WorldWideScience

Sample records for calcium composite material

  1. Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study.

    Science.gov (United States)

    Łukomska-Szymańska, Monika; Zarzycka, Beata; Grzegorczyk, Janina; Sokołowski, Krzysztof; Półtorak, Konrad; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    The aim of the study was to evaluate antibacterial activity of composite materials modified with calcium fluoride against cariogenic bacteria S. mutans and L. acidophilus. One commercially available conventional light-curing composite material containing fluoride ions (F2) and two commercially available flowable light-curing composite materials (Flow Art and X-Flow) modified with 1.5, 2.5, and 5.0 wt% anhydrous calcium fluoride addition were used in the study. Composite material samples were incubated in 0.95% NaCl at 35°C for 3 days; then dilution series of S. mutans and L. acidophilus strains were made from the eluates. Bacteria dilutions were cultivated on media afterwards. Colony-forming unit per 1 mL of solution (CFU/mL) was calculated. Composite materials modified with calcium fluoride highly reduced (p composite materials containing fluoride compounds. The greatest reduction in bacteria growth was observed for composite materials modified with 1.5% wt. CaF2. All three tested composite materials showed statistically greater antibacterial activity against L. acidophilus than against S. mutans.

  2. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    Science.gov (United States)

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds.

  3. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  4. Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials.

    Science.gov (United States)

    Danoux, Charlène B S S; Bassett, David C; Othman, Ziryan; Rodrigues, Ana I; Reis, Rui L; Barralet, Jake E; van Blitterswijk, Clemens A; Habibovic, Pamela

    2015-04-01

    The biological performance of bone graft substitutes based on calcium phosphate bioceramics is dependent on a number of properties including chemical composition, porosity and surface micro- and nanoscale structure. However, in contemporary bioceramics these properties are interlinked, therefore making it difficult to investigate the individual effects of each property on cell behavior. In this study we have attempted to investigate the effects of calcium and inorganic phosphate ions independent from one another by preparing composite materials with polylactic acid (PLA) as a polymeric matrix and calcium carbonate or sodium phosphate salts as fillers. Clinically relevant bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on these composites and proliferation, osteogenic differentiation and ECM mineralization were investigated with time and were compared to plain PLA control particles. In parallel, cells were also cultured on conventional cell culture plates in media supplemented with calcium or inorganic phosphate to study the effect of these ions independent of the 3D environment created by the particles. Calcium was shown to increase proliferation of cells, whereas both calcium and phosphate positively affected alkaline phosphatase enzyme production. QPCR analysis revealed positive effects of calcium and of inorganic phosphate on the expression of osteogenic markers, in particular bone morphogenetic protein-2 and osteopontin. Higher levels of mineralization were also observed upon exposure to either ion. Effects were similar for cells cultured on composite materials and those cultured in supplemented media, although ion concentrations in the composite cultures were lower. The approach presented here may be a valuable tool for studying the individual effects of a variety of soluble compounds, including bioinorganics, without interference from other material properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  5. Calcium release from experimental dental materials.

    Science.gov (United States)

    Okulus, Zuzanna; Buchwald, Tomasz; Voelkel, Adam

    2016-11-01

    The calcium release from calcium phosphate-containing experimental dental restorative materials was examined. The possible correlation of ion release with initial calcium content, solubility and degree of curing (degree of conversion) of examined materials was also investigated. Calcium release was measured with the use of an ion-selective electrode in an aqueous solution. Solubility was established by the weighing method. Raman spectroscopy was applied for the determination of the degree of conversion, while initial calcium content was examined with the use of energy-dispersive spectroscopy. For examined materials, the amount of calcium released was found to be positively correlated with solubility and initial calcium content. It was also found that the degree of conversion does not affect the ability of these experimental composites to release calcium ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  7. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  8. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  9. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    , viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous......This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry...

  10. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials.

    Science.gov (United States)

    He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming

    2015-05-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    . The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  12. New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS.

    Science.gov (United States)

    Kaczmarek, B; Sionkowska, A; Kozlowska, J; Osyczka, A M

    2018-02-01

    Nowadays, fabrication of composite materials based on biopolymers is a rising field due to potential for bone repair and tissue engineering application. Blending of different biopolymers and incorporation of inorganic particles in the blend can lead to new materials with improved physicochemical properties and biocompatibility. In this work 3D porous structures called scaffolds based on chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Scaffolds were cross-linked by EDC/NHS. Infrared spectra for the materials were made, the percentage of swelling, scaffolds porosity and density, mechanical parameters, thermal stability were studied. Moreover, the scaffolds were used as matrixes for the calcium phosphate in situ precipitation. SEM images were taken and EDX analysis was carried out for calcium and phosphorous content determination in the scaffold. In addition, the adhesion and proliferation of human osteosarcoma SaOS-2 cells was examined on obtained scaffolds. The results showed that the properties of 3D composites cross-linked by EDC/NHS were altered after the addition of 1, 2 and 5% hyaluronic acid. Mechanical parameters, thermal stability and porosity of scaffolds were improved. Moreover, calcium and phosphorous were found in each kind of scaffold. SEM images showed that the precipitation was homogeneously carried in the whole volume of samples. Attachment of SaOS-2 cells to all modified materials was better compared to unmodified control and proliferation of these cells was markedly increased on scaffolds with precipitated calcium phosphate. Obtained materials can provide the support useful in tissue engineering and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  14. Silicon, iron and titanium doped calcium phosphate-based glass reinforced biodegradable polyester composites as bone analogous materials

    Science.gov (United States)

    Shah Mohammadi, Maziar

    Bone defects resulting from disease or traumatic injury is a major health care problem worldwide. Tissue engineering offers an alternative approach to repair and regenerate bone through the use of a cell-scaffold construct. The scaffold should be biodegradable, biocompatible, porous with an open pore structure, and should be able to withstand the applied forces. Phosphate-based glasses (PGs) may be used as reinforcing agents in degradable composites since their degradation can be predicted and controlled through their chemistry. This doctoral dissertation describes the development and evaluation of PGs reinforced biodegradable polyesters for intended applications in bone augmentation and regeneration. This research was divided into three main objectives: 1) Investigating the composition dependent properties of novel PG formulations by doping a sodium-free calcium phosphate-based glass with SiO2, Fe2O3, and TiO2. Accordingly, (50P2 O5-40CaO- xSiO2-(10-x)Fe2O3, where x = 10, 5 and 0 mol.%) and (50P2O5-40CaO-xSiO 2-(10-x)TiO2 where x = 10, 7, 5, 3 and 0 mol.%) formulations were developed and characterised. SiO2 incorporation led to increased solubility, ion release, pH reduction, as well as hydrophilicity, surface energy, and surface polarity. In contrast, doping with Fe2O 3 or TiO2 resulted in more durable glasses, and improved cell attachment and viability. It was hypothesised that the presence of SiO 2 in the TiO2-doped formulations could up-regulate the ionic release from the PG leading to higher alkaline phosphatase activity of MC3T3-E1 cells. 2) Incorporating Si, Fe, and Ti doped PGs as fillers, either as particulates (PGPs) or fibres (PGFs), into biodegradable polyesters (polycaprolactone (PCL) and semi-crystalline and amorphous poly(lactic acid) (PLA and PDLLA)) with the aim of developing degradable bone analogous composites. It was found that PG composition and geometry dictated the weight loss, ionic release, and mechanical properties of the composites. It

  15. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    Science.gov (United States)

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Calcium phosphate/poly(D,L-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect.

    NARCIS (Netherlands)

    Watering, F.C.J. van de; Beucken, J.J.J.P van den; Walboomers, X.F.; Jansen, J.A.

    2012-01-01

    OBJECTIVES: The present study aimed to provide temporal information on material degradation and bone formation using composite (C) bone defect filler materials consisting of calcium phosphate cement (CaP) and poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles (20 or 30 wt%) in rat

  17. Composition and structure of calcium aluminosilicate microspheres

    Science.gov (United States)

    Sharonova, O. M.; Oreshkina, N. A.; Zhizhaev, A. M.

    2017-06-01

    The composition was studied of calcium aluminosilicate microspheres of three morphological types in high-calcium fly ash from combustion of brown coal from the Kansk-Achinsk basin in slag-tap boilers at temperatures from 1400 to 1500°C and sampled in the first field of electrostatic precipitators at the Krasnoyarsk Cogeneration Power Station no. 2 (TETs-2). Gross compositions and the composition of local areas were determined using a scanning electron microscopy technique and an energy-dispersive analysis with full mapping of globules. With a high content of basic oxides O ox (68 to 79 wt %) and a low content of acid oxides K ox (21 to 31 wt %), type 1 microspheres are formed. They consist of heterogeneous areas having a porous structure and crystalline components in which the content of CaO, SiO2, or Al2O3 differs by two to three times and the content of MgO differs by seven times. With a lower content of O ox (55 to 63 wt %) and an elevated content of K ox (37 to 45 wt %), type 2 microspheres are formed. They are more homogeneous in the composition and structure and consist of similar crystalline components. Having a close content of O ox (46 to 53 wt %) and K ox (47 to 54 wt %), type 3 microspheres, which are a dense matter consisting of amorphous substance with submicron- and nanostructure of crystalline components, are formed. The basic precursor in formation of high-calcium aluminosilicate microspheres is calcium from the organomineral matter of coals with various contribution of Mg, Fe, S, or Na from the coal organic matter and Al, Fe, S, or Si in the form of single mineral inclusions in a coal particle. On the basis of the available data, the effect was analyzed of the composition of a CaO-MgO-Al2O3-SiO2-FeO system on the melting and viscous properties of the matter in microspheres and formation of globules of different morphology. The results of this analysis will help to find a correlation with properties of microspheres in their use as functional

  18. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  19. Evaluation of the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material; Avaliacao in vivo do desempenho de compositos de alumina/fosfato de calcio (CaPs) como material de reconstrucao ossea

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, P.M.; Lima, M.G.; Costa, A.C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Pallone, E.M. [Universidade de Sao Paulo (FZEA/USP), Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos; Kiminami, R.H. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    This study aims to evaluate the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material. To this end, mass CAPs relative to the total weight of Al2O3 prepared Al{sub 2}O{sub 3}/CAPs using percentage of 0, 10, 20 and 30% composites. The composites characterized were by X-ray diffraction, scanning electron microscopy with scanning. After implanted in rabbit tibia randomly divided were into two groups, each with nine rabbits, according to the euthanasia period (30 days after surgery). After euthanasia was performed radiographic and histological evaluation of the grafted areas. The results confirm that the compounds Al{sub 2}O{sub 3}/CAPs presented major phase of alumina and the second phase calcium pyrophosphate. Increasing the concentration of CAPs on alumina promoted with a reduction in density and increase in porosity, as well as an increase in grain size and heterogeneity in the microstructure. Upon radiographic examination of the tibiae of the nine (9) rabbits score was observed with grade 3, or similar radiopacity presented by the remaining cortical bone. It shown was that the tibiae of rabbits with the implant showed the presence of foreign material (composite), well delimited with bone formation and bone proliferation around the implants. At the point where the composite in 30 days' time of sacrifice, there was no observable sign of infection was established, since there were observed no cellular infiltration, no rejection of the implant, concluding that the biocompatible composite was studied. (author)

  20. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R [Portola Valley, CA; Farsad, Kasra [San Jose, CA; Camire, Chris [San Jose, CA; Chen, Irvin [San Jose, CA

    2011-04-12

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  1. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R [Portola Valley, CA; Farsad, Kasra [San Jose, CA; Camire, Chris [San Jose, CA; Chen, Irvin [Santa Clara, CA; Ginder-Vogel, Matthew [Los Gatos, CA; Fernandez, Miguel [San Jose, CA

    2012-05-15

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  2. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R [Portola Valley, CA; Farsad, Kasra [San Jose, CA; Camire, Chris [San Jose, CA; Patterson, Joshua [Freedom, CA; Ginder-Vogel, Matthew [Los Gatos, CA; Yaccato, Karin [San Jose, CA; Stagnaro, John [Santa Clara, CA; Devenney, Martin [Mountain View, CA; Ries, Justin [Chapel Hill, NC

    2012-03-20

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  3. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Irvin; Fernandez, Miguel; Patterson, Joshua; Devenney, Martin

    2015-01-13

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  4. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R [Portola Valley, CA; Farsad, Kasra [San Jose, CA; Camire, Chris [San Jose, CA; Patterson, Joshua [Freedom, CA; Fernandez, Miguel [San Jose, CA; Yaccato, Karin [San Jose, CA; Thatcher, Ryan [Sunnyvale, CA; Stagnaro, John [Santa Clara, CA; Chen, Irvin [Santa Clara, CA; Omelon, Sidney [Willowdale, CA; Hodson, Keith [Palo Alto, CA; Clodic, Laurence [Sunnyvale, CA; Geramita, Katharine [Seattle, CA; Holland, Terence C [Auburn Township, OH; Ries, Justin [Chapel Hill, NC

    2012-02-14

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  5. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R [Portola Valley, CA; Farsad, Kasra [San Jose, CA; Camire, Chris [San Jose, CA; Patterson, Joshua [Freedom, CA; Ginder-Vogel, Matthew [Los Gatos, CA; Yaccato, Karin [San Jose, CA; Stagnaro, John [Santa Clara, CA; Devenney, Martin [Mountain View, CA; Ries, Justin [Chapel Hill, NC

    2011-11-22

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  6. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Irvin; Fernandez, Miguel; Patterson, Joshua; Devenney, Martin

    2015-06-16

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  7. Composite structural materials

    Science.gov (United States)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  8. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  9. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  10. Multifunctional Composite Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  11. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  12. A Comparative Evaluation of the Mechanical Properties of Two Calcium Phosphate/Collagen Composite Materials and Their Osteogenic Effects on Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are ideal seed cells for use in bone tissue engineering and they have many advantages over other stem cells. In this study, two kinds of calcium phosphate/collagen composite scaffolds were prepared and their effects on the proliferation and osteogenic differentiation of ADSCs were investigated. The hydroxyapatite/β-tricalcium phosphate (HA/β-TCP composite scaffolds (HTPSs, which have an additional β-tricalcium phosphate, resulted in better proliferation of ADSCs and showed osteogenesis-promoting effects. Therefore, such composite scaffolds, in combination with ADSCs or on their own, would be promising for use in bone regeneration and potential clinical therapy for bone defects.

  13. Composite structural materials

    Science.gov (United States)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  14. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  15. Biotechnology and Composite Materials

    Science.gov (United States)

    1993-04-01

    Three Biotechnology Areas for the Development of Advanced Composite Materials and Structures" " Seashells as a Natural Model to Study Laminated...cell [7]. Application areas of wood to man-made composites could include its cellular microstructure for providing information to the design of novel...respectively however their volumes are equal [11]. Bone utilizes such unique designs as a cellular microstructure (osteons), a fibrous matrix and

  16. Tetracycline nanoparticles loaded calcium sulfate composite beads for periodontal management.

    Science.gov (United States)

    Sindhura Reddy, N; Sowmya, S; Bumgardner, Joel D; Chennazhi, K P; Biswas, Raja; Jayakumar, R

    2014-06-01

    The objective of this study was to fabricate, characterize and evaluate in vitro, an injectable calcium sulfate bone cement beads loaded with an antibiotic nanoformulation, capable of delivering antibiotic locally for the treatment of periodontal disease. Tetracycline nanoparticles (Tet NPs) were prepared using an ionic gelation method and characterized using DLS, SEM, and FTIR to determine size, morphology, stability and chemical interaction of the drug with the polymer. Further, calcium sulfate (CaSO4) control and CaSO4-Tet NP composite beads were prepared and characterized using SEM, FTIR and XRD. The drug release pattern, material properties and antibacterial activity were evaluated. In addition, protein adsorption, cytocompatibility and alkaline phosphatase activity of the CaSO4-Tet NP composite beads in comparison to the CaSO4 control were analyzed. Tet NPs showed a size range of 130±20nm and the entrapment efficiency calculated was 89%. The composite beads showed sustained drug release pattern. Further the drug release data was fitted into various kinetic models wherein the Higuchi model showed higher correlation value (R(2)=0.9279) as compared to other kinetic models. The composite beads showed antibacterial activity against Staphylococcus aureus and Escherichia coli. The presence of Tet NPs in the composite bead didn't alter its cytocompatibility. In addition, the composite beads enhanced the ALP activity of hPDL cells. The antibacterial and cytocompatible CaSO4-Tet NP composite beads could be beneficial in periodontal management to reduce the bacterial load at the infection site. Tet NPs would deliver antibiotic locally at the infection site and the calcium sulfate cement, would itself facilitate tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George

    2013-01-01

    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  18. Aerogel/polymer composite materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  19. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.

    Science.gov (United States)

    Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mechanical behavior of a composite interface: Calcium-silicate-hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Palkovic, Steven D.; Moeini, Sina; Büyüköztürk, Oral, E-mail: obuyuk@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Yip, Sidney [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-07-21

    The generalized stacking fault (GSF) is a conceptual procedure historically used to assess shear behavior of defect-free crystalline structures through molecular dynamics or density functional theory simulations. We apply the GSF technique to the spatially and chemically complex quasi-layered structure of calcium-silicate-hydrates (C-S-H), the fundamental nanoscale binder within cementitious materials. A failure plane is enforced to calculate the shear traction-displacement response along a composite interface containing highly confined water molecules, hydroxyl groups, and calcium ions. GSF simulations are compared with affine (homogeneous) shear simulations, which allow strain to localize naturally in response to the local atomic environment. Comparison of strength and deformation behavior for the two loading methods shows the composite interface controls bulk shear deformation. Both models indicate the maximum shear strength of C-S-H exhibits a normal-stress dependency typical of cohesive-frictional materials. These findings suggest the applicability of GSF techniques to inhomogeneous structures and bonding environments, including other layered systems such as biological materials containing organic and inorganic interfaces.

  1. Effect of nutrient calcium on the cell wall composition and ...

    African Journals Online (AJOL)

    The effect of calcium in the nutrient medium on kikuyu grass (Pennisetum clandestinum Hochst), grown in a solution culture, was investigated. Calcium had no effect on the lignin content of leaf material, but decreased the lignin content per unit stem cell wall. Calcium appeared to have no significant effect on either the ...

  2. Composite materials processing, applications, characterizations

    CERN Document Server

    2017-01-01

    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  3. Processing composite materials

    Science.gov (United States)

    Baucom, R. M.

    1982-01-01

    The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

  4. Vibrational Damping of Composite Materials

    OpenAIRE

    Biggerstaff, Janet M.

    2006-01-01

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  5. A Novel Synthesis Method of Porous Calcium Silicate Hydrate Based on the Calcium Oxide/Polyethylene Glycol Composites

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2013-01-01

    Full Text Available This paper proposed a novel method to prepare porous calcium silicate hydrate (CSH based on the calcium oxide/polyethylene glycol (CaO/PEG2000 composites as the calcium materials. The porosity formation mechanism was revealed via X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, Brunauer-Emmett-Teller (BET, and Fourier transformed infrared spectroscopy (FT-IR. The reactivity of silica materials (SiO2 enhanced by increasing pH value. Ca2+ could not sustain release from CaO/PEG2000 and reacted with caused by silica to form CSH until the hydrothermal temperature reached to 170°C, avoiding the hardly dissolved intermediates formation efficiently. The as-prepared CSH, due to the large specific surface areas, exhibited excellent release capability of Ca2+ and OH−. This porous CSH has potential application in reducing the negative environmental effects of continual natural phosphate resource depletion.

  6. Calcium silicate hydrates: Solid and liquid phase composition

    OpenAIRE

    Lothenbach Barbara; Nonat André

    2015-01-01

    © 2015 Elsevier Ltd. This paper presents a review on the relationship between the composition the structure and the solution in which calcium silicate hydrate (C S H) is equilibrated. The silica chain length in C S H increases with the silicon concentration and the calcium content in the interlayer space with the calcium concentrations. Sodium and potassium are taken up in the interlayer space preferentially at low calcium concentrations and thus by low Ca/Si C S H. Aluminium uptake in C S H ...

  7. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites

    Directory of Open Access Journals (Sweden)

    Drago Skrtic

    2009-11-01

    Full Text Available Our studies of amorphous calcium phosphate (ACP-based materials over the last decade have yielded bioactive polymeric composites capable of protecting teeth from demineralization or even regenerating lost tooth mineral. The anti-cariogenic/remineralizing potential of these ACP composites originates from their propensity, when exposed to the oral environment, to release in a sustained manner sufficient levels of mineral-forming calcium and phosphate ions to promote formation of stable apatitic tooth mineral. However, the less than optimal ACP filler/resin matrix cohesion, excessive polymerization shrinkage and water sorption of these experimental materials can adversely affect their physicochemical and mechanical properties, and, ultimately, limit their lifespan. This study demonstrates the effects of chemical structure and composition of the methacrylate monomers used to form the matrix phase of composites on degree of vinyl conversion (DVC and water sorption of both copolymers and composites and the release of mineral ions from the composites. Modification of ACP surface via introducing cations and/or polymers ab initio during filler synthesis failed to yield mechanically improved composites. However, moderate improvement in composite’s mechanical stability without compromising its remineralization potential was achieved by silanization and/or milling of ACP filler. Using ethoxylated bisphenol A dimethacrylate or urethane dimethacrylate as base monomers and adding moderate amounts of hydrophilic 2-hydroxyethyl methacrylate or its isomer ethyl-α-hydroxymethacrylate appears to be a promising route to maximize the remineralizing ability of the filler while maintaining high DVC. Exploration of the structure/composition/property relationships of ACP fillers and polymer matrices is complex but essential for achieving a better understanding of the fundamental mechanisms that govern dissolution/re-precipitation of bioactive ACP fillers, and

  8. Light transmittance and polymerization kinetics of amorphous calcium phosphate composites.

    Science.gov (United States)

    Par, Matej; Marovic, Danijela; Skenderovic, Hrvoje; Gamulin, Ozren; Klaric, Eva; Tarle, Zrinka

    2017-05-01

    This study investigated light transmittance and polymerization kinetics of experimental remineralizing composite materials based on amorphous calcium phosphate (ACP), reinforced with inert fillers. Light-curable composites were composed of Bis-EMA-TEGDMA-HEMA resin and ACP, barium glass, and silica fillers. Additionally, a commercial composite Tetric EvoCeram was used as a reference. Light transmittance was recorded in real-time during curing, and transmittance curves were used to assess polymerization kinetics. To obtain additional information on polymerization kinetics, temperature rise was monitored in real-time during curing and degree of conversion was measured immediately and 24 h post-cure. Light transmittance values of 2-mm thick samples of uncured ACP composites (2.3-2.9 %) were significantly lower than those of the commercial composite (3.8 %). The ACP composites presented a considerable transmittance rise during curing, resulting in post-cure transmittance values similar to or higher than those of the commercial composite (5.5-7.9 vs. 5.4 %). The initial part of light transmittance curves of experimental composites showed a linear rise that lasted for 7-20 s. Linear fitting was performed to obtain a function whose slope was assessed as a measure of polymerization rate. Comparison of transmittance and temperature curves showed that the linear transmittance rise lasted throughout the most part of the pre-vitrification period. The linear rise of light transmittance during curing has not been reported in previous studies and may indicate a unique kinetic behavior, characterized by a long period of nearly constant polymerization rate. The observed kinetic behavior may result in slower development of polymerization shrinkage stress but also inferior mechanical properties.

  9. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  10. Degree of vinyl conversion in experimental amorphous calcium phosphate composites

    Science.gov (United States)

    Tarle, Z.; Knežević, A.; Matošević, D.; Škrtić, D.; Ristić, M.; Prskalo, K.; Musić, S.

    2009-04-01

    An experimental dental composite, based on amorphous calcium phosphate (ACP) with the potential to arrest caries development and regenerate mineral-deficient tooth structures has recently been developed. The aim of this study was to assess the degree of vinyl conversion (DVC) attained in experimental composites based on zirconia-modified ACP. Photo-activated resins were based on ethoxylated bisphenol A dimethacrylate (EBPADMA) [ETHM series with varying EBPADMA/triethylene glycol dimethacrylate (TEGDMA) molar ratios assigned 0.5-ETHM I, 0.85-ETHM II and 1.35-ETHM III], or 2,2-bis[p-(2'-hydroxy-3'-methacryloxypropoxy)phenyl]-propane (Bis-GMA) [BTHZ series]. To asses a possible effect of filler particle size on DVC, composites containing 60 mass % resin and 40 mass % of either milled ACP (mACP; median diameter d m = 0.9 μm) or coarse ACP (cACP; d m = 6.0 μm) were prepared, and irradiated with LED curing unit for 40 s. The DVC was calculated as the % change in the ratio of the integrated peak areas between the aliphatic and aromatic absorption bands determined by Fourier transform infrared spectroscopy (FTIR). The highest DVCs values were attained in mACP-BTHZ, cACP-BTHZ and mACP-ETHM III formulations. DVC of tested ACP composites (on average (76.76 ± 4.43)%) compares well with or exceeds DVCs values reported for the majority of commercial materials.

  11. Calcium content of different compositions of gallstones and pathogenesis of calcium carbonate gallstones.

    Science.gov (United States)

    Yu, Ji-Kuen; Pan, Huichin; Huang, Shing-Moo; Huang, Nan-Lan; Yao, Chung-Chin; Hsiao, Kuang-Ming; Wu, Chew-Wun

    2013-01-01

    Our aim was to investigate the calcium content of different gallstone compositions and the pathogenic mechanisms of calcium carbonate gallstones. Between August 2001 and July 2007, gallstones from 481 patients, including 68 calcium carbonate gallstones, were analyzed for total calcium content. Gallbladder bile samples from 33 cases and six controls were analyzed for pH, carbonate anion level, free-ionized calcium concentration and saturation index for calcium carbonate. Total calcium content averaged 75.6 %, 11.8 %, and 4.2 % for calcium carbonate, calcium bilirubinate and cholesterol gallstones. In 29.4 % of patients, chronic and/or intermittent cystic duct obstructions were caused by polypoid lesions in the neck region and 70.6 % were caused by stones. A total of 82 % of patients had chronic low-grade inflammation of the gallbladder wall and 18.0 % had acute inflammatory exacerbations. In the bile, we found the mean pH, mean carbonate anion, free-ionized calcium concentrations, and mean saturation index for calcium carbonate to be elevated in comparison to controls. From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO(3) from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate. Copyright © 2012. Published by Elsevier B.V.

  12. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald

    2004-01-01

    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  13. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  14. Zirconia / Alumina Composite Foams with Calcium Phosphate Coating

    Directory of Open Access Journals (Sweden)

    Lenka Novotná

    2016-06-01

    Full Text Available In this study, mechanical properties of calcium phosphate foams were enhanced by zirconia/alumina porous cores prepared by polymer replica technique. This technique was chosen to ensure interconnected pores of optimal size for cell migration and attachment. The porosity of ZA cores (50 – 99% was controlled by multistep impregnation process, the size of pore windows was 300 – 500 μm. Sintered ZA cores were impregnated by hydroxyapatite or β-tricalcium phosphate slurry to improve bioactivity. The bone like apatite layer was formed on coatings when immersed in a simulated body fluid. Neither of tested materials was cytotoxic. Thus, the composite foam can be potentially used as a permanent substitute of cancellous bone.

  15. Composite Materials in Overhead Lines

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim

    2009-01-01

    The use of composite materials, e.g. fibreglass materials, in overhead transmission line systems is nothing new. Composite based insulators have been applied to transmission lines for over 30 years, mainly as suspension and post insulators and often as an option for special applications. Also...... towers and recently conductors based on composite materials are available at transmission levels. In this paper it is investigated which composite based solutions are available in connection with complete overhead line systems including insulators, towers and conductors. The components are reviewed...... with respect to solved and persisting known failures/problems of both mechanical and electrical nature. Major challenges related to extensive use of composite materials in an overhead line system are identified, as are possible benefits - both when using standard as well as customised composite components, e...

  16. Strain-Detecting Composite Materials

    Science.gov (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  17. Evaluation of implant calcium-phosphate materials depending on their mineral content

    Directory of Open Access Journals (Sweden)

    I. A. Talashova

    2012-01-01

    Full Text Available Biocompatibility of original implant calcium-phosphate materials was evaluated in the experiment on animals. The methods of radiological electron-probe microanalysis (REMA and light and scan electron microscopy (SEM were used. Studied materials had the properties of biodegradation, osteoinduction and osteoconduction at different extent. The materials with the composite maximally close to the the bone tissue had the greatest grade of biocompatibility.

  18. Vibrational damping of composite materials

    Science.gov (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  19. Reversibly assembled cellular composite materials.

    Science.gov (United States)

    Cheung, Kenneth C; Gershenfeld, Neil

    2013-09-13

    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  20. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  1. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  2. Characterization of set Intermediate Restorative Material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials.

    Science.gov (United States)

    Grech, L; Mallia, B; Camilleri, J

    2013-07-01

    To investigate the composition of materials and leachate of a hydrated prototype cement composed of tricalcium silicate and radiopacifier and compare this to other tricalcium silicate-based cements (Biodentine and Bioaggregate) to assess whether the additives in the proprietary brand cements affect the hydration of the materials, using Intermediate Restorative Material (IRM), a standard root-end filling material as a control. The materials investigated included a prototype-radiopacified tricalcium silicate cement, Biodentine, Bioaggregate and Intermediate Restorative Material (IRM). The pH and calcium ion concentration of the leachate were investigated. The hydrated cements were characterized using scanning electron microscopy (SEM) and X-ray energy dispersive analysis (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). All the cements tested were alkaline. The tricalcium silicate-based cements leached calcium in solution. Scanning electron microscopy of the prototype-radiopacified tricalcium silicate cement, Biodentine and Bioaggregate displayed hydrating cement grains, surrounded by a matrix composed of calcium silicate hydrate and calcium hydroxide. The presence of calcium hydroxide was evident from the XRD plots. FT-IR indicated the occurrence of a poorly crystalline calcium silicate hydrate. Biodentine displayed the presence of calcium carbonate. Bioaggregate incorporated a phosphate-containing phase. IRM consisted of zinc oxide interspersed in an organic matrix. The hydration of prototype-radiopacified tricalcium silicate cement, Biodentine and Bioaggregate resulted in the formation of calcium silicate hydrate and calcium hydroxide, which was leached in solution. The hydrated materials were composed of a cementitous phase that was rich in calcium and silicon and a radiopacifying material. Biodentine included calcium carbonate, and Bioaggregate included silica and calcium phosphate in the powders. IRM was composed of zinc oxide

  3. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic

    Energy Technology Data Exchange (ETDEWEB)

    He, Fupo, E-mail: fphebm@126.com [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Ren, Weiwei [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Tian, Xiumei [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Liu, Wei; Wu, Shanghua [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Chen, Xiaoming, E-mail: xmchenw@126.com [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China)

    2016-07-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4 week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vivo response of CC/PG and biphasic calcium phosphate (BCP) was compared. • CC/PG showed faster in vitro degradation rate compared to BCP. • CC/PG showed less in vivo degradation and bone formation than BCP at week 4. • CC/PG had larger increment of degradation and bone formation than BCP at week 8.

  4. Choosing the optimal Pareto composition of the charge material for the manufacture of composite blanks

    Science.gov (United States)

    Zalazinsky, A. G.; Kryuchkov, D. I.; Nesterenko, A. V.; Titov, V. G.

    2017-12-01

    The results of an experimental study of the mechanical properties of pressed and sintered briquettes consisting of powders obtained from a high-strength VT-22 titanium alloy by plasma spraying with additives of PTM-1 titanium powder obtained by the hydride-calcium method and powder of PV-N70Yu30 nickel-aluminum alloy are presented. The task is set for the choice of an optimal charge material composition of a composite material providing the required mechanical characteristics and cost of semi-finished products and items. Pareto optimal values for the composition of the composite material charge have been obtained.

  5. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  6. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    , and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...... is successfully justified comparing predicted results with experimental data obtained in the HETEK-project on creep, relaxation, and shrinkage of very young concretes cured at a temperature of T = 20^o C and a relative humidity of RH = 100%. The model is also justified comparing predicted creep, shrinkage......, linear-viscoelastic analysis methods are justified from the age of approximately 10 hours.The rheological properties of plain cement paste are determined. These properties are the principal material properties needed in any stress analysis of concrete. Shrinkage (autogeneous or drying) of mortar...

  7. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  8. Composite materials for space applications

    Science.gov (United States)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

    1990-01-01

    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  9. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  10. Dense, finely, grained composite materials

    Science.gov (United States)

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  11. Impact response of composite materials

    Science.gov (United States)

    Tiwari, S. N.; Srinivasan, K.

    1991-01-01

    Composite materials composed of carbon fibers and resin matrices offer great promise in reducing the weight of aerospace structures. However they remain extremely vulnerable to out of plane impact loads, which lead to severe losses in strength and stiffness. The results of an experimental program, undertaken to investigate the low velocity impact damage tolerance of composite materials is presented. The objectives were to identify key neat resin/composite properties that lead to enhancement of composite impact damage tolerance and to find a small scale test that predicts compression after impact properties of panels. Five materials were selected for evaluation. These systems represented different classes of material behavior such as brittle epoxy, modified epoxies, and amorphous and semicrystalling thermoplastics. The influence of fiber properties on the impact performance was also studied in one material, i.e., in polyether ether ketone (PEEK). Several 24 and 48 ply quasi-isotropic and 24 ply orthotropic laminates were examined using an instrumented drop weight impactor. Correlations with post impact compression behavior were made.

  12. Delamination growth in composite materials

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1985-01-01

    Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

  13. Calcium silicate hydrates: Solid and liquid phase composition

    Energy Technology Data Exchange (ETDEWEB)

    Lothenbach, Barbara, E-mail: Barbara.lothenbach@empa.ch [Laboratory Concrete & Construction Chemistry, Empa (Switzerland); Nonat, André [ICB, UMR CNRS 6303 CNRS-Université de Bourgogne, Faculté des Sciences et Techniques, BP47870, 21078 Dijon Cedex (France)

    2015-12-15

    This paper presents a review on the relationship between the composition, the structure and the solution in which calcium silicate hydrate (C–S–H) is equilibrated. The silica chain length in C–S–H increases with the silicon concentration and the calcium content in the interlayer space with the calcium concentrations. Sodium and potassium are taken up in the interlayer space, preferentially at low calcium concentrations and thus by low Ca/Si C–S–H. Aluminium uptake in C–S–H increases strongly at higher aluminium concentrations in the solution. At low Ca/Si, aluminium substitutes silica in the bridging position, at Ca/Si > 1 aluminium is bound in TAH. Recently developed thermodynamic models are closely related to the structure of C–S–H and tobermorite, and able to model not only the solubility and the chemical composition of the C–S–H, but also to predict the mean silica chain length and the uptake of aluminium.

  14. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly decreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  15. Composite Materials: An Educational Need.

    Science.gov (United States)

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  16. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  17. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting.

    Science.gov (United States)

    Zheng, Zeng; Wang, Lianfeng; Jia, Min; Cheng, Lingyu; Yan, Biao

    2017-02-01

    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO3) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO3 particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO3 precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320-722MPa. The microhardness and elastic modulus are around 250HV and 215GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO3 composites can be a potential biomedical metallic materials in the medical field. Copyright © 2016. Published by Elsevier B.V.

  18. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...

  19. Dietary calcium but not elemental calcium from supplements is associated with body composition and obesity in Chinese women.

    Directory of Open Access Journals (Sweden)

    Lina Huang

    Full Text Available OBJECTIVE: We assessed whether dietary calcium intake or calcium supplements associated with body composition and obesity in a Chinese population. METHODS: A cross-sectional survey was performed in a population of 8940, aged 20 to 74 y. 8127 participants responded (90.9%. Height, weight, fat mass (FM, waist circumference (WC and hip circumference were measured. Obesity definition: body mass index (BMI ≥28 kg/m(2 (overall obesity; WC ≥85 cm for men or ≥80 cm for women (abdominal obesity І and waist hip ratio (WHR ≥0.90 for men or ≥0.85 for women (abdominal obesity П. The data on dietary calcium and calcium supplements were collected using food-frequency questionnaire and self-report questionnaire. Multivariate linear and multivariable logistic regressions were used to examine the associations between dietary calcium intake or calcium supplements and body composition and obesity. PRINCIPAL FINDINGS: The average dietary calcium intake of all subjects was 430 mg/d. After adjusting for potential confounding factors, among women only, negative associations were observed between habitual dietary calcium intake and four measures of body composition (β, -0.086, P0.05. Similarly, among both men and women, we did not observe significant associations between calcium supplements and any measures of body composition or abdominal obesity (P>0.05. CONCLUSIONS: Dietary calcium from food rather than elemental calcium from calcium supplements has beneficial effects on the maintenance of body composition and preventing abdominal obesity in Chinese women.

  20. Preparation of hierarchically organized calcium phosphate–organic polymer composites by calcification of hydrogel

    Directory of Open Access Journals (Sweden)

    Kozue Furuichi, Yuya Oaki, Hirofumi Ichimiya, Jun Komotori and Hiroaki Imai

    2006-01-01

    Full Text Available A novel type of calcium phosphate–organic polymer composite having a hierarchical structure was prepared by calcification of a poly(acrylic acid hydrogel. Macroscopically, an organic gel containing phosphate ions was transformed into an opaque solid material by diffusion of calcium ions. We observed the formation of micrometer-scale layered structures consisting of nanoscale crystals of hydroxylapatite (HAp in the opaque products. The laminated architecture resulting from the periodic precipitation of calcium phosphate varied with the reaction conditions, such as the concentrations of the precursor ions and the density of the gel. The nanoscopic structure of HAp crystals was modified by the addition of gelatin to the polymer matrix.

  1. Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements

    Energy Technology Data Exchange (ETDEWEB)

    Sopcak, T., E-mail: tsopcak@imr.saske.sk [Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice (Slovakia); Medvecky, L.; Giretova, M.; Stulajterova, R.; Durisin, J. [Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice (Slovakia); Girman, V. [Institute of Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 04001 Kosice (Slovakia); Faberova, M. [Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice (Slovakia)

    2016-07-15

    The composite cement mixtures were prepared by mixing brushite (B) with, the amorphous hydrated calcium silicate phosphate (CSPH) or annealed calcium silicate phosphate (CSP composed of Si-saturated hydroxyapatite, wollastonite and silica) phases and water as liquid component. The contents of the silicate-phosphate phase in composites were 10.30 and 50 wt%. The significant effect of both the Ca/P ratio and different solubility of calcium silicate phosphate component in starting cement systems on setting time and phase composition of the final composite cements was demonstrated. The compressive strength of the set cements increased with the filler addition and the highest value (~ 48 MPa) exhibited the 50CSP/B cement composite. The final setting times of the composite cements decreased with the CSPH addition from about 25 to 17 min in 50CSHP/B and setting time of CSP/B composites was around 30 min. The higher content of silica in cements caused the precipitation of fine hydroxyapatite particles in the form of nanoneedles or thin plates perpendicularly oriented to sample surface. The analysis of in vitro cement cytotoxicity demonstrated the strong reduction in cytotoxicity of 10CSPH/B composite with time of cultivation (a low cytotoxicity after 9 days of culture) contrary to cements with higher calcium silicate-phosphate content. These results were attributed to the different surface topography of composite substrates and possible stimulation of cell proliferation by the slow continuously release of ions from 10CSPH/B cement. - Highlights: • Ca/P ratio and solubility of calcium silicate-phosphate components affect the self-setting properties of cements. • Strong relationship between the composite in vitro cytotoxicity and surface microtopography was demonstrated. • Plate-like morphology of coarser particles allowed cells to better adhere and proliferate as compared with nanoneedles.

  2. Pulp capping with adhesive resin-based composite vs. calcium hydroxide: a review.

    Science.gov (United States)

    Schuurs, A H; Gruythuysen, R J; Wesselink, P R

    2000-12-01

    The results of some short-term experiments suggest that direct capping of a vital pulp with the modern resin-based composite systems may be as effective as capping with calcium hydroxide. Total cavity etching with 10% phosphoric acid seems to be safe for the exposed pulp, but unless annulled by calcium hydroxide 35% phosphoric acid may be disastrous. For hemostasis and cleaning of the pulp wound both sodium hypochlorite and saline seem suitable, whereas the effectiveness of a 2% chlorhexidine solution is questionable. Although hard-setting calcium hydroxide cements may induce the formation of dentin bridges, they appear not to provide an effective long-term seal against bacterial factors. Within a few years, the majority of mechanically exposed and capped pulps show infection and necrosis due to microleakage of such capping materials and tunnel defects in the dentin bridges. It is unknown whether newer types of resin containing calcium-hydroxide-products will act as a permanent barrier. The cytotoxicity of the resin-based composites and the temperature rise during polymerisation may not be of concern, but microleakage, sensitisation and allergic reactions may pose problems. Based on available data, pulp capping with resin-based composites may be said to be promising, but more and long-term research is mandatory before the method can be recommended.

