated. It is taken as a central nervous system stimulant in various foods and drinks. The effect of caffeine on skeletal muscle contraction and a possible elucidation of its mechanism of action were investigated. The sciatic nerve-gastrocnemius muscle preparation of the frog mounted on a kymograph was utilized. Varying doses of caffeine was added to the organ bath at 5, 10, 15, 20 and 25 mg/mL and its effect on skeletal muscle contraction was studied. The effects of caffeine preceded by administration of acetylcholine, atropine, nifedipine, magnesium chloride and calcium gluconate at 25 mg/mL were also studied. A dose dependent increase in skeletal muscle contraction (25.25±0.48, 49.00±1.23, 52.38±2.58, 59.25±1.11 and 68.50±0.87 mV; p<0.05 was observed on administration of increasing doses (5, 10, 15, 20 and 25 mg/mL, respectively of caffeine respectively. While a significant reduction (0.90±0.04 mV and increase (77.50±1.56 mV in strength of contraction was observed on administration of nifedipine and calcium gluconate respectively. Administration of magnesium chloride caused a significant decrease in the strength of contraction (28.25±5.01 as compared to control. However, there was no significant difference in the contraction period and relaxation period between the treatment groups. The findings imply that caffeine increases skeletal muscle contraction and suggests it exerts the effect through increasing calcium ion release.

  4. Regulatory Action of Calcium Ion on Cyclic AMP-Enhanced Expression of Implantation-Related Factors in Human Endometrial Cells.

    Directory of Open Access Journals (Sweden)

    Kazuya Kusama

    Full Text Available Decidualization of human endometrial stroma and gland development is mediated through cyclic AMP (cAMP, but the role of intracellular calcium ion (Ca2+ on cAMP mediated-signaling in human endometrial stroma and glandular epithelia has not been well-characterized. The present study was designed to investigate the role of intracellular Ca2+ on cAMP mediated-decidualization and gland maturation events, which can be identified by the up-regulation of prolactin and IGF-binding protein (IGFBP1 in human endometrial stromal cells (ESCs, and cyclooxygenase 2 (COX2 and prostaglandin E2 (PGE2 and glandular epithelial EM-1 cells. Increases in decidual prolactin and IGFBP-1 transcript levels, induced by cAMP-elevating agents forskolin or dibutyryl cyclic AMP, were inhibited by Ca2+ influx into ESCs with Ca2+ ionophores (alamethicin, ionomycin in a dose-dependent manner. Conversely, inhibitors of Ca2+ influx through L-type voltage-dependent Ca2+ channel (VDCC, nifedipine and verapamil, enhanced the decidual gene expression. Furthermore, dantrolene, an inhibitor of Ca2+ release from the intracellular Ca2+ store, up-regulated prolactin and IGFBP-1 expression. Ca2+ ionophores decreased intracellular cAMP concentrations, whereas nifedipine, verapamil or dantrolene increased cAMP concentrations in ESCs. In glandular epithelial cells, similar responses in COX2 expression and PGE2 production were found when intracellular cAMP levels were up-regulated by decreases in Ca2+ concentrations. Thus, a marked decrease in cytosolic Ca2+ levels caused the elevation of cAMP concentrations, resulting in enhanced expression of implantation-related factors including decidual markers. These findings suggest that fluctuation in cytosolic Ca2+ concentrations alters intracellular cAMP levels, which then regulate differentiation of endometrial stromal and glandular epithelial cells.

  5. Values of Calcium, Phosphorus and Magnesium Concentrations in Blood Plasma of Cows in Dependence on the Reproductive Cycle and Season

    OpenAIRE

    HADŽIMUSIĆ, Nejra; KRNIĆ, Josip

    2011-01-01

    The research was conducted on 240 clinically healthy Holstein-Friesian cows in various stages of the reproductive cycle (lactation, dry period, and up to 15 days from calving). Sampling was taken during the summer and winter periods. Concentrations of calcium, phosphorus and magnesium in blood plasma were determined by using the appropriate method with the “Beckmann DU-64 UV/VIS” spectrophotometer. Significant differences were determined in the values of concentrations of the exam...

  6. Effects of modulation of calcium levels and calcium fluxes on ABA- induced gene expression in barley aleurone

    NARCIS (Netherlands)

    Meulen, R.M. van der; Visser, K.; Wang, M.

    1996-01-01

    We present data to elucidate the involvement of calcium ions in abscisic acid (ABA)-induced gene expression. Modulation of external calcium concentrations was able to affect ABA-induced specific RAB gene expression. At a constant ABA level with increasing extracellular calcium level, an increasing R

  7. Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin

    Institute of Scientific and Technical Information of China (English)

    Yanhui Li; Yanzhi Xia; Bing Xia; Quansheng Zhao; Fuqiang Liu; Pan Zhang; Qiuju Du; Dechang Wang; Da Li; Zonghua Wang

    2011-01-01

    Kaolin has been widely used as an adsorbent to remove heavy metal ions from aqueous solutions. However, the lower heavy metal adsorption capacity of kaolin limits its practical application. A novel environmental friendly material, calcium alginate immobilized kaolin (kaolin/CA), was prepared using a sol-gel method. The effects of contact time, pH, adsorbent dose, and temperature on Cu2+ adsorption by kaolin/CA were investigated. The Langmuir isotherm was used to describe the experimental adsorption, the maximum Cu2+ adsorption capacity of the kaolin/CA reached up to 53.63 mg/g. The thermodynamic studies showed that the adsorption reaction was a spontaneous and endothermic process.

  8. Postprandial effects of calcium phosphate supplementation on plasma concentration-double-blind, placebo-controlled cross-over human study

    OpenAIRE

    Trautvetter, Ulrike; Kiehntopf, Michael; Jahreis, Gerhard

    2013-01-01

    Background The aim of the present study was to examine the postprandial calcium and phosphate concentrations after supplementation with pentacalcium hydroxy-triphosphate (CaP). Methods Ten men participated in this double-blind, placebo-controlled, cross-over study. The participants were divided into two groups. One group consumed bread enriched with CaP (plus 1 g calcium/d) and the other group a placebo product for three weeks. After a two week wash-out, the intervention was switched between ...

  9. Association between Hypoadiponectinemia and Low Serum Concentrations of Calcium and Vitamin D in Women with Polycystic Ovary Syndrome

    OpenAIRE

    Mazloomi, Sahar; Sharifi, Faranak; Hajihosseini, Reza; Kalantari, Sadroddin; Mazloomzadeh, Saideh

    2012-01-01

    Objective. To investigate the possible association of calcium and vitamin D deficiency with hypoadiponectinemia in women with PCOS. Subjects and Methods. In this case-control study, 103 PCOS cases and 103 controls included. The concentrations of calcium, 25-OH-vitamin D (25OHD), adiponectin, insulin, glucose, total cholesterol, HDL-cholesterol, triglyceride (TG), and androgens were measured in fasting blood samples. Results. Adiponectin (8.4 ± 2.7 ng/mL versus 13.6 ± 5 ng/mL in control group,...

  10. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks.

    Science.gov (United States)

    Çelik, Ekin; Bayram, Cem; Akçapınar, Rümeysa; Türk, Mustafa; Denkbaş, Emir Baki

    2016-09-01

    Peptide based hydrogels gained a vast interest in the tissue engineering studies thanks to great superiorities such as biocompatibility, supramolecular organization without any need of additional crosslinker, injectability and tunable nature. Fmoc-diphenylalanine (FmocFF) is one of the earliest and widely used example of these small molecule gelators that have been utilized in biomedical studies. However, Fmoc-peptides are not feasible for long term use due to low stability and weak mechanical properties at neutral pH. In this study, Fmoc-FF dipeptides were mechanically enhanced by incorporation of alginate, a biocompatible and absorbable polysaccharide. The binary hydrogel is obtained via molecular self-assembly of FmocFF dipeptide in alginate solution followed by ionic crosslinking of alginate moieties with varying concentrations of calcium chloride. Hydrogel characterization was evaluated in terms of morphology, viscoelastic moduli and diffusional phenomena and the structures were tested as 3D scaffolds for bovine chondrocytes. In vitro evaluation of scaffolds lasted up to 14days and cell viability, sulphated glycosaminoglycan (sGAG) levels, collagen type II synthesis were determined. Our results showed that alginate incorporation into FmocFF hydrogels leads to better mechanical properties and higher stability with good biocompatibility. PMID:27207058

  11. Concentration of ions in selected bottled water samples sold in Malaysia

    Science.gov (United States)

    Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala

    2013-03-01

    Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.

  12. Ion Channels, Natural Nanovalves

    OpenAIRE

    Eisenberg, Bob

    2012-01-01

    Ion channels are proteins with holes down their middle that control the flow of ions and electric current across otherwise impermeable biological membranes. The flow of sodium, potassium, calcium (divalent), and chloride ions have been central issues in biology for more than a century. The flow of current is responsible for the signals of the nervous system that propagate over long distances (meters). The concentration of divalent calcium ions is a 'universal' signal that controls many differ...

  13. NIR fluorescence spectroscopic investigations of Er{sup 3+}-ions doped borate based tellurium calcium zinc niobium oxide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, O. [Department of Instrumentation, Sri Venkateswara University, Tirupati 517502 (India); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India); Ramesh, B.; Devarajulu, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Reddy, C. Madhukar [Department of Physics, AP Model School, Yerravaripalem 517194 (India); Linganna, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Reddy, G. Rajasekhar [Department of Instrumentation, Sri Venkateswara University, Tirupati 517502 (India); Raju, B. Deva Prasad, E-mail: drdevaprasadraju@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Future Studies, Sri Venkateswara University, Tirupati 517502 (India)

    2015-08-15

    A series of Er{sup 3+} ions doped tellurium calcium zinc niobium borate glasses were prepared by the melt quenching technique. The prepared samples were investigated by optical absorption and near infrared fluorescence spectroscopic studies. The obtained Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from absorption spectra and their results are studied and compared with reported literature. The stark-level energies of {sup 4}I{sub 13/2} excited and {sup 4}I{sub 15/2} ground states were evaluated by using both the absorption and emission measurements. The effect of Er{sup 3+} ion concentration on the emission intensity of {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition was discussed. Intense and broad 1.53 µm infrared fluorescence is observed at 980 nm diode laser excitation. Photoluminescence (PL) and its decay behavior studies were carried out for the transition {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} at 1.53 µm emission. The broad emission together with higher values of the bandwidth (81 nm), stimulated emission cross-section (32.25×10{sup −22} cm{sup 2}) and lifetime (530 µs for 1.0 mol% of Er{sup 3+}) of level {sup 4}I{sub 13/2} make these glasses attractive for broadband amplifiers. From the analysis of spectroscopic data, the present glass is a prospective photonic material for practical applications in the visible and NIR region. - Highlights: • In this study we prepared TCZNB glasses doped with Er{sup 3+} ions. • Glasses are characterized with absorption, emission and lifetime analysis. • Judd–Ofelt theory is used to calculate radiative properties. • TCZNB glasses could be used as NIR lasers.

  14. NIR fluorescence spectroscopic investigations of Er3+-ions doped borate based tellurium calcium zinc niobium oxide glasses

    International Nuclear Information System (INIS)

    A series of Er3+ ions doped tellurium calcium zinc niobium borate glasses were prepared by the melt quenching technique. The prepared samples were investigated by optical absorption and near infrared fluorescence spectroscopic studies. The obtained Judd–Ofelt intensity parameters Ωλ (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from absorption spectra and their results are studied and compared with reported literature. The stark-level energies of 4I13/2 excited and 4I15/2 ground states were evaluated by using both the absorption and emission measurements. The effect of Er3+ ion concentration on the emission intensity of 4I13/2→4I15/2 transition was discussed. Intense and broad 1.53 µm infrared fluorescence is observed at 980 nm diode laser excitation. Photoluminescence (PL) and its decay behavior studies were carried out for the transition 4I13/2→4I15/2 at 1.53 µm emission. The broad emission together with higher values of the bandwidth (81 nm), stimulated emission cross-section (32.25×10−22 cm2) and lifetime (530 µs for 1.0 mol% of Er3+) of level 4I13/2 make these glasses attractive for broadband amplifiers. From the analysis of spectroscopic data, the present glass is a prospective photonic material for practical applications in the visible and NIR region. - Highlights: • In this study we prepared TCZNB glasses doped with Er3+ ions. • Glasses are characterized with absorption, emission and lifetime analysis. • Judd–Ofelt theory is used to calculate radiative properties. • TCZNB glasses could be used as NIR lasers

  15. A COMPARATIVE PHARMACEUTICAL STUDY ON CA (ION) SUBSTANCES OF VARIOUS AYURVEDIC CALCIUM COMPOUNDS

    OpenAIRE

    Saini Vinod; Shah Deepti; Mangal Gopesh; Garg Gunjan; Swarnkar Divya Prakash

    2013-01-01

    Various Ayurvedic calcium compounds, which are among the sudha vargiya dravya, are a rich source of calcium. These calcium compounds have wide range of therapeutic application. In chemical composition these compounds are same hence the present study was aimed to identify the rich percentage of calcium (as CaO) in these Bhasmas. Preparation of Ayurvedic calcium compounds i.e. praval bhasma, shankha bhasma, shukti bhasma, varatika bhasma, godanti bhasma and kukkutandatvak bhasma was done by sub...

  16. Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields.

    Science.gov (United States)

    Yoo, Jejoong; Wilson, James; Aksimentiev, Aleksei

    2016-10-01

    Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016. PMID:27144470

  17. Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations.

    Directory of Open Access Journals (Sweden)

    Conall M O'Seaghdha

    Full Text Available Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in ≤ 21,679 additional individuals. Seven loci (six new regions in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12, rs10491003 upstream of GATA3 (P = 4.8E-09 and rs7481584 in CARS (P = 1.2E-10 implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11, also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10 are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.

  18. Breeding of sunflower for salt tolerance: estimation of ion concentration in sunflower (helianthus annuus L.) seedling

    International Nuclear Information System (INIS)

    The experiment was conducted to estimate variability and effect of three artificially induced electrical conductivities on ions concentrations in sunflower seedling leaves. There was no exception in case of CT concentration and all the genotypes showed increase in CT concentration in their seeding leaves, however, some increase in salinity. Similarly Na ion did not show any increase while some genotypes even decreased Na ion concentration in their seedling leaves with increase while some genotypes even decreased Na ion concentration in their seedling leaves with increase in salinity. Potassium ion concentration decrease with increase in salinity but some genotypes showed the ability to maintain K ion concentration in seedling leaves. Thus there appeared two mechanisms of salinity tolerance in sunflower; either by maintaining Na+ at lower level or K ion at higher level and keeping K/sup +/Na/sup +/ ratio favourable in young growing seeding leaves. (author)

  19. Aluminium and calcium ions binding to pectin in sugar beet juice: Model of electrical double layer

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2014-01-01

    Full Text Available In sugar industry, there is a problem of the presence of undesirable macromolecules such as pectins in sugar beet juice. Separation of these compounds is done mostly by CaO. Calcium may cause undesirable process of alkalization of soil in the near environment of the sugar factory. The theoretical basis of new juice purificatin method based on the application of Al2(SO43, CaSO4 and their mixtures are presented. Two model solutions of pectin (0.1 % w/w are investigated using a method of measuring zeta potential. Pure salts Al2(SO43 and CaSO4, showed better binding properties with the pectin than mixtures. Amount of all studied pure salts and mixtures of Al3+ and Ca2+ ions were significantly less (142 - 710 mg/gpectin than the average amount of CaO used in classical process (about 9 g/gpectin. Mechanism of discharge of pectin macromolecules in the presence of mixtures of these ions using a model of double electric layer are suggested.

  20. The role of the counter-ions present in syntheses on the thermal stabilization of strontium and/or calcium apatites

    Energy Technology Data Exchange (ETDEWEB)

    Melo da Silva, Leila; Santos Menezes, Daniela dos; Almeida, Luis Eduardo [Laboratório de Biomateriais – P" 2CEM, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe (Brazil); Anselme, Karine; Dentzer, Joseph [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR7361, Université de Haute-Alsace, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Araujo dos Santos, Euler, E-mail: euler@ufs.br [Laboratório de Biomateriais – P" 2CEM, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe (Brazil)

    2015-09-15

    Highlights: • Counter-ions present in syntheses can affect thermal stabilization of apatites. • Ions with different charges and sizes can stabilize the apatite structure. • Co-substitution is an important way to design biomimetic hydroxyapatites. - Abstract: The goal of this work was to study the thermal stabilization of calcium apatites in which the Ca{sup 2+} ions were substituted for Sr{sup 2+} in increasing concentrations via ionic co-substitutions. Two distinct standard syntheses were proposed for comparative purposes: one using counter-ions that were not easily incorporated into the apatite structure (NH{sub 4}{sup +}/NO{sub 3}{sup −}) and one using counter-ions that can be easily incorporated into the structure (Na{sup +}/Cl{sup −}). After calcination, only the apatites synthesized in the presence of NH{sub 4}{sup +}/NO{sub 3}{sup −} presented phase transformation. In contrast, the apatites synthesized in the presence of Na{sup +}/Cl{sup −} formed a solid solution after calcination, with Na{sup +}, Ca{sup 2+}, Sr{sup 2+} and Cl{sup −} sharing the same apatite lattice. Wavelength dispersive X-ray fluorescence spectroscopy (WDXRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and temperature-programmed desorption (TPD) techniques showed that the counter-ions present during the syntheses that are associated with CO{sub 3}{sup 2−} play an important role in the thermal stabilization of the apatites.

  1. The role of the counter-ions present in syntheses on the thermal stabilization of strontium and/or calcium apatites

    International Nuclear Information System (INIS)

    Highlights: • Counter-ions present in syntheses can affect thermal stabilization of apatites. • Ions with different charges and sizes can stabilize the apatite structure. • Co-substitution is an important way to design biomimetic hydroxyapatites. - Abstract: The goal of this work was to study the thermal stabilization of calcium apatites in which the Ca2+ ions were substituted for Sr2+ in increasing concentrations via ionic co-substitutions. Two distinct standard syntheses were proposed for comparative purposes: one using counter-ions that were not easily incorporated into the apatite structure (NH4+/NO3−) and one using counter-ions that can be easily incorporated into the structure (Na+/Cl−). After calcination, only the apatites synthesized in the presence of NH4+/NO3− presented phase transformation. In contrast, the apatites synthesized in the presence of Na+/Cl− formed a solid solution after calcination, with Na+, Ca2+, Sr2+ and Cl− sharing the same apatite lattice. Wavelength dispersive X-ray fluorescence spectroscopy (WDXRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and temperature-programmed desorption (TPD) techniques showed that the counter-ions present during the syntheses that are associated with CO32− play an important role in the thermal stabilization of the apatites

  2. Spatial Distribution Characteristics of Negative Air Ion Concentrations in Danqinghe Experimental Forest,Harbin City

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In recent years, air ions, especially of negative air ion has received a universal attention for its health function. The density of negative air ion has become one of the important indexes that measure the air quality grade. With the air ions counter made in Japan, the spatial distribution characteristics of negative air concentrations at specific time in Danqinghe Experimental Forest were measured and studied, Harbin City, and the air quality was assessed by using ion polarity ration (q) and air ion asses...

  3. Response of plant growth to low calcium concentration in the nutrient solution

    OpenAIRE

    Amor, del, F.M.; Marcelis, L.F.M.

    2005-01-01

    Many studies have indicated the importance of calcium in fruit disorders. This nutrient is often applied in the nutrient solution in relatively high amounts throughout the crop season, usually without taking into account the physiological stage of the plant. Our study aimed to determine the effect of calcium supply on growth of young, vegetative tomato plants. The experiment was carried out in a growth chamber under fully controlled climate conditions. Treatments consisted of four periods of ...

  4. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma

    International Nuclear Information System (INIS)

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λL=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of Tr=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is Tr=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is inertially and

  5. Effect of calcium silicate slag application on radium-226 concentrations in plant tissues

    International Nuclear Information System (INIS)

    A greenhouse pot experiment was conducted to determine if plants absorb Ra from slag applied to soil. Slag at rates equivalent to 0 and 22 mt/ha was mixed with Mountview silt loam (Typic Paleudults) limed to pH 5.8 and 7.2. Three clippings each of fescue (Festuca arundiancea Schreb.), and Swiss chard (Beta vulgaris L.), and one harvest of wheat (Triticum aestivum L.) for grain and straw were grown on separate series of treated soil, and plant samples were analyzed for radioactivity due to 226Ra uptake. Samples of sugarcane (Saccharum officinarum L.) forage and extracted juice from field experiments in Florida testing this slage as a Si source also were analyzed for radioactivity. Dry forage yields of fescue and wheat were not affected by slag applications, but those of Swiss chard were somewhat higher on slag-treated soil at pH 5.8. Wheat grain and straw yields were higher on soil at pH 7.2 than at pH 5.8 regardless of slag treatment. Uptake of 226Ra by fescue forage and wheat grain and straw was not affected by slag application. Concentrations of 226Ra were similar in forage and extracted juice from untreated sugarcane or that treated with slag at rates up to 5.6 mt/ha. These results suggest that plant uptake of radionuclides is negligible from calcium silicate slag applied at the recommended rates for liming acid soils or as a source of Si for sugarcane

  6. Effect of Concentration of Structurally-Different Carboxylic Acids on Growth and Aggregation of Calcium Oxalate in Gel Systems

    Institute of Scientific and Technical Information of China (English)

    DENG,Sui-Ping; OUYANG,Jian-Ming

    2007-01-01

    The effect of concentration of structurally-different carboxylic acids such as ethylene diamine tetraacetic acid (H4edta), citric acid (H3cit), tartaric acid (H2tart), and acetic acid (HOAc) on growth and aggregation of calcium oxalate (CaOxa) in gel systems was comparatively investigated. H2tart and H3cit could change the morphology of calcium oxalate monohydrate (COM) and induce the formation of calcium oxalate dihydrate (COD). H4edta could induce the formation of COD at a lower concentration of 0.33 mmol/L and have the strongest ability to inhibit aggregation of COM. HOAc inhibited COM aggregation only at a higher concentration than 500 mmol/L. With increasing the number of carboxylic groups in an acid or increasing the concentration of carboxylic acid, the capacity of this acid to induce COD formation and to inhibit growth and aggregation of COM crystals increased. That is, this capacity followed the order: H4edta>H3cit>H2tart>>HOAc. The result in this work suggested that the presence of H3cit and H2tart in urine played a role in the natural defense against stone formation.

  7. Enhancement of struvite purity by re-dissolution of calcium ions in synthetic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hun; Yoo, Byeoung-Hak; Kim, Sun-Kyoung; Lim, Seung Joo; Kim, Jun Young; Kim, Tak-Hyun, E-mail: tkhk@kaeri.re.kr

    2013-10-15

    Highlights: • In synthetic wastewaters, dynamic Ca removals were characterized along struvite formation. • Ca{sup 2+} and PO{sub 4}{sup 3−} ions were quickly removed from the wastewaters by precipitation. • The precipitated PO{sub 4}{sup 3−} with Ca could be dissolved and used for struvite formation. -- Abstract: Although it is widely known that the presence of Ca ions inhibits the nucleation and growth of struvite, which consists of NH{sub 4}{sup +}, PO{sub 4}{sup 3−}, and Mg{sup 2+}, there is a lack of knowledge on actual Ca contents in struvite co-precipitates at various N and P concentrations and the corresponding effects on the sizes of the precipitates. Therefore, to address this challenge, this study designed synthetic wastewaters including the variety of N and P concentrations, and conducted batch experimental reactions with each wastewater to investigate Ca precipitation and size distributions of the precipitates. The molar ratio of Mg:P:N was confined to 1:1:7, while the initial Ca{sup 2+} concentrations were chosen to be 30–60 mg/L, which are typical Ca concentrations in real wastewaters. The result of the batch experiments confirmed that the presence of Ca caused smaller solids than struvite as indicated in previous studies, and there was competition between Ca-phosphate and Mg-N- PO{sub 4} (struvite) reactions, as expected. At the beginning of the experiment (∼1 min), fast Ca-phosphate precipitation was dominant because free Ca and P ions were quickly removed while Mg and N concentrations gradually reduced. However, as the nucleation and crystal growth processes elapsed, dissolved Mg and N concentrations continuously decreased, but dissolved Ca concentrations could rise again at high N and P concentration conditions. The interesting phenomenon is that such increases of Ca concentrations probably results from the thermodynamic energy differences between struvite and Ca-phosphate formations. A high thermodynamic driving force of struvite

  8. Synthesis of calcium arsenoalginate form elimination the arseniate ions in contaminated water

    International Nuclear Information System (INIS)

    Synthesis of calcium arsenoalginate was optimized using common sodium alginate, CaCl2 and NaH2AsO4 which brought the arsenic. In order to evaluate the co-precipitation efficiency and elimination of arsenic, several concentrations of as, ranging from 20 to 1000 μg.L1 was tested including real contaminated water containing 480 μgL1 of arsenic. optimized results, by means of factorial design matrix, pointed out the best synthesis conditions; sodium alginate concentration of 1.0 gL1 pH 6, CaCl2 concentration between 400-500 mgL1 and room temperature. Re-dissolution of the precipitates is promoted than sedimentation when temperature is greater than room temperature. The precipitates are crystalline solids that in future studies will be characterized more extensively in order to elucidate potential applications. In contaminated water the arsenic was eliminated with an efficiency of 96% these result allows to consider that is possible to reduce arsenic concentration until levels according to Mexican standard

  9. AMPHOTERIC COLLOIDS : I. CHEMICAL INFLUENCE OF THE HYDROGEN ION CONCENTRATION.

    Science.gov (United States)

    Loeb, J

    1918-09-20

    1. It has been shown in this paper that while non-ionized gelatin may exist in gelatin solutions on both sides of the isoelectric point (which lies for gelatin at a hydrogen ion concentration of C(H) = 2.10(-5) or pH = 4.7), gelatin, when it ionizes, can only exist as an anion on the less acid side of its isoelectric point (pH > 4.7), as a cation only on the more acid side of its isoelectric point (pH writer's previous papers. 4. The reason for this influence of the hydrogen ion concentration on the stability of the two forms of ionization possible for an amphoteric electrolyte is at present unknown. We might think of the possibility of changes in the configuration or constitution of the gelatin molecule whereby ionized gelatin can exist only as an anion on the alkaline side and as a cation on the acid side of its isoelectric point. 5. The literature of colloid chemistry contains numerous statements which if true would mean that the anions of neutral salts act on gelatin on the alkaline side of the isoelectric point, e.g. the alleged effect of the Hofmeister series of anions on the swelling and osmotic pressure of common gelatin in neutral solutions, and the statement that both ions of a neutral salt influence a protein simultaneously. The writer has shown in previous publications that these statements are contrary to fact and based on erroneous methods of work. Our present paper shows that these claims of colloid chemists are also theoretically impossible. 6. In addition to other physical properties the conductivity of gelatin previously treated with acids has been investigated and plotted, and it was found that this conductivity is a minimum in the region of the isoelectric point, thus confirming the conclusion that gelatin can apparently not exist in ionized condition at that point. The conductivity rises on either side of the isoelectric point, but not symmetrically for reasons given in the paper. It is shown that the curves for osmotic pressure, viscosity

  10. Separation and determination of calcium and iron in silicon matrix using ion chromatography

    International Nuclear Information System (INIS)

    Ion chromatographic (IC) methods for the determination of Ca and Fe in silicon matrix were developed. The methods involve the removal of Si as SiF4 by the addition of calculated amount of HF. The IC separation of Ca from other metal ions was carried out on a cation exchange column using 0.02 N H2SO4 as eluent with suppressed conductivity detection. The developed method was calibrated in the concentration range between 0.05 and 5 ppm and the linear correlation coefficient was found to be 0.998. Iron determination was carried out on a RP column dynamically modified with 5 mM camphor-10-sulphonic acid and 0.2 M mandelic acid at pH 3.8 as eluent. A linear calibration was obtained in the concentration range between 0.5 and 25 ppm of Fe (R2 = 0.9998). (author)

  11. Characterisation of calcareous deposits by electrochemical methods: role of sulphates, calcium concentration and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Barchiche, Chems; Deslouis, Claude; Gil, Otavio; Refait, Philippe; Tribollet, Bernard

    2004-07-30

    Mineral deposits consisting of CaCO{sub 3} and Mg(OH){sub 2} develop on steel surfaces immersed in seawater, whenever a cathodic protection is applied. The kinetics of their formation depends on various factors, such as temperature, applied potential, electrolyte composition and stirring. In this study, the cross effects between the deposition of CaCO{sub 3} and that of Mg-containing compounds was investigated by varying the [Ca{sup 2+}] concentration of the electrolyte. Chronoamperometry and electrochemical impedance spectroscopy (EIS) were used to monitor the formation of the deposits whereas scanning electron microscopy was performed to characterise the deposits. At a potential of -1.0 V/SCE, an increase of temperature accelerated the deposition of CaCO{sub 3}, whereas at -1.2 V/SCE it modified the composition, favouring Mg(OH){sub 2}. The presence of SO{sub 4}{sup 2-} anions proved to hinder the deposition of CaCO{sub 3}. For instance, at a concentration of 50% [Ca{sup 2+}]{sub ref} (standard seawater reference), a compact deposit covered totally a steel surface immersed in a sulphate free solution, whereas less than half of the surface was covered when SO{sub 4}{sup 2-} ions were present.

  12. Characterisation of calcareous deposits by electrochemical methods: role of sulphates, calcium concentration and temperature

    International Nuclear Information System (INIS)

    Mineral deposits consisting of CaCO3 and Mg(OH)2 develop on steel surfaces immersed in seawater, whenever a cathodic protection is applied. The kinetics of their formation depends on various factors, such as temperature, applied potential, electrolyte composition and stirring. In this study, the cross effects between the deposition of CaCO3 and that of Mg-containing compounds was investigated by varying the [Ca2+] concentration of the electrolyte. Chronoamperometry and electrochemical impedance spectroscopy (EIS) were used to monitor the formation of the deposits whereas scanning electron microscopy was performed to characterise the deposits. At a potential of -1.0 V/SCE, an increase of temperature accelerated the deposition of CaCO3, whereas at -1.2 V/SCE it modified the composition, favouring Mg(OH)2. The presence of SO42- anions proved to hinder the deposition of CaCO3. For instance, at a concentration of 50% [Ca2+]ref (standard seawater reference), a compact deposit covered totally a steel surface immersed in a sulphate free solution, whereas less than half of the surface was covered when SO42- ions were present

  13. Influence of lactose on the diffusion of calcium ions at physiological temperature.

    Science.gov (United States)

    Verissimo, Luis M P; Ribeiro, Vânia C M; Ribeiro, Ana C F; Melia Rodrigo, M; Esteso, Miguel A

    2014-11-15

    Mutual diffusion coefficients for calcium chloride (0.100 mol dm(-3)) in aqueous solutions containing lactose at various concentrations (from 0.005 to 0.200 mol dm(-3)) have been measured at 37°C (physiological temperature), by using a conductimetric cell coupled to an automatic system to follow the diffusion. This cell uses an open-ended capillary method based on the measurement of the electrical resistance of a solution placed inside the capillaries at recorded times. The analysis of the CaCl2 diffusion coefficient values obtained suggests the presence of some CaCl2/lactose aggregates in the media, which are influenced by the temperature. PMID:24912727

  14. Ion exchange method for calcium isolation from solutions of zinc, cadmium, and cobalt salts

    International Nuclear Information System (INIS)

    A method for isolating impurity amounts of calcium from zinc, cadmium and cobalt salts has been suggested. The method consists in dissolution of the above-mentioned metal salts in ammonia solution, selective sorption of calcium impurities from solutions prepared on carboxylic cationite with subsequent calcium desorption by mineral acid solution. 4 refs.; 2 figs

  15. Cell growth, intracellular calcium concentration and metabolic cooperation measured in cells exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Colony-forming efficiency, DNA/protein and DNA/cell were measured in cells exposed to magnetic fields of 0.2 and 1 mT at a frequency of 50 Hz. Intracellular calcium concentrations were measured in cells exposed to 0.3 and 1 mT at 50 Hz. Metabolic cooperation was measured in cells exposed to 1 mT at 50 Hz. No significant effects of the fields were observed. 20 refs., 10 figs

  16. Determination of Major Ions Concentrations in Kelantan Well Water Using EDXRF and Ion Chromatography

    International Nuclear Information System (INIS)

    Well water is a renewable natural resources and one of the drinking water sources for many areas in Kelantan. The assessment of well water quality is very important in evaluating the suitability of the water for drinking and other domestic purposes. Major ions such as K+, Ca2+ and Na+ in well water may originated from dissolved mineral composition of the underground rocks and soil mainly granitic in origin. The objective of this study is to determine the concentration of K+ and Ca2+ using Energy Dispersive X-ray Fluorescence (EDXRF), whereas F-, Cl- and SO42- were determined by ion chromatography (IC) in the well water collected from various districts of Kelantan. The well water samples were collected from Gua Musang, Jeli and Tanah Merah districts. In situ measurement of water quality parameters such as temperature, pH, salinity, dissolve oxygen (DO), conductivity, turbidity and total dissolved solids (TDS) were conducted using YSI portable multi-probes meter. The concentrations of K+ and Ca2+ were measured and found in the range of 227.89 - 691.44 and 0 - 36.71 ppm respectively. The concentration of Cl-, SO42- and F- were measured and found on the ranged of 2.08 - 17.0, 0.71 - 13.10 and 0 - 3.54 ppm respectively. (author)

  17. Influence of salinity and supplementary calcium on vegetative growth, fruit yield and concentration of some nutrients in hydroponically-grown strawberry

    Directory of Open Access Journals (Sweden)

    N. Karimian1

    2011-07-01

    Full Text Available Optimum level of calcium (Ca in saline soils is a critical factor in controlling the toxic effect of some ions, especially in plants sensitive to sodium (Na and chlorine (Cl damage. To evaluate the effect of salinity and supplementary calcium (S-Ca on vegetative growth, fruit yield and concentration of some nutrients in roots, shoots, and fruits of strawberry (Fragaria ananaassa Duch cv. Selva, a greenhouse experiment was carried out in 5×3 factorial experiment arranged in a completely randomized design with three replications. Treatments included three levels of salinity (0, 20, and 40 mM as NaCl and five levels of supplementary Ca (0, 5, and 10 mM added to nutrient solution, 0.5 and 1% foliar application as CaCl2. The results showed that addition of NaCl to nutrient solution, negatively affected root and shoot dry weight and fruit fresh weight. Reduction of shoot dry weight and fruit fresh weight were higher than those of roots. Application of S-Ca not only did not improve the vegetative growth and fruit yield, but rather decreased them. Salinity (NaCl treatments increased the concentration of Na in roots, shoots and fruits but application of 5 and 10 mM S-Ca levels decreased Na concentration in roots. By addition of NaCl to nutrient solution, the shoot Ca concentration was decreased in some treatments, but roots and fruits’ Ca concentration was not affected. Application of S-Ca increased Ca concentration in all organs of strawberry plants. By application of NaCl, potassium (K concentration was decreased in roots, but increased in fruits and was not affected in shoots. K concentration did not change in roots in the S-Ca applied treatments, but decreased in shoots and increased in fruits. Simultaneous application of salinity and S-Ca decreased roots’ magnesium concentration in all treatments and shoots and fruits’ concentration in some treatments. In general, although supplementary Ca increased its concentration in different plant organs

  18. The Effects of Bee Venom on PLA2 and Calcium Concentration in Raw 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jong-Il Yun

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide, sodium nitroprusside and hydrogen peroxide induced expression phospholipase A2 and calcium concentration in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of phospholipase A2 was determined by western blotting with corresponding antibodies, and the generation of intracellular calcium concentration was investigated by delta scan system in RAW 264.7 cells. Results : 1. Compared with control, expressions of lipopolysaccharide-induced phospholipase A2 were decreased significantly by 1 ㎍/㎕ of bee venom and decreased by 0.5, 5 ㎍/㎕ of bee venom. 2. Compared with control, expressions of sodium nitroprusside-induced phospholipase A2 were decreased significantly by 5 ㎍/㎕ of bee venom but increased by 0.5, 5 ㎍/㎕ of bee venom. 3. Compared with control, expressions of hydrogen peroxide-induced phospholipase A2 were decreased significaltly by 1 ㎍/㎕ of bee venom and decreased by 0.5 ㎍/㎕ of bee venom but increased by 5 ㎍/㎕ of bee venom. 4. Compared with control, lipopolysaccharide, sodium nitroprusside and hydrogen peroxide- induced intracellular calcium concentrations were decreased by 0.5, 1, 5 ㎍/㎕ of bee venom and by indomethacin

  19. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through ERK activation by elevating intracellular calcium concentration

    International Nuclear Information System (INIS)

    Sonic Hedgehog (Shh), a member of hedgehog peptides family, is expressed in gastric gland epithelium. To elucidate Shh function to gastric mucosal cells, we examined the effect of Shh on the proliferation of a rat normal gastric mucosal cell line, RGM-1. RGM-1 cells express essential components of Shh receptor system, patched-1, and smoothened. Shh enhanced DNA synthesis in RGM-1 cells and elevated intracellular calcium concentration ([Ca2+]i). In addition, Shh as well as calcium ionophore A32187 rapidly activated ERK. However, Shh failed to activate ERK under calcium-free culture condition. Pretreatment of cells with PD98059 attenuated the DNA synthesis promoted by Shh. Moreover, when cells were pretreated with cyclopamine, Shh could not elevate [Ca2+]i, activate ERK or promote DNA synthesis. On the other hand, although Shh induced Gli-1 nuclear accumulation in RGM-1 cells, Shh activated ERK even in cells pretreated with actinomycin D. These results indicate that Shh promotes the proliferation of RGM-1 cells through an intracellular calcium- and ERK-dependent but transcription-independent pathway via Patched/Smoothened receptor system

  20. Sorption of UO22+ on calcium carbonate

    International Nuclear Information System (INIS)

    Sorption of uranyl ions on calcium carbonate from aqueous solutions featuring different concentration of calcium nitrate was studied experimentally. It is shown that uranium sorption decreases with calcium concentration growth in solution, irrespective of the ratio of solid phase and solution masses. Specific sorption of uranium per unit of the sorbent surface depends linearly on the ratio of UO22+ and Ca2+ ions activities in solution with proportionality factor (sorption equilibrium constant) 1.71 ± 0.16 mol/m2 at 20 deg C

  1. Mitochondrial dysfunction induced by different concentrations of gadolinium ion.

    Science.gov (United States)

    Zhao, Jie; Zhou, Zhi-Qiang; Jin, Jian-Cheng; Yuan, Lian; He, Huan; Jiang, Feng-Lei; Yang, Xiao-Gang; Dai, Jie; Liu, Yi

    2014-04-01

    Gadolinium-based compounds are the most widely used paramagnetic contrast agents in magnetic resonance imaging on the world. But the tricationic gadolinium ion (Gd(3+)) could induce cell apoptosis probably because of its effects on mitochondria. Until now, the mechanism about how Gd(3+) interacts with mitochondria is not well elucidated. In this work, mitochondrial swelling, collapsed transmembrane potential and decreased membrane fluidity were observed to be important factors for mitochondrial permeability transition pore (mtPTP) opening induced by Gd(3+). The protection effect of CsA (Cyclosporin A) could confirm high concentration of Gd(3+) (500 μM) would trigger mtPTP opening. Moreover, mitochondrial outer membrane breakdown and volume expansion observed clearly by transmission electron microscopy and the release of Cyt c (Cytochrome c) could explain the mtPTP opening from another aspect. In addition, MBM(+) (monobromobimane(+)) and DTT (dithiothreitol) could protect thiol (-SH) groups from oxidation so that the toxicity of Gd(3+) might be resulted from the chelation of -SH of membrane proteins by free Gd(3+). Gd(3+) could inhibit the initiation of mitochondrial membrane lipid peroxidation, so it might interact with anionic lipids too. These findings will highly contribute to the safe applications of Gd-based agents. PMID:24321333

  2. Fractionation of inorganic arsenic by adjusting hydrogen ion concentration.

    Science.gov (United States)

    Oliveira, Andrea; Gonzalez, Mario Henrique; Queiroz, Helena Müller; Cadore, Solange

    2016-12-15

    The inorganic fraction of arsenic species, iAs=∑[As(III)+As(V)] present in fish samples can be quantified in the presence of other arsenic species also found in fishes, such as: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB). The toxic arsenic fraction was selected taking into account the dissociation constants of these arsenic species in different hydrogen ions concentration leading to the arsine formation from iAs compounds detected as As(III) by HG AAS. For thus, a microwave assisted extraction was carried out using HCl 1molL(-1) in order to maintain the integrity of the arsenic species in this mild extraction media. Recovery experiments were done for iAs fraction, in the presence of other arsenic species. The recovery values obtained for iAs fraction added were quantitative about 87-107% (for N=3, RSD⩽3%). The limit of detection (LOD), and the limit of quantification (LOQ), were 5μgkg(-1) and 16μgkg(-1) respectively. PMID:27451157

  3. Preparation of porous nano-calcium titanate microspheres and its adsorption behavior for heavy metal ion in water

    International Nuclear Information System (INIS)

    Using D311 resin as a template, porous nano-calcium titanate microspheres (PCTOM) were prepared by a citric acid complex sol-gel method and characterized by X-ray diffraction (XRD), SEM and FTIR. The method's adsorption capabilities for heavy metal ions such as lead, cadmium and zinc were studied and adsorption and elution conditions were investigated. Moreover, taking the cadmium ion as an example, the thermodynamics and kinetics of the adsorption were studied. The results show that the microspheres were porous and were made of perovskite nano-calcium titanate. The lead, cadmium and zinc ions studied could be quantitatively retained at a pH value range of 5-8. The adsorption capacities of PCTOM for lead, cadmium and zinc were found to be 141.8 mg g-1, 18.0 mg g-1 and 24.4 mg g-1 respectively. The adsorption behavior followed a Langmuir adsorption isotherm and a pseudo-second-order kinetic model, where adsorption was an endothermic and spontaneous physical process. The adsorbed metal ions could be completely eluated using 2 mol L-1 HNO3 with preconcentration factors over 100 for all studied heavy metal ions. The method has also been applied to the preconcentration and FAAS determination of trace lead, cadmium and zinc ion in water samples with satisfactory results.

  4. pH and calcium ion release evaluation of pure and calcium hydroxide-containing Epiphany for use in retrograde filling

    Directory of Open Access Journals (Sweden)

    Mário Tanomaru-Filho

    2011-02-01

    Full Text Available OBJECTIVE: Hydroxyl (OH- and calcium (Ca++ ion release was evaluated in six materials: G1 Sealer 26, G2 White mineral trioxide aggregate (MTA, G3 Epiphany, G4 Epiphany + 10% calcium hydroxide (CH, G5 Epiphany + 20% CH, and G6 zinc oxide and eugenol. MATERIAL AND METHODS: Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. RESULTS: G1, G2, G4, and G5 had the highest pH until 14 days (p<0.05. G1 presented the highest Ca++ release until 6 h, and G4 and G5, from 12 h through 14 days. Ca++ release was greater for G1 and G2 at 28 days. G6 released the least Ca++. CONCLUSIONS: MTA, Sealer 26, Epiphany, and Epiphany + CH release OH- and Ca++ ions. Epiphany + CH may be an alternative as retrofilling material.

  5. Variation and balance of positive air ion concentrations in a boreal forest

    Science.gov (United States)

    Hõrrak, U.; Aalto, P. P.; Salm, J.; Komsaare, K.; Tammet, H.; Mäkelä, J. M.; Laakso, L.; Kulmala, M.

    2008-02-01

    Air ions are characterized on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. The air ions were discriminated as small ions (charged molecular aggregates of the diameter of less than 2.5 nm), intermediate ions (charged aerosol particles of the diameter of 2.5-8 nm), and large ions (charged aerosol particles of the diameter of 8-20 nm). Statistical characteristics of the ion concentrations and the parameters of ion balance in the atmosphere are presented separately for the nucleation event days and non-event days. In the steady state, the ionization rate is balanced with the loss of small ions, which is expressed as the product of the small ion concentration and the ion sink rate. The widely known sinks of small ions are the recombination with small ions of opposite polarity and attachment to aerosol particles. The dependence of small ion concentration on the concentration of aerosol particles was investigated applying a model of the bipolar diffusion charging of particles by small ions. When the periods of relative humidity above 95% and wind speed less than 0.6 m s-1 were excluded, then the small ion concentration and the theoretically calculated small ion sink rate were closely negatively correlated (correlation coefficient -87%). However, an extra ion loss term of the same magnitude as the ion loss onto aerosol particles is needed for a quantitative explanation of the observations. This term is presumably due to the small ion deposition on coniferous forest. The hygroscopic growth correction of the measured aerosol particle size distributions was also found to be necessary for the proper estimation of the ion sink rate. In the case of nucleation burst events, the concentration of small positive ions followed the general balance equation, no extra ion loss in addition to the deposition on coniferous forest was detected, and the hypothesis of the conversion of ions

  6. Effect of insoluble calcium concentration on endogenous syneresis rate in rennet-coagulated bovine milk.

    Science.gov (United States)

    Choi, J; Horne, D S; Lucey, J A

    2015-09-01

    constant for endogenous syneresis. In the EDTA trial, with an increase in the EDTA concentration no maximum was observed in the rate constants related to proteolysis of κ-casein hairs or crosslinking of these activated sites. The rate constant for endogenous syneresis decreased at higher EDTA levels. The different rheological/modeling behavior in the EDTA trials was likely due to the very significant inhibition of rennet gelation induced by the use of EDTA, which also resulted in extremely long reaction times. Our modified Carlson model fit our experimental pH trial data very well, which indicates that the rennet gel system has the potential to synerese from the start; indeed this ability is an innate property of the casein micelle. Endogenous syneresis was enhanced by the loss of insoluble calcium phosphate crosslinking within casein micelles as this increased bond mobility within rennet gels. PMID:26188568

  7. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution.

    Science.gov (United States)

    Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I

    2014-03-01

    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests. PMID:24670353

  8. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: Comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution

    Directory of Open Access Journals (Sweden)

    Stojković Aleksandra

    2014-03-01

    Full Text Available Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO42(Cl2(ciprofloxacin2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  9. Effects of destruxins on free calcium and hydrogen ions in insect hemocytes.

    Science.gov (United States)

    Chen, Xiu-Run; Hu, Qiong-Bo; Yu, Xiao-Qiang; Ren, Shun-Xiang

    2014-02-01

    Destruxins, cyclohexadepsipeptidic mycotoxins isolated from the entomopathogenic fungus Metarhizium anisopliae, inhibit innate insect immunity. However, their mechanism of action remains unclear. In this study, the effects of destruxins on changes in free calcium and hydrogen ions in the hemocytes of Exolontha serrulata, Bombyx mori and the Spodoptera litura SL-1 cell line were detected using laser scanning confocal microscopy (LSCM). An instant Ca(2+) influx of hemocytes induced by destruxins A and B (DA and DB) was recorded. The DA/DB-dependent Ca(2+) influx was not influenced by the Ca(2+) channel inhibitors 2-aminoethoxydiphenyl borane (2-APB) and U73122. It also had an apparently different LSCM profile from that of the ionomycin-dependent Ca(2+) influx. However, the instant Ca(2+) influx was not seen in the SL-1 cells; on the contrary, a slow, moderate enhancement of intracellular Ca(2+) was observed. Meanwhile, an instant intracellular free H(+) decrease aroused by DA and DB was found. DB at 20 μmol/L and DA at 690 μmol/L significantly reduced intracellular free H(+) levels. Furthermore, the vacuolar H(+)-ATPase (V-ATPase) inhibitor bafilomycin A1 had obvious effects on the decreases of intracellular free H(+) in hemocytes. These results suggest that the mechanism of DA/DB-dependent Ca(2+) influx is perhaps not related to Ca(2+) channels and ionophores; rather, the intracellular free H(+) decrease might be due to V-ATPase inhibition. PMID:23956215

  10. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    Science.gov (United States)

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa. PMID:26408812

  11. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.

    2009-12-01

    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  12. Response of plant growth to low calcium concentration in the nutrient solution

    NARCIS (Netherlands)

    Amor, del F.M.; Marcelis, L.F.M.

    2005-01-01

    Many studies have indicated the importance of calcium in fruit disorders. This nutrient is often applied in the nutrient solution in relatively high amounts throughout the crop season, usually without taking into account the physiological stage of the plant. Our study aimed to determine the effect o

  13. Influence of calcium foliar fertilization on plant growth, nutrient concentrations, and fruit quality of papaya.

    Science.gov (United States)

    Calcium (Ca) is a major plant nutrient that affects cell wall and plasma membrane formation and plays a key role in plant growth and biomass production. It can be used to decrease fruit decay and increase firmness and shelf life. So far, little attention has been paid to investigate the effects of f...

  14. The variation of calcium, magnesium, sodium, potassium and bicarbonate concentration, pH and conductivity in groundwater of Karachi region

    International Nuclear Information System (INIS)

    Groundwater in Karachi is influenced mainly by the evaporation / crystallization process as expressed by the Na/(Na+Ca) weight concentration ratio. The high coefficient of determined between conductivity and total dissolved ions concentration in meq/sup -1/ revealed that major ions affect the conductivity of groundwater. It was also found that groundwater quality with respect to cations is not significantly influenced by geology, particularly in the Urban are of the city, where the 90% of the population resides. The relationship between conductivity and bicarbonate concentration shows that supersaturation of groundwater with carbon dioxide is responsible for general depression of pH. (author)

  15. Insulinotropic actions of Moringa oleifera involves the induction of membrane depolarization and enhancement of intracellular calcium concentration

    Directory of Open Access Journals (Sweden)

    Opeolu O. Ojo

    2015-03-01

    Methods: Phytochemical composition of M.oleifera extract was determined using standard procedures. Total flavonoid and total phenolic compounds in the extract were also quantified. Effects of the extracts on glucose stimulated insulin secretion, membrane depolarization and intracellular calcium concentration were investigated using BRIN-BD11 clonal pancreatic beta cells. Results: Results obtained showed the preponderance of alkaloids, flavonoids, glycosides, phenols, saponins and tannins in the extract. The glucose dependent insulinotropic effects of the extract were significantly inhibited in the presence of diazoxide (48% or verapamil (35% and in the absence of extracellular calcium (47%. Co-incubation of cells with the extract and IBMX (3-isobutyl-1-methylxanthine or tolbutamide increased insulin secretion by 2-fold while a 1.2-fold increase was observed in cells depolarized with 30 mM KCl in the presence of the plant extract. The extract significantly induced membrane depolarization (7.1-fold and enhanced intracellular calcium concentration (2.6-fold in BRIN-BD11 cells. Conclusion: These observations suggest that the insulinotropic actions of acetone extract of M.oleifera may be mediated via the KATP-dependent pathway of insulin release. [J Exp Integr Med 2015; 5(1.000: 36-41

  16. Comparing Titanium Release from Ceramic Tiles using a waste material characterization test - Influence of Calcium and Organic Matter concentrations

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard;

    2015-01-01

    deposited in landfills for construction and demolition waste or other types of landfills, depending on the local waste management system. Hence, the potential release of nano-Ti under landfill conditions is relevant to investigate. In this study we used a standard waste material characterization method to...... waste material to the landfill leachate, it is expected that the calcium and organic matter content in the liquid will affect the stability of the nanoparticles. The concentration of calcium in the landfill percolate is expected to decrease the stability of the particles due to compression of the...... immediately after the 24 hrs. test using single particle ICPMS and Transmission Electron Microscopy imaging. The preliminary results suggest that nanoparticulate titanium is released from both tiles – with and without nano-titanium dioxide coating. The size distributions of the released particles are similar...

  17. Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis.

    Science.gov (United States)

    Yan, Hanlu; Shih, Kaimin

    2016-05-15

    The precipitation of struvite (MgNH4PO4·6H2O) from waste streams has attracted considerable attention due to its potential for recovering phosphorus for fertilization. As struvite is primarily acquired by means of precipitation and crystallization from aqueous solutions, it is important to evaluate the roles of common metal ions, particularly those that are commonly found in wastewater, in the struvite crystallization process. This study was performed to quantitatively evaluate the effects of calcium and ferric ions on struvite crystallization using the Rietveld refinement method, which is based on the analysis of X-ray diffraction data. The results indicate that both calcium and ferric ions significantly inhibit the formation of struvite crystals, and the effects vary under different pH conditions. There was a negative linear correlation between the struvite weight content in the precipitates and the Ca/Mg molar ratio in the initial solution. However, ferric ions were confirmed to be a more efficient inhibitor of struvite crystallization. Ca(2+) and Fe(3+) further modified the needle-like struvite into irregular shapes. An unambiguous and quantitative understanding of the effects of foreign ions on struvite crystallization will help to reliably improve the quality of struvite products recovered from wastewater and the control of struvite deposits in water and sludge piping systems. PMID:27016641

  18. Conditioning highly concentrated borate solutions with calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    The early age hydration by borate solution of 3 calcium sulfo-aluminate cements (CSA), containing respectively 0%, 10% and 20% of gypsum by weight of cement was studied using isothermal calorimetry and dynamic mode rheo-metry. XRD and TGA analysis were carried out on pastes with increasing hydration degrees (up to 90 days) to specify the mineralogy and to figure out the mechanisms of borate immobilisation. It has been shown that the retarding effect of borate anions is due to the precipitation of the amorphous calcium borate C2B3H8; borate anions were then incorporated in Aft-type phases. The macroscopic properties of hydrated binders (compressive strength, length change) were also followed during 180 days. It appears that the mechanical strength continuously increases with the hydration degree. Length changes under wet-curing and sealed bag remain moderate and seem to be stabilized after 180 days

  19. Ion-Exchange Separation of Calcium and Strontium and its Application to Strontium-90 Determination in Milk

    International Nuclear Information System (INIS)

    Ion-exchange technique has been used for the successful separation of calcium and strontium in milk ash. Initially the technique was tested using a solution containing approximately the same amount of calcium and strontium as in 5 g of milk ash. This solution was spiked with 45Ca and 90Sr. A known amount of milk ash sample was also spiked to provide a control. Milk ash was dissolved in nitric acid and the alkaline earth elements were precipitated in their carbonate form which in turn were dissolved in hydrochloric acid and passed through a column of Zeo-Carb 225 x 8,200 mesh at pH 2.5. Calcium and strontium were eluted with ammonium lactate at room temperature. Determination of strontium eluted by ammonium lactate is a lengthy and difficult procedure because the organic complex must be evaporated and ashed carefully. To avoid this difficulty, strontium elution with hydrochloric acid was tried and found to be both effective and convenient. On the other hand, ammonium lactate elution has the advantage that small changes in pH do not appreciably affect the elution. In both cases the distance between the elution curves for calcium and strontium was found to be quite large, thus enabling a quantitative separation. With hydrochloric acid, however, the distance is larger and the strontium elution curve is sharper, requiring a smaller volume of eluant. Strontium yields are satisfactory and there is good agreement between the ion-exchange method developed here and the method of fuming nitric acid. The ion-exchange technique avoids many of the difficulties of the conventional method of fuming nitric acid. The amount of work and chemicals required are considerably reduced in the new procedure. (author)

  20. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    Science.gov (United States)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  1. Measuring free metal ion concentrations in multicomponent solutions using Donnan Membrane Technique

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Weng, L.P.; Riemsdijk, van W.H.

    2007-01-01

    Among speciation techniques that are able to measure free metal ion concentrations, the Donnan membrane technique (DMT) has the advantage that it can measure many different free metal ion concentrations simultaneously in a multicomponent sample. Even though the DMT has been applied to several system

  2. Factors controlling soil water and stream water aluminum concentrations after a clearcut in a forested watershed with calcium-poor soils

    Science.gov (United States)

    McHale, M.R.; Burns, Douglas A.; Lawrence, G.B.; Murdoch, Peter S.

    2007-01-01

    The 24 ha Dry Creek watershed in the Catskill Mountains of southeastern New York State USA was clearcut during the winter of 1996-1997. The interactions among acidity, nitrate (NO3- ), aluminum (Al), and calcium (Ca2+) in streamwater, soil water, and groundwater were evaluated to determine how they affected the speciation, solubility, and concentrations of Al after the harvest. Watershed soils were characterized by low base saturation, high exchangeable Al concentrations, and low exchangeable base cation concentrations prior to the harvest. Mean streamwater NO3- concentration was about 20 ??mol l-1 for the 3 years before the harvest, increased sharply after the harvest, and peaked at 1,309 ??mol l -1 about 5 months after the harvest. Nitrate and inorganic monomeric aluminum (Alim) export increased by 4-fold during the first year after the harvest. Alim mobilization is of concern because it is toxic to some fish species and can inhibit the uptake of Ca2+ by tree roots. Organic complexation appeared to control Al solubility in the O horizon while ion exchange and possibly equilibrium with imogolite appeared to control Al solubility in the B horizon. Alim and NO3- concentrations were strongly correlated in B-horizon soil water after the clearcut (r2 = 0.96), especially at NO3- concentrations greater than 100 ??mol l-1. Groundwater entering the stream from perennial springs contained high concentrations of base cations and low concentrations of NO3- which mixed with acidic, high Alim soil water and decreased the concentration of Alim in streamwater after the harvest. Five years after the harvest soil water NO 3- concentrations had dropped below preharvest levels as the demand for nitrogen by regenerating vegetation increased, but groundwater NO3- concentrations remained elevated because groundwater has a longer residence time. As a result streamwater NO3- concentrations had not fallen below preharvest levels, even during the growing season, 5 years after the harvest

  3. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    CERN Document Server

    Kaufman, I; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-01-01

    We use Brownian dynamics simulations to study the permeation properties of a generic electrostatic model of a biological ion channel as a function of the fixed charge Q_f at its selectivity filter. We reconcile the recently-discovered discrete calcium conduction bands M0 (Q_f=1e), M1 (3e), M2 (5e) with the set of sodium conduction bands L0 (0.5-0.7e), L1 (1.5-2e) thereby obtaining a completed pattern of conduction and selectivity bands v Q_f for the sodium-calcium channels family. An increase of Q_f leads to an increase of calcium selectivity: L0 (sodium selective, non-blocking channel) -> M0 (non-selective channel) -> L1 (sodium selective channel with divalent block) -> M1 (calcium selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L1 band is identified with the eukaryotic (DEKA) sodium channel, and L0 (speculatively) with the bacterial NaChBac channel. The scheme created is able to account for the experimentally observed mutation-induced ...

  4. Effect of high calcium concentration influents on enhanced biological phosphorus removal process; Efecto del proceso de eliminacion biologica de fosforo en enfluentes con elevadas concentraciones de calcio

    Energy Technology Data Exchange (ETDEWEB)

    Montoya Martinez, T.; Aguado Garcia, D.; Ferrer Polo, J.

    2010-07-01

    In this work, the effect of calcium concentration in wastewater on the polyphosphate accumulating organisms (PAO) is investigated as well as its influence in PAO metabolism, specifically in the Y{sub P}O4 (ratio between phosphorus release and acetic acid uptake). For this study a sequencing batch reactor (SBR) anaerobic-aerobic was used, in which the PAO enriched biomass was exposed to different calcium concentrations in the influent wastewater. The results indicate that until a given calcium level in the influent wastewater (35 mg Ca/l) the metabolism is not affect, but higher calcium concentrations lead to significant Y{sub P}O4 decline. (Author) 18 refs.

  5. Investigation of Strontium Incorporation into Biotically and Abiotically Precipitated-Calcium Calcite Using Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Ingram, J.; Fujita, Y.

    2001-12-01

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) complex. A possible approach to their remediation is in situ immobilization by co-precipitation of these elements in authigenic calcite and calcite overgrowths. Microorganisms are known to facilitate the precipitation of calicite; hence the stimulation of biogenic calcite production may offer a means to accelerate co-precipitation of contaminant metals. Strontium is well-known to substitute for Ca in calcium carbonate minerals, and consequently , the uranium fission product 90Sr is a prime candidate for this type of remediation approach. In order to predict the extent and stability of Sr incorporation into calcite precipitated under this bioremediation strategy, it is necessary to understand how much Sr is being incorporated. In these studies, secondary ion mass spectrometry (SIMS) was utilized to characterize the surface chemistry of carbonates generated by bacterial activity in synthetic groundwater containing Ca and Sr. SIMS with sputter depth profiling allows the determination of changes in Sr to Ca ratios with depth in particulate carbonate samples. The sputter depth profiling results can be compared with analysis of the bulk composition by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Results of analyses on carbonates generated by B. pasteurii in synthetic groundwater with initial Ca and Sr concentrations of 80 ppm and 10 ppm, respectively, showed that SIMS could successfully measure ion ratios on the surface and within these particles. ICP-AES data indicated a bulk Sr:Ca ratio of 0.11, and sputtering SIMS data approached this value with increasing depth into the particle. The Sr:Ca ratio however, contrary to what would be expected from precipitation under batch conditions, was lower at the surface of the particles (ca. 0.05) and increased with depth. One possible reason for this phenomenon is re

  6. Cyclic nucleotides and calcium ions in activation of mouse B lymphocyte motility activated by anti-immunoglobulin serum

    International Nuclear Information System (INIS)

    This paper studies the role of cyclic nucleotides and Ca++ ions in activation of B lymphocytes by antiserum against immunoglobulins, with particular reference to induction of motility of these cells by serum, on the basis of the concept of the central role of cyclic nucleotides and calcium in processes of cellular proliferation and motility. Experiments were carried out on 75 male C57BL/6 mice weighing 20-25 g. After decapitation and homogenization of the spleen, lymphocytes were obtained. Radioimmunoassay was used to determine the levels of cAMP and cGMP in the supernatant. The viability of the cells was estimated at all stages on the basis of staining with 0.1% trypan blue. The mechanism of mobilization of intracellular calcium described makes B lymphocytes independent of extracellular Ca++ in the processes of activation of B lymphocytes by immunogenic and other stimuli

  7. Effect of ACP-CPP Chewing Gum and Natural Chewable Products on Plaque pH, Calcium and Phosphate Concentration

    Science.gov (United States)

    Sultan, Saima; Chaudhary, Seema; Manuja, Naveen; Kaur, Harsimran; Amit, Sinha Ashish; Lingesha, Ravishankar Telgi

    2016-01-01

    Introduction Numerous epidemiological studies have documented dental caries as the major public health problems throughout the world. It is gradually increasing in the underdeveloped and developing countries especially in children due to increasing popularity of refined sugars. Aim The aim of the study was to evaluate the effect of natural chewable products (Tulsi, sesame seeds, fennel seeds, coconut) and ACP-CPP chewing gum on plaque pH, calcium and phosphate concentration. Materials and Methods A randomized controlled trial, with a cross-over study design, was conducted. Ten subjects aged 15-17 years who agreed to refrain from oral hygiene practice for 48 hours prior to the sample collection were selected for the study. The baseline plaque pH, calcium and phosphate was measured and repeated after 5 and 30 minutes. It was ensured that each study participant was subjected to all the products making an effective sample of ten subjects per product. The data was statistically analysed. Results The mean pH in all the study groups increased after 5 minutes and 30 minutes compared to baseline, except for coconut group at 30 minutes and fennel group at 5 minutes. Highest increase in plaque calcium concentration was found in fennel group followed by recaldent and sesame, respectively. Whereas, the highest increase in plaque phosphate was found in recaldent group followed by sesame group and fennel group respectively. Conclusion Plant products can be effective, inexpensive, easily accessible methods of maintaining oral health. Further studies are recommended to confirm long term effects. PMID:27190943

  8. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sui-Dan; Zhang, Hui [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Dong, Xu-Dong [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3 (Canada); Ning, Cheng-Yun [College of Material Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Fok, Alex S.L. [Minnesota Dental Research Center of Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55414 (United States); Wang, Yan, E-mail: wyan65@163.com [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2015-02-28

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C{sub 4}H{sub 6}CaO{sub 4}) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C{sub 3}H{sub 7}Na{sub 2}O{sub 6}P·5H{sub 2}O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO{sub 2} rutile and anatase. The amount of TiO{sub 2} rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca{sub 3}(PO{sub 4}){sub 2}, CaCO{sub 3}, and CaTiO{sub 3} were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and

  9. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    International Nuclear Information System (INIS)

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C4H6CaO4) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C3H7Na2O6P·5H2O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO2 rutile and anatase. The amount of TiO2 rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca3(PO4)2, CaCO3, and CaTiO3 were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and cytocompatibility of titanium for osseointegration. Higher CA concentration in the MAO

  10. A chronopotentiometric approach for measuring chloride ion concentration

    NARCIS (Netherlands)

    Abbas, Yawar; Olthuis, Wouter; Berg, van den Albert

    2013-01-01

    In this paper, a novel approach is reported for the electrochemical measurement of chloride ions in aqueous solution. This sensor is based on the stimulus/response principle of chronopotentiometry. A current pulse is applied at the Ag/AgCl working electrode and the potential change is measured with

  11. Molecular mechanics of the cooperative adsorption of a Pro-Hyp-Gly tripeptide on a hydroxylated rutile TiO2(110) surface mediated by calcium ions.

    Science.gov (United States)

    Zheng, Ting; Wu, Chunya; Chen, Mingjun; Zhang, Yu; Cummings, Peter T

    2016-07-20

    The interaction of amino acids with inorganic materials at interfaces plays an important role in enhancing the biocompatibility of titanium-based alloys. The adsorption of a tripeptide, i.e. Pro-Hyp-Gly, on the hydroxylated rutile TiO2(110) surface was investigated by the MD simulations. The changes in free energy during the adsorption of both the tripeptide and calcium ions were calculated by using the PMF method in order to obtain the adsorption strength. The results suggested that the adsorption of the tripeptide on the TiO2 surface through the carboxyl groups in glycine residues can be more stable compared with other binding conformations. Special attention was focused on the cooperative adsorption of the tripeptide with the assistance of calcium ions. Calcium ions preferred to absorb at the tetradentate or monodentate sites on the negatively charged TiO2 surface. As a result of the strong attraction between the carboxyl group and calcium ions, the tripeptide can be pulled down to the surface by following the trajectory of the calcium ions, forming an indirect interaction with a sandwich structure of peptide-cation-TiO2. However, this indirect interaction could eventually transform to the direct adsorption of the tripeptide on the TiO2 surface with higher binding energy. The results may help to interpret the adsorption of peptides on inorganic materials in aqueous solution with ions. PMID:27383367

  12. Variations of protein profiles and calcium and phospholipase A2 concentrations in thawed bovine semen and their relation to acrosome reaction

    Directory of Open Access Journals (Sweden)

    V. Alonso Marques

    2000-12-01

    Full Text Available Just as calcium plays an integral role in acrosome capacitation and reaction, several spermatozoon proteins have been reported as binding to the ovum at fertilization. We examined the relationship between thawed bovine semen protein profiles, seminal plasma calcium ion concentration, spermatozoon phospholipase A2 (PLA2 activity and acrosome reaction. Electrophoretic profile analysis of spermatozoa and bovine seminal plasma proteins (total and membrane revealed qualitative and quantitative differences among bulls. Variations in PLA2 and seminal plasma calcium concentration indicated genetic diversity among individuals. A 15.7-kDa membrane protein was significantly correlated (r = 0.71 with acrosome reaction, which in turn has been associated with in vivo fertility.Várias proteínas que constituem o espermatozóide têm sido relatadas como sendo proteínas que se ligam ao óvulo no momento da fertilização, bem como íons cálcio têm um papel importante na capacitação e reação acrossômica. Baseado nisto, este estudo teve como objetivo analisar e correlacionar proteínas do sêmen congelado bovino de diferentes raças, concentração de íons cálcio no plasma seminal e atividade da fosfolipase A2 do espermatozóide com a reação acrossômica, visando encontrar fatores que influenciem no processo de fertilização bovina. Análises do perfil eletroforético das proteínas (totais e de membrana do espermatozóide e do plasma seminal bovino revelaram variabilidade protéica entre indivíduos na qual diferenças qualitativas e quantitativas foram identificadas. A quantificação da fosfolipase A2, bem como da concentração de cálcio no plasma seminal revelaram diversidade genética entre touros. Uma proteína de 15,7 kDa apresentou correlação significativa (0.71 com a reação acrossômica, que pode estar diretamente relacionada com a fertilização in vivo e deste modo outros experimentos podem ser realizados a fim de investigar a

  13. Gramicidin-mediated currents at very low permeant ion concentrations.

    OpenAIRE

    Hainsworth, A H; Hladky, S B

    1987-01-01

    Current-voltage relations have been measured for the fluxes of caesium ions through pores formed by gramicidin in lipid bilayer membranes. The ionic currents have been separated from capacitative currents using a bridge circuit with an integrator as null-detector. The conductances during brief voltage pulses were small enough to avoid the effects of diffusion polarization and the ionic strength was raised using choline chloride or magnesium sulfate to reduce the effects of double-layer polari...

  14. A study of the effect of addition of calcium, boron, cobalt and the combination of the three ions on biogas production from cow dung

    International Nuclear Information System (INIS)

    The individual and combined effects of calcium (Ca2+ ; 51.16) mg/cm3), boron (B3+; 0.07 mg/cm3) and cobalt (Co2+; 2.97 mg/cm3) ions on biogas production from cow dung was investigated. The gas yield was recorded at 24 hours interval for 63 days under an average room temperature of 28.19 Celsius. It was found that the digesters containing Ca2+, B3+, Co2+ and a combination of the three ions produced 3101 cm3, 3229 cm3 and 2481 cm3 of gas respectively, while the control digester produced 3290 cm3 of gas. Analysis of variance conducted on the gas yield data at the significance level of α = 0.05 and critical region of F(4,∞)≥ 2.37 lead to the acceptance of the null hypothesis that the mean biogas yield of the five digesters are equal. The least significant difference (LSD) between the means is 17.61 cm3. Thus, these ions have no significant effect on the quantity of biogas produced from the cow dung investigated, at the concentration level tested

  15. On the physiological/pathological link between Aβ peptide, cholesterol, calcium ions and membrane deformation: A molecular dynamics study.

    Science.gov (United States)

    Pannuzzo, Martina

    2016-06-01

    The dynamic interplay between cholesterol, asymmetrically (at physiological condition) or symmetrically (hallmark of aging) distributed in membrane, and β amyloid peptides is investigated by a computational approach. The drawn overall picture, starting from the very appearance of β amyloid peptides and going through their self-assembling into potentially toxic oligomeric species, reinforces some of the experimental and theoretical shots recently reported in literature, while new important molecular hints on the physiological role played by the β amyloid peptide are proposed. The so dreaded formation of amyloid pores selective for the passage of calcium ions could in fact explain their physiological concomitant recruitment in the regulation of synaptic plasticity. PMID:27003127

  16. Variation and balance of positive air ion concentrations in a boreal forest

    Directory of Open Access Journals (Sweden)

    U. Hõrrak

    2008-02-01

    Full Text Available Air ions are characterized on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. The air ions were discriminated as small ions (charged molecular aggregates of the diameter of less than 2.5 nm, intermediate ions (charged aerosol particles of the diameter of 2.5–8 nm, and large ions (charged aerosol particles of the diameter of 8–20 nm. Statistical characteristics of the ion concentrations and the parameters of ion balance in the atmosphere are presented separately for the nucleation event days and non-event days. In the steady state, the ionization rate is balanced with the loss of small ions, which is expressed as the product of the small ion concentration and the ion sink rate. The widely known sinks of small ions are the recombination with small ions of opposite polarity and attachment to aerosol particles. The dependence of small ion concentration on the concentration of aerosol particles was investigated applying a model of the bipolar diffusion charging of particles by small ions. When the periods of relative humidity above 95% and wind speed less than 0.6 m s−1 were excluded, then the small ion concentration and the theoretically calculated small ion sink rate were closely negatively correlated (correlation coefficient −87%. However, an extra ion loss term of the same magnitude as the ion loss onto aerosol particles is needed for a quantitative explanation of the observations. This term is presumably due to the small ion deposition on coniferous forest. The hygroscopic growth correction of the measured aerosol particle size distributions was also found to be necessary for the proper estimation of the ion sink rate. In the case of nucleation burst events, the concentration of small positive ions followed the general balance equation, no extra ion loss in addition to the deposition on coniferous forest was detected, and the

  17. Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning

    OpenAIRE

    Müller, M. N.; Barcelos e Ramos, J.; Schulz, K. G.; U. Riebesell; J. Kaźmierczak; Gallo, F.; Mackinder, L.; Li, Y; P. N. Nesterenko; T. W. Trull; Hallegraeff, G.M.

    2015-01-01

    Marine phytoplankton have developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L−1 in the presence of seawater Ca2+ concentrations of 10 mmol L−1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, ...

  18. Phytoplankton calcification as an effective mechanism to prevent cellular calcium poisoning

    OpenAIRE

    Müller, M. N.; J. Barcelos e Ramos; Schulz, K. G.; U. Riebesell; J. Kaźmierczak; Gallo, F.; Mackinder, L.; Y. Li; P. N. Nesterenko; T. W. Trull; Hallegraeff, G.M.

    2015-01-01

    Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L−1 in the presence of seawater Ca2+ concentrations of 10 mmol L−1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, ...

  19. Ion and particle number concentrations and size distributions along the Trans-Siberian railroad

    International Nuclear Information System (INIS)

    Aerosol concentrations and properties in Russia are not well known. There are only few studies published on aerosols in Russia. However, these aerosols can have a major effect on global climate. We measured aerosol particle and air ion number size distributions together with relevant information on meteorological conditions and atmospheric trace gas concentrations in Russia. Our purpose was to get new insight on number concentrations of aerosol particle and air ions in different parts of Russia, and to examine which sources and sinks affected the observed concentrations. During a two-week TROICA-9 expedition between 4 and 18 October 2005, we travelled on the Trans-Siberian railroad from Moscow to Vladivostok and back, conducting measurements constantly along the route. The lowest aerosol particle number concentrations, around 500 cm-3, were observed at remote sites and the highest concentrations of around 40000 cm-3 were observed near large industrial towns. The particle number concentration correlated best with nitrogen oxide and carbon monoxide concentrations. Pollutant levels were at their highest in the vicinity of towns, even though important pollution sources such as wood burning and forest fires also existed in rural areas. Concentrations of positive and negative intermediate and large ions were of the same order of magnitude as has been observed in previous studies made in boreal forests. Concentrations of intermediate ions were often low of the order of a few ions cm-3, but their concentration increased during nucleation, rain and snowfall events. Concentrations of positive and negative cluster ions were sometimes very high, reaching values of about 5000 cm-3 in case of negative ions. We also detected exceptionally high ion production rates of up to 30 s-1 cm-3 due to 222-radon decay. Concentrations of cluster ions correlated quite well with the ion production rate but less so with the ion sink. Two particle formation events were observed, during which the

  20. Ion and particle number concentrations and size distributions along the Trans-Siberian railroad

    Energy Technology Data Exchange (ETDEWEB)

    Vartiainen, E.; Kulmala, M.; Ehn, M. [Helsinki Univ. (FI). Dept. of Physical Sciences] (and others)

    2007-07-01

    Aerosol concentrations and properties in Russia are not well known. There are only few studies published on aerosols in Russia. However, these aerosols can have a major effect on global climate. We measured aerosol particle and air ion number size distributions together with relevant information on meteorological conditions and atmospheric trace gas concentrations in Russia. Our purpose was to get new insight on number concentrations of aerosol particle and air ions in different parts of Russia, and to examine which sources and sinks affected the observed concentrations. During a two-week TROICA-9 expedition between 4 and 18 October 2005, we travelled on the Trans-Siberian railroad from Moscow to Vladivostok and back, conducting measurements constantly along the route. The lowest aerosol particle number concentrations, around 500 cm{sup -3}, were observed at remote sites and the highest concentrations of around 40000 cm{sup -3} were observed near large industrial towns. The particle number concentration correlated best with nitrogen oxide and carbon monoxide concentrations. Pollutant levels were at their highest in the vicinity of towns, even though important pollution sources such as wood burning and forest fires also existed in rural areas. Concentrations of positive and negative intermediate and large ions were of the same order of magnitude as has been observed in previous studies made in boreal forests. Concentrations of intermediate ions were often low of the order of a few ions cm{sup -3}, but their concentration increased during nucleation, rain and snowfall events. Concentrations of positive and negative cluster ions were sometimes very high, reaching values of about 5000 cm{sup -3} in case of negative ions. We also detected exceptionally high ion production rates of up to 30 s{sup -1} cm{sup -3} due to 222-radon decay. Concentrations of cluster ions correlated quite well with the ion production rate but less so with the ion sink. Two particle formation

  1. Bioethanol Production by Calcium Alginate-Immobilised St1 Yeast System: Effects of Size of Beads, Ratio and Concentration

    Directory of Open Access Journals (Sweden)

    Masniroszaime Md Zain

    2011-12-01

    Full Text Available Immobilized yeast-cell technology posses several advantages in bioethanol production due to its potential to increase the ethanol yield by eliminating unit process used. Thus, process expenses in cell recovery and reutilization can be minimised. The aim of this study is to investigate the influence of three parameters (substrate concentrations, size of alginate beads and ratio of volume of beads to volume of medium on local isolated yeast (ST1 which immobilized using calcium alginate fermentation system. The most affected ethanol production by calcium alginate-immobilised ST1 yeast system were ratio of volume of the beads to the volume of substrate and concentration of LBS. Highest theoretical yield, 78% was obtained in ST1-alginate beads with the size of beads 0.5cm, ratio volume of beads to the volume of LBS media 0.4 and 150g/l concentration of LBS.ABSTRAK: Teknologi sel yis pegun memiliki beberapa kelebihan dalam penghasilan bioetanol kerana ia berpotensi meningkatkan pengeluaran etanol dengan menyingkirkan unit proses yang digunakan. Maka, proses pembiayaan dalam perolehan sel dan penggunaan semula boleh dikurangkan. Tujuan kajian ini adalah untuk mengkaji pengaruh tiga parameter (kepekatan substrat, saiz manik alginat dan nisbah isipadu manik terhadap isipadu bahantara ke atas sel tempatan terasing (local isolated yeast (ST1 yang dipegun menggunakan sistem penapaian kalsium alginat. Penghasilan etanol yang paling berkesan dengan menggunakan sistem yis ST1 kalsium alginat-pegun adalah dengan kadar nisbah isipadu manik terhadap isipadu substrat dan kepekatan LBS. Kadar hasil teori tertinggi iaitu 78% didapati menerusi manik alginat-ST1 dengan saiz manik 0.5cm, nisbah isipadu 0.4 terhadap perantara LBS dan kepekatan LBS sebanyak 150g/l. Normal 0 false false false EN-US X-NONE X-NONE

  2. Inhibition effects of high calcium concentration on anaerobic biological treatment of MSW leachate.

    Science.gov (United States)

    Xia, Yi; He, Pin-Jing; Pu, Hong-Xia; Lü, Fan; Shao, Li-Ming; Zhang, Hua

    2016-04-01

    With the increasing use of municipal solid waste incineration (MSWI) and more stringent limits on landfilling of organic waste, more MSWI bottom ash is being landfilled, and the proportion of inorganic wastes in landfills is increasing, causing the increased Ca concentrations in landfill leachate. In this research, the inhibition effect of Ca concentration on the anaerobic treatment of landfill leachate was studied using a biochemical methane potential experiment. Slight inhibition of methane production occurred when the addition of Ca concentration was less than 2000 mg/L. When the addition of Ca concentration was between 6000 and 8000 mg/L, methane production was significantly reduced (to 29.4-34.8 % of that produced by the BLK reactor), and the lag phase was increased from 8.55 to 16.32 d. Moreover, when the dosage of Ca concentration increased from zero to 8000 mg/L, reductions in solution Ca concentration increased from 929 to 2611 mg/L, and the proportion of Ca in the residual sludge increased from 22.58 to 46.87 %. Based on the results, when the dosage of Ca concentration was less than 4000 mg/L, the formation of Ca precipitates on the surface of sludge appeared to prevent mass transfer and was the dominant reason for the reduction in methane production and sludge biomass. At higher Ca concentrations (6000-8000 mg/L), the severe inhibition of methane production appeared to be caused by the toxic effect of highly concentrated Ca on sludge as well as mass transfer blockage. PMID:26769478

  3. Optimizing calcium selective fluorimetric nanospheres.

    Science.gov (United States)

    Kisiel, Anna; Kłucińska, Katarzyna; Gniadek, Marianna; Maksymiuk, Krzysztof; Michalska, Agata

    2015-11-01

    Recently it was shown that optical nanosensors based on alternating polymers e.g. poly(maleic anhydride-alt-1-octadecene) were characterized by a linear dependence of emission intensity on logarithm of concentration over a few of orders of magnitude range. In this work we focus on the material used to prepare calcium selective nanosensors. It is shown that alternating polymer nanosensors offer competitive performance in the absence of calcium ionophore, due to interaction of the nanospheres building blocks with analyte ions. The emission increase corresponds to increase of calcium ions contents in the sample within the range from 10(-4) to 10(-1) M. Further improvement in sensitivity (from 10(-6) to 10(-1) M) and selectivity can be achieved by incorporating calcium ionophore in the nanospheres. The optimal results were obtained for core-shell nanospheres, where the core was prepared from poly(styrene-co-maleic anhydride) and the outer layer from poly(maleic anhydride-alt-1-octadecene). Thus obtained chemosensors were showing linear dependence of emission on logarithm of calcium ions concentration within the range from 10(-7) to 10(-1) M. PMID:26452839

  4. The effect of organolead and -tin compounds on signal transduction in vitro: Investigations on the cytosolic free calcium concentration; Der Einfluss von organischen Blei- und Zinnverbindungen auf die Signaltransduktion in vitro: Untersuchungen zur Veraenderung der zytosolischen freien Calciumkonzentration

    Energy Technology Data Exchange (ETDEWEB)

    Ade, T.

    1996-03-01

    The cellular effects of organolead and -tin compounds are not yet precisely understood. However, on the basis of their immuno- and neurotoxicity it is most likely that these substances interfere with cellular signal transduction. For this reason the effect on cytosolic free calcium concentration was investigated in this study. The organometals used induce a persistent increase in cytosolic free calcium concentration in human leukaemia HL-60 cells as well as in neuroblastoma NG-108-15 cells. Studies of the mechanism of the organometal effect with EGTA and calcium channel blockers revealed that an influx of calcium from the extracellular space is responsible for the organometal-induced calcium elevation in HL-60 cells. The effect of the investigated lead compounds and tributyltin is due to calcium channel opening in the plasma membrane. The same is true for the NG108-15 cells. Activation of distinct receptor-mediated signal transduction is not the reason for channel opening. The regulation of cytosolic free calcium concentration was affected by inhibition of plasmamembrane Ca{sup 2+}-ATPases as well as by disturbance of other ion gradients. A consequence of the organometal effect on the cytosolic calcium concentration is the activation of a cPLA{sub 2} and perhaps the induction of apoptosis. These results contribute towards the understanding of biochemical mechanisms causing the injury of vells by organometals. (orig.) [Deutsch] Die zellulaeren Wirkungsmechanismen organischer Blei- und Zinnverbindungen sind zum grossen Teil nicht verstanden. Die immuno- und neurotoxischen Effekte dieser Xenobiotika lassen jedoch die Beeinflussung der Signalwege in den Zellen vermuten. Daher lag der Schwerpunkt dieser Arbeit in der Untersuchung der Signaluebertragungswege und der damit verbundenen Regulation des Calciums. Sowohl in immunkompetenten Zellen (HL-60) wie auch in neuronalen Zellen (NG108-15) induzierten die untersuchten Organometalle eine persistente Erhoehung der

  5. Binding of fluorescent lanthanides to rat liver mitochondrial membranes and calcium ion-binding proteins.

    Science.gov (United States)

    Mikkelsen, R B; Wallach, D F

    1976-05-21

    (1) Tb3+ binding to mitochondrial membranes can be monitored by enhanced ion fluorescence at 545 nm with excitation at 285 nm. At low protein concentrations (less than 30 mug/ml) no inner filter effects are observed. (2) This binding is localized at the external surface of the inner membrane and is unaffected by inhibitors of respiration or oxidative phosphorylation. (3) A soluble Ca2+ binding protein isolated according to Lehninger, A.L. ((1971) Biochem. Biophys. Res. Commun. 42, 312-317) also binds Tb3+ with enhanced ion fluorescence upon excitation at 285 nm. The excitation spectrum of the isolated protein and of the intact mitochondria are indicative of an aromatic amino acid at the cation binding site. (4) Further characterization of the Tb3+-protein interaction revealed that there is more than one binding site per protein molecule and that these sites are clustered (less than 20 A). Neuraminidase treatment or organic solvent extraction of the protein did not affect fluorescent Tb3+ binding. (5) pH dependency studies of Tb3+ binding to the isolated protein or intact mitochondria demonstrated the importance of an ionizable group of pK greater than 6. At pH less than 7.5 the amount of Tb3+ bound to the isolated protein decreased with increase in pH as monitored by Tb3+ fluorescence. With intact mitochondria the opposite occurred with a large increase in Tb3+ fluorescence at higher pH. This increase was not observed when the mitochondria were preincubated with antimycin A and rotenone. PMID:6061

  6. Effects of extracellular iron concentration on calcium absorption and relationship between Ca2+ and cell apoptosis in Caco-2 cells

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Qing Li; Xiang-Lin Duan; Yan-Zhong Chang

    2005-01-01

    AIM: To determine the method of growing small intestinal epithelial cells in short-term primary culture and to investigate the effect of extracellular iron concentration ([Fe3+]) on calcium absorption and the relationship between the rising intracellular calcium concentration ([Ca2+]i) and cell apoptosis in human intestinal epithelial Caco-2 cells. METHODS: Primary culture was used for growing small intestinal epithelial cells. [Ca2+]i was detected by a confocal laser scanning microscope. The changes in [Ca2+]i were represented by fluorescence intensity (FI). The apoptosis was evaluated by flow cytometry.RESULTS: Isolation of epithelial cells and preservation of its three-dimensional integrity were achieved using the digestion technique of a mixture of collagenase Ⅺ and dispase Ⅰ. Purification of the epithelial cells was facilitated by using a simple differential sedimentation method. The results showed that proliferation of normal gut epithelium in vitro was initially dependent upon the maintenance of structural integrity of the tissue. If 0.25% trypsin was used for digestion, the cells were severely damaged and very difficult to stick to the Petri dish for growing. The Fe3+ chelating agent desferrioxamine (100, 200 and 300 μmol/L) increased the FI of Caco-2 cells from 27.50±13.18 (control,n = 150) to 35.71±13.99 (n = 150, P<0.01), 72.19±35.40 (n = 150, P<0.01) and 211.34±29.03 (n = 150, P<0.01) in a concentration-dependent manner. There was a significant decrease in the FI of Caco-2 cells treated by ferric ammonium citrate (FAC, a Fe3+ donor; 10, 50 and 100 μmol/L). The FIvalue of Caco-2 cells treated by FAC was 185.85±33.77 (n = 150, P<0.01), 122.73±58.47 (n = 150, P<0.01), and 53.29±19.82 (n = 150, P<0.01), respectively, suggesting that calcium absorption was influenced by [Fe3+]. Calcium ionophore A23187 (0.1, 1.0 and 10 μmol/L) increased the FI of Caco-2 cells from 40.45±13.95 (control, n = 150) to 45.19±21.95 (n = 150, P<0

  7. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR

    Directory of Open Access Journals (Sweden)

    Mercè eIzquierdo-Serra

    2013-03-01

    Full Text Available A wide range of light-activated molecules (photoswitches and phototriggers have been used to the study of computational properties of an isolated neuron by acting pre and postsynaptically. However, new tools are being pursued to elicit a presynaptic calcium influx that triggers the release of neurotransmitters, most of them based in calcium-permeable Channelrhodopsin-2 mutants. Here we describe a method to control exocytosis of synaptic vesicles through the use of a light-gated glutamate receptor (LiGluR, which has recently been demonstrated that supports secretion by means of calcium influx in chromaffin cells. Expression of LiGluR in hippocampal neurons enables reversible control of neurotransmission with light, and allows modulating the firing rate of the postsynaptic neuron with the wavelength of illumination. This method may be useful for the determination of the complex transfer function of individual synapses.

  8. Morphological characterization of calli of Eucalyptus urophylla S. T. Blake subjected to concentrations of boron and calcium

    Directory of Open Access Journals (Sweden)

    Raquel Trevizam

    2011-06-01

    Full Text Available This study aimed to evaluate the effect of B and Ca concentrations on morphological responses and size of calli in Eucalyptus urophylla. Calli were obtained from the mid portion of hypocotyls removed from in vitro germinated seedlings. The callus structures were cultivated for 21 and 31 days, being kept in a modified N7 medium with concentrations of B (0; 25; 50; 100 and 200 µM H3BO3 and Ca (0; 3.75; 7.5; 11.25 and 15 mM CaCl2.2H2O. Size of calli, presence of roots, friability, viscosity, presence of globular structures on the surface and presence of pigments were analyzed. Overall, the shorter culture period (21 days allowed better development of callus structures. The combination of 50 µM H3BO3 with 7.5 mM CaCl2.2H2O at 21 days, and 100 µM H3BO3 with 1.13 mM CaCl2.2H2O at 31 days, provided best results. Rhizogenesis responded differently according to B and Ca concentrations. Simultaneous omission of B and Ca inhibited the rhizogenesis, causing disruption of the callus, favored formation of globular and friable structures, with presence of anthocyanin. High concentrations of calcium promoted root induction in calli.

  9. Effect of Low Dose Gamma Radiation Upon the Concentration of Calcium and Inorganic Phosphorus in the Blood Plasma of Chickens

    International Nuclear Information System (INIS)

    In our previous paper it has been showed that the irradiation of chickens eggs before incubation by low dose gamma irradiation effects upon growth of the chickens hatched from irradiated eggs as well as upon activity of ALT and AST, and on the concentration of total proteins, glucose and cholesterol in the blood plasma of those chickens. Therefore in this paper an attempt was made to determine the effects of irradiation of eggs by low dose of ionizing radiation on the 19th day of incubation upon the concentration of calcium (Ca) and inorganic phosphorus (P) in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens (Gent, line COBB 500) were irradiated by a dose of 0.15 Gy gamma radiation (60Co source) on the 19th day of incubation. Along with the chickens, which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. After hatching, blood samples were taken on day 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of Ca was determined calorimetrically using Randox optimized kits, while the concentration of P was determined by Herbos dijagnostika Sisak (Croatia) optimized kits. The concentration of Ca in the blood plasma of chickens hatched from irradiated eggs was significantly increased on the first day, while it was decreased on the day 42. The concentration of P was decreased on the first day in blood plasma of chickens hatched from irradiated eggs. The fact that the concentration of both minerals in blood plasma of chickens hatched from irradiated eggs was significantly changed on the first day proves that the irradiation of eggs by low dose of ionizing radiation on the nineteenth day of incubation had an effect on metabolism of both minerals in those chickens. (author)

  10. Deficiencies in extrusion of the second polar body due to high calcium concentrations during in vitro fertilization in inbred C3H/He mice.

    Science.gov (United States)

    Ohta, Yuki; Nagao, Yoshikazu; Minami, Naojiro; Tsukamoto, Satoshi; Kito, Seiji

    2016-08-01

    Successful in vitro fertilization (IVF) of all inbred strains of laboratory mice has not yet been accomplished. We have previously shown that a high calcium concentration improved IVF in various inbred mice. However, we also found that in cumulus-free ova of C3H/He mice such IVF conditions significantly increased the deficiency of extrusion of the second polar body (PBII) in a dose-dependent manner (2% at 1.71 mM and 29% at 6.84 mM, P competence of ova without PBII extrusion to blastocysts after 96 h culture was not affected, a significant reduction in the nuclear number of the inner cell mass was observed in blastocyst fertilized under high calcium condition. We also examined how high calcium concentration during IVF affects PBII extrusion in C3H/He mice. Cumulus cells cultured under high calcium conditions showed a significantly alleviated deficient PBII extrusion. This phenomenon is likely to be specific to C3H/He ova because deficient PBII extrusion in reciprocal fertilization between C3H and BDF1 gametes was observed only in C3H/He ova. Sperm factor(s) was still involved in deficient PBII extrusion due to high calcium concentrations, as this phenomenon was not observed in ova activated by ethanol. The cytoskeletal organization of ova without PBII extrusion showed disturbed spindle rotation, incomplete formation of contractile ring and disturbed localization of actin, suggesting that high calcium levels affect the anchoring machinery of the meiotic spindle. These results indicate that in C3H/He mice high calcium levels induce abnormal fertilization, i.e. deficient PBII extrusion by affecting the cytoskeletal organization, resulting in disturbed cytokinesis during the second meiotic division. Thus, use of high calcium media for IVF should be avoided for this strain. PMID:26503636

  11. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  12. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    Energy Technology Data Exchange (ETDEWEB)

    Ostrow, Lyle W., E-mail: lostrow1@jhmi.edu [Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States); Suchyna, Thomas M.; Sachs, Frederick [Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States)

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  13. Oxidative damage increases intracellular free calcium [Ca2+]i concentration in human erythrocytes incubated with lead.

    Science.gov (United States)

    Quintanar-Escorza, M A; González-Martínez, M T; del Pilar, Intriago-Ortega Ma; Calderón-Salinas, J V

    2010-08-01

    One important effect of lead toxicity in erythrocytes consists of increasing [Ca(2+)](i) which in turn may cause alterations in cell shape and volume and it is associated with cellular rigidity, hemolysis, senescence and apoptosis. In this work, we proposed the use of erythrocytes incubated with Pb(2+) to assess association of the mechanisms of lead erythrocyte oxidative damage and calcium homeostasis. Lead incubation produced an increase in [Ca(2+)](i) dose- and time-dependent, which mainly involved Ca(2+) entry mechanism. Additionally, in this in vitro model alterations similar to erythrocytes of lead-exposed workers were produced: Increase in Ca(2+) influx, decrease in (Ca(2+)-Mg(2+))-ATPase activity and GSH/GSGG ratio; increase in lipoperoxidation, protein carbonylation and osmotic fragility accompanied of dramatic morphological changes. Co-incubation with trolox, a soluble vitamin-E analog is able to prevent these alterations indicating that lead damage mechanism is strongly associated with oxidative damage with an intermediate toxic effect via [Ca(2+)](i) increase. Furthermore, erythrocytes oxidation induced with a free radical generator (APPH) showed effects in [Ca(2+)](i) and oxidative damage similar to those found in erythrocytes incubated with lead. Co-incubation with trolox prevents the oxidative effects induced by AAPH in erythrocytes. These results suggest that increase of [Ca(2+)](i) depends on the oxidative status of the erythrocytes incubated with lead. We consider that this model contributes in the understanding of the relation between oxidative damage induced by lead exposure and Ca(2+) homeostasis, the consequences related to these phenomena and the molecular basis of lead toxicity in no excitable cells. PMID:20460147

  14. Charge Exchange Collisions between Ultracold Fermionic Lithium Atoms and Calcium Ions

    CERN Document Server

    Haze, Shinsuke; Saito, Ryoichi; Mukaiyama, Takashi

    2014-01-01

    An observation of charge exchange collisions between ultracold fermionic 6Li atoms and 40Ca+ ions is reported. The reaction product of the charge exchange collision is dentified via mass spectrometry where the motion of the ions is excited parametrically. We measure the cross section of the charge exchange collisions between the 6Li atoms in the ground state and the 40Ca+ ions in the ground and metastable excited states. Investigation of the inelastic collision characteristics in the atom-ion mixture is an important step toward ultracold chemistry based on ultracold atoms and ions.

  15. Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates

    Science.gov (United States)

    Sebei, Haroun; Pham Minh, Doan; Nzihou, Ange; Sharrock, Patrick

    2015-12-01

    The synthesis, characterization and the reactivity of apatitic calcium phosphates (Ca-HA, chemical formula Ca10(PO4)6(OH)2) is reported. Calcium carbonate (CaCO3) and potassium dihydrogen orthophosphate (KH2PO4) were selected as economical starting materials for the synthesis of Ca-HA under atmospheric conditions. Monocalcium phosphate monohydrate (MCPM), dicalcium phosphate dihydrate (DCPD), and octacalcium phosphate pentahydrate (OCP) were identified as the main intermediates of the synthesis reaction. The product obtained after 48 h of reaction contains mainly low-crystalline Ca-HA and small amounts of other calcium phosphates such as octacalcium phosphate (OCP), B-type carbonate apatite (CAP), as well as unreacted calcium carbonate. This Ca-HA was found to be active for the removal of Zn2+ from an aqueous solution. Its sorption capacity reached up to 120 mg of Zn2+ per g of Ca-HA powder after 24 h of reaction. The monitoring of soluble Zn, Ca and P during the sorption experiment allowed characterizing the mechanism of Zn uptake. Dissolution-precipitation, ionic exchange and surface complexation are the three main mechanisms involved in the sorption processes. The contribution of these mechanisms is discussed in detail.

  16. Ion-sensitive field effect transistors for pH and potassium ion concentration sensing: towards detection of myocardial ischemia

    Science.gov (United States)

    Rai, Pratyush; Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2008-03-01

    Ion Sensitive Field Effect Transistors (ISFETs) for sensing change in ionic concentration in biological systems can be used for detecting critical conditions like Myocardial Ischemia. Having the ability to yield steady signal characteristics can be used to observe the ionic concentration gradients which mark the onset of ischemia. Two ionic concentrations, pH and [K +], have been considered as the indicator for Myocardial Ischemia in this study. The ISFETs in this study have an organic semi-conductor film as the electronically active component. Poly-3 hexylthiophene was chosen for its compatibility to the solution processing, which is a simple and economical method of thin film fabrication. The gate electrode, which regulates the current in the active layer, has been employed as the sensor element. The devices under study here were fabricated on a flexible substrate PEN. The pH sensor was designed with the Tantalum Oxide gate dielectric as the ion selective component. The charge accumulated on the surface of the metal oxide acts as the source of the effecter electric field. The device was tested for pH values between 6.5 and 7.5, which comprises the variation observed during ischemic attack. The potassium ion sensor has got a floating gate electrode which is functionalized to be selective to potassium ion. The device was tested for potassium ion concentration between 5 and 25 mM, which constitutes the variation in extra cellular potassium ion concentration during ischemic attack. The device incorporated a monolayer of Valinomycin, a potassium specific ionophore, on top of the gate electrode.

  17. Estimates of average major ion concentrations in bulk precipitation at two high-altitude sites near the continental divide in Southwestern Colorado

    Science.gov (United States)

    Reddy, M.M.; Claassen, H.C.

    1985-01-01

    The composition of bulk precipitation from two high-altitude sites, established in 1971 near the Continental Divide in southwestern Colorado, has been monitored by season during the past decade. Calcium ions are the predominant cationic species; sulfate is the major anionic constituent. Bulk precipitation major ion concentrations exhibit log-normal distributions. Representative mean and standard deviation values for the major inorganic ionic species present in bulk precipitation have been calculated for three years of consecutive seasons. Standard deviations for all species, except nitrate, are similar. For two years of data grouped into quarters, deviations from mean values fall well within the plus or minus two standard deviation limit. There does not seem to be a systematic deviation from the mean concentration values, with respect to either ionic component or season.

  18. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D

    1990-08-21

    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  19. Expression of the calcium receptor CaR in the parathyroid of secondary hyperparathyroidism patients

    Institute of Scientific and Technical Information of China (English)

    王宁宁; 王笑云; 彭韬; 吴宏飞; 胡建明; 赵卫红; 俞香宝

    2004-01-01

    @@ The effects of calcium on parathyroid hormone (PTH) has further discovered in recent years. It has been known that calcium ion concentration in the extracellular fluid is a major determinant of PTH secretion. The relationship between serum intact PTH (iPTH) and calcium ion levels is described by a sigmoidal curve. The calcium concentration that produces half-maximal change in PTH release (the midpoint between maximal and minimal change in PTH release) represents the sensitivity of parathyroid cells to serum calcium. In secondary hyperparathyroidism (SHPT) patients, higher calcium concentrations are needed to suppress PTH secretion, as demonstrated by the PTH-calcium sigmoidal curve. The loss of physiological control over the secretory function and growth of parathyroid tissue in hyperparathyroid disease is still incompletely understood.

  20. Chitosan membrane adsorber for low concentration copper ion removal.

    Science.gov (United States)

    Wang, Xiaomin; Li, Yanxiang; Li, Haigang; Yang, Chuanfang

    2016-08-01

    Thin chitosan membranes with symmetric and interconnected pore structure were prepared using silica as porogen, and their physical properties including pore structure, pore size distribution, porosity and water affinity were analyzed. The membrane showed a maximum Cu(II) adsorption capacity of 87.5mg/g in static adsorption, and the adsorption fitted pseudo-second order kinetics and Toth adsorption isotherm. The membranes were then stacked in layers as an adsorber to remove small concentration Cu(II) from water dynamically. At feed concentration of 5mg/L, the adsorber could retain Cu(II) effectively when its thickness reached over 200μm, and the performance was further improved by using more membranes layers. Within a certain limit, the adsorber showed a 'flow-independent' loading behavior, an indication of fast mass transfer inside the membrane. The adsorption process was correlated well with bed depth service time (BDST) model, Thomas model and Yoon and Nelson model, and the adsorber was also found to be regenerable and re-usable. PMID:27112875

  1. Comparative study on the change in index of refraction in ion-exchange interdiffusion in alkali-silicate glasses containing calcium, strontium, barium and titanium oxides

    International Nuclear Information System (INIS)

    Different ability to ion exchange from the salts of lithium-sodium-silicate glass melt containing calcium (or strontium, or barium) and titanium oxides in addition has been shown. CaO, SrO and BaO have negative effect, but TiO2 -positive one on the fullness of ion exchange of lithium-sodium and on the rate of interdiffusion in alkali-silicate glass. The value of change in index of refraction of glass with TiO2 is twice higher than glass with calcium oxide (or strontium, or barium) as the fourth component

  2. Study on the Interferation of the Concentration of Free Calcium in Peripheral Human Lymphocyte by Low Dose Penicillin, Using Fura-2 as Fluorescent Probe

    Institute of Scientific and Technical Information of China (English)

    Hai Yan WANG; Dan Dan WANG; Chun Gui ZHAO; Ye Hong ZHOU; Shao Min SHUANG; Chuan DONG

    2006-01-01

    The effect of penicillin on the human peripheral lymphocytes was studied by steady fluorescent technique and ratiometric fluorescence dye, Fura-2. The change of the free calcium concentration in cytosol was examined under different conditions. A characterization of Fura-2-Ca interaction in an isotonic saline solution showed that Ca2+ formed a 1:1 Fura-2-Ca complex with the apparent dissociation constant 1.81×10-7 mol/L. The mechanism, by which penicillin induced the decrease of [Ca2+]i, was discussed in detail. The low dose of penicillin might modify the lymphocytes' immunology response by interfering the increase in the intracellular free calcium concentration.

  3. Role of calcium conductance in firing behavior of retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    Dan Wang; Qingli Qiao; Nan Xie

    2011-01-01

    Fohlmeister-Coleman-Miller model of retinal ganglion cells consists of five ion channels; these are sodium channels, calcium channels, and 3 types of potassium channels. An increasing number of studies have investigated sodium channels, voltage-gated potassium channels, and delayed rectifier potassium channels. However, little is known about calcium channels, and in particular the dynamics and computational models of calcium ions. Retinal prostheses have been designed to assist with sight recovery for the blind, and in the present study, the effects of calcium ions in retinal ganglion cell models were analyzed with regard to calcium channel potential and calcium-activated potassium potential. Using MATLAB software, calcium conductance and calcium current from the Fohlmeister-Coleman-Miller model, under clamped voltages, were numerically computed using backward Euler methods. Subsequently, the Fohlmeister-Coleman-Miller model was simulated with the absence of calcium-current (lc,) or calcium-activated potassium current (IK, ca). The model was also analyzed according to the phase plane method.The relationship curve between peak calcium current and clamped potentials revealed an inverted bell shape, and the calcium-activated potassium current increased the frequency of firing and the peak of membrane potential. Results suggested that calcium ion concentrations play an important role in controlling the peak and the magnitude of peak membrane voltage in retinal ganglion cells.

  4. Measurements of the ion concentrations and conductivity over the Arabian Sea during the ARMEX

    CERN Document Server

    Siingh, Devendraa; Gopalakrishnan, V; Kamra, A K

    2009-01-01

    Measurements of the small-, intermediate-, and large-ion concentrations and the atmospheric electric conductivity of both polarities have been made over the Arabian Sea on four cruises of ORV Sagarkanya during the Arabian Sea Monsoon Experiment (ARMEX)during the monsoon and pre-monsoon seasons of 2002 and 2003. Seasonally averaged values of the total as well as polar conductivity are much higher during the monsoon than pre-monsoon season. Surprisingly, however, the concentration of small ions are less and those of large and intermediate ions are more during the monsoon than pre-monsoon season. The diurnal variations observed during the pre-monsoon season show that the nighttime small ion concentrations are about an order of magnitude higher than their daytime values. On the contrary, the daytime concentrations of the intermediate and large ions are much higher than those of their nighttime values. No such diurnal variations in ion concentrations are observed in monsoon season. Also examined are the variations...

  5. Effects of calcium ion concentration on starch hydrolysis of barley α-amylase isozymes

    DEFF Research Database (Denmark)

    Yuk, Jeong-Bin; Choi, Seung-Ho; Lee, Tae-Hee;

    2008-01-01

    Barley (x-amylase genes, amyl and amy2, were separately cloned into the expression vector of pPICZ alpha A and recombinant Pichia strains were established by homologous recombination. Both AMYs from Pichia shared almost identical hydrolysis patterns on short maltooligosaccharides to result in...

  6. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca2+]i) in MCF-7 Breast Cancer Cells

    International Nuclear Information System (INIS)

    Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca2+]i) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = −0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca2+]i in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca2+]i. Overall, elevation of [Ca2+]i by Auranofin might be crucial for triggering Ca2+-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca2+]i should be considered as a crucial factor for the induction of cell death in cancer cells

  7. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca2+]i in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth Varghese

    2014-11-01

    Full Text Available Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i in breast cancer cells (MCF-7. Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca2+]i was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM with a strong negative correlation (r = −0.713 to viability. Pharmacological modulators 2-APB (50 μM, Nimodipine (10 μM, Caffeine (10 mM, SKF 96365(20 μM were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca2+]i in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca2+]i. Overall, elevation of [Ca2+]i by Auranofin might be crucial for triggering Ca2+-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca2+]i should be considered as a crucial factor for the induction of cell death in cancer cells.

  8. Calcium transport in bovine rumen epithelium as affected by luminal Ca concentrations and Ca sources.

    Science.gov (United States)

    Schröder, Bernd; Wilkens, Mirja R; Ricken, Gundula E; Leonhard-Marek, Sabine; Fraser, David R; Breves, Gerhard

    2015-11-01

    The quantitative role of different segments of the gastrointestinal tract for Ca absorption, the respective mechanisms, and their regulation are not fully identified for ruminants, that is, cattle. In different in vitro experiments the forestomach wall has been demonstrated to be a major site for active Ca absorption in sheep and goats. In order to further clarify the role of the bovine rumen for Ca transport with special attention to luminal Ca concentrations, its ionic form, and pH, electrophysiological and unidirectional flux rate measurements were performed with isolated bovine rumen epithelial tissues. For Ca flux studies (Jms, Jsm) in vitro Ussing chamber technique was applied. Standard RT-PCR method was used to characterize TRPV6 and PMCA1 as potential contributors to transepithelial active Ca transport. At Ca concentrations of 1.2 mmol L(-1) on both sides of the tissues, Jms were higher than Jsm resulting under some conditions in significant Ca net flux rates (Jnet), indicating the presence of active Ca transport. In the absence of an electrical gradient, Jnet could significantly be stimulated in the presence of luminal short-chain fatty acids (SCFAs). Increasing the luminal Ca concentrations up to 11.2 mmol L(-1) resulted in significant increases in Jms without influencing Jsm. Providing Ca in its form as respective chloride, formate, or propionate salts there was no significant effect on Jms. No transcripts specific for Ca channel TRPV6 could be demonstrated. Our results indicate different mechanisms for Ca absorption in bovine rumen as compared with those usually described for the small intestines. PMID:26564067

  9. Rat subcutaneous tissue response to calcium silicate containing different arsenic concentrations

    Directory of Open Access Journals (Sweden)

    Paloma Gagliardi MINOTTI

    2015-02-01

    Full Text Available Objective: To evaluate the response of rat subcutaneous tissue in implanted polyethylene tubes that were filled with GMTA Angelus and Portland cements containing different arsenic concentrations. Material and Methods: Atomic absorption spectrophotometry was utilized to obtain the values of the arsenic concentration in the materials. Thirty-six rats were divided into 3 groups of 12 animals for each experimental period. Each animal received two implants of polyethylene tubes filled with different test cements and the lateral of the tubes was used as a control group. After 15, 30 and 60 days of implantation, the animals were killed and the specimens were prepared for descriptive and morphometric analysis considering: inflammatory cells, collagen fibers, fibroblasts, blood vessels and other components. The results were analyzed utilizing the Kuskal-Wallis test and the Dunn's Multiple test for comparison (p<0.05. Results: The materials showed, according to atomic absorption spectrophotometry, the following doses of arsenic: GMTA Angelus: 5.01 mg/kg, WPC Irajazinho: 0.69 mg/kg, GPC Minetti: 18.46 mg/kg and GPC Votoran: 10.76 mg/kg. In a 60-day periods, all specimens displayed a neoformation of connective tissue with a structure of fibrocellular aspect (capsule. Control groups and MTA Angelus produced the lower amount of inflammatory reaction and GPC Minetti, the highest reaction. Conclusions: There was no direct relationship between the concentration of arsenic present in the composition of the materials and the intensity of the inflammatory reactions. Higher values, as 18.46 mg/kg of arsenic in the cement, produce characteristics of severe inflammation reaction at the 60-day period. The best results were found in MTA angelus.

  10. Effect of Ion Concentration Changes in the Limited Extracellular Spaces on Sarcolemmal Ion Transport and Ca2+ Turnover in a Model of Human Ventricular Cardiomyocyte

    Czech Academy of Sciences Publication Activity Database

    Hrabcová, D.; Pásek, Michal; Šimurda, J.; Christé, G.

    2013-01-01

    Roč. 14, č. 12 (2013), s. 24271-24292. E-ISSN 1422-0067 Grant ostatní: GA MZd(CZ) NT14301 Institutional support: RVO:61388998 Keywords : human heart * cardiac cell * t-tubule * intercellular clefts * calcium * ion transport * computer model Subject RIV: BO - Biophysics Impact factor: 2.339, year: 2013

  11. Distortion of Na-concentration profiles in thin glassy surface layers by ion bombardment

    International Nuclear Information System (INIS)

    The intensity/time plots of the photon emission of excited Na atoms recorded during the continuous removal of thin Na2O-containing glassy layers by an ion beam allow for the analysis of the Na20 concentration profiles in these layers. Different intensity/time plots were obtained when changing the angle of incidence β of the ions or applying different constant β during the ablation of thin Na2O-containing glassy layers by positive 5.6 keV Ne+, Ar+ and Xe+ ions. These differences indicated that the concentration of Na is changed by a draft of Na+ ions caused by a positive space charge below the ion-bombarded surface. The field strength of the space charge was greatest for Ne+ ions, smallest for Xe+ ions. Simultaneously, a repulsive or an attractive field strength acts on positive Na ions within the thin layer if the value of the dielectric constant epsilon in the thin layer is greater or smaller than in the substrate respectively. The influence of the drift on the profiles could be separated from that of the disintegration of Na at the surface and the displacements of Na in the collision cascade reported earlier. For glasses containing the oxides of heavy elements, an additional influence of the backscattering of Na atoms moved in the collision cascade from the interface between the glass substrates and layers on intensity/time curves was also observed for Xe+ ions. The shapes of the recorded Na profiles are distinctly different for different stimulation depth distributions of the projectile ions. The different spatial extensions of the stimulation depths for Na moved in the collision cascade below the surface were estimated for 5.6 keV Xe+ ions at β = 200 and β = 700. The consequences of the various findings for the quantitative analysis by ion-beam-induced radiation are considered. (author)

  12. Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Kádek, Alan; Kavan, Daniel; Felice, A.K.G.; Ludwig, R.; Halada, Petr; Man, Petr

    2015-01-01

    Roč. 589, č. 11 (2015), s. 1194-1199. ISSN 0014-5793 R&D Projects: GA ČR GAP206/12/0503; GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Hydrogen/deuterium exchange * Cellobiose dehydrogenase * Calcium effect Subject RIV: CE - Biochemistry Impact factor: 3.169, year: 2014

  13. Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates

    Directory of Open Access Journals (Sweden)

    Silva Raul F

    2012-07-01

    Full Text Available Abstract Background The clinical use of autologous platelet concentrates (also known as platelet-rich plasma on the field of regenerative therapy, in the last decade has been the subject of several studies especially in equine medicine and surgery. The objectives of this study was: 1 to describe and compare the cellular population in whole blood, lower fraction (A and upper fraction (B of platelet concentrates, 2 to measure and compare the transforming growth factor beta 1 (TGF-β1 concentration in plasma and both platelet concentrates after be activated with calcium gluconate or batroxobin plus calcium gluconate and, 3 to determine correlations between cell counts in platelet concentrates and concentrations of TGF-β1. Blood samples were taken from 16 dogs for complete blood count, plasma collection and platelet concentrates preparation. The platelet concentrates (PC were arbitrarily divided into two fractions, specifically, PC-A (lower fraction and PC-B (upper fraction. The Platelet concentrates were analyzed by hemogram. After activated with calcium gluconate or batroxobin plus calcium gluconate, TGF-β1 concentration was determined in supernatants of platelet concentrates and plasma. Results There were differences statistically significant (P 1 concentration between whole blood, plasma and both platelet concentrates. A significant correlation was found between the number of platelets in both platelet concentrates and TGF-β1 concentration. Platelet collection efficiency was 46.34% and 28.16% for PC-A and PC-B, respectively. TGF-β1 concentration efficiency for PC activated with calcium gluconate was 47.75% and 31.77%, for PC-A and PC-B, respectively. PC activated with batroxobin plus CG showed 46.87% and 32.24% for PC-A and PC-B, respectively. Conclusions The methodology used in this study allows the concentration of a number of platelets and TGF-β1 that might be acceptable for a biological effect for clinical or experimental use as a

  14. Specific proliferation rates of human osteoblasts on calcium phosphate surfaces with variable concentrations of α-TCP

    International Nuclear Information System (INIS)

    Ideally, ceramics used in the repair of bone defects need to be resorbed and replaced by newly formed bone in vivo. Tricalcium phosphate (TCP) has been widely used in association with hydroxyapatite (HA) due to its higher resorption kinetics when compared with HA alone. The aim of our study was to quantitatively investigate the effect of α-tricalcium phosphate (α-TCP) on human osteoblasts' adhesion and proliferation. Ceramic samples with variable concentrations of α-TCP and HA were produced by the calcination of calcium-deficient and stoichiometric HA. Human osteoblasts were cultured on the materials in three distinct experiments with different concentrations of cells. Numerical evaluation of cellular growth along time in culture was performed for each condition. The quantity of cells seeded onto the ceramics seems to influence the osteoblast behavior once proliferation was lower when more cells were seeded onto the samples. However, a smaller content of α-TCP in relation to that of HA did not significantly modify the specific proliferation rates of the osteoblasts. Only after a long time in culture, the increasing of the α-TCP content seems to change the cells' behavior

  15. Concentration Dependent Ion-Protein Interaction Patterns Underlying Protein Oligomerization Behaviours

    Science.gov (United States)

    Batoulis, Helena; Schmidt, Thomas H.; Weber, Pascal; Schloetel, Jan-Gero; Kandt, Christian; Lang, Thorsten

    2016-01-01

    Salts and proteins comprise two of the basic molecular components of biological materials. Kosmotropic/chaotropic co-solvation and matching ion water affinities explain basic ionic effects on protein aggregation observed in simple solutions. However, it is unclear how these theories apply to proteins in complex biological environments and what the underlying ionic binding patterns are. Using the positive ion Ca2+ and the negatively charged membrane protein SNAP25, we studied ion effects on protein oligomerization in solution, in native membranes and in molecular dynamics (MD) simulations. We find that concentration-dependent ion-induced protein oligomerization is a fundamental chemico-physical principle applying not only to soluble but also to membrane-anchored proteins in their native environment. Oligomerization is driven by the interaction of Ca2+ ions with the carboxylate groups of aspartate and glutamate. From low up to middle concentrations, salt bridges between Ca2+ ions and two or more protein residues lead to increasingly larger oligomers, while at high concentrations oligomers disperse due to overcharging effects. The insights provide a conceptual framework at the interface of physics, chemistry and biology to explain binding of ions to charged protein surfaces on an atomistic scale, as occurring during protein solubilisation, aggregation and oligomerization both in simple solutions and membrane systems. PMID:27052788

  16. Concentration Dependent Ion-Protein Interaction Patterns Underlying Protein Oligomerization Behaviours.

    Science.gov (United States)

    Batoulis, Helena; Schmidt, Thomas H; Weber, Pascal; Schloetel, Jan-Gero; Kandt, Christian; Lang, Thorsten

    2016-01-01

    Salts and proteins comprise two of the basic molecular components of biological materials. Kosmotropic/chaotropic co-solvation and matching ion water affinities explain basic ionic effects on protein aggregation observed in simple solutions. However, it is unclear how these theories apply to proteins in complex biological environments and what the underlying ionic binding patterns are. Using the positive ion Ca(2+) and the negatively charged membrane protein SNAP25, we studied ion effects on protein oligomerization in solution, in native membranes and in molecular dynamics (MD) simulations. We find that concentration-dependent ion-induced protein oligomerization is a fundamental chemico-physical principle applying not only to soluble but also to membrane-anchored proteins in their native environment. Oligomerization is driven by the interaction of Ca(2+) ions with the carboxylate groups of aspartate and glutamate. From low up to middle concentrations, salt bridges between Ca(2+) ions and two or more protein residues lead to increasingly larger oligomers, while at high concentrations oligomers disperse due to overcharging effects. The insights provide a conceptual framework at the interface of physics, chemistry and biology to explain binding of ions to charged protein surfaces on an atomistic scale, as occurring during protein solubilisation, aggregation and oligomerization both in simple solutions and membrane systems. PMID:27052788

  17. A Concentration-Controllable Microfluidic Droplet Mixer for Mercury Ion Detection

    Directory of Open Access Journals (Sweden)

    Qian-Fang Meng

    2015-07-01

    Full Text Available A microfluidic droplet mixer is developed for rapid detection of Hg(II ions. Reagent concentration and droplets can be precisely controlled by adjusting the flow rates of different fluid phases. By selecting suitable flow rates of the oil phase, probe phase and sample phase, probe droplets and sample droplets can be matched and merged in pairs and subsequently well-mixed in the poly (dimethylsiloxane (PDMS channels. The fluorescence enhancement probe (Rhodamine B mixed with gold nanoparticles encapsulated in droplets can react with Hg(II ions. The Hg(II ion concentration in the sample droplets is adjusted from about 0 to 1000 nM through fluid regulation to simulate possible various contaminative water samples. The intensity of the emission fluorescence is sensitive to Hg(II ions (increases as the Hg(II ion concentration increases. Through the analysis of the acquired fluorescence images, the concentration of Hg(II ions can be precisely detected. With the advantages of less time, cost consumption and easier manipulations, this device would have a great potential in micro-scale sample assays and real-time chemical reaction studies.

  18. Diurnal variation in the concentration of air ions of different mobility classes in a rural area

    Science.gov (United States)

    Hõrrak, Urmas; Salm, Jaan; Tammet, Hannes

    2003-10-01

    Analyzed data consist of 8900 hourly average mobility distributions measured in the mobility range of 0.00041-3.2 cm2 V-1 s-1 (diameter range 0.36-79 nm) at Tahkuse Observatory, Estonia, in 1993-1994. The average diurnal variation in the concentration of cluster ions is typical for continental stations: the maximum in the early morning hours and the minimum in the afternoon. This is explained by variations in radon concentration. The diurnal variation for big cluster ions (0.5-1.3 cm2 V-1 s-1) differs from that for small cluster ions (1.3-3.14 cm2 V-1 s-1). The size distribution of intermediate and light large ions in the range of 1.6-22 nm is strongly affected by nucleation bursts of nanometer particles. On the burst days, the maximum concentration of intermediate ions (1.6-7.4 nm) is about the noontime and that of light large ions (7.4-22 nm) about 2 hours later. The concentration of heavy large ions (charged Aitken particles of diameters of 22-79 nm) is enhanced in the afternoon and this is explained by the bursts of nanometer particles and the subsequent growth of particles by condensation and coagulation. If the burst days are excluded, then in the warm season the concentration of Aitken particles increases during night. In the cold season, the diurnal variation is different and all the classes of aerosol ions (2.1-79 nm) show similar variation with the minimum at 0600 LT and the maximum in the afternoon; exceptions are the rare nucleation burst days.

  19. Agglomeration of Ag and TiO2 nanoparticles in surface and wastewater: Role of calcium ions and of organic carbon fractions

    International Nuclear Information System (INIS)

    This study aims to investigate factors leading to agglomeration of citrate coated silver (AgNP-Cit), polyvinylpyrrolidone coated AgNPPVP and titanium dioxide (TiO2) nanoparticles in surface waters and wastewater. ENPs (1 mg/L) were spiked to unfiltered, filtered, ultrafiltered (<10 kDa and <1 kDa) samples. Z-average particle sizes were measured after 1 h, 1 day and 1 week. AgNP-PVP was stable in all fractions of the samples and kept their original size around 60 nm over 1 week. Agglomeration of AgNP-Cit and TiO2 was positively correlated with Ca2+ concentration, but dissolved organic carbon concentrations > 2 mg/L contributed to stabilizing these NP. Moreover, agglomeration of AgNP-Cit in the various organic matter fractions showed that high molecular weight organic compounds such as biopolymers provide stabilization in natural water. A generalized scheme for the agglomeration behavior of AgNP-Cit, AgNP-PVP and TiO2 in natural waters was proposed based on their relation with Ca2+, Mg2+ and DOC concentration. - Highlights: • Agglomeration of AgNP-Cit was positively correlated with Ca2+ concentration. • DOC > 2 mg/L contributes to stabilizing AgNP-Cit and TiO2. • High molecular weight biopolymers provide stabilization in natural water. • Z-average sizes of AgNP-Cit in filtered samples were higher than in unfiltered ones. • AgNP-PVP is stable in surface and wastewater over 1 week. - Agglomeration of ENP in natural waters and wastewater was mostly dependent on the calcium ion and dissolved organic carbon concentrations

  20. Reduced blood flow increases the in vivo ammonium ion concentration in the RIF-1 tumor

    International Nuclear Information System (INIS)

    Purpose: Previous studies from our laboratory have suggested that pooling of ammonium in tumor tissues may be caused by its inefficient removal due to the poor vasculature commonly found in tumors. The purpose of these experiments was to validate the relationship between tumor ammonium ion concentration and tumor blood flow, and to determine whether large concentrations of ammonium ion detected by Nuclear Magnetic Resonance (NMR) spectroscopy are either produced within the tumor or simply imported into the tumor through the blood stream. Methods and Materials: To test this hypothesis, we reduced blood flow in subcutaneously grown Radiation Induced Fibrosarcoma-1 (RIF-1) tumors, either by creating partial ischemia with a bolus injection of hydralazine or by occlusion with surgical sutures. 14N and 31P NMR spectroscopy were used to detect the presence of ammonium, and to assess the bioenergetic status of the tumors, respectively. Results: A correlation between ammonium ion concentration and (PCr(Pi)) ratio was established for untreated tumors. An increase in the in vivo tumor ammonium ion concentration was observed for every tumor that experienced a reduction in blood flow caused by either hydralazine injection or suture ligation. Changes in ammonium ion concentration paralleled changes in the bioenergetics of hydralazine-treated tumors. Conclusion: Our results support the hypothesis that a reduction in tumor blood flow is responsible for the accumulation of ammonium in tumors, and that detected ammonium originated from within the tumor

  1. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  2. A randomized, double-blind, placebo-controlled trial of calcium acetate on serum phosphorus concentrations in patients with advanced non-dialysis-dependent chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Ho Chiang-Hong

    2011-02-01

    Full Text Available Abstract Background Hyperphosphatemia in patients with chronic kidney disease (CKD contributes to secondary hyperparathyroidism, soft tissue calcification, and increased mortality risk. This trial was conducted to examine the efficacy and safety of calcium acetate in controlling serum phosphorus in pre-dialysis patients with CKD. Methods In this randomized, double-blind, placebo-controlled trial, 110 nondialyzed patients from 34 sites with estimated GFR 2 and serum phosphorus > 4.5 mg/dL were randomized to calcium acetate or placebo for 12 weeks. The dose of study drugs was titrated to achieve target serum phosphorus of 2.7-4.5 mg/dL. Serum phosphorus, calcium, iPTH, bicarbonate and serum albumin were measured at baseline and every 2 weeks for the 12 week study period. The primary efficacy endpoint was serum phosphorus at 12 weeks. Secondary endpoints were to measure serum calcium and intact parathyroid hormone (iPTH levels. Results At 12 weeks, serum phosphorus concentration was significantly lower in the calcium acetate group compared to the placebo group (4.4 ± 1.2 mg/dL vs. 5.1 ± 1.4 mg/dL; p = 0.04. The albumin-adjusted serum calcium concentration was significantly higher (9.5 ± 0.8 vs. 8.8 ± 0.8; p p Conclusions In CKD patients not yet on dialysis, calcium acetate was effective in reducing serum phosphorus and iPTH over a 12 week period. Trial Registration www.clinicaltrials.gov NCT00211978.

  3. Concentration dependence and interfacial instabilities during ion beam annealing of arsenic-doped silicon

    International Nuclear Information System (INIS)

    Ion beam induced epitaxy of amorphous Si layers onto left-angle 100 right-angle substrates has been investigated by varying the As concentration. At As concentrations below 4x1018/cm3 no rate effect is observed. In the intermediate regime, between 4x1018/cm3 and 2x1021/cm3, the growth rate increases linearly with the logarithm of As concentration and reaches a value about a factor of 2 higher than that of intrinsic Si. At concentrations above 2x1021/cm3, the epitaxy experiences a sudden, severe retardation. Finally, at a concentration of ∼6x1021/cm3, twins are observed to form

  4. SERUM CONCENTRATIONS OF CALCIUM, PHOSPHORUS AND MAGNESIUM IN PREGNANT NILI-RAVI BUFFALOES WITH OR WITHOUT VAGINAL PROLAPSE IN IRRIGATED AND RAIN FED AREAS OF PUNJAB, PAKISTAN

    Directory of Open Access Journals (Sweden)

    M. S. AKHTAR, L. A. LODHI, I. AHMAD, Z. I. QURESHI AND G. MUHAMMAD1

    2008-07-01

    Full Text Available The present study was planned to determine the macro-mineral status (calcium, phosphorus and magnesium in riverine buffaloes suffering with prepartum vaginal prolapse (n=100 in comparison with control (n=100 buffaloes kept in irrigated and rain fed (Barani agro-ecological zones of Punjab, Pakistan. Serum macro-mineral status was determined by spectrophotometer using commercially available kits. Mean serum calcium and phosphorus levels were lower in buffaloes suffering with prepartum vaginal prolapse compared with their healthy counterparts (P<0.01, while reverse was true for serum magnesium concentration. Mean serum calcium was significantly higher (P<0.01 and phosphorus was non-significantly lower in control and vaginal prolapse affected buffaloes kept in irrigated zone compared to their counterparts in rain fed zone. However, magnesium concentration was non-significantly higher in control buffaloes and significantly lower in vaginal prolapse affected buffaloes belonging to irrigated zone compared to their counterparts in rain fed zone. It may be inferred that deficiency of calcium and phosphorus and higher levels of magnesium may possibly be the contributing factors in causing prepartum vaginal prolapse in buffaloes. The levels of calcium, phosphorus and magnesium were, at least partially, zone dependent.

  5. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    International Nuclear Information System (INIS)

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation

  6. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Song, YoungShin; Lee, Chang-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-15

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

  7. A procedure for reducing the concentration of hydrogen ions in acid anionic eluate and equipment therefore

    International Nuclear Information System (INIS)

    The method is described of reducing the concentration of hydrogen ions in acid anionic eluate produced in the separation of uranium or other metals, in which anion exchanger elution, precipitation, filtration and precipitate and anion exchanger washing are used. The technological line for such elution comprises at least one ion exchange column and at least one container. They together form the first and the second stages of preparation of the acid anion elution solution, the sorption-elution separation of hydrogen ions on an cation exchanger being inserted between them. The preparation of the solution is divide into two stages. In the first stage, the acid and part of the solution for the preparation of the acid anion elution solution are supplied. The resulting enriched acid elution solution is fe onto the cation exchanger where the hydrogen ion concentration i reduced. It is then carried into the second stage where it is mixed with the remaining part of the solution. (B.S.)

  8. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: Comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution

    OpenAIRE

    Stojković Aleksandra; Tajber Lidia; Paluch Krzysztof J.; Djurić Zorica; Parojčić Jelena; Corrigan Owen I.

    2014-01-01

    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution ...

  9. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  10. Heavy metal ions concentration in wheat plant (Triticum Aestivum L.) irrigated with city effluent

    International Nuclear Information System (INIS)

    Pakistan lies under arid and semi arid zones. There is shortage of water for irrigation. Farmers near being cities raise crops by diverting the city effluent towards their fields. It contains heavy toxic metal ions like cadmium, chromium, cobalt and nickel, which may accumulate in the edible portion of corps and cause clinical problems to human being. The concentration of metal ions in the effluent and effluent irrigated wheat (Triticum aestivum L.) was determined by Atomic Absorption Spectrophotometer. Heavy metal ions (Cd, Cr and Co) mean concentrations were found above the permissible limits recommended for irrigation water. In the grains of wheat plant concentration of Cd, Cr and Co was found above the permissible levels recommended by World Health Organization (WHO) for foodstuff.(author)

  11. CALCIUM SIGNALING, ION CHANNELS AND MORE: THE DT40 SYSTEM AS A MODEL OF VERTEBRATE ION HOMEOSTASIS AND CELL PHYSIOLOGY

    OpenAIRE

    Perraud, Anne-Laure; Schmitz, Carsten; Scharenberg, Andrew M.

    2006-01-01

    The DT40 B-lymphocyte cell line is a chicken bursal lymphocyte tumor cell line which grows rapidly, expresses a variety of types of constitutive and signal dependent ion transport systems., and supports the efficient use of stable and conditional genetic manipulations. Below, we review the use of DT40 cells in dissecting molecular mechanisms involved in Ca2+, Mg2+, and Zn2+ transport physiology. These studies highlight the flexibility and advantages the DT40 environment offers to investigator...

  12. Effects of DPPC/Cholesterol liposomes on the properties of freshly precipitated calcium carbonate.

    Science.gov (United States)

    Szcześ, A

    2013-01-01

    DPPC/Cholesterol liposomes of average diameter below 100nm were used as a matrix for calcium carbonate precipitation. Adsorption of calcium ions on the vesicles was determined via zeta potential measurement. It was found that with increasing calcium ions concentration the electrokinetic potential of the vesicles varied toward more positive values. The changes became smaller with the cholesterol content increase. Accumulation of calcium ions close to the vesicles membranes lead to attraction of CO(3)(2-) ions and enhances nucleation and growth of small calcium carbonate crystals that aggregates within lipid vesicles forming porous balls aggregates. However, dipalmitoylphosphatidylcholine (DPPC) does not change the CaCO(3) crystal forms and calcite is the only form obtained during precipitation. Moreover, the influence of the phospholipid on the calcium carbonate precipitation is enhanced by the induction of cholesterol to the lipid membranes. PMID:22796770

  13. Submicron fiber optic sensors for calcium ions and pH with internal calibration

    Science.gov (United States)

    Plaschke, Markus; Geyer, Michael; Reichert, Johannes; Ache, Hans-Joachim

    1997-05-01

    Submicron optical sensors can be prepared by immobilization of fluorescent indicators on tapered fiber tips. However, fluorescence intensity based sensing depends on many parameters (e.g. light source, collection geometry, quenching effects, etc.) and therefore quantification is usually complicated. Ratio measurements are established as a common method to quantify fluorescence signals using a sensing and a reference dye. The sensors described in this work are based on a new immobilization concept which consists of the encapsulation of dextran-linked fluorescence indicators in an organic hydrogel. This concept allows co-immobilization and stable encapsulation of different indicators. The calcium- and pH-sensors presented contain dextran-coupled fluorescein- derivatives as indicators (Calcium GreenTM and fluorescein) and a rhodamine-derivative (Texas RedR) as reference dye, co-immobilized in PolyHEMA. These sensors exhibit a signal stability of several weeks (when stored in buffer solution), fast response times and calibration curves which are not affected by immobilization. Due to the ratio measurement signal reproducibility was less than or equal to 5%. The working lifetime of submicron sensors was limited only by photobleaching of the indicators which can be minimized by reduction of the laser power. The dynamic range and short response times of these sensors suggest applications in physiological fluids, cell cultures or micro-bioreactors.

  14. Fibrinogen degradation by two neutral granulocyte proteinases. Influence of calcium on the generation of fibrinogen degradation products with anticlotting properties.

    Science.gov (United States)

    Bingenhkeimer, C; Gramse, M; Egbring, R; Havemann, K

    1981-07-01

    Degradation of human fibrinogen by elastase-like proteinase, chymotrypsin-like proteinase and plasmin, was done in the presence and absence of calcium ions, respectively. The resulting fibrinogen degradation products were tested for their coagulant and anti-coagulant properties. The results show that 1. fibrinogenolysis is delayed in the presence of calcium ions. Higher enzyme concentrations are required to get unclottable split products when calcium ions are present. 2. The fibrinogen fragments obtained in the presence of calcium are different in their molecular weights and anticoagulant activities compared to those obtained in the absence of calcium ions. This effect of calcium is most striking during fibrinogen cleavage by chymotrypsin-like proteinase. Elastase and plasmin-induced fibrinogenolysis was substantially influenced by calcium only at a late degradation stage. PMID:6456216

  15. Effect of casein phosphopeptide - amorphous calcium phosphate containing chewing gum on salivary concentration of calcium and phosphorus: An in-vivo study

    OpenAIRE

    B P Santhosh; P Jethmalani; K K Shashibhushan; Subba Reddy, V. V.

    2012-01-01

    Aim: Caries clinical trials of sugar-free chewing gum have shown that the gum is noncariogenic and in fact has anticariogenic effect through the stimulation of saliva. Sugar-free gums, therefore, may be an excellent delivery vehicle for safe and effective additive, capable of promoting enamel remineralization. Casein phosphopeptide - amorphous calcium phosphate (CPP-ACP) nanocomplexes incorporated into sugar-free chewing gum have shown to remineralize enamel subsurface lesions in situ. So thi...

  16. Knowledge Representation of Ion-Sensitive Field-Effect Transistor Voltage Response for Potassium Ion Concentration Detection in Mixed Potassium/Ammonium Ion Solutions

    Directory of Open Access Journals (Sweden)

    Wan F.H. Abdullah

    2010-01-01

    Full Text Available Problem statement: The Ion-Sensitive Field-Effect Transistor (ISFET is a metal-oxide field-effect transistor-based sensor that reacts to ionic activity at the electrolye/membrane/gate interface. The ionic sensor faces issue of selectivity from interfering ions that contribute to the sensor electrical response in mixed solutions. Approach: We present the training data collection of ISFET voltage response for the purpose of post-processing stage neural network supervised learning. The role of the neural network is to estimate the main ionic activity from the interfering ion contribution in mixed solutions given time-independent input voltages. In this work, potassium ion (K+ and ammonium ion (NH4+ ISFET response data are collected with readout interface circuit that maintains constant voltage and current bias levels to the ISFET drain-source terminals. Sample solutions are prepared by keeping the main ion concentration fixed while the activity of an interfering ion varied based on the fixed interference method. Results: Sensor demonstrates linear relationship to the ion concentration within detection limit but has low repeatability of 0.52 regression factor and 0.16 mean squared error between similarly repeated measurements. We find that referencing the voltage response to the sensor response in DIW prior to measurement significantly improves the repeatability by 15.5% for correlation and 98.3% for MSE. Demonstration of multilayer perceptron feed-forward neural network estimation of ionic concentration from the data collection shows a recognition of >0.8 regression factor. Conclusion: Time-independent DC voltage response of ISFET of the proposed setup can be used as training data for neural network supervised learning for the estimation of K+ in mixed K+/NH4+ solutions.

  17. Influence of rations low in calcium and phosphorus on blood and tissue lead concentrations in the horse

    Energy Technology Data Exchange (ETDEWEB)

    Willoughby, R.A.; Thirapatsakun, T.; McSherry, B.J.

    1972-06-01

    Five groups of foals were fed rations that differed in calcium and phosphorus content for 26 weeks. During the last 15 weeks of the experiments, a portion of the foals in each ration group were fed lead (as Pb carbonate) each day at the dose level of 30 ppm. There were no significant differences in daily feed intake per unit of body weight or height gains among or between foals fed the different rations or those fed and not fed additional Pb. The hemograms, serum Ca, and inorganic P values were comparable between groups and when values from foals fed additional Pb were compared with those from the foal not fed additional Pb. The addition of Pb at the level of 30 ppm to the rations of some foals in each ration group significantly increased Pb concentrations in whole blood, liver, kidneys, vertebrae, and rib, but not in metacarpal diaphysis or ephiphysis, brain, lungs, or muscles. The liver was the only organ where the Pb values from foals fed rations containing the least amount of Ca 0.25% (Ca on dry-matter basis) were significantly higher (P < 0.05) than the values from foals fed rations containing 0.60% or more Ca. These differences occurred when data from all foals within each ration group, those given additional Pb, and those not given additional Pb were analyzed separately. 19 references, 1 figure, 9 tables.

  18. Effect of Lithium Ion Concentration of a Single-Ion-Conducting Block Copolymer Electrolyte on the Morphology-Conductivity Relationship

    Science.gov (United States)

    Rojas, Adriana A.; Inceoglu, Sebnem; Mackay, Nikolaus G.; Devaux, Didier; Stone, Greg; Balsara, Nitash

    2015-03-01

    Single-ion-conducting electrolytes are desirable for lithium metal batteries because they enable the sole conduction of lithium ions, the reacting species in lithium batteries; hence, they avert detrimental battery limitations due to salt concentration gradients. A single-ion-conducting block copolymer electrolyte, poly(ethylene oxide)-b-polystyrenesulfonyllithium (trifluoromethyl sulfonyl) imide (PEO-b-PSLiTFSI), was characterized in-situ and ex-situ for its ionic conductivity and morphology using AC impedance spectroscopy and small angle x-ray scattering, respectively. This work is the first to elucidate the relationship between the two properties in a single-ion block copolymer electrolyte. The transference number for the copolymers was determined to be greater than or equal to 0.87, indicating that to a good approximation, the block copolymers are single-ion conducting electrolytes. It was found that increasing the molecular weight of the PSLiTFSI block led to an increase in the extent of block copolymer block-mixing and a change in the conductivity profile from discontinuous to continuous. These effects can be attributed to the disruption of PEO crystallization, which was shown to drive microphase separation. Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory.

  19. Influence des ions étrangers et de la matière organique sur la cristallisation des carbonates de calcium Influence of Foreign Ions and of Organic Matter on the Crystallization of Calcium Carbonates

    Directory of Open Access Journals (Sweden)

    Cailleau P.

    2006-11-01

    Full Text Available On présente les résultats d'un travail de recherche entrepris pour des aspects de la diagenèse des roches carbonatées : la cimentation cal le rôle est capital pour la conservation ou le colmatage de la porosit de ce type de sédiments. Après une synthèse bibliographique des connaissances actuelles sur et la cimentation du CaC03 en milieu naturel et en laboratoire, on a mentalement l'influence des ions étrangers et de la matière organique sur germination et la croissance des carbonates de calcium. Les principaux résultats obtenus peuvent se résumer comme suit a En ce qui concerne les ions étrangers. Leur action se traduit en général par une augmentation du temps de germination et une réduction de la vitesse de croissance des cristaux de CaCO3; l'apparition de faciès particuliers pour certains des minéraux formés ; l'inhibition des transformations d'une variété en une autre. On obtient un classement par ordre d'efficacité croissante action à peu près nulle: K+, CI-; action modérée : Bat+, Na+, AI3+, Cul+, Sr2+, SO2 , P0;-; action dominante de Mg'+. b Pour les matières organiques. Seules l'acide citrique et, dans une moindre mesure, l'acide tartrique, ont une influence notable, d'ailleurs analogue à celle des ions étrangers en ce qui concerne les cinétiques de germination et de croissance du CaCO. L'adsorption de certains de ces produits se traduit en outre par des faciès particuliers des minéraux formés et éventuellement par l'inhibition des transformations d'une variété en une autre. This article gives the results of a research project undertaken to study one of the aspects of the diagénesis of carbonate rocks, 1. e. calcite cementing, which plays a capital role in preserving or plugging up the original porosity of such sediments.After making a bibliographic synthesis of what is now known about the origin and cementation of CaC03 in a natural environment and in the laboratory, the article experimentally

  20. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    DEFF Research Database (Denmark)

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the......+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be......Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...

  1. The influence of potassium and calcium ions on nitrogen metabolism of cucumber seedlings

    Directory of Open Access Journals (Sweden)

    Genowefa Kubik-Dobosz

    2014-02-01

    Full Text Available It was found that K+ or Ca2+ deficiency in a nitrate or ammonium medium increased the amount of accumulated total and non-protein nitrogen in some organs of cucumber seedlings, as also caused changes in accumulated potassium and calcium. Lack of K+ or Ca2+ in a medium which did not contain nitrogen led to an increased level of glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase activity in the cotyledons and roots of cucumbers. Similar changes in the activity of these enzymes were noted in certain organs of seedlings growing in nitrate or ammonium medium with decreased K+ or Ca2+ contents, although the magnitude of these changes depended upon the applied dosage of these cations, the form of mineral nitrogen, developmental phase of plants and the plant organ dealt with.

  2. MEASUREMENT OF INTRACELLULAR CALCIUM CONCENTRATION IN THE ISOLATED RAT HARDERIAN GLAND CELLS USING CALCIUM ORANGE%利用Calcium Orange测定Harderian腺细胞中的钙离子浓度

    Institute of Scientific and Technical Information of China (English)

    周衍东; 刘玉芝; 崔宗杰

    2001-01-01

    探讨了Calcium Orange作为Harderian腺细胞胞浆Ca2+荧光指示探针的可能性.发现选用559nm作为激发光波长时,Calcium Orange有较强的吸收,而Harderian腺细胞(含大量卟啉)在此波长没有吸收.利用Calcium Orange作为指示剂可以避免紫外光所引发的原卟啉介导的光动力作用.在Calcium Orange加载的Harderian腺细胞,Ionomycin引起荧光强度的增加,而用Triton X-100破裂细胞后加入钙离子螯合剂EGTA,可使Calcium Orange荧光降到低于加入Ionomycin前的强度.说明用559nm为激发光波长,Calcium Orange可以用于Harderian腺细胞胞浆Ca2+的测定.

  3. Study on Producing Magnesium Hydroxide by Concentrated Seawater- calcium Method%浓海水-钙法制取氢氧化镁工艺研究

    Institute of Scientific and Technical Information of China (English)

    高春娟; 张雨山; 黄西平; 蔡荣华

    2011-01-01

    Calcium method ( light burned dolomite and lime) producing magnesium hydroxide from concentrated seawater of desalination plant has advantages of low producing cost and rich resources. However, magnesium hydroxide produced by traditional calcium method has high -content impurities and low purity. Based on patent technology developing independently, the technology of concentrated seawater - calcium method producing magnesium hydroxide was improved in raw material pretreatment, magnesium hydroxide synthesis, calcium sulfate precipitation and precipitate washing. The results showed that the quantities of magnesium hydroxide produced by new technology accord with industry standard, while the content of calcium oxide is reduced significantly. Meanwhile, high quantity byproduct calcium sulfate was obtained.%浓海水一钙法(轻烧白云石、石灰)制取氢氧化镁具有生产成本低、资源丰富的优势,但传统钙法生产的氢氧化镁存在杂质含量高、产品纯度低等缺陷.文章以自主研发的专利技术为基础,从原料预处理、氢氧化镁合成、硫酸钙沉降、沉淀洗涤等方面对浓海水-钙法制取氢氧化镁的工艺进行改进.结果表明,采用改进后的工艺制备的氢氧化镁质量符合行业标准要求,氧化钙含量明显降低,同时得到高质量的副产硫酸钙.

  4. Influence of the calcium concentration in the presence of organic phosphorus on the physicochemical compatibility and stability of all-in-one admixtures for neonatal use

    Directory of Open Access Journals (Sweden)

    de Sousa Valeria

    2009-10-01

    Full Text Available Abstract Background Preterm infants need high amounts of calcium and phosphorus for bone mineralization, which is difficult to obtain with parenteral feeding due to the low solubility of these salts. The objective of this study was to evaluate the physicochemical compatibility of high concentrations of calcium associated with organic phosphate and its influence on the stability of AIO admixtures for neonatal use. Methods Three TPN admixture formulas were prepared in multilayered bags. The calcium content of the admixtures was adjusted to 0, 46.5 or 93 mg/100 ml in the presence of a fixed organic phosphate concentration as well as lipids, amino acids, inorganic salts, glucose, vitamins and oligoelements at pH 5.5. Each admixture was stored at 4°C, 25°C or 37°C and evaluated over a period of 7 days. The physicochemical stability parameters evaluated were visual aspect, pH, sterility, osmolality, peroxide formation, precipitation, and the size of lipid globules. Results Color alterations occurred from the first day on, and reversible lipid film formation from the third day of study for the admixtures stored at 25°C and 37°C. According to the parameters evaluated, the admixtures were stable at 4°C; and none of them presented precipitated particles due to calcium/phosphate incompatibility or lipid globules larger than 5 μm, which is the main parameter currently used to evaluate lipid emulsion stability. The admixtures maintained low peroxide levels and osmolarity was appropriate for parenteral administration. Conclusion The total calcium and calcium/phosphorus ratios studied appeared not to influence the physicochemical compatibility and stability of AIO admixtures.

  5. Concentration quenching of the luminescence from trivalent thulium, terbium, and erbium ions embedded in an AlN matrix

    International Nuclear Information System (INIS)

    The concentration quenching behaviour of erbium, terbium, and thulium ions embedded in sputter deposited AlN films was investigated. For each of these three systems a series of specimens with different ion concentrations was prepared. In all three cases the concentration for maximum of the luminescence intensity (optimum concentration) at the selected excitation parameters was determined. These optimum concentrations differ strongly for the different ions. A rate equation model based on transition probabilities can explain the observations. -- Highlights: • Concentration quenching curves for trivalent terbium, erbium, and thulium ions are presented. • The optimum concentrations (concentration corresponding to the highest emission intensity) depend on the kind of rare earth ion. • The results can be explained by the previously described rate equation model. • Previous results (cf. F. Benz, et al., J. Lumin. 137 (2013) 73) indicate that the presented curves are not restricted to one matrix material but have general validity

  6. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg{sup 2+} in the m-SBF on its bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen, Zhaohui, E-mail: wenzhaohui1968@163.com [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, Shujuan; Lin, Lemin [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg{sup 2+} in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg{sup 2+} for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg{sup 2+} concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg{sup 2+} concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg{sup 2+} increasing from 1× Mg to 10× Mg. Over all, with the Mg{sup 2+} concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  7. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the effect of different concentration of Mg2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  8. Oil recovery process usable in formations containing water having high concentrations of polyvalent ions

    Energy Technology Data Exchange (ETDEWEB)

    Flournoy, K.H.; Maddox, J. Jr.; Tate, J.F.

    1975-01-07

    A dual surfactant system can effectively reduce surface tension in the presence of from 200 to about 18,000 ppM polyvalent ions, such as calcium and/or magnesium. The surfactant system consists of water soluble salts of alkyl or alkyl aryl sulfonates wherein the alkyl chain may have from 5 to 25 carbon atoms, e.g., ammonium dodecylbenzene sulfonate, plus sulfated oxyalkylated surfactants containing aryl alkyl groups, e.g., ethylene oxide adduct of nonyl phenol. The drive fluid may consist of water thickened with polysaccharide or polyacrylamide. Laboratory studies in limestone cores recovered up to 73% of the original oil in place (45% had been recovered prior to chemical flooding).

  9. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p<0.0001) or...

  10. Nonlinear Dynamics of Ion Concentration Polarization in Porous Media: The Leaky Membrane Model

    CERN Document Server

    Dydek, E Victoria

    2013-01-01

    The conductivity of highly charged membranes is nearly constant, due to counter-ions screening pore surfaces. Weakly charged porous media, or "leaky membranes", also contain a significant concentration of co-ions, whose depletion at high current leads to ion concentration polarization and conductivity shock waves. To describe these nonlinear phenomena the absence of electro-osmotic flow, a simple Leaky Membrane Model is formulated, based on macroscopic electroneutrality and Nernst-Planck ionic fluxes. The model is solved in cases of unsupported binary electrolytes: steady conduction from a reservoir to a cation-selective surface, transient response to a current step, steady conduction to a flow-through porous electrode, and steady conduction between cation-selective surfaces in cross flow. The last problem is motivated by separations in leaky membranes, such as shock electrodialysis. The article begins with a tribute to Neal Amundson, whose pioneering work on shock waves in chromatography involved similar mat...

  11. The mechanism of hetero-synaptic interaction based on spatiotemporal intracellular calcium dynamics.

    Directory of Open Access Journals (Sweden)

    Daiki Futagi

    2014-03-01

    Full Text Available In recent physiological experiments focusing on synaptic plasticity, it is shown that synaptic modifications induced at one synapse are accompanied by hetero-synaptic changes at neighbor sites (Bi, 2002. These evidences imply that the hetero-synaptic interaction plays an important role in reconfiguration of synaptic connections to form and maintain functional neural circuits (Takahashi et al., 2012. Although the mechanism of the interaction is still unclear, some physiological studies suggest that the hetero-synaptic interaction could be caused by propagation of intracellular calcium signals (Nishiyama et al., 2000. Concretely, a spike-triggered calcium increase initiates calcium ion propagation along a dendrite through activation of molecular processes at neighboring sites. Here we hypothesized that the mechanism of the hetero-synaptic interaction was based on the intracellular calcium signaling, which is regulated by interactions between NMDA receptors (NMDARs, voltage-dependent calcium channels (VDCCs and Ryanodine receptors (RyRs on endoplasmic reticulum (ER. To assess realizability of the hypothesized interaction mechanism, we simulated intracellular calcium dynamics at a cellular level, using the computational model that integrated the model of intracellular calcium dynamics (Keizer and Levine, 1996 and the multi-compartment neuron model (Poirazi et al., 2003. Using the proposed computational model, we induced calcium influxes at a local site in postsynaptic dendrite by controlling the spike timings of pre- and postsynaptic neurons. As a result, synchronized calcium influxes through NMDARs and VDCCs caused calcium release from ER. According to the phase plane analysis, RyR-mediated calcium release occurred when the calcium concentration in cytoplasm sufficiently increased under the condition of a high calcium concentration in ER. An NMDAR-mediated calcium influx was slow and persistent, consequently responsible for maintaining a high

  12. Effect of zinc and calcium ions on the rat kidney membrane-bound form of dipeptidyl peptidase IV

    Indian Academy of Sciences (India)

    Hansel Gómez; Mae Chappé; Pedroa Valiente; Tirso Pons; Marí­a de Los Angeles Chávez; Jean-Louis Charli; Isel Pascual

    2013-09-01

    Dipeptidyl peptidase IV (DPP-IV) is an ectopeptidase with many roles, and a target of therapies for different pathologies. Zinc and calcium produce mixed inhibition of porcine DPP-IV activity. To investigate whether these results may be generalized to mammalian DPP-IV orthologues, we purified the intact membrane-bound form from rat kidney. Rat DPP-IV hydrolysed Gly-Pro--nitroanilide with an average Vmax of 0.86±0.01 mol min–1mL–1 and KM of 76±6 M. The enzyme was inhibited by the DPP-IV family inhibitor L-threo-Ile-thiazolidide (Ki=64.0±0.53 nM), competitively inhibited by bacitracin (Ki=0.16±0.01 mM) and bestatin (Ki=0.23±0.02 mM), and irreversibly inhibited by TLCK (IC50 value of 1.20±0.11 mM). The enzyme was also inhibited by divalent ions like Zn2+ and Ca2+, for which a mixed inhibition mechanism was observed (Ki values of the competitive component: 0.15±0.01 mM and 50.0±1.05 mM, respectively). According to bioinformatic tools, Ca2+ ions preferentially bound to the -propeller domain of the rat and human enzymes, while Zn2+ ions to the - hydrolase domain; the binding sites were essentially the same that were previously reported for the porcine DPP-IV. These data suggest that the cationic susceptibility of mammalian DPP-IV orthologues involves conserved mechanisms.

  13. Ion beam analysis methods for determining major and minor element concentrations in artefacts

    International Nuclear Information System (INIS)

    Two quantitative analytical techniques, Rutherford Backscattering Spectrometry (RBS) and Proton Induced X-ray Emission (PIXE), based on MeV ion beams from a Van de Graaff accelerator have been used in an archaeometric determination of major and minor element concentrations in flint artefacts with two forms of patination and a metal fragment found during excavation of a viking settlement. (orig.)

  14. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    Science.gov (United States)

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer. PMID:27061365

  15. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca{sup 2+}]{sub i}) in MCF-7 Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Elizabeth; Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha (Qatar)

    2014-11-06

    Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca{sup 2+}]{sub i}) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = −0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca{sup 2+}]{sub i} in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca{sup 2+}]{sub i}. Overall, elevation of [Ca{sup 2+}]{sub i} by Auranofin might be crucial for triggering Ca{sup 2+}-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca{sup 2+}]{sub i} should be considered as a crucial factor for the induction of cell death in cancer cells.

  16. Complete Oxidation of Methane over Palladium Supported on Alumina Modified with Calcium, Lanthanum, and Cerium Ions

    Institute of Scientific and Technical Information of China (English)

    Beata Stasinska; Wojciech Gac; Theophilos Ioannides; Andrzej Machocki

    2007-01-01

    The activity and thermal stability of Pd/Al2O3 and Pd/(Al2O3+MOx) (M=Ca, La, Ce) palladium catalysts in the reaction of complete oxidation of methane are presented in this study. The catalyst supports were prepared by sol-gel method and they were dried either conventionally or with supercritical carbon dioxide. Then they were impregnated with palladium nitrate solution. The catalysts with unmodified alumina had a high surface area. The activity and thermal stability of the alumina-supported catalyst was also very high. The introduction of calcium, lanthanum, or cerium oxide into alumina support caused a decrease of the surface area in the way dependent on the support precursor drying method. These modifiers decreased the activity of palladium catalysts, and they required higher temperatures for the complete oxidation of methane than unmodified Pd/Al2O3. The improvement of the palladium activity by lanthanum and cerium support modifier was observed only at low temperatures of the reaction.

  17. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Duus, Benn R;

    2013-01-01

    Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties.......Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties....

  18. NMDAR1 mRNA expression and glutamate receptor stimulated increase in cytosolic calcium concentration in rat and mouse cerebellar granule cells

    DEFF Research Database (Denmark)

    Mogensen, H S; Jørgensen, Ole Steen

    1996-01-01

    concentration of mRNA for the obligatory NMDA receptor subunit, NMDAR1, and (b) the glutamate/NMDA stimulated increase in cytosolic Ca(2+)-ion concentration in cultures at physiological or elevated K(+)-ion concentration. The expression of NMDAR1 mRNA was measured by competitive PCR of reversely transcribed m......RNA and was normalized to that of the constitutively expressed H3.3 histone mRNA. The glutamate and NMDA stimulated increase in cytosolic Ca(2+)-ion concentration was measured using the fluorescent Ca(2+)-chelator Fluo3. In contrast to the hypothesis, we found NMDAR1 mRNA expression to be lower in mouse...... than in rat granule cells cultured for 4 days at physiological K(+)-ion concentration. However, the NMDA stimulated increase in cytosolic Ca(2+)-ion concentration did not differ in 4-day rat and mouse cultures. Although the glutamate-stimulated increase in cytosolic Ca(2+)-ion concentration in 2-day...

  19. Determination of molybdenum (VI) in sea water with preliminary concentration by the method of ion flotation

    International Nuclear Information System (INIS)

    The purpose of this paper is to assess the feasibility of using the method of ion flotation for the concentration of microamounts of molybdenum (VI) during determination in sea water. The ion flotation method is used for the purification of industrial sewage from the ions of nonferrous metals, including molybdenum (VI) with its content of up to 50 mg/liter. A 1.10-4M solution of sodium molybdate in 0.1M NaOH was used. The effect of different factors on the ion flotation process of molybdenum (VI) was investigated: pH of the solution, flotation times, concentrations of surface-active substances (SAS), molybdenum (IV), extraneous salts. Data presented show that the ion flotation method in conjunction with the photometric method of determining molybdenum with brompyrogallol red (BPR) and cetylpridinium chloride (CP) (limit of detection 0.02 micrograms/liter) allows the content of molybdenum (VI) in sea water to be established with sufficient reliability and reproducibility

  20. How to determine the relative ion concentrations of multiple-ion-species plasmas generated in the multi-dipole filament source

    International Nuclear Information System (INIS)

    This paper introduces how to determine concentrations of ion species in a mixed gas plasma that are not linearly proportional to their neutral partial pressures. A particle balance model was developed to predict the relative ion concentrations in multiple-ion-species plasmas, considering their ionization rates and loss fluxes to the wall. Analysis is carried out especially with Ar/Xe and Ar/He multi-dipole plasmas in which the neutral gases are directly ionized by the mono-energetic primary electrons. The experimental data of ion concentrations were obtained using the ion acoustic wave measurement method of the concentration of two ion species. The comparison reveals that the ion concentration ratio is linearly proportional to the ratio of the ionization cross sections and the ion loss velocity between two gas species. Especially, the model prediction is improved with using the two-ion-species sheath model (recently reported by Baalrud and Hegna) for obtaining the ion loss velocity at the sheath boundary. (paper)

  1. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis

    International Nuclear Information System (INIS)

    Highlights: ► A continuous cesium separation and regeneration process based on ESIX could be achieved by a diaphragm-isolated reactor. ► The adsorption/desorption rate of Cs+ could be increased by applied potential. ► H3O+ played a dual role of electrolyte and competitor. ► A pseudo-first-order kinetics model could be used to describe the adsorption rate of cesium in the ESIX process. ► The ESIX of cesium consisted of ESIX step and ion diffusion step. - Abstract: A series of experiments were performed to evaluate the continuous separation of cesium based on an electrochemically switched ion exchange (ESIX) process using a diaphragm-isolated reactor with two identical nickel hexacyanoferrate/porous three-dimensional carbon felt (NiHCF/PTCF) electrodes as working electrodes. The effects of applied potential, initial concentrations and pH values of the simulation solutions on the adsorption of cesium ion were investigated. The adsorption rate of cesium ion in the ESIX process was fitted by a pseudo-first-order reaction model. The experiments revealed that the introduction of applied potential on the electrodes greatly enhanced the adsorption/desorption rate of Cs+ and increased the separation efficiency. H3O+ was found to play a dual role of electrolyte and competitor, and the adsorption rate constant showed a curve diversification with an increase in pH value. Also, it was found that the electrochemically switched adsorption process of Cs+ by NiHCF/PTCF electrodes proceeded in two main steps, i.e., an ESIX step with a fast adsorption rate and an ion diffusion step with a slow diffusion rate. Meanwhile, the NiHCF/PTCF film electrode showed adsorption selectivity for Cs+ in preference to Na+.

  2. Structural Features of Ion Transport and Allosteric Regulation in Sodium-Calcium Exchanger (NCX) Proteins.

    Science.gov (United States)

    Giladi, Moshe; Tal, Inbal; Khananshvili, Daniel

    2016-01-01

    Na(+)/Ca(2+) exchanger (NCX) proteins extrude Ca(2+) from the cell to maintain cellular homeostasis. Since NCX proteins contribute to numerous physiological and pathophysiological events, their pharmacological targeting has been desired for a long time. This intervention remains challenging owing to our poor understanding of the underlying structure-dynamic mechanisms. Recent structural studies have shed light on the structure-function relationships underlying the ion-transport and allosteric regulation of NCX. The crystal structure of an archaeal NCX (NCX_Mj) along with molecular dynamics simulations and ion flux analyses, have assigned the ion binding sites for 3Na(+) and 1Ca(2+), which are being transported in separate steps. In contrast with NCX_Mj, eukaryotic NCXs contain the regulatory Ca(2+)-binding domains, CBD1 and CBD2, which affect the membrane embedded ion-transport domains over a distance of ~80 Å. The Ca(2+)-dependent regulation is ortholog, isoform, and splice-variant dependent to meet physiological requirements, exhibiting either a positive, negative, or no response to regulatory Ca(2+). The crystal structures of the two-domain (CBD12) tandem have revealed a common mechanism involving a Ca(2+)-driven tethering of CBDs in diverse NCX variants. However, dissociation kinetics of occluded Ca(2+) (entrapped at the two-domain interface) depends on the alternative-splicing segment (at CBD2), thereby representing splicing-dependent dynamic coupling of CBDs. The HDX-MS, SAXS, NMR, FRET, equilibrium (45)Ca(2+) binding and stopped-flow techniques provided insights into the dynamic mechanisms of CBDs. Ca(2+) binding to CBD1 results in a population shift, where more constraint conformational states become highly populated without global conformational changes in the alignment of CBDs. This mechanism is common among NCXs. Recent HDX-MS studies have demonstrated that the apo CBD1 and CBD2 are stabilized by interacting with each other, while Ca(2+) binding to CBD1

  3. Ryanodine receptors, a family of intracellular calcium ion channels, are expressed throughout early vertebrate development

    Directory of Open Access Journals (Sweden)

    Wu Houdini HT

    2011-12-01

    Full Text Available Abstract Background Calcium signals ([Ca2+]i direct many aspects of embryo development but their regulation is not well characterised. Ryanodine receptors (RyRs are a family of intracellular Ca2+ release channels that control the flux of Ca2+ from internal stores into the cytosol. RyRs are primarily known for their role in excitation-contraction coupling in adult striated muscle and ryr gene mutations are implicated in several human diseases. Current evidence suggests that RyRs do not have a major role to play prior to organogenesis but regulate tissue differentiation. Findings The sequences of the five zebrafish ryr genes were confirmed, their evolutionary relationship established and the primary sequences compared to other vertebrates, including humans. RyRs are differentially expressed in slow (ryr1a, fast (ryr3 and both types (ryr1b of developing skeletal muscle. There are two ryr2 genes (ryr2a and ryr2b which are expressed exclusively in developing CNS and cardiac tissue, respectively. In addition, ryr3 and ryr2a mRNA is detectable in the initial stages of development, prior to embryonic axis formation. Conclusions Our work reveals that zebrafish ryr genes are differentially expressed throughout the developing embryo from cleavage onwards. The data suggests that RyR-regulated Ca2+ signals are associated with several aspects of embryonic development, from organogenesis through to the differentiation of the musculoskeletal, cardiovascular and nervous system. These studies will facilitate further work to explore the developmental function of RyRs in each of these tissue types.

  4. Concentration Effects of Silver Ions on Ionic Conductivities of Molten Silver Halides

    OpenAIRE

    Okada T.; Kawakita Y.; Tahara S.; Ohno S.; Takeda S

    2011-01-01

    Ionic conductivities of molten (RbX)c(AgX)1-c (X = Cl and I) mixtures were measured to clarify the concentration effects of silver ions on ionic conductivities of molten silver halides. It is found that the addition of RbX to molten AgX rapidly reduces the ionic conductivity with 0 ≤ c ≤ 0.4. It suggests that strong Ag-Ag correlation is necessary to fast conduction of Ag ions in molten state. The absolute values of ionic conductivity for (RbCl)c(AgCl)1-c are larger than those for (R...

  5. Experiments in connection with control of boron acid concentration by ion exchange in Hungary

    International Nuclear Information System (INIS)

    The results obtained with an experimental nuclear power plant output control with boron acid ion exchange technology are presented. The dependence of the ability of the ion exchanger to bind boron acid on the concentration of the boron acid solution, the temperature and the degree of the alkalinity of the resin has been studied. The results obtained for Hungarian resins are compared with those for some Duolite-type ones. Some results for a control system realized in big laboratory size are outlined. (K.A.)

  6. High-Power Arctic Lidar for observations of Sodium layer and Calcium Ion Cyclotron Resonance Heating

    Science.gov (United States)

    Wuerker, R. F.; Foley, J.; Kidd, P.; Wong, A. Y.

    1998-11-01

    The UCLA HIPAS Observatory is located at 64o 54' 22"N, 146o 50' 33" W. It passes under the auroral oval, has a 2.7 m diameter liquid mirror collector (LMT), and two bistatic laser illuminators; a Doubled YAG pumped dye laser and a Doubled (tunable) Alexandrite laser. The first emits 0.1 J - 10 ns pulses at 590nm (Na) at 20 Hz. The second laser emits 0.15 J -10 ns pulses at 393 nm (Ca+) and 391.4 nm (N2) at 10 Hz. New sporadic sodium layers have been observed during the passage of the electrojet and auroras in periods of 20-30 seconds, indicating that sodium is liberated from micrometeors during auroral precipitations. The Laser Induced Fluorescence techniques will be used to observe the acceleration of the Ca+ ions when they are driven by the 80 MW (ERP) 2.85MHz RF array, modulated at the Ca+ ion Cyclotron Frequency. 1. Ionospheric Modifaction and Enviromental Research in the Auroral Region in Plasma Science and the Environment. Publisher: AIP Press, Woodbury, NY. Editors: W. Manheimer, L. Sugiyama, T. Stix; Chapter 3, pgs. 41-75, 1997. Research supported by ONR N00014-96-C-0040

  7. A Prospective, Placebo‐Controlled Pilot Evaluation of the Effect of Omeprazole on Serum Calcium, Magnesium, Cobalamin, Gastrin Concentrations, and Bone in Cats

    OpenAIRE

    Gould, E.; Clements, C.; Reed, A; Giori, L.; Steiner, J.M.; Lidbury, J.A.; Suchodolski, J.S.; Brand, M; Moyers, T.; Emery, L.; Tolbert, M.K.

    2016-01-01

    Background Chronic proton pump inhibitor administration has been associated with electrolyte and cobalamin deficiency, disrupted bone homeostasis, hypergastrinemia, and rebound acid hypersecretion in humans. It is unknown if this occurs in cats. Objectives Prolonged oral omeprazole results in altered bone mineral density or content, serum calcium, magnesium, cobalamin, and gastrin concentrations in healthy cats. Animals Six healthy adult DSH cats. Methods In a within subjects, before and afte...

  8. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca2+]i) in MCF-7 Breast Cancer Cells

    OpenAIRE

    Elizabeth Varghese; Dietrich Büsselberg

    2014-01-01

    Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death a...

  9. Calcium, amylase, glucose, total protein concentrations, flow rate, pH and buffering capacity of saliva in patients undergoing orthodontic treatment with fixed appliances

    OpenAIRE

    Hellen Soares Teixeira; Stella Maris Oliveira Kaulfuss; Jucienne Salgado Ribeiro; Betina do Rosário Pereira; João Armando Brancher; Elisa Souza Camargo

    2012-01-01

    OBJECTIVE: To evaluate qualitative and quantitative changes in the saliva of individuals undergoing orthodontic treatment with fixed appliances. METHODS: Salivary samples were collected from 50 individuals divided in two groups: Experimental Group - patients with fixed orthodontic appliances (n=25); and Control Group - subjects with no orthodontic appliances (n=25). Salivary flow rate, pH, buffering capacity, amylase activity, concentrations of total proteins, calcium and glucose were measure...

  10. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    International Nuclear Information System (INIS)

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-β(doubleprime)-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-β(doubleprime)-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in

  11. Interaction of H2S with Calcium Permeable Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2015-01-01

    Full Text Available A growing amount of evidence has suggested that hydrogen sulfide (H2S, as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC, T-type calcium channels (TTCC, sodium/calcium exchangers (NCX, transient receptor potential (TRP channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.

  12. Concentration dependence and interfacial instabilities during ion beam annealing of arsenic-doped silicon

    Energy Technology Data Exchange (ETDEWEB)

    Priolo, F.; Rimini, E. (Dipartimento di Fisica, Corso Italia 57, I-95129 Catania, Italy (IT)); Spinella, C. (Istituto di Metodologie e Tecnologie per la Microelettronica, CNR, Catania, (IT)); Ferla, G. (SGS-Thomson, Stradale Primosole 50, I-95100 Catania, (IT))

    1990-01-01

    Ion beam induced epitaxy of amorphous Si layers onto {l angle}100{r angle} substrates has been investigated by varying the As concentration. At As concentrations below 4{times}10{sup 18}/cm{sup 3} no rate effect is observed. In the intermediate regime, between 4{times}10{sup 18}/cm{sup 3} and 2{times}10{sup 21}/cm{sup 3}, the growth rate increases linearly with the logarithm of As concentration and reaches a value about a factor of 2 higher than that of intrinsic Si. At concentrations above 2{times}10{sup 21}/cm{sup 3}, the epitaxy experiences a sudden, severe retardation. Finally, at a concentration of {similar to}6{times}10{sup 21}/cm{sup 3}, twins are observed to form.

  13. Electron microscopic study on the lipid content of intramitochondrial granules in proximal convoluted tubule of guinea pig kidney and their ability to accumulate calcium ions.

    Science.gov (United States)

    Erkoçak, A

    1977-01-01

    The intramitochondrial dense granules of the kidney proximal tubule fixed with OsO4 are osmiophilic since they are bleached by H2O2 treatment and they disappear after glutaraldehyde fixation alone. Following ethanol extraction and subsequent osmification these granules become invisible but pure aceton treatment does not greatly alter their osmiophilia. The findings suggests that the osmiophilic intramitochondrial granules are rich in phospholipids. When the kidney cortex is incubated in the presence of calcium of acetate, calcium accumulates on the intramitochondrial granules increasing their size and number. The intramitochondrial granules are found more frequently in tissues where the transport of water or ions is big. They contribute to the sodium transport (RIEDEL, BUCHER and ERKOCAK 1968). They are composed mainly of neutral lipids (SANZONE, SWARTZENDRUBER and SNYDER 1970) and phospholipids (WENDEL and BARNARD 1974). They are formed by the precipitation of calcium and other ions (GREENAWALT, ROSSI and LEHNINGER 1964; Peachey 1964). in this present work the structure of dense intramitochondrial granules has been studied regarding electron opaque materials. This way on one hand the lipids and the nucleic acids have been investigated, on the other hand the intramitochondrial granules have been loaded with calcium, a cation showing density in precipitated form and found in great amount into the cell. PMID:409048

  14. Measurement of chloride-ion concentration with long-period grating technology

    Science.gov (United States)

    Tang, Jaw-Luen; Wang, Jian-Neng

    2007-06-01

    A simple and low-cost long-period fiber grating (LPG) sensor suited for chloride-ion concentration measurement is presented. The LPG sensor is found to be sensitive to the refractive index of the medium around the cladding surface of the sensing grating, thus offering the prospect of development of practical sensors such as an ambient index sensor or a chemical concentration indicator with high stability and reliability. We measured chloride ions in a typical concrete sample immersed in salt water solutions with different weight concentrations ranging from 0% to 25%. Results show that the LPG sensor exhibited a linear decrease in the transmission loss and resonance wavelength shift when the concentration increased. The measurement accuracy for the concentration of salt in water solution is estimated to be 0.6% and the limit of detection for chloride ions is about 0.04%. To further enhance its sensitivity for chloride concentrations, we coated a monolayer of colloidal gold nanoparticles as the active material on the grating surface of the LPG sensor. The operating principle of sensing is based on the sensitivity of localized surface plasmon resonance of self-assembled gold colloids on the grating section of the LPG. With this method, a factor of two increase in the sensitivity of detecting chemical solution concentrations was obtained. The advantages of this type of fiber-optic sensor are that it is compact, relatively simple to construct and easy to use. Moreover, the sensor has the potential capability for on-site, in vivo and remote sensing, and it has potential use as a disposable sensor.

  15. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Lund Jensen, Kristian; Kristensen, Jesper Toft; Crumrine, Andrew Michael;

    2011-01-01

    Nanochannel ion transport is known to be governed by surface charge at low ionic concentrations. In this paper, we show that this surface charge is typically dominated by hydronium ions arising from dissolution of ambient atmospheric carbon dioxide. Taking the hydronium ions into account, we model...

  16. Ion concentration caused by an external solution into the porewater of compacted bentonite

    Science.gov (United States)

    Muurinen, Arto; Karnland, Ola; Lehikoinen, Jarmo

    The concentrations caused by the external solution into the porewater were studied with compacted bentonite (MX-80), from which easily dissolving components had been removed in order to ensure that the ions in the porewater came from the external solution. The dry densities of the samples varied from 700 to 1700 kg/m 3 and NaCl solutions of 0.1-3 M were used as the external solution for saturation. The concentrations in the porewater were determined by the direct analysis of the squeezed porewaters and by dispersing the sample in deionized water. At high concentrations, the Donnan model can predict the concentrations in the porewater rather well. At low concentrations, where the ion exclusion is stronger, the measured concentrations are clearly higher than the modelled values. One possible explanation for this discrepancy is the microstructure of the bentonite, and an attempt to couple the effects of the microstructure and the Donnan model was made. It was assumed that there are two pore types, interlamellar pores in the montmorillonite stacks and large pores in the gel between the stacks. The dimensions of the microstructure were obtained from SAXS and BET(N 2) measurements. In this case, the fitting is much better, which supports the assumption of different pore types in bentonite.

  17. Variations of radionuclides and major ions concentrations of individual rain samples

    International Nuclear Information System (INIS)

    Many radioactive-nuclides adhered to aerosol are existing in the atmosphere such as 7Be and 210Pb are removed from the atmosphere as atmospheric deposition. Rain is one of the most effective pathways to remove the aerosol from the atmosphere. Concentrations of 7Be, 210Pb and major ions in each rain sample were measured for 10 samples collected from June 2001 to October 2001 at Kumamoto, Japan. The concentrations of 210Pb and 7Be were 26.7 - 140.8 mBq/L, 106 - 1927 mBq/L, respectively. The concentrations of Cl-, NO3- and SO42- as major anions were 0.22 - 1.07 mg/L, 0.23 - 2.36 mg/L, 0.93 - 4.26 mg/L, respectively. The concentrations of Na+, K+, Mg2+, Ca2+ and NH4+ as major cations were 0.10 - 0.59 mg/L, 0.03 - 0.57 mg/L, 0.03 - 0.17 mg/L, 0.23 - 1.01 mg/L, 0.08 - 1.06 mg/L, respectively. The higher concentrations of 7Be and 210Pb were observed at low precipitation and decreased with precipitation. This tendency is also observed on the major ions, indicating that dry deposition and wash out are controlling the concentrations at low precipitation and rain out shows a larger contribution at high precipitation. (author)

  18. Hyperpolarization-activated cation and T-type calcium ion channel expression in porcine and human renal pacemaker tissues.

    Science.gov (United States)

    Hurtado, Romulo; Smith, Carl S

    2016-05-01

    Renal pacemaker activity triggers peristaltic upper urinary tract contractions that propel waste from the kidney to the bladder, a process prone to congenital defects that are the leading cause of pediatric kidney failure. Recently, studies have discovered that hyperpolarization-activated cation (HCN) and T-type calcium (TTC) channel conductances underlie murine renal pacemaker activity, setting the origin and frequency and coordinating upper urinary tract peristalsis. Here, we determined whether this ion channel expression is conserved in the porcine and human urinary tracts, which share a distinct multicalyceal anatomy with multiple pacemaker sites. Double chromagenic immunohistochemistry revealed that HCN isoform 3 is highly expressed at the porcine minor calyces, the renal pacemaker tissues, whereas the kidney and urinary tract smooth muscle lacked this HCN expression. Immunofluorescent staining demonstrated that HCN(+) cells are integrated within the porcine calyx smooth muscle, and that they co-express TTC channel isoform Cav3.2. In humans, the anatomic structure of the minor calyx pacemaker was assayed via hematoxylin and eosin analyses, and enabled the visualization of the calyx smooth muscle surrounding adjacent papillae. Strikingly, immunofluorescence revealed that HCN3(+) /Cav3.2(+) cells are also localized to the human minor calyx smooth muscle. Collectively, these data have elucidated a conserved molecular signature of HCN and TTC channel expression in porcine and human calyx pacemaker tissues. These findings provide evidence for the mechanisms that can drive renal pacemaker activity in the multi-calyceal urinary tract, and potential causes of obstructive uropathies. PMID:26805464

  19. Neuronal calcium sparks and intracellular calcium “noise”

    OpenAIRE

    Melamed-Book, Naomi; Kachalsky, Sylvia G.; Kaiserman, Igor; Rahamimoff, Rami

    1999-01-01

    Intracellular calcium ions are involved in many forms of cellular function. To accommodate so many control functions, a complex spatiotemporal organization of calcium signaling has developed. In both excitable and nonexcitable cells, calcium signaling was found to fluctuate. Sudden localized increases in the intracellular calcium concentration—or calcium sparks—were found in heart, striated and smooth muscle, Xenopus Laevis oocytes, and HeLa and P12 cells. In the nervous system, intracellular...

  20. Interaction of lanthanide cations and uranyl ion with the calcium/proton antiport system in Mycobacterium phlei.

    Science.gov (United States)

    Agarwal, N; Kalra, V K

    1983-01-19

    Uranyl ions (UO2+(2)) and lanthanide cations (La3+, Nd3+, Sm3+, Eu3+, Tb3+ and Dy3+) at 100-200 microM concentration inhibited active transport of Ca2+, mediated by respiratory linked substrates as well as by ATP hydrolysis, without affecting respiration and membrane-bound ATPase activity, in inside-out membrane vesicles of Mycobacterium phlei. The extent of inhibition in the uptake of Ca2+, mediated by ATP hydrolysis, increased with increase in ionic radii of these cations. Lanthanide cations did not dissipate the formation of a proton gradient, as measured by determining the effect either on the uptake of [14C]methylamine or energy-linked quenching of the fluorescence of 9-aminoacridine. However, uranyl ion (UO2+(2+)) caused reversal of the energy-linked quenching of 9-aminoacridine. UO2+(2)) concentration yielding 50% of Vmax (S0.5) was approx. 15 microM. Kinetic studies revealed that inhibition in the uptake of Ca2+ was competitive with UO2+(2) while non-competitive with rare-earth metals. It is proposed that inhibition in the uptake of Ca2+ by uranyl ion occurs as a result of UO2+(2) transport into the interior of vesicles in exchange for protons, while lanthanide cations are not being transported but affect the binding of Ca2+ to the membrane, presumably to the Ca2+/H+ antiporter. PMID:6838872

  1. Concentration Effects of Silver Ions on Ionic Conductivities of Molten Silver Halides

    Directory of Open Access Journals (Sweden)

    Okada T.

    2011-05-01

    Full Text Available Ionic conductivities of molten (RbXc(AgX1-c (X = Cl and I mixtures were measured to clarify the concentration effects of silver ions on ionic conductivities of molten silver halides. It is found that the addition of RbX to molten AgX rapidly reduces the ionic conductivity with 0 ≤ c ≤ 0.4. It suggests that strong Ag-Ag correlation is necessary to fast conduction of Ag ions in molten state. The absolute values of ionic conductivity for (RbClc(AgCl1-c are larger than those for (RbIc(AgI1-c mixtures at all compositions. These differences might relate to difference of diffusion constant between Cl- and I- and difference of effective charge carried by an ion between molten AgCl and AgI

  2. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release.

    OpenAIRE

    Simon, S M; Llinás, R R

    1985-01-01

    Quantitative modeling indicates that, in presynaptic terminals, the intracellular calcium concentration profile during inward calcium current is characterized by discrete peaks of calcium immediately adjacent to the calcium channels. This restriction of intracellular calcium concentration suggests a remarkably well specified intracellular architecture such that calcium, as a second messenger, may regulate particular intracellular domains with a great degree of specificity.

  3. Ionized calcium measurements are influenced by albumin - should ionized calcium be corrected?

    DEFF Research Database (Denmark)

    Larsen, Trine R; Galthen-Sørensen, Mathias; Antonsen, Steen

    2014-01-01

    Abstract Measurement of ionized calcium (CaI) has been reported to be dependent on albumin concentration. We examined the correlation between albumin and CaI measured on different ion selective electrode analyzers and in different groups of patients in a large dataset, extracted from the laboratory...

  4. Influence of concentration of zinc ions on electrocrystallization process of zinc

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao

    2005-01-01

    Cyclic voltammetry, chronoamperometry and scanning electron microscopy were employed to study the influence of Zn2+ ion concentration in electrolyte solutions on zinc electroplating process. The results show that, at high overpotentials, the nucleation of zinc is instantaneous, and nuclear density increases with the overpotentials increasing. While at low overpotentials, the zinc may be preferentially electrodeposited on surface inhomogeneities such as emergence points of edge, screw dislocations, atomic disorder, kink sites, or monoatomic steps, and no distinguished nucleation current can be observed. The major dissolution peak in cyclic voltammogram drifts positively due to the change of the rate-determining step of zinc electroplating processes from diffusion to the electrochemical reaction with the increase of Zn2+ ion concentration.

  5. Entanglement concentration and teleportation of multipartite entangled states in an ion trap

    Institute of Scientific and Technical Information of China (English)

    Pan Chang-Ning; Fang Mao-Fa

    2007-01-01

    We propose an effective scheme for the entanglement concentration of a four-particle state via entanglement swapping in an ion trap. Taking the maximally entangled state after concentration as a quantum channel, we can faithfully and determinatively teleport quantum entangled states from Alice to Bob without the joint Bell-state measurement. In the process of constructing the quantum channel, we adopt entanglement swapping to avoid the decrease of entanglement during the distribution of particles. Thus our scheme provides a new prospect for quantum teleportation over a longer distance. Furthermore, the success probability of our scheme is 1.0.

  6. Flow injection spectrophotometric determination of low concentrations of orthosphate in natural waters employing ion exchange resin

    International Nuclear Information System (INIS)

    A simple and fast method for the determination of low concentrations of orthophosphate in natural waters is described. Ion exchange is incorporated into a flow injection system by usina a resin column in the sample loop of a proportion injector. Effects of sample aspiration rate, sampling time, eluting agent concentration, pumping rate of the sample carrier stream and interfaces, were investigated both using 32PO3-4 or 31PO3-4 with columns coupled to a gerger-muller detector and incorporated in a flow system with molybdenum blue colorinetry. (M.A.C.)

  7. Measurement of the tungsten ion concentration after forced extinction of a vacuum arc

    International Nuclear Information System (INIS)

    The concentrations of singly ionized and neutral tungsten atoms were measured by laser-induced fluorescence after the forced extinction of vacuum arcs between tungsten-copper butt contacts, 28-mm in diam and 10-mm apart. The 50-Hz current was forced to zero at its maximum of 200 A in 1.3 μs by application of a reverse voltage. Near current zero, the ion concentration of 4 x 1017 m- 3 is of the same order of magnitude as the atomic tungsten concentration, which is 6 x 1017 m- 3. While the concentration of the neutrals remains virtually constant during 20 μs after current zero, the ion concentration decays by three orders of magnitude in the same time. The decay-time constant varies from 1.9 μs close to the post-arc cathode to 3.6 μs near the post-arc anode. It is concluded that the dielectric recovery of vacuum gaps after diffuse arcs is mainly controlled by residual charge carriers

  8. Serum Metal Ion Concentrations in Paediatric Patients following Total Knee Arthroplasty Using Megaprostheses

    Directory of Open Access Journals (Sweden)

    Jörg Friesenbichler

    2014-01-01

    Full Text Available The purpose of this study was to determine the concentrations of cobalt, chromium, and molybdenum in the serum of paediatric tumour patients after fixed hinge total knee arthroplasty. Further, these metal ion levels were compared with serum metal ion levels of patients with other orthopaedic devices such as hip and knee prostheses with metal-on-metal or metal-on-polyethylene articulation to find differences between anatomical locations, abrasion characteristics, and bearing surfaces. After an average follow-up of 108 months (range: 67 to 163 of 11 paediatric patients with fixed hinge total knee arthroplasty, the mean concentrations for Co and Cr were significantly increased while Mo was within the limits compared to the upper values from the reference laboratory. Furthermore, these serum concentrations were significantly higher compared to patients with a standard rotating hinge device (P=0.002 and P<0.001 and preoperative controls (P<0.001. On the other hand, the serum levels of patients following MoM THA or rotating hinge arthroplasty using megaprostheses were higher. Therefore, periodic long-term follow-ups are recommended due to the rising concerns about systemic metal ion exposure in the literature. Upon the occurrence of adverse reactions to metal debris the revision of the fixed hinge implant should be considered.

  9. Interaction of calcium with sugar type ligands in solutions related to the Bayer process

    OpenAIRE

    Pallagi Attila

    2012-01-01

    The calcium ion (particularly in the form of lime) is one of the most useful processing aids available to alumina refinery operators. In some cases the benefits provided arises through the actions of some soluble form of the calcium cation. Sugar derivatives increase the concentration of the calcium in the liquor phase, therefore investigating their complexation with compounds relevant to the Bayer process (i. e. Ca2+, Al(OH)4−) is important to the industry. Investigating the H+/Gluc– syst...

  10. Leaching kinetics of bottom ash waste as a source of calcium ions.

    Science.gov (United States)

    Koech, Lawrence; Everson, Ray; Neomagus, Hein; Rutto, Hilary

    2015-02-01

    Bottom ash is a waste material from coal-fired power plants, and it is known to contain elements that are potentially toxic at high concentration levels when disposed in landfills. This study investigates the use of bottom ash as a partial substitute sorbent for wet flue gas desulfurization (FGD) processes by focusing on its leaching kinetics in adipic acid. This was studied basing on the shrinking core model that was applied to the experimental data obtained by the authors presented at the International Conference on Industrial, Manufacturing, Automation and Mechanical Engineering, Johannesburg, South Africa, November 27-28, 2013) on dissolution of bottom ash. The leaching rate constant was obtained from different reaction variables, namely, temperature, pH, acid concentration, and solid-to-liquid ratio, that could affect the leaching process. The solid sample of bottom ash was characterized at different leaching periods using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that solid-to-liquid ratio had a significant effect on the leaching rate constant when compared with other variables. The leaching kinetics showed that diffusion through the product layer was the rate-controlling step during leaching, and the activation energy for the process was found to be 18.92 kJ/mol. PMID:25947048

  11. The role of inorganic ions in the calcium carbonate scaling of seawater reverse osmosis systems

    KAUST Repository

    Waly, Tarek

    2012-01-01

    In supersaturated solutions the period preceding the start of \\'measurable\\' crystallization is normally referred to as the \\'induction time\\'. This research project aimed to investigate the induction times of CaCO 3 in the presence of Mg 2+ and SO 4 2-. The prepared synthetic solutions have the same ionic strength values found in the Gulf of Oman SWRO concentrates at 30% and 50% recovery. The results showed a significant increase in the induction time by 1140%, 2820%, and 3880% for a recovery of 50%, when adding SO 4 2- only, Mg 2+ only, or both Mg 2+ and SO 4 2-, respectively, to synthetic SWRO concentrate compared to that obtained in the absence of Mg 2+ and SO 4 2- at an initial pH of 8.3. The increase in the induction time in the presence of SO 4 2- was more than likely to be due to nucleation and growth inhibition while the presence of Mg 2+ affected the nucleation and growth through both complexation and inhibition. After a 5-month solution stabilization period, ESEM and XRD analyses showed aragonite in solutions containing Mg 2+. On the contrary, calcite was the final crystal phase formed in solutions with no Mg 2+. This suggests that magnesium may play an important role in inhibiting the formation of calcite. © 2011 Elsevier B.V..

  12. Effects of fructose-1,6-diphosphate on concentration of calcium and activities of sarcoplosnic Ca2+-ATPase in cardiomyocytes of Adriamycin-treated rats

    Institute of Scientific and Technical Information of China (English)

    CAI Wei; CHEN Jun-zhu; RUAN Li-ming; WANG Yi-na

    2005-01-01

    Objective: To observe the effects of fructose-1,6-diphosphate (FDP) on serum levels of cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB), as well as the concentration of calcium in cardiomyocytes (Myo[Ca2+]) and activity of sarcoplosnic Ca2+-ATPase (SRCa2+-ATPase) in Adriamycin (ADR)-treated rats. Methods: Rats were intraperitoneally injected with ADR (2.5mg/kg every other day for 6 times) and then with different dosages of FDP (every other day for twenty-one times). Bi-antibodies sandwich Enzyme linked immune absorption assay (ELISA) was performed to detect serum level of cTnI. CK-MB was detected by monoclonal antibody, Myo[Ca2+] was detected by fluorescent spectrophotometry and the activity of SRCa2+-ATPase was detected by inorganic phosphate method. Results: FDP (300, 600, 1200 mg/kg) significantly reduced the serum levels of cTnI and CK-MB, while at the same time decreased calcium concentration and increased SRCa2+-ATPase activity in cardiomyocytes of ADR-treated rats (P<0.01). Conclusions: FDP might alleviate the cardiotoxic effects induced by ADR through decreasing calcium level as well as increasing SRCa2+-ATPase activity in cardiomyocytes.

  13. On the interaction of peptides with calcium ions as studied by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry: Towards peptide fishing using metal ion baits

    International Nuclear Information System (INIS)

    In a previous report [J.W. de Beukelaar, J.W. Gratama, P.A. Sillevis Smitt, G.M. Verjans, J. Kraan, Th.M. Luider, P.C. Burgers, Rapid Commun. Mass Spectrom. 21 (2007) 1282] on the quality assessment of synthetic peptides used in protein-spanning peptide pools by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) we noted that certain peptides showed remarkably intense signals for their calcium-containing analogues. Here we report on a detailed mass spectrometric study of the unimolecular chemistry of these calcium-containing peptides. By integration of the experimental findings with computational results derived from DFT and the CBS-QB3 model chemistry, we have traced the processes induced by Ca2+ attachment in the peptide ions. Key to our analysis is the observation that all of the studied calcium-bound peptides containing a threonine or serine residue show prominent losses of CH3CH=O (from threonine) and/or CH2=O (from serine) in both the positive and the negative ion mode. In the first step, Ca2+ attaches itself to a negatively charged in-chain carboxylate group. Next, electrophilic attack of the calcium ion on the -CH(R)OH group of threonine (R=CH3) or serine (R=H) releases the hydroxyl proton which can then move to a suitable acceptor site, viz. a peptide bond. This leads to the formation of a very stable ionic bidentate structure. Upon collisional activation (MS/MS), this bidentate opens up leading to the loss of the exposed acetaldehyde or formaldehyde molecule, to yield another bidentate structure. MS/MS spectra of selected peptides interacting with other metal ions have also been investigated and it is found that only divalent ions follow the Ca2+-induced transformations

  14. Calcium-sensing receptor and aquaporin 2 interplay in hypercalciuria-associated renal concentrating defect in humans. An in vivo and in vitro study.

    Directory of Open Access Journals (Sweden)

    Giuseppe Procino

    Full Text Available One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2 and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4 expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK. Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR-AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced

  15. Ion acoustic wave velocity measurement of the concentration of two ion species in a multi-dipole plasma

    International Nuclear Information System (INIS)

    The concentration of two species in a multi-dipole plasma was determined by measuring the ion acoustic wave group velocity and the electron temperature. The wave was launched from a grid immersed in the plasma and was detected by a Langmuir probe. Electron temperature was found separately from an I--V characteristic trace. The measurements were performed in helium/xenon and argon/xenon plasmas. Typical parameters of the plasma were Te∼0.5--3eV, density 1010cm-3, plasma potential of 3--5 V, and pressure range from 1 to 20 mTorr. The accuracy of the measurement was from 2% to 4% depending on the mass difference between the two species and how accurately the group velocity and electron temperature are measured

  16. Functionalized calcium silicate nanofibers with hierarchical structure derived from oyster shells and their application in heavy metal ions removal.

    Science.gov (United States)

    You, Weijie; Hong, Mingzhu; Zhang, HaiFeng; Wu, Qiuping; Zhuang, Zanyong; Yu, Yan

    2016-06-21

    Inorganic hierarchical nanostructures have remarkable potential applications in environmental metal remediation; however, their applications usually suffer from low capacity, high cost, and difficulties in the recycling of adsorbents. We previously reported a facile strategy to synthesize acid-insoluble calcium silicate hydrates (CSH) from oyster shells, a representative kind of biowaste. However, little is known of the structure, size, and morphology of the as-prepared CSH, which hampers the improvement of their adsorption capacities. In this work, systematic investigation of the structures of as-generated CSH demonstrate that they have a hierarchically porous structure composed of thin nano-sheets, where each nano-sheet is assembled by nano-fibers with width of around ten nanometers. The hierarchical nanostructures with pore size of ∼12 nm provide a significant amount of active sites to graft polyethyleneimine (PEI), which enables the efficient extraction of both Cu(ii) cations and Cr(vi) anions from the aqueous solution. Batch experiments further indicate that the PEI-modified PCSH exhibit a maximum adsorption capacity of 203 and 256 mg g(-1) for Cu(ii) and Cr(vi), respectively, much higher than that of CSH, OS and many other adsorbents in literature. The adsorption of Cu(ii) and Cr(vi) proved to be spontaneous and exothermic. Combining the pH-dependent experiments with X-ray photoelectron spectroscopy analysis, the underlying mechanism is discussed. PCSH derived from OS biowaste maintains an efficient extraction ability toward Cu(ii) and Cr(vi) after five adsorption-desorption cycles. It is also applicable for treating various kinds of heavy metal ions and organic pollutants, showing potentially wide applications in water treatment. PMID:27221228

  17. Analysis of drifting electron concentration in a self-magnetically insulated ion diode

    Science.gov (United States)

    Pushkarev, A. I.; Pak, V. G.

    2015-02-01

    The drifting electron concentration in a self-magnetically insulated ion diode is analyzed using a TEMP-4M accelerator operating in a double bipolar pulse regime with the first pulse (300-600 ns and 150-200 kV) being negative and the second (120 ns and 250-300 kV) being positive. The electron concentration in the drift region is shown to be 1013-1014 cm-3. It is established that the Lorentz force acting on electrons in crossed electric and magnetic fields is 150-200 times greater than the Coulomb repulsion force, which ensures a higher electron concentration in the drift region as compared with the space charge region.

  18. Electrodeposited NiCoFe films from electrolytes with different Fe ion concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Kockar, Hakan, E-mail: hkockar@balikesir.edu.tr [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey); Demirbas, Ozen, E-mail: ozendemirbas@hotmail.com [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey); Kuru, Hilal, E-mail: htopcu@balikesir.edu.tr [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey); Alper, Mursel, E-mail: malper@uludag.edu.tr [Uludag Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, 16059 Gorukle, Bursa (Turkey); Karaagac, Oznur, E-mail: karaagac@balikesir.edu.tr [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey); Haciismailoglu, Murside, E-mail: msafak@uludag.edu.tr [Uludag Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, 16059 Gorukle, Bursa (Turkey); Ozergin, Ercument, E-mail: ercumentz@yahoo.com [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey)

    2014-06-01

    Ternary NiCoFe films, relating their magnetic and magnetoresistance properties with film composition, and the corresponding crystal structure were investigated in terms of different Fe ion concentrations in the electrolyte. The current–time transients were recorded to control the growth of proper films. The film composition by energy dispersive X-ray spectroscopy revealed that as the Fe ion concentration in the electrolyte was increased, the Fe and Co contents in the films increased and Ni content decreased. From the structural analysis by X-ray diffraction, all films had a face-centred cubic structure and, no reflection from body-centred cubic (bcc) Fe was existed in all samples due to <12 at% Fe. The saturation magnetisation increased from 865 emu/cm{sup 3} to 1080 emu/cm{sup 3} and the coercivities decreased from 60 Oe to 13 Oe with increasing Fe and Co contents and decreasing Ni content in the films. All NiCoFe films showed anisotropic magnetoresistance. The longitudinal magnetoresistance magnitudes decreased from 6.3% to 2.2% with increasing Fe and Co contents and decreasing Ni in the films while the magnitudes of transverse magnetoresistance stayed almost constant at ∼5.0%. The variations in magnetic and magnetoresistive properties related to the crystal structure were attributed to the compositional changes caused by the variation of the Fe ion concentration in the electrolyte. - Highlights: • Structural and magnetic properties of electrodeposited NiCoFe films were studied. • The Fe and Co increased and Ni decreased with increasing Fe concentration. • All films had a face-centred cubic structure irrespective of the film content. • The M{sub s} increased and H{sub c} decreased with the change of film content. • All films showed AMR.

  19. Electrodeposited NiCoFe films from electrolytes with different Fe ion concentrations

    International Nuclear Information System (INIS)

    Ternary NiCoFe films, relating their magnetic and magnetoresistance properties with film composition, and the corresponding crystal structure were investigated in terms of different Fe ion concentrations in the electrolyte. The current–time transients were recorded to control the growth of proper films. The film composition by energy dispersive X-ray spectroscopy revealed that as the Fe ion concentration in the electrolyte was increased, the Fe and Co contents in the films increased and Ni content decreased. From the structural analysis by X-ray diffraction, all films had a face-centred cubic structure and, no reflection from body-centred cubic (bcc) Fe was existed in all samples due to 3 to 1080 emu/cm3 and the coercivities decreased from 60 Oe to 13 Oe with increasing Fe and Co contents and decreasing Ni content in the films. All NiCoFe films showed anisotropic magnetoresistance. The longitudinal magnetoresistance magnitudes decreased from 6.3% to 2.2% with increasing Fe and Co contents and decreasing Ni in the films while the magnitudes of transverse magnetoresistance stayed almost constant at ∼5.0%. The variations in magnetic and magnetoresistive properties related to the crystal structure were attributed to the compositional changes caused by the variation of the Fe ion concentration in the electrolyte. - Highlights: • Structural and magnetic properties of electrodeposited NiCoFe films were studied. • The Fe and Co increased and Ni decreased with increasing Fe concentration. • All films had a face-centred cubic structure irrespective of the film content. • The Ms increased and Hc decreased with the change of film content. • All films showed AMR

  20. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores

    Science.gov (United States)

    Yeh, Hung-Chun; Chang, Chih-Chang; Yang, Ruey-Jen

    2015-06-01

    A numerical investigation is performed into the characteristics of an electro-osmotic pump consisting of a negatively charged conical nanopore. It is shown that the dependence of the flow rectification effect on the bias direction is the reverse of that of the ion current rectification effect. Moreover, the nozzle mode (i.e., the bias is applied from the base side of the nanopore to the tip side) has a higher flow rate compared to the diffuser mode (i.e., the bias is applied from the tip side of the nanopore to the base side). The results showed that the ion-concentration polarization effect occurred inside the conical nanopore, resulting in surface conduction dominating in the ionic current. The ions inside the nanopore are depleted and enriched under the nozzle mode and the diffuser mode, respectively. As a result, the electro-osmotic pump yields a greater pumping pressure, flow rate, and energy conversion efficiency when operating in the nozzle mode. In addition, we also investigated the flow rate rectification behavior for the conical nanopore. The best flow rate rectification factor in this work is 2.06 for an electrolyte concentration of 10-3M .

  1. Transport studies through peritoneal membrane: Effect of alteration in concentration of Trace Metal Ion

    International Nuclear Information System (INIS)

    The effect of trace metals on thermodynamic properties of peritoneum has been examined. Membrane potential across peritoneal membrane of buffalo (Bof. Bubalis) for various 2:1, 3:1 and 1:2 electrolytes solutions have been measured with a view to examine the transport number of ions, effective fixed charge density and permselectivity of electrolyte systems. The transport number of co-ions decreased as the concentration of electrolyte is decreased. The applicability of different theories of membrane given by Kobatake et al. based on non-equilibrium thermodynamics have been tested. It has been observed that in biological systems also the fixed charged density is a constant quantity and does not vary with the concentrations of electrolytes as in the case of artificial membranes. Equations for 3:1 and 2:1 electrolytes have been derived, which will be essential for evaluating the transport number of trace material ions. This experimental model can be used to study and calculate the transport to study and calculate the transport number across biological membrane using Benventa's equation. The result of this study is valuable in understanding the influence of alteration in trace elements milieu on electrophysical behavior of all membranes. (author)

  2. Estimation of free copper ion concentrations in blood serum using T1 relaxation rates

    Science.gov (United States)

    Blicharska, Barbara; Witek, Magdalena; Fornal, Maria; MacKay, Alex L.

    2008-09-01

    The water proton relaxation rate constant R1 = 1/ T1 (at 60 MHz) of blood serum is substantially increased by the presence of free Cu 2+ ions at concentrations above normal physiological levels. Addition of chelating agents to serum containing paramagnetic Cu 2+ nulls this effect. This was demonstrated by looking at the effect of adding a chelating agent—D-penicillamine (D-PEN) to CuSO 4 and CuCl 2 aqueous solutions as well as to rabbit blood serum. We propose that the measurement of water proton spin-lattice relaxation rate constants before and after chelation may be used as an alternative approach for monitoring the presence of free copper ions in blood serum. This method may be used in the diagnosis of some diseases (leukaemia, liver diseases and particularly Wilson's disease) because, in contrast to conventional methods like spectrophotometry which records the total number of both bound and free ions, the proton relaxation technique is sensitive solely to free paramagnetic ions dissolved in blood serum. The change in R1 upon chelation was found to be less than 0.06 s -1 for serum from healthy subjects but greater than 0.06 s -1 for serum from untreated Wilson's patients.

  3. A Microfluidic Long-Period Fiber Grating Sensor Platform for Chloride Ion Concentration Measurement

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2011-09-01

    Full Text Available Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975 was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10−6 mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10−5–2.769 × 10−3 mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%–1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of −0

  4. Influence of calcium on ceramide-1-phosphate monolayers.

    Science.gov (United States)

    Oliveira, Joana S L; Brezesinski, Gerald; Hill, Alexandra; Gericke, Arne

    2016-01-01

    Ceramide-1-phosphate (C1P) plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM), infrared reflection-absorption spectroscopy (IRRAS) and grazing incidence X-ray diffraction (GIXD). The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P. PMID:26977381

  5. Tunable luminescence and white light emission of novel multiphase sodium calcium silicate nanophosphors doped with Ce3+, Tb3+, and Mn2+ ions

    International Nuclear Information System (INIS)

    This study reports the sol–gel synthesis of sodium calcium multiphase silicate (SCMS) nanophosphors. X-ray powder diffraction indicated the crystallization of devitrite (Na2Ca3Si6O16), wollastonite-2M (CaSiO3), and cristobalite (SiO2) phases that consistently occurred together upon repeated syntheses. The multiphase silicate system was used as a host matrix for varied concentrations of Ce3+, Tb3+, and Mn2+ dopant ions which resulted in tunable photoluminescence. A broad violet/UV emission band of Ce3+ (350–425 nm) combined with blue-green emissions of Tb3+ (488 and 545 nm) and a yellow-orange emission of Mn2+ (560 nm) resulted in the observance of white light (x=0.31, y=0.32, TC=6624 K) under midwave UV excitation (300–340 nm). Energy transfer from Ce3+→Tb3+ and Ce3+→Mn2+ was confirmed by steady state and time-resolved emission spectra, lifetime, and quantum yield measurements. The structural properties, morphology, and elemental composition of the nanophosphors were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). -- Highlights: • White light-emitting multiphase silicate nanophosphors were prepared for the first time. • Multiple crystalline silicate phases were reproduced consistently by repeated syntheses. • Energy transfer from Ce3+→Tb3+ and Ce3+→Mn2+ was confirmed by PL, lifetime, and QY measurements

  6. Nesfatin-1 increases intracellular calcium concentration by protein kinase C activation in cultured rat dorsal root ganglion neurons.

    Science.gov (United States)

    Ozcan, Mete; Gok, Zeynep Betul; Kacar, Emine; Serhatlioglu, Ihsan; Kelestimur, Haluk

    2016-04-21

    Nesfatin-1 is a recently identified anorexigenic hypothalamic polypeptide derived from the posttranslational processing of nucleobindin 2 (NUCB2). Several studies have indicated that this neuropeptide may be participated in somatosensory and visceral transmission including pain signals in addition to energy metabolism. The aim of this study was to explore the possible role of nesfatin-1 in the transmission of peripheral neural signals by investigating the effects of nesfatin-1 on intracellular free calcium levels ([Ca(2+)]i) in cultured neonatal rat dorsal root ganglion (DRG) neurons. The effects of nesfatin-1 on [Ca(2+)]i in DRG neurons were investigated by using an in vitro calcium imaging system. DRG neurons were grown in primary culture following enzymatic and mechanical dissociation of ganglia from 1-or 2-day-old neonatal Wistar rats. Using the fura-2-based calcium imaging technique, the effects of nesfatin-1 on [Ca(2+)]i and role of the protein kinase C (PKC)-mediated pathway in nesfatin-1 effect were assessed. Nesfatin-1 elevated [Ca(2+)]i in cultured DRG neurons. The response was prevented by pretreating the cells with pertussis toxin. The protein kinase C inhibitor chelerythrine chloride suppressed nesfatin-1-induced rise in [Ca(2+)]i. The result shows that nesfatin-1 interacts with a G protein-coupled receptor, leading to an increase of [Ca(2+)]i, which is linked to protein kinase C activation in cultured rat DRG neurons. PMID:26975784

  7. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration

  8. Concentration effect on the spectroscopic behavior of Tb{sup 3+} ions in zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kesavulu, C.R., E-mail: crkesavulu2005@gmail.com [Instituto de Fisica de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, São Carlos, SP (Brazil); Almeida Silva, Anielle Christine [Laboratorio de Novos Materials Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberândia, MG (Brazil); Dousti, M.R. [Instituto de Fisica de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, São Carlos, SP (Brazil); Dantas, Noelio Oliveira [Laboratorio de Novos Materials Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberândia, MG (Brazil); Camargo, A.S.S. de; Catunda, Tomaz [Instituto de Fisica de São Carlos, Universidade de São Paulo, Avenida Trabalhador Sãocarlense 400, São Carlos, SP (Brazil)

    2015-09-15

    Zinc phosphate glasses (PZABPTb) in the compositional system: P{sub 2}O{sub 5}–ZnO–Al{sub 2}O{sub 3}–BaO–PbO doped with variable Tb{sup 3+} concentrations (1–5 wt% Tb{sub 2}O{sub 3}) were prepared and characterized through absorption, excitation, emission and intensity decay rate measurements. The Judd–Ofelt model has been adopted to evaluate the radiative properties of the {sup 5}D{sub 4}→{sup 7}F{sub 6–3} emission transitions. The effect of Tb{sup 3+} ion concentration on the emissions from the {sup 5}D{sub 3,4} excited levels is discussed in detail. Analysis of the intensity decay curves corresponding to blue and green emissions from levels {sup 5}D{sub 3} and {sup 5}D{sub 4}, respectively, allowed determination of effective lifetimes, which confirmed the Tb{sup 3+} ion concentration quenching of the blue emission in these glasses. The decay curves for the {sup 5}D{sub 3} level are found to be non-exponential in nature for all the studied concentrations due to ion–ion energy transfer through cross-relaxation. In an attempt to identify the origin of the energy transfer mechanism, the decay curves were well fitted to the Inokuti–Hirayama model for S=6, which indicates that the energy transfer process is of dipole–dipole type. The optical band gap energy (E{sub opt}) has been evaluated taking into account the ultraviolet edge of absorption spectra. - Highlights: • Tb{sup 3+}-doped zinc phosphate glasses have been prepared by melt quenching technique. • Spectroscopic parameters were evaluated using the Judd–Ofelt theory. • Effects of Tb{sup 3+} concentration on luminescence of the glasses were studied. • Strong intense laser transition for Tb{sup 3+} ion in PZABPTb glasses is {sup 5}D{sub 4}→{sup 7}F{sub 5} (0.54 μm). • PZABPTb glasses could be used in the development of green color display devices and solid state visible lasers.

  9. Response of silicon multistrip detectors and a cesium iodide scintillator to a calcium ion beam of 0.5 GeV/u

    International Nuclear Information System (INIS)

    We have constructed and operated charge preamplifiers for silicon strip detectors with a dynamic range extending from fractions of minimum ionising particle (MIP) up to 16 124 MIPs. These silicon detectors combined with time-of-flight counters and cesium iodide scintillator form a segment of the VENUS detector that has been exposed to a calcium beam of 0.5 GeV/u at the GSI accelerator. The aim of the instrument is the identification of all nuclides of the periodic table of the elements. Measurements of electronic noise, cross-talk among channels and energy deposit resolutions in various experimental conditions for silicon detectors are given. The measured light output of the CsI(Tl) crystal induced by calcium is compared with that extrapolated from lower-energy data of various nuclide species determined in other experiments. The charge resolution for calcium ions, determined by the dE/dx detectors and TOF counters of time resolution of 55±7 ps, amounts to 0.42 charge units (rms). Improvements in ion discrimination with respect to the present detector configuration are considered. (orig.)

  10. Response of silicon multistrip detectors and a cesium iodide scintillator to a calcium ion beam of 0.5 GeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Codino, A.; Miozza, M.; Brunetti, M.T.; Checcucci, B.; Federico, C.; Grimani, C.; Lanfranchi, M.; Macchiaiolo, T.; Menichelli, M.; Maffei, P.; Vocca, H. [Istituto Nazionale di Fisica Nucleare, Perugia (Italy); Plouin, F. [Laboratoire National de Saturne, 91191 Gif-sur-Yvette Cedex (France)

    1997-10-21

    We have constructed and operated charge preamplifiers for silicon strip detectors with a dynamic range extending from fractions of minimum ionising particle (MIP) up to 16 124 MIPs. These silicon detectors combined with time-of-flight counters and cesium iodide scintillator form a segment of the VENUS detector that has been exposed to a calcium beam of 0.5 GeV/u at the GSI accelerator. The aim of the instrument is the identification of all nuclides of the periodic table of the elements. Measurements of electronic noise, cross-talk among channels and energy deposit resolutions in various experimental conditions for silicon detectors are given. The measured light output of the CsI(Tl) crystal induced by calcium is compared with that extrapolated from lower-energy data of various nuclide species determined in other experiments. The charge resolution for calcium ions, determined by the dE/dx detectors and TOF counters of time resolution of 55{+-}7 ps, amounts to 0.42 charge units (rms). Improvements in ion discrimination with respect to the present detector configuration are considered. (orig.). 12 refs.

  11. Effects of size and concentration on diffusion-induced stress in lithium-ion batteries

    Science.gov (United States)

    Ma, Zengsheng; Gao, Xiang; Wang, Yan; Lu, Chunsheng

    2016-07-01

    Capacity fade of lithium-ion batteries induced by chemo-mechanical degradation during charge-discharge cycles is the bottleneck in design of high-performance batteries, especially high-capacity electrode materials. Stress generated due to diffusion-mechanical coupling in lithium-ion intercalation and deintercalation is accompanied by swelling, shrinking, and even micro-cracking. In this paper, we propose a theoretical model for a cylindrical nanowire electrode by combining the bond-order-length-strength and diffusion theories. It is shown that size and concentration have a significant influence on the stress fields in radial, hoop, and axial directions. This can explain why a smaller electrode with a huge volume change survives in the lithiation/delithiation process.

  12. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    International Nuclear Information System (INIS)

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 ± 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO42'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO42- concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  13. Vitamin D Metabolites and Their Association with Calcium, Phosphorus, and PTH Concentrations, Severity of Illness, and Mortality in Hospitalized Equine Neonates.

    Directory of Open Access Journals (Sweden)

    Ahmed M Kamr

    Full Text Available Hypocalcemia is a frequent abnormality that has been associated with disease severity and outcome in hospitalized foals. However, the pathogenesis of equine neonatal hypocalcemia is poorly understood. Hypovitaminosis D in critically ill people has been linked to hypocalcemia and mortality; however, information on vitamin D metabolites and their association with clinical findings and outcome in critically ill foals is lacking. The goal of this study was to determine the prevalence of vitamin D deficiency (hypovitaminosis D and its association with serum calcium, phosphorus, and parathyroid hormone (PTH concentrations, disease severity, and mortality in hospitalized newborn foals.One hundred newborn foals ≤72 hours old divided into hospitalized (n = 83; 59 septic, 24 sick non-septic [SNS] and healthy (n = 17 groups were included. Blood samples were collected on admission to measure serum 25-hydroxyvitamin D3 [25(OHD3], 1,25-dihydroxyvitamin D3 [1,25(OH 2D3], and PTH concentrations. Data were analyzed by nonparametric methods and univariate logistic regression. The prevalence of hypovitaminosis D [defined as 25(OHD3 <9.51 ng/mL] was 63% for hospitalized, 64% for septic, and 63% for SNS foals. Serum 25(OHD3 and 1,25(OH 2D3 concentrations were significantly lower in septic and SNS compared to healthy foals (P<0.0001; P = 0.037. Septic foals had significantly lower calcium and higher phosphorus and PTH concentrations than healthy and SNS foals (P<0.05. In hospitalized and septic foals, low 1,25(OH2D3 concentrations were associated with increased PTH but not with calcium or phosphorus concentrations. Septic foals with 25(OHD3 <9.51 ng/mL and 1,25(OH 2D3 <7.09 pmol/L were more likely to die (OR=3.62; 95% CI = 1.1-12.40; OR = 5.41; 95% CI = 1.19-24.52, respectively.Low 25(OHD3 and 1,25(OH2D3 concentrations are associated with disease severity and mortality in hospitalized foals. Vitamin D deficiency may contribute to a pro-inflammatory state in equine

  14. EFFECT OF THE TOTAL SAPONIN OF DIPSACUS ASPER ON INTRACELLULAR FREE CALCIUM CONCENTRATION IN THE CELLULAR MODEL OF ALZHEIMER'S DISEASE-SCANNING CONFOCAL MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To study the effect of ginsenoside Rb1(Rb1) and total saponin of dipsacus asper(tSDA) on intracellular free calcium concentration([Ca2+]i) mediated by β-amyloid protein(A β).So as to lay a foundation for developing effective Chinese traditional medicine to treat Alzheimer's disease(AD).Methods The technique of laser scanning confocal microscopy combining primary cultured neurons was adopted to quantitatively analyze the change of [Ca2+]i.Results The [Ca2+]i of primary cultured hippocampal neurons was (185.76±56.22)nmol*L-1 on basal levels.Control group showed obvious change of calcium vibration,[Ca2+]i was elevated to (1383.78±62.83)nmol*L-1.The peak of [Ca2+]i of Rb1 group reached (311.95±32.67)nmol*L-1 and was lower than that of control group (P<0.01).The tSDA group displayed distinct change of calcium vibration too,and [Ca2+]i reached (358.01±35.42)nmol*L-1.There was a significant difference in [Ca2+]i between control and tSDA group (P<0.01).Conclusion The research indicated that one of mechanisms by which Rb1 and tSDA protected the neurons was to maintain the balance of [Ca2+]i.

  15. Mineral dust and major ion concentrations in snowpit samples from the NEEM site, Greenland

    Science.gov (United States)

    Kang, Jung-Ho; Hwang, Heejin; Hong, Sang Bum; Hur, Soon Do; Choi, Sung-Deuk; Lee, Jeonghoon; Hong, Sungmin

    2015-11-01

    Polar ice sheets conserve atmospheric aerosols at the time of snowfall, which can be used to reconstruct past climate and environmental conditions. We investigated mineral dust and major ion records in snowpit samples obtained from the northwestern Greenland ice sheet near the North Greenland Eemian Ice Drilling (NEEM) camp in June 2009. We analyzed the samples for mineral dust concentrations as well as stable water isotopes (δ18O, δD, and deuterium excess) and major ions (Cl-, SO42-, methanesulfonic acid (MSA), Na+, and Ca2+). Seasonal δ18O and δD cycles indicate that the snowpit samples covered a six-year period from spring 2003 to early summer 2009. Concentrations of mineral dust, nss-Ca2+, and nss-SO42- showed seasonal deposition events with maxima in the winter-spring layers. On the other hand, the Cl-/Na+ ratio and the concentrations of MSA exhibited maxima in the summer layers, making them useful indicators for the summer season. Moreover, an anomalous atmospheric mineral dust event was recorded at a depth of 165-170 cm corresponding to late winter 2005 to spring 2006. A back trajectory analysis suggests that a major contributor to the Greenland aerosol was an air mass passing over the Canadian Arctic and North America. Several trajectories point to Asian regions as a dust source. The mineral dust deposited at NEEM was strongly influenced by long-range atmospheric transport and dust input from arid source areas in northern China and Mongolia.

  16. Determining Of Iodide Concentration In Salt Using Iodide Ion Selective Electrode

    International Nuclear Information System (INIS)

    There are various studies about the determination of iodide or iodinate in table salt samples. Iodo metric method (5), spectrophotometric method(8), gravimetric method (2), chromatographic method (6), differential potentiometric method (3).But with ion selective electrode technicality the determination of iodide in geothermal water was only determined. So, in this work, the concentration of iodide in control table salt, iodinate table salt samples were determination, using iodide ion selective electrode . Iodide calibration graph was plotted according to the standard method, and the results of control salt samples which contain a defined concentration of iodide, and known amount of ionic strength adjustment buffer, were compatible with the assigned values. The linearity and sensitivity of method were studied, the results were 50 mg.L-1 and 0.2 mg.L-1 respectively . While, when the method applied on iodinate table salt samples which contain a amount concentration of potassium iodate (KIO3), the results were inconsistent. So, we had to convert the KIO3 to I-1 with oxidation - reduction reaction. By using convenient reduction in acidic medium . Iodate calibration graph was plotted according to the last standard method, and the results of control iodinate table salt samples were good with relative standard deviation was 3 %. (author)

  17. Concentration trends for lead and calcium-normalized lead in fish fillets from the Big River, a mining-contaminated stream in southeastern Missouri USA

    Science.gov (United States)

    Schmitt, Christopher J.; McKee, Michael J.

    2016-01-01

    Lead (Pb) and calcium (Ca) concentrations were measured in fillet samples of longear sunfish (Lepomis megalotis) and redhorse suckers (Moxostoma spp.) collected in 2005–2012 from the Big River, which drains a historical mining area in southeastern Missouri and where a consumption advisory is in effect due to elevated Pb concentrations in fish. Lead tends to accumulated in Ca-rich tissues such as bone and scale. Concentrations of Pb in fish muscle are typically low, but can become elevated in fillets from Pb-contaminated sites depending in part on how much bone, scale, and skin is included in the sample. We used analysis-of-covariance to normalize Pb concentration to the geometric mean Ca concentration (415 ug/g wet weight, ww), which reduced variation between taxa, sites, and years, as was the number of samples that exceeded Missouri consumption advisory threshold (300 ng/g ww). Concentrations of Pb in 2005–2012 were lower than in the past, especially after Ca-normalization, but the consumption advisory is still warranted because concentrations were >300 ng/g ww in samples of both taxa from contaminated sites. For monitoring purposes, a simple linear regression model is proposed for estimating Ca-normalized Pb concentrations in fillets from Pb:Ca molar ratios as a way of reducing the effects of differing preparation methods on fillet Pb variation.

  18. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    International Nuclear Information System (INIS)

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter

  19. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    Science.gov (United States)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  20. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  1. Salivary flow rate, pH, and concentrations of calcium, phosphate, and sIgA in Brazilian pregnant and non-pregnant women

    OpenAIRE

    Lindemann Laura; Veeck Elaine B; Marinho Sandra A; Rockenbach Maria I; Shinkai Rosemary S

    2006-01-01

    Abstract Background Studies on salivary variables and pregnancy in Latin America are scarce. This study aimed to compare salivary flow rate, pH, and concentrations of calcium, phosphate, and sIgA of unstimulated whole saliva in pregnant and non-pregnant Brazilians. Methods Cross-sectional study. Sample was composed by 22 pregnant and 22 non-pregnant women attending the Obstetrics and Gynecology Clinics, São Lucas Hospital, in Porto Alegre city, South region of Brazil. Unstimulated whole saliv...

  2. Effects of calcium chelators on calcium distribution and protein solubility in rennet casein dispersions.

    Science.gov (United States)

    McIntyre, Irene; O' Sullivan, Michael; O' Riordan, Dolores

    2016-04-15

    This study investigated the effects of calcium chelating salts on calcium-ion activity (ACa(++)), calcium distribution, and protein solubility in model CaCl2 solutions (50 mmol L(-1)) or rennet casein dispersions (15 g/100 g). Disodium phosphate and trisodium citrate at concentrations of 10 and 30 mmol L(-1) and at ratios of 1:0, 2:1, 1:1, 1:2 and 0:1 were added to both systems. The CaCl2 system, despite its simplicity, was a good indicator of chelating salt-calcium interactions in rennet casein dispersions. Adding trisodium citrate either alone or as part of a mixed chelating salt system resulted in high levels of dispersed "chelated" calcium; conversely, disodium phosphate addition resulted in lower levels, while the ACa(++) decreased with increasing concentration of both chelating salts. Neither chelating salt produced high levels of soluble protein. Thus calcium chelating salts may play a more subtle role in modulating hydration during manufacture of casein-based matrices than simply solubilising calcium or protein. PMID:26616945

  3. Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients

    Directory of Open Access Journals (Sweden)

    García Juan F

    2009-02-01

    Full Text Available Abstract Background Asthenozoospermia is one of the most common findings present in infertile males characterized by reduced or absent sperm motility, but its aetiology remains unknown in most cases. In addition, calcium is one of the most important ions regulating sperm motility. In this study we have investigated the progesterone-evoked intracellular calcium signal in ejaculated spermatozoa from men with normospermia or asthenozoospermia. Methods Human ejaculates were obtained from healthy volunteers and asthenospermic men by masturbation after 4–5 days of abstinence. For determination of cytosolic free calcium concentration, spermatozoa were loaded with the fluorescent ratiometric calcium indicator Fura-2. Results Treatment of spermatozoa from normospermic men with 20 micromolar progesterone plus 1 micromolar thapsigargin in a calcium free medium induced a typical transient increase in cytosolic free calcium concentration due to calcium release from internal stores. Similar results were obtained when spermatozoa were stimulated with progesterone alone. Subsequent addition of calcium to the external medium evoked a sustained elevation in cytosolic free calcium concentration indicative of capacitative calcium entry. However, when progesterone plus thapsigargin were administered to spermatozoa from patients with asthenozoospermia, calcium signal and subsequent calcium entry was much smaller compared to normospermic patients. As expected, pretreatment of normospermic spermatozoa with both the anti-progesterone receptor c262 antibody and with progesterone receptor antagonist RU-38486 decreased the calcium release induced by progesterone. Treatment of spermatozoa with cytochalasin D or jasplakinolide decreased the calcium entry evoked by depletion of internal calcium stores in normospermic patients, whereas these treatments proved to be ineffective at modifying the calcium entry in patients with asthenozoospermia. Conclusion Our results suggest

  4. Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions

    Indian Academy of Sciences (India)

    A Nag; D Chakraborty; A Chandra

    2008-01-01

    Molecular dynamics simulations of dilute and concentrated aqueous NaCl solutions are carried out to investigate the changes of the hydrogen bonded structures in the vicinity of ions for different ion concentrations. An analysis of the hydrogen bond population in the first and second solvation shells of the ions and in the bulk water is done. Although essentially no effect of ions on the hydrogen bonding is observed beyond the first solvation shell of the ions for the dilute solutions, for the concentrated solutions a noticeable change in the average number of water-water hydrogen bonds is observed in the second solvation shells of the ions and even beyond. However, the changes in the average number of hydrogen bonds are found to be relatively less when both water-water and ion-water hydrogen bonds are counted. Thus, the changes in the total number of hydrogen bonds per water are not very dramatic beyond the first solvation shell even for concentrated solutions.

  5. The Formation of Ion Concentration Polarization Layer Induced by Bifurcated Current Path

    Science.gov (United States)

    Kim, Junsuk; Lee, Hyomin; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae; EES Team; MFM Team

    2015-11-01

    Ion Concentration Polarization (ICP) is a fundamental electrokinetic phenomenon that occurs near a perm-selective membrane and, thus, the characteristics can be significantly altered by the current path through the Nafion nanoporous membrane. In this work, a new ICP device that bifurcated the current path was fabricated using micro/micro-nano/nano/micro hybrid channel connection, while a conventional ICP device has employed micro/nano/micro channel connection. The propagation of ICP layer was initiated from the nano-channel at high concentration regime and from micro-nano connection at low concentration regime. Interestingly, the reverse propagation was observed at low concentration regime as well. These combined effects conveyed a competition between two distinguishable propagations at intermediate concentration regime, caused by singularity of the bifurcated current path. Experiments and an equivalent circuit analysis were conducted for this bifurcation. As a result, the conductance ratio of electrolyte to Nafion governed the bifurcation. Conclusively, the bifurcation-induced ICP layer formation was able to be characterized by analyzing current-time characteristic which have two distinct RC delay times. 2013R1A1A1008125, CISS- 2011-0031870 and 2012-0009563 by the Ministry of Science, ICT & Future Planning and HI13C1468, HI14C0559.

  6. Non-Negligible Diffusio-Osmosis Inside an Ion Concentration Polarization Layer

    Science.gov (United States)

    Cho, Inhee; Kim, Wonseok; Kim, Junsuk; Kim, Ho-Young; Lee, Hyomin; Kim, Sung Jae

    2016-06-01

    The first experimental and theoretical evidence was provided for the non-negligible role of a diffusio-osmosis in the ion concentration polarization (ICP) layer, which had been reported to be in a high Peclet number regime. Under the assumption that the hydrated shells of cations were stripped out with the amplified electric field inside the ICP layer, its concentration profile possessed a steep concentration gradient at the stripped location. Since the concentration gradient drove a strong diffusio-osmosis, the combination of electro-osmotic and diffusio-osmotic slip velocity had a form of an anomalous nonmonotonic function with both a single- and multiple-cationic solution. A direct measurement of electrolytic concentrations around the layer quantitatively validated our new investigations. This non-negligible diffusio-osmotic contribution in a micro- and nanofluidic platform or porous medium would be essential for clarifying the fundamental insight of nanoscale electrokinetics as well as guiding the engineering of ICP-based electrochemical systems.

  7. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  8. Cytosolic calcium concentration is reduced by photolysis of a nitrosyl ruthenium complex in vascular smooth muscle cells.

    Science.gov (United States)

    Lunardi, C N; Cacciari, A L; Silva, R S; Bendhack, L M

    2006-11-01

    The effect of the NO donors cis-[RuCl(bpy)(2)(NO)](PF(6)) (RUNOCL) and sodium nitroprusside (SNP) on the cytosolic Ca(2+) concentration ([Ca(2+)](c)) was studied in cells isolated from the rat aorta smooth muscle of cells isolated from the rat aorta smooth muscle. SNP is a metal nitrosyl complex made up of iron, cyanide groups, and a nitro moiety; the RUNOCL complex is made up of ruthenium and bipyridine ligands, with chloride and nitrosyl groups in the ruthenium axial positions. Rat aorta smooth muscle cells were loaded with fluo-3 acetoxymethyl ester (Fluo-3 AM) and imaged by a confocal scanning laser microscope excited with the 488 nm line of the argon ion laser. Fluorescence emission was measured at 510 nm. One of the NO donors, RUNOCL (100 micromol/L) or SNP (100 micromol/L), was then added to the cell chamber and the fluorescent intensity percentage (%IF) was measured after 240 s. RUNOCL reduced the %IF to 60.0+/-10.0% of the initial value. After treatment with the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) (10 micromol/L), the measurement of %IF was 81.0+/-5.0% (n=4). In the presence of tetraethylammonium (TEA) (1 mmol/L) the %IF was 79.0+/-6.4% (n=4). A combination of ODQ and TEA increased the %IF to 97.0+/-3.5% (n=4). As for SNP, it reduced the %IF to 81.4+/-4.7% (n=4), but this effect was inhibited by ODQ (%IF 94.0+/-3.6%; n=4) and TEA (%IF 88.0+/-2.1%; n=4). The combination of ODQ and TEA increased (%IF 92.0+/-2.8%; n=4). Taken together, these results indicate that both the new NO donor RUNOCL and SNP reduce [Ca(2+)](c). Our data also give evidence that soluble guanylyl cyclase and K(+) channels sensitive to TEA are involved in the mechanisms responsible for the reduction in [Ca(2+)](c) of the rat aorta smooth muscle cells. PMID:16564714

  9. The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge

    OpenAIRE

    De Lucia, Frank C.; Herbst, Eric; Plummer, Grant M.; Blake, Geoffrey A.

    1983-01-01

    A technique for enhancement of positive molecular ion concentrations in a glow discharge is presented. The technique consists of modifying an anomalous glow discharge by the addition of a longitudinal magnetic field of up to 300 G. Enhancements in the ion signal strength, as measured by millimeter and submillimeter wave spectroscopy, are approximately two orders of magnitude. Evidence is presented that the magnetic field increases the length of the ion rich negative glow by restricting inside...

  10. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Daniel X Keller

    Full Text Available The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.

  11. Synthesis of novel ion-imprinted polymeric nanoparticles based on dibenzo-21-crown-7 for the selective pre-concentration and recognition of rubidium ions.

    Science.gov (United States)

    Hashemi, Beshare; Shamsipur, Mojtaba

    2015-12-01

    In this work, we report the first application of ion-imprinted technology via precipitation polymerization for simple and practical determination of rubidium ions. The rubidium-ion-imprinted polymer nanoparticles were prepared using dibenzo-21-crown-7 as a selective ligand, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross linker, and 2,2'-azobisisobutyronitrile as radical initiator. The resulting powder material was characterized using scanning electron microscopy, which showed colloidal nanoparticles of 100-200 nm in diameter and slightly irregular in shape. The maximum adsorption capacity of the ion imprinted particles was 63.36 μmol/g. The experimental conditions such as nature and concentration of eluent, pH, adsorption and desorption times, weight of the polymer material, aqueous phase and desorption agent volumes were also studied. Finally, selectivity of the prepared IIP particles toward rubidium ion was investigated in the presence of some foreign metal ions. PMID:26462738

  12. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Pennathur, Sumita; Kristensen, Jesper; Crumrine, Andrew;

    2011-01-01

    Nanochannel ion transport is known to be governed by surface charge at low ionic concentrations. In this talk, we show that this surface charge is dominated by hydronium ions arising from dissolution of ambient atmospheric carbon dioxide. By refining the electrokinetic model of the nanochannel...

  13. A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus Halmapalus Alpha-amylase - the Effect of Calcium Ions

    Science.gov (United States)

    Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter

    2003-01-01

    The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.

  14. Identification of crystaline sediments in apple juice concentrate with the method of structural rentgenography

    International Nuclear Information System (INIS)

    The juice before concentrating was exposed to the pectinolysis and ultrafiltration. The researches to find the causes of coming to being the connection of the calcium with the malic acid are performing. It's supposed that raised quantity of calcium ions in the juice designed to concentration is the effect of pectinolysis. The preparations with low contents of pectinoestherase don't initiate the reaction of calcium precipitation with pectin acid after demethylation

  15. Determination of Ion Concentrations and Heavy Metals in the Air Particulates of an Industrial Area

    Directory of Open Access Journals (Sweden)

    Ömer Işıldak

    2011-12-01

    Full Text Available This study deals with the determination of heavy metals, anions and cations in atmospheric aerosols at four heavily polluted sites in Samsun city, Turkey. The anions (Cl-, Br-, NO3- and NO2- and cations (Na+, K+ and NH4+ in the samples were determined by ion chromatography using a potentiometric detector with ion selective electrodes. Flame and graphite-furnace Atomic Absorption Spectrometer was used for the determination of Pb, Cu, Zn and Fe. The average values of Cl-, NO3-, NO2-, Br-, Na+, K+ and NH4+ concentrations in the samples were 4.58±1.30, 7.42±1.32, 0.86±0.10, 0.28±0.05, 0.77±0.13, 0.72±0.06, and 1.08±0.09 µg/m3 respectively. The average values of Zn, Cu, Fe and Pb concentrations in the samples were 2.32±0.21, 1.71±0.14, 2.29±0.18, and 2.46±0.22 µg/m3 respectively.

  16. Enrichment and isolation of Flavobacterium strains with tolerance to high concentrations of cesium ion.

    Science.gov (United States)

    Kato, Souichiro; Goya, Eri; Tanaka, Michiko; Kitagawa, Wataru; Kikuchi, Yoshitomo; Asano, Kozo; Kamagata, Yoichi

    2016-01-01

    Interest in the interaction of microorganisms with cesium ions (Cs(+)) has arisen, especially in terms of their potent ability for radiocesium bioaccumulation and their important roles in biogeochemical cycling. Although high concentrations of Cs(+) display toxic effects on microorganisms, there have been only limited reports for Cs(+)-tolerant microorganisms. Here we report enrichment and isolation of Cs(+)-tolerant microorganisms from soil microbiota. Microbial community analysis revealed that bacteria within the phylum Bacteroidetes, especially Flavobacterium spp., dominated in enrichment cultures in the medium supplemented with 50 or 200 mM Cs(+), while Gammaproteobacteria was dominant in the control enrichment cultures (in the presence of 50 and 200 mM K(+) instead of Cs(+)). The dominant Flavobacterium sp. was successfully isolated from the enrichment culture and was closely related to Flavobacterium chungbukense with 99.5% identity. Growth experiments clearly demonstrated that the isolate has significantly higher tolerance to Cs(+) compared to its close relatives, suggesting the Cs(+)-tolerance is a specific trait of this strain, but not a universal trait in the genus Flavobacterium. Measurement of intracellular K(+) and Cs(+) concentrations of the Cs(+)-tolerant isolate and its close relatives suggested that the ability to maintain low intracellular Cs(+) concentration confers the tolerance against high concentrations of external Cs(+). PMID:26883718

  17. Salivary flow rate, pH, and concentrations of calcium, phosphate, and sIgA in Brazilian pregnant and non-pregnant women

    Directory of Open Access Journals (Sweden)

    Lindemann Laura

    2006-11-01

    Full Text Available Abstract Background Studies on salivary variables and pregnancy in Latin America are scarce. This study aimed to compare salivary flow rate, pH, and concentrations of calcium, phosphate, and sIgA of unstimulated whole saliva in pregnant and non-pregnant Brazilians. Methods Cross-sectional study. Sample was composed by 22 pregnant and 22 non-pregnant women attending the Obstetrics and Gynecology Clinics, São Lucas Hospital, in Porto Alegre city, South region of Brazil. Unstimulated whole saliva was collected to determine salivary flow rate, pH, and biochemical composition. Data were analyzed by Student t test and ANCOVA (two-tailed α = 0.05. Results No difference was found for salivary flow rates and concentrations of total calcium and phosphate between pregnant and non-pregnant women (p > 0.05. Pregnant women had lower pH (6.7 than non-pregnant women (7.5 (p Conclusion Some of the tested variables of unstimulated whole saliva were different between pregnant and non-pregnant Brazilians in this sample. Overall, the values of the tested salivary parameters were within the range of international references of normality.

  18. Calcium release-activated calcium current in rat mast cells.

    Science.gov (United States)

    Hoth, M; Penner, R

    1993-06-01

    1. Whole-cell patch clamp recordings of membrane currents and fura-2 measurements of free intracellular calcium concentration ([Ca2+]i) were used to study the biophysical properties of a calcium current activated by depletion of intracellular calcium stores in rat peritoneal mast cells. 2. Calcium influx through an inward calcium release-activated calcium current (ICRAC) was induced by three independent mechanisms that result in store depletion: intracellular infusion of inositol 1,4,5-trisphosphate (InsP3) or extracellular application of ionomycin (active depletion), and intracellular infusion of calcium chelators (ethylene glycol bis-N,N,N',N'-tetraacetic acid (EGTA) or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)) to prevent reuptake of leaked-out calcium into the stores (passive depletion). 3. The activation of ICRAC induced by active store depletion has a short delay (4-14 s) following intracellular infusion of InsP3 or extracellular application of ionomycin. It has a monoexponential time course with a time constant of 20-30 s and, depending on the complementary Ca2+ buffer, a mean normalized amplitude (at 0 mV) of 0.6 pA pF-1 (with EGTA) and 1.1 pA pF-1 (with BAPTA). 4. After full activation of ICRAC by InsP3 in the presence of EGTA (10 mM), hyperpolarizing pulses to -100 mV induced an instantaneous inward current that decayed by 64% within 50 ms. This inactivation is probably mediated by [Ca2+]i, since the decrease of inward current in the presence of the fast Ca2+ buffer BAPTA (10 mM) was only 30%. 5. The amplitude of ICRAC was dependent on the extracellular Ca2+ concentration with an apparent dissociation constant (KD) of 3.3 mM. Inward currents were nonsaturating up to -200 mV. 6. The selectivity of ICRAC for Ca2+ was assessed by using fura-2 as the dominant intracellular buffer (at a concentration of 2 mM) and relating the absolute changes in the calcium-sensitive fluorescence (390 nm excitation) with the calcium current integral

  19. Short-term effects of calcium ions on the apoptosis and onset of mineralization of human dental pulp cells in vitro and in vivo

    OpenAIRE

    AN, SHAOFENG; Gao, Yan; Huang, Yihua; JIANG, XIAOQIONG; Ma, Ke; LING, JUNQI

    2015-01-01

    Calcium ions (Ca2+) are a major constituent of most pulp-capping materials and have an important role in the mineralization of human dental pulp cells (hDPCs). A previous study by our group has shown that increased levels of Ca2+ can promote hDPC-mediated mineralization in long-term cultures (21 days). However, the initiation of mineralization occurs in the early stage of osteogenic inductive culture, and the effects of Ca2+ on the mineralization of hDPCs in short-term cultures (five days) ha...

  20. Assembly and Calcium Binding Properties of Quantum Dot-Calmodulin Calcium Sensor.

    Science.gov (United States)

    Eun, Su-yong; Nguyen-ta, Kim; Yoo, Hoon; Silva, Gabriel A; Kim, Soon-jong

    2016-02-01

    We have developed the first nanoengineered quantum dot molecular complex designed to measure changes of calcium ion (Ca2+) concentration at high spatial and temporal resolutions in real time. The sensor is ratiometric and composed of three components: a quantum dot (QD) emitting at 620 nm as a fluorescence donor, an organic dye (Alexa Fluor 647) as a fluorescence acceptor, and a calmodulin-M13 (CaM-M13) protein part as a calcium sensing component. In this work, we have determined the maximal number of CaM-M13 required for saturating a single QD particle to be approximately 16. The dissociation constant, Kd of the QD-based calcium ion sensor was also estimated to be around 30 microM. PMID:27433729

  1. The relationship between insulin resistance and the change of cytosol free calcium concentration in gestational diabetes mellitus

    International Nuclear Information System (INIS)

    To investigate the relationship between the insulin resistance (IR) and abnormalities of cellular calcium metabolism in gestational diabetes mellitus, the changes in the [Ca2+]i and the insulin receptor tyrosine kinase activity in circulating erythrocytes of 32 cases gestational diabetes were compared with those of 47 normal pregnant and 43 non pregnant women. The level of [Ca2+]i in circulating erythrocyte in gestational diabetes mellitus women was significantly higher than that in the pregnant and non pregnant women (P2+ ]i in circulating erythrocytes in gestational diabetes mellitus was positively correlated with fasting blood glucose and fasting insulin, negatively with the insulin receptor tyrosine kisase activity (P2+ ]i level during the gastational period might be one of the possible factor in the insulin resistance of gestaional diabetes mellitus. (authors)

  2. Relation between electrical resistivity and argon concentration of copper thin films prepared by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Particle Induced X-ray Emission (PIXE) measurements were applied to the evaluation of the argon concentration in the copper thin films prepared by Ion-Beam-Assisted Deposition (IBAD) technique. The relation between electrical resistivity and argon concentration in the films were investigated. The crystallinity and the atomic density were also examined with x-ray diffraction and Rutherford Backscattering Spectrometry (RBS). The obtained results indicated that although the grain size of the films becomes larger with the ion irradiation, electrical resistivity increases with an increase in the ion quantity. (author)

  3. Concentration changeability of phosphorus, calcium and magnesium in selected partial drainage basins of the River Drwęca

    Directory of Open Access Journals (Sweden)

    Pius Bożena

    2015-12-01

    Full Text Available The paper presents the results of the research conducted between November 2008 and October 2009. The research included seasonal dynamics of the flow and runoff of phosphorus compounds (TP and P-PO43-, as well as Ca2+ and Mg2+ from 13 partial drainage basins of the River Drwęca. Water levels were registered automatically every day by recorders, and measurements of the flow were conducted once a month. Major differences were found in the water abundance as indicated by specific discharges in individual, partial drainage basins: from 1.87 dm3 s-1 km-2 (Lubianka - a lower part of the River Drwęca drainage basin to 8.22 dm3 s-1 km-2 (Gizela - an upper part of the River Drwęca drainage basin. The studied rivers were characterised by very diverse average content of total phosphorus compounds: from 0.047 mg dm-3 (Iłga to 0.816 mg dm-3 (Sandela; calcium: from 47.18 mg dm-3 (Iłga to 131.65 mg dm-3 (Trynka; and magnesium: from 9.71 mg dm-3 (Wel to 36.76 mg dm-3 (Struga Rychnowska. Analysis of variance carried out on hydrochemical properties of the studied rivers divides the rivers into two separate groups: rivers with much higher content of phosphorus, calcium and magnesium compounds (Struga Rychnowska, Trynka, Ruziec, Lubianka, Kujawka, Sandela and Gizela, and a group of rivers with low content of these compounds (Brynica, Brodniczanka, Skarlanka, Wel, Iłga.

  4. Dating a tropical ice core by time-frequency analysis of ion concentration depth profiles

    Science.gov (United States)

    Gay, M.; De Angelis, M.; Lacoume, J.-L.

    2014-09-01

    Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and ice age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to ice core dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep ice core. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the core dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean ice cores.

  5. Hydrogen ion and calcium releasing of mTA fillapex® and mTA-based formulations

    Directory of Open Access Journals (Sweden)

    Milton Carlos Kuga

    2011-07-01

    Full Text Available Introduction: MTA is composed of various metal oxides, calcium oxide and bismuth. It has good biological properties and is indicated in cases of endodontic complications. Several commercial formulations are available and further studies are necessary to evaluate these materials. Objective: To evaluate pH and calcium releasing of MTA Fillapex® compared with gray and white MTA. Material and methods: Gray and white MTA (Angelus and MTA Fillapex® (Angelus were manipulated and placed into polyethylene tubes and immersed in distilled water. The pH of these solutions was measured at 24 hours, 7 days and 14 days. Simultaneously, at these same aforementioned periods, these materials’ calcium releasing was quantified, through atomic absorption spectrophotometry. The results were submitted to ANOVA, with level of significance at 5%. Results: Concerning to pH, the materials present similar behaviors among each other at 24 hours (p > 0.05. At 7 and 14 days, MTA Fillapex® provided significantly lower pH values than the other materials (p < 0.05. Regarding to calcium releasing, at 24 hours and 7 days, MTA Fillapex® provided lower releasing than the other materials (p < 0.05. After 14 days, differences were found between MTA Fillapex® and gray MTA (p < 0.05. Conclusion: All materials showed alkaline pH and calcium releasing, with significantly lower values for MTA Fillapex® sealer.

  6. Influence of metal ions binding on free radical concentration in humic acids. A quantitative electron paramagnetic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Jerzykiewicz, M.; Jezierski, A. [Wroclaw Univ. (Poland). Faculty of Chemistry; Czechowski, F. [Wroclaw Univ. of Technology (Poland). Inst. of Organic Chemistry, Biochemistry and Biotechnology; Drozd, J. [Agricultural Univ. of Wroclaw (Poland). Inst. of Soil Science and Agricultural Environment Protection

    2002-07-01

    The influence of metal ions, e.g. Co(II), Cu(II), Mn(II), Ni(II), Fe(II), on free radical concentration in humic acids isolated from soil, peat and compost was investigated by electron paramagnetic resonance (EPR). The results show that metal ions with unfilled d-shell exhibit antiferromagnetic interactions with semiquinone radicals. Moreover, coordinated metals shift the quinone-semiquinone-hydroquinone equilibrium in the macromolecular matrix of humic acids. A strong decrease of semiquinone radical concentration in humic acid-metal complexes is observed. This effect is caused by interactions of metal ions with oxygen-containing stable radicals occurring in the aromatic systems of humic acids. Furthermore, the effect of metal coordination on free radical concentration in humic acids-metal complexes depends on the humic acid origin. FTIR spectroscopy was also used as an additional tool for studies of the metal ions interactions with carboxylic groups. [author].

  7. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    International Nuclear Information System (INIS)

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO3 concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls

  8. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    Energy Technology Data Exchange (ETDEWEB)

    Han, I-H [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Lee, I-S [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Song, J-H [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, M-H [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Park, J-C [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, G-H [Korea Institute of Machinery and Materials, Chang-Won 641-010 (Korea, Republic of); Sun, X-D [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chung, S-M [Implantium Research Center, Seoul 135-879 (Korea, Republic of)

    2007-09-15

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO{sub 3} concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  9. Influence of dose and ion concentration on formation of binary Al–Ni alloy nanoclusters

    International Nuclear Information System (INIS)

    Colloidal Al–Ni nanoclusters were prepared in an aqueous polyvinyl alcohol solution containing aluminum chloride and nickel chloride as metal precursors, polyvinyl alcohol as a capping agent, isopropanol as a scavenger of hydroxyl radicals, and distilled water as a solvent. Gamma irradiations were carried out in a 60Co gamma source chamber at doses up to 100 kGy. The nanocluster properties were characterized by transmission electron microscopy (TEM), UV–visible spectrophotometry, and X-ray diffraction (XRD). By controlling the dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increase of precursor concentration and decreased with increase of dose. This is owing to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. - Highlights: ► Synthesized Al–Ni bimetallic nanoparticles by the gamma-ray induced method. ► Examined how changes in ion concentration affect particle size. ► Increasing dose can decrease the size of bimetallic nanoparticles. ► Nanoparticles in uniform size distribution are obtained at higher dose. ► Nucleation and aggregation rates can change the size of nanoparticles.

  10. The effect of ions, ion channel blockers, and ionophores on uptake of vitellogenin into cockroach follicles.

    Science.gov (United States)

    Kindle, H; Lanzrein, B; Kunkel, J G

    1990-12-01

    Since calcium plays an important role in vitellogenin binding and uptake in Nauphoeta cinerea and because calcium channels have been described in follicles of this species, we investigated the effect of various ions, ionophores, and ion channel blockers on vitellogenin uptake in vitro. Calcium significantly stimulated vitellogenin uptake; this effect could be substituted best by barium and less well by strontium and magnesium. The stimulatory effect of calcium, and to a certain extent also that of barium, was dependent on the vitellogenin concentration, whereas the effect of strontium and magnesium was not. In the presence of calcium, vitellogenin uptake was inhibited by barium, strontium, and magnesium as well as by the transition elements nickel, cobalt, and zinc, but not by manganese which had a stimulatory effect. Valinomycin, verapamil, tetraethylammonium, and atropine reduced vitellogenin uptake, while amiloride and ouabain were ineffective. Our results indicate that calcium inward (and possibly potassium outward) fluxes play an important role in vitellogenin uptake. PMID:2257971

  11. Reactive Crystallization of Calcium Sulfate Dihydrate from Acidic Wastewater and Lime

    Institute of Scientific and Technical Information of China (English)

    邓立聪; 张亦飞; 陈芳芳; 曹绍涛; 游韶玮; 刘艳; 张懿

    2013-01-01

    The present work focused on the recycle of the sulfate and the metal ions from acidic wastewater dis-charged by nonferrous metallurgical industry. The effects of the temperature, the reactant concentration, the stirring speed and the metal ions on the reactive crystallization process of calcium sulfate between sulfuric acid and lime were systematically investigated. The morphology of the precipitated crystals evolved from platelet-like and nee-dle-like shape to rod-like shape when the temperature was increased from 25 to 70 °C. An increase in the agglom-eration of calcium sulfate was found with increasing lime concentration. Metal ions markedly retard the rate of crystallization of calcium sulfate dihydrate. The crystallization of gypsum was slowed with the existence of Mg2+in the solution, and the morphology of gypsum was transformed from platelet-like shape to rod-like shape when Mg2+concentration reached 0.08 mol·L-1. The amorphous ferric hydroxide was coated on the calcium sulfate after the co-precipitation process while Zn2+and Al3+ions in the solution enhanced the agglomeration of the calcium sulfate by absorbing on the surface of the crystals. Comprehensive acidic wastewater containing heavy metals was effi-ciently purified by the two stage lime neutralization technology, and highly agglomerated gypsum precipitates with needle-like shape were obtained. The precipitates could be purified by sulfuric acid washing, and the metal ions were effectively separated from the calcium sulfate by-products.

  12. Calcium Imaging Perspectives in Plants

    Directory of Open Access Journals (Sweden)

    Chidananda Nagamangala Kanchiswamy

    2014-03-01

    Full Text Available The calcium ion (Ca2+ is a versatile intracellular messenger. It provides dynamic regulation of a vast array of gene transcriptions, protein kinases, transcription factors and other complex downstream signaling cascades. For the past six decades, intracellular Ca2+ concentration has been significantly studied and still many studies are under way. Our understanding of Ca2+ signaling and the corresponding physiological phenomenon is growing exponentially. Here we focus on the improvements made in the development of probes used for Ca2+ imaging and expanding the application of Ca2+ imaging in plant science research.

  13. Ion concentrations of PM10–2.5 and PM2.5 aerosols over the eastern Mediterranean region: seasonal variation and source identification

    Directory of Open Access Journals (Sweden)

    N. A. Saliba

    2005-12-01

    Full Text Available The annual averages of particulate matters (PM10, PM10–2.5 (coarse and PM2.5 (fine in a densely populated area of Beirut were measured and found to be 84±27, 53±20 and 31±9 μg m−3, respectively. Ion Chromatography (IC analysis of the collected PM Teflon filters showed that NaCl, CaSO4 and Ca(NO32 were predominant in the coarse particles, while (NH42SO4 was the main salt in the fine particles. Using the non destructive Fourier Transform Infra Red-Attenuated Total Reflection (FTIR-ATR technique, CaCO3 was determined in the coarse filter. In addition, ATR measurements showed that inorganic salts present in the coarse particles are mostly water insoluble while salts found in fine particles are soluble. Concentrations of nitrates and calcium higher than the ones reported in neighboring Mediterranean countries were good indication of high traffic density and crustal dust abundance in Beirut, respectively. The study of the seasonal variation showed that long-range transport of SO2 from Eastern and Central Europe, sandy storms coming from Africa and marine aerosols are considered major sources of the determined inorganic ions. Considering the importance of the health and climate impacts of aerosols locally and regionally, this study constitutes a point of reference for eastern Mediterranean transport modeling studies and local regulatory and policy makers.

  14. Ion concentrations of PM10-2.5 and PM2.5 aerosols over the eastern Mediterranean region: seasonal variation and source identification

    Science.gov (United States)

    Kouyoumdjian, H.; Saliba, N. A.

    2005-12-01

    The annual averages of particulate matters (PM10, PM10-2.5 (coarse) and PM2.5 (fine)) in a densely populated area of Beirut were measured and found to be 84±27, 53±20 and 31±9 μg m-3, respectively. Ion Chromatography (IC) analysis of the collected PM Teflon filters showed that NaCl, CaSO4 and Ca(NO3)2 were predominant in the coarse particles, while (NH4)2SO4 was the main salt in the fine particles. Using the non destructive Fourier Transform Infra Red-Attenuated Total Reflection (FTIR-ATR) technique, CaCO3 was determined in the coarse filter. In addition, ATR measurements showed that inorganic salts present in the coarse particles are mostly water insoluble while salts found in fine particles are soluble. Concentrations of nitrates and calcium higher than the ones reported in neighboring Mediterranean countries were good indication of high traffic density and crustal dust abundance in Beirut, respectively. The study of the seasonal variation showed that long-range transport of SO2 from Eastern and Central Europe, sandy storms coming from Africa and marine aerosols are considered major sources of the determined inorganic ions. Considering the importance of the health and climate impacts of aerosols locally and regionally, this study constitutes a point of reference for eastern Mediterranean transport modeling studies and local regulatory and policy makers.

  15. Estimation of cesium ion exchange distribution coefficients for concentrated electrolytic solutions when using crystalline silicotitanates

    International Nuclear Information System (INIS)

    Polzer et al.'s method combined with Bromley's method for estimating activity coefficients and a Langmuir isotherm for cesium in a simple simulated waste solution containing 5.1 M NaNO3 and 0.6 M NaOH was used to estimate distribution coefficients for cesium in a complex simulated waste solution characteristic of the radioactive tank wastes at Hanford and other US Department of energy sites. The ion exchange material was a hydrous sodium crystalline silicotitanate, labeled TAM-5, which is being developed by Texas A and M University, Sandia National Laboratories, and UOP Associates. Cesium distribution coefficients collected by Bray et al. on a NCAW simulated waste solution were predicted with deviations of less than 25% for solutions containing 1 M, 3 M, and 5 M Na+ and Na:Cs ratios of 103--108. The deviations were less than 5% for the solutions with 1 M Na+. Cesium distribution coefficients were also predicted and compared with values measured by Egan et al. for TAM-5 and for a storage tank supernate and a newly generated waste solution. Excellent results were obtained for the newly generated waste simulated solution, which did not contain potassium or rubidium.The predictions for the other simulated waste solution were significantly greater than the measured values, because of the presence of large concentrations of potassium or rubidium. The effect of competitive