WorldWideScience

Sample records for calcium carbonates

  1. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  2. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  3. Binding of calcium and carbonate to polyacrylates.

    Science.gov (United States)

    Tribello, Gareth A; Liew, CheeChin; Parrinello, Michele

    2009-05-21

    Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion. PMID:19400592

  4. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  5. The Thermal Decomposition of Calcium Carbonate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The thermogravimetry(TG) and derivative thermogravimetry(DTG) curves of the thermal decomposition reaction of calcium carbonate have been measured at five different heating rates. The kinetic parameters and the reaction mechanism of the reaction were evaluated from analysis of the TG and DTG curves by using the Ozawa method, the combined integral and differential methods and the reduced equations derived by us.

  6. Preparation and Characterization of Calcium Carbonate Nanoparticles

    Science.gov (United States)

    Hassim, Aqilah; Rachmawati, Heni

    2010-10-01

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In this study, we prepared and characterized calcium carbonate nanoparticle to improve the solubility by using bottom-up method. The experiment was done by titrating calcium chloride with sodium carbonate with the addition of polyvinylpyrrolidone (PVP) as stabilizer, using ultra-turrax. Various concentrations of calcium chloride and sodium carbonate as well as various speed of stirring were used to prepare the calcium carbonate nanoparticles. Evaluations studied were including particle size, polydispersity index (PI) and zeta potential with particle analyzer, surface morphology with scanning electron microscope, and saturated solubility. In addition, to test the ability of PVP to prevent particles growth, short stability study was performed by storing nano CaCO3 suspension at room temperature for 2 weeks. Results show that using 8000 rpm speed of stirring, the particle size tends to be bigger with the range of 500-600 nm (PI between 0.2-0.4) whereas with stirring speed of 4000 rpm, the particle size tends to be smaller with 300-400 nm (PI between 0.2-0.4). Stirring speed of 6000 rpm produced particle size within the range of 400-500 nm (PI between 0.2-0.4). SEM photograph shows that particles are monodisperse confirming that particles were physically stable without any agglomeration within 2 weeks storage. Taken together, nano CaCO3 is successfully prepared by bottom-up method and PVP is a good stabilizer to prevent the particle growth.

  7. Biomimetic mineralization: encapsulation in calcium carbonate shells

    OpenAIRE

    Oliveira, Susana Costa de

    2015-01-01

    Calcium carbonate biomineralization is a self-assembly process that has been studied to be applied in the biomedical field to encapsulate biomolecules. Advantages of engineering mineral capsules include improved drug loading efficiencies and protection against external environment. However, common production methods result in heterogeneous capsules and subject biomolecules to heat and vibration which cause irreversible damage. To overcome these issues, a microfluidic device was designed, m...

  8. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  9. Control of calcium carbonate precipitation in anaerobic reactors.

    OpenAIRE

    Langerak, van, B.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what extent precipitation in an anaerobic reactor can be tolerated because adequate knowledge on the structure and quality of methanogenic sludges with high calcium carbonate content was lacking. In this thesis, the ...

  10. Calcium Oxide Matrices and Carbon Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    Claudio Nicolini

    2012-05-01

    Full Text Available Homogeneous matrices of calcium oxide (CaO were prepared by mixing this material with polyethylene glycol (PEG acting as malleable inert support in order to obtain processable composites. Preliminary tests were carried out to assess the best concentration of CaO in the composite, individuated in the CaO/PEG weight ratio of 1/4. Experimental data highlighted that the composite was able to selectively detect carbon dioxide (CO2 via a nanogravimetric method by performing the experiments inside an atmosphere-controlled chamber filled with CO2. Furthermore, the composite material showed a linear absorption of CO2 as a function of the gas concentration inside the atmosphere-controlled chamber, thus paving the way for the possible use of these matrices for applications in the field of sensor devices for long-term evaluation of accumulated environmental CO2.

  11. Behaviour of calcium carbonate in sea water

    Science.gov (United States)

    Cloud, P.E.

    1962-01-01

    Anomalies in the behaviour of calcium carbonate in natural solutions diminish when considered in context. Best values found by traditional oceanographie methods for the apparent solubility product constant K'CaCO3 in sea water at atmospheric pressure are consistent mineralogically-at 36 parts per thousand salinity and T-25??C, K'aragonlte is estimated as 1.12 ?? 10-6 and K'calcite as 0.61 ?? 10-6. At 30??C the corresponding values are 0.98 ?? 10-6 for aragonite and 0.53 ?? 10-6 for calcite. Because the K' computations do not compensate for ionic activity, however, they cannot give thermodynamically satisfactory results. It is of interest, therefore, that approximate methods and information now available permit the estimation from the same basic data of an activity product constant KCaCO3 close to that found in solutions to which Debye-Hu??ckel theory applies. Such methods indicate approximate Karagonite 7.8 ?? 10-9 for surface sea water at 29??C; Kcalcite would be proportionately lower. Field data and experimental results indicate that the mineralogy of precipitated CaCO3 depends primarily on degree of supersaturation, thus also on kinetic or biologic factors that facilitate or inhibit a high degree of supersaturation. The shallow, generally hypersaline bank waters west of Andros Island yield aragonitic sediments with O18 O16 ratios that imply precipitation mainly during the warmer months, when the combination of a high rate of evaporation, increasing salinity (and ionic strength), maximal temperatures and photosynthetic removal of CO2 result in high apparent supersaturation. The usual precipitate from solutions of low ionic strength is calcite, except where the aragonite level of supersaturation is reached as a result of diffusion phenomena (e.g. dripstones), gradual and marked evaporation, or biologic intervention. Published data also suggest the possibility of distinct chemical milieus for crystallographic variations in skeletal calcium carbonate. It appears

  12. Hardening of calcium hydroxide and calcium silicate binders due to carbonation and hydration

    OpenAIRE

    Cizer, Özlem; Campforts, J; Balen, Koenraad Van; Elsen, Jan; Gemert, Dionys van

    2006-01-01

    Hardening of calcium hydroxide and calcium silicate binders composed of cement, rice husk ash (RHA) and lime in different compositions were studied with mechanical strength, mercury intrusion porosimetry, thermal analysis and SEM. When cement is partially replaced with RHA and lime, hardening occurs as a result of combined hydration, pozzolanic reaction and carbonation reaction. While hydration of cement contributes to the early strength development of the mortars, carbonation is much more pr...