  3. DELAMINATION ANALYSIS FOR COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    Gigliola Salerno

    2013-06-01

    Full Text Available Composite materials became an advantageous option due high specific strength and stiffness; nowadays the applications grow. Unidirectional fiber composite materials have complexes damage mechanisms; moreover the delamination process is the most important mechanism considering the structural integrity, being important its understanding and evaluation. As a consequence, the main purpose of this work, using previous fracture properties identification, is to simulate numerically delamination process through a finite element code. For that, delamination tests: DCB (Double Cantilever Beam and ENF (End Notched Flexure, which identified critical fracture energies for interface 0/0 and 0/90 in modes I and II. Numerical simulations were run, these based on damage interface model that considers deformation energy and activation force for the delamination inception. Preliminary results show the numerical simulations ability to predict the experimental data.

  4. Asymmetric Dielectric Elastomer Composite Material

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  5. Nanowear Testing of Composite Materials

    Czech Academy of Sciences Publication Activity Database

    Sedláček, R.; Suchý, Tomáš; Šepitka, J.; Lukeš, J.; Sochor, M.; Balík, Karel; Sucharda, Zbyněk; Beneš, J.

    2012-01-01

    Roč. 106, S3 (2012), s.519-s520 ISSN 0009-2770. [Local Mechanical Properties 2011. Olomouc, 09.11.2011-11.11.2011] R&D Projects: GA ČR(CZ) GAP108/10/1457 Institutional research plan: CEZ:AV0Z30460519 Keywords : nanoindentation * wear * mechanical properties Subject RIV: JI - Composite Materials Impact factor: 0.453, year: 2012 http://www.chemicke-listy.cz/docs/full/2012_s3_s495-s522.pdf

  6. Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials

    Directory of Open Access Journals (Sweden)

    Ahmed Salama

    2014-09-01

    Full Text Available Cellulose/calcium phosphate hybrid materials were synthesized via an ionic liquid-assisted route. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis show that, depending on the reaction conditions, cellulose/hydroxyapatite, cellulose/chlorapatite, or cellulose/monetite composites form. Preliminary studies with MC3T3-E1 pre-osteoblasts show that the cells proliferate on the hybrid materials suggesting that the ionic liquid-based process yields materials that are potentially useful as scaffolds for regenerative therapies.

  7. Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials.

    Science.gov (United States)

    Salama, Ahmed; Neumann, Mike; Günter, Christina; Taubert, Andreas

    2014-01-01

    Cellulose/calcium phosphate hybrid materials were synthesized via an ionic liquid-assisted route. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis show that, depending on the reaction conditions, cellulose/hydroxyapatite, cellulose/chlorapatite, or cellulose/monetite composites form. Preliminary studies with MC3T3-E1 pre-osteoblasts show that the cells proliferate on the hybrid materials suggesting that the ionic liquid-based process yields materials that are potentially useful as scaffolds for regenerative therapies.

  8. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic.

    Science.gov (United States)

    He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming

    2016-07-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Improved Silica Aerogel Composite Materials

    Science.gov (United States)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  10. Method of tissue repair using a composite material

    Science.gov (United States)

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  11. Method of tissue repair using a composite material

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O' Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  12. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    Science.gov (United States)

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  13. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  14. Self-lubricating composite materials

    Science.gov (United States)

    Sliney, H. E.

    1980-01-01

    The mechanical properties of two types of self lubricating composites (polymer matrix composites and inorganic composites) are discussed. Specific emphasis is given to the applicability of these composites in the aerospace industry.

  15. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    Science.gov (United States)

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  16. Selective laser sintering of calcium phosphate materials for orthopedic implants

    Science.gov (United States)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  17. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.

    Science.gov (United States)

    Inzana, Jason A; Olvera, Diana; Fuller, Seth M; Kelly, James P; Graeve, Olivia A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2014-04-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1-2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Thin film dielectric composite materials

    Science.gov (United States)

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  19. Polyolefin composites containing a phase change material

    Science.gov (United States)

    Salyer, Ival O.

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  20. Osteogenic activity of cyclodextrin-encapsulated doxycycline in a calcium phosphate PCL and PLGA composite

    Energy Technology Data Exchange (ETDEWEB)

    Trajano, V.C.C.; Costa, K.J.R. [Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais (Brazil); Lanza, C.R.M. [Department of Oral Clinical, Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais (Brazil); Sinisterra, R.D. [Chemistry Department, ICEX, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais (Brazil); Cortés, M.E., E-mail: mecortes@ufmg.br [Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-07-01

    Composites of biodegradable polymers and calcium phosphate are bioactive and flexible, and have been proposed for use in tissue engineering and bone regeneration. When associated with the broad-spectrum antibiotic doxycycline (DOX), they could favor antimicrobial action and enhance the action of osteogenic composites. Composites of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and a bioceramic of biphasic calcium phosphate Osteosynt® (BCP) were loaded with DOX encapsulated in β-cyclodextrin (βCD) and were evaluated for effects on osteoblastic cell cultures. The DOX/βCD composite was prepared with a double mixing method. Osteoblast viability was assessed with methyl tetrazolium (MTT) assays after 1 day, 7 day, and 14 days of composite exposure; alkaline phosphatase (AP) activity and collagen production were evaluated after 7 days and 14 days, and mineral nodule formation after 14 days. Composite structures were evaluated by scanning electron microscopy (SEM). Osteoblasts exposed to the composite containing 25 μg/mL DOX/βCD had increased cell proliferation (p < 0.05) compared to control osteoblast cultures at all experimental time points, reaching a maximum in the second week. AP activity and collagen secretion levels were also elevated in osteoblasts exposed to the DOX/βCD composite (p < 0.05 vs. controls) and reached a maximum after 14 days. These results were corroborated by Von Kossa test results, which showed strong formation of mineralization nodules during the same time period. SEM of the composite material revealed a surface topography with pore sizes suitable for growing osteoblasts. Together, these results suggest that osteoblasts are viable, proliferative, and osteogenic in the presence of a DOX/βCD-containing BCP ceramic composite. - Highlights: • Doxycycline encapsulated in β-cyclodextrin was incorpored into a polycaprolactone - poly(lactic-co-glycolic acid) - calcium phosphate • Composite’s scaffold carrying doxycycline

  1. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    Science.gov (United States)

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  2. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  3. Bioenvironmental Engineering Guide for Composite Materials

    Science.gov (United States)

    2014-03-31

    encountered in the Air Force are glass, boron, carbon/graphite, and aramid (commonly known as Kevlar®). Glass fibers can be bound together by polymer...there are composite materials that blend two or more basic fiber types into a blended hybrid material, such as “carbon- aramid -fiberglass” composite...Only) 2.0 (all forms except graphite fibers ) 5.0 All Other Respirable Composite Materials (i.e., aramid , boron, carbon, or combination

  4. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  5. Process for producing dispersed particulate composite materials

    Science.gov (United States)

    Henager, Jr., Charles H.; Hirth, John P.

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  6. Calcium

    Science.gov (United States)

    ... Turn to calcium-fortified (or "calcium-set") tofu, soy milk, tempeh, soy yogurt, and cooked soybeans (edamame). Calcium-fortified foods. Look for calcium-fortified orange juice, soy or rice milk, breads, and cereal. Beans. You can get decent ...

  7. Composite materials for battery applications

    Science.gov (United States)

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo

    2017-03-14

    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  8. Wave propagation and impact in composite materials

    Science.gov (United States)

    Moon, F. C.

    1975-01-01

    Anisotropic waves in composites are considered, taking into account wave speeds, wave surfaces, flexural waves in orthotropic plates, surface waves, edge waves in plates, and waves in coupled composite plates. Aspects of dispersion in composites are discussed, giving attention to pulse propagation and dispersion, dispersion in rods and plates, dispersion in a layered composite, combined material and structural dispersion, continuum theories for composites, and variational methods for periodic composites. The characteristics of attenuation and scattering processes are examined and a description is given of shock waves and impact problems in composites. A number of experiments are also reported.

  9. Composite structural materials. [fiber reinforced composites for aircraft structures

    Science.gov (United States)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  10. A chemical activity evaluation of two dental calcium silicate-based materials

    Directory of Open Access Journals (Sweden)

    Chalas Renata

    2015-06-01

    Full Text Available Calcium silicate-based materials are interesting products widely used in dentistry. The study was designed to compare the chemical reaction between analyzed two preparates and dentin during cavity lining. In our work, dentinal discs were prepared from human extracted teeth filled with Biodentine and MTA+. The samples were then analyzed by way of SEM, EDS and Raman spectroscopy. The obtained results revealed differences in elemental composition between both materials. Biodentine showed higher activity in contact with dentine. Moreover, the interfacial layer in the tooth filled by Biodentine was wider than that in the tooth filled with MTA+. The applied methods of analysis confirmed that both materials have a bioactive potential which is a promising ability.

  11. Adsorption studies of cadmium ions on alginate-calcium carbonate composite beads

    Science.gov (United States)

    Mahmood, Zahid; Amin, Athar; Zafar, Uzma; Raza, Muhammad Amir; Hafeez, Irfan; Akram, Adnan

    2017-05-01

    Alginate-calcium carbonate composite material was prepared in the form of beads and characterized using Fourier transform infra red (FT-IR) spectroscopy and scanning electron microscope (SEM) techniques. The adsorption of Cd2+ ions was studied through batch experiments. The adsorption parameters such as contact time (120 min), adsorbent dose (1.5 g), initial metal ion concentration(10 mg/L), pH (6) and agitation speed (150 rpm) were optimized at room temperature. Langmuir and Freundlich isotherms were applied to the data and it was noted that the adsorption of Cd2+ ions is better explained by Freundlich model. The kinetic studies showed that the adsorption of Cd2+ ions followed pseudo-first order kinetics. Thermodynamic parameters like ∆ G 0, ∆ H 0 and ∆ S 0 were calculated and on the basis of these values it was established that the adsorption process is feasible and endothermic in nature. It was concluded from the study that the composite material of alginate and calcium carbonate can effectively be used to recover Cd2+ ions from wastewater.

  12. Composite materials and method of making

    Science.gov (United States)

    Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

    2011-05-17

    A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

  13. Chemical composition of the clays as indicator raw material sources

    Directory of Open Access Journals (Sweden)

    Khramchenkova Rezida Kh

    2014-06-01

    Full Text Available The paper presents the results of study on the chemical composition of unglazed pottery from the excavations of the Bulgar fortified settlement site and the clay, selected from the modern deposits of ceramic raw materials located near the medieval settlement sites. Significant differences in macro- and microelement composition of different groups of ceramics have been revealed. The difference in the macroelemental composition is largely determined by the ceramic fabric recipe. Thus, the high calcium content corresponds to the addition of river shells, the high content of silicon results from sand addition. A more interesting picture has been revealed in the course of studies of the so-called “trace elements” (microelements. Nine groups of ceramics with different elemental set have been distinguished. The first two groups consist of imported ceramics; other groups have demonstrated a rather pronounced elemental composition. The most notable variations are observed in chromium, vanadium and nickel content. Similar microelement composition variety has been observed in clays from deposits of different localization, while the concentration of the mentioned elements in a variety of clays also differs considerably. Therefore, marker elements typical of different clays have been identified. A comparative analysis of the data obtained for clay raw materials and ceramics has been conducted. The results demonstrate the potential of studying the elemental composition in order to determine the localization of the raw material sources for ceramic production.

  14. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  15. Structure and properties of hybrid composite materials

    Science.gov (United States)

    Chernyshova, T. A.; Kobeleva, L. I.; Bolotova, L. K.; Katin, I. V.

    2013-03-01

    The structure and interfacial interaction are studied in the hybrid aluminum-matrix composite materials fabricated by reactive casting combined with mechanical mixing of fillers with a metallic melt. The following types of hardening are considered: hardening by ceramic particles and by the phases formed as isolated inclusions or coatings on ceramic particles during in situ reactions. The hardness and tribological properties of the composite materials as functions of their compositions are discussed.

  16. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.

    Science.gov (United States)

    Mehrali, Mehdi; Moghaddam, Ehsan; Shirazi, Seyed Farid Seyed; Baradaran, Saeid; Mehrali, Mohammad; Latibari, Sara Tahan; Metselaar, Hendrik Simon Cornelis; Kadri, Nahrizul Adib; Zandi, Keivan; Osman, Noor Azuan Abu

    2014-03-26

    Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.

  17. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  18. MICROHARDNESS OF BULK-FILL COMPOSITE MATERIALS.

    Science.gov (United States)

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-12-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fi l (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and x-tra base (XB), and conventional control material X-Flow (XF). Composite samples (n=5) were polymerized for 20 s with Bluephase G2 curing unit. Vickers hardness was used to determine microhardness of each material at the surface, and at 2-mm and 4-mm depth. GSO on average recorded significantly higher microhardness values than bulk-fill materials (pcomposite XF revealed similar microhardness values as SDR, but significantly lower than XB (pmaterials was lower than microhardness of the conventional composite material (GSO). Surface microhardness of low-viscosity materials was generally even lower. The microhardness of all tested materials at 4 mm was not different from their surface values. However, additional capping layer was a necessity for low-viscosity bulk-fill materials due to their low microhardness.

  19. Strengthening bridges using composite materials.

    Science.gov (United States)

    1998-03-01

    The objective of this research project is to outline methodologies for using Fiber Reinforced Polymer (FRP) composites to strengthen and rehabilitate reinforced concrete bridge elements. : Infrastructure deterioration and bridge strengthening techniq...

  20. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  1. Polymer Matrix Composite Material Oxygen Compatibility

    Science.gov (United States)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  2. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  3. Biochemical and microbiological characteristics of in situ biofilm formed on materials containing fluoride or amorphous calcium phosphate.

    Science.gov (United States)

    Ferreira, Lilian; Pedrini, Denise; Okamoto, Ana Cláudia; Jardim Júnior, Elerson Gaetti; Henriques, Tássia Araújo; Cannon, Mark; Delbem, Alberto Carlos Botazzo

    2013-08-01

    To evaluate the biochemical and microbiological characteristics of in situ biofilm formed on materials that release fluoride (F-) or calcium (Ca++) and phosphate (Pi). This study comprised an in situ and in vitro experiment, utilizing three materials [Auralay XF and Fuji IX GP, containing fluoride, and Aegis containing amorphous calcium phosphate (ACP)] and bovine dental enamel slabs. For the in situ: 10 volunteers wore palatal devices, each containing four material specimens or enamel slabs that were treated with 20% sucrose solution. The biofilm had pH measurements on Day 7 and the composition was analyzed on Day 8 by assessing the following: F-, Ca++, Pi and insoluble extracellular polysaccharides (EPS) concentrations, and then identification of the microbiota. For the in vitro: materials/enamel were subjected to a 7-day pH-cycling regimen to determine F, Ca++ and Pi release. The biofilm formed on F(-)-releasing materials was richer in F, Ca++ and Pi and had lower mutans streptococci counts than enamel biofilm. The biofilm on the ACP-containing material exhibited similar Ca++ and Pi concentrations to biofilm on F(-)-releasing materials. The materials showed buffering action compared with enamel. Biochemical and microbiological characteristics showed a less cariogenic biofilm on materials containing fluoride or amorphous calcium phosphate.

  4. Combinatorial synthesis of inorganic or composite materials

    Science.gov (United States)

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Natural Composite Systems for Bioinspired Materials.

    Science.gov (United States)

    Frezzo, Joseph A; Montclare, Jin Kim

    2016-01-01

    From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.

  6. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  7. Effects of the Addition of Sodium Alginate and the Concentration of Calcium Chloride on the Properties of Composite Nonwoven Fabrics

    OpenAIRE

    Lou Ching-Wen; Lee Mong-Chuan; Chen Chih-Kuang; Wen Shih-Peng; Jian Bai-Chen; Lin Jia-Horng

    2016-01-01

    Nonwoven fabrics have merits, and for example, they can be simply and quickly processed with a variety of materials and an easily changeable manufacturing process. This study aims to examine the influences of the addition of sodium alginate (SA) and the concentration of calcium chloride (CaCl2) on the properties of the composite nonwoven fabrics. Chitosan (CS) micro-particles and SA solution are cross-linked with CaCl2 with various concentrations, combined with farir heat preservative staples...

  8. Fibrous and textile materials for composite applications

    CERN Document Server

    Fangueiro, Raul

    2016-01-01

    This book focuses on the fibers and textiles used in composite materials. It presents both existing technologies currently used in commercial applications and the latest advanced research and developments. It also discusses the different fiber forms and architectures, such as short fibers, unidirectional tows, directionally oriented structures or advanced 2D- and 3D-textile structures that are used in composite materials. In addition, it examines various synthetic, natural and metallic fibers that are used to reinforce polymeric, cementitious and metallic matrices, as well as fiber properties, special functionalities, manufacturing processes, and composite processing and properties. Two entire chapters are dedicated to advanced nanofiber and nanotube reinforced composite materials. The book goes on to highlight different surface treatments and finishes that are applied to improve fiber/matrix interfaces and other essential composite properties. Although a great deal of information about fibers and textile str...

  9. Optimal structural design of biomorphic composite materials

    OpenAIRE

    Hoppe, Ronald H. W. (Prof. Dr.)

    2003-01-01

    Optimal structural design of biomorphic composite materials / R. H. W. Hoppe, S. Petrova. - In: Numerical methods and applications / Ivan Dimov ... - Berlin u.a. : Springer, 2003. - S. 479-487. - (Lecture notes in computer science ; 2542)

  10. Cryogenic Cycling Behavior of Polymeric Composite Materials

    National Research Council Canada - National Science Library

    Seferis, James

    2002-01-01

    The basis of this research was an exploration of the fundamental phenomena that determine the response of fiber-reinforced composite materials to thermal cycling between cryogenic and ambient temperatures...

  11. Influence of calcium content of biomass-based materials on simultaneous NOx and SO{sub 2} reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sarma V. Pisupati; Sumeet Bhalla [Pennsylvania State University, University Park, PA (United States). Energy and Mineral Engineering Department

    2008-04-01

    Pyrolysis products of biomass (bio-oils) have been shown to cause a reduction in NOx emissions when used as reburn fuels in combustion systems. When these bio-oils are processed with lime, calcium is ion-exchanged and the product is called BioLime. BioLime, when introduced into a combustion chamber, pyrolyzes and produces volatile products that reduce NOx emissions through reburn mechanisms. Simultaneously, calcium reacts with SO{sub 2} to form calcium sulfate and thus reduces SO{sub 2} emissions. This paper reports the characterization of composition and pyrolysis behavior of two BioLime products and the influence of feedstock on pyrolysis products. Thermogravimetric analysis (TGA) and {sup 13}C-CP/MAS NMR techniques were used to study the composition of two biomass-based materials. The composition of the pyrolysis products of BioLime was determined in a laboratory scale flow reactor. The effect of BioLime composition on NOx and SO{sub 2} reduction performance was evaluated in a 146.5 kW pilot-scale, down fired combustor (DFC). The effect of pyrolysis gas composition on NOx reduction is discussed. The TGA weight loss curves of BioLime samples in an inert atmosphere showed two distinct peaks corresponding to the decomposition of light and heavy components of the BioLime and a third distinct peak corresponding to secondary thermal decomposition of char. The study also showed that BioLime sample with lower content of residual lignin derivatives and lower calcium content produced more volatile compounds upon pyrolysis in the combustor and achieved higher NOx reduction (15%). Higher yields of pyrolysis gases increased the NO reduction potential of BioLime through homogeneous gas phase reactions. Calcium in BioLime samples effectively reduced SO{sub 2} emissions (60-85%). 36 refs., 6 figs., 3 tabs.

  12. Composite materials with improved phyllosilicate dispersion

    Science.gov (United States)

    Chaiko, David J.

    2004-09-14

    The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

  13. Composite Material Hazard Assessment at Crash Sites

    Science.gov (United States)

    2015-01-01

    and optical microscopy. Other samples utilized optical microscopy on 0.8-µm MCE filters in open-face cassettes. Technicians collected gravimetric...instruments (DRIs) measured particle and aerosol mass concentrations. A condensation particle counter and optical particle counter were the DRIs measured... fiberglass is one specific type of composite material, it is the only type of composite material for which there is a standard measured in f/cc. All

  14. Method to fabricate layered material compositions

    Science.gov (United States)

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  15. Composite materials inspection. [ultrasonic vibration holographic NDT

    Science.gov (United States)

    Erf, R. K.

    1974-01-01

    Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

  16. Tailored sequential drug release from bilayered calcium sulfate composites

    Energy Technology Data Exchange (ETDEWEB)

    Orellana, Bryan R.; Puleo, David A., E-mail: puleo@uky.edu

    2014-10-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  17. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.

    Science.gov (United States)

    Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin

    2015-01-01

    The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Calcium

    Science.gov (United States)

    ... and blood vessels contract and expand, to secrete hormones and enzymes and to send messages through the nervous system. It is important to get plenty of calcium in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with ...

  19. Oxygen Compatibility Testing of Composite Materials

    Science.gov (United States)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

    2000-01-01

    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  20. Automotive applications for advanced composite materials

    Science.gov (United States)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  1. Fabrication and materials properties of high-density polyethylene (HDPE)/biphasic calcium phosphate (BCP) hybrid bone plates

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sun Young; Youn, Min Ho; Lim, Youn Mook; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    Biphasic calcium phosphate-reinforced high-density polyethylene (BCP/HDPE) hybrid composite is a new orthopedic biomaterial, which was made to simulate a natural bone composition. Calcium phosphate systems and HDPE hybrid composites have been used in biomedical applications without any inflammatory response. Differences in natural bone of both materials have motivated the use of coupling agents to improve their interfacial interfacial interactions. The composites were prepared using medical grade BCP powder and granular polyethylene. This material was produced by replacing the mineral component and collagen soft tissue of the bone with BCP and HDPE, respectively. As expected, increased volume fraction of either reinforcement type over 0 {approx} 50 vol.% resulted in a increased Vickers hardness and Young's modulus. Thus, BCP particle-reinforced HDPE composites possessed improved material and mechanical properties. BCP particles-reinforced composites were anisotropic due to an alignment of the particles in the matrix during a processing. On the other hand, bending and tensile strength was dramatically changed in the matrix. To change the material and mechanical properties of HDPE/BCP composites, the process of a blending was used, and its effect on the microstructure and mechanical proprieties of HDPE/BCP composites were investigated by means of FT-IR/ATR spectroscopy, XRD, FE-SEM, Vickers Hardness Testing Machine, Universal Testing Machine, Mercury Porosimeter and Ultrasonic Flaw Detector at room temperature. For the evaluation of the cell viability and proliferation onto the external surface of HDPE/BCP hybrid plates with a HaCaT cell line, which is a multipotent cell line able to differentiate towards different phenotypes under the action of biological factors, has been evaluated with in vitro studies and quantified by colormetric assays. These findings indicate that the HDPE/BCP hybrid plates are biocompatible and non-toxic.

  2. Current developments in composite materials and techniques.

    Science.gov (United States)

    Dietschi, D; Dietschi, J M

    1996-09-01

    General reduction of dental caries and patient interest in dental aesthetics have resulted in the development of new restorative materials and techniques. Composite materials and adhesive techniques have become the foundation of modern restorative dentistry. Mechanical performance, wear resistance, and aesthetic potential of composite resins have been significantly improved, and the material is now used in cases ranging from the restoration of initial decays and cosmetic corrections to the veneering in extended prosthetic rehabilitation. Polymerization shrinkage of the resin matrix remains a challenge and still imposes limitations in the application of direct techniques. The learning objective of this article is to review the most significant advances of composite materials and the importance of utilizing the available treatment options with discretion, selecting those which preserve the tooth structure and require the least maintenance.

  3. Nonlinear optical properties of composite materials

    Science.gov (United States)

    Haus, Joseph W.; Inguva, Ramarao

    1991-01-01

    The optical properties of a new class of composite nonlinear materials composed of coated grains, such as cadmium sulfide with a silver coating, are examined. These materials exhibit intrinsic optical bistability and resonantly enhanced conjugate reflectivity. The threshold for intrinsic optical bistability is low enough for practical applications in optical communications and optical computing. Some problems associated with the fabrication of these materials are addressed. Based on preliminary results, switching times are expected to be in the subpicosecond range.

  4. Color stability of different composite resin materials.

    Science.gov (United States)

    Falkensammer, Frank; Arnetzl, Gerwin Vincent; Wildburger, Angelika; Freudenthaler, Josef

    2013-06-01

    Data are needed to better predict the color stability of current composite resin materials. The purpose of this study was to evaluate the impact of different storage solutions on the color stability of different composite resin materials. Different restorative and adhesive composite resin specimens (dual-polymerizing self-adhesive resin cement, autopolymerizing resin-based composite resin, dual-polymerizing resin-based composite resin, nanohybrid composite resin, and microhybrid composite resin) were fabricated and stored in red wine, black tea, chlorhexidine, sodium fluoride, tea tree oil, or distilled water for 4 weeks at 37°C. Color parameters were measured with a colorimeter before and after storage. Total color differences and specific coordinate differences were expressed as ΔE, ΔL, Δa, and Δb. A 2-way and 1-way analysis of variance (ANOVA) with Bonferroni adjustment for multiple comparisons were applied for statistical calculations (α=.05). Red wine caused the most severe discoloration (ΔE >10), followed by black tea with perceptible (ΔE >2.6) to clinically unacceptable discoloration (ΔE >5.5). Colored mouth rinses discolored the materials to a lesser extent with clinically acceptable values. Dual-polymerizing resin adhesives showed a higher amount of discoloration. Current restorative and adhesive composite resin materials discolor over time under the influence of different storage solutions. The composition related to the polymerizing mode seemed to be a causative factor. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. Application of poly(trimethylene carbonate) and calcium phosphate composite biomaterials in oral and maxillofacial surgery

    NARCIS (Netherlands)

    Zeng, Ni

    2017-01-01

    This thesis has been dedicated to explore the feasibilities of applying composite biomaterials to bone reconstruction in jawbones and skulls. The composite biomaterials used in our studies are composed of a polymer matrix and various calcium phosphate particles. The polymer matrix is made of a

  6. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  7. Calcium

    Science.gov (United States)

    ... from dietary supplements are linked to a greater risk of kidney stones, especially among older adults. But calcium from foods does not appear to cause kidney stones. For most people, other factors (such as not drinking enough fluids) probably have ...

  8. Impact testing of textile composite materials

    Science.gov (United States)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  9. Health monitoring method for composite materials

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  10. The Effect of Bisphasic Calcium Phosphate Block Bone Graft Materials with Polysaccharides on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Hyun-Sang Yoo

    2017-01-01

    Full Text Available In this study, bisphasic calcium phosphate (BCP and two types of polysaccharide, carboxymethyl cellulose (CMC and hyaluronic acid (HyA, were used to fabricate composite block bone grafts, and their physical and biological features and performances were compared and evaluated in vitro and in vivo. Specimens of the following were prepared as 6 mm diameter, 2 mm thick discs; BPC mixed with CMC (the BCP/CMC group, BCP mixed with crosslinked CMC (the BCP/c-CMC group and BCP mixed with HyA (the BCP/HyA group and a control group (specimens were prepared using particle type BCP. A scanning electron microscope study, a compressive strength analysis, and a cytotoxicity assessment were conducted. Graft materials were implanted in each of four circular defects of 6 mm diameter in calvarial bone in seven rabbits. Animals were sacrificed after four weeks for micro-CT and histomorphometric analyses, and the findings obtained were used to calculate new bone volumes (mm3 and area percentages (%. It was found that these two values were significantly higher in the BCP/c-CMC group than in the other three groups (p < 0.05. Within the limitations of this study, BCP composite block bone graft material incorporating crosslinked CMC has potential utility when bone augmentation is needed.

  11. Bioactivity and biomineralization ability of calcium silicate-based pulp-capping materials after subcutaneous implantation.

    Science.gov (United States)

    Hinata, G; Yoshiba, K; Han, L; Edanami, N; Yoshiba, N; Okiji, T

    2017-06-26

    To evaluate the abilities of three calcium silicate-based pulp-capping materials (ProRoot MTA, TheraCal LC and a prototype tricalcium silicate cement) to produce apatite-like precipitates after being subcutaneously implanted into rats. Polytetrafluoroethylene tubes containing each material were subcutaneously implanted into the backs of Wistar rats. At 7, 14 and 28 days post-implantation, the implants were removed together with the surrounding connective tissue, and fixed in 2.5% glutaraldehyde in cacodylate buffer. The chemical compositions of the surface precipitates formed on the implants were analysed with scanning electron microscopy-electron probe microanalysis (SEM-EPMA). The distributions of calcium (Ca) and phosphorus (P) at the material-tissue interface were also analysed with SEM-EPMA. Comparisons of the thicknesses of the Ca- and P-rich areas were performed using the Friedman test followed by Scheffe's test at a significant level of 5%. All three materials produced apatite-like surface precipitates containing Ca and P. For each material, elemental mapping detected a region of connective tissue in which the concentrations of Ca and P were higher than those in the surrounding connective tissue. The thickness of this Ca- and P-rich region exhibited the following pattern: ProRoot MTA > prototype tricalcium silicate cement ≥ TheraCal LC. ProRoot MTA had a significantly thicker layer of Ca and P than the other materials at all time-points (P < 0.05), and a significant difference was detected between the prototype cement and TheraCal LC at 28 days (P < 0.05). After being subcutaneously implanted, all of the materials produced Ca- and P-containing surface precipitates and a Ca- and P-rich layer within the surrounding tissue. The thickness of the Ca- and P-rich layer of ProRoot MTA was significantly thicker than that of the other materials. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Amorphous titania/carbon composite electrode materials

    Science.gov (United States)

    Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.

    2017-05-09

    An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.

  13. Method of making carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  14. Ultrasonic Characterization of Material Properties of Composite Materials,

    Science.gov (United States)

    1986-07-01

    ferrltschen GuOelsen-werkstoffen," Zeltschrlft Materials and Composites at Low Temperatures, Plenum f’ur Metallkunde , Vol. 74, 1983, pp. 265-27r. Press...Arbitrary Metallkunde , Vol. 73, 1982, pp. 69-71. Configurations in Three Dimensions," Journal of Mathe- 7. hes, C.G. and Spurling, R.A., "Fiber-matrix

  15. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance.

    Science.gov (United States)

    Urquia Edreira, Eva R; Wolke, Joop G C; Aldosari, Abdullah AlFarraj; Al-Johany, Sulieman S; Anil, Sukumaran; Jansen, John A; van den Beucken, Jeroen J J P

    2015-01-01

    Calcium phosphate (CaP) ceramic coatings have been used to enhance the biocompatibility and osteoconductive properties of metallic implants. The chemical composition of these ceramic coatings is an important parameter, which can influence the final bone performance of the implant. In this study, the effect of phase composition of CaP-sputtered coatings was investigated on in vitro dissolution behavior and in vivo bone response. Coatings were prepared by a radio frequency (RF) magnetron sputtering technique; three types of CaP target materials were used to obtain coatings with different stoichiometry and calcium to phosphate ratios (hydroxyapatite (HA), α-tricalciumphosphate (α-TCP), and tetracalciumphosphate (TTCP)) were compared with non-coated titanium controls. The applied ceramic coatings were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma optical emission spectroscopy. The in vitro dissolution/precipitation of the CaP coatings was evaluated using immersion tests in simulated body fluid (SBF). To mimic the in vivo situation, identical CaP coatings were also evaluated in a femoral condyle rabbit model. TCPH and TTCPH showed morphological changes during 4-week immersion in SBF. The results of bone implant contact (BIC) and peri-implant bone volume (BV) showed a similar response for all experimental coatings. An apparent increase in tartrate resistant acid phosphatase (TRAP) positive staining was observed in the peri-implant region with decreasing coating stability. In conclusion, the experimental groups showed different coating properties when tested in vitro and an apparent increase in bone remodeling with increasing coating dissolution in vivo. © 2014 Wiley Periodicals, Inc.

  16. Controlled adsorption and release onto calcium phosphates materials and drug delivery applications

    Directory of Open Access Journals (Sweden)

    Barroug A.

    2013-11-01

    Full Text Available The adsorptive properties of synthetic calcium phosphates analogous to bone mineral were examined with respect to cisplatin and risedronate, two biological active drugs; the uptake and release experiments were carried out under various conditions in order to understand the basic mechanism of interaction. The effect of temperature and solution composition were highlighted and discussed. The adsorption results obtained for the therapeutic agents demonstrated that, depending on the conditions investigated (nature of the sorbent, concentration range, ionic composition, temperature…, the shape of the isotherms is of Freundlich or Langmuir type. The adsorption is described as an ion-exchange process in dilute solutions, while the interaction appears to be reactive for concentrated solutions (dissolution of mineral ions from the apatite substrate and formation of soluble calcium complex and/or precipitation of calcium salts involving sorbate molecules. The information gained on the surface reactivity of calcium phosphate were exploited to associate an antibiotic to calcium phosphate cements for drug delivery applications. The specimens were obtained by combination of calcium phosphate and calcium carbonate powders upon mixing with water. The physicochemical properties of the paste were altered by the drug loading method (in the liquid or solid phase. Thus, a dose-dependent effect was noticed for the paste setting time, hardening and the release process.

  17. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  18. ECODESIGN CRITERIA FOR COMPOSITE MATERIALS AND ...

    African Journals Online (AJOL)

    INTRODUCTION. Composite materials have found an extensive use in many applications within the broad fields of aerospace & automobile, marine construction, ... This is due to their significant and attractive advantages in terms of high strength and stiffness coupled with mass savings, and other tremendous properties that ...

  19. Raw materials for wood-polymer composites.

    Science.gov (United States)

    Craig Clemons

    2008-01-01

    To understand wood-plastic composites (WPCs) adequately, we must first understand the two main constituents. Though both are polymer based, they are very different in origin, structure, and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. In WPCs, a polymer matrix forms the continuous phase...

  20. Preliminary Validation of Composite Material Constitutive Characterization

    Science.gov (United States)

    John G. Michopoulos; Athanasios lliopoulos; John C. Hermanson; Adrian C. Orifici; Rodney S. Thomson

    2012-01-01

    This paper is describing the preliminary results of an effort to validate a methodology developed for composite material constitutive characterization. This methodology involves using massive amounts of data produced from multiaxially tested coupons via a 6-DoF robotic system called NRL66.3 developed at the Naval Research Laboratory. The testing is followed by...

  1. Composition, mineral safety index, calcium, zinc and phytate ...

    African Journals Online (AJOL)

    The proximate, mineral and amino acid contents and calculated values of calcium/phytate Ca/Phy, Zn/Phy, [Ca][Phy]/[Zn], Ca/P, Na/K, Ca/Mg, [K/(Ca+Mg)], mineral safety index (MSI) for Na, Mg, P, Ca, Fe and Zn, and the amino acid scores were determined in four fast-foods consumed in Nigeria. The fast-foods were meat pie ...

  2. Test Plan for Composite Hydrogen Getter Materials

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, R.R.

    2000-11-09

    The intent of this test plan is to provide details of the Savannah River Technology Center (SRTC) effort to evaluate composite getter materials for eventual use in expanding the wattage limits for transportation of contact-handled transuranic waste (CH-TRU). This effort is funded by the Mixed Waste Focus Area (MWFA) under Technical Task Plan (TTP) SR-1-9-MW-45 and is the result of a competitive process initiated by a MWFA request for proposals. In response to this request, SRTC presented data on several composite getter materials that demonstrated good potential for application in transportation of transuranic wastes. The tests outlined in the SRTC proposal for composite getter materials should demonstrate compliance with functional requirements provided by the MWFA in a Statement of Work (SOW) which accompanied the request for proposals. Completion of Phase 1 testing, as defined in the TTP, should provide sufficient data to determine if composite getters should progress to Phase s 2 and 3. These test results will provide support for future safety reviews as part of the Transuranic Package Transporter-II (TRUPACT-II) certification process to utilize getter technology. This test plan provides details of the test descriptions, test objectives, required measurements, data quality objectives, data analysis, and schedule information relevant to Phase 1 of the TTP. The results of these tests are expected to help identify any potential weaknesses in the use of composite getter for transportation of CH-TRU wastes. Where a potential weakness is identified, this will be addressed as part of Phase 2 of the proposed effort. It is also important to recognize that these tests are focused on the individual composite getter materials and not the engineered system that would eventually be used in a TRUPACT-II. However, these test results will be very helpful in establishing the requirements for the design of a TRUPACT-II getter system that is included as part of the propo sed Phase

  3. Composite materials for wind power turbine blades

    DEFF Research Database (Denmark)

    Brøndsted, P.; Lilholt, H.; Lystrup, Aa.

    2005-01-01

    Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood...... procedures for documentation of properties are reviewed, and fatigue loading histories are discussed, together with methods for data handling and statistical analysis of (large) amounts of test data. Future challenges for materials in the field of wind turbines are presented, with a focus on thermoplastic...... composites, new structural materials concepts, new structural design aspects, structural health monitoring, and the coming trends and markets for wind energy....

  4. Properties and Osteogenicity of Two Calcium Sulfate Materials with Micro or Nano Morphology.

    Science.gov (United States)

    Zhang, Chunli; Li, Zhonghai; Li, Qihong; Han, Liwei; Zhu, Jialiang; Bai, Yulong; Ge, Cheng; Zhao, Yantao; Zhong, Hongbin

    2016-03-01

    Calcium sulfate dihydrate (CaSO4 x 2H2O, CSD) was widely used as the artificial bone graft. In this study, two kinds of CSD materials were characterized with XRD, TG/DTA, FT-IR, and SEM. They were both composed of CSD. Spherical shape particles were observed for nano-CSD with diameters of 52-300 nm. The micro-CSD were thin sheet particles with dimensions of 5-10 μm. At 56 days post-implantation in vivo, nano-CSD had good tissue compatibility. A frequently used bioactive material DBM, which was the combination of nano-CSD (nano-CSD-DBM) and micro-CSD (micro-CSD-DBM) in a 1:1 weight ratio separately. Composite materials were implanted in intramuscular pockets in nude mouse model. New bone mineralization could be both observed in the surgery site. Collagen I was also widely distributed by immunohistochemistry assay. And new bone area of nano-CSD-DBM was 28 ± 4.6% at 4 weeks post-operation. But new bone area of micro-CSD-DBM was 16 ± 3.7% (less than nano-CSD-DBM). Nano-CSD showed increased degradation rate with obvious anginogenicity. And nano-CSD-DBM showed more excellent bone induction property as bone substitute implant.

  5. Tailored material properties using textile composites

    Science.gov (United States)

    Pastore, C. M.

    2017-10-01

    Lightweighting is essential for the reduction of energy consumption in transportation. The most common approach is through the application of high specific strength and stiffness materials, such as composites and high performance aluminum alloys. One of the challenges associated with the use of advanced materials is the high cost. This paper explores the opportunities of using hybrid composites (glass and carbon, for example) with selective fiber placement to optimize the weight subject to price constraints for given components. Considering the example of a hat-section for hood reinforcement, different material configurations were modeled and developed. The required thickness of the hat section to meet the same bending stiffness as an all carbon composite beam was calculated. It was shown that selective placement of fiber around the highest moments results in a weight savings of around 14% compared to a uniformly blended hybrid with the same total material configuration. From this it is possible to estimate the materials cost of the configurations as well as the weight of the component. To determine which is best it is necessary to find an exchange constant that converts weight into cost – the penalty of carrying the extra weight. The value of this exchange constant will depend on the particular application.

  6. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingwei, E-mail: ywsong@imr.ac.cn; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L{sup -1} nicotinic acid (NA) solution, named as vitamin B{sub 3}, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings. - Highlights: Black-Right-Pointing-Pointer NA/calcium phosphate composite coating is prepared to protect Mg-3Zn alloy implant. Black-Right-Pointing-Pointer Nicotinic acid (vitamin B{sub 3}) is available to obtain a protective bottom film. Black-Right-Pointing-Pointer Ultrasonic agitation greatly improves the compactness of calcium phosphate coating. Black-Right-Pointing-Pointer The composite coating can reduce the biodegradation rate of Mg-3Zn twenty times. Black-Right-Pointing-Pointer The composite coating is biodegraded by the dissolution of flakes into chippings.

  7. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... by XRD analysis. The thermal stability and compressive strength of the calcium silicates are seriously influenced by the changes of their crystal structure. Linear shrinkage of the reference sample is 1.3% at 1050°C, whereas the sample with Fe/Si =1.0% does by 30.4%. In conclusion, the presence of Fe3......+ modifies the crystal structure of porous calcium silicates, leading to a significant shrinkage in these materials....

  8. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    Science.gov (United States)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  9. Mechanics of failure of composite materials

    Science.gov (United States)

    Reifsnider, K. L.

    1978-01-01

    Composite materials are both inhomogeneous and anisotropic. Both of these characteristics affect the internal stress distributions since inhomogeneity involves variations in both strength and stiffness. The fracture mechanics of nonuniform materials are considered, taking into account the effect of nonuniformity on stress distributions near the crack tip, predicted yield zones in nonuniform and uniform materials, and the fracture of a center-notched unidirectional specimen. The mechanics of failure of laminated materials is discussed. It is found that the development of damage in a laminate with increasing load and, possibly, increasing numbers of cycles of loading is peculiar to the laminate in question, i.e., the material system, the stacking sequence, and the geometry. Approaches for monitoring damage development are also described.

  10. Electrodialysis of calcium and carbonate high concentration solutions and impact on composition in cations of membrane fouling.

    Science.gov (United States)

    Bazinet, Laurent; Araya-Farias, Monica

    2005-06-15

    Fouling, which is the accumulation of undesired solid materials at the phase interfaces of permselective membranes, is one of the major problems in electrodialysis. The objectives of the present work were to investigate the effect of the composition in calcium and carbonate of a model solution to be treated by conventional electrodialysis on their migration kinetics and the composition in cations of the membrane fouling. In the absence of sodium carbonate in the solution, no fouling was visually observed on anion-exchange membranes (AEM) and fouling was observed only at 1600 mg/L CaCl2 on cation-exchange membrane (CEM), while at only 800 mg/L CaCl2 with sodium carbonate, a deposit was observed on both membranes. This difference could be explained by the fact that carbonate has a high buffer capacity, and the time to reach pH 4.0 was then longer than the one without carbonate. Consequently, the migration of the ionic species was carried out over a longer period of time during ED treatment with sodium carbonate addition and in extent the demineralization rates were higher: 43 vs 86%. For treatment with sodium carbonate and 1600 mg/L CaCl2, the higher migration during ED treatment, increased the concentration of calcium, from 14.24 to 93.38 mg/g dry membrane and from 0.74 to 10.27 mg/g dry membrane for CEM and AEM, respectively. Due to the basic pH on the side of the membrane in contact with the NaCl solution, the calcium would precipitate to form calcium hydroxide on CEM while the calcium migrated through the CEM was blocked by the AEM where it formed another fouling.

  11. Concrete compositions and methods

    Science.gov (United States)

    Chen, Irvin; Lee, Patricia Tung; Patterson, Joshua

    2015-06-23

    Provided herein are compositions, methods, and systems for cementitious compositions containing calcium carbonate compositions and aggregate. The compositions find use in a variety of applications, including use in a variety of building materials and building applications.

  12. Evaluation of antibacterial effects of different calcium hydroxide compositions on planktonic Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Mahdi Tabrizizadeh

    2012-01-01

    Full Text Available Background and Aims: Calcium hydroxide has a pronounced antimicrobial activity against most of the bacterial species found in infected root canals and endodontic infections. It is one of the most frequently used intracanal medications in endodontic therapy. The objective of this study was to determine the antimicrobial efficacy of six calcium hydroxide formulations (mixed with saline, lidocaine 2%, chlorhexidine 2%, chlorhexidine 0.2%, Iodine Potassium iodide (IKI 2%, and glycerin on Enterococcus faecalis using agar diffusion test.Materials and Methods: Twelve culture plates were incubated with Enterococcus faecalis. Five cavities were made in each plate with 5 mm diameter and 4 mm depth. Two plates were randomly considered for each calcium hydroxide formulation and filled completely with creamy mixture of tested materials. The plates were incubated at 37ºC for 48 hours. The diameter of inhibition zone around each well was recorded in millimetres and data were submitted to ANOVA and Tukey tests.Results: The results of this study showed that all tested calcium hydroxide pastes had good antimicrobial activity. The antimicrobial activity of calcium hydroxide mixed with lidocaine, chlorhexidine 2% and IKI 2% were significantly greater than that of calcium hydroxide mixed with saline (P0.01.Conclusion: Considering the results of this study, lidocaine 2%, chlorhexidine 2% and IKI 2% are suggested to be used for preparation of calcium hydroxide paste. Further studies with different methods are needed for confirming these results.

  13. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues

    Science.gov (United States)

    Seredin, P. V.; Goloshchapov, D. L.; Prutskij, T.; Ippolitov, Yu. A.

    This study investigated the luminescence characteristics of synthesized biocomposites similar in organic and mineral composition to native dental tissues, enamel and dentine. It was found that the luminescence spectrum of intact enamel is similar to that of calcium hydroxyapatite (HAP) used to synthesize biomimetic materials. Despite the morphological differences between the synthesized biocomposite and native tissue, their luminescence spectra suggest that the shape of the luminescence spectrum is more influenced by defects in the crystal structure of the employed hydroxyapatite than by the structure and order of the apatite nanocrystals typical of native dental tissues. The spectrum of intact human dentine possessed a wider luminescence band, unlike that of enamel, with a maximum typical of intact dentine. Analysis of the spectra of biomimetic material modelling the properties of dentine indicated that both the organic and non-organic components contribute to their luminescence.

  14. Elementary damping properties in braided composite materials

    Science.gov (United States)

    Dion, Bernard L.; Sadler, Robert; Silverberg, Larry

    1994-05-01

    This paper investigates the damping level trends of three-dimensionally braided composites as a function of matrix material, fiber-matrix interface, fiber braid angle, fiber volume, and axial fiber tow size. With knowledge of such trends, designers may increase the structural damping in a 3-D braided composite component, thereby reducing component vibration, shock response, and fatigue. The logarithmic decrements of the fundamental mode response of cantilevered, 3-D braided composite beam specimens were calculated for comparison. Although the logarithmic decrements of two specimens, differing only in their matrix materials (Tactix 123 and Epon 828), were essentially identical, both were considerably larger than that for steel. The value for the decrement of these two composite specimens' response was taken as a reference. Altering the nature of the fiber-matrix interface by lubricating the fibers before specimen consolidation greatly increased the damping relative to the baseline. Trends of increasing damping were measured with both increasing fiber braid angle and fiber volume. Finally, increasing levels of damping are reported for decreases in axial fiber tow size. Explanations for these trends, based on the possible microscopic and macroscopic nature of the braided composites, are offered.

  15. Editorial on the original article entitled "3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration" published in the Biomaterials on February 14, 2014.

    Science.gov (United States)

    Li, Lan; Jiang, Qing

    2015-05-01

    The paper entitled "3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration" published in the Biomaterials recently illuminated the way to make particular scaffolds with calcium phosphate (CaP) powder, phosphoric acid, type I collagen and Tween 80 in low temperature. After the optimal concentration of each component was determined, the scaffolds were evaluated in a critically sized murine femoral defect model and exhibited good material properties. We made some related introduction of materials applied in 3D printing for bone tissue engineering based on this article to demonstrate the current progress in this field of study.

  16. A Novel Polymer-Synthesized Ceramic Composite Based System for Bone Repair: Osteoblast Growth on Scaffolds with Varied Calcium Phosphate Content

    Science.gov (United States)

    2005-01-01

    demongtrated the synthesis of degradable scaffolds from PLAGA /calcium phosphate composite microspheres in which an amorphous calcium phosphate is...EXPERIMENTAL DETAILS Scaffold Preparation Scaffolds were prepared as described in detail previously [3]. Briefly, PLAGA /calcium phosphate composite...culture polystyrene (TCPS) 2- pure PLAGA microspheres 64 3- composite microsphere matrices with a low polymer/ceramic ratio 4- composite microsphere

  17. Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Vuk Uskoković

    2016-06-01

    Full Text Available Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review we demonstrate that such compositional simplifications are meaningful when it comes to the design of a solution for osteomyelitis, a disease that is in its natural, non-postoperative form particularly prevalent in the underdeveloped parts of the world wherein poverty, poor sanitary conditions, and chronically compromised defense lines of the immune system are the norm. We show that calcium phosphate nanoparticles, which are inexpensive to make, could be chemically designed to possess the same functionality as a hypothetic mixture additionally composed of: (a a bone growth factor; (b an antibiotic for prophylactic or anti-infective purposes; (c a bisphosphonate as an antiresorptive compound; (d a viral vector to enable the intracellular delivery of therapeutics; (e a luminescent dye; (f a radiographic component; (g an imaging contrast agent; (h a magnetic domain; and (i polymers as viscous components enabling the injectability of the material and acting as carriers for the sustained release of a drug. In particular, calcium phosphates could: (a produce tunable drug release profiles; (b take the form of viscous and injectable, self-setting pastes; (c be naturally osteo-inductive and inhibitory for osteoclastogenesis

  18. A Procedure to Determine the Coordinated Chromium and Calcium Isotopic Composition of Astromaterials Including the Chelyabinsk Meteorite

    Science.gov (United States)

    Tappa, M. J.; Mills, R. D.; Ware, B.; Simon, J. I.

    2014-01-01

    The isotopic compositions of elements are often used to characterize nucelosynthetic contributions in early Solar System objects. Coordinated multiple middle-mass elements with differing volatilities may provide information regarding the location of condensation of early Solar System solids. Here we detail new procedures that we have developed to make high-precision multi-isotope measurements of chromium and calcium using thermal ionization mass spectrometry, and characterize a suite of chondritic and terrestrial material including two fragments of the Chelyabinsk LL-chondrite.

  19. Preparation and characterization of bioactive and degradable composites containing ordered mesoporous calcium-magnesium silicate and poly(L-lactide)

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jiajin [Key Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237 (China); Dong, Xieping, E-mail: jxzhyxh@163.com [Department of Orthopaedic Surgery, Jiangxi People' s Hospital, Nanchang 330006 (China); Ma, Xuhui [Polymer Science (Shenzhen) New Materials Co., Ltd., Shenzhen 518101 (China); Tang, Songchao, E-mail: schtang@ecust.edu.cn [Key Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237 (China); Wu, Zhaoying; Xia, Ji; Wang, Quanxiang; Wang, Yutao; Wei, Jie [Key Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237 (China)

    2014-10-30

    Highlights: • Mesoporous calcium-magnesium silicate and poly(L-lactide) composite was fabricated. • The composite has good hydrophilicity, in vitro degradation and bioactivity. • The composite could support cell attachment, proliferation and differentiation. - Abstract: Polylactide (PLA) and its copolymers have been widely used for bone tissue regeneration. In this study, a bioactive composite of ordered mesoporous calcium–magnesium silicate (m-CMS) and poly(L-lactide) (PLLA) was fabricated by melt blending method. The results indicated that the m-CMS particles were entrapped by polymer phase, and crystallinity of PLLA significantly decreased while the thermal stability of the m-CMS/PLLA composites was not obviously affected by addition of the m-CMS into PLLA. In addition, compared to PLLA, incorporation of the m-CMS into PLLA significantly improved the hydrophilicity, in vitro degradability and bioactivity (apatite-formation ability) of the m-CMS/PLLA composite, which were m-CMS content dependent. Moreover, it was found that incorporation of the m-CMS into PLLA could neutralize the acidic degradation by-products and thus compensated for the decrease of pH value. In cell culture experiments, the results showed that the composite enhanced attachment, proliferation and alkaline phosphatase activity (ALP) of MC3T3-E1 cells, which were m-CMS content dependent. The results indicated that the addition of bioactive materials to PLLA could result in a composite with improved properties of hydrophilicity, degradability, bioactivity and cytocompatibility.

  20. Metal Matrix Composite Materials for Aerospace Applications

    Science.gov (United States)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  1. Stratospheric experiments on curing of composite materials

    Science.gov (United States)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  2. A hazardous waste from secondary aluminium metallurgy as a new raw material for calcium aluminate glasses.

    Science.gov (United States)

    López-Delgado, Aurora; Tayibi, Hanan; Pérez, Carlos; Alguacil, Francisco José; López, Félix Antonio

    2009-06-15

    A solid waste coming from the secondary aluminium industry was successfully vitrified in the ternary CaO-Al(2)O(3)-SiO(2) system at 1500 degrees C. This waste is a complex material which is considered hazardous because of its behaviour in the presence of water or moisture. In these conditions, the dust can generate gases such as H(2), NH(3), CH(4), H(2)S, along with heat and potential aluminothermy. Only silica sand and calcium carbonate were added as external raw materials to complete the glasses formula. Different nominal compositions of glasses, with Al(2)O(3) ranging between 20% and 54%, were studied to determine the glass forming area. The glasses obtained allow the immobilisation of up to 75% of waste in a multicomponent oxide system in which all the components of the waste are incorporated. The microhardness Hv values varied between 6.05 and 6.62GPa and the linear thermal expansion coefficient, alpha, varied between (62 and 139)x10(-7)K(-1). Several glasses showed a high hydrolytic resistance in deionised water at 98 degrees C.

  3. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    Directory of Open Access Journals (Sweden)

    Piyaphong Panpisut

    Full Text Available This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM, tristrontium phosphate (TSrP and antimicrobial polylysine (PLS. The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine.Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt% and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM. The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained.Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64% but was always higher than that of Z250 (54%. Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7% followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa.The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and

  4. Mechanics of composite material subjected to eigenstress

    DEFF Research Database (Denmark)

    Fuglsang Nielsen, L.

    In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given...... to the topic of frost resistance of wet building materials. Three computer algorithms are presented to facilitate the numerical analysis of the phenomenons considered....

  5. Multifunctional Hybrid Composites for Thermal Materials

    Science.gov (United States)

    2012-08-03

    Hierarchical carbon fiber morphology for tailored thermal properties in heterogeneous materials systems – Fiber reinforced composites – Sensors , Heat sink...Interfaces, 4 (2), 2012 • Metal – CNT interface – MD simulation, processing, measurements 5 MWCNT Graphite Interface (Hexagonal Crystal ED Patterns...Simulations • Values are low (metal-metal 300-1000 MW/m2/K) • Similar conductance found for MWCNT and SWCNT interfaces • Conductance is higher for

  6. Mechanics Methodology for Textile Preform Composite Materials

    Science.gov (United States)

    Poe, Clarence C., Jr.

    1996-01-01

    NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. A set of test methods for measuring material properties and design allowables; 2. Mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and fatigue life; and 3. An electronic data base of coupon type test data. This report describes these three deliverables.

  7. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    Science.gov (United States)

    2013-03-01

    colliding with a nucleus is elastic scattering . Elastic scattering continues to moderate the neutron until the neutrons are captured or pass through...thermal neutrons 60% better than aluminum. Overall, there is promise in this composite material, but the fast neutrons are not down- scattered ...beryllium radiation”, the gamma rays observed would have had to be on the order of 50 MeV to produce the Compton recoil velocities that were recorded

  8. A composite material model for improved bone formation.

    Science.gov (United States)

    Scaglione, Silvia; Lazzarini, Erica; Ilengo, Cristina; Quarto, Rodolfo

    2010-10-01

    The combination of synthetic polymers and calcium phosphates represent an improvement in the development of scaffolds for bone-tissue regeneration. Ideally, these composites provide both mechanically and architecturally enhanced performances; however, they often lack properties such as osteoconductivity and cell bioactivation. In this study we attempted to generate a composite bone substitute maximizing the available osteoconductive surface for cell adhesion and activity. Highly porous scaffolds were prepared through a particulate leaching method, combining poly-ε-caprolactone (PCL) and hydroxyapatite (HA) particles, previously coated with a sucrose layer, to minimize their embedding by the polymer solution. Composite performances were evaluated both in vitro and in vivo. In PCL-sucrose-coated HA samples, the HA particles were almost completely exposed and physically distinct from the polymer mesh, while uncoated control samples showed ceramic granules massively covered by the polymer. In vivo results revealed a significant extent of bone deposition around all sucrose-coated HA granules, while only parts of the control uncoated HA granules were surrounded by bone matrix. These findings highlight the possibility of generating enhanced osteoconductive materials, basing the scaffold design on physiological and cellular concepts. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Impact of solids on composite materials

    Science.gov (United States)

    Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.

    1987-01-01

    The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.

  10. PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics.

    NARCIS (Netherlands)

    Habraken, W.J.E.M.; Wolke, J.G.C.; Mikos, A.G.; Jansen, J.A.

    2008-01-01

    Bone cements with biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres have already been proven to provide a macroporous calcium phosphate cement (CPC) during in situ microsphere degradation. Furthermore, in vitro/in vivo release studies with these PLGA microsphere/CPC composites

  11. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance

    NARCIS (Netherlands)

    Urquia Edreira, E.R.; Wolke, J.G.C.; Aldosari, A.A.; Al-Johany, S.S.; Anil, S.; Jansen, J.A.; Beucken, J.J.J.P van den

    2015-01-01

    Calcium phosphate (CaP) ceramic coatings have been used to enhance the biocompatibility and osteoconductive properties of metallic implants. The chemical composition of these ceramic coatings is an important parameter, which can influence the final bone performance of the implant. In this study, the

  12. PRODUCTION OF COMPOSITE CERAMIC MATERIAL FOR THERMAL SPRAYING

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2017-01-01

    Full Text Available A composite ceramic material has been developed for thermal spraying that permits to increase wear resistance due to introduction of high-chromium steel and molybdenum in its structure, to obtain optimum porosity in the starting charge material while synthesizing  FeCrMo – MoS2/CaF2/С – TiC compositions,  to improve technological parameters of powders and thereby increase coefficient of powder usage in spraying, to reduce cost of wear-resistant coating technology. The paper presents characteristics and parameters of the developed material and coating which is based on it. Methodology is based on  complex metallographical, X-ray diffraction and electron microscopy investigations of structural elements of composite plasma coatings. Main components of composite particles are solid solutions based on iron, titanium carbides, solid lubricant inclusions in the form of molybdenum disulfide, calcium fluoride, carbon. Presence of such powder particles predetermines obtaining wear-resistant coatings which are rather efficient in case of molecular and mechanical and abrasive wear-out under disadvantageous friction conditions (boundary lubrication or absence of lubrication material, elevated temperature actions.  The contemplated powders are characterized by complex geometric shape and developed surface relief of particles. There has been observed a stable distribution of hard carbide phase in volumes of deposited materials and absence of superficial zone with deficit of TiC inclusions that positively influence on working capacity of the investigated wear-resistant coatings. Plasma coatings which have been deposited with the help of  FeCrMo – MoS2 – TiC powders in accordance with the technology developed by authors have better wear resistance in case of dry friction in a steel 45 (coating wear-out is less by 1.2-fold; scoring load is higher by 1.2-fold than a coating which has been obtained with the help of Ni80Cr20 – 12 % MoS2 – 50

  13. Hydration characteristics of calcium silicate cements with alternative radiopacifiers used as root-end filling materials.

    Science.gov (United States)

    Camilleri, Josette

    2010-03-01

    Mineral trioxide aggregate (MTA) is composed of calcium silicate cement and bismuth oxide added for radiopacity. The bismuth oxide in MTA has been reported to have a deleterious effect on the physical and chemical properties of the hydrated material. This study aimed to investigate the hydration mechanism of calcium silicate cement loaded with different radiopacifiers for use as a root-end filling material. Calcium silicate cement loaded with barium sulfate, gold, or silver/tin alloy was hydrated, and paste microstructure was assessed after 30 days. In addition, atomic ratio plots of Al/Ca versus Si/Ca and S/Ca and Al/Ca were drawn, and X-ray energy dispersive analysis of the hydration products was performed to assess for inclusion of heavy metals. The leachate produced from the cements after storage of the cements in water for 28 days and the leaching of the radiopacifiers in an alkaline solution was assessed by using inductively coupled plasma. The hydrated calcium silicate cement was composed of calcium silicate hydrate, calcium hydroxide, ettringite, and monosulfate. Unhydrated cement particles were few. No heavy metals were detected in the calcium silicate hydrate except for the bismuth in MTA. Calcium was leached out early in large quantities that reduced with time. The barium and bismuth were leached in increasing amounts. Copper was the most soluble in alkaline solution followed by bismuth and barium in smaller amounts. The bismuth oxide can be replaced by other radiopacifiers that do not affect the hydration mechanism of the resultant material. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Macroporous Calcium Phosphate/Chitosan Composites Prepared via Unidirectional Ice Segregation and Subsequent Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Inmaculada Aranaz

    2017-05-01

    Full Text Available Calcium phosphate chitosan-based composites have gained much interest in recent years for biomedical purposes. In this paper, three-dimensional calcium phosphate chitosan-based composites with different mineral contents were produced using a green method called ice segregation induced self-assembly (ISISA. In this methodology, ice crystals were used as a template to produce porous structures from an aqueous solution of chitosan (CS and hydroxyapatite (Hap also containing acetic acid (pH = 4.5. For better characterization of the nature of the inorganic matter entrapped within the resulting composite, we performed either oxygen plasma or calcination processes to remove the organic matter. The nature of the phosphate salts was studied by XRD and NMR studies. Amorphous calcium phosphate (ACP was identified as the mineral phase in the composites submitted to oxygen plasma, whereas crystalline Hap was obtained after calcination. SEM microscopy revealed the formation of porous structures (porosity around 80–85% in the original composites, as well as in the inorganic matrices obtained after calcination, with porous channels of up to 50 µm in diameter in the former case and of up to 20 µm in the latter. The biocompatibility of the composites was assessed using two different cell lines: C2C12GFP premyoblastic cells and MC3T3 preosteoblastic cells.

  15. Synthesizing Smart Polymeric and Composite Materials

    Science.gov (United States)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4

  16. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  17. Composite material systems for hydrogen management

    Science.gov (United States)

    Pangborn, R. N.; Queeney, R. A.

    1991-01-01

    The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

  18. Guided wave attenuation in composite materials

    Science.gov (United States)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw

    2017-04-01

    In this paper problem of guided wave damping in composite materials is investigated. Material damping is estimated from experimental measurements based on energy of propagating guided waves. Simply Rayleigh damping is introduced into the model in the form of damping matrix proportional to the mass matrix. The numerical model is based on Spectral Element Method (SEM). Numerical model includes the piezoelectric transducer and bond layer between actuator and the host structure. In this paper each ply of composite laminate is simulated by separate layer consisting of 3D brick spectral elements. Numerical results are experimentally validated using Scanning Laser Doppler Vibrometry (SLDV). Guided waves are excited using piezoelectric transducer and registered using non-contact device - the laser vibrometer. Validation is based on signals gathered in dispersed points as well as on full wavefield measurements. The full wavefield measurements are conducted on dense grid of points. In this paper results for simple carbon fiber reinforced polymer are presented. Paper presents result for composite structure for damaged case. Investigated damage is in the form of delamination.

  19. Studies on calcium phosphate precipitation: effects of metal ions used in dental materials.

    Science.gov (United States)

    Okamoto, Y; Hidaka, S

    1994-12-01

    The effects of 26 metal ions, of which 23 are used in dental materials, on the conversion of amorphous calcium phosphate (ACP) to hydroxyapatite (HAP) in vitro were studied. From the effects on both the rate of HAP transformation and induction time, effects of metal ions were classified into three types; inhibitory (in the order: nickel, tin, cobalt, manganese, copper, zinc, gallium, thallium, molybdenum, cadmium, antimony, magnesium, and mercury); ineffective (cesium, titanium, chromium, iron [ferrous], iridium, palladium, platinum, silver, gold, aluminum, and lead); and stimulatory (iron [ferric] and indium). These results suggest that metal ions used in dental materials may modify the precipitation of oral calcium phosphate.

  20. Micromechanical models for graded composite materials

    Science.gov (United States)

    Reiter, Thomas; Dvorak, George J.; Tvergaard, Viggo

    1997-08-01

    Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting of piecewise homogeneous layers with equivalent elastic properties estimated by Mori-Tanaka and selfconsistent methods are also analysed under similar boundary conditions. Comparisons of the overall and local fields predicted by the discrete and homogenized models are made using a C/SiC composite system with very different Young's moduli of the phases, and relatively steep composition gradients. The conclusions reached from these comparisons suggest that in those parts of the graded microstructure which have a well-defined continuous matrix and discontinuous second phase, the overall properties and local fields are predicted by Mori-Tanaka estimates. On the other hand, the response of graded materials with a skeletal microstructure in a wide transition zone between clearly defined matrix phases is better approximated by the self-consistent estimates. Certain exceptions are noted for loading by overall transverse shear stress. The results suggest that the averaging methods originally developed for statistically homogeneous aggregates may be selectively applied, with a reasonable degree of confidence, to aggregates with composition gradients, subjected to both uniform and nonuniform overall loads.

  1. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    Science.gov (United States)

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  2. Preparation of bismuth titanate/calcium alginate composite bead and its photocatalytic degradation of dye pollutants

    Science.gov (United States)

    Gan, Huihui; Dong, Nanyang; Lu, Linxiao; Fu, Yan; Zhang, Huining; Qian, Yongxin; Zhang, Kefeng; Jin, Huixia

    2017-08-01

    In this study, the bismuth titanate/calcium alginate composite bead was synthesized by immobilizing bismuth titanate Bi4Ti3O12 particles into 1.5% sodium alginate (SA) matrix. The Bi4Ti3O12 particles were characterized by X-ray diffraction (XRD). The photocatalytic activity for the degradation of dye Rhodamine B in solution by as-prepared bismuth titanate/calcium alginate composite bead was investigated. The as-prepared composite beads CA/BTO-700 exhibited best photocatalytic efficiency for the degradation of RhB compared with CA/BTO-800 and CA/BTO-900 under simulated solar light. After 4 cycles in photocatalytic degradation of RhB, the degradation rate of the CA/BTO-700 nearly remained unchanged.

  3. Characterization of material composite marble-polyester

    Directory of Open Access Journals (Sweden)

    Corpas, F. A.

    2002-12-01

    Full Text Available In this work we characterize a new material composite, formed with a polyester and crushed white marble mixture. The final purpose is double: to obtain a material for applications sufficiently competitive after an economic viability study, increasing the yield of the main commodity, using waste marble and improving the jobs in the quarries area. From the results obtained, we deduce then that this material could be used to inside and outside adornment.

    En este trabajo, caracterizamos un nuevo material compuesto, formado con una mezcla de poliéster y de mármol blanco triturado. El propósito final es doble: por un lado obtener un material para aplicaciones lo suficientemente competitivas como para que se pueda iniciar un estudio económico de viabilidad, aumentando el rendimiento de la materia prima y mejorando las salidas laborales de las comarcas extractoras. Para la caracterización del material se ha determinado el porcentaje adecuado de poliéster. Así como las propiedades mecánicas (flexión, compresión y dureza, químicas, fatiga térmica y su influencia a la exposición solar In order to characterized of material, we have determined the suitable porcentage of polyester Also we have carried out a study of the mechanical (stretching, resistance to traction, hardeness and thermal fatigue chemicals properties and solar radiation influence. De los resultados obtenidos, este material podría ser utilizado para ornamentación tanto de interior como de exterior.

  4. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-02-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  5. Mechanics of composite material subjected to eigenstress

    DEFF Research Database (Denmark)

    Fuglsang Nielsen, L.

    In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given to the t......In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given...... to the topic of frost resistance of wet building materials. Three computer algorithms are presented to facilitate the numerical analysis of the phenomenons considered....

  6. Tunable optical sensitivity of composite energetic materials

    Science.gov (United States)

    Rashkeev, Sergey; Wang, Fenggong; Tsyshevskiy, Roman; Kuklja, Maija; University of Maryland College Park Team

    Optical initiation to detonation of energetic materials is compelling because it opens up new ways for safe handling, storage, and use of high explosives. Despite this, laser irradiation has been mainly perceived as a source of heat for vibrational excitation rather than viable means of photo-stimulated initiation of energy release. Limitations of our knowledge on photo-stimulated energy release from high energy density materials hampers progress in design and manufacturing of efficient optical devices for energy storage and conversion. Here we show how electronic and optical properties of interfaces formed between nitro energetic materials and various metal oxides can be effectively tuned to achieve highly controllable surface chemistry. We discuss mechanisms of photo stimulated reactions triggered by defects on these interfaces. We demonstrate that the key in achieving tunable sensitivity is the proper alignment of the filled and vacant electronic states of oxide defects and energetic materials and provide guidelines for design composite energetic materials suitable for optical initiation. Research is supported by the US ONR (Grants N00014-16-1-2069 and N00014-16-1-2346) and NSF. We used NERSC, XSEDE and MARCC computational resources.

  7. Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment

    Science.gov (United States)

    Sachot, Nadège; Roguska, Agata; Planell, Josep Anton; Lewandowska, Malgorzata; Engel, Elisabeth; Castaño, Oscar

    2017-01-01

    The success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties). The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior. Here, blended polylactic acid (PLA) calcium phosphate ORMOGLASS (organically modified glass) nanofibrous mats have been incubated up to 4 weeks in physiological simulated conditions, and their morphological, topographical, and chemical changes have been investigated. The results showed that a significant loss of inorganic phase occurred at the beginning of the immersion and the ORMOGLASS maintained a stable composition afterward throughout the degradation period. As a whole, the nanostructured scaffolds underwent fast and heterogeneous degradation. This study reveals that an angiogenic calcium-rich environment can be achieved through fast-degrading ORMOGLASS/PLA blended fibers, which seems to be an excellent alternative for guided bone regeneration. PMID:28744124

  8. Carbon Fiber Composite Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Jr., Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mainka, Hendrik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Volkswagen (VW) is internationally recognized for quantity and quality of world-wide vehicle production and the Oak Ridge National Laboratory (ORNL) is internationally recognized in materials research and development. With automotive production ramping up in the recently constructed VW Group of America facility in Chattanooga, Tennessee, ORNL and VW initiated discussions in 2012 concerning opportunities for collaboration around ORNL’s carbon fiber and composites programs. ORNL is conducting an internationally recognized program to develop and implement lower cost carbon fibers and composites for automotive and other “energy missions” for the US Department of Energy. Significant effort is ongoing in selecting, developing, and evaluating alternative precursors, developing and demonstrating advanced conversion techniques, and developing and tailoring surface treatment, sizings, and formatting fiber for specific composite matrices and end-use applications. ORNL already had North America’s most comprehensive suite of tools for carbon fiber research and development and established a semiproduction demonstration line referred to as the Carbon Fiber Technology Facility (CFTF) to facilitate implementation of low cost carbon fiber (LCCF) approaches in early 2013. ORNL and VW agreed to collaborate in a formal Cooperative Research and Development Agreement (NFE-12-03992) specifically focused on evaluating applicability of low cost carbon fiber products for potential vehicle components. The goal of the work outlined in this report was to develop and qualify uses for carbon fiber-reinforced structures in connection with civilian ground transportation. Significant progress was achieved in evaluating and understanding lignin-based precursor materials; however, availability of carbon fiber converted from lignin precursor combined with logistical issues associated with the Visa limitations for the VW participant resulted in significantly shortening of the collaboration

  9. Nanotube/Polymer Composites: Materials Selection and Process Design

    National Research Council Canada - National Science Library

    Winey, Karen

    2004-01-01

    ...) define processing methods most appropriate for the materials identified. Our study of SWNT-polymer composites focuses on thermoplastics, because these materials can be readily drawn into fibers...

  10. Intelligent Image Segment for Material Composition Detection

    Directory of Open Access Journals (Sweden)

    Liang Xiaodan

    2017-01-01

    Full Text Available In the process of material composition detection, the image analysis is an inevitable problem. Multilevel thresholding based OTSU method is one of the most popular image segmentation techniques. How, with the increase of the number of thresholds, the computing time increases exponentially. To overcome this problem, this paper proposed an artificial bee colony algorithm with a two-level topology. This improved artificial bee colony algorithm can quickly find out the suitable thresholds and nearly no trap into local optimal. The test results confirm it good performance.

  11. Comparison of shear bond strength of calcium-enriched mixture cement and mineral trioxide aggregate to composite resin.

    Science.gov (United States)

    Oskoee, Siavash Savadi; Kimyai, Soodabeh; Bahari, Mahmoud; Motahari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2011-11-01

    Adhesion of composite resin and pulp capping biomaterials remarkably influences treatment outcomes. This in vitro study aimed to compare the shear bond strength of composite resin to calcium enriched mixture (CEM) cement, mineral trioxide aggregate (MTA) and resin modified glass ionomer (RMGI) with or without acid etching. A total of 90 cylindrical acrylic blocks containing a central hole, measuring 4 mm diameter and 2 mm height were prepared. The blocks were randomly divided into three experimental groups based on being filled with CEM, MTA or RMGI. Samples in each group were then randomly divided into two subgroups, i.e. with or without phosphoric acid etching. Placing composite resin cylinders on the samples, shear bond strengths were measured using a universal testing machine. Failure modes of the samples were evaluated under a stereomicroscope. Data were analyzed using two-way ANOVA and Tukey tests. Shear bond strengths in the etched and nonetched samples were not significantly different (p = 0.60). There was a significant difference in shear bond strength values of the three experimental materials (p strength values (p material and surface etching was statistically significant (p shear bond strength of these materials to composite resin. Besides, shear bond strength values of MTA and CEM to composite resin, are favorable due to their cohesive mode of failure. When MTA and CEM biomaterials are used in vital pulp therapy, it is advisable to cover these materials with RMGI. In addition, if it is not possible to use RMGI, the surface etching of MTA and CEM biomaterials is not necessary prior to composite restoration using total-etch adhesive resin.

  12. Composite Materials and Measurement of Their Acoustic Properties

    Science.gov (United States)

    Kondo, Toshio; Kitatuji, Mituyoshi

    2004-05-01

    A composite material consists of two or more materials and its optimum acoustic properties can be designed by selecting its constituents. Unidirectional composite materials have a very low transverse Poisson’s ratio of less than 0.1. By considering such composite material features, the applications of carbon fiber-epoxy and highly crystalline polyethylene fiber-polyurethane composite materials to a medical transducer array are proposed. The sound velocities and densities of the composite materials are measured and their transverse Poisson’s ratios are calculated from experimental data.

  13. Biocompatibility and degradation of poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites

    NARCIS (Netherlands)

    Ruhe, P.Q.; Hedberg, E.L.; Padron, N.T.; Spauwen, P.H.M.; Jansen, J.A.; Mikos, A.G.

    2005-01-01

    Injectable calcium phosphate (Ca-P) cement materials exhibit favorable osteocompatible behavior but are resorbed slowly because of a lack of a bone ingrowth-enabling macroporosity. In this study, poly(DL-lactic-co-glycolic acid) (PLGA) microparticles (average size 66 +/- 25 microm) were incorporated

  14. Behavior of plaster of Paris-calcium carbonate composite as bone substitute. A study in rats.

    NARCIS (Netherlands)

    Dewi, A.H.; Ana, I.D.; Wolke, J.G.; Jansen, J.A.

    2013-01-01

    Calcium sulfate, also known as plaster of Paris (POP), is probably the oldest biomaterial used for bone grafting and considered to be a fast degradable material that allows complete resorption before the bone defect area is completely filled by new bone. The aim of this study was to investigate the

  15. Method for preparing dielectric composite materials

    Science.gov (United States)

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2004-11-23

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  16. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.

    Science.gov (United States)

    Ercole, Claudia; Bozzelli, Paola; Altieri, Fabio; Cacchio, Paola; Del Gallo, Maddalena

    2012-08-01

    This study highlights the role of specific outer bacterial structures, such as the glycocalix, in calcium carbonate crystallization in vitro. We describe the formation of calcite crystals by extracellular polymeric materials, such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) isolated from Bacillus firmus and Nocardia calcarea. Organic matrices were isolated from calcifying bacteria grown on synthetic medium--in the presence or absence of calcium ions--and their effect on calcite precipitation was assessed. Scanning electron microscopy observations and energy dispersive X-ray spectrometry analysis showed that CPS and EPS fractions were involved in calcium carbonate precipitation, not only serving as nucleation sites but also through a direct role in crystal formation. The utilization of different synthetic media, with and without addition of calcium ions, influenced the biofilm production and protein profile of extracellular polymeric materials. Proteins of CPS fractions with a molecular mass between 25 and 70 kDa were overexpressed when calcium ions were present in the medium. This higher level of protein synthesis could be related to the active process of bioprecipitation.

  17. Composite materials application on FORMOSAT-5 remote sensing instrument structure

    OpenAIRE

    Jen-Chueh Kuo; Heng-Chuan Hung; Mei-Yi Yang; Chia-Ray Chen; Jer Lin

    2017-01-01

    Composite material has been widely applied in space vehicle structures due to its light weight and designed stiffness modulus. Some special mechanical properties that cannot be changed in general metal materials, such as low CTE (coefficient of thermal expansion) and directional material stiffness can be artificially adjusted in composite materials to meet the userâs requirements. Space-qualified Carbon Fiber Reinforced Plastic (CFRP) composite materials are applied In the FORMOSAT-5 Remote S...

  18. Effects of various diets on the calcium and phosphorus composition of mealworms (Tenebrio molitor larvae) and superworms (Zophobas morio larvae).

    Science.gov (United States)

    Latney, La'Toya V; Toddes, Barbara D; Wyre, Nicole R; Brown, Dorothy C; Michel, Kathryn E; Briscoe, Johanna A

    2017-02-01

    OBJECTIVE To evaluate whether the nutritive quality of Tenebrio molitor larvae and Zophobas morio larvae, which are commonly cultured as live food sources, is influenced by 4 commercially available diets used as nutritional substrates; identify which diet best improved calcium content of larvae; and identify the feeding time interval that assured the highest calcium intake by larvae. ANIMALS 2,000 Zophobas morio larvae (ie, superworms) and 7,500 Tenebrio molitor larvae (ie, mealworms). PROCEDURES Larvae were placed in control and diet treatment groups for 2-, 7-, and 10-day intervals. Treatment diets were as follows: wheat millings, avian hand feeding formula, organic avian mash diet, and a high-calcium cricket feed. Control groups received water only. After treatment, larvae were flash-frozen live with liquid nitrogen in preparation for complete proximate and mineral analyses. Analyses for the 2-day treatment group were performed in triplicate. RESULTS The nutrient composition of the high-calcium cricket feed groups had significant changes in calcium content, phosphorus content, and metabolizable energy at the 2-day interval, compared with other treatment groups, for both mealworms and superworms. Calcium content and calcium-to-phosphorus ratios for larvae in the high-calcium cricket feed group were the highest among the diet treatments for all treatment intervals and for both larval species. CONCLUSIONS AND CLINICAL RELEVANCE A 2-day interval with the high-calcium cricket feed achieved a larval nutrient composition sufficient to meet National Research Council dietary calcium recommendations for nonlactating rats. Mealworm calcium composition reached 2,420 g/1,000 kcal at 48 hours, and superworm calcium composition reached 2,070g/1,000 kcal at 48 hours. These findings may enable pet owners, veterinarians, insect breeders, and zoo curators to optimize nutritive content of larvae fed to insectivorous animals.

  19. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Li, Hongxu [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Yazhao [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiaoming, E-mail: liuxm@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-04-05

    Highlights: • Cementitious material was designed according to [SiO{sub 4}] polymerization degree of raw materials. • The cementitious material composed of calcium silicate slag yields excellent physical and mechanical properties. • Amorphous C–A–S–H gel and rod-like ettringite are predominantly responsible for the strength development. • Leaching toxicity and radioactivity tests show the cementitious material is environmentally acceptable. - Abstract: Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al{sub 2}O{sub 3} from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C–A–S–H gel, rod-like ettringite and hexagonal-sheet Ca(OH){sub 2} with small amount of zeolite-like minerals such as CaAl{sub 2}Si{sub 2}O{sub 8}·4H{sub 2}O and Na{sub 2}Al{sub 2}Si{sub 2}O{sub 8}·H{sub 2}O. As the predominant hydration products, rod-like ettringite and amorphous C–A–S–H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  20. The possibilities of obtaining metallic calcium from Serbian carbonate mineral raw materials

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav

    2014-01-01

    Full Text Available The experimental investigations defined both the technological scheme of the calcium production from limestone by aluminothermic process and the basic operating parameters of the particular technological phases. The limestone with high content of Mg, Na and K was used in the paper. X-ray analysis reveals that the samples contain mainly calcite with small amount of dolomite. At first, the influence of temperature, time and granulometry on the calcium carbonate calcination was examined. The dissociation process was completed in 10-15 min at 1200°C, and dissociation rate increases with decreasing of particle size up to 5 mm. Afterwards, the aluminothermic reduction process of calcium oxide was investigated. At the temperature 1200°C, and vacuum of at least 3 kPa, the reduction process completed within 2 hours. The chemical composition of calcium oxide and calcium showed increased content of magnesium oxide and alkaline oxides (especially sodium.[Projekat Ministartsva nauke Republike Srbije, br. TR34002 i br. TR34023

  1. Reactive molecular simulation on the calcium silicate hydrates/polyethylene glycol composites

    Science.gov (United States)

    Zhou, Yang; Hou, Dongshuai; Jiang, Jinyang; She, Wei; Yu, Jiao

    2017-11-01

    Calcium silicate hydrates (C-S-H) may potentially exhibit extraordinary performance when modified by polymers, in which way the properties of cement-based materials can be improved from the genetic level. In this molecular dynamics simulation of the interaction between C-S-H and polyethylene glycol, apart from the H bond network connection in the interface, another chemical adsorption was observed. Calcium of C-S-H broke the Csbnd O bond of PEG and formed a new Casbnd C connection, which created a stronger link between the organic and inorganic phases.

  2. [Comparative analysis of bone mineral composition in human archeological material taken from different regions of Poland].

    Science.gov (United States)

    Noceń, I

    1999-01-01

    The actual paper presents the method and results of studies covering the mineral composition of the skulls of humans in the archaeological material stemming from different regions of Poland. The concentration of fluoride, zinc, iron, manganese, lead, calcium, magnesium and phosphorus was determined in 248 skulls. Distribution of individual burial sites providing the study material is presented in Fig. 1. The material was divided into four groups in relation to the place of deposition and in relation to the soil composition. Macro-, microelements determined by the method of atom absorption, phosphate by colourometric method, fluoride by potentiometric method. It has been disclosed that the bony material at the burial site is subjected to processes of fossilisation--replacing the organic matter by mineral one under definite soil conditions. The soil composition is the factor that influences the mineral composition of the bones in case of the following elements: zinc, manganese, lead, magnesium (Tab. 1). No influence was exerted by components contained in the soil on the determined concentrations of fluoride and iron in bones being explored from human skulls originating from archaeological excavation, undergo dynamic transformations in their mineral composition during their deposition in the soil. With the lapse of the time the content of fluoride (Tab. 2), magnesium (Tab. 7), calcium (Tab. 8), phosphate (Tab. 9) increases, while that of zinc (Tab. 3), iron (Tab. 4), manganese (Tab. 5) and lead (Tab. 6) decreases. The end concentration of elements in the archaeological bony material results from the following processes, namely: Cumulation, the example of which is the change in the concentration of fluoride, washing out the components of bone into the soil, to which the compounds of iron and manganese are subjected, compensations of concentrations of the bone soil border. That process took place in the case involving the changes in concentration of zinc, lead

  3. In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis.

    Science.gov (United States)

    Makarov, C; Cohen, V; Raz-Pasteur, A; Gotman, I

    2014-10-01

    In this work, osteoconductive composite materials comprising a large volume fraction of a bioresorbable calcium phosphate ceramic (CaP) and a smaller amount of a polycaprolactone polymer (PCL) were studied as a degradable antibiotic carrier material for treatment of osteomyelitis. Beads loaded with 1 and 4wt.% vancomycin were prepared by admixing dissolved drug to an in situ synthesized dicalcium phosphate (DCP)-PCL or solution-mixed beta-tricalcium phosphate (βTCP)-PCL composite powder followed by high pressure consolidation of the blend at room temperature. Vancomycin release was measured in phosphate-buffered saline (PBS) at 37°C. All the beads gradually released the drug over the period of 4-11weeks, depending on the composite matrix homogeneity and porosity. Mathematical modeling using the Peppas equation showed that vancomycin elution was diffusion controlled. The stability of the antibiotic after high pressure application at room temperature was demonstrated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) studies and MIC testing. The preservation of the structure and activity of vancomycin during the processing of composite beads and its sustained in vitro release profile suggest that high pressure consolidated CaP-PCL beads may be useful in the treatment of chronic bone infections as resorbable delivery vehicles of vancomycin and even of thermally unstable drug substances. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Wacha, András [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117 (Hungary); Gomes, Pedro S. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal); Alves, Luís C. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N.10, 2695-066 Bobadela LRS (Portugal); Fernandes, M. Helena Vaz [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Salvado, Isabel M. Miranda, E-mail: isabelmsalvado@ua.pt [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Fernandes, M. Helena R. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal)

    2016-05-01

    The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS–SiO{sub 2} have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS–SiO{sub 2}–CaO–SrO, was prepared with the incorporation of 0.05 mol of titanium per mol of SiO{sub 2}. Calcium and strontium were added using the respective acetates as sources, following a sol–gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity. - Highlights: • A hybrid PDMS–SiO{sub 2}–CaO–SrO material was prepared with the incorporation of Ti. • Sr was released in concentrations suitable for the induction of bone tissue repair. • The material demonstrated to be cytocompatible when tested with osteoblastic cells.

  5. Poly(trimethylene carbonate)-based composite materials for reconstruction of critical-sized cranial bone defects in sheep.

    Science.gov (United States)

    Zeng, Ni; van Leeuwen, Anne C; Grijpma, Dirk W; Bos, Ruud R M; Kuijer, Roel

    2017-02-01

    The use of ceramic materials in repair of bone defects is limited to non-load-bearing sites. We tested poly(trimethylene carbonate) (PTMC) combined with β-tricalcium phosphate or biphasic calcium phosphate particles for reconstruction of cranial defects. PTMC-calcium phosphate composite matrices were implanted in cranial defects in sheep for 3 and 9 months. Micro-computed tomography quantification and histological observation were performed for analysis. No differences were found in new bone formation among the defects left unfilled, filled with PTMC scaffolds, or filled with either kind of PTMC-calcium phosphate composite scaffolds. Porous β-TCP scaffolds as control led to a larger amount of newly formed bone in the defects than all other materials. Histology revealed abundant new bone formation in the defects filled with porous β-TCP scaffolds. New bone formation was limited in defects filled with PTMC scaffolds or different PTMC-calcium phosphate matrices. PTMC matrices were degraded uneventfully. New bone formation within the defects followed an orderly pattern. PTMC did not interfere with bone regeneration in sheep cranial defects and is suitable as a polymer matrix for incorporating calcium phosphate particles. Increasing the content of calcium phosphate particles in the composite matrices may enhance the beneficial effects of the particles on new bone formation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. The effect of calcium propionate on the ruminal bacterial community composition in finishing bulls

    Directory of Open Access Journals (Sweden)

    Qianqian Yao

    2017-04-01

    Full Text Available Objective Manipulating the fermentation to improve the performance of the ruminant has attracted the attention of both farmers and animal scientists. Propionate salt supplementation in the diet could disturb the concentration of propionate and total volatile fatty acids in the rumen. This study was conducted to evaluate the effect of calcium propionate supplementation on the ruminal bacterial community composition in finishing bulls. Methods Eight finishing bulls were randomly assigned to control group (CONT and calcium propionate supplementation (PROP feeding group, with four head per group. The control group was fed normal the total mixed ration (TMR finishing diet, and PROP group was fed TMR supplemented with 200 g/d calcium propionate. At the end of the 51-day feeding trial, all bulls were slaughtered and rumen fluid was collected from each of the animals. Results Propionate supplementation had no influence the rumen fermentation parameters (p>0.05. Ruminal bacterial community composition was analyzed by sequencing of hypervariable V3 regions of the 16S rRNA gene. The most abundant phyla were the Firmicutes (60.68% and Bacteroidetes (23.67%, followed by Tenericutes (4.95% and TM7 (3.39%. The predominant genera included Succiniclasticum (9.43%, Butyrivibrio (3.74%, Ruminococcus (3.46% and Prevotella (2.86%. Bacterial community composition in the two groups were highly similar, except the abundance of Tenericutes declined along with the calcium propionate supplementation (p = 0.0078. Conclusion These data suggest that the ruminal bacterial community composition is nearly unchanged by propionate supplementation in finishing bulls.

  7. Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals.

    Science.gov (United States)

    Wang, Huanan; Bongio, Matilde; Farbod, Kambiz; Nijhuis, Arnold W G; van den Beucken, Jeroen; Boerman, Otto C; van Hest, Jan C M; Li, Yubao; Jansen, John A; Leeuwenburgh, Sander C G

    2014-01-01

    Colloidal gels are a particularly attractive class of hydrogels for applications in regenerative medicine, and allow for a "bottom-up" fabrication of multi-functional biomaterials by employing micro- or nanoscale particles as building blocks to assemble into shape-specific bulk scaffolds. So far, however, the synthesis of colloidal composite gels composed of both organic and inorganic particles has hardly been investigated. The current study has focused on the development of injectable colloidal organic-inorganic composite gels using calcium phosphate (CaP) nanoparticles and gelatin (Gel) nanospheres as building blocks. These novel Gel-CaP colloidal composite gels exhibited a strongly enhanced gel elasticity, shear-thinning and self-healing behavior, and gel stability at high ionic strengths, while chemical - potentially cytotoxic - functionalizations were not necessary to introduce sufficiently strong cohesive interactions. Moreover, it was shown in vitro that osteoconductive CaP nanoparticles can be used as an additional tool to reduce the degradation rate of otherwise fast-degradable gelatin nanospheres and fine-tune the control over the release of growth factors. Finally, it was shown that these colloidal composite gels support attachment, spreading and proliferation of cultured stem cells. Based on these results, it can be concluded that proof-of-principle has been obtained for the design of novel advanced composite materials made of nanoscale particulate building blocks which exhibit great potential for use in regenerative medicine. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Calcium phosphate formation and ion dissolution rates in silica gel-PDLLA composites.

    Science.gov (United States)

    Korventausta, Joni; Jokinen, Mika; Rosling, Ari; Peltola, Timo; Yli-Urpo, Antti

    2003-12-01

    Sol-gel derived silicas are potential biomaterials both for tissue regeneration and drug delivery applications. In this study, both SiO(2) and calcium and phosphate-containing SiO(2) (CaPSiO(2)) are combined with poly-(DL-lactide) to form a composite. The main properties studied are the ion release rates of biologically important ions (soluble SiO(2) and Ca(2+)) and the formation of bone mineral-like calcium phosphate (CaP) on the composite surface. These properties are studied by varying the quality, content and granule size of silica gel in the composite, and porosity of the polymer. The results indicate that release rates of SiO(2) and Ca(2+) depend mostly on the formed CaP layer, but in some extent also on the granule size of silicas and polymer porosity. The formation of the bone mineral-like CaP is suggested to be induced by a thin SiO(-) layer on the composite surface. However, due to absence of active SiO(2) or CaPSiO(2) granules on the outermost surface, the suitable nanoscale dimensions do not contribute the nucleation and growth and an extra source for calcium is needed instead. The result show also that all composites with varying amount of CaPSiO(2) (10-60 wt%) formed bone mineral-like CaP on their surfaces, which provides possibilities to optimise the mechanical properties of composites.

  9. Composition of chitosan-hydroxyapatite-collagen composite scaffold evaluation after simulated body fluid immersion as reconstruction material

    Science.gov (United States)

    Verisqa, F.; Triaminingsih, S.; Corputty, J. E. M.

    2017-08-01

    Hydroxyapatite (HA) formation is one of the most important aspects of bone regeneration. Because domestically made chitosan-hydroxyapatite-collagen composite scaffolding from crab shell and bovine bone and tendon has potential as a maxillofacial reconstruction material, the material’s HA-forming ability requires evaluation. The aim of this research is to investigate chitosan-hydroxyapatite-collagen composite scaffold’s potential as a maxillofacial reconstruction material by observing the scaffold’s compositional changes. Scaffold specimens were immersed in 37°C simulated body fluid (SBF) for periods of 2, 4, 6, and 8 days. Scaffold composition was then evaluated by using energy dispersive spectroscopy (EDS). The calcium (Ca) and phosphorus (P) percentages of the scaffold were found to increase following SBF immersion. The high Ca/P ratio (3.82) on the scaffold indicated HA formation. Ion exchange played a significant role in the increased percentages of Ca and P, which led to new HA layer formation. The scaffold’s HA acted as a nucleation site of Ca and P from the SBF, with collagen and chitosan as the scaffold’s matrix. Chitosan-hydroxyapatite-collagen composite scaffold shows potential as a maxillofacial reconstruction material, since its composition favors HA formation.

  10. Electromagnetic Shielding Efficiency Measurement of Composite Materials

    Science.gov (United States)

    Dřínovský, J.; Kejík, Z.

    2009-01-01

    This paper deals with the theoretical and practical aspects of the shielding efficiency measurements of construction composite materials. This contribution describes an alternative test method of these measurements by using the measurement circular flange. The measured results and parameters of coaxial test flange are also discussed. The measurement circular flange is described by measured scattering parameters in the frequency range from 9 kHz up to 1 GHz. The accuracy of the used shielding efficiency measurement method was checked by brass calibration ring. The suitability of the coaxial test setup was also checked by measurements on the EMC test chamber. This data was compared with the measured data on the real EMC chamber. The whole measurement of shielding efficiency was controlled by the program which runs on a personal computer. This program was created in the VEE Pro environment produced by © Agilent Technology.

  11. Effect of modified atmosphere packaging and addition of calcium hypochlorite on the atmosphere composition, colour and microbial quality of mushrooms

    CSIR Research Space (South Africa)

    Kuyper, L

    1993-01-01

    Full Text Available The effect of modified atmosphere packaging in combination with the addition of calcium hypochlorite on the atmosphere composition, colour and microbial quality of mushrooms was investigated. A modified atmosphere which slowed down discolouration...

  12. Potential effects of ocean acidification on Alaskan corals based on calcium carbonate mineralogy composition analysis (NCEI Accession 0157223)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains potential effects of ocean acidification on Alaskan corals based on calcium carbonate mineralogy composition analysis. Effects of...

  13. Composite Materials Design Database and Data Retrieval System Requirements

    Science.gov (United States)

    1991-08-01

    market is a viable development route. However, in order to achieve generality, gateway arrangements are necessary to combine specific databases developed...filamentary composites in woven and nonwoven forms. constituent materials - Individual materials that make up the composite material. cross-ply laminate...woven and nonwoven composite materials. Most common fibers are glass, boron, graphite, and aramid. fiber content - Percent volume of fiber in a

  14. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    Science.gov (United States)

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  15. SEPARATION OF WATER VAPORS FROM AIR BY SORPTION ON SOME COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    OANA HAUTĂ

    2014-01-01

    Full Text Available This work presents an experimental investigation of the kinetics of water vapor sorption on two composites synthesized by impregnating activated carbon and activated alumina respectively with lithium bromide (named as MCA2 and MCC2 respectively. The obtained results showed an increase in water amount adsorbed on both composite materials. Due to different chemical natures of the host matrices, the water sorption kinetics on MCC2 is faster compared to that of MCA2. The presence of calcium chloride instead of lithium bromide in alumina pores will determine a shorter breakthrough time and a higher adsorption rate of water vapors.

  16. Composite materials: Tomorrow for the day after tomorrow

    Science.gov (United States)

    Condom, P.

    1982-01-01

    A description is given of the history of the use of composite materials in the aerospace industry. Research programs underway to obtain exact data on the behavior of composite materials over time are discussed. It is concluded that metal composites have not yet replaced metals, but that that this may be a future possibility.

  17. Composition and method for removing photoresist materials from electronic components

    Science.gov (United States)

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.

    2005-01-25

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  18. Investigation of laundering and dispersion approaches for silica and calcium phosphosilicate composite nanoparticles synthesized in reverse micelles

    Science.gov (United States)

    Tabakovic, Amra

    Nanotechnology, the science and engineering of materials at the nanoscale, is a booming research area with numerous applications in electronic, cosmetic, automotive and sporting goods industries, as well as in biomedicine. Composite nanoparticles (NPs) are of special interest since the use of two or more materials in NP design imparts multifunctionality on the final NP constructs. This is especially relevant for applications in areas of human healthcare, where the use of dye or drug doped composite NPs is expected to improve the diagnosis and treatment of cancer and other serious illnesses. Since the physicochemical properties of NP suspensions dictate the success of these systems in biomedical applications, especially drug delivery of chemotherapeutics, synthetic routes which offer precise control of NP properties, especially particle diameter and colloidal stability, are utilized to form a variety of composite NPs. Formation of NPs in reverse, or water-in-oil, micelles is one such synthetic approach. However, while the use of reverse micelles to form composite NPs offers precise control over NP size and shape, the post-synthesis laundering and dispersion of synthesized NP suspensions can still be a challenge. Reverse micelle synthetic approaches require the use of surfactants and low dielectric constant solvents, like hexane and cyclohexane, as the oil phase, which can compromise the biocompatibility and colloidal stability of the final composite NP suspensions. Therefore, appropriate dispersants and solvents must be used during laundering and dispersion to remove surfactant and ensure stability of synthesized NPs. In the work presented in this dissertation, two laundering and dispersion approaches, including packed column high performance liquid chromatography (HPLC) and centrifugation (sedimentation and redispersion), are investigated for silver core silica (Ag-SiO2) and calcium phosphosilicate (Caw(HxPO4)y(Si(OH)zOa) b · cH2O, CPS) composite NP suspensions

  19. Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate-graphene composites.

    Science.gov (United States)

    Shie, Ming-You; Chiang, Wei-Hung; Chen, I-Wen Peter; Liu, Wen-Yi; Chen, Yi-Wen

    2017-04-01

    Recent exciting findings of the biological interactions of graphene materials have shed light on potential biomedical applications of graphene-containing composites. Owing to the superior mechanical properties and low coefficient of thermal expansion, graphene has been widely used in the reinforcement of biocomposites. In the present study, various ratios of graphene (0.25wt%, 0.5wt% and 1.0wt%) were reinforced into calcium silicate (CS) for bone graft application. Results show that the graphene was embedded in the composites homogeneously. Adding 1wt% graphene into CS increased the young's modulus by ~47.1%. The formation of bone-like apatite on a range of composites with graphene weight percentages ranging from 0 to 1 has been investigated in simulated body fluid. The presence of a bone-like apatite layer on the composites surface after immersion in simulated body fluid was considered by scanning electron microscopy. In vitro cytocompatibility of the graphene-contained CS composites was evaluated using human marrow stem cells (hMSCs). The proliferation and alkaline phosphatase, osteopontin and osteocalcin osteogenesis-related protein expression of the hMSCs on the 1wt% graphene-contained specimens showed better results than on the pure CS. In addition, the angiogenesis-related protein (vWF and ang-1) secretion of cells was significantly stimulated when the graphene concentration in the composites was increased. These results suggest that graphene-contained CS bone graft are promising materials for bone tissue engineering applications. Copyright © 2016. Published by Elsevier B.V.

  20. Method for preparing polyolefin composites containing a phase change material

    Science.gov (United States)

    Salyer, Ival O.

    1990-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  1. Calcium- and Cobalt-doped Yttrium Chromites as an Interconnect Material for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kyung J.; Cramer, Carolyn N.; Thomsen, Edwin C.; Coyle, Christopher A.; Coffey, Greg W.; Marina, Olga A.

    2010-04-23

    The structural, thermal and electrical characteristics of calcium- and cobalt-doped yttrium chromites were studied for a potential use as the interconnect material in high temperature solid oxide fuel cells (SOFCs) as well as other high temperature electrochemical and thermoelectric devices. The Y0.8Ca0.2Cr1-xCoxO3±δ (x=0, 0.1, 0.2, 0.3) compositions had single phase orthorhombic perovskite structures in the wide range of oxygen pressures. Sintering behavior was remarkably enhanced upon cobalt doping and densities 95% and 97% of theoretical density were obtained after sintering at 1300oC in air, when x was 0.2 and 0.3, respectively. The electrical conductivity in both oxidizing and reducing atmospheres was significantly improved with cobalt content, and values of 49 and 10 S/cm at 850oC and 55 and 14 S/cm at 950oC in air and forming gas, respectively, were reported for x=0.2. The conductivity increase was attributed to the charge carrier density increase upon cobalt substitution for chromium confirmed with Seebeck measurements. The thermal expansion coefficient (TEC) was increased with cobalt content and closely matched to that of an 8 mol% yttria-stabilized zirconia (YSZ) electrolyte for 0.1 ≤ x ≤ 0.2. The chemical compatibility between Y0.8Ca0.2Cr1-xCoxO3±δ and YSZ was evaluated firing the two at 1400oC and no reaction products were found if x value was kept lower than 0.2.

  2. Effects of the Addition of Sodium Alginate and the Concentration of Calcium Chloride on the Properties of Composite Nonwoven Fabrics

    Directory of Open Access Journals (Sweden)

    Lou Ching-Wen

    2016-01-01

    Full Text Available Nonwoven fabrics have merits, and for example, they can be simply and quickly processed with a variety of materials and an easily changeable manufacturing process. This study aims to examine the influences of the addition of sodium alginate (SA and the concentration of calcium chloride (CaCl2 on the properties of the composite nonwoven fabrics. Chitosan (CS micro-particles and SA solution are cross-linked with CaCl2 with various concentrations, combined with farir heat preservative staples (FT/cotton (C nonwoven fabrics, and then freeze-dried to form CS/SA/FT/C composite nonwoven fabrics. Afterwards, physical property tests are performed on the resulting composite nonwoven fabrics to determine their properties as related to various concentrations of CaCl2. The addition of SA decreases the water vapor permeability of FT/C nonwoven fabrics by 15 %, but the concentrations of CaCl2 do not influence the water vapor permeability. Compared to FT/C nonwoven fabrics, CS/SA/FT/C composite nonwoven fabrics have significantly lower water absorbency and water vapor permeability, but a greater stiffness.

  3. Glass matrix composite material prepared with waste foundry sand

    Directory of Open Access Journals (Sweden)

    ZHANG Zhao-shu

    2006-11-01

    Full Text Available The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  4. Mechanical and magnetic properties of composite materials with polymer matrix

    OpenAIRE

    Grujić A.; Talijan N.; Stojanović D.; Stajić-Trošić J.; Burzić Z.; Balanović Lj.; Aleksić R.

    2010-01-01

    Many of modern technologies require materials with unusual combinations of properties that cannot be met by the conventional metal alloys, ceramics, and polymeric materials. Material property combinations and ranges have been extended by the development of composite materials. Development of Nd-Fe-B/polymer composite magnetic materials has significantly increased interest in research and development of bonded magnets, since particles of Nd-Fe-B alloys are proved to be very suitable for their ...

  5. Developing Raman spectroscopy for the nondestructive testing of composite materials.

    Science.gov (United States)

    2009-08-01

    The proposed research will develop the application of Raman Spectroscopy as a nondestructive evaluation tool for the condition assessment of carbon fiber composites. Composite materials are increasingly being used in engineered structures and compone...

  6. Numerical simulation of mechanical behavior of composite materials

    CERN Document Server

    Oller, Sergio

    2014-01-01

    An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...

  7. Developing polymer composite materials: carbon nanotubes or graphene?

    Science.gov (United States)

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng

    2013-10-04

    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes

    Directory of Open Access Journals (Sweden)

    Guilherme Maia Mulder van de Graaf

    Full Text Available Introduction: Bone diseases, aging and traumas can cause bone loss and lead to bone defects. Treatment of bone defects is challenging, requiring chirurgical procedures. Bone grafts are widely used for bone replacement, but they are limited and expensive. Due to bone graft limitations, natural, semi-synthetic, synthetic and composite materials have been studied as potential bone-graft substitutes. Desirable characteristics of bone-graft substitutes are high osteoinductive and angiogenic potentials, biological safety, biodegradability, bone-like mechanical properties, and reasonable cost. Herein, we prepared and characterized potential bone-graft substitutes composed of calcium phosphate (CP - a component of natural bone, and chitosan (CS - a biocompatible biopolymer. Methods CP-CS composites were synthetized, molded, dried and characterized. The effect of drying temperatures (38 and 60 °C on the morphology, porosity and chemical composition of the composites was evaluated. As well, the effects of drying temperature and period of drying (3, 24, 48 and 72 hours on the mechanical properties - compressive strength, modulus of elasticity and relative deformation-of the demolded samples were investigated. Results Scanning electron microscopy and gas adsorption-desorption analyses of the CS-CP composites showed interconnected pores, indicating that the drying temperature played an important role on pores size and distribution. In addition, drying temperature have altered the color (brownish at 60 °C due to Maillard reaction and the chemical composition of the samples, confirmed by FTIR. Conclusion Particularly, prolonged period of drying have improved mechanical properties of the CS-CP composites dried at 38 °C, which can be designed according to the mechanical needs of the replaceable bone.

  9. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement.

    Science.gov (United States)

    Klammert, Uwe; Reuther, Tobias; Blank, Melanie; Reske, Isabelle; Barralet, Jake E; Grover, Liam M; Kübler, Alexander C; Gbureck, Uwe

    2010-04-01

    Brushite (CaHPO(4) x 2H(2)O)-forming calcium phosphate cements are of great interest as bone replacement materials because they are resorbable in physiological conditions. However, their short setting times and low mechanical strengths limit broad clinical application. In this study, we showed that a significant improvement of these properties of brushite cement could be achieved by the use of magnesium-substituted beta-tricalcium phosphate with the general formula Mg(x)Ca((3-x))((PO(4))(2) with 0 forming newberyite (MgHPO(4) x 3H(2)O) as a second setting product. The biocompatibility of the material was investigated in vitro using the osteoblast-like cell line MC3T3-E1. A considerable increase of cell proliferation and expression of alkaline phosphatase, indicating an osteoblastic differentiation, could be noticed. Scanning electron microscopy analysis revealed an obvious cell growth on the surface of the scaffolds. Analysis of the culture medium showed minor alterations of pH value within the physiological range. The concentrations of free calcium, magnesium and phosphate ions were altered markedly due to the chemical solubility of the scaffolds. We conclude that the calcium magnesium phosphate (newberyite) cements have a promising potential for their use as bone replacement material since they provide a suitable biocompatibility, an extended workability and improved mechanical performance compared with brushite cements. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    Directory of Open Access Journals (Sweden)

    Shivani Utneja

    2015-02-01

    Full Text Available Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage.

  11. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    Science.gov (United States)

    Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

  12. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Chen, Ying; Kawazoe, Naoki; Chen, Guoping

    2017-12-12

    Although bone is regenerative, its regeneration capacity is limited. For bone defects beyond a critical size, further intervention is required. As an attractive strategy, bone tissue engineering (bone TE) has been widely investigated to repair bone defects. However, the rapid and effective bone regeneration of large non-healing defects is still a great challenge. Multifunctional scaffolds having osteoinductivity and osteoconductivity are desirable to fasten functional bone tissue regeneration. In the present study, biomimetic composite scaffolds of collagen and biphasic calcium phosphate nanoparticles (BCP NPs) with a controlled release of dexamethasone (DEX) and the controlled pore structures were prepared for bone TE. DEX was introduced in the BCP NPs during preparation of the BCP NPs and hybridized with collagen scaffolds, which pore structures were controlled by using pre-prepared ice particulates as a porogen material. The composite scaffolds had well controlled and interconnected pore structures, high mechanical strength and a sustained release of DEX. The composite scaffolds showed good biocompatibility and promoted osteogenic differentiation of hMSCs when used for three-dimensional culture of human bone marrow-derived mesenchymal stem cells. Subcutaneous implantation of the composite scaffolds at the dorsa of athymic nude mice demonstrated that they facilitated the ectopic bone tissue regeneration. The results indicated the DEX-loaded BCP NPs/collagen composite scaffolds had high potential for bone TE. Scaffolds play a crucial role for regeneration of large bone defects. Biomimetic scaffolds having the same composition of natural bone and a controlled release of osteoinductive factors are desirable for promotion of bone regeneration. In this study, composite scaffolds of collagen and biphasic CaP nanoparticles (BCP NPs) with a controlled release nature of dexamethasone (DEX) were prepared and their porous structures were controlled by using ice particulates

  13. The Chemical Composition of Different Sources of Liming Materials ...

    African Journals Online (AJOL)

    An incubation experiment was conducted to evaluate the effect of some liming materials on soil chemical properties. The treatments comprised Cocoa Husk Pod Ash (CPHA), Oyster Shell Ash (OSA), Palm Bunch Ash (PBA), Calcium Carbonate (CaCO3), Kitchen Residues Ash (KRA) and Saw Dust Ash (SDA) at five levels ...

  14. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  15. Non-Catalytic Self Healing Composite Material Solution Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber reinforce polymer (FRP) composite materials are seeing increasing use in the construction of a wide variety of aerospace structures. However, uncertainties...

  16. Multi-material Preforming of Structural Composites

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eberle, Cliff C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pastore, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sudbury, Thomas Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xiong, Fue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hartman, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.

  17. Shear bond strength of calcium enriched mixture cement and mineral trioxide aggregate to composite resin with two different adhesive systems.

    Directory of Open Access Journals (Sweden)

    Siavash Savadi Oskoee

    2014-12-01

    Full Text Available Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal.The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA, and calcium enriched mixture cement (CEM to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI cement.Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey's test (P<0.05.Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001; however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9. Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95 All the failures were of cohesive type in RMGI, MTA and CEM.Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system.

  18. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen Zhaohui, E-mail: wenzhaohui1968@163.com [Department of Neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Calcium phosphate/chitosan composite coatings on the MAO-AZ91D alloy were prepared. Black-Right-Pointing-Pointer The bonding force between the coating and the magnesium alloy was optimized. Black-Right-Pointing-Pointer The composite coating slowed down the corrosion rate of magnesium alloy in m-SBF. - Abstract: In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS {<=} 0.25 g, nHA {<=} 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA {<=} 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating

  19. Preparation of mesoporous carbon/polypyrrole composite materials and their supercapacitive properties

    Directory of Open Access Journals (Sweden)

    WU-JUN ZOU

    2011-08-01

    Full Text Available We synthesized mesoporous carbons/polypyrrole composites, using a chemical oxidative polymerization and calcium carbonate as a sacrificial template. N2 adsorption-desorption method, Fourier infrared spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the composites. The measurement results indicated that as-synthesized carbon with the disordered mesoporous structure and a pore size of approximately 5 nm was uniformly coated by polypyrrole. The electrochemical behavior of the resulting composite was examined by cyclic voltammetry and cycle life measurements, and the obtained results showed that the specific capacitance of the resulting composite electrode was as high as 313 F g−1, nearly twice the capacitance of pure mesoporous carbon electrode (163 F g–1. This reveals that the electrochemical performance of these materials is governed by a combination of the electric double layer capacitance of mesoporous carbon and pseudocapacitance of polypyrrole.

  20. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice.

    Science.gov (United States)

    Wang, Jing; Chen, Ying; Zhu, Xiangdong; Yuan, Tun; Tan, Yanfei; Fan, Yujiang; Zhang, Xingdong

    2014-12-01

    The purpose of this study was to investigate the effect of phase compositions of porous calcium phosphate (CaP) ceramics on their protein adsorption behaviors in vitro and osteoinductive potentials in vivo in mice. Under competitive conditions, a high adsorption of bone morphogenetic protein 2 (BMP-2) was observed at a high initial concentration of BMP-2 in the multi-protein solution on all the four types of ceramics, indicating their strong affinity for BMP-2. No significant difference in BMP-2 adsorption between the ceramics was noted, indicating that phase composition could have little influence on BMP-2 adsorption. After implantation into the thigh muscles of mice for 45 and 90 days, the histological and histomorphometric analyses showed that porous biphasic calcium phosphate (BCP) ceramic consisting of 30% hydroxyapatite HA and 70% tricalcium phosphate (β-TCP), i.e. BCP-2 had stronger osteoinductive ability than the other three groups of ceramics. The immunohistochemical staining showed the highest expression of BMP-2 and osteocalcin (OCN) in BCP-2 group. Osteoinduction of porous CaP ceramics might be influenced by the amount of BMP-2 present in the local microenvironment in the implant, which was regulated by the phase composition of the ceramics. BCP-2 promoted the highest expression of BMP-2 and then showed the strongest osteoinduction in mice. © 2014 Wiley Periodicals, Inc.

  1. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  2. Detonation Shock Dynamics of Composite Energetic Materials.

    Science.gov (United States)

    Lee, Jaimin

    1990-01-01

    A reaction-rate equation for a composite energetic material was calibrated from two-dimensional steady-state experiment data by using the detonation shock dynamics theory. From experimental detonation velocities and shock -front shapes at different diameters for an ammonium nitrate -based emulsion explosive at 1.248 g/cm^3, the relationship between the detonation velocity normal to the shock-front and the shock-front curvature was obtained. By using this relationship and solving the quasi one-dimensional Euler equations of motion in a problem -conforming intrinsic-coordinate frame obtained from the detonation shock dynamics theory, the reaction rate was determined as a function of pressure and density: {dlambdaover dt} = 20.0 times 10^6 {rm exp}({-}14390/ sqrt{P/rho^{0.8418}})(1 - lambda)^{1.889}where lambda is the reaction extent, t is the time in s, P is the pressure in Pa, and rho is the density in kg/m^3 . The reaction-rate equation obtained for this emulsion explosive shows that the rate is very slow and weakly state dependent. These characteristics of the rate indicated that the nonideal behavior of most industrial-type explosives can be attributed to their slow and state-insensitive rates. By using the above rate equation, one-dimensional initiation experiments (wedge tests) were numerically modeled with a one-dimensional Lagrangian hydrodynamic code. The calculated shock trajectories agreed very well with experimental wedge test data. This agreement also suggested that the small shock-curvature asymptotics may be valid even for a relatively large value of the curvature. The calibration method developed in this study is independent of the form of the rate. Realistic rate equations for explosives can be obtained in a very systematic way from two-dimensional steady-state experiments.

  3. Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Baradaran, S., E-mail: saeid_baradaran@yahoo.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Moghaddam, E. [Tropical Infectious Diseases Research and Education Centre, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nasiri-Tabrizi, Bahman, E-mail: bahman_nasiri@hotmail.com [Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology& Catalysis Research (NanoCat), University Malaya, 50603 Kuala Lumpur (Malaysia); Mehrali, M. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Sookhakian, M. [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Hamdi, M. [Center of Advanced Manufacturing and Material Processing, University of Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Y. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2015-04-01

    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3 wt.% and 6 wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900 °C for 1 h. The GNP (0.5–2 wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15 h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150 °C and 160 MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5 days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5 wt.% was the optimum value. - Highlights: • Ni doped biphasic calcium phosphate/graphene nanoplatelets composite was investigated. • Mechanical and biological properties were evaluated. • Phase compositions and structural features were influenced noticeably by the Ni and GNPs. • The cytotoxicity of the Ni was improved with the addition of GNPs.

  4. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  5. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    Science.gov (United States)

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of Temperature on Precipitation Rate of Calcium Carbonate Produced through Microbial Metabolic Process of Bio Materials

    Directory of Open Access Journals (Sweden)

    Prima Yane Putri

    2016-09-01

    Full Text Available Concrete is the most widely used construction material in civil engineering. But plain concrete is a brittle material and has little resistance to cracking. The cracking in concrete promotes deterioration such as the corrosion of reinforcing rebar, therefore, repair in filling the crack is often carried out. Recently, repair methods using bio-based materials associated with microbial metabolic processes leading to precipitation of calcium carbonate have been intensively studied. In this study, influencing factors on the precipitation rate depending on the constituents of bio-based material comprising yeast, glucose and calcium acetate mixed in tris buffer solution was examined for improving the rate of initial reactions. In addition, effect of temperature change on the amount of calcium carbonate precipitation was also investigated. The precipitates were identified by X-ray diffraction. It was shown that the increase of temperature lead to a change on calcium carbonate precipitation and caused the pH decrease under 7.0.

  7. Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys

    Science.gov (United States)

    Paine, Jeffrey S. N.; Rogers, Craig A.

    1996-01-01

    Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which

  8. Composite materials application on FORMOSAT-5 remote sensing instrument structure

    Directory of Open Access Journals (Sweden)

    Jen-Chueh Kuo

    2017-01-01

    Full Text Available Composite material has been widely applied in space vehicle structures due to its light weight and designed stiffness modulus. Some special mechanical properties that cannot be changed in general metal materials, such as low CTE (coefficient of thermal expansion and directional material stiffness can be artificially adjusted in composite materials to meet the user’s requirements. Space-qualified Carbon Fiber Reinforced Plastic (CFRP composite materials are applied In the FORMOSAT-5 Remote Sensing (RSI structure because of its light weight and low CTE characteristics. The RSI structural elements include the primary mirror supporting plate, secondary mirror supporting ring, and supporting frame. These elements are designed, manufactured, and verified using composite materials to meet specifications. The structure manufacturing process, detailed material properties, and CFRP structural element validation methods are introduced in this paper.

  9. Composite Materials and Films Based on Melanins, Polydopamine, and Other Catecholamine-Based Materials

    Directory of Open Access Journals (Sweden)

    Vincent Ball

    2017-07-01

    Full Text Available Polydopamine (PDA is related to eumelanins in its composition and structure. These pigments allow the design, inspired by natural materials, of composite nanoparticles and films for applications in the field of energy conversion and the design of biomaterials. This short review summarizes the main advances in the design of PDA-based composites with inorganic and organic materials.

  10. Mechanical properties of wood-based composite materials

    Science.gov (United States)

    Zhiyong Cai; Robert J. Ross

    2010-01-01

    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  11. Application of composite materials in structures of modern airplanes

    Directory of Open Access Journals (Sweden)

    В.В. Астанін

    2004-03-01

    Full Text Available  The application efficiency  of composite plastic materials in structures of modern civil and military airplanes are investigated. Detaled analisys of Antonov branch airplanes is presented on general diagrams. The 25–27%  diaposon of the mass reduction that was achieved due to composite materials application is determined.

  12. Application of composite materials in structures of modern airplanes

    OpenAIRE

    В.В. Астанін; А.В. Хоменко; ШЕВЧЕНКО О.А.

    2004-01-01

     The application efficiency  of composite plastic materials in structures of modern civil and military airplanes are investigated. Detaled analisys of Antonov branch airplanes is presented on general diagrams. The 25–27%  diaposon of the mass reduction that was achieved due to composite materials application is determined.

  13. Application of Modern Polymeric Composite Materials in Industrial Construction

    Directory of Open Access Journals (Sweden)

    Gabriel Oprişan

    2010-01-01

    Full Text Available The large variety of modern composite materials and products existing nowadays in the construction market provides multiple and convenient possibilities to use them in both structural and nonstructural industrial construction elements. The main advantages of modern composite materials such as: corrosion resistance, high strength and modulus values compared to their density, acceptable deformability, tailored design and excellent formability enable the fabrication of new elements and the structural rehabilitation of the existing parts made of traditional materials. The high potential of the applicability of polymeric composites in new industrial construction correlated with fabrication procedures as well as the use of composites in modern strengthening solutions are presented in the paper.

  14. Flexible hydrogel-based functional composite materials

    Science.gov (United States)

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P

    2013-10-08

    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  15. Bone augmentation using a new injectable bone graft substitute by combining calcium phosphate and bisphosphonate as composite--an animal model.

    Science.gov (United States)

    Schlickewei, Carsten W; Laaff, Georg; Andresen, Anne; Klatte, Till O; Rueger, Johannes M; Ruesing, Johannes; Epple, Matthias; Lehmann, Wolfgang

    2015-07-25

    The aim of this study was to create a new injectable bone graft substitute by combining the features of calcium phosphate and bisphosphonate as a composite bone graft to support bone healing and to evaluate the effect of alendronate to the bone healing process in an animal model. In this study, 24 New Zealand white rabbits were randomly divided into two groups: a calcium phosphate alendronate group and a calcium phosphate control group. A defect was created at the proximal medial tibia and filled with the new created injectable bone graft substitute calcium phosphate alendronate or with calcium phosphate. Healing process was documented by fluoroscopy. To evaluate the potential of the bone graft substitute, the proximal tibia was harvested 2, 4, and 12 weeks after operation. Histomorphological analysis was focused on the evaluation of the dynamic bone parameters using the Osteomeasure system. Radiologically, the bone graft materials were equally absorbed. No fracture was documented. The bones healed normally. After 2 weeks, the histological analysis showed an increased new bone formation for both materials. The osteoid volume per bone volume (OV/BV) was significantly higher for the calcium phosphate group. After 4 weeks, the results were almost equal. The trabecular thickness (Tb.Th) increased in comparison to week 2 in both groups with a slight advantage for the calcium phosphate group. The total mass of the bone graft (KEM.Ar) and the bone graft substitute surface density (KEM.Pm) were consistently decreasing. After 12 weeks, the new bone volume per tissue volume (BV/TV) was still constantly growing. Both bone grafts show a good integration. New bone was formed on the surface of both bone grafts. The calcium phosphate as well as the calcium phosphate alendronate paste had been enclosed by the bone. The trabecular thickness was higher in both groups compared to the first time point. Calcium phosphate proved its good potential as a bone graft substitute

  16. Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity.

    Science.gov (United States)

    Dahlin, Christer; Obrecht, Marcel; Dard, Michel; Donos, Nikos

    2015-07-01

    The aim of this study was to investigate bone regeneration following application of a novel biphasic calcium phosphate (BCP I) composed of microstructured granules of 90% β-tricalcium phosphate (β-TCP)/10% hydroxyapatite (HA) compared to BCP non-microstructured biphasic calcium phosphate with a composite of 60% hydroxyapatite/40% β-TCP (BCP II) and a deproteinized bovine bone mineral (DBBM) at surgically created defects in the mandible of minipigs in a combined approach with guided bone regeneration (GBR). Sixteen minipigs were used for the study. Lower premolars P2, P3, P4 and first molar M1 were extracted. Following 3 months of healing, two defects with a width and depth of 7 mm were created bilaterally in the mandible. The different grafting materials were randomly placed in the created defects and covered by means of a collagen membrane. After 3 and 8 weeks, biopsies were sampled. All specimens were evaluated with descriptive histology and histomorphometric evaluations complemented by micro-CT scan analysis. All three biomaterials presented with higher bone volume at 8 weeks compared to 3 weeks (P tissue compared to the other groups. All the three test materials performed well with regard to bone formation at 8 weeks. BCP I showed significant higher amounts of newly formed bone despite a higher remaining graft volume compared to the other groups. With regard to the regenerative outcome, all the three materials can be recommended for clinical use. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  18. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  19. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin.

    Science.gov (United States)

    Yu, Weijiang; Jiang, Guohua; Liu, Depeng; Li, Lei; Chen, Hua; Liu, Yongkun; Huang, Qin; Tong, Zaizai; Yao, Juming; Kong, Xiangdong

    2017-02-01

    To reduce the inconvenience and pain of subcutaneous needle injection, the calcium sulfate and gelatin biodegradable composite microneedle patches with high aspect-ratio microneedles (MNs) and a flexible substrate have been developed. The microneedles with an aspect-ratio approximate 6:1 exhibit excellent mechanical property which can achieve 0.4N for each needle. The cross-section views show the inside of microneedles that have abundant pores and channels which offer potential for different drug-release profiles. The preparation procedures, degradable property for the biodegradable composite microneedle patches are described in the paper. Insulin, the drug to control blood glucose levels in diabetic patients, has been embedded into the biodegradable composite MNs. The hypoglycemic effect for transdermal delivery of insulin is studied using diabetic Sprague-Dawley (SD) rats as models in vivo. After transdermal administration to the diabetic rats, the released insulin from biodegradable composite MNs exhibit an obvious and effective hypoglycemic effect for longer time compared with that of subcutaneous injection route. This work suggests that biodegradable composite MNs containing of insulin have a potential application in diabetes treatment via transdermal ingestion. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A novel hybrid multichannel biphasic calcium phosphate granule-based composite scaffold for cartilage tissue regeneration.

    Science.gov (United States)

    Jung, Albert; Makkar, Preeti; Amirian, Jhaleh; Lee, Byong-Taek

    2018-01-01

    The objective of the present study was to develop a novel hybrid multichannel biphasic calcium phosphate granule (MCG)-based composite system for cartilage regeneration. First, hyaluronic acid-gelatin (HG) hydrogel was coated onto MCG matrix (MCG-HG). Poly(lactic-co-glycolic acid) (PLGA) microspheres was separately prepared and modified with polydopamine subsequent to BMP-7 loading (B). The surface-modified microspheres were finally embedded into MCG-HG scaffold to develop the novel hybrid (MCG-HG-PLGA-PD-B) composite system. The newly developed MCG-HG-PLGA-PD-B composite was then subjected to scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier Transform infrared spectroscopy, porosity, compressive strength, swelling, BMP-7 release and in-vitro biocompatibility studies. Results showed that 60% of BMP-7 retained on the granular surface after 28 days. A hybrid MCG-HG-PLGA-PD-B composite scaffold exhibited higher swelling and compressive strength compared to MCG-HG or MCG. In-vitro studies showed that MCG-HG-PLGA-PD-B had improved cell viability and cell proliferation for both MC3T3-E1 pre-osteoblasts and ATDC5 pre-chondrocytes cell line with respect to MCG-HG or MCG scaffold. Our results suggest that a hybrid MCG-HG-PLGA-PD-B composite scaffold can be a promising candidate for cartilage regeneration applications.

  1. NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview

    Science.gov (United States)

    Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne

    1999-01-01

    A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

  2. Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization.

    Science.gov (United States)

    Bortoluzzi, Eduardo A; Niu, Li-Na; Palani, Chithra D; El-Awady, Ahmed R; Hammond, Barry D; Pei, Dan-Dan; Tian, Fu-Cong; Cutler, Christopher W; Pashley, David H; Tay, Franklin R

    2015-12-01

    In pulpal revascularization, a protective material is placed coronal to the blood clot to prevent recontamination and to facilitate osteogenic differentiation of mesenchymal stem cells to produce new dental tissues. Although mineral trioxide aggregate (MTA) has been the material of choice for clot protection, it is easily displaced into the clot during condensation. The present study evaluated the effects of recently introduced calcium silicate cements (Biodentine and TheraCal LC) on the viability and osteogenic differentiation of human dental pulp stem cells (hDPSCs) by comparing with MTA Angelus. Cell viability was assessed using XTT assay and flow cytometry. The osteogenic potential of hDPSCs exposed to calcium silicate cements was examined using qRT-PCR for osteogenic gene expressions, alkaline phosphatase enzyme activity, Alizarin red S staining and transmission electron microscopy of extracellular calcium deposits. Parametric statistical methods were employed for analyses of significant difference among groups, with α=0.05. The cytotoxic effects of Biodentine and TheraCal LC on hDPSCs were time- and concentration-dependent. Osteogenic differentiation of hDPSCs was enhanced after exposure to Biodentine that was depleted of its cytotoxic components. This effect was less readily observed in hDPSCs exposed to TheraCal LC, although both cements supported extracellular mineralization better than the positive control (zinc oxide-eugenol-based cement). A favorable tissue response is anticipated to occur with the use of Biodentine as a blood clot-protecting material for pulpal revascularization. Further investigations with the use of in vivo animal models are required to validate the potential adverse biological effects of TheraCal LC on hDPSCs. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Reflection and transmission for layered composite materials

    Science.gov (United States)

    Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.

    1991-01-01

    A layered planar structure consisting of different bianisotropic materials separated by jump-immittance sheets is considered. Reflection and transmission coefficients are determined via a chain-matrix algorithm. Applications are important for radomes and radar-absorbing materials.

  4. Fine-Tuning of Polymeric Resins and their Interfaces with Amorphous Calcium Phosphate. A Strategy for Designing Effective Remineralizing Dental Composites

    Directory of Open Access Journals (Sweden)

    Drago Skrtic

    2010-09-01

    Full Text Available For over a decade our group has been designing, preparing and evaluating bioactive, remineralizing composites based on amorphous calcium phosphate (ACP fillers embedded in polymerized methacrylate resin matrices. In these studies a major focus has been on exploring structure-property relationships of the matrix phase of these composites on their anti-cariogenic potential. The main challenges were to gain a better understanding of polymer matrix/filler interfacial properties through controlling the surface properties of the fillers or through fine-tuning of the resin matrix. In this work, we describe the effect of chemical structure and composition of the resin matrices on some of the critical physicochemical properties of the copolymers and their ACP composites. Such structure-property studies are essential in formulating clinically effective products, and this knowledge base is likely to have strong impact on the future design of therapeutic materials, appropriate for mineral restoration in defective tooth structures.

  5. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  6. Nano composite phase change materials microcapsules

    Science.gov (United States)

    Song, Qingwen

    MicroPCMs with nano composite structures (NC-MicroPCMs) have been systematically studied. NC-MicroPCMs were fabricated by the in situ polymerization and addition of silver NPs into core-shell structures. A full factorial experiment was designed, including three factors of core/shell, molar ratio of formaldehyde/melamine and NPs addition. 12 MicroPCMs samples were prepared. The encapsulated efficiency is approximately 80% to 90%. The structural/morphological features of the NC-MicroPCMs were evaluated. The size was in a range of 3.4 mu m to 4.0 mu m. The coarse appearance is attributed to NPs and NPs are distributed on the surface, within the shell and core. The NC-MicroPCMs contain new chemical components and molecular groups, due to the formation of chemical bonds after the pretreatment of NPs. Extra X-ray diffraction peaks of silver were found indicating silver nano-particles were formed into an integral structure with the core/shell structure by means of chemical bonds and physical linkages. Extra functionalities were found, including: (1) enhancement of IR radiation properties; (2) depression of super-cooling, and (3) increase of thermal stabilities. The effects of SERS (Surface Enhanced Raman Spectroscopy) arising from the silver nano-particles were observed. The Raman scattering intensity was magnified more than 100 times. These effects were also exhibited in macroscopic level in the fabric coatings as enhanced IR radiation properties were detected by the "Fabric Infrared Radiation Management Tester" (FRMT). "Degree of Crystallinity" (DOC) was measured and found the three factors have a strong influence on it. DOC is closely related to thermal stability and MicroPCMs with a higher DOC show better temperature resistance. The thermal regulating effects of the MicroPCMs coatings were studied. A "plateau regions" was detected around the temperature of phase change, showing the function of PCMs. Addition of silver nano-particles to the MicroPCMs has a positive

  7. Calcium, iron and essential fatty acid composition of bengali mother’s milk: a population based cross-sectional study

    Directory of Open Access Journals (Sweden)

    Susmita Roy

    2014-12-01

    Full Text Available Background: Extensive literature is available that highlights only a healthy mother ensures the optimal growth of an infant. Human milk fatty acid is the only component which is influenced more by maternal diet. Beside the lipid fraction of maternal milk, micro and macro elements play major roles in execution of development of new-born. Aims and Objectives: For the first time, the present study entails to exhibit the relative concentration of essential nutrients of human milk of Bengali mothers with typical Bengali food habit with aims to observe (i the level of Calcium (Ca, Iron (Fe (ii the composition of lipid in Bengali mothers’ milk and (iii maternal dietary habit and its influence on these nutrients. Materials and Methods: 19 colostrum, 14 transitional milk and 16 matured milk samples were collected from Bengali mothers, belonging to higher income group (HIG and medium income income group (MIG. Milk lipid was extracted, and then converted to fatty acid methyl ester to analyse by gas liquid chromatography. Phospholipid content was determined spectrophotometrically. Ca and Fe contents were determined by atomic absorption microscopy. Results: Ca content changed in an ascending order throughout the lactation period in both HIG and MIG mothers, so as the lipid content of HIG mothers. Daily intake of Ca is higher in HIG mothers than MIG, but not Fe. Ca content is linearly correlated with maternal age and BMI. Conclusion: Ca, Fe and fatty acid composition of mothers’ milk are influenced by maternal dietary intake. Linear correlation signifies that demand of calcium to neonate increases as maternal age progress. Eicosapentaenoic acid, arachidonic acid and docosahexaenoic acid are of great importance for neonatal growth which is solely dependent on maternal fish intake. Consumption of mustard oil results in a significant amount of nervonic acid which is an imperative component of nerve tissue.

  8. The Cyogenic Evaluation of Irradiated Composite Materials for Use in Composite Pressure Vessels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HyPerComp Engineering, Inc. (HEI) proposes to continue the characterization of the cryogenic evaluation of irradiated composite materials for use in composite...

  9. Microstructure-mechanical behaviour relationship in alumina-calcium exaluminate composites; Relaciones microestructura-comportamiento mecanico en materiales de alumina-hexaluminato calcico

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A. J.; Moreno, R.; Baudin, C.

    2001-07-01

    The grain growth behaviour of dense alumina materials has been modified by the addition of calcium hexaluminate particles. Maximum dispersion has been obtained by colloidal processing routes. The influence of sintering temperature (1500-1600 degree centigree) on the size and shape of the alumina grains has been established. The mechanical behaviour of three composite materials with the same composition ({approx}10 vol% CA{sub 6}) and large microstructural differences has been studied in comparison with that of monophasic alumina of the same grain size. The influence of grain size and shape on toughness has been established. R-curve behaviour has been detected during fracture of the material with the alumina grains presenting the largest shape factor. (Author) 18 refs.

  10. Effect of Service Environment on Composite Materials

    Science.gov (United States)

    1980-08-01

    by the senior author’s experience with graphite/ epoxy sandwich components of the Space Lauttle Orbiter . There, the tracking of the moistu-S •re flow...Zigrang and H.W. Bergmann, "The Response of the Space Shuttle Orbiter Graphite/ "A Epoxy Sandwich Panels to Exposure to Moisture and Heat... CARACTERISATION DE LA RESISTANCE AU FOUDROIEMENT DES MATERIAUX COMPOSITES Apriis une mise en Evidence de la vulnirabilit6 des mat~riaux: composites vis a vis de

  11. Discussion on the Standardization of Shielding Materials — Sensitivity Analysis of Material Compositions

    Directory of Open Access Journals (Sweden)

    Ogata Tomohiro

    2017-01-01

    Full Text Available The overview of standardization activities for shielding materials is described. We propose a basic approach for standardizing material composition used in radiation shielding design for nuclear and accelerator facilities. We have collected concrete composition data from actual concrete samples to organize a representative composition and its variance data. Then the sensitivity analysis of the composition variance has been performed through a simple 1-D dose calculation. Recent findings from the analysis are summarized.

  12. Treatment of Volatile Organic Compounds with Mesoporous Materials Prepared from Calcium Fluoride Sludge.

    Science.gov (United States)

    Kang, Sv-Yuan; Tsai, Hsiao-Hsin; Nguyen, Nhat-Thien; Chang, Chang-Tang; Tseng, Chao-Heng

    2016-02-01

    Large amount of calcium fluoride sludge was generated by semiconductor industry every year. It also needs high requirement of fuel consumption using rotor concentrator and thermal oxidizer to treat VOCs. The mesoporous catalyst prepared by calcium fluoride sludge was used for VOCs treatment in this study. Acetone is a kind of solvent and used in a large number of laboratories and factories. The serious problems will be caused when it exposed to the environmental. Economic and practical technology is needed to eliminate this kind of hazardous air pollutant. In this research, the adsorption of acetone was tested with CF-MCM (mesoporous silica materials synthesized from calcium fluoride). The raw material was mixed with cationic cetyltrimethyl ammonium bromide (CTAB) surfactants, firstly. The prepared mesoporous silica materials were characterized by nitrogen adsorption and desorption analysis, transmission electron microscope (TEM), scanning electron microscopy (SEM), X-ray powder diffractometer (XRPD) and Fourier transform infrared spectroscopy (FTIR). The results showed that the surface area, large pore volume and pore diameter could be up to 862 m2 g(-1), 0.57 cm3 g(-1) and 2.9 nm, respectively. The crystal patterns of CF-MCM were similar with MCM-41 from TEM image. The adsorption capacity of acetone with CF-MCM was 118, 190, 194 and 201 mg g(-1), respectively, under 500, 1000, 1500 and 2000 ppm. Furthermore, the adsorption capacity of MCM-41 and CF-MCM was almost the same. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study.

  13. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    Science.gov (United States)

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  14. Cytotoxicity and Osteogenic Potential of Silicate Calcium Cements as Potential Protective Materials for Pulpal Revascularization

    Science.gov (United States)

    Bortoluzzi, Eduardo A.; Niu, Li-na; Palani, Chithra D.; El-Awady, Ahmed R.; Hammond, Barry D.; Pei, Dan-dan; Tian, Fu-cong; Cutler, Christopher W.; Pashley, David H.; Tay, Franklin R.

    2016-01-01

    Objectives In pulpal revascularization, a protective material is placed coronal to the blood clot to prevent recontamination and to facilitate osteogenic differentiation of mesenchynal stem cells to produce new dental tissues. Although mineral trioxide aggregate (MTA) has been the material of choice for clot protection, it is easily displaced into the clot during condensation. The present study evaluated the effects of recently-introduced calcium silicate cements (Biodentine and TheraCal LC) on the viability and osteogenic differentiation of human dental pulp stem cells (hDPSCs) by comparing with MTA Angelus. Methods Cell viability was assessed using XTT assay and flow cytometry. The osteogenic potential of hDPSCs exposed to calcium silicate cements was examined using qRT-PCR for osteogeic gene expressions, alkaline phosphatase enzyme activity, Alizarin red S staining and transmission electron microscopy of extracellular calcium deposits. Parametric statistical methods were employed for analyses of significant difference among groups, with α=0.05. Results The cytotoxic effects of Biodentine and TheraCal LC on hDPSCs were time- and concentration-dependent. Osteogenic differentiation of hDPSCs was enhanced after exposure to Biodentine that was depleted of its cytotoxic components. This effect was less readily observed in hDPSCs exposed to TheraCal LC, although both cements supported extracelluar mineralization better than the positive control (zinc oxide-eugenol–based cement). Significance A favorable tissue response is anticipated to occur with the use of Biodentine as a blood clot-protecting material for pulpal revascularizaiton. Further investigations with the use of in vivo animal models are required to validate the potential adverse biological effects of TheraCal LC on hDPSCs. PMID:26494267

  15. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  16. Composite Material Suitable for Use as Electrode Material in a SOC

    DEFF Research Database (Denmark)

    2010-01-01

    in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-[delta] or (Ln1-xSrx)1-sFe1-yCioyO3-[delta](s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material...

  17. The effect of different diets on urine composition and the risk of calcium oxalate crystallisation in healthy subjects.

    Science.gov (United States)

    Siener, Roswitha; Hesse, Albrecht

    2002-09-01

    The aim of the study was to determine the impact of defined diet modifications on urine composition and the risk of calcium oxalate crystallisation. Ten healthy male volunteers consumed a self-selected diet (SD) for 14 days, and three different standard diets for a period of 5 days each. Whereas the western-type diet (WD) is representative of the usual dietary habits, the normal mixed diet (ND) and the ovo-lacto-vegetarian diet (VD) were calculated according to the requirements. The risk of calcium oxalate crystallisation, calculated as relative supersaturation (EQUIL2) from urine composition, was highest during ingestion of diets SD and WD. The intake of diet ND resulted in a significant decrease in relative supersaturation with calcium oxalate by 58% (p<0.05) compared with diet WD, due to a significant decline in urinary calcium and uric acid excretion and a significant increase in urinary volume, pH-value and citrate excretion. In spite of an increase in urinary pH, citrate and magnesium excretion and a decline in calcium excretion, no further significant decrease in the risk of calcium oxalate crystallisation was observed on diet VD, due to a significant increase in urinary oxalate by 30% (p<0.05) on average. The change of usual dietary habits for a normal mixed diet significantly reduces the risk of calcium oxalate crystallisation. With a vegetarian diet a similar decline in urinary supersaturation with calcium oxalate can be achieved compared to a normal mixed diet. Since urinary oxalate excretion increased significantly, a vegetarian diet without adequate intake of calcium may not be recommended to patients with mild hyperoxaluria.

  18. In Vitro Cytotoxicity of Calcium Silicate-Based Endodontic Cement as Root-End Filling Materials

    Directory of Open Access Journals (Sweden)

    Selen Küçükkaya

    2016-01-01

    Full Text Available The aim of this study was to evaluate the cytotoxicity of three types of calcium silicate-based endodontic cement after different incubation periods with human periodontal ligament fibroblasts. Human periodontal ligament fibroblasts were cultured from extracted third molars and seeded in 96-well plates. MTA, calcium enriched mixture (CEM cement, and Biodentine were prepared and added to culture insert plates which were immediately placed into 96-well plates containing cultured cells. After incubation periods of 24, 48, and 72 hours, cell viability was determined with WST-1 assay. Data were analysed statistically by ANOVA with repeated measures and Bonferroni tests. There was no significant difference in cell viability amongst the test materials after each incubation period (P>0.05. MTA and CEM presented more than 90% cell viability after 24 and 48 hours of incubation and showed statistically significant decrease in cell viability after 72 hours of incubation (P<0.05. Biodentine showed significantly less cell viability (73% after 24 hours of incubation, whereas more than 90% cell viability was seen after 48 and 72 hours of incubation (P<0.05. Despite the significant changes in cell viability over time, materials presented similar cytotoxicity profile. Biodentine and CEM can be considered as alternative materials for root-end surgery procedures.

  19. Understanding gas adsorption in MOF-5/graphene oxide composite materials.

    Science.gov (United States)

    Lin, Li-Chiang; Paik, Dooam; Kim, Jihan

    2017-05-10

    Metal-organic framework (MOF) and graphene oxide (GO) composite materials (MOF/GO) have been regarded as promising for separation applications due to their synergistically enhanced adsorption properties. Molecular-level understandings of these materials, however, remain unknown to date. In this study, molecular simulations were used, for the first time, to model these composite materials. Specifically, the composite MOF-5/GO material was modeled as stacks of sandwich-like layers on top of one another, consistent with experimental observations inferred from XRD and the SEM images. Simulations indicate that CO 2 and CH 4 bind strongly in the MOF/GO interface region, resulting in synergistically enhanced adsorption properties. To exploit the interface region, we found that in simulating linear alkanes, larger guest molecules show substantially improved adsorption properties in composites compared to the parent MOF-5 structure, illustrating that the performance of adsorption in these molecules will benefit the most from the MOF/GO composites.

  20. Interfacial Design of Composite Ablative Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) project proposes the development of a computational software package to provide NASA with advanced materials...

  1. Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure

    Directory of Open Access Journals (Sweden)

    Fupo He and Jiandong Ye

    2013-01-01

    Full Text Available In this study, a core/shell bi-layered calcium phosphate cement (CPC-based composite scaffold with adjustable compressive strength, which mimicked the structure of natural cortical/cancellous bone, was fabricated. The dense tubular CPC shell was prepared by isostatic pressing CPC powder with a specially designed mould. A porous CPC core with unidirectional lamellar pore structure was fabricated inside the cavity of dense tubular CPC shell by unidirectional freeze casting, followed by infiltration of poly(lactic-co-glycolic acid and immobilization of collagen. The compressive strength of bi-layered CPC-based composite scaffold can be controlled by varying thickness ratio of dense layer to porous layer. Compared to the scaffold without dense shell, the pore interconnection of bi-layered scaffold was not obviously compromised because of its high unidirectional interconnectivity but poor three dimensional interconnectivity. The in vitro results showed that the rat bone marrow stromal cells attached and proliferated well on the bi-layered CPC-based composite scaffold. This novel bi-layered CPC-based composite scaffold is promising for bone repair.

  2. Effect of Different Irrigation Solutions on the Colour Stability of Three Calcium Silicate-Based Materials.

    Science.gov (United States)

    F, Sobhnamayan; A, Adl; S, Ghanbaran

    2017-06-01

    Previous studies have shown discoloration of mineral trioxide aggregate (MTA) in contact with root canal irrigation solutions. However, there are limited data on colour stability of other calcium silicate-based materials (CSMs). This in vitro study aimed to evaluate the colour stability of three CSMs in contact with different irrigation solutions. Three CSMs including White MTA (wMTA) Angelus, calcium enriched mixture (CEM), and Biodentine were assessed in this study. Forty five samples of each material were mixed according to the manufactures' instructions and then placed in silicone tubes. After 24 hours, the materials were removed from the moulds and 9 samples of each material left dry or immersed in normal saline, 5% sodium hypochlorite (NaOCL), 2% chlorhexidinegluconate (CHX), or 17%EDTA for 24 hours. Colour changes were measured with a spectrophotometer. Data were evaluated with 2-way analysis of variance, one way analysis of variance and Tukey post hoc tests. The highest discoloration of all materials was observed after contact with CHX. In the MTA Angelus and CEM cement groups, significant differences were observed between CHX and NaOCl and also between these two irrigants with the other three irrigants ( p < 0.05). In the Biodentine group, CHX created statistically significant discoloration compared to other irrigants ( p < 0.05). Only wMTA Angelus showed a significantly higher discoloration in contact with EDTA compared to normal saline and dry condition ( p < 0.05). wMTA Angelus showed a significantly higher colour change compared with CEM cement and Biodentine after contact with NaOCl, CHX, and EDTA ( p < 0.05). The contact of wMTA, CEM cement, and Biodentine with CHX should be avoided because this leads to severe discoloration. Contact with sodium hypochlorite also leads to discoloration of wMTA and CEM cements. Among of the three tested materials, wMTA showed the highest discoloration after contact with NaOCl, CHX, and EDTA.

  3. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  4. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo

    1997-01-01

    Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting...... of piecewise homogeneous layers with equivalent elastic properties estimated by Mori-Tanaka and self-consistent methods are also analysed under similar boundary conditions. Comparisons of the overall and local fields predicted by the discrete and homogenized models are made using a C/SiC composite system...... with very different Young's moduli of the phases, and relatively steep composition gradients. The conclusions reached from these comparisons suggest that in those parts of the graded microstructure which have a well-defined continuous matrix and discontinuous second phase, the overall properties and local...

  5. Uncertainty modelling and code calibration for composite materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Mishnaevsky, Leon, Jr

    2013-01-01

    Uncertainties related to the material properties of a composite material can be determined from the micro-, meso- or macro-scales. These three starting points for a stochastic modelling of the material properties are investigated. The uncertainties are divided into physical, model, statistical...

  6. Radiopacity of bulk fill flowable resin composite materials | Yildirim ...

    African Journals Online (AJOL)

    Objectives: The purpose of this study was to evaluate the radiopacity of currently marketed bulk fill flowable dental composite materials (Beautifil Bulk Flowable, SDR Flow, Filtek Bulk Fill Flow, and x‑tra Base Bulk Fill). Materials and Methods: Six specimens of each material with a thickness of 1 mm were prepared, and ...

  7. Structured Piezoelectric Composites : Materials and Applications

    NARCIS (Netherlands)

    Van den Ende, D.A.

    2012-01-01

    The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits

  8. Mechanics of composite material subjected to eigenstress

    DEFF Research Database (Denmark)

    Fuglsang Nielsen, L.

    In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given to the t......In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given...

  9. MODELLING OF HEAT CONDUCTIVITY OF COMPOSITE MATERIALS WITH BALL INCLUSIONS

    Directory of Open Access Journals (Sweden)

    V. Pugachev Oleg

    2017-01-01

    Full Text Available A number of papers deals with the heat conductivity of composite materials: Zarubin et al used new approaches to the problem of evaluation of the effective heat conductivity coefficients of composite material with ball inclusions. We used variational analysis for a simplified model in a vicinity of inclusion. Contemporary computers allow implementing another approach to solving the problem of the effective heat conductivity: it may be modelled by the Brownian motion of virtual heat particles. The main idea is to obtain the exact formula for the heat conductivity for a homogeneous material and subsequently obtain a statistical evaluation of this formula for a composite material.In the present paper we compare two methods for finding the effective heat conductivity coefficients of composite materials by modeling the process of heat conduction via the Brownian motion of virtual heat particles. We consider a composite with ball inclusions of a material with heat conductivity and heat capacity coefficientsdiffering from those of the matrix material. In a computational experiment, we simulate the process of heatconduction through a flat layer of the composite material, which has been heated on one side at the initial moment. In order to find the confidence interval for the effective heat conductivity coefficient, we find, by means of statistics, either the displacement of the center of heat energy, or the probability of a virtual particle to pass through the layer during a certain time. We compare our results with theoretical assessments suggested by other authors.

  10. Effect of particle size in composite materials on radiative properties

    Science.gov (United States)

    Lee, Siu-Chun; White, Susan; Grzesik, Jan

    1993-01-01

    A numerical model for the radiative properties of a composite material composed of ceramic oxide fibers and particles was developed and used to determine the effect of the size parameters of the two components. Results include the computed phase functions for the zirconia and silica composite materials, showing the location and strength of the strong forward-scattering peak. The phase function and the optical properties of the composite are strongly influenced by the particle size parameter through the fiber or particle diameter and the wavelength, the material, and the mixture fraction.

  11. Effect of particle size in composite materials on radiative properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Siuchun; White, S.; Grzesik, J. (Applied Sciences Lab., Inc., City of Industry, CA (United States) NASA, Ames Research Center, Moffett Field, CA (United States))

    1993-01-01

    A numerical model for the radiative properties of a composite material composed of ceramic oxide fibers and particles was developed and used to determine the effect of the size parameters of the two components. Results include the computed phase functions for the zirconia and silica composite materials, showing the location and strength of the strong forward-scattering peak. The phase function and the optical properties of the composite are strongly influenced by the particle size parameter through the fiber or particle diameter and the wavelength, the material, and the mixture fraction. 16 refs.

  12. Delamination durability of composite materials for rotorcraft

    Science.gov (United States)

    Obrien, T. Kevin

    1988-01-01

    Delamination is the most commonly observed failure mode in composite rotorcraft dynamic components. Although delamination may not cause immediate failure of the composite part, it often precipitates component repair or replacement, which inhibits fleet readiness, and results in increased life cycle costs. A fracture mechanics approach for analyzing, characterizing, and designing against delamination will be outlined. Examples of delamination problems will be illustrated where the strain energy release rate associated with delamination growth was found to be a useful generic parameter, independent of thickness, layup, and delamination source, for characterizing delamination failure. Several analysis techniques for calculating strain energy release rates for delamination from a variety of sources will be outlined. Current efforts to develop ASTM standard test methods for measuring interlaminar fracture toughness and developing delamination failure criteria will be reviewed. A technique for quantifying delamination durability due to cyclic loading will be presented. The use of this technique for predicting fatigue life of composite laminates and developing a fatigue design philosophy for composite structural components will be reviewed.

  13. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2008-01-01

    Full Text Available Core/shell capsules composed of calcium carbonate whisker core (rod-like shape and chitosan/chitosansulfate shell were prepared by the layer-by-layer deposition technique. Two chitosan samples of different molecular weights (Mw=9.7×104 and 1.09×106g·mol-1 were used as original materials. Hollow capsules were also obtained by dissolution of the core in hydrochloric acid. Electron microscopy revealed that the surface of the shell is rather ragged associated with some agglomerates. The shell thickness l obeys a linear relation with respect to the number of deposited layers m as l=md+a(a>0. The values of d (thickness per layer were 4.0 and 1.0 nm for the higher and lower Mw chitosan materials, respectively, both of which are greater than the thickness of the monolayer. The results suggest that the feature of the deposition does not obey an ideal homogeneous monolayer-by-monolayer deposition mechanism. Shell crosslinked capsules were also prepared via photodimerization reaction of cinnamoyl groups after a deposition of cinnamoyl chitosan to the calcium carbonate whisker core. The degree of crosslink was not enough to stabilize the shell structure, and hollow capsule was not obtained.

  14. Optical characteristics of contemporary dental composite resin materials.

    Science.gov (United States)

    Mikhail, Sarah S; Schricker, Scott R; Azer, Shereen S; Brantley, William A; Johnston, William M

    2013-09-01

    Optical and physical properties of dental restorative composite materials are affected by composition. Basic optical absorption and scattering properties have been derived through the use of a corrected reflectance model, but practical and important optical properties are not easily derived from these basic spectral characteristics. The purposes of this study are to derive and compare colour and translucency characteristics of two cured contemporary nanohybrid composites being marketed as universal composites, and to evaluate colour difference between each composite material and published shade guide data. Previously derived optical scattering and absorption coefficients for five diverse shades of these composite materials were used to calculate the CIE colour parameters of L*, a* and b* at infinite thickness under various illuminants and to derive ideal translucency parameters at various thicknesses using two colour difference formulae. Differences were found in the inherent colour parameters and in the translucency parameters between the brands for some of the shades studied. The colour differences of the inherent colours from published shade guide data were always higher than the perceptibility limit, and often higher than the acceptability limit. Inherent colours and ideal translucency parameters may be calculated from optical coefficients for a variety of illuminants. Different inherent colour parameters of composite materials marked for the same shade indicate the influence of compositional differences between these materials. Since patients are seen under various illuminations, the ability to assess appearance matching characteristics under diverse illuminants will help assure an optimum match for the patient. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Efficacy of polyphasic calcium phosphates as a direct pulp capping material.

    Science.gov (United States)

    Kiba, Wakako; Imazato, Satoshi; Takahashi, Yusuke; Yoshioka, Seisuke; Ebisu, Sigeyuki; Nakano, Takayoshi

    2010-10-01

    Polyphasic calcium phosphates (Poly-CaP), a complex of hydroxyapatite (HAp) and soluble calcium phosphates including alpha-tricalcium phosphate and tetracalcium phosphate, demonstrate promoting effects on hard tissue formation by osteoblasts. We hypothesized that a Poly-CaP block with a soluble calcium phosphates phase on one side and an insoluble HAp phase on the other side is useful for vital pulp therapy as it may promote dentin regeneration and provide the surface effective to achieve sealing. The purpose of this study was to investigate the efficacy of Poly-CaP as a direct pulp capping material by examining the Ca-release profile, the in vivo ability to induce reparative dentinogenesis, and the bonding of HAp surface with adhesive systems. Poly-CaP prepared by annealing crude HAp disc was immersed in buffer solution at pH 7.4 or 4.0, and the concentration of Ca released was measured until 15 days. The pulp of 9-week-old Wister rat molar was exposed and capped with Poly-CaP or HAp block, and dentin bridge formation and pulpal inflammation was evaluated histopathologically after 2 or 4 weeks. Etch & rinse or self-etching adhesive was bonded to HAp surface, and the interface was observed using SEM. Poly-CaP exhibited continuous release of Ca with significantly greater amount than HAp at both pH conditions (PSteel-Dwass test). Impregnation of resin into etched HAp surface, with production of intimate contact at the bonding interface, was seen for all adhesives. Poly-CaP is a potentially useful material for direct pulp capping with the advantages to promote dentin bridge formation and to provide tight sealing by adhesives. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Microbiological destruction of composite polymeric materials in soils

    Science.gov (United States)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  17. Mathematical model predicts the elastic behavior of composite materials

    Directory of Open Access Journals (Sweden)

    Zoroastro de Miranda Boari

    2005-03-01

    Full Text Available Several studies have found that the non-uniform distribution of reinforcing elements in a composite material can markedly influence its characteristics of elastic and plastic deformation and that a composite's overall response is influenced by the physical and geometrical properties of its reinforcing phases. The finite element method, Eshelby's method and dislocation mechanisms are usually employed in formulating a composite's constitutive response. This paper discusses a composite material containing SiC particles in an aluminum matrix. The purpose of this study was to find the correlation between a composite material's particle distribution and its resistance, and to come up with a mathematical model to predict the material's elastic behavior. The proposed formulation was applied to establish the thermal stress field in the aluminum-SiC composite resulting from its fabrication process, whereby the mixture is prepared at 600 °C and the composite material is used at room temperature. The analytical results, which are presented as stress probabilities, were obtained from the mathematical model proposed herein. These results were compared with the numerical ones obtained by the FEM method. A comparison of the results of the two methods, analytical and numerical, reveals very similar average thermal stress values. It is also shown that Maxwell-Boltzmann's distribution law can be applied to identify the correlation between the material's particle distribution and its resistance, using Eshelby's thermal stresses.

  18. Material parameter identification on metal matrix composites

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2012-07-01

    Full Text Available these strain gauges indicate that some compression instability, eccentric loading or other resulting bending condition is present. In this work, a finite element inverse analysis is employed to determine not only material parameters but also the boundary...

  19. Composite materials for polymer electrolyte membrane microbial fuel cells.

    Science.gov (United States)

    Antolini, Ermete

    2015-07-15

    Recently, the feasibility of using composite metal-carbon, metal-polymer, polymer-carbon, polymer-polymer and carbon-carbon materials in microbial fuel cells (MFCs) has been investigated. These materials have been tested as MFC anode catalyst (microorganism) supports, cathode catalysts and membranes. These hybrid materials, possessing the properties of each component, or even with a synergistic effect, would present improved characteristics with respect to the bare components. In this paper we present an overview of the use of these composite materials in microbial fuel cells. The characteristics of the composite materials as well as their effect on MFC performance were compared with those of the individual component and/or the conventionally used materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mechanical behaviour of composite materials made by resin film infusion

    Directory of Open Access Journals (Sweden)

    Casavola C.

    2010-06-01

    Full Text Available Innovative composite materials are frequently used in designing aerospace, naval and automotive components. In the typical structure of composites, multiple layers are stacked together with a particular sequence in order to give specific mechanical properties. Layers are organized with different angles, different sequences and different technological process to obtain a new and innovative material. From the standpoint of engineering designer it is useful to consider the single layer of composite as macroscopically homogeneous material. However, composites are non homogeneous bodies. Moreover, layers are not often perfectly bonded together and delamination often occurs. Other violations of lamination theory hypotheses, such as plane stress and thin material, are not unusual and in many cases the transverse shear flexibility and the thickness-normal stiffness should be considered. Therefore the real behaviour of composite materials is quite different from the predictions coming from the traditional lamination theory. Due to the increasing structural performance required to innovative composites, the knowledge of the mechanical properties for different loading cases is a fundamental source of concern. Experimental characterization of materials and structures in different environmental conditions is extremely important to understand the mechanical behaviour of these new materials. The purpose of the present work is to characterize a composite material developed for aerospace applications and produced by means of the resin film infusion process (RFI. Different tests have been carried out: tensile, open-hole and filled-hole tensile, compressive, openhole and filled-hole compressive. The experimental campaign has the aim to define mechanical characteristics of this RFI composite material in different conditions: environmental temperature, Hot/Wet and Cold.

  1. Calcium-energized motor protein forisome controls damage in phloem: potential applications as biomimetic "smart" material.

    Science.gov (United States)

    Srivastava, Vineet Kumar; Tuteja, Renu; Tuteja, Narendra

    2015-06-01

    Forisomes are ATP independent, mechanically active proteins from the Fabaceae family (also called Leguminosae). These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisomes are SEO (sieve element occlusion) gene family proteins that have recently been shown to be involved in wound sealing mechanism. Recent findings suggest that forisomes could act as an ideal model to study self assembly mechanism for the development of nanotechnological devices like microinstruments, the microfluidic system frequently used in space exploration missions. Technology enabling improvement in micro instruments has been identified as a key technology by NASA in future space exploration missions. Forisomes are designated as biomimetic smart materials which are calcium-energized motor proteins. Since forisomes are biomolecules from plant systems it can be doctored through genetic engineering. In contrast, "smart" materials which are not derived from plants are difficult to modify in their properties. Current levels of understanding about forisomes conformational shifts with respect to calcium ions and pH changes requires supplement of future advances with relation to its 3D structure to understand self assembly processes. In plant systems it forms blood clots in the form of occlusions to prevent nutrient fluid leakage and thus proves to be a unique damage control system of phloem tissue.

  2. Multi-Material Design Optimization of Composite Structures

    DEFF Research Database (Denmark)

    Hvejsel, Christian Frier

    This PhD thesis entitled “Multi-Material Design Optimization of Composite Structures” addresses the design problem of choosing materials in an optimal manner under a resource constraint so as to maximize the integral stiffness of a structure under static loading conditions. In particular stiffness...... design of laminated composite structures is studied including the problem of orienting orthotropic material optimally. The approach taken in this work is to consider this multi-material design problem as a generalized topology optimization problem including multiple candidate materials with known...... properties. The modeling encompasses discrete orientationing of orthotropic materials, selection between different distinct materials as well as removal of material representing holes in the structure within a unified parametrization. The direct generalization of two-phase topology optimization to any number...

  3. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications

    Directory of Open Access Journals (Sweden)

    Haribabu Palneedi

    2016-03-01

    Full Text Available Multiferroic magnetoelectric (ME composites are attractive materials for various electrically and magnetically cross-coupled devices. Many studies have been conducted on fundamental understanding, fabrication processes, and applications of ME composite material systems in the last four decades which has brought the technology closer to realization in practical devices. In this article, we present a review of ME composite materials and some notable potential applications based upon their properties. A brief summary is presented on the parameters that influence the performance of ME composites, their coupling structures, fabrications processes, characterization techniques, and perspectives on direct (magnetic to electric and converse (electric to magnetic ME devices. Overall, the research on ME composite systems has brought us closer to their deployment.

  4. Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials

    Science.gov (United States)

    Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.

    2009-01-01

    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

  5. Multiwalled Carbon Nanotubes Reinforced Polypropylene Composite Material

    Directory of Open Access Journals (Sweden)

    Juan Li

    2017-01-01

    Full Text Available Polypropylene (PP composites reinforced with multiwalled carbon nanotubes (MWNTs were prepared by using twin screw extruder. The experimental results showed that with the increasing amount of MWNTs the elongation at break decreased whereas the tensile strength, bending strength, and impact strength increased. By using scanning electron microscope (SEM, we find that the hydroxyl-modified carbon nanotube has better dispersion performance in PP and better mechanical properties.

  6. Vibration Damping Response of Composite Materials

    Science.gov (United States)

    1991-04-01

    unidirectional composite panels were made having thicknesses as specified in the ASTM D3039 -76 test procedure. After fabrication, these panels were...established procedures which are typically utilized. Specifically, the ASTM test methodologies were utilized. To determine El, E2, V󈧐, and V21...glass/3501-6, the ASTM D2584-68 Ignition Loss of Cured Reinfoiced Resins test procedure was used. In all cases, the fiber volume fraction was

  7. Evaluation of the biphasic calcium composite (BCC), a novel bone cement, in a minipig model of pulmonary embolism.

    Science.gov (United States)

    Qin, Yi; Ye, Jichao; Wang, Peng; Gao, Liangbin; Jiang, Jianming; Wang, Suwei; Shen, Huiyong

    2016-01-01

    Polymethylmethacrylate (PMMA) bone cement, which is used as a filler material in vertebroplasty, is one of the major sources of pulmonary embolism in patients who have undergone vertebroplasty. In the present study, we established and evaluated two animal models of pulmonary embolism by injecting PMMA or biphasic calcium composite (BCC) bone cement with a negative surface charge. A total of 12 adults and healthy Wuzhishan minipigs were randomly divided into two groups, the PMMA and BBC groups, which received injection of PMMA bone cement and BBC bone cement with a negative surface charge in the circulation system through the pulmonary trunk, respectively, to construct animal models of pulmonary embolism. The hemodynamics, arterial blood gas, and plasma coagulation were compared between these two groups. In addition, morphological changes of the lung were examined using three-dimensional computed tomography. The results showed that both PMMA and BCC injections induced pulmonary embolisms in minipigs. Compared to the PMMA group, the BCC group exhibited significantly lower levels of arterial pressure, pulmonary artery pressure, blood oxygen pressure, blood carbon dioxide pressure, blood bicarbonate, base excess, antithrombin III and D-dimer. In conclusion, BCC bone cement with a negative surface charge is a promising filler material for vertebroplasty.

  8. [Endodontics in motion: new concepts, materials and techniques 1. Hydraulic Calcium Silicate Cements].

    Science.gov (United States)

    Moinzadeh, A T; Jongsma, L; de Groot-Kuin, D; Cristescu, R; Neirynck, N; Camilleri, J

    2015-01-01

    Hydraulic Calcium Silicate Cements (HCSCs) constitute a group of materials that have become increasingly popular in endodontics since the introduction of Mineral Trioxide Aggregate (MTA) in the 1990s. MTA is Portland cement to which bismuth oxide has been added to increase its radiopacity. The most important property of MTA is its capacity to set in water or a humid environment. However, MTA also has important limitations, for example, it's difficult to work with and can discolour teeth. Recently, numerous products based on HCSC chemistry, which can be considered as modifications of MTA intended to reduce its limitations, have become available on the market. Despite their potential advantages, all of these materials have their own specific limitations that are currently insufficiently known and investigated.

  9. Electrode material comprising graphene-composite materials in a graphite network

    Science.gov (United States)

    Kung, Harold H.; Lee, Jung K.

    2017-08-08

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  10. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  11. Nanocomposite Interphases for Improved Transparent Polymer Composite Materials

    National Research Council Canada - National Science Library

    O'Brien, Daniel J; Robinette, Jason; Heflin, James R; Ridley, Jason

    2008-01-01

    ... on the engineer's ability to specify the acoustic impedance of each layer. Composite materials offer the ability to tailor mechanical properties but, due to scattering at multiple interfaces, are not typically transparent unless the refractive indices (RI...

  12. Space Radiation Effects in Inflatable and Composite Habitat Materials

    Science.gov (United States)

    Waller, Jess; Rojdev, Kristina

    2015-01-01

    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  13. Steel - Concrete Materials Performance in Composite Joints Configuration

    Science.gov (United States)

    Pop, M.; Corbu, O.; Pernes, P.

    2017-06-01

    In many buildings there is a need to combine reinforced concrete, steel or composite members. The paper aims to an experimental program focused on the behaviour of the materials steel and concrete what makes up for a composite joint configuration. Material tests were performed prior each type of testing. The main purpose is to investigate the main parameters that affect the response and the contribution of the two materials. The tests were performed at the TUCN - Laboratory of Civil Engineering Faculty, Romania. The results of the tests on the materials were used for preliminary experimental analysis and presented in the paper.

  14. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  15. Composite materials for x-ray protection

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, M.J.; Mawdsley, G.E.; Lilley, M.; Servant, R.; Reh, G. (Univ. of Toronto, Ontario, (Canada))

    1991-05-01

    We have developed and tested a radiation protection material that provides similar attenuation for diagnostic x-ray spectra to that of conventional Pb apron materials with approximately 30% reduced weight. By combining a number of elements with different K absorption energies, such as Ba, W, and Pb, energy attenuation for given spectra can be optimized with respect to total cross-sectional mass loading. Alternatively, garments with much higher protective factors at equivalent weight to conventional garments could be produced. The reduction in the amount of Pb used also reduces problems associated with the toxicity of the material during manufacture and disposal. Back strain can be reduced for personnel performing special radiological procedures that require wearing protective garments for long periods of time.

  16. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change

    Science.gov (United States)

    Kasemann, Simone A.; Hawkesworth, Chris J.; Prave, Anthony R.; Fallick, Anthony E.; Pearson, Paul N.

    2005-02-01

    The level and evolution of atmospheric carbon dioxide throughout Earth's history are key issues for palaeoclimate reconstructions, especially during times of extreme climate change such as those that marked the Neoproterozoic. The carbon isotope ratios of marine carbonates are crucial in the correlation and identification of Neoproterozoic glacial deposits, and they are also used as a record for biogeochemical cycling and potential proxy for atmospheric pCO 2. Likewise, the boron and calcium isotope compositions of marine carbonates are potential proxies for palaeo-seawater pH and the ratio of calcium fluxes into and out of seawater, respectively, and together they may be used to estimate atmospheric carbon dioxide. Here we use B and Ca isotopes to estimate palaeoenvironmental conditions in the aftermath of a major Neoproterozoic glaciation in Namibia. The validity of the B and Ca isotope variation in the ancient marine carbonates is evaluated using the oxygen isotope composition of the carbonates and its correlation to the carbon isotope variation. A negative (2.7 to -6.2‰) δ 11B excursion occurs in the postglacial carbonates and is interpreted to reflect a temporary decrease in seawater pH. Associated variations in δ 44Ca values (ranging between 0.35 and 1.14‰) are linearly coupled with the carbon isotope ratios and imply enhanced postglacial weathering rates. The reconstructed seawater pH and weathering profiles indicates that high atmospheric CO 2 concentrations were likely during the melt back of Neoproterozoic glaciations and precipitation of cap carbonates. However, the B isotope trend suggests that these concentrations rapidly ameliorated and they do not co-vary with δ 13C. Thus models attempting to link long-lived negative δ 13C excursions to elevated pCO 2 need to be reconsidered.

  17. The Calcium Phosphate Matrix of FGF-2-Apatite Composite Layers Contributes to Their Biological Effects

    Directory of Open Access Journals (Sweden)

    Hirotaka Mutsuzaki

    2014-06-01

    Full Text Available The purpose of the present study was to fabricate fibroblast growth factor (FGF-2-apatite composite layers on titanium (Ti pins in one step at 25 °C using a supersaturated calcium phosphate (CaP solution, and to evaluate the physicochemical characteristics and biological effects of the coated Ti pins compared with coated Ti pins fabricated at 37 °C. Ti pins were immersed in a supersaturated CaP solution containing 0.5, 1.0, or 2.0 µg/mL FGF-2 at 25 °C for 24 h (25F0.5, 25F1.0, and 25F2.0 or containing 4.0 µg/mL FGF-2 at 37 °C for 48 h (37F4.0. Except for the 25F0.5, the chemical compositions and the mitogenic activity levels of FGF-2 of the composite layers formed by these two methods were similar, except for the Ca/P molar ratio, which was markedly smaller at 25 °C (1.55–1.56 ± 0.01–0.02, p = 0.0008–0.0045 than at 37 °C (1.67 ± 0.11. Thus, either the apatite was less mature or the amount of amorphous calcium phosphate was higher in the composite layer formed at 25 °C. In vivo, the pin tract infection rate by visual inspection for 37F4.0 (45% was lower than that for 25F1.0 (80%, p = 0.0213, and the rate of osteomyelitis for 37F4.0 (35% was lower than that for 25F0.5 (75%, p = 0.0341. The extraction torque for 37F4.0 (0.276 ± 0.117 Nm was higher than that for 25F0.5 (0.192 ± 0.117 Nm, p = 0.0142 and that for 25F1.0 (0.176 ± 0.133 Nm, p = 0.0079. The invasion rate of S. aureus for 37F4.0 (35% was lower than that for 25F0.5 (75%, p = 0.0110. On the whole, the FGF-2-apatite composite layer formed at 25 °C tended to be less effective at improving fixation strength in the bone-pin interface and resisting pin tract infections. These results suggest that the chemistry of the calcium phosphate matrix that embeds FGF-2, in addition to FGF-2 content and activity, has a significant impact on composite infection resistance and fixation strength.

  18. Bond strength of a calcium silicate-based sealer tested in bulk or with different main core materials.

    Science.gov (United States)

    Nagas, Emre; Cehreli, Zafer; Uyanik, Mehmet Ozgur; Durmaz, Veli

    2014-01-01

    The aim of this study was to evaluate the influence of a calcium silicate-based sealer (iRoot SP), with or without a core material, on bond strength to radicular dentin, in comparison with various contemporary root filling systems. Root canals of freshly extracted single-rooted teeth (n = 60) were instrumented using rotary instruments. The roots were randomly assigned to one of the following experimental groups: (1) a calcium silicate-based sealer without a core material (bulk-fill); (2) a calcium silicate-based sealer + gutta-percha; (3) a calcium silicate-based sealer + Resilon; (4) a methacrylate resin-based sealer (RealSeal SE) + Resilon; (5) an epoxy resin-based sealer (AH Plus) + gutta-percha, and (6) a mineral trioxide aggregate-based endodontic sealer (MTA Fillapex) + gutta-percha. Four 1-mm-thick sections were obtained from the coronal aspect of each root (n = 40 slices/group). Push-out bond strength testing was performed at a cross-head speed of 1 mm/min, and the bond strength data were analyzed statistically by one-way analysis of variance and Tukey tests (p core filling materials. When the calcium silicate-based sealer was placed in bulk, its dislocation resistance was similar to that of commonly used sealer + core root filling systems. Thus, the concept of using a calcium silicate-based sealer in bulk can be more easily advocated in clinical practice.

  19. Chemical composition of the clays as indicator raw material sources

    OpenAIRE

    Khramchenkova Rezida Kh.

    2014-01-01

    The paper presents the results of study on the chemical composition of unglazed pottery from the excavations of the Bulgar fortified settlement site and the clay, selected from the modern deposits of ceramic raw materials located near the medieval settlement sites. Significant differences in macro- and microelement composition of different groups of ceramics have been revealed. The difference in the macroelemental composition is largely determined by the ceramic fabric recipe. Thus, the high ...

  20. Development of graphite-polymer composites as electrode materials

    Directory of Open Access Journals (Sweden)

    Carolina Maria Fioramonti Calixto

    2007-06-01

    Full Text Available Graphite powder was mixed to polyurethane, silicon rubber and Araldite® (epoxy in order to prepare composite materials to be used in the preparation of electrodes. Results showed that voltammetric response could be obtained when at least 50% of graphite (w.w-1 is present in the material. SEM and thermogravimetry were also used in the characterization of the composites.

  1. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...... for linear damage accumulation. Test data analyzed are taken from the Optimat database [1] which is public available. The composite material tested within the Optimat project is normally used for wind turbine blades....

  2. Injectable degradable composite materials for bone repair and drug delivery

    OpenAIRE

    Zhao, X.

    2010-01-01

    The aim of this project was to develop injectable materials to repair damaged bone and, to simultaneously release antibacterial drugs and genes in a controllable manner. Fluid poly (propylene glycol -co- lactide) dimethacrylate (PGLA-DMA) was first synthesised and then filled with varying levels of β- tricalcium phosphate (β-TCP) and monocalcium phosphate monohydrate (MCPM) to fabricate composite materials. For all formulations (including polymer and composites), full methac...

  3. Support Assembly for Composite Laminate Materials During Roll Press Processing

    Science.gov (United States)

    Catella, Luke A.

    2011-01-01

    A composite laminate material is supported during the roll press processing thereof by an assembly having: first and second perforated films disposed adjacent to first and second opposing surfaces of a mixture of uncured resin and fibers defining the composite laminate material, a gas permeable encasement surrounding the mixture and the first and second films, a gas impervious envelope sealed about the gas permeable encasement, and first and second rigid plates clamped about the gas impervious envelope.

  4. Resistance fail strain gage technology as applied to composite materials

    Science.gov (United States)

    Tuttle, M. E.; Brinson, H. F.

    1985-01-01

    Existing strain gage technologies as applied to orthotropic composite materials are reviewed. The bonding procedures, transverse sensitivity effects, errors due to gage misalignment, and temperature compensation methods are addressed. Numerical examples are included where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain measurement errors.

  5. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  6. Composite perovskite materials, methods of making, and methods of use

    KAUST Repository

    Yu, Weili

    2017-12-14

    Embodiments of the present disclosure provide materials, devices and systems including a composite of halide perovskite single crystals and nanotubes, and the like. Embodiments of the composite can be used in devices such as detectors, solar panels, transistors, sensors, and the like.

  7. Mechanical Characterization of Cotton Fiber/Polyester Composite Material

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Rajper

    2014-04-01

    Full Text Available Development of composite from natural fiber for lower structural application is growing for long-term sustainable perspective. Cotton fiber composite material has the added advantages of high specific strength, corrosion resistance, low cost and low weight compared to glass fiber on the expense of internal components of IC engines. The primary aim of the research study is to examine the effect of the cotton fiber on mechanical properties of lower structural applications when added with the polyester resin. In this paper composite material sample has been prepared by hand Lay-Up process. A mould is locally developed in the laboratory for test sample preparation. Initially samples of polyester resin with appropriate ratio of the hardener were developed and tested. At the second stage yarns of cotton fiber were mixed with the polyester resin and sample specimens were developed and tested. Relative effect of the cotton as reinforcing agent was examined and observed that developed composite specimen possess significant improvement in mechanical properties such as tensile strength was improved as 19.78 % and modulus of elasticity was increased up to 24.81%. Through this research it was also observed that developed composite material was of ductile nature and its density decreases up to 2.6%. Results from this study were compared with relevant available advanced composite materials and found improved mechanical properties of developed composite material

  8. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness

    Science.gov (United States)

    Marović, Danijela; Šariri, Kristina; Demoli, Nazif; Ristić, Mira; Hiller, Karl-Anton; Škrtić, Drago; Rosentritt, Martin; Schmalz, Gottfried; Tarle, Zrinka

    2016-01-01

    Aim To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). Methods Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP), with 10% of barium-glass fillers (Ba-ACP), and with 10% of silica fillers (Si-ACP), as well as commercial control (Ceram•X, Dentsply DeTrey) were tested in laboratory conditions. The amount of ACP (40%) and the composition of the resin mixture (based on ethoxylated bisphenol A dimethacrylate) was the same for all ACP materials. Fourier transform infrared spectroscopy was used to determine the DC (n = 40), 20 min and 72 h after polymerization. Linear PS and Vickers microhardness (n = 40) were also evaluated. The results were analyzed by paired samples t test, ANOVA, and one-way repeated measures ANOVA with Student-Newman-Keuls or Tukey’s post-hoc test (P = 0.05). Results The addition of barium fillers significantly increased the DC (20 min) (75.84 ± 0.62%) in comparison to 0-ACP (73.92 ± 3.08%), but the addition of silica fillers lowered the DC (71.00 ± 0.57%). Ceram•X had the lowest DC (54.93 ± 1.00%) and linear PS (1.01 ± 0.24%) but the highest HV (20.73 ± 2.09). PS was significantly reduced (P < 0.010) in both Ba-ACP (1.13 ± 0.25%) and Si-ACP (1.17 ± 0.19%) compared to 0-ACP (1.43 ± 0.21%). HV was significantly higher in Si-ACP (12.82 ± 1.30) than in 0-ACP (10.54 ± 0.86) and Ba-ACP (10.75 ± 0.62) (P < 0.010). Conclusion Incorporation of inert fillers to bioactive remineralizing composites enhanced their physical-mechanical performance in laboratory conditions. Both added fillers reduced the PS while maintaining high levels of the DC. Silica fillers additionally moderately improved the HV of ACP composites. PMID:27815937

  9. Statistical analysis and interpolation of compositional data in materials science.

    Science.gov (United States)

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-09

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  10. Friction Stir Processing of Particle Reinforced Composite Materials

    Science.gov (United States)

    Gan, Yong X.; Solomon, Daniel; Reinbolt, Michael

    2010-01-01

    The objective of this article is to provide a review of friction stir processing (FSP) technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesium, titanium, and copper. It is shown that FSP technology is very effective in microstructure modification of reinforced metal matrix composite materials. FSP has also been used in the processing and structure modification of polymeric composite materials. Compared with other manufacturing processes, friction stir processing has the advantage of reducing distortion and defects in materials. The layout of this paper is as follows. The friction stir processing technology will be presented first. Then, the application of this technology in manufacturing and structure modification of particle reinforced composite materials will be introduced. Future application of friction stir processing in energy field, for example, for vanadium alloy and composites will be discussed. Finally, the challenges for improving friction stir processing technology will be mentioned.

  11. Shear measurements of viscoelastic damping materials embedded in composite plates

    Science.gov (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.

    1999-06-01

    Embedding viscoelastic damping materials into graphite/epoxy composites can greatly increase the damping of composite structures. Cocuring the damping material with the composite, however, has been shown to increase the modulus and lower the damping in many viscoelastic materials because epoxy penetrates many damping materials (especially acrylics). In this paper, the changes in shear modulus were measured using double lap shear tests. Also presented are shear moduli comparisons of samples cured with three different barrier film layers, KaptonR, TedlarR,and polyester, which are used to prevent the epoxy penetration. Lastly, samples with an embedded loosely woven scrim cloth placed between two damping material layers are tested to measure how the scrim affects the shear modulus.

  12. Bearing material. [composite material with low friction surface for rolling or sliding contact

    Science.gov (United States)

    Sliney, H. E. (Inventor)

    1976-01-01

    A composite material is described which will provide low friction surfaces for materials in rolling or sliding contact and is self-lubricating and oxidation resistant up to and in excess of about 930 C. The composite is comprised of a metal component which lends strength and elasticity to the structure, a fluoride salt component which provides lubrication and, lastly, a glass component which not only provides oxidation protection to the metal but may also enhance the lubrication qualities of the composite.

  13. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhipeng [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Huang, Bingxue; Li, Yiwen [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Tian, Meng [Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Li, Li [Department of Oncology, the 452 Hospital of Chinese PLA, Chengdu 610021 (China); Yu, Xixun, E-mail: yuxixun@163.com [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  14. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap E/sub g1/ in the presence of a second semiconductor material of a different composition and direct bandgap E/sub g2/, wherein E/sub g2/>E/sub g1/. The second semiconductor material is not substantially etched during the method, comprising subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons are not present, the photons being of an energy greater than E/sub g1/ but less than E/sub g2/, whereby the first semiconductor material is photochemically etched and the second material is substantially not etched.

  15. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  16. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  17. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    Science.gov (United States)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  18. Alumina supported carbon composite material with exceptionally high defluoridation property from eggshell waste.

    Science.gov (United States)

    Lunge, Sneha; Thakre, Dilip; Kamble, Sanjay; Labhsetwar, Nitin; Rayalu, Sadhana

    2012-10-30

    A new alumina supported carbon composite material called "Eggshell Composite" (EC) was synthesized from eggshell waste as calcium source for selective fluoride adsorption from water. The effect of various synthesis parameters like eggshell (ES): Eggshell membrane (ESM) ratio, aluminium loading, mixing time and calcinations temperature to optimize the synthesis conditions for selective fluoride removal has been studied. It was observed that the synthesis parameters have significant influence on development of EC and in turn on fluoride removal capacity. EC synthesized was characterized for elemental composition, morphology, functionality and textural properties. Results showed that EC obtained from eggshell modified with alumina precursor is more selective and efficient for fluoride removal. Langmuir and Freundlich isotherm were used to obtain ultimate fluoride removal capacity. The calcium and alumina species in EC shows synergistic effect in fluoride adsorption process. Fluoride sorption studies were carried out in synthetic, groundwater and wastewater. EC proved to be a potential, indigenous and economic adsorbent for fluoride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    by the material type of the sample and the physico-chemical parameter to be analyzed. For example, studies examining mechanical sample preparation methods suggest that plastic fractions are especially prone to de-mixing effects and that differing mechanical properties within a sample (e.g. plastic and metal) can...... lead to biased results. In the experimental part of this PhD project the milling of plastics and metals was especially challenging and alternative methods for preparation and analysis should be investigated. Furthermore, chemical sample preparation by means of acid digestion was found to severely...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions...

  20. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  1. Optimizing and evaluating the biocompatibility of fiber composites with calcium phosphate additives.

    Science.gov (United States)

    Suchý, Tomáš; Balík, Karel; Sucharda, Zbyněk; Sochor, Miroslav; Lapčíková, Monika; Sedláček, Radek

    2011-10-01

    Composite materials based on a polyamide fabric (aramid) and a polydymethylsiloxane (PDMS) matrix were designed for application in bone surgery. In order to increase the bioactivity, 2, 5, 10, 15, 20, and 25 vol.% of nano/micro hydroxyapatite (HA) and tricalcium phosphate (TCP) were added. We studied the effect of the additives on the biocompatibility of the composite. It appears that nano additives have a more favorable effect on mechanical properties than microparticles. 15 vol.% of nano hydroxyapatite additive is an optimum amount for final application of the composites as substitutes for bone tissue: in this case both the mechanical properties and the biological properties are optimized without distinct changes in the inner structure of the composite.

  2. Effect of Different Irrigation Solutions on the Colour Stability of Three Calcium Silicate-Based Materials

    Directory of Open Access Journals (Sweden)

    Sobhnamayan F

    2017-06-01

    Full Text Available Abstract: Statement of Problem: Previous studies have shown discoloration of mineral trioxide aggregate (MTA in contact with root canal irrigation solutions. However, there are limited data on colour stability of other calcium silicate–based materials (CSMs. Objectives: This in vitro study aimed to evaluate the colour stability of three CSMs in contact with different irrigation solutions. Materials and Methods: Three CSMs including White MTA (wMTA Angelus, calcium enriched mixture (CEM, and Biodentine were assessed in this study. Forty five samples of each material were mixed according to the manufactures’ instructions and then placed in silicone tubes. After 24 hours, the materials were removed from the moulds and 9 samples of each material left dry or immersed in normal saline, 5% sodium hypochlorite (NaOCL, 2% chlorhexidinegluconate (CHX, or 17%EDTA for 24 hours. Colour changes were measured with a spectrophotometer. Data were evaluated with 2-way analysis of variance, one way analysis of variance and Tukey post hoc tests. Results: The highest discoloration of all materials was observed after contact with CHX. In the MTA Angelus and CEM cement groups, significant differences were observed between CHX and NaOCl and also between these two irrigants with the other three irrigants (p < 0.05. In the Biodentine group, CHX created statistically significant discoloration compared to other irrigants (p < 0.05. Only wMTA Angelus showed a significantly higher discoloration in contact with EDTA compared to normal saline and dry condition (p < 0.05. wMTA Angelus showed a significantly higher colour change compared with CEM cement and Biodentine after contact with NaOCl, CHX, and EDTA (p < 0.05. Conclusions: The contact of wMTA, CEM cement, and Biodentine with CHX should be avoided because this leads to severe discoloration. Contact with sodium hypochlorite also leads to discoloration of wMTA and CEM cements. Among of the three tested materials, w

  3. Composition and process for making an insulating refractory material

    Science.gov (United States)

    Pearson, A.; Swansiger, T.G.

    1998-04-28

    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  4. Sealing ability of a new calcium silicate based material as a dentin substitute in class II sandwich restorations: An in vitro study

    Directory of Open Access Journals (Sweden)

    Raji Viola Solomon

    2014-01-01

    Full Text Available Background: Class ll sandwich restorations are routinely performed where conventional Glass ionomer cement (GIC or Resin-modified GIC (RMGIC is used as a base or dentin substitute and a light curing composite resin restorative material is used as an enamel substitute. Various authors have evaluated the microleakage of composite resin restorations where glass ionomer cement has been used as a base in class II sandwich restorations, but a literature survey reveals limited studies on the microleakage analysis of similar restorations with biodentine as a dentin substitute, as an alternative to glass ionomer cement. The aim of this study is: To evaluate the marginal sealing efficacy of a new calcium-silicate-based material (Biodentine as a dentin substitute, at the cervical margins, in posterior class II sandwich restorations.To compare and evaluate the microleakage at the biodentine/composite interface with the microleakage at the resin-modified GIC/composite interface, in posterior class II open sandwich restorations. To compare the efficacy between a water-based etch and rinse adhesive (Scotch bond multipurpose and an acetone-based etch and rinse adhesive (Prime and bond NT, when bonding biodentine to the composite. To evaluate the enamel, dentin, and interfacial microleakage at the composite and biodentine/RMGIC interfaces. Materials and Methods: Fifty class II cavities were prepared on the mesial and distal surfaces of 25 extracted human maxillary third molars, which were randomly divided into five groups of ten cavities each: (G1 Biodentine group, (G2 Fuji II LC GIC group, (G3 Biodentine as a base + prime and bond NT + Tetric N-Ceram composite, (G4 Biodentine + scotchbond multi-purpose + Tetric N-Ceram composite, (G5 Fuji II LC as a base + prime and bond NT+ Tetric-N Ceram composite. The samples were then subjected to thermocycling, 2500× (5°C to 55°C, followed by the dye penetration test. Scores are given from 0 to 3 based on the depth of

  5. Calcium-41 concentration in terrestrial materials: prospects for dating of pleistocene samples

    Energy Technology Data Exchange (ETDEWEB)

    Henning, W.; Bell, W.A.; Billquist, P.J.; Glagola, B.G.; Kutschera, W.; Liu, Z.; Lucas, H.F.; Paul, M.; Rehm, K.E.; Yntema, J.L.

    1987-05-08

    Calcium-41 bas been suggested as a new tool for radiometric dating in the range of 10/sup 5/ to 10/sup 6/ years. The concentration of cosmogenic calcium-41 in natural samples of terrestrial origin has now been determined by high-sensitivity accelerator mass spectrometry after pre-enrichment in calcium-41 with an isotope separator. Ratios of calcium-41 to total calcium between 2 x 10/sup -14/ and 3 x 10/sup -15/ were measured for samples of contemporary bovine bone and from limestone deposits. Some prospects for the use of calcium-41 for dating Middle and Late Pleistocene bone and for other geophysical applications are discussed.

  6. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers.

    Science.gov (United States)

    Fujihara, K; Kotaki, M; Ramakrishna, S

    2005-07-01

    In this study, new type of guided bone regeneration (GBR) membranes were fabricated by polycaprolactone (PCL)/CaCO3 composite nano-fibers with two different PCL to calcium carbonate (CaCO3) ratios (PCL:CaCO3=75:25 wt% and 25:75 wt%). The composite nano-fibers were successfully fabricated by electrospinning method and CaCO3 nano-particles on the surface of nano-fibers were confirmed by energy disperse X-ray (EDX) analysis. In order to achieve mechanical stability of GBR membranes, composite nano-fibers were spun on PCL nano-fibrous membranes which has high tensile strength, i.e., the membranes consist of two layers of functional layer (PCL/CaCO3) and mechanical support layer (PCL). Two different GBR membranes were prepared, i.e., GBR membrane (A)=PCL:CaCO3=75:25 wt%+PCL, GBR membrane (B)=PCL:CaCO3=25:75 wt%+PCL. Osteoblast attachment and proliferation of GBR membrane (A) and (B) were discussed by MTS assay and scanning electron microscope (SEM) observation. As a result, absorbance intensity of GBR membrane (A) and tissue culture polystyrene (TCPS) increased during 5 days seeding time. In contrast, although absorbance intensity of GBR membrane (B) also increased, its value was lower than membrane (A). SEM observation showed that no significant difference in osteoblast attachment manner was seen on GBR membrane (A) and (B). Because of good cell attachment manner, there is a potential to utilize PCL/CaCO3 composite nano-fibers to GBR membranes.

  7. Dental composite materials and renal function in children.

    Science.gov (United States)

    Trachtenberg, F L; Shrader, P; Barregard, L; Maserejian, N N

    2014-01-01

    To examine whether greater exposure to resin-based composite materials, which may intra-orally release bisphenol A (BPA), is associated with worse renal function outcomes in children. Prospective multi-centre study. Community health dental clinics in Boston and Maine from 1997-2005.Subjects and methods Five hundred and thirty-four New England Children's Amalgam Trial participants aged six to ten years were randomised to treatment with amalgam or resin-based composite restorations over five years of follow-up. Restorations were placed according to treatment arm, and sealants placed per standard of care. Cumulative composite exposure was calculated using surface-years (each treated surface weighted by number years present). Urinary excretion of albumin, gamma-glutamyl transpeptidase (gamma-GT), and N-acetyl-β-D-glucosaminidase (NAG) were available for 417 children. Analysis of covariance showed no association between exposure to dental composites, polyacid-modified compomer, or flowable composite dental sealants and preventative resin restorations with levels of renal function. There was no association between composite materials and thresholds indicating renal damage in logistic regression models. This study found no harmful associations between dental composite materials and renal function in children. Therefore, concerns about renal function need not be a consideration in the choice of dental restoration material or placement of preventative dental sealants.

  8. Summary of: dental composite materials and renal function in children.

    Science.gov (United States)

    McGinley, Emma Louise

    2014-01-01

    To examine whether greater exposure to resin-based composite materials, which may intra-orally release bisphenol A (BPA), is associated with worse renal function outcomes in children. Prospective multi-centre study. Community health dental clinics in Boston and Maine from 1997-2005. Five hundred and thirty-four New England Children's Amalgam Trial participants aged six to ten years were randomised to treatment with amalgam or resin-based composite restorations over five years of follow-up. Restorations were placed according to treatment arm, and sealants placed per standard of care. Cumulative composite exposure was calculated using surface-years (each treated surface weighted by number years present). Urinary excretion of albumin, gamma-glutamyl transpeptidase (gamma-GT), and N-acetyl-β-D-glucosaminidase (NAG) were available for 417 children. Analysis of covariance showed no association between exposure to dental composites, polyacid-modified compomer, or flowable composite dental sealants and preventative resin restorations with levels of renal function. There was no association between composite materials and thresholds indicating renal damage in logistic regression models. This study found no harmful associations between dental composite materials and renal function in children. Therefore, concerns about renal function need not be a consideration in the choice of dental restoration material or placement of preventative dental sealants.

  9. Measurement of complex permittivity of composite materials using waveguide method

    NARCIS (Netherlands)

    Tereshchenko, O.V.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2011-01-01

    Complex dielectric permittivity of 4 different composite materials has been measured using the transmissionline method. A waveguide fixture in L, S, C and X band was used for the measurements. Measurement accuracy is influenced by air gaps between test fixtures and the materials tested. One of the

  10. Effective media properties of hyperuniform disordered composite materials.

    Science.gov (United States)

    Wu, Bi-Yi; Sheng, Xin-Qing; Hao, Yang

    2017-01-01

    The design challenge of new functional composite materials consisting of multiphase materials has attracted an increasing interest in recent years. In particular, understanding the role of distributions of ordered and disordered particles in a host media is scientifically and technologically important for designing novel materials and devices with superior spectral and angular properties. In this work, the effective medium property of disordered composite materials consisting of hyperuniformly distributed hard particles at different filling fractions is investigated. To accurately extract effective permittivity of a disordered composite material, a full-wave finite element method and the transmission line theory are used. Numerical results show that the theory of hyperuniformity can be conveniently used to design disordered composite materials with good accuracy compared with those materials with randomly dispersed particles. Furthermore, we demonstrate that a Luneburg lens based on the proposed hyperuniform media has superior radiation properties in comparison with previously reported metamaterial designs and it may open up a new avenue in electromagnetic materials-by-design.

  11. The behavior of delaminations in composite materials - experimental results

    Science.gov (United States)

    Chermoshentseva, A. S.; Pokrovskiy, A. M.; Bokhoeva, L. A.

    2016-02-01

    Delamination is one of the most common failure modes of composite materials. It may occur as a consequence of imperfections in the production process or the effects of external factors during the operational life of the composite laminates, such as the impact by foreign objects. This paper presents the results of mechanical tests and the optimum degrees of filling the composite materials (CM) with hydrophobic powder (Tarkosil T-20) depending on the latter mass concentration. The results present test samples of the CM with the underlying interlayer defects. The samples were fabricated of twenty-ply pre-preg (fiberglass or carbon fiber). The industrial grade glass is T-25 (VM) specification 6-11-380-76. The composite materials have nanosized additives in structure. The volume concentration of nanopowders is varying from 0.1% to 0.5%. This kind of research has been done for the first time.

  12. Investigation of woven composites as potential cryogenic tank materials

    Science.gov (United States)

    Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.

    2015-12-01

    In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.

  13. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  14. Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach

    Science.gov (United States)

    Kohlman, Lee W.; Roberts, Gary D.

    2012-01-01

    Textile-based composites could significantly benefit from local toughening using nanofiber coatings. Nanofibers, thermoplastic or otherwise, can be applied to the surface of the fiber tow bundle, achieving toughening of the fiber tow contact surfaces, resulting in tougher and more damage-resistant/tolerant composite structures. The same technique could also be applied to other technologies such as tape laying, fiber placement, or filament winding operations. Other modifications to the composite properties such as thermal and electrical conductivity could be made through selection of appropriate nanofiber material. Control of the needle electric potential, precursor solution, ambient temperature, ambient humidity, airflow, etc., are used to vary the diameter and nanofiber coating morphology as needed. This method produces a product with a toughening agent applied to the fiber tow or other continuous composite precursor material where it is needed (at interfaces and boundaries) without interfering with other composite processing characteristics.

  15. An electrochemical sensor for determination of calcium dobesilate based on PoPD/MWNTs composite film modified glassy carbon electrode.

    Science.gov (United States)

    Zhang, Xiuhua; Wang, Shimin; Jia, Li; Xu, Zuxun; Zeng, Yu

    2008-04-24

    A poly-o-phenylenediamine and multi-wall carbon nanotubes composite (PoPD/MWNTs) modified glassy carbon electrode (GCE) was prepared by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. The morphology of the resulting PoPD/MWNTs composite was characterized by TEM and the electrochemical properties of the modified electrode were characterized by cyclic voltammetry. The electrochemical behavior of calcium dobesilate on PoPD/MWNTs modified electrode was also investigated. The large current response of calcium dobesilate on PoPD/MWNTs modified electrode is probably caused by the synergistic effect of the electrocatalytic property of PoPD and MWNTs. The reductive peak current increased linearly with the concentration of calcium dobesilate in the range of 0.1-1.0 micromol/L and 4.0-400 micromol/L by square wave adsorptive stripping voltammetry, respectively. The detection limit (three times the signal blank/slope) was 0.035 micromol/L. The modified electrode could eliminate the interference of dopamine, norepinephrine and epinephrine at 100-, 90- and 70-fold concentration of 1.0 micromol/L calcium dobesilate, respectively. The proposed modified electrode provides a new promising and alternative way to detect calcium dobesilate.

  16. Explorations in the application of nanotechnology to improve the mechanical properties of composite materials

    Science.gov (United States)

    Yang, Cheng

    2007-12-01

    This thesis presents the research achievements on the design, preparation, characterization, and analysis of a series of composite materials. By studying the interface interaction of the composite materials using nanotechnology, we developed composite materials that achieve satisfactory mechanical properties in two classes of materials. Durable press (DP) natural textiles are important consumer products usually achieved by erosslinking the molecules in the textiles to achieve long-term wrinkle resistance, which, however, also leads to the simultaneous significant drop of mechanical properties. Herein, a series of polymeric nanoparticl es were investigated, the application of as little as ˜0.14 wt% addition of the nanoparticles improved the mechanical property of the DP cotton fabric by 56% in tearing resistance and 100% in abrasion resistance; the loss in recovery angle is negligible. The author also studied the enzyme-triggered DP treatments of silk fabrics, as a green process method. After the treatment of enzymes, excellent DP property was achieved with improved strain property. Injectable calcium phosphate powder containing acrylic bone cements are widely used in orthopedic surgery to fix artificial prostheses. However, the bending strength is still unsatisfactory. The author modified the surface of the strontium (Sr) containing hydroxyapatite (HA) filler powders with acrylolpamidronate in order to improve the overall mechanical performance of the bone cement composites. By adding 0.25 wt% of acrylolpamidronate to the Sr-HA nanopowders, more than 19% of the bending strength and more than 23% compression strength of the Sr-HA bone cement were improved. Biological evaluations revealed that these bone cement composites were biocompatible and bioactive in cell culture. The results obtained in this thesis work show an effective method to significantly enhance the mechanical properties of composite materials. Different from other available methods, by developing a

  17. Active Structural Fibers for Multifunctional Composite Materials

    Science.gov (United States)

    2014-05-06

    a “smart board” for vibration suppression. More recently Sato et al. [5] applied a hydrothermal method to grow PZT coating onto nickel titanium...material with controlled thickness. The process dispersed 3 wt% of BaTiO3 nano-powder (BaTiO3, 99.95%, average particle size: 100nm, cubic phase...following reaction 2H2O + 2e – <==> H2 + 2OH – . This hydrolysis reaction results in the accumulation of colloidal particles near the electrode

  18. Dynamic Deformation Properties of Energetic Composite Materials

    Science.gov (United States)

    2005-04-01

    CAVENDISH LABORATORY Material Density/kg m-3 Wave Speed/m s-1 Impedance/kgm-2 s-1 Magnesium 1798 4920 8.85x106 AZM Dural 2711 5040 13.7 x 106 Ti6Al4V 4418...bar (red lines) with that obtained using the dropweight (black lines) for Ti6Al4V specimens 4mm diameter, 8mm long. If it is desired in future to... Ti6Al4V and tungsten carbide. The low impedance titanium alloy rods are intended for testing polymer-bonded explosives and their binders. The tungsten

  19. The bone-regenerative properties of Emdogain adsorbed onto poly(D,L-lactic-coglycolic acid)/calcium phosphate composites in an ectopic and an orthotopic rat model.

    Science.gov (United States)

    Plachokova, A S; van den Dolder, J; Jansen, J A

    2008-02-01

    The aim of this study was to evaluate the bone-regenerative properties of Emdogain in osseous and nonosseous sites. For the orthotopic study, unloaded poly(D,L-lactic-coglycolic acid)/calcium phosphate implants, and poly(D,L-lactic-coglycolic acid)/calcium phosphate implants loaded with different concentrations (0.25, 0.50 or 0.80 mg per implant) of enamel matrix derivative (EMD), were inserted into cranial defects of 24 rats. The implantation time was 4 wk. For the ectopic study, 32 implants were placed subcutaneously. The same study period and groups as in the orthotopic study were used. Methods of evaluation consisted of descriptive histology, histomorphometry and an in vitro EMD-release study. In the orthotopic study, new bone formation was most abundant in unloaded implants followed by 0.50-mg EMD composites. Histomorphometric measurements showed 54 +/- 15.0% bone ingrowth for unloaded implants, 19 +/- 22.5% bone ingrowth for 0.25-mg EMD composites, 40 +/- 23.6% bone ingrowth for 0.50-mg EMD composites and 26 +/- 17.6% bone ingrowth for 0.80-mg EMD composites. Light microscopic analysis of the subcutaneous sections from the ectopic study revealed no bone formation in any group after 4 wk. The in vitro release study showed 60% cumulative EMD release after 4 wk. Emdogain is not osteoinductive and is not able to enhance bone healing in combination with an osteoconductive material, such as poly(D,L-lactic-coglycolic acid)/calcium phosphate cement.

  20. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  1. Materials selection for carbon nanotube composites in power transmission

    Directory of Open Access Journals (Sweden)

    Nikolov K.

    2016-12-01

    Full Text Available Nowadays designers and producers implement non-metallic gears in power transmissions because of their better mechanical properties, like high elastic modulus, tensile strength and high wear resistance. In order to examine these properties we need to get familiarized with the most common materials used to make composites, like POM, PEEK, PA 6, PA 6/6, UHMWPE and one of newest materials in this area – carbon nanotubes (CNTs. This paper describes how to select the best materials in order to create the composite we need for the necessary applications. The article also gives information about the polymers and a comparison between them and CNTs.

  2. DOE Automotive Composite Materials Research: Present and Future Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  3. Calcium phosphorus bio-coating on carbon/carbon composites: Preparation, shear strength and bioactivity

    Science.gov (United States)

    Su, Yangyang; Li, Kezhi; Zhang, Leilei; Liu, Shoujie; Yuan, Ye; He, Song

    2017-10-01

    Microwave hydrothermal (MH) combining supersonic atmospheric plasma sprayed (SAPS) calcium phosphorus (Ca-P) bio-coatings on carbon/carbon (C/C) composite has been widely used due to their osteoconductivity and osteoproductivity. However, the erratic shear strength between coatings prepared only by SAPS (outer coating) and C/C substrates has attached more attention over the implant failure. Adding a coating prepared by MH (inner coating) before SAPS can possess superior shear strength to conventional outer coating. The inner coating with fine Ca-P particles was prepared through a unique MH method under different concentrations (10, 500 and 1000 mmol/L). The influence of concentration on microstructure, phase composition, roughness and shear strength are investigated in this paper. In particularly, the roughness of inner coatings on C/C substrates was found to related to the morphologies and particle size. Results showed that inner coatings have higher roughness which was beneficial for the promotion of shear strength between the obtained Ca-P bio-coating and the C/C substrates. Subsequently, the specimens were immersed in a simulated body fluid (SBF) to investigate the bioactivity.

  4. Thermoviscoelastic dynamic response for a composite material thin narrow strip

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Hong Liang; Qi, Li-Li; Liu, Hai-Bo [Hunan University, Changsha (China)

    2015-02-15

    Based on von Karman nonlinear strain-displacement relationships and classical thin plate theory, a list of nonlinear dynamic equilibrium equations for a viscoelastic composite material thin narrow strip under thermal and mechanic loads are deduced. According to the material constitutive relationship and the relaxation modulus in the form of the Prony series, combing with the Newmark method and the Newton-cotes integration method, a new numerical algorithm for direct solving the whole problem in the time domain is established. By applying this numerical algorithm, the viscoelastic composite material thin narrow strip as the research subject is analyzed systematically, and its rich dynamical behaviors are revealed comprehensively. To verify the accuracy of the present work, a comparison is made with previously published results. Finally, the viscoelastic composite material thin narrow strip under harmonic excitation load and impact load are discussed in detail, and many valuable thermoviscoelastic dynamic characteristics are revealed.

  5. Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure.

    Science.gov (United States)

    Meyer, Florent; Wardale, John; Best, Serena; Cameron, Ruth; Rushton, Neil; Brooks, Roger

    2012-06-01

    The use of degradable composite materials in orthopedics remains a field of intense research due to their ability to support new bone formation and degrade in a controlled manner, broadening their use for orthopedic applications. Poly (lactide-co-glycolide) acid (PLGA), a degradable biopolymer, is now a popular material for different orthopedic applications and is proposed for use in tissue engineering scaffolds either alone or combined with bioactive ceramics. Interference screws composed of calcium phosphates and PLGA are readily available in the market. However, some reports highlight problems of screw migration or aseptic cyst formation following screw degradation. In order to understand these phenomena and to help to improve implant formulation, we have evaluated the effects of PLGA degradation products: lactic acid and glycolic acid on human osteoblasts in vitro. Cell proliferation, differentiation, and matrix mineralization, important for bone healing were studied. It was found that the toxicity of polymer degradation products under buffering conditions was limited to high concentrations. However, non-toxic concentrations led to a decrease in cell proliferation, rapid cell differentiation, and mineralization failure. Calcium, whilst stimulating cell proliferation was not able to overcome the negative effects of high concentrations of lactic and glycolic acids on osteoblasts. These effects help to explain recently reported clinical failures of calcium phosphate/PLGA composites, but further in vitro analyses are needed to mimic the dynamic situation which occurs in the body by, for example, culture of osteoblasts with materials that have been pre-degraded to different extents and thus be able to relate these findings to the degradation studies that have been performed previously. Copyright © 2011 Orthopaedic Research Society.

  6. Multi-length Scale Material Model Development for Armorgrade Composites

    Science.gov (United States)

    2014-05-02

    Enriched Continuum-Level Material Model for Kevlar ®- Fiber -Reinforced Polymer-Matrix Composites, Journal of Materials Engineering and Performance, (03... Fiber -Level Modeling of Dynamic Strength of Kevlar ® KM2 Ballistic Fabric, Journal of Materials Engineering and Performance, (07 2011): 0. doi: 10.1007...high specific-strength, high specific-stiffness p-phenylene terephthalamide (PPTA) polymeric fiber /filament (e.g. Kevlar ®, Twaron®, etc.) based

  7. Tribology of ceramics and composites materials science perspective

    CERN Document Server

    Basu, Bikramjit

    2011-01-01

    This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

  8. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    -reinforced polymers, were considered, and it was first shown that the loading history controls equilibrium process. Then the High-speed servo-hydraulic test machine was analysed in terms its ability to create a state of constant strain rate in the specimen. The invertible inertial forces in the load train prevented...... a linear elastic specimen to reach a state of constant strain rate before fracture. This was in contrast to ductile materials, which are widely tested with for the High-speed servohydraulic test machine. The development of the analysis and the interpretation of the results, were based on the experience...... from designing and constructing a high-speed servo-hydraulic test machine and by performing a comprehensive test series. The difficulties encountered in the test work could be addressed with the developed analysis. The conclusion was that the High-speed servo-hydraulic test machine is less suited...

  9. Highly explosive nanosilicon-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Clement, D.; Diener, J.; Gross, E.; Kuenzner, N.; Kovalev, D. [Technical University of Munich, Physics Department, James-Franck-Str., 85747 Garching (Germany); Timoshenko, V.Yu. [Moscow State M.V. Lomonosov University, Physics Department, 119899 Moscow (Russian Federation)

    2005-06-01

    We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. A grammatical approach to customization of shape and composite materials

    Science.gov (United States)

    Nandi, Soumitra

    With the increasing use of composite materials in Mechanical and Aerospace industries, an approach is required to facilitate designing of components using composite materials, while ensuring customization of the shape such a way that multiple design goals for the components are satisfied. Existing design methods may be used in some cases, where the component shape and loadings are simple. While a significant amount of research has been conducted to study the properties of composite materials, little attention has been paid to find out a design approach such that (1) the user requirements in the very general form may be used directly and as the input for the design, (2) the best possible composite material are selected to meet multiple desired functions, and (3) shape variation is analyzed in order to enable mass customization of the design. Thus an approach is required that will be able to handle both the shape and the material in order to design a load bearing component using composite materials. In this research the focus is to develop a design approach that will consider the user requirements for a composite component in its very general form and generate component shape and material details in a systematic order so that the designed component can withstand a given loading condition. Consequently, the Primary Research Question is: How to simultaneously explore shape and composite materials during the design of a product to meet multiple property and functional goals? The wide range of properties, covered by various fiber-matrix combinations, along with their directional property characteristics, maximizes the flexibility of the designers, while designing composite material products. Meeting multiple property goals, however, complicates the design process as both the composite material selection and the component shape formation becomes highly intricate with the loading conditions and a number of matrix calculations needs to be performed to determine theoretical

  11. Physical and mechanical properties of composite materials of different compositions based on waste products

    OpenAIRE

    A.E. Burdonov; V.V. Barakhtenko; E.V. Zelinskaya; E.O. Suturina; A.V. Burdonova; A.V. Golovnina

    2012-01-01

    This paper presents a study on the effect of mineral filler on the polymer composite material based on waste products of heat and power engineering - fly ash. This type of waste products has never been used for the production of polymer-mineral composites. Depending on the type of ash, its chemical composition and its quantity in the material, we can adjust the properties of the resulting composites. The use of fly ash as a filler will not only make a product less expensive, but it also will ...

  12. Longevity of dental amalgam in comparison to composite materials

    Directory of Open Access Journals (Sweden)

    Windisch, Friederike

    2008-11-01

    Full Text Available Health political background: Caries is one of the most prevalent diseases worldwide. For (direct restaurations of carious lesions, tooth-coloured composite materials are increasingly used. The compulsory health insurance pays for composite fillings in front teeth; in posterior teeth, patients have to bear the extra cost. Scientific background: Amalgam is an alloy of mercury and other metals and has been used in dentistry for more than one hundred and fifty years. Composites consist of a resin matrix and chemically bonded fillers. They have been used for about fifty years in front teeth. Amalgam has a long longevity; the further development of composites has also shown improvements regarding their longevity. Research questions: This HTA-report aims to evaluate the longevity (failure rate, median survival time (MST, median age of direct amalgam fillings in comparison to direct composite fillings in permanent teeth from a medical and economical perspective and discusses the ethical, legal and social aspects of using these filling materials. Methods: The systematic literature search yielded a total of 1,149 abstracts. After a two-step selection process based on defined criteria 25 publications remained to be assessed. Results: The medical studies report a longer longevity for amalgam fillings than for composite fillings. However, the results of these studies show a large heterogeneity. No publication on the costs or the cost-effectiveness of amalgam and composite fillings exists for Germany. The economic analyses (NL, SWE, GB report higher costs for composite fillings when longevity is assumed equal (for an observation period of five years or longer for amalgam compared to composite fillings. These higher costs are due to the higher complexity of placing composite fillings. Discussion: Due to different study designs and insufficient documentation of study details, a comparison of different studies on longevity of direct amalgam and composite

  13. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  14. Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials

    Directory of Open Access Journals (Sweden)

    Xing S. Li

    2010-02-01

    Full Text Available Since the initial research leading to the production of diamond composite materials, there have been several important developments leading to significant improvements in the properties of these superhard composite materials. Apart from the fact that diamonds, whether originating from natural resources or synthesised commercially, are the hardest and most wear-resistant materials commonly available, there are other mechanical properties that limit their industrial application. These include the low fracture toughness and low impact strength of diamond. By incorporating a range of binder phases into the sintering production process of these composites, these critically important properties have been radically improved. These new composites can withstand much higher operating temperatures without markedly reducing their strength and wear resistance. Further innovative steps are now being made to improve the properties of diamond composites by reducing grain and particle sizes into the nano range. This review will cover recent developments in diamond composite materials with special emphasis on microstructural characterisation. The results of such studies should assist in the design of new, innovative diamond tools as well as leading to radical improvements in the productivity of cutting, drilling and sawing operations in the exploration, mining, civil construction and manufacturing industries.

  15. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sartor, George B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reeder, Craig L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  16. Probabilistic fatigue life prediction of metallic and composite materials

    Science.gov (United States)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  17. Review on advanced composite materials boring mechanism and tools

    Science.gov (United States)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  18. Testing Urey's carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates

    Science.gov (United States)

    Blättler, Clara L.; Higgins, John A.

    2017-12-01

    Carbonate minerals constitute a major component of the sedimentary geological record and an archive of a fraction of the carbon and calcium cycled through the Earth's surface reservoirs for over three billion years. For calcium, carbonate minerals constitute the ultimate sink for almost all calcium liberated during continental and submarine weathering of silicate minerals. This study presents >500 stable isotope ratios of calcium in Precambrian carbonate sediments, both limestones and dolomites, in an attempt to characterize the isotope mass balance of the sedimentary carbonate reservoir through time. The mean of the dataset is indistinguishable from estimates of the calcium isotope ratio of bulk silicate Earth, consistent with the Urey cycle being the dominant mechanism exchanging calcium among surface reservoirs. The variability in bulk sediment calcium isotope ratios within each geological unit does not reflect changes in the global calcium cycle, but rather highlights the importance of local mineralogical and/or diagenetic effects in the carbonate record. This dataset demonstrates the potential for calcium isotope ratios to help assess these local effects, such as the former presence of aragonite, even in rocks with a history of neomorphism and recrystallization. Additionally, 29 calcium isotope measurements are presented from ODP (Ocean Drilling Program) Site 801 that contribute to the characterization of altered oceanic crust as an additional sink for calcium, and whose distinct isotopic signature places a limit on the importance of this subduction flux over Earth history.

  19. The effect of brushing with toothpaste containing nano calcium carbonate upon nanofill composite resin surface roughness

    Science.gov (United States)

    Ramadhani, A. M.; Herda, E.; Triaminingsih, S.

    2017-08-01

    This study aims to determine the effect of brushing with toothpaste containing nanocalcium carbonate on the roughness of nanofill composite resin surface. Brushing was conducted with 3 types of materials for 3 consecutive brushing periods of 10 minutes each. Surface roughness was measured using a surface-roughness tester and the results were analyzed using the repeated ANOVA and the one-way ANOVA test. The surface morphology was observed using SEM after 3 months’ worth of brushing with the 3 materials. It was found that the nanofill composite resin surface-roughness value increased significantly (pcalcium carbonate for 3 months, but the value was not as high as that obtained when brushing with other types of toothpaste.

  20. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials.

    Science.gov (United States)

    Ellahioui, Younes; Prashar, Sanjiv; Gómez-Ruiz, Santiago

    2016-01-01

    This article reviews the use of silica, alumina and calcium phosphate-based nanostructured materials with biomedical applications. A short introduction on the use of the materials in Science, Nanotechnology and Health is included followed by a revision of each of the selected materials. A description of the principal synthetic methods used in the preparation of the materials in nanostructured form is included. The most widely used applications in biomedicine are reviewed including, for example drug-delivery, bone regeneration, imaging, sensoring amongst others. Finally, a short description of the toxicity and cytotoxicity associated with each of the materials of this revision is presented. This short literature revision serves to demonstrate the very promising future ahead of nanosystems based on silica, alumina and calcium phosphate for biological and biomedical applications.

  1. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Science.gov (United States)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  2. Radiopacity of bulk fill flowable resin composite materials.

    Science.gov (United States)

    Yildirim, T; Ayar, M K; Akdag, M S; Yesilyurt, C

    2017-02-01

    The purpose of this study was to evaluate the radiopacity of currently marketed bulk fill flowable dental composite materials (Beautifil Bulk Flowable, SDR Flow, Filtek Bulk Fill Flow, and x-tra Base Bulk Fill). Six specimens of each material with a thickness of 1 mm were prepared, and digital radiographs were taken, using a CCD sensor along with an aluminum stepwedge and 1 mm-thick tooth slice. The mean gray level of each aluminum stepwedge and selected materials was measured, using the equal-density area tool of Kodak Dental Imaging software. The equivalent thickness of aluminum for each material was then calculated by using the stepwedge values in the CurveExpert version 1.4 program. The radiopacity of bulk fill flowable composites sorted in descending order as follows: Beautifil Bulk Flowable (2.96 mm Al) = x-tra base bulk fill (2.92 mm Al) = SureFil SDR Flow (2.89 mm Al) > Filtek Bulk Fill Flow (2.51 mm Al) (P materials had a radiopacity greater than dentin and enamel; their adequate radiopacity will help the clinicians during radiographic examination of restorations. Bulk fill composite materials have greater radiopacity, enabling clinicians to distinguish the bulk fill composites from dentin and enamel.

  3. Advanced composite materials of the future in aerospace industry

    Directory of Open Access Journals (Sweden)

    Maria MRAZOVA

    2013-09-01

    Full Text Available Since Orville and Wilbur Wright first decided to power their Flyer with a purpose built, cast aluminium engine to meet the specific requirements for power to weight ratio, new materials have been necessary to improve and advance aviation. This improvement in material properties has helped us to travel quickly and inexpensively around the world, by improving the performance and operations of modern aircraft. In the first part of this study the author introduces the composites materials with their advantages and disadvantages. Airbus and its innovation in composite materials are introduced in the second part of the thesis. Composite technology continues to advance, and the advent of new types such as nanotube forms is certain to accelerate and extend composite usage. This issue is introduced in the last part of this thesis. Anyway, a continuing trend in material development is the improvement in processing and production of incumbent materials to either improve physical properties or to allow their application in new areas and roles for further usage in the future.

  4. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration.

    Science.gov (United States)

    Faruq, Omar; Kim, Boram; Padalhin, Andrew R; Lee, Gun Hee; Lee, Byong-Taek

    2017-10-01

    An ideal bone substitute should be made of biocompatible materials that mimic the structure, characteristics, and functions of natural bone. Many researchers have worked on the fabrication of different bone scaffold systems including ceramic-polymer hybrid system. In the present study, we incorporated hyaluronic acid-gelatin hydrogel to micro-channeled biphasic calcium phosphate granules as a carrier to improve cell attachment and proliferation through highly interconnected porous structure. This hybrid system is composed of ceramic biphasic calcium phosphate granules measuring 1 mm in diameter with seven holes and hyaluronic acid-gelatin hydrogel. This combination of biphasic calcium phosphate and hyaluronic acid-gelatin retained suitable characteristics for bone regeneration. The resulting scaffold had a porosity of 56% with a suitable pore sizes. The mechanical strength of biphasic calcium phosphate granule increased after loading hyaluronic acid-gelatin from 4.26 ± 0.43 to 6.57 ± 0.25 MPa, which is highly recommended for cancellous bone substitution. Swelling and degradation rates decreased in the hybrid scaffold compared to hydrogel due to the presence of granules in hybrid scaffold. In vitro cytocompatibility studies were observed by preosteoblasts (MC3T3-E1) cell line and the result revealed that biphasic calcium phosphate/hyaluronic acid-gelatin significantly increased cell growth and proliferation compared to biphasic calcium phosphate granules. Analysis of micro-computed tomography data and stained tissue sections from the implanted samples showed that the hybrid scaffold had good osseointegration and better bone formation in the scaffold one and two months postimplantation. Histological section confirmed the formation of dense collagenous tissue and new bone in biphasic calcium phosphate/hyaluronic acid-gelatin scaffolds at two months. Our study demonstrated that such hybrid biphasic calcium phosphate/hyaluronic acid-gelatin scaffold is a

  5. Vegetable Fibers for Composite Materials In Constructive Sector

    Science.gov (United States)

    Giglio, Francesca; Savoja, Giulia

    2017-08-01

    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  6. Application of composite materials to impact-insensitive munitions

    Science.gov (United States)

    Neradka, Vincent F.; Chang, Yale; Grady, Joseph E.; Trowbridge, Daniel A.

    1992-01-01

    An approach is outlined for developing bullet-impact-insensitive munitions based on composite materials that provide rapid venting of the rocket-motor case. Impact experiments are conducted with test specimens of hybrid laminates of graphite/epoxy and epoxy reinforcing with woven glass fibers. The dynamic strain response and initial impact force are measured with strain gauges, and perforation damage is examined in the plates. The results show that impact damage can be designed by means of parametric variations of the fiber, matrix, and ply orientations. It is suggested that rocket-motor cases can be designed with composite materials to provide rapid venting during the failure mode. The experimental ballistic testing performed provides data that can be used comparatively with analytical data on composite materials.

  7. Percolation Phenomena For New Magnetic Composites And Tim Nanocomposites Materials

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2015-01-01

    Full Text Available This paper presents a theoretical investigation in order to obtain new composite and nanocomposite magnetic industrial materials. The effective conductivity and thermal effective conductivity have been predicted by adding various types and percentages of conductive particles (Al2O3, MgO, ZnO, Graphite etc. to the main matrices of Epoxy, Iron and Silicon for formulating new composite and nanocomposite industrial materials. The characterization of effective conductivity of new polymeric composites has been investigated with various applied forces, inclusion types and their concentrations. In addition, the effect of inclusion types and their concentrations on the effective thermal conductivities of thermal interface nanocomposite industrial materials has been explained and discussed.

  8. Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong, E-mail: xfpang@aliyun.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Honglei [College of Chemistry Environmental Science, Hebei University, Baoding 071000 (China); Qiao, Haixia; Nian, Xiaofeng [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Zhang, Xuejiao, E-mail: 527238610@qq.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Wang, Wendong; Zhang, Xiaoyun; Chang, Xiaotong [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Han, Shuguang [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015 (China)

    2015-12-01

    Highlights: • We developed a ZnHA/CS-coated Ti implant by using an ED method. • The obtained ZnHA/CS coatings presented a net-like micro-porous. • The ZnHA/CS coating possessed an excellent corrosion protection ability. • The composite coated CP-Ti possesses favourable cytocompatibility. - Abstract: This work elucidated the corrosion resistance and cytocompatibility of electroplated Zn- and Si-containing bioactive calcium silicate/zinc-doped hydroxyapatite (ZnHA/CS) ceramic coatings on commercially pure titanium (CP-Ti). The formation of ZnHA/CS coating was investigated through Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray and inductively coupled plasma analyses. The XRD image showed that the reaction layer was mainly composed of HA and CaSiO{sub 3}. The fabricated ZnHA/CS coatings presented a porous structure and appropriate thickness for possible applications in orthopaedic surgery. Potentiodynamic polarization tests showed that ZnHA/CS coatings exhibited higher corrosion resistance than CP-Ti. Dissolution tests on the coating also revealed that Si{sup 4+} and Zn{sup 2+} were leached at low levels. Moreover, MC3T3-E1 cells cultured on ZnHA/CS featured improved cell morphology, adhesion, spreading, proliferation and expression of alkaline phosphatase than those cultured on HA. The high cytocompatibility of ZnHA/CS could be mainly attributed to the combination of micro-porous surface effects and ion release (Zn{sup 2+} and Si{sup 4+}). All these results indicate that ZnHA/CS composite-coated CP-Ti may be a potential material for orthopaedic applications.

  9. Does the bracket composition material influence initial biofilm formation?

    OpenAIRE

    Gustavo Antônio Martins Brandão; Antonio Carlos Pereira; Ana Maria Martins Brandão; Haroldo Amorim de Almeida; Rogério Heládio Lopes Motta

    2015-01-01

    Context: Orthodontic treatment has been reported to contribute to the development and accumulation of dental biofilm, which is commonly found on bracket and adjacent surfaces. Aims: The aim of this work is to test the hypothesis if there are differences in dental biofilm formation on the surface of orthodontic brackets according to the type of composition material. Subjects and Methods: Three bracket types (metallic, composite, and ceramic) had been evaluated. Subjects wore acrylic pa...

  10. Prosthetic limb sockets from plant-based composite materials.

    Science.gov (United States)

    Campbell, Andrew I; Sexton, Sandra; Schaschke, Carl J; Kinsman, Harry; McLaughlin, Brian; Boyle, Martin

    2012-06-01

    There is a considerable demand for lower limb prostheses globally due to vascular disease, war, conflict, land mines and natural disasters. Conventional composite materials used for prosthetic limb sockets include acrylic resins, glass and carbon fibres, which produce harmful gasses and dust in their manufacture. To investigate the feasibility of using a renewable plant oil-based polycarbonate-polyurethane copolymer resin and plant fibre composite, instead of conventional materials, to improve safety and accessibility of prosthetic limb manufacture. Experimental, bench research. Test pieces of the resin with a range of plant fibres (10.0% by volume) were prepared and tensile strengths were tested. Test sockets of both conventional composite materials and plant resin with plant fibres were constructed and tested to destruction. Combinations of plant resin and either banana or ramie fibres gave high tensile strengths. The conventional composite material socket and plant resin with ramie composite socket failed at a similar loading, exceeding the ISO 10328 standard. Both wall thickness and fibre-matrix adhesion played a significant role in socket strength. From this limited study we conclude that the plant resin and ramie fibre composite socket has the potential to replace the standard layup. Further mechanical and biocompatibility testing as well as a full economic analysis is required. Using readily sourced and renewable natural fibres and a low-volatile bio-resin has potential to reduce harm to those involved in the manufacture of artificial limb sockets, without compromising socket strength and benefitting clinicians working in poorer countries where safety equipment is scarce. Such composite materials will reduce environmental impact.

  11. Fabrication, characterization and biomedical application of two-nozzle electrospun polycaprolactone/zein-calcium lactate composite nonwoven mat.

    Science.gov (United States)

    Liao, Nina; Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Park, Chan-Hee; Kim, Cheol Sang

    2016-07-01

    The objective of the current work is to incorporate calcium lactate (CL) into polycaprolactone (PCL)/zein composite micro/nanofibrous scaffolds via electrospinning to engineer bone tissue. In this study, a composite micro/nano fibrous scaffold was fabricated using a single two-nozzle electrospinning system to combine indicative nanofibers from a blended solution of zein-CL and micro-sized fibers from a PCL solution. Incorporation of the CL into the PCL/zein fibers were shown to improve the wettability, tensile strength and biological activity of the composite mats. Moreover, the composite mats have a high efficiency to nucleate calcium phosphate from simulated body fluid (SBF) solution. An in vitro cell culture with osteoblast cells demonstrated that the electrospun composite mats possessed improved biological properties, including a better cell adhesion, spread and proliferation. This study has demonstrated that the PCL/zein-CL composite provides a simple platform to fabricate a new biomimetic scaffold for bone tissue engineering, which can recapitulate both the morphology of extracellular matrix and composition of the bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Composite desiccant material "CaCl2/Vermiculite/Saw wood": a new material for fresh water production from atmospheric air

    Science.gov (United States)

    Kumar, Manoj; Yadav, Avadhesh

    2017-09-01

    In this study a novel composite desiccant material "CaCl2/Vermiculite/Saw wood" have been synthesized and tested for the water generation from atmospheric air. The vermiculite- saw wood used as a host matrix and CaCl2 as a hygroscopic salt. A solar glass desiccant box type system with a collector area of 0.36 m2 has been used. Design parameters for water generation are height of glass from the desiccant material bed as 0.22 m, inclination in angle as 30º, the effective thickness of glass as 3 mm and number of glazing as single. It has been found that the concentration of calcium chloride is the most influencing factor for fresh water generation from atmospheric air. The maximum amount of water produced by using novel composite desiccant material is 195 ml/kg/day.

  13. On the Mechanical Behavior of Advanced Composite Material Structures

    Science.gov (United States)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  14. Hot extruded carbon nanotube reinforced aluminum matrix composite materials

    Science.gov (United States)

    Kwon, Hansang; Leparoux, Marc

    2012-10-01

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics.

  15. Development and characterization of composite materials for production of composite risers by filament winding

    OpenAIRE

    Ledjane Lima Sobrinho; Verônica Maria de Araújo Calado; Fernando Luiz Bastian

    2011-01-01

    Industry has been challenged to provide riser systems which are more cost effective and which can fill the technology gaps with respect to water depth, riser diameter and high temperatures left open by flexibles, steel catenary risers (SCRs) and hybrid risers. Composite materials present advantages over conventional steel risers because composite materials are lighter, more fatigue and corrosion resistant, better thermal insulators and can be designed for improving the structural and mechanic...

  16. Material Programming: a Design Practice for Computational Composites

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Boer, Laurens; Tsaknaki, Vasiliki

    2016-01-01

    In this paper we propose the notion of material programming as a future design practice for computational composites. Material programming would be a way for the interaction designer to better explore the dynamic potential of computational materials at hand and through that familiarity be able...... to compose more sophisticated and complex temporal forms in their designs. The contribution of the paper is an analysis of qualities that we find a material programming practice would and should support: designs grounded in material properties and experiences, embodied programming practice, real-time on......-site explorations, and finally a reasonable level of complexity in couplings between input and output. We propose material programming knowing that the technology and materials are not entirely ready to support this practice yet, however, we are certain they will be and that the interaction design community...

  17. Properties of composite materials used for bracket bonding.

    Science.gov (United States)

    Gama, Ana Caroline Silva; Moraes, André Guaraci de Vito; Yamasaki, Lilyan Cardoso; Loguercio, Alessandro Dourado; Carvalho, Ceci Nunes; Bauer, José

    2013-01-01

    The purpose of this study was to evaluate in vitro the shear bond strength to enamel, flexural strength, flexural modulus, and contraction stress of one orthodontic composite and two flowable composites. Orthodontic brackets were bonded to 45 human maxillary premolars with the composites Transbond XT, Filtek Z-350 flow and Opallis flow and tested for shear bond strength. For measurement of flexural strength and flexural modulus, specimens were fabricated and tested under flexion. For the contraction stress test, cylindrical specimens were tested and an extensometer determined the height of the specimens. The data were subjected to one-way ANOVA and Tukey's test (α=0.05). The shear bond strength values were significantly lower (p0.05) while the flexural modulus was significantly higher (plight-activated orthodontic composite material presented higher flexural modulus and shear bond strength and lower contraction stress than both flowable composites.

  18. Effective thermal conductivity of a thin composite material

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, P.E. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering; Niemann, R.C. [Argonne National Lab., IL (United States)

    1996-12-31

    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thickness. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relatively low thermal conductivity. Results indicate that, below some threshold thickness, the composite thermal conductivity increases with decreasing thickness, while above the threshold the thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between filler and matrix thermal conductivities.

  19. Composite Overwrapped Pressure Vessels (COPV) Materials Aging Issues

    Science.gov (United States)

    2010-01-01

    This slide presentation reviews some of the issues concerning the aging of the materials in a Composite Overwrapped Pressure Vessels (COPV). The basic composition of the COPV is a Boss, a composite overwrap, and a metallic liner. The lifetime of a COPV is affected by the age of the overwrap, the cyclic fatigue of the metallic liner, and stress rupture life, a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. There is information about the coupon tests that were performed, and a test on a flight COPV.

  20. Infrared thermography to impact damaging of composite materials

    Science.gov (United States)

    Boccardi, Simone; Boffa, Natalino D.; Carlomagno, Giovanni M.; Meola, Carosena; Ricci, Fabrizio; Russo, Pietro; Simeoli, Giorgio

    2017-04-01

    Composite materials are becoming ever more popular and being used in an increasing number of applications. This because, to meet the users' demand, it is possible to create a new material of given characteristics in a quite simple way by changing either the type of matrix, or reinforcement. Of course, any new material requires characterization for its appropriate exploitation. In this context, infrared thermography (IRT) represents a viable means since it is non-contact, non-intrusive and can be used either for non-destructive evaluation to detect manufacturing defects, or fatigue induced degradation, or else for monitoring online the response to applied loads. In this work, IRT is used to investigate different types of composite materials which are based on either a thermoset, or a thermoplastic matrix, which may be neat, or modified by addition of a percentage of a specific compatibilizing agent, and reinforced with carbon, glass, or jute fibers. IRT is used with a twofold function. First, to non-destructively evaluate, with the lock-in technique, materials before and after impact to either assure absence of manufacturing defects, or discover the damage caused by the impact. Second, IRT is used to visualize thermal effects, which develop when the material is subjected to impact. The obtained results show that it is possible to follow the material bending, delamination and eventual failure under impact and get information, which may be valuable to deepen the complex impact damaging mechanisms of composites

  1. Determination of replicate composite bone material properties using modal analysis.

    Science.gov (United States)

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander

    2017-02-01

    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A comparison of microhardness of indirect composite restorative materials

    DEFF Research Database (Denmark)

    Miranda, Carolina Baptista; Pagani, Clóvis; Bottino, Marco Cícero

    2003-01-01

    The purpose of this study was to compare the microhardness of four indirect composite resins. Forty cylindrical samples were prepared according to the manufacturer’s recommendations using a Teflon mold. Ten specimens were produced from each tested material, constituting four groups (n=10) as foll......The purpose of this study was to compare the microhardness of four indirect composite resins. Forty cylindrical samples were prepared according to the manufacturer’s recommendations using a Teflon mold. Ten specimens were produced from each tested material, constituting four groups (n=10...

  3. Nondestructive evaluation of composite materials via scanning laser ultrasound spectroscopy

    Science.gov (United States)

    Koskelo, Elise Anne C.; Flynn, Eric B.

    2017-04-01

    Composite materials pose a complex problem for ultrasonic nondestructive evaluation due to their unique material properties, greater damping, and often complicated geometry. In this study, we explored acoustic wavenumber spectroscopy (AWS) as a means of rapid inspection of laminate and honeycomb composites. Each aerospace sample was tested at different ultrasonic frequencies using steady-state excitation via a piezo electric actuator. We measured the velocity response of the composite at each pixel via a raster scan using a laser Doppler vibrometer. We were able to detect radial inserts along corners, delamination, and facing-core separation by analyzing local amplitude and wavenumber responses. For each honeycomb composite, we excited the sample at the first resonant frequency of the individual cells. The local mode shape for each cell was extracted from the local amplitude response. Analyzing local amplitude and phase responses for each cell provided an accurate indication as to the presence, size, shape, and type of defect present in the composite. We detected both delamination and deformation of cells within a honeycomb composite. For the laminar composites, we analyzed the non-resonance steady-state response at several excitation frequencies.

  4. Success Rates of Pulpotomies in Primary Molars Using Calcium Silicate-Based Materials: A Randomized Control Trial

    National Research Council Canada - National Science Library

    Yeliz Guven; Sermin Dicle Aksakal; Nilufer Avcu; Gulcan Unsal; Elif Bahar Tuna; Oya Aktoren

    2017-01-01

    Objective. The aim of this study was to evaluate and compare, both clinically and radiographically, the effects of calcium silicate-based materials (i.e., ProRoot MTA [PR-MTA], MTA-Plus [MTA-P], and Biodentine [BD...

  5. The influence of calcium supplement on body composition, weight loss and insulin resistance in obese adults receiving low calorie diet

    Directory of Open Access Journals (Sweden)

    Maryam Shalileh

    2010-01-01

    Full Text Available Background: Obesity and diabetes are the most important problems of public health. Evidence from molecular animal research and epidemiologic investigations indicate that calcium intake may have an influence on body composition, weight and insulin resistance. The objective of this study was to determine the effects of calcium supplementation on body composition, weight, insulin resistance and blood pressure in the face of calorie restriction in obese adults. Methods: A double blind randomized placebo-controlled trial on 40 adults with Body Mass Index > 25kg/m2 was conducted. Subjects were maintained for 24 weeks on a balanced deficit diet (-500 kcal/d deficit and randomly assigned into two groups with 1000 mg ca/d as calcium carbonate or placebo. Results: There were no significant differences in variables at the 12th and 24th week between the two groups. The lean mass showed no significant increase in the calcium group at the 12th week compared to baseline and in placebo group at the 24th week compared to the 12th week. The insulin concentration showed a significant decrease in the calcium group at the 12th week compared to the baseline (p < 0.05. The diastolic blood pressure had a significant decrease at the 24th week compared to the 12th week in both groups (p = 0.013-0.009. Conclusions: Results from this study suggest that 24 weeks of supplementation with 1000 mg ca/d did not have any effect on weight, body composition, insulin resistance and blood pressure beyond what can be achieved in an energy restricted diet in obese adults.

  6. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  7. Carboxymethyl fenugreek galactomannan-gellan gum-calcium silicate composite beads for glimepiride delivery.

    Science.gov (United States)

    Bera, Hriday; Mothe, Srilatha; Maiti, Sabyasachi; Vanga, Sridhar

    2017-09-13

    Novel carboxymethyl fenugreek galactomannan (CFG)-gellan gum (GG)-calcium silicate (CS) composite beads were developed for controlled glimepiride (GLI) delivery. CFG having degree of carboxymethylation of 0.71 was synthesized and characterized by FTIR, DSC and XRD analyses. Subsequently, GLI-loaded hybrids were accomplished by ionotropic gelation technique employing Ca+2/Zn+2/Al+3 ions as cross-linkers. All the formulations demonstrated excellent drug encapsulation efficiency (DEE, 48-97%) and sustained drug release behaviour (Q8h, 62-94%). These quality attributes were remarkably influenced by polymer-blend (GG:CFG) ratios, cross-linker types and CS inclusion. The drug release profile of the optimized formulation (F-6) was best fitted in zero-order model with anomalous diffusion driven mechanism. It also conferred excellent ex vivo mucoadhesive property and considerable hypoglycemic effect in streptozotocin-induced diabetic rats. Furthermore, the beads were characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the developed hybrid matrices are appropriate for controlled delivery of GLI for Type 2 diabetes management. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.

    Science.gov (United States)

    Vahabi, Ali; Ramezanianpour, Ali Akbar; Sharafi, Hakimeh; Zahiri, Hossein Shahbani; Vali, Hojatollah; Noghabi, Kambiz Akbari

    2015-01-01

    The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1 g L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ce3+-sensitized red Mn2+ luminescence in calcium aluminoborate phosphor material

    Science.gov (United States)

    Puchalska, M.; Zych, E.

    2017-12-01

    Ce3+ doped and Ce3+,Mn2+ co-doped calcium aluminoborate (CAB) phosphors were synthesised by solid-state reaction method and their optical properties were studied. X-ray powder diffraction, SEM and TEM studies indicated the crystallization of the main trigonal CaAl2B2O7 phase and the presence of an additional non-crystalline phase. It was also observed that increasing dopant concentration promotes phase separation. Hence, both series of phosphors demonstrated the changes in luminescence properties via activator concentration variation. Upon UV excitation (λex = 310 nm) Ce3+ doped and Ce3+,Mn2+ co-doped materials yielded intensive blue and pinkish luminescence, respectively. The spectra of CAB:Ce3+ samples showed a broad emission band due to 5d→4f transition of Ce3+, which broadened and shifted to longer wavelengths with increasing dopant content. Mn2+ co-doping caused appearance of another broad-band emission with a maximum of 680 nm, resulting from the 4T1(4G) →6A1(6S) transition of Mn2+. Detailed analysis of the emission and excitation spectra as well as decay time traces as a function of dopant concentration showed that efficient resonant energy transfer mainly occurs between Ce3+ and Mn2+ incorporated in the non-crystalline phase in CAB material. The estimated values of energy transfer efficiency of CAB:Ce3+(3%),Mn2+(4%) is close to 52%.

  10. Development of Engineering Data on Advanced Composite Materials

    Science.gov (United States)

    1977-09-01

    were nmonitored with strain gages. This test procedure also corresponds to ASTM rnetho4 D3039 -74 except for the tab materials. in the ASTM spe...Composite Materials.[5, 6 ] The second type of inplane shear test was a double rail shear tech- nique described as Method B in a proposed ASTM standard ...matrices are all identified with a specific reinforcement since these were the standard products of the various prepreg suppliers indicated in parenthesis

  11. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    Science.gov (United States)

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  12. Cementing Material From Rice Husk-Broken Bricks-Spent Bleaching Earth-Dried Calcium Carbide Residue

    OpenAIRE

    Muthengia Jackson Washira

    2012-01-01

    A cementious material, coded CSBR (Carbide residue Spent bleaching earth Broken bricks and Rice husks), was made from dried calcium carbide residue (DCCR) and an incinerated mix of rice husks (RH), broken bricks (BB) and spent bleaching earth (SBE). Another material, coded SBR (Spent bleaching earth Broken bricks and Rice husk ash), was made from mixing separately incinerated RH, SBE and ground BB in the same ash ratio as in CSBR. When CSBR was inter-ground with Ordinary Portland Cement (OPC)...

  13. Mechanical and magnetic properties of composite materials with polymer matrix

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2010-01-01

    Full Text Available Many of modern technologies require materials with unusual combinations of properties that cannot be met by the conventional metal alloys, ceramics, and polymeric materials. Material property combinations and ranges have been extended by the development of composite materials. Development of Nd-Fe-B/polymer composite magnetic materials has significantly increased interest in research and development of bonded magnets, since particles of Nd-Fe-B alloys are proved to be very suitable for their production. This study investigates the mechanical and magnetic properties of compression molded Nd-Fe-B magnets with different content of magnetic powder in epoxy matrix. Mechanical properties were investigated at ambient temperature according to ASTM standard D 3039-00. The obtained results show that tensile strength and elongation decrease with an increase of Nd-Fe-B particles content in epoxy matrix. The modulus of elasticity increases, which means that in exploitation material with higher magnetic powder content, subjected to the same level of stress, undergoes 2 to 3.5 times smaller deformation. Scanning Electron Microscopy (SEM was used to examine the morphology of sample surfaces and fracture surfaces caused by the tensile strength tests. The results of SQUID magnetic measurements show an increase of magnetic properties of the investigated composites with increasing content of Nd-Fe-B particles.

  14. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  15. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  16. Novel Microstructures for Polymer-Liquid Crystal Composite Materials

    Science.gov (United States)

    Magda, Jules J.

    2004-01-01

    There are a number of interface-dominated composite materials that contain a liquid crystalline (LC) phase in intimate contact with an isotropic phase. For example, polymer- dispersed liquid crystals, used in the fabrication of windows with switchable transparency, consist of micron size LC droplets dispersed in an isotropic polymer matrix. Many other types of liquid crystal composite materials can be envisioned that might have outstanding optical properties that could be exploited in novel chemical sensors, optical switches, and computer displays. This research project was based on the premise that many of these potentially useful LC composite materials can only be fabricated under microgravity conditions where gravity driven flows are absent. In the ground-based research described below, we have focused on a new class of LC composites that we call thermotropic- lyotropic liquid crystal systems (TLLCs). TLLCs consist of nanosize droplets of water dispersed in an LC matrix, with surfactants at the interface that stabilize the structure. By varying the type of surfactant one can access almost an infinite variety of unusual LC composite microstructures. Due to the importance of the interface in these types of systems, we have also developed molecular simulation models for liquid crystals at interfaces, and made some of the first measurements of the interfacial tension between liquid crystals and water.

  17. In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid.

    Science.gov (United States)

    Priya, Ashok; Nath, Shekhar; Biswas, Krishanu; Basu, Bikramjit

    2010-06-01

    In our recent research, we have developed novel CaP-mullite composites for bone implant applications. In order to realize such applications, the in vitro dissolution behaviour of these materials needs to be evaluated. In this perspective, the present paper reports the dissolution behavior of pure hydroxyapatite (HAp) and hydroxyapatite composites with 20-30 wt% mullite in simulated body fluid (SBF). The in vitro dissolution experiments were carried out for different time duration starting from 7 days up to 28 days. XRD and SEM results show almost no dissolution for pure HAp and HAp composite with 30 wt% mullite. However, HAp-20 wt% mullite composite exhibits considerable dissolution after 7 days. The alpha-TCP phase mainly contributes to the dissolution process. Based on the dynamic changes in pH, ionic conductivity, Ca and P ion concentration in SBF as well as microstructural observations of the bioceramic surfaces after various time frames of immersion in SBF, the differences in dissolution behaviour are discussed.

  18. Composite glass ceramics - a promising material for aviation

    Directory of Open Access Journals (Sweden)

    М. В. Дмитрієв

    2000-12-01

    Full Text Available The analysis of the technical and technological characteristics of the composite ceramic as a material for electrical and structural parts in aircraft. The economic and technological advantages compared to ceramic pottery and proposed options for development of production in Ukraine

  19. The Deflated Preconditioned Conjugate Gradient Method Applied to Composite Materials

    NARCIS (Netherlands)

    Jönsthövel, T.B.

    2012-01-01

    Simulations with composite materials often involve large jumps in the coefficients of the underlying stiffness matrix. These jumps can introduce unfavorable eigenvalues in the spectrum of the stiffness matrix. We show that the rigid body modes; the translations and rotations, of the disjunct rigid

  20. Preparation of Magnetic Composite Materials: Experiments for Secondary School Students

    Czech Academy of Sciences Publication Activity Database

    Baldíková, Eva; Pospíšková, K.; Maděrová, Zdeňka; Šafaříková, Miroslava; Šafařík, Ivo

    2016-01-01

    Roč. 110, č. 1 (2016), s. 64-68 ISSN 0009-2770 Keywords : dyes removal * nanoparticles * mechanochemistry * technology * adsorbent * fe3o4 * magnet ic modification * magnet ic composite materials * magnet ic separation * microwave-assisted synthesis * mechanochemical synthesis Impact factor: 0.387, year: 2016

  1. Nanostructured Composite Materials for High Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    2012-08-29

    classes of materials, half-Heusler intermetallic bulk nanocomposites and bismuth -telluride based nanocomposites; • Complete structural and...measurements K. Stokes Physics/AMRI Bismuth telluride/metallic nanoparticle composites, transport measurements J. Wiley Chemistry/AMRI Chemical...as inclusions for nanocomposites. Here, the nanoparticles are synthesized by sol-gel chemistry using hafnium(IV) tert-butoxide and ammonium hydroxide

  2. Quantitative Description of the Morphology and Microdamages of Composite Materials

    DEFF Research Database (Denmark)

    Axelsen, M. S.

    The purpose of the present Ph.D project is to investigate correlation between the microstructure variability and transverse mechanical properties. The material considered here is a polymer based unidirectional composite with long cylindrical fibers, and the transverse properties can be analysed...

  3. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...

  4. and O-based composite materials derived from differential ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have made an effort to determine whether the effective atomic numbers of H-, C-, N- and O-based composite materials would indeed remain a constant over the energy grid of 280–1200 keV wherein incoherent scattering dominates their interaction with photons. For this purpose, the differential ...

  5. Development of Fracture Mechanics Maps for Composite Materials. Volume 1.

    Science.gov (United States)

    1985-12-01

    Besonderheiten beim Konstruieren mit Kohlenstoff-Fasern. Kunststoffe 74 (1984) H. 11, S. 686-691. 16.71 Tsai, S.W., Introduction to Composite Materials...1975. 6-13 16.9] Gadke, M. Ermittlung mechanischer Eigenschaften kohlenstoffaserverstdrkter Kunststoff - laminate in AbhAngigkeit von den

  6. Data-driven design optimization for composite material characterization

    Science.gov (United States)

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos; Samuel G. Lambrakos; Tomonari Furukawa

    2011-06-01

    The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data...

  7. NASA Composite Materials Development: Lessons Learned and Future Challenges

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

    2009-01-01

    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  8. Engineered cementitious composites with low volume of cementitious materials

    NARCIS (Netherlands)

    Zhou, J.; Quian, S.; Van Breugel, K.

    2010-01-01

    Engineered cementitious composite (ECC) is an ultra ductile cement-based material reinforced with fibers. It is characterized by high tensile ductility and tight crack width control. Thanks to the excellent performance, ECC is emerging in broad applications to enhance the loading capacity and the

  9. Inspection for kissing bonds in composite materials using vibration measurements

    Science.gov (United States)

    Adams, Douglas E.; Sharp, Nathan D.; Myrent, Noah; Sterkenburg, Ronald

    2011-04-01

    Improper bonding of composite structures can result in close contact cracks under compressive stresses, called kissing bonds. These bond defects are very difficult to detect using conventional inspection techniques such as tap testing or local ultrasonic scanning and can lead to local propagation of damage if the structure is subjected to crack opening stresses. A method is investigated for identifying kissing bonds in composite material repairs based on vibration measurements. A damage feature of the kissing bond is extracted from the response of the input-output measurement that is a function of the structural path. This path exhibits local decoupling associated with the close contact cracks. Experimental vibration measurements from sandwich composite materials are presented along with the results of the damage detection algorithm for the healthy sections of the material and the kissing bond sections. A vibration based inspection technique could increase the ability to detect kissing bonds in composite material repairs while decreasing inspection time. Benefits of this method of identification over conventional techniques include its robust, objective damage detection methodology and the reduced requirement for specimen preparation and surface texture when compared to ultrasonic scanning.

  10. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh

    2016-06-01

    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  11. Radiopacity of bulk fill flowable resin composite materials

    African Journals Online (AJOL)

    2015-08-23

    Aug 23, 2015 ... selected by avoiding areas containing air bubbles inside the material. This procedure was repeated 5 times for each specimen and aluminum stepwedge, and the .... Financial support and sponsorship. Nil. Conflicts of interest. There are no conflicts of interest. References. 1. Ferracane JL. Resin composite ...

  12. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  13. Moisture effect on mechanical properties of polymeric composite materials

    Science.gov (United States)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  14. The CVD coating of fibers for composite materials

    Science.gov (United States)

    Alam, M. Khairul; Jain, Sulekh C.

    1990-11-01

    Among the new composite materials, fiber-reinforced metal-matrix composites and ceramic-matrix composites have been given special attention for their potential uses in a variety of fields. A successful fabrication process for a fiber-reinforced composite requires that the fiber be protected, usually by a coating, during fabrication and service. The chemical vapor deposition process is a key technology for fiber coating. A survey of the current fiber coating programs seems to show that current process design in the industry is based on trial-and-error methods. New coating processes are, therefore, developed primarily by experimentation and prior experience. Ultimately, it is hoped that analytical and numerical process simulation will be used to reduce the need for costly trial-and-error process development.

  15. Fracture mechanics for delamination problems in composite materials

    Science.gov (United States)

    Wang, S. S.

    1983-01-01

    A fracture mechanics approach to the well-known delamination problem in composite materials is presented. Based on the theory of anisotropic laminate elasticity and interlaminar fracture mechanics concepts, the composite delamination problem is formulated and solved. The exact order of the delamination crack-tip stress singularity is determined. Asymptotic stress and displacement fields for an interlaminar crack are obtained. Fracture mechanics parameters such as mixed-mode stress intensity factors, KI, KII, KIII, and the energy release rate, G, for composite delamination problems are defined. To illustrate the fundamental nature of the delamination crack behavior, solutions for edge-delaminated graphite-epoxy composites under uniform axial extension are presented. Effects of fiber orientation, ply thickness, and delamination length on the interlaminar fracture are examined.

  16. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel.

    Science.gov (United States)

    La Fontaine, Alexandre; Zavgorodniy, Alexander; Liu, Howgwei; Zheng, Rongkun; Swain, Michael; Cairney, Julie

    2016-09-01

    Human dental enamel, the hardest tissue in the body, plays a vital role in protecting teeth from wear as a result of daily grinding and chewing as well as from chemical attack. It is well established that the mechanical strength and fatigue resistance of dental enamel are derived from its hierarchical structure, which consists of periodically arranged bundles of hydroxyapatite (HAP) nanowires. However, we do not yet have a full understanding of the in vivo HAP crystallization process that leads to this structure. Mg(2+) ions, which are present in many biological systems, regulate HAP crystallization by stabilizing its precursor, amorphous calcium phosphate (ACP), but their atomic-scale distribution within HAP is unknown. We use atom probe tomography to provide the first direct observations of an intergranular Mg-rich ACP phase between the HAP nanowires in mature human dental enamel. We also observe Mg-rich elongated precipitates and pockets of organic material among the HAP nanowires. These observations support the postclassical theory of amelogenesis (that is, enamel formation) and suggest that decay occurs via dissolution of the intergranular phase. This information is also useful for the development of more accurate models to describe the mechanical behavior of teeth.

  17. [The effect of different food forms on the urine composition and the risk of calcium oxalate stone formation].

    Science.gov (United States)

    Siener, R; Hesse, A

    1993-03-01

    The aim of this 17-day study was to examine the influence of four different diets on urine composition and the risk of calcium oxalate stone formation in 10 healthy male subjects. In the course of phase 0, the subjects were on their individual diet for 2 days. In the following phases I, II, and III the subjects received three different standard diets for a duration of 5 days each. Whereas DIET 1 (normal mixed diet) corresponded to the dietary habits of men aged 19 to 35 years, DIET 2 (balanced mixed diet) and DIET 3 (ovo-lacto-vegetarian diet) were calculated according to the dietary recommendations of the German Society of Nutrition (DGE) for the same age-group. The risk of calcium oxalate stone formation, calculated by the computer program EQUIL of FINLAYSON, was highest on the self-selected diet and on DIET 1, but declined significantly on the intake of DIET 2 by 50% on average compared to DIET 1 and by 61% compared to phase 0. On DIET 3 no further significant decline in the risk of calcium oxalate stone formation was observed. Therefore, it can be concluded that the change of usual dietary habits into a balanced mixed diet significantly reduces the risk of calcium oxalate stone formation. With a vegetarian diet a comparable decline in urine supersaturation of calcium oxalate can be achieved with respect to a mixed diet according to requirements. Since urinary oxalic acid excretion increased significantly, a vegetarian diet is not recommend for calcium oxalate stone patients with absorptive hyperoxaluria.

  18. Designing Listening Material Based on Visual Multimodality Compositions

    Directory of Open Access Journals (Sweden)

    Jepri Ali Saiful

    2015-06-01

    Full Text Available In recent decades, multimodality has eventually augmented into the realm of language teaching and learning known as Applied Multimodality. This interdisciplinary approach draws on a multiplicity of communication or representation modes, all of which contribute to meaning. Accordingly, images, colors, and sounds within a text are catalysts to increase an audience’s reception of an idea or concept of the text, that is, a message. Thus, the present article intends to make a contribution to the field of material development in English language teaching. The aim of this article is therefore to provide guidelines for ELT teachers on how to design listening materials based on visual multimodal compositions of image and text. The result is that the compositions of image and text in designing listening materials rests upon three main principles: information value, salience and framing. These principles enable students’ L2 acquisition through listening as proved by recent research.

  19. Investigation of low velocity impact damage on filamentary composite materials

    Science.gov (United States)

    Bower, Mark V.

    1987-01-01

    Presented are the results of an investigation of the effect of low velocity impact on the residual modulus and residual strength of flat filamentary composite materials. Theoretical analysis of composite materials indicates that the modulus of the material must decrease as impact damage increases. This decrease must also correlate to the decrease in residual strength. This study attempts to verify these hypotheses. Graphite/epoxy laminates (AS4/3501-6) of various fiber orientations (8 (0 deg), 2 (+ or - 45 deg)sub 8) were impacted using a falling weight impact tester. Impact energies ranged from 0.42 to 1.55 ft-lb, with impact velocities from 2.03 to 3.98 ft/sec. The results show that there is a reduction in residual modulus of the plate as the impact energy increases.

  20. Preparation of the Jaws Damaged Parts from Composite Biopolymers Materials

    Directory of Open Access Journals (Sweden)

    Riyam A. Al-husseini

    2017-10-01

    Full Text Available Composite materials composing of fusing two materials or more are disaccorded in mechanical and physical characteristics, The studied the effect of changing in the reinforcement percentage by Hydroxyapatite Prepared nano world via the size of the nanoscale powder manufacturing manner chemical precipitation and microwave powders were two types their preparations have been from natural sources: the first type of eggshells and the other from the bones of fish in mechanical Properties which include the tensile strength, elastic modulus, elongation, hardness and tear for composite material consisting of Silicone rubber (SIR reinforced by (µ-n-HA, after strengthening silicone rubber Protect proportions (5,10,15,20 wt% of Article achieved results that increase the additive lead to increased hardness while tougher and modulus of elasticity decreases with added as shown in the diagrams.

  1. Composite material based on fluoroplast and low melting oxyfluoride glass

    Science.gov (United States)

    Ignatieva, L. N.; Savchenko, N. N.; Lalayan, V. M.; Zverev, G. A.; Goncharuk, V. K.; Ustinov, A. Yu.; Shaulov, A. Yu.; Berlin, A. A.; Bouznik, V. M.

    2016-05-01

    The present work summarizes the results of studies of the samples fabricated through extrusion blending of mixtures composed of the perfluorocarbon polymer (polyvinylidene fluoride, PVDF), which presently undergoes intensive studies, and the inorganic glass (BF-glass) of the composition 3B2O3-97(40SnF2-30SnO-30P2O5). It is revealed as a result of application of the suggested technique the composite material whose structure depends on the component ratio in the mixture (from individual areas formed by each component to homogeneously distributed composite particles) has been fabricated. The peculiarities of formation of composites were studied on the basis of the results of studying their morphology, molecular structure and phase composition. It was revealed the preservation of the polymer molecular structure and the absence of interaction with the glass in the fabricated samples. We found that in the process of sample fabrication there occur melting of the mixture, mixing of particles and changing of the phase compositions. The polymer partially and the glass almost completely crystallize in the process of composite fabrication. Glass crystals fill polymer cavities forming agglomerates. Along with the increase of the amount of inorganic component crystals, the polymer monolithic nature is disrupted and an inversion occurs at a certain component ratio: polymer particles are located between crystals of the inorganic component, mixing with them and covering them. The glass crystallization is facilitated through pre-crushing in extruder mill.

  2. New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid.

    Science.gov (United States)

    Ilie, Andreia; Ghiţulică, Cristina; Andronescu, Ecaterina; Cucuruz, Andrei; Ficai, Anton

    2016-08-30

    The purpose of this article was to obtain prolonged drug release systems in which the drug (ascorbic acid) to reach intact the target area in an environment that is able to control the administration of the active component by chemical or physiological pathways. As support for drug, it was used a material based on calcium phosphate - hydroxyapatite and a natural polymer - alginate, since it is one of the most investigated composite materials for medical applications due to its positive response to biological testing: bioactivity, biocompatibility and osteoconductivity. Three composites with different ratios between alginate and hydroxyapatite were obtained: (a) Alg/HA/AA 1:1 (the mass ratio between Alg and HA being of 1:1), (b) Alg/HA/AA 1:3 (Alg:HA mass ratio of 1:3) and (c) Alg/HA/AA 3:1 (Alg:HA mass ratio of 3:1). The synthesized materials were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and to observe the drug release process, UV-vis spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    Science.gov (United States)

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Percolation Modeling of Self-Damaging of Composite Materials

    Science.gov (United States)

    Domanskyi, Sergii; Privman, Vladimir

    We propose the concept of autonomous self-damaging in ``smart'' composite materials, controlled by activation of added nanosize ``damaging'' capsules. Percolation-type modeling approach earlier applied to the related concept of self-healing materials, is used to investigate the behavior of the initial material's fatigue. We aim at achieving a relatively sharp drop in the material's integrity after some initial limited fatigue develops in the course of the sample's usage. Our theoretical study considers a two-dimensional lattice model and involves Monte Carlo simulations of the connectivity and conductance in the high-connectivity regime of percolation. We give several examples of local capsule-lattice and capsule-capsule activation rules and show that the desired self-damaging property can only be obtained with rather sophisticated ``smart'' material's response involving not just damaging but also healing capsules.

  5. Effect of calcium phosphate addition on sintering of El-Oued sand quartz raw materials

    Directory of Open Access Journals (Sweden)

    L. Foughali

    2014-12-01

    Full Text Available This work addresses the development of an eventual low cost ceramic insulating or microfiltration membrane supports from inexpensive raw materials such Eloued quartz sand (EQS and calcium phosphate (CP using uniaxially dry compaction method. The prepared samples were sintered at different temperatures ranging between 1200 and 1550 ºC. Subsequently, the effects of sintering temperature and amount of CP on samples proprieties were investigated. It is observed that X-ray diffracion measurements confirmed that EQS was transformed into cristobalite and tridymite phases when both sintering temperature and holding time were increased. This transformation is favored with increasing amount of CP, it is observed also formation of CaSiO3 and Ca(Fe(AlPO4. The SEM images of the samples sintered at different temperatures illustrate that silica grains, CP grains, intergranular phase contents (Si, Ca, P, and O and an important open porosity depend on the sintering temperature. The porosity ratio changes in the range between 37% and 34% according to sintering temperature and to CP content; these values are in good agreement with SEM images. The thermal expansion behavior shows a weak expansion in the range of temperature between 600 and 1000 ºC which is situated between 1.27% and 1.33% (variation of 0.05% at 400 ºC.

  6. Injectable and biodegradable composite bone filler composed of poly(propylene fumarate) and calcium phosphate ceramic for vertebral augmentation procedure: An in vivo porcine study.

    Science.gov (United States)

    Wu, Chang-Chin; Hsu, Li-Ho; Sumi, Shoichiro; Yang, Kai-Chiang; Yang, Shu-Hua

    2017-11-01

    Despite its common usage in vertebral augmentation procedures (VAPs), shortcomings of commercial polymethylmethacrylate (PMMA) still remain. Accordingly, injectable and biodegradable composite cements, which are composed of poly(propylene fumarate)/α-tricalcium/hydroxyapatite (PPF/α-TCP/HAP) and PPF/tetracalcium phosphate/dicalcium phosphate (PPF/TtCP/DCP), were developed. A porcine model was used and cylindrical holes in critical size were created at the center of the lateral cortex of vertebral bodies of the lumbar spine. A fixed volume of testing materials and PMMA were randomly injected into the defects. Results showed that both composite groups had a comparable radiolucency as PMMA but a significantly lower setting temperature. Histological inspections revealed new bone formation and remodeling along the border of the two composite cements. New bone substitution and irregular sclerotic bone mantles were found along the composite cements but not in the PMMA group. Radiological and histological changes were observed in the two composite groups and these modifications were diminished along the block boundaries. These findings imply gradual substitution of decomposed composite by new bone formation, which could not be found around the PMMA block. Comparing PPF/α-TCP/HAP with the PPF/TtCP/DCP cement block, smaller particles that were spreading out were observed in the TtCP/DCP group, which represents rapid degradability. In conclusion, the composite cements have advantages such as a low setting temperature, radio-opacity, biodegradability, and osteoconductivity. The injectable PPF/calcium phosphate ceramic composite has the potential to be used in VAPs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2232-2243, 2017. © 2016 Wiley Periodicals, Inc.

  7. Barium and calcium borate glasses as shielding materials for x rays and gamma rays

    DEFF Research Database (Denmark)

    Singh, H.; Singh, K.; Sharma, G.

    2003-01-01

    Values of the gamma-ray, mass attenuation coefficient and the effective atomic number have been determined experimentally for xBaO.(1-x) B2O3 (x=0.24, 0.30, 0.34,0.40 and 0.44) and xCaO. (I-x)B2O3 (x=0.30 and 0.40) glasses at photon energies 356, 511, 662, 1173, and 1332 keV It is pointed out...... that these glasses are potential radiation shielding materials. The specific volume of the glasses has been derived from density measurements and studied as a function of composition....

  8. Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.

    Directory of Open Access Journals (Sweden)

    A. Eisenhauer

    2009-01-01

    Full Text Available The accurate reconstruction of sea surface temperature (SST history in climate-sensitive regions (e.g. tropical and polar oceans became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin. highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin. is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5°C associated with salinities below 33.0 (±0.5‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin., becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.

  9. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    Science.gov (United States)

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al4C3) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al4C3. Along with the CNT and the nano-SiC, Al4C3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials.

  10. A Study of Failure Criteria of Fibrous Composite Materials

    Science.gov (United States)

    Paris, Federico; Jackson, Karen E. (Technical Monitor)

    2001-01-01

    The research described in this paper is focused on two areas: (1) evaluation of existing composite failure criteria in the nonlinear, explicit transient dynamic finite element code, MSC.Dytran, and (2) exploration of the possibilities for modification of material and failure models to account for large deformations, progressive failure, and interaction of damage accumulation with stress/strain response of laminated composites. Following a review of the MSC.Dytran user manual, a bibliographical review of existing failure criteria of composites was performed. The papers considered most interesting for the objective of this report are discussed in section 2. The failure criteria included in the code under consideration are discussed in section 3. A critical summary of the present procedures to perform analysis and design of composites is presented in section 4. A study of the most important historical failure criteria for fibrous composite materials and some of the more recent modifications proposed were studied. The result of this analysis highlighted inadequacies in the existing failure criteria and the need to perform some numerical analyses to elucidate the answer to questions on which some of the proposed criteria are based. A summary of these ideas, which is a proposal of studies to be developed, is presented in section 5. Finally, some ideas for future developments are summarized in section 6.

  11. A generalized methodology to characterize composite materials for pyrolysis models

    Science.gov (United States)

    McKinnon, Mark B.

    The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to

  12. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  13. Fissure sealant materials: Wear resistance of flowable composite resins

    Directory of Open Access Journals (Sweden)

    Sohrab Asefi

    2016-08-01

    Full Text Available Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow, Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists. A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  14. Precursor to damage state quantification in composite materials (Conference Presentation)

    Science.gov (United States)

    Patra, Subir; Banerjee, Sourav

    2017-04-01

    Nonlinear damage in the composite materials is developed with the growth of damages in the material under fatigue loading. Nonlinear ultrasonic techniques are sensitive to early stage damages such as, fiber breakages, matrix micro-cracking, and deboning etc. Here, in this work, early stage damages are detected in Unidirectional (UD) carbon fiber composite under fatigue loading. Specimens are prepared according to American Society for Testing and Materials (ASTM) standard. Specimens are subjected to low cycle high load (LCHL) fatigue loading until 150,000 cycles. Sensors are mounted on the specimen used for actuation and sensing. A five count tone burst with low frequency (fc =375 kHz) followed by high frequency (fc =770 kHz) signal, was used as actuation signal. Pitch-catch experiments are collected at the interval of 5,000 cycles. Sensor signals are collected for various excitation voltage (from 5V to 20V, with 5V interval). First Fourier Transform (FFT) of the sensor signals are performed and side band frequencies are observed at around 770 kHz. Severity of damages in the material is quantified from the ratio of amplitude of side band frequencies with the central frequency. Nonlinearity in the material due to damage development is also investigated from the damage growth curve obtained at various excitation amplitude. Optical Microcopy imaging were also performed at the interval of 5,000 to examine developments of damages inside the material. This study has a good potential in detection of early stage damages in composite materials.

  15. Photonics and fracture toughness of heterogeneous composite materials.

    Science.gov (United States)

    Antony, S Joseph; Okeke, George; Tokgoz, D Deniz; Ozerkan, N Gozde

    2017-07-03

    Fracture toughness measures the resistance of a material to fracture. This fundamental property is used in diverse engineering designs including mechanical, civil, materials, electronics and chemical engineering applications. In spite of the advancements made in the past 40 years, the evaluation of this remains challenging for extremely heterogeneous materials such as composite concretes. By taking advantage of the optical properties of a thin birefringent coating on the surface of opaque, notched composite concrete beams, here we sense the evolution of the maximum shear stress distribution on the beams under loading. The location of the maximum deviator stress is tracked ahead of the crack tip on the experimental concrete samples under the ultimate load, and hence the effective crack length is characterised. Using this, the fracture toughness of a number of heterogeneous composite beams is evaluated and the results compare favourably well with other conventional methods using combined experimental and numerical/analytical approaches. Finally a new model, correlating the optically measured shear stress concentration factor and flexural strength with the fracture toughness of concretes is proposed. The current photonics-based study could be vital in evaluating the fracture toughness of even opaque and complex heterogeneous materials more effectively in future.

  16. Composite smart materials using high-volume microelectronics fabrication techniques

    Science.gov (United States)

    Winzer, Stephen R.; Shankar, Natarajan; Caldwell, Paul J.; May, Russell G.

    1995-05-01

    Smart materials, containing sensors, actuators and processing electronics, are of great potential use in defense and commercial applications from acoustic stealth to medial imaging. While 1:3 composites using PZT rods are now available commercially in limited quantities, composites with individually addressable actuator and sensor arrays are not, nor have conditioning and processing electronics been embedded in the same material. There are several technical and cost reasons for this, including the complexity of interconnections, capacitance of individual elements, thermal dissipation, and the expense of fabricating the material. We have been developing composite materials comprising arrays of miniature actuators fabricated using surface mount capacitor technology, and amenable to automated fabrication using `pick and place' techniques. Miniature actuators with up to 0.1% strain, and operating at 30 V bias and ac swing of +/- 30 V have been fabricated, and placed in 10-by- 10 actuator arrays on Kapton sheets on which circuits have been printed. The arrays were then `potted' in RTV liquid rubbers. Individual actuator motion and multiple actuator influence functions were measured as a function of applied voltage and adjacent actuator motion. These results, along with in-water performance (source level and directivity), are presented.

  17. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  18. The aqueous corrosion behavior of technetium - Alloy and composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K. [Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154 (United States)

    2013-07-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection.

  19. Feasibility of fiber reinforced composite materials used in highway bridge superstructures

    OpenAIRE

    Lin, Shih-Yung

    1988-01-01

    Composite materials are considered here as structural materials of highway bridge superstructures. Bridge deck designs can be done according to AASHTO1 specification and elastic design concepts. In order to evaluate the feasibility of composites as structural materials of highway bridge superstructures, composite materials are compared not only to composite materials themselves but also to the most popular bridge structural materials, which are reinforced concrete and struc...

  20. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  1. Fitness Considerations for Contemporary Composite Materials: (Who's Afraid of the Composite Micro-Crack?)

    Science.gov (United States)

    Beaumont, Peter W. R.; Soutis, Costas; Johnson, Alastair

    2017-12-01

    Avoiding the catastrophic failure of a large structure demands the material's microstructure be designed in such as a way as to render any crack present innocuous thereby raising the integrity of that structure. Structural integrity of a composite material embraces contributions from: materials science and engineering; processing science; design and fabrication technology. It combines a number of interacting factors: the criticality of the application; the accessibility for and ability to inspect vital parts and components; the intended use including load spectrum and time; the consequences of impact, fatigue, temperature and hostile environment; the nature of inherent flaws; the constituent properties of the material system utilized; and it takes into account human factors.

  2. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    Science.gov (United States)

    Hejazi, Vahid

    Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental

  3. Interfacial Properties of Bamboo Fiber-Reinforced High-Density Polyethylene Composites by Different Methods for Adding Nano Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Cuicui Wang

    2017-11-01

    Full Text Available The focus of this study was to observe the effect of nano calcium carbonate (CaCO3 modification methods on bamboo fiber (BF used in BF-reinforced high-density polyethylene (HDPE composites manufactured by extrusion molding. Two methods were used to introduce the nano CaCO3 into the BF for modification; the first was blending modification (BM and the second was impregnation modification (IM. In order to determine the effects of the modification methods, the water absorption, surface free energy and interfacial properties of the unmodified composites were compared to those of the composites made from the two modification methods. The results revealed that the percentage increase in the weight of the composite treated by nano CaCO3 decreased and that of the IMBF/HDPE composite was the lowest over the seven months of time. The results obtained by the acid-base model according to the Lewis and Owens-Wendt- Rabel-Kaelble (OWRK equations indicated that the surface energy of the composites was between 40 and 50 mJ/m2. When compared to the control sample, the maximum storage modulus (E′max of the BMBF/HDPE and IMBF/HDPE composites increased 1.43- and 1.53-fold, respectively. The values of the phase-to-phase interaction parameter B and the k value of the modified composites were higher than those of the unmodified composites, while the apparent activation energy Ea and interface parameter A were lower in the modified composites. It can be concluded that nano CaCO3 had an effect on the interfacial properties of BF-reinforced HDPE composites, and the interface bonding between IMBF and HDPE was greatest among the composites.

  4. Multimaterial magnetically assisted 3D printing of composite materials

    Science.gov (United States)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.

    2015-10-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  5. Multimaterial magnetically assisted 3D printing of composite materials

    Science.gov (United States)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.

    2015-01-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature. PMID:26494528

  6. Nonlinear mechanics of composite materials with periodic microstructure

    Science.gov (United States)

    Jordan, E. H.; Walker, K. P.

    1991-01-01

    This report summarizes the result of research done under NASA NAG3-882 Nonlinear Mechanics of Composites with Periodic Microstructure. The effort involved the development of non-finite element methods to calculate local stresses around fibers in composite materials. The theory was developed and some promising numerical results were obtained. It is expected that when this approach is fully developed, it will provide an important tool for calculating local stresses and averaged constitutive behavior in composites. NASA currently has a major contractual effort (NAS3-24691) to bring the approach developed under this grant to application readiness. The report has three sections. One, the general theory that appeared as a NASA TM, a second section that gives greater details about the theory connecting Greens functions and Fourier series approaches, and a final section shows numerical results.

  7. Designing Neat and Composite Carbon Nanotube Materials by Porosimetric Characterization

    Science.gov (United States)

    Kobashi, Kazufumi; Yoon, Howon; Ata, Seisuke; Yamada, Takeo; Futaba, Don N.; Hata, Kenji

    2017-12-01

    We propose a porosimetry-based method to characterize pores formed by carbon nanotubes (CNTs) in the CNT agglomerates for designing neat CNT-based materials and composites. CNT agglomerates contain pores between individual CNTs and/or CNT bundles (micropore 50 nm). We investigated these pores structured by CNTs with different diameters and number of walls, clarifying the broader size distribution and the larger volume with increased diameters and number of walls. Further, we demonstrated that CNT agglomerate structures with different bulk density were distinguished depending on the pore sizes. Our method also revealed that CNT dispersibility in solvent correlated with the pore sizes of CNT agglomerates. By making use of these knowledge on tailorable pores for CNT agglomerates, we successfully found the correlation between electrical conductivity for CNT rubber composites and pore sizes of CNT agglomerates. Therefore, our method can distinguish diverse CNT agglomerate structures and guide pore sizes of CNT agglomerates to give high electrical conductivity of CNT rubber composites.

  8. Mechanical properties of Al-mica particulate composite material

    Science.gov (United States)

    Nath, D.; Bhatt, R. T.; Rohatgi, P. K.; Biswas, S. K.

    1980-01-01

    Cast aluminum alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40-120 microns) the tensile and compression strengths of aluminum alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/sq mm and compression strength of 28 kg/sq mm performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminum-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.

  9. Pb(II) adsorption by a novel activated carbon - alginate composite material. A kinetic and equilibrium study.

    Science.gov (United States)

    Cataldo, Salvatore; Gianguzza, Antonio; Milea, Demetrio; Muratore, Nicola; Pettignano, Alberto

    2016-11-01

    The adsorption capacity of an activated carbon - calcium alginate composite material (ACAA-Ca) has been tested with the aim of developing a new and more efficient adsorbent material to remove Pb(II) ion from aqueous solution. The study was carried out at pH=5, in NaCl medium and in the ionic strength range 0.1-0.75molL-1. Differential Pulse Anodic Stripping Voltammetry (DP-ASV) technique was used to check the amount of Pb(II) ion removed during kinetic and equilibrium experiments. Different kinetic (pseudo first order, pseudo second order and Vermuelen) and equilibrium (Langmuir and Freundlich) models were used to fit experimental data, and were statistically compared. Calcium alginate (AA-Ca) improves the adsorption capacity (qm) of active carbon (AC) in the ACAA-Ca adsorbent material (e.g., qm=15.7 and 10.5mgg-1 at I=0.25molL-1, for ACAA-Ca and AC, respectively). SEM-EDX and thermogravimetric (TGA) measurements were carried out in order to characterize the composite material. The results of the speciation study on the Pb(II) solution and of the characterization of the ACAA-Ca and of the pristine AA-Ca and AC were evaluated in order to explain the specific contribution of AC and AA-Ca to the adsorption of the metal ion. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Study of erosion characterization of carbon fiber reinforced composite material

    Science.gov (United States)

    Debnath, Uttam Kumar; Chowdhury, Mohammad Asaduzzaman; Kowser, Md. Arefin; Mia, Md. Shahin

    2017-06-01

    Carbon fiber composite materials are widely used at different engineering and industrial applications there are good physical, mechanical, chemical properties and light weight. Erosion behavior of materials depends on various factors such as impact angle, particle velocity, particle size, particle shape, particle type, particle flux, temperature of the tested materials. Among these factors impact angle and particle velocity have been recognized as two parameters that noticeably influence the erosion rates of all tested materials. Irregular shaped sand (SiO2) particles of various sizes (200-300 µm, 400-500 µm, and 500-600 µm) were selected erosive element. Tested conditions such as impingement angles between 15 degree to 90 degree, impact velocities between 30-50 m/sec, and stand-off distances 15-25 mm at surrounding room temperature were maintained. The highest level of erosion of the tested composite is obtained at 60° impact angle, which signifies the semi-ductile behavior of this material. Erosion showed increasing trend with impact velocity and decreasing nature in relation to stand-off distance. Surface damage was analyzed using SEM to examine the nature of the erosive wear mechanism.

  11. Investigation of shock-wave phenomena in composite materials

    Science.gov (United States)

    Afanas'eva, S. A.; Belov, N. N.; Biryukov, Yu. A.; Burkin, V. V.; Zakharov, V. M.; Ishchenko, A. N.; Skosyrskii, A. V.; Tabachenko, A. N.; Khorev, I. E.; Yugov, N. T.

    2011-01-01

    We propose a complex experimental-theoretical approach to the investigation and development of high-energy and composite materials for the conditions of high-velocity throwing and interaction with the application of nanotechnologies. We have obtained data on the character of the high-velocity interaction of strikers made from tungsten composites by different technologies with a steel obstacle. A nanostructured material based on copper with higher strength characteristics has been developed. The conditions for increasing the muzzle velocity of a barrel throwing installation due to the application of nanocomposite fuels have been investigated and realized. A computing-experimental method for investigating the processes of high-velocity collision of bodies has been elaborated.

  12. High-cycle fatigue strength of a pultruded composite material

    Directory of Open Access Journals (Sweden)

    L. Vergani

    2009-01-01

    Full Text Available Dealing with composites in polymeric matrix, the pultruded ones are among the more suitable for large production rates and volumes. For this reason, their use is increasing also in structural applications in civil and mechanical engineering. However, their use is still limited by the partial knowledge of their fatigue behaviour; in many applications it is, indeed, required a duration of many millions of cycles, while most of the data that can be found in literature refer to a maximum number of cycles equal to 3 millions. In this paper a pultruded composite used for manufacturing structural beams is considered and its mechanical behaviour characterized by means of static and high-cycle fatigue tests. The results allowed to determine the S-N curve of the material and to assess the existence of a fatigue limit. Observations at the scanning electronic microscope (SEM allowed to evaluate the damage mechanisms involved in the static and fatigue failure of the material.

  13. Peridynamics for analysis of failure in advanced composite materials

    KAUST Repository

    Askari, A.

    2015-08-14

    Peridynamics has been recently introduced as a way to simulate the initiation and propagation of multiple discontinuities (e.g. cracks). It is an alternative to classical continuum damage mechanics and fracture mechanics and is based on a nonlocal rewriting of the equilibrium equation. This new technique is particularly promising in the case of composite materials, in which very complex mechanisms of degradation must be described. We present here some fundamental aspects of peridynamics models for composite materials, and especially laminates. We also propose an approach to couple peridynamics domains with classical continuum mechanics (which relies on the concept of contact forces) by the use of a recently introduced coupling technique: the morphing technique, that appears to be a very versatile and powerful tool for coupling local to nonlocal descriptions.

  14. POLYMER COMPOSITES MODIFIED BY WASTE MATERIALS CONTAINING WOOD FIBRES

    Directory of Open Access Journals (Sweden)

    Bernardeta Dębska

    2016-11-01

    Full Text Available In recent years, the idea of sustainable development has become one of the most important require-ments of civilization. Development of sustainable construction involves the need for the introduction of innovative technologies and solutions that will combine beneficial economic effects with taking care of the health and comfort of users, reducing the negative impact of the materials on the environment. Composites obtained from the use of waste materials are part of these assumptions. These include modified epoxy mortar containing waste wood fibres, described in this article. The modification consists in the substitution of sand by crushed waste boards, previously used as underlays for panels, in quantities of 0%, 10%, 20%, 35% and 50% by weight, respectively. Composites containing up to 20% of the modifier which were characterized by low water absorption, and good mechanical properties, also retained them after the process of cyclic freezing and thawing.

  15. A comparison of microhardness of indirect composite restorative materials

    DEFF Research Database (Denmark)

    Miranda, Carolina Baptista; Pagani, Clóvis; Bottino, Marco Cícero

    2003-01-01

    test through: (I) Levene's for homogeneity of variances; (II) ANOVA on ranks (Kruskal-Wallis); (III) Dunn's multiple comparison test (0.05). Targis presented the highest microhardness values while Sinfony presented the lowest. Artglass and Solidex were found as intermediate materials. These results......The purpose of this study was to compare the microhardness of four indirect composite resins. Forty cylindrical samples were prepared according to the manufacturer’s recommendations using a Teflon mold. Ten specimens were produced from each tested material, constituting four groups (n=10...

  16. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  17. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA

    Science.gov (United States)

    2014-04-01

    and radio frequency properties and carbon fiber materials characterization and development. As mentioned previously, selective tasks, subtasks and...comparison to pristine graphene at 0.34 nm, attributable to the presence of the covalent sp 3 carbon bonds formed above and below the plane of the 2-D

  18. Micromechanics of Composite Materials Governed by Vector Constitutive Laws

    Science.gov (United States)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2017-01-01

    The high-fidelity generalized method of cells micromechanics theory has been extended for the prediction of the effective property tensor and the corresponding local field distributions for composites whose constituents are governed by vector constitutive laws. As shown, the shear analogy, which can predict effective transverse properties, is not valid in the general three-dimensional case. Consequently, a general derivation is presented that is applicable to both continuously and discontinuously reinforced composites with arbitrary vector constitutive laws and periodic microstructures. Results are given for thermal and electric problems, effective properties and local field distributions, ordered and random microstructures, as well as complex geometries including woven composites. Comparisons of the theory's predictions are made to test data, numerical analysis, and classical expressions from the literature. Further, classical methods cannot provide the local field distributions in the composite, and it is demonstrated that, as the percolation threshold is approached, their predictions are increasingly unreliable. XXXX It has been observed that the bonding between the fibers and matrix in composite materials can be imperfect. In the context of thermal conductivity, such imperfect interfaces have been investigated in micromechanical models by Dunn and Taya (1993), Duan and Karihaloo (2007), Nan et al. (1997) and Hashin (2001). The present HFGMC micromechanical method, derived for perfectly bonded composite materials governed by vector constitutive laws, can be easily generalized to include the effects of weak bonding between the constituents. Such generalizations, in the context of the mechanical micromechanics problem, involve introduction of a traction-separation law at the fiber/matrix interface and have been presented by Aboudi (1987), Bednarcyk and Arnold (2002), Bednarcyk et al. (2004) and Aboudi et al. (2013) and will be addressed in the future.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    J D Ekhe. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 277-284 Composites. Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites.

  20. Calculation of Gamma Photon Propagation Processes in a Composite Material

    Science.gov (United States)

    Pavlenko, V. I.; Cherkashina, N. I.; Noskov, A. V.; Yastrebinskii, R. N.; Sokolenko, I. V.

    2016-12-01

    The paper presents the data on radiation protection properties of a composite material consisting of the glass-crystalline matrix and nanotubular chrysotile modified by inserting PbWO4 into its structure, as well as the data on key physico-mechanical characteristics of the composite, such as density, ultimate compression strength, microhardness, porosity, water absorption, temperature stability, and thermostability. It was established that in addition to radiation protection properties, the examined material has enhanced practical design characteristics and can be used as a construction material. The propagation of gamma photons with different energy levels through the composite material is examined. A graph is built for dependence of the linear gamma radiation attenuation coefficient (μ) on energy in the range 0.25 < E < 1.4 MeV. The contribution of the Compton effect and the photoeffect into the total linear gamma photon flow attenuation coefficient are considered. It is established that at energy levels from 0.25 to 0.7 MeV, photoeffect makes the largest contribution to the total linear gamma radiation attenuation coefficient, while at energy levels from 0.7 to 1.4 MeV the largest contribution is made by the Compton effect. Error of the linear gamma radiation attenuation coefficient based on estimates and experimental data is very small and equals around 2%, which confirms that the developed model is correct. It is established that the composite possesses enhanced radiation protection characteristics, far exceeding those of iron and slightly (by 10.4%) yielding to pure lead.