  13. Control of calcium carbonate precipitation in anaerobic reactors.

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what extent precipi

  14. Nanoparticle tracers in calcium carbonate porous media

    KAUST Repository

    Li, Yan Vivian

    2014-07-15

    Tracers are perhaps the most direct way of diagnosing subsurface fluid flow pathways for ground water decontamination and for natural gas and oil production. Nanoparticle tracers could be particularly effective because they do not diffuse away from the fractures or channels where flow occurs and thus take much less time to travel between two points. In combination with a chemical tracer they can measure the degree of flow concentration. A prerequisite for tracer applications is that the particles are not retained in the porous media as the result of aggregation or sticking to mineral surfaces. By screening eight nanoparticles (3-100 nm in diameter) for retention when passed through calcium carbonate packed laboratory columns in artificial oil field brine solutions of variable ionic strength we show that the nanoparticles with the least retention are 3 nm in diameter, nearly uncharged, and decorated with highly hydrophilic polymeric ligands. The details of these column experiments and the tri-modal distribution of zeta potential of the calcite sand particles in the brine used in our tests suggests that parts of the calcite surface have positive zeta potential and the retention of negatively charged nanoparticles occurs at these sites. Only neutral nanoparticles are immune to at least some retention. © 2014 Springer Science+Business Media.

  15. Calcium carbonate crystallisation at the microscopic level

    CERN Document Server

    Dobson, P S

    2001-01-01

    The primary concern of this thesis is the investigation of crystal nucleation and growth processes, and the effect of foreign substrates on the rate, extent and mechanism of crystallisation, with particular emphasis on the calcium carbonate system. A methodology, based on the in-line mixing of two stable solutions, which permits the continuous delivery of a solution with a constant, known supersaturation, has been developed and characterised. This has been used to induce CaCO sub 3 crystallisation in experimental systems involving the channel flow and wall jet techniques. The channel flow method has been adapted to facilitate the study of crystal growth at a single calcite crystal. Ca sup 2 sup + ion selective electrodes have been employed as a means of monitoring depletion of the supersaturated solution, downstream of the crystal substrate. The data obtained suggested a growth rate constant of 3x10 sup - sup 1 sup 2 mol cm sup - sup 2 s sup - sup 1 (and a reaction order of 1.52 on supersaturation). The ex-si...

  16. Preparation and Characterization of a Calcium Carbonate Aerogel

    Directory of Open Access Journals (Sweden)

    Johann Plank

    2009-01-01

    Full Text Available We report on a facile method for the preparation of a calcium carbonate aerogel consisting of aggregated secondary vaterite particles with an approximate average diameter of 50 nm. It was synthesized via a sol-gel process by reacting calcium oxide with carbon dioxide in methanol and subsequent supercritical drying of the alcogel with carbon dioxide. The resulting monolith was opaque, brittle and had overall dimensions of 6×2×1 cm. It was characterized by X-ray powder diffraction, nitrogen adsorption method (BET, and scanning electron microscopy.

  17. Automatic photometric titrations of calcium and magnesium in carbonate rocks

    Science.gov (United States)

    Shapiro, L.; Brannock, W.W.

    1955-01-01

    Rapid nonsubjective methods have been developed for the determination of calcium and magnesium in carbonate rocks. From a single solution of the sample, calcium is titrated directly, and magnesium is titrated after a rapid removal of R2O3 and precipitation of calcium as the tungstate. A concentrated and a dilute solution of disodium ethylenediamine tetraacetate are used as titrants. The concentrated solution is added almost to the end point, then the weak solution is added in an automatic titrator to determine the end point precisely.

  18. Ion chromatography detection of fluoride in calcium carbonate.

    Science.gov (United States)

    Lefler, Jamie E; Ivey, Michelle M

    2011-09-01

    Fluoride in aquatic systems is increasing due to anthropogenic pollution, but little is known about how this fluoride affects organisms that live in and around aquatic habitats. Fluoride can bioaccumulate in structures comprised of calcium carbonate, such as shells and skeletons of both freshwater and saltwater species as diverse as snails, corals, and coccolithophorid algae. In this article, ion chromatography (IC) techniques are developed to detect and quantify fluoride in a matrix of calcium carbonate. Solid samples are dissolved in hydrochloric acid, pretreated to remove the majority of the chloride ions, and then analyzed using IC. With these methods, the 3σ limit of detection is 0.2 mg of fluoride/kg of calcium carbonate. PMID:21859530

  19. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system

    Science.gov (United States)

    Prah, J.; Maček, J.; Dražič, G.

    2011-06-01

    In this paper, we report a novel approach for preparing precipitated calcium carbonate using solutions of ammonium carbamate and calcium acetate as the sources of calcium and carbon dioxide, respectively. Two different concentrations of the starting solutions at three different temperatures (15, 25 and 50 °C) were used for the reaction. The influence of temperature and concentration on the polymorphism and the resulting morphology of calcium carbonate are discussed. The most important parameter for controlling a particular crystal structure and precipitate morphology were the concentrations of the initial solutions. When initial solutions with lower concentrations were used, the crystal form of the precipitate changed with time. Regardless the different polymorphism at different temperatures, after one day only the calcite form was detected in all samples, regardless of at which temperature the samples were prepared. At higher concentrations, pure vaterite or a mixture of vaterite and calcite were present at the beginning of the experiment. After one day, pure vaterite was found in the samples that were prepared at 15 and 25 °C. If calcium carbonate precipitated at 50 °C, the XRD results showed a mixture of calcite and vaterite regardless of the time at which the sample was taken. The morphology of calcium carbonate particles prepared at various conditions changed from calcite cubes to spherical particles of vaterite and aragonite needles. When a low starting concentration was used, the morphology at the initial stage was strongly affected by the temperature at which the experiments were conducted. However, after one day only, cubes were present in all cases at low initial concentrations. In contrast, at high concentrations spherical particles precipitated at all three temperatures at the beginning of the reaction. Spherical particles were made up from smaller particles. Over time, the size of the particles was diminishing due to their disintegration into

  20. Correlation between calcium carbonate content and emission characteristics of incense.

    Science.gov (United States)

    Yang, Chi-Ru; Lin, Ta-Chang; Chang, Feng-Hsiang

    2006-12-01

    In Taiwan and China, calcium carbonate is commonly added as a filler during incense production to lower the cost. This study has found an unexpected benefit for this practice: it reduces particulate emission. Nine types of the popular incense on the local market were chosen for this study. The calcium content in raw material incense was analyzed by inductively coupled plasma atomic emission spectrometry, followed by X-ray diffraction (XRD) spectroscopy. The correlation between the calcium content and emission characteristics of incense was investigated. The calcium content varied from 1.8 to 60 mg/g (incense burned) among those nine different types of incense. Very little calcium (incense. Instead, most calcium was artificially added in the form of CaCO3 during manufacturing. The combustion characteristics, including burning rate, emission factors of particulate, ash, and solid-phase polycyclic aromatic hydrocarbons (S-PAHs), varied significantly among the nine types of incense. Incense containing 2% calcium would emit 30% less S-PAHs, compared with those with little (incense by approximately 50%.

  1. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  2. Formate oxidation driven calcium carbonate precipitation by Methylocystis parvus OBBP

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Arvaniti, EC; Hosseinkhani, B; Ramos, JA; Rahier, H; Boon, N.

    2014-01-01

    Microbially Induced Carbonate Precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented in this study to overcome these disadv

  3. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  4. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    International Nuclear Information System (INIS)

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: ► BSA-doped calcium carbonate microspheres with porous structure were prepared. ► Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. ► The release of encapsulated camptothecin is pH dependent ► In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  5. Effect of Strength Enhancement of Soil Treated with Environment-Friendly Calcium Carbonate Powder

    OpenAIRE

    Kyungho Park; Sangju Jun; Daehyeon Kim

    2014-01-01

    This study aims to investigate the effects of the strength improvement of soft ground (sand) by producing calcium carbonate powder through microbial reactions. To analyze the cementation effect of calcium carbonate produced through microbial reaction for different weight ratios, four different types of specimens (untreated, calcium carbonate, cement, and calcium carbonate + cement) with different weight ratios (2%, 4%, 6%, and 8%) were produced and cured for a period of 3 days, 7 days, 14 day...

  6. Para-amino benzoic acid–mediated synthesis of vaterite phase of calcium carbonate

    Indian Academy of Sciences (India)

    T N Ramesh; S A Inchara; K Pallavi

    2015-05-01

    Calcium carbonate polymorphs were precipitated at room temperature and 80°C by varying the precipitation pH, carbonate source, effect of solvent in presence and absence of structure directing agent such as para-aminobenzoic acid. Calcite phase of calcium carbonate was obtained when sodium hydrogen carbonate and/or sodium carbonate (used as precipitating agents) were added to calcium chloride solution at different pHs in water and/or methanol as solvent in separate experiments. Vaterite phase of calcium carbonate (CaCO3) has been synthesized by mixing calcium chloride and sodium carbonate in presence of para-aminobenzoic acid when water–methanol binary mixture was used as solvent. Vaterite phase of calcium carbonate crystallizes in P63/mmc, while that of calcite phase in R-3mc, respectively. Calcite phase of calcium carbonate exhibits rhombohedral morphology, while vaterite phase has spherical morphology.

  7. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  8. Mechano-activated surface modification of calcium carbonate in wet stirred mill and its properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface modification of calcium carbonate particles using sodium stearate(SDS) as a modification agent incorporated with the simultaneous wet ultra-fine grinding in the laboratory stirred mill was investigated. The physical properties and application properties of modified calcium carbonate were measured and evaluated. The action mechanism between SDS and calcium carbonate in the modification was studied by infrared spectrometry(IR) and X-ray photoelectron energy spectroscopy(XPS). The results indicate that the crushing mechanic force intensity can obviously influence the modification effect of calcium carbonate because of mechano-chemical effect. The hydrophilic surface of calcium carbonate is turned into hydrophobic after modification. The properties of polyethylene(PE) filled by modified calcium carbonate powder is markedly improved. And the adsorption of SDS could occur by chemical reaction with calcium carbonate surface.

  9. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature

    Directory of Open Access Journals (Sweden)

    K. B. Kale

    2012-12-01

    Full Text Available The CO2 adsorption by calcium zirconate was explored at pre- and post- combustion temperature condition. The several samples of the calcium zirconate were prepared by different methods such as sol-gel, solid-solid fusion, template and micro-emulsion. The samples of the calcium zirconate were characterized by measurement of surface area, alkalinity/acidity, and recording the XRD patterns and SEM images. The CO2 adsorptions by samples of the calcium zirconate were studied in the temperature range 100 to 850 oC and the CO2 adsorptions were observed in the ranges of 6.88 to 40.6 wt % at 600 0C and 8 to 16.82 wt% at in between the temperatures 200 to 300 oC. The effect of Ca/Zr mol ratio in the samples of the calcium zirconate on the CO2 adsorption and alkalinity were discussed. The adsorbed moisture by the samples of the calcium zirconate was found to be useful for the CO2 adsorption. The promoted the samples of the calcium zirconate by K+, Na+, Rb+, Cs+, Ag+ and La3+ showed the increased CO2 adsorption. The exposure time of CO2 on the samples of the calcium zirconate showed the increased CO2 adsorption. The samples of the calcium zirconate were found to be regenerable and reusable several times for the adsorption of CO2 for at the post- and pre-combustion temperature condition. Copyright © 2012 by BCREC Undip. All rights reservedReceived: 23rd June 2012, Revised: 28th August 2012, Accepted: 30th August 2012[How to Cite: K. B. Kale, R. Y. Raskar, V. H. Rane and A. G.  Gaikwad (2012. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 124-136. doi:10.9767/bcrec.7.2.3686.124-136] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3686.124-136 ] | View in 

  10. Unexpected link between polyketide synthase and calcium carbonate biomineralization

    OpenAIRE

    Hojo, Motoki; Omi, Ai; Hamanaka, Gen; Shindo, Kazutoshi; Shimada, Atsuko; Kondo, Mariko; Narita, Takanori; Kiyomoto, Masato; Katsuyama, Yohei; Ohnishi, Yasuo; Irie, Naoki; Takeda, Hiroyuki

    2015-01-01

    Introduction Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. Results We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent expe...

  11. Preparation of calcium carbonate particles coated with titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  12. Synthesis of carbon-11 labelled calcium channel antagonists

    International Nuclear Information System (INIS)

    A useful synthetic approach to carbon-11 labelled 1,4-dihydropyridines is described. Carbon-11 labelled calcium channel antagonists 11C-Nifedipine, 11C-Nisoldipine, 11C-nitrendipine and 11C-CF3-Nifedipine were synthesized by a modified Hantzsch method using protected carboxy functions. Deprotection of the carboxylic acids by alkaline hydrolysis followed by conversion into the corresponding potassium salts and subsequent methylation with 11CH3I produced the labelled compounds in very good chemical and radiochemical yields (94%). (author)

  13. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis

    DEFF Research Database (Denmark)

    Bro, S; Rasmussen, R A; Handberg, J;

    1998-01-01

    into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium carbonate (US$6.00/d v US$0.65/d). Calcium ketoglutarate may be an effective and safe alternative to treatment with aluminum......The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main...... outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate...

  14. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis.

    Science.gov (United States)

    Bro, S; Rasmussen, R A; Handberg, J; Olgaard, K; Feldt-Rasmussen, B

    1998-02-01

    The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate calcium concentration of 1.25 mmol/L and a fixed alfacalcidol dose for at least 2 months. All had previously tolerated therapy with calcium carbonate. Of the 19 patients included, 10 completed both treatment arms. After 12 weeks of therapy, the mean (+/-SEM) plasma ionized calcium level was significantly lower in the ketoglutarate arm compared with the calcium carbonate arm (4.8+/-0.1 mg/dL v 5.2+/-0.1 mg/dL; P = 0.004), whereas the mean plasma phosphate (4.5+/-0.3 mg/dL v 5.1+/-0.1 mg/dL) and PTH levels (266+/-125 pg/mL v 301+/-148 pg/mL) did not differ significantly between the two treatment arms. Supplemental aluminum-aminoacetate was not required during calcium ketoglutarate treatment, while two patients needed this supplement when treated with calcium carbonate. Five of 17 (29%) patients were withdrawn from calcium ketoglutarate therapy within 1 to 2 weeks due to intolerance (anorexia, vomiting, diarrhea, general uneasiness), whereas the remaining 12 patients did not experience any side effects at all. The five patients with calcium ketoglutarate intolerance all had pre-existing gastrointestinal symptoms; four of them had received treatment with cimetidine or omeprazol before inclusion into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium

  15. Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating

    CERN Document Server

    Barhoum, Ahmed; Abou-Zaied, Ragab Esmail; Rehan, Mohamed; Dufour, Thierry; Hill, Gavin; Dufresne, Alain

    2016-01-01

    Modification of calcium carbonate particles with surfactant significantly improves the properties of the calcium carbonate coating on paper. Unmodified and CTAB and oleate-modified calcium carbonate nanoparticles were prepared using the wet carbonation technique for paper coating. CTAB (cationic surfactant) and sodium oleate (anionic surfactant) were used to modify the size, morphology, and surface properties of the precipitated nanoparticles. The obtained particles were characterized by XRD, FT-IR spectroscopy, zeta potential measurements, TGA and TEM. Coating colors were formulated from the prepared unmodified and modified calcium carbonates and examined by creating a thin coating layer on reference paper. The effect of calcium carbonate particle size and surface modification on paper properties, such as coating thickness, coating weight, surface roughness, air permeability, brightness, whiteness, opacity, and hydrophobicity, were investigated and compared with GCC calcium carbonate-coated papers. The obtai...

  16. A comparative study of calcium absorption following a single serving administration of calcium carbonate powder versus calcium citrate tablets in healthy premenopausal women

    Directory of Open Access Journals (Sweden)

    Haiyuan Wang

    2014-04-01

    Full Text Available Background: Calcium is an essential mineral often taken as a daily, long-term nutritional supplement. Data suggests that once-daily dosing is important with regard to long-term compliance of both drugs and nutritional supplements. Objective: This study was undertaken to compare the bioavailability of a single serving of two calcium supplements in healthy, premenopausal women. Design: A two-period, crossover bioavailability study of a single serving of calcium citrate tablets (two tablets=500 mg calcium versus a single serving of calcium carbonate powder (one packet of powder=1,000 mg calcium was performed in healthy women aged between 25 and 45. All subjects were on a calcium-restricted diet 7 days prior to testing and fasted for 12 h before being evaluated at 0, 1, 2, and 4 h after oral administration of the test agents. Blood measurements for total and ionized calcium and parathyroid hormone were performed and adverse events were monitored. Results: Twenty-three women were evaluable with a mean age of 33.2±8.71. Results showed that administration of a single serving of a calcium carbonate powder resulted in greater absorption in total and ionized calcium versus a single serving of calcium citrate tablets at 4 h (4.25±0.21 vs. 4.16±0.16, p=0.001. There were minimal side effects and no reported serious adverse events. Conclusions: This study shows that a single serving of a calcium carbonate powder is more bioavailable than a single serving of calcium citrate tablets. This may be beneficial for long-term compliance.

  17. Effect of calcium on adsorption capacity of powdered activated carbon.

    Science.gov (United States)

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger. PMID:25078809

  18. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.

    Science.gov (United States)

    de Beer, M; Maree, J P; Liebenberg, L; Doucet, F J

    2014-11-01

    The production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation of hydrogen sulphide (H2S) and CaCO3. H2S can subsequently be converted to elemental sulphur via the commercially available chemical catalytic Claus process. This study investigated the carbonation of CaS by examining both the solution chemistry of the process and the properties of the formed carbonated product. CaS was successfully converted into CaCO3; however, the reaction yielded low-grade carbonate products (i.e. 99 mass% as CaCO3) or precipitated calcium carbonate (PCC).

  19. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.

    Science.gov (United States)

    Combes, C; Bareille, R; Rey, C

    2006-11-01

    The feasibility of making calcium carbonate-calcium phosphate (CaCO(3)-CaP) mixed cements, comprising at least 40% (w/w) CaCO(3) in the dry powder ingredients, has been demonstrated. Several original cement compositions were obtained by mixing metastable crystalline CaCO(3) phases with metastable amorphous or crystalline CaP powders in aqueous medium. The cements set within at most 1 h at 37 degrees C in atmosphere saturated with water. The hardened cement is microporous and exhibits weak compressive strength. The setting reaction appeared to be essentially related to the formation of a highly carbonated nanocrystalline apatite phase by reaction of the metastable CaP phase with part or almost all of the metastable CaCO(3) phase. The recrystallization of metastable CaP varieties led to a final cement consisting of a highly carbonated poorly crystalline apatite analogous to bone mineral associated with various amounts of vaterite and/or aragonite. The presence of controlled amounts of CaCO(3) with a higher solubility than that of the apatite formed in the well-developed CaP cements might be of interest to increase resorption rates in biomedical cement and favors its replacement by bone tissue. Cytotoxicity testing revealed excellent cytocompatibility of CaCO(3)-CaP mixed cement compositions.

  20. Bivalves build their shells from amorphous calcium carbonate

    Science.gov (United States)

    Jacob, D. E.; Wirth, R.; Soldati, A. L.; Wehrmeister, U.

    2012-04-01

    One of the most common shell structures in the bivalve class is the prism and nacre structure. It is widely distributed amongst both freshwater and marine species and gives cultured pearls their sought-after lustre. In freshwater bivalves, both shell structures (prism and nacre) consist of aragonite. Formation of the shell form an amorphous precursor phase is a wide-spread strategy in biomineralization and presents a number of advantages for the organisms in the handling of the CaCO3 material. While there is already evidence that larval shells of some mollusk species use amorphous calcium carbonate (ACC) as a transient precursor phase for aragonite, the use of this strategy by adult animals was only speculated upon. We present results from in-situ geochemistry, Raman spectroscopy and focused-ion beam assisted TEM on three species from two different bivalve families that show that remnants of ACC can be found in shells from adult species. We show that the amorphous phase is not randomly distributed, but is systematically found in a narrow zone at the interface between periostracum and prism layer. This zone is the area where spherulitic CaCO3- structures protrude from the inner periostracum to form the initial prisms. These observations are in accordance with our earlier results on equivalent structures in freshwater cultured pearls (Jacob et al., 2008) and show that the original building material for the prisms is amorphous calcium carbonate, secreted in vesicles at the inner periostracum layer. Quantitative temperature calibrations for paleoclimate applications using bivalve shells are based on the Mg-Ca exchange between inorganic aragonite (or calcite) and water. These calibrations, thus, do not take into account the biomineral crystallization path via an amorphous calcium carbonate precursor and are therefore likely to introduce a bias (a so-called vital effect) which currently is not accounted for. Jacob et al. (2008) Geochim. Cosmochim. Acta 72, 5401-5415

  1. Effects of temperature during the irradiation of calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Camargo R, C.; Ramos B, S. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M., E-mail: negron@nucleares.unam.mx [Kent State University, College of Technology, Kent 44240 Ohio (United States)

    2015-10-15

    The gamma irradiation of calcium carbonate at different doses (0 to 309 kGy) and temperature regimes (77 K to 298 K) was carried out to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum even at low radiation doses and temperature. There is a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder. Response curves show that this system tends to saturate at 10 MGy at 298 K. (Author)

  2. Preparation and properties of gluten/calcium carbonate composites

    Institute of Scientific and Technical Information of China (English)

    Min Zuo; Zheng Zheng Lai; Yi Hu Song; Qiang Zheng

    2008-01-01

    Environment friendly thermosetting composites were prepared by blending wheat gluten (WG) as matrix, calcium carbonate (CaCO3) as filler and glycerol as plasticizer followed by compression molding the mixture at 120 ℃ to crosslink the WG matrix. Morphology observation showed that the CaCO3 particles were finely dispersed in matrix. Incorporation of CaCO3 up to 10 wt% into the composites caused Young's modulus and tensile strength to increase markedly. On the other hand, the moisture absorption and elongation at break decreased slightly.

  3. Physicochemical Characterization of Biofield Energy Treated Calcium Carbonate Powder

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Calcium carbonate (CaCO3) is widely used in pharmaceutical industries and as a supplement in probiotics. The present study was designed to evaluate the effect of biofield energy treatment on the physicochemical properties of the CaCO3. The CaCO3 powder was divided into two parts and referred as control and treated. The control part was remained untreated, whereas treated part was subjected to Trivedi’s biofield treatment. The control and biofield treated samples were characterized using...

  4. The influence of xanthan on the crystallization of calcium carbonate

    Science.gov (United States)

    Yang, Xiaodeng; Xu, Guiying

    2011-01-01

    Calcium carbonate (CaCO 3) was crystallized in xanthan (XC) aqueous solutions. The CaCO 3 particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry analysis (TGA) methods. The concentrations of XC, Ca 2+ and CO 32- ions and the ratios [Ca 2+]/[CO 32-] and [Mg 2+]/[Ca 2+] show evident influence on the aggregation and growth of CaCO 3 particles. The presence of Mg 2+ ions influences not only the morphology, but also the polymorph of CaCO 3.

  5. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  6. Non-aqueous formation of the calcium carbonate polymorph vaterite: astrophysical implications

    CERN Document Server

    Day, Sarah J; Parker, Julia E; Evans, Aneurin

    2013-01-01

    We study the formation of calcium carbonate, through the solid-gas interaction of amorphous Ca-silicate with gaseous CO2, at elevated pressures, and link this to the possible presence of calcium carbonate in a number of circumstellar and planetary environments. We use in-situ synchrotron X-Ray powder diffraction to obtain detailed structural data pertaining to the formation of the crystalline calcium carbonate phase vaterite and its evolution with temperature. We found that the metastable calcium carbonate phase vaterite was formed alongside calcite, at elevated CO2 pressure, at room temperature and subsequently remained stable over a large range of temperature and pressure. We report the formation of the calcium carbonate mineral vaterite whilst attempting to simulate carbonate dust grain formation in astrophysical environments. This suggests that vaterite could be a mineral component of carbonate dust and also presents a possible method of formation for vaterite and its polymorphs on planetary surfaces.

  7. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2004-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  8. Calcium Carbonate Produced by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2007-06-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO2 through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids - single-celled, marine algae that are the major global producers of calcium carbonate - to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  9. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V. J. Fabry

    2003-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  10. CALCIUM CARBONATE PRODUCTION BY COCCOLITHAPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V. J.Fabry

    2004-01-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  11. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2004-04-26

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  12. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H, E-mail: whchang@cycu.edu.t [Center for Nano Bioengineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2009-09-16

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg{sup -1} body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  13. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    Science.gov (United States)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H.

    2009-09-01

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg-1 body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  14. DECOMPOSITION STUDY OF CALCIUM CARBONATE IN COCKLE SHELL

    Directory of Open Access Journals (Sweden)

    MUSTAKIMAH MOHAMED

    2012-02-01

    Full Text Available Calcium oxide (CaO is recognized as an efficient carbon dioxide (CO2 adsorbent and separation of CO2 from gas stream using CaO based adsorbent is widely applied in gas purification process especially at high temperature reaction. CaO is normally been produced via thermal decomposition of calcium carbonate (CaCO3 sources such as limestone which is obtained through mining and quarrying limestone hill. Yet, this study able to exploit the vast availability of waste resources in Malaysia which is cockle shell, as the potential biomass resources for CaCO3 and CaO. In addition, effect of particle size towards decomposition process is put under study using four particle sizes which are 0.125-0.25 mm, 0.25-0.5 mm, 1-2 mm, and 2-4 mm. Decomposition reactivity is conducted using Thermal Gravimetric Analyzer (TGA at heating rate of 20°C/minutes in inert (Nitrogen atmosphere. Chemical property analysis using x-ray fluorescence (XRF, shows cockle shell is made up of 97% Calcium (Ca element and CaO is produced after decomposition is conducted, as been analyzed by x-ray diffusivity (XRD analyzer. Besides, smallest particle size exhibits the highest decomposition rate and the process was observed to follow first order kinetics. Activation energy, E, of the process was found to vary from 179.38 to 232.67 kJ/mol. From Arrhenius plot, E increased when the particle size is larger. To conclude, cockle shell is a promising source for CaO and based on four different particles sizes used, sample at 0.125-0.25 mm offers the highest decomposition rate.

  15. Scaling and Removal of Calcium Carbonate on Electroless Plating Surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The scaling process of calcium carbonate on a low-energy heat transfer surface-electroless plating surface was investigated in a simulated cooling water system. Owing to the very low surface energy, the electroless plating surface exhibited less scaling susceptibility. A longer induction period and a lower scaling rate were obtained on the low-energy surface compared to copper surface under identical conditions. The calcite particles obtained on the electroless plating surface during the induction period were larger in size than those on copper surface because fewer crystals formed and grew at the same time on the low-energy surface. With increasing surface temperature, the induction period reduced and the scaling rate increased for the low-energy surface. When initial surface temperature was fixed, an increase in fluid velocity would reduce the induction period and increase the scaling rate due to the diffusion effect. However, when the heat flux was fixed, an increase in fluid velocity would decrease the surface temperature, and lead to a longer induction period and a lower scaling rate. The removal experiments of calcium carbonate scale indicated that during post induction period, the detachment was not obvious, while during the induction period, apparent removal of crystal particles was obtained on the electroless plating surface owing to the weak adhesion force. The more frequently the transient high hydrodynamic force acted, the more the detached crystal particles were.

  16. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  17. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  18. Effect of strength enhancement of soil treated with environment-friendly calcium carbonate powder.

    Science.gov (United States)

    Park, Kyungho; Jun, Sangju; Kim, Daehyeon

    2014-01-01

    This study aims to investigate the effects of the strength improvement of soft ground (sand) by producing calcium carbonate powder through microbial reactions. To analyze the cementation effect of calcium carbonate produced through microbial reaction for different weight ratios, four different types of specimens (untreated, calcium carbonate, cement, and calcium carbonate + cement) with different weight ratios (2%, 4%, 6%, and 8%) were produced and cured for a period of 3 days, 7 days, 14 days, 21 days, and 28 days to test them. The uniaxial compression strength of specimens was measured, and the components in the specimen depending on the curing period were analyzed by means of XRD analysis. The result revealed that higher weight ratios and longer curing period contributed to increased strength of calcium carbonate, cement, and calcium carbonate + cement specimens. The calcium carbonate and the calcium carbonate + cement specimens in the same condition showed the tendency of decreased strength approximately 3 times and two times in comparison with the 8% cement specimens cured for 28 days, but the tendency of increased strength was approximately 4 times and 6 times in comparison with the untreated specimen. PMID:24688401

  19. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules

    DEFF Research Database (Denmark)

    Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.;

    2008-01-01

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10...... size fractions between 0 and 2000 µm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate......, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential....

  20. Release of Crude Oil from Silica and Calcium Carbonate Surfaces

    DEFF Research Database (Denmark)

    Liu, Xiaoyan; Yan, Wei; Stenby, Erling Halfdan;

    2016-01-01

    on the bare surfaces, surfaces with an adsorbed oil layer, and surfaces after being exposed to aqueous salt solutions. This showed that the silica surface became more hydrophobic after oil adsorption, while the wettability of the calcium carbonate surface was not significantly changed by adsorption of an oil...... oil was investigated by exposing the surfaces with an adsorbed oil layer to a series of NaCl and CaCl2 solutions of decreasing salt concentrations. Here, it was found that the oil release from silica was achieved only by injections of low-salinity solutions, and it is suggested that this observation...... or reduction in ion bridging in the presence of high-salinity NaCl, while the low-salinity effect again was attributed to an expansion of the electrical double layer....

  1. Effects of DPPC/Cholesterol liposomes on the properties of freshly precipitated calcium carbonate.

    Science.gov (United States)

    Szcześ, A

    2013-01-01

    DPPC/Cholesterol liposomes of average diameter below 100nm were used as a matrix for calcium carbonate precipitation. Adsorption of calcium ions on the vesicles was determined via zeta potential measurement. It was found that with increasing calcium ions concentration the electrokinetic potential of the vesicles varied toward more positive values. The changes became smaller with the cholesterol content increase. Accumulation of calcium ions close to the vesicles membranes lead to attraction of CO(3)(2-) ions and enhances nucleation and growth of small calcium carbonate crystals that aggregates within lipid vesicles forming porous balls aggregates. However, dipalmitoylphosphatidylcholine (DPPC) does not change the CaCO(3) crystal forms and calcite is the only form obtained during precipitation. Moreover, the influence of the phospholipid on the calcium carbonate precipitation is enhanced by the induction of cholesterol to the lipid membranes. PMID:22796770

  2. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    Science.gov (United States)

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  3. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2011-12-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms and thereby modifying the oceanic alkalinity cycle. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. Meanwhile, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 will ultimately increase or decrease the globally-integrated pelagic calcification rate. Here, we assess the importance of this uncertainty by introducing a variable dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in the University of Victoria Earth System Climate Model, an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of this parameterization on global ocean carbon cycling under two CO2 emissions scenarios, both integrated to the year 3500. The simulations show a significant sensitivity of the vertical and surface horizontal alkalinity gradients to the parameterization, as well as the removal of alkalinity from the ocean through CaCO3 burial. These sensitivities result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 13 % of total carbon emissions, compared to the case where calcification is insensitive to acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500, a 13 % reduction in the amplitude of warming. Narrowing these uncertainties will require better understanding of both temperature and acidification effects on pelagic calcifiers. Preliminary examination suggests that

  4. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2012-06-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms, and thereby modifying the oceanic carbon and alkalinity cycles. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. At the same time, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 emissions will ultimately increase or decrease pelagic calcification rates. Here, we assess the importance of this uncertainty by introducing a dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of several variants of this dependence on global ocean carbon cycling between 1800 and 3500 under two different CO2 emissions scenarios. Introducing a calcification-saturation state dependence has a significant effect on the vertical and surface horizontal alkalinity gradients, as well as on the removal of alkalinity from the ocean through CaCO3 burial. These changes result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 270 Pg C, compared to the case where calcification does not depend on acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500. Different versions of the model produced varying results, and narrowing this range of uncertainty will require better understanding of both temperature and acidification effects on pelagic calcifiers. Nevertheless, our results suggest that alkalinity observations can be used

  5. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    Science.gov (United States)

    Gresswell, Carolyn Gayle

    Understanding how organisms are capable of forming (synthesize, crystallize, and organize) solid minerals into complex architectures has been a fundamental question of biomimetic materials chemistry and biomineralization for decades. This study utilizes short peptides selected using a cell surface display library for the specific polymorphs of calcium carbonate, i.e., aragonite and calcite, to identify two sets of sequences which can then be used to examine their effects in the formation, crystal structure, morphology of the CaCO3 minerals. A procedure of counter selection, along with fluorescence microscopy (FM) characterization, was adapted to insure that the sequences on the cells were specific to their respective substrate, i.e., aragonite or calcite. From the resulting two sets of sequences selected, five distinct strong binders were identified with a variety of biochemical characteristics and synthesized for further study. Protein derived peptides, using the known sequences of the proteins that are associated with calcite or aragonite, were also designed using a bioinformatics-based similarity analysis of the two sets of binders. In particular, an aragonite binding protein segment, AP7, a protein found in nacre, was chosen for this design and the resulting effects of the designed peptides and the AP7 were examined. Specifically, the binding affinities of the selected and the protein derived peptides off the cells were then tested using FM; these studies resulted in different binding characteristics of the synthesized and cellular bound peptides. Two of the peptides that displayed strong binding on the cells bound to neither of the CaCO 3 substrates and both the high and low similarity protein-derived peptides bound to both polymorphs. However, two of the peptides were found to only bind to their respective polymorph showing; these results are significant in that with this study it is demonstrated that the designed peptides based on experimental library

  6. Experimental kinetic study and modeling of calcium oxide carbonation

    International Nuclear Information System (INIS)

    Anthropogenic carbon dioxide (CO2) emissions, major contributors to the greenhouse effect, are considered as the main cause of global warming. So, decrease of CO2 emitted by large industrial combustion sources or power plants, is an important scientific goal. One of the approaches is based on CO2 separation and capture from flue gas, followed by sequestration in a wide range of geological formations. In this aim, CO2 is captured by sorbents like calcium oxide (CaO) in multi-cycle process of carbonation/de-carbonation. However, it was shown that the most important limitations of such process are related to the reversibility of reaction. CaO rapidly loses activity towards CO2, so the maximum extent of carbonation decreases as long as the number of cycles increases. In order to well understand the processes and parameters influencing the capture capacity of CaO-based sorbents, it appears important to get details on the kinetic law governing the reaction, which have not been really studied up to now. To investigate this reaction, CaO carbonation kinetics was followed by means of thermogravimetric analysis (TGA) on divided materials. Special care was given to the validation of the usual kinetic assumptions such as steady state and rate-determining step assumptions. The aim was to obtain a model describing the reaction in order to explain the influence of intensive variables such as carbonation temperature and CO2 partial pressure. TGA curves obtained under isothermal and isobaric conditions showed an induction period linked to the nucleation process and a strong slowing down of the reaction rate once a given fractional conversion was reached. Both phenomena were observed to depend on carbonation temperature and CO2 partial pressure. To explain these results, the evolution of texture and microstructure of the solid during the reaction was regarded as essential. Reaction at the grain scale induces a volume increase from CaO to CaCO3 which causes a change in the porosity

  7. The flame photometric determination of calcium in phosphate, carbonate, and silicate rocks

    Science.gov (United States)

    Kramer, H.

    1957-01-01

    A flame photometric method of determining calcium in phosphate, carbonate, and silicate locks has been developed Aluminum and phosphate interference was overcome by the addition of a large excess of magnesium. The method is rapid and suitable for routine analysis Results obtained are within ?? 2% of the calcium oxide content. ?? 1957.

  8. Diffusion-reaction compromise the polymorphs of precipitated calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    Han Wang; Wenlai Huang; Yongsheng Han

    2013-01-01

    Diffusion is seldom considered by chemists and materialists in the preparation of materials while it plays an important role in the field of chemical engineering.If we look at crystallization at the atomic level,crystal growth in a solution starts from the diffusion of ions to the growing surface followed by the incorporation of ions into its lattice.Diffusion can be a rate determining step for the growth of crystals.In this paper,we take the crystallization of calcium carbonate as an example to illustrate the microscopic processes of diffusion and reaction and their compromising influence on the morphology of the crystals produced.The diffusion effect is studied in a specially designed three-cell reactor.Experiments show that a decrease of diffusion leads to retardation of supersaturation and the formation of a continuous concentration gradient in the reaction cell,thus promoting the formation of cubic calcite particles.The reaction rate is regulated by temperature.Increase of reaction rate favors the formation of needle-like aragonite particles.When diffusion and reaction play joint roles in the reaction system,their compromise dominates the formation of products,leading to a mixture of cubic and needle-like particles with a controllable ratio.Since diffusion and reaction are universal factors in the preparation of materials,the finding of this paper could be helpful in the controlled synthesis of other materials.

  9. Controlled degradation pattern of hydroxyapatite/calcium carbonate composite microspheres.

    Science.gov (United States)

    Yang, Ning; Zhong, Qiwei; Zhou, Ying; Kundu, Subhas C; Yao, Juming; Cai, Yurong

    2016-06-01

    Hydroxyapatite (HAP) is widely used in clinic due to its good biocompatibility and osteoconductivity except for its slow degradation speed. In the present study, spherical calcium carbonate (CaCO3 ) is fabricated in the presence of silk protein sericin, which is transmuted into HAP microsphere in phosphate solution with the assistance of microwave irradiation. The effect of reaction conditions on the conversion of CaCO3 is investigated including reaction time, chemical composition of phosphate solution, and microwave power to get a series of HAP/CaCO3 composites. The degradation property of the composites is evaluated in vitro. Results show the degradation speed of the composite with higher HAP content is slower. The degradation rate of the composite could be changed effectively by modulating the proportion of HAP and CaCO3 . This work provides a feasible method for the preparation of spherical HAP/CaCO3 composite with controllable degradability. The composite thus obtained may be an ideal material for bone tissue engineering application. Microsc. Res. Tech. 79:518-524, 2016. © 2016 Wiley Periodicals, Inc. PMID:27037606

  10. Facile Synthesis of Calcium Carbonate Nanoparticles from Cockle Shells

    Directory of Open Access Journals (Sweden)

    Kh. Nurul Islam

    2012-01-01

    Full Text Available A simple and low-cost method for the synthesis of calcium carbonate nanoparticles from cockle shells was described. Polymorphically, the synthesized nanoparticles were aragonites which are biocompatible and thus frequently used in the repair of fractured bone and development of advanced drug delivery systems, tissue scaffolds and anticarcinogenic drugs. The rod-shaped and pure aragonite particles of 30±5 nm in diameter were reproducibly synthesized when micron-sized cockle shells powders were mechanically stirred for 90 min at room temperature in presence of a nontoxic and nonhazardous biomineralization catalyst, dodecyl dimethyl betaine (BS-12. The findings were verified using a combination of analytical techniques such as variable pressure scanning electron microscopy (VPSEM, transmission electron microscopy (TEM, Fourier transmission infrared spectroscopy (FT-IR, X-ray diffraction spectroscopy (XRD, and energy dispersive X-ray analyser (EDX. The reproducibility and low cost of the method suggested that it could be used in industry for the large scale synthesis of aragonite nanoparticles from cockle shells, a low cost and easily available natural resource.

  11. Calcium carbonate pump during Quaternary glacial cycles in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Zhifei; XU Jian; TIAN Jun; WANG Pinxian

    2003-01-01

    The preservation and dissolution of calcium carbonate (namely calcium carbonate pump) controls the pH of seawater in global oceans by its buffer effect, and in turn plays a significant role in global changes in atmospheric CO2 concentration. The results from measured carbonate contents over the past 2 Ma at ODP Site 1143 in the South China Sea provide high-resolution records to explore the process of the calcium carbonate pump during Quaternary glacial cycles. The results indicate statistically that the highest carbonate accumulation rate leadsthe lightest δ18O by about 3.6 ka at transitions from glacials to interglacials, and that the strongest carbonate dissolution lags the lightest δ18O by about5.6 ka at transitions from interglacials to glacials. The calcium carbonate pump releases CO2 to the atmosphere at the glacial-interglacial transitions, but transports atmospheric CO2 to deep sea at the interglacial-glacial transitions. The adjustable function of the calcium carbonate pump for the deep-sea CO2-3 concentration directly controls parts of global changes in atmospheric CO2, and contributes the global carbon cycle system during the Quaternary.

  12. Influence of the surfactant nature on the calcium carbonate synthesis in water-in-oil emulsion

    Science.gov (United States)

    Szcześ, Aleksandra

    2009-02-01

    Calcium carbonate has been precipitated from water-in-oil emulsions consisting of n-hexane/nonionic surfactant (Brij 30) and its mixture with cationic (DTAB) or anionic surfactant (SDS) to which calcium chloride and sodium carbonate were added. It was found that the surfactant kind and its amount can regulate the size, form and morphology of the precipitated particles. In case of nonionic surfactant the water/surfactant ratio is the most important parameter that allows to obtain small and regular calcium carbonate crystals. Addition of the DTAB results in different morphology of particles having the same crystal form, whereas addition of SDS changes the kind of emulsion from water-in-oil to oil-in-water. Moreover, light transmittance and backscattering light measurements have been used as a method to study the kinetics of calcium carbonate precipitation in emulsion systems.

  13. Pacific Remote Islands MNM: Initial Survey Instructions for Calcium Carbonate Accretion

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the survey is to quantify the rate of calcium carbonate accretion to the coral reef benthos and to examine spatial and temporal variability in...

  14. Studies on structure and organization of calcium carbonate deposits in algae

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, V.; Untawale, A.G.

    The structure and organization of calcium carbonate deposits is studied in species of Halimeda, Udotea, Neomeris (Chlorophyta) and Padina (Phaeophyta). It was found that in Halimeda aragonite deposition takes place outside the cell wall...

  15. Weight Percentage of Calcium Carbonate for 17 Equatorial Pacific Cores from Brown University

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weight percentages of calcium carbonate in this file were compiled by J. Farrell and W. L. Prell of Brown University for 17 equatorial Pacific Ocean sediment cores....

  16. Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: Piglet studies

    NARCIS (Netherlands)

    Schaafsma, A.; Beelen, G.M.

    1999-01-01

    Powdered chicken eggshells might be an interesting and widely available source of calcium. In two studies using piglets we determined the digestibility of calcium from different diets. The first study compared casein-based diets with CaCO3 (CasCC) or eggshell powder (CasES). The second study compare

  17. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    OpenAIRE

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carb...

  18. The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin.

    OpenAIRE

    Sahai, J; Healy, D P; Stotka, J; Polk, R E

    1993-01-01

    Six healthy male volunteers participated in a two-period, two-treatment study to determine the effect of chronic calcium carbonate administration on ciprofloxacin bioavailability. There was a mean reduction of 40% in Cmax and 43% in AUC when calcium carbonate was administered with ciprofloxacin, compared with ciprofloxacin alone (P < 0.05). There were no changes in either half-life or tmax. It is therefore recommended that patients being treated with ciprofloxacin for serious infections refra...

  19. An investigation on physical properties of polyethylene composite with bentonite, kaolin and calcium carbonate additives

    OpenAIRE

    Karabeyoğlu, Sencer S.; , Nurşen Öntürk

    2014-01-01

    Bentonite, Kaolin, Calcium carbonate easily obtained in nature as mineral products are widely used in plastics industry for additive materials. In this study, Bentonite, Kaolin, and Calcium carbonate minerals were compounded with polyethylene matrix used in specific rates. Prepared compounds melted in sheet metal molds and cooled down under appropriate conditions. Thus, production of composite material was achieved. Hardness, water absorption, and physical properties of manufactured composite...

  20. Green Synthesis of Calcium Carbonate Uniform Microspheres Using Vegetables%Green Synthesis of Calcium Carbonate Uniform Microspheres Using Vegetables

    Institute of Scientific and Technical Information of China (English)

    Chen, Long; Bao, Zuben; Pan, Jian; Xu, Weibing; Zhang, Heping; Hu, Hongbo; Hu, Jichao; Zhou, Lili

    2012-01-01

    We report a novel strategy for the green synthesis of calcium carbonate (CaCO3) microspheres by using four vegetables: potato, cucumber, aubergine, and carrot. The products were characterized by scanning electron microscopy, X-ray powder diffractometry and/or Fourier transform infrared spectroscopy. The results show that the spherical calcite crystals are obtained in the presence of potato, cucumber and aubergine extracts, while uniform vaterite and calcite mixed microspheres are produced with the extracts of carrot. The possible formation mechanism of the CaCO3 microspheres by using vegetables is also discussed, suggesting that the biomolecules especially proteins may induce and control the nucleation and growth of CaCO3 crystals. CaCO3 is an important biomineral and inorganic material. Uniform particles have numerous important applications in many areas. Therefore, this study is very significant not only for expanding the scope of crystal engineering, but also for biomineralization research and green synthesis of functional inorganic materials.

  1. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  2. Sulfur Cycling Mediates Calcium Carbonate Geochemistry in Modern Marine Stromatolites

    Science.gov (United States)

    Visscher, P. T.; Hoeft, S. E.; Bebout, B. M.; Reid, R. P.

    2004-01-01

    Modem marine stromatolites forming in Highborne Cay, Exumas (Bahamas), contain microbial mats dominated by Schizothrix. Although saturating concentrations of Ca2+ and CO32- exist, microbes mediate CaCO3 precipitation. Cyanobacterial photosynthesis in these stromatolites aids calcium carbonate precipitation by removal of HS+ through CO2 use. Photorespiration and exopolymer production predominantly by oxygenic phototrophs fuel heterotrophic activity: aerobic respiration (approximately 60 umol/sq cm.h) and sulfate reduction (SR; 1.2 umol SO42-/sq cm.h) are the dominant C- consuming processes. Aerobic microbial respiration and the combination of SR and H2S oxidation both facilitate CaCO3 dissolution through H+ production. Aerobic respiration consumes much more C on an hourly basis, but duel fluctuating O2 and H2 depth profiles indicate that overall, SR consumes only slightly less (0.2-0.5) of the primary production. Moreover, due to low O2 concentrations when SR rates are peaking, reoxidation of the H2S formed is incomplete: both thiosulfate and polythionates are formed. The process of complete H2S oxidation yields H+. However, due to a low O2 concentration late in the day and relatively high O2 concentrations early in the following morning, a two-stage oxidation takes place: first, polythionates are formed from H2S, creating alkalinity which coincides with CaCO3 precipitation; secondly, oxidation of polythionates to sulfate yields acidity, resulting in dissolution, etc. Vertical profiles confirmed that the pH peaked late in the afternoon (greater than 8.8) and had the lowest values (less than 7.4) early in the morning. Thus, the effect of this S-cycling through alkalinity production, followed by acidification during H2S oxidation, results in a six times stronger fluctuation in acidity than photosynthesis plus aerobic respiration accomplish. This implies that anaerobic processes play a pivotal role in stromatolite formation.

  3. Preparation of pure calcium carbonate by mineral carbonation using industrial byproduct FGD gypsum

    Science.gov (United States)

    Song, K.; Kim, W.; Bang, J. H.; Park, S.; Jeon, C. W.

    2015-12-01

    Mineral carbonation is one of the geological approaches for the sequestration of anthropogenic CO2 gas. Its concept is based on the natural weathering processes in which silicate minerals containing divalent cations such as Ca or Mg are carbonated to CaCO3 or MgCO3 in the reaction with CO2gas. Raw materials for the mineral carbonation have been extended to various industrial solid wastes such as steel slag, ashes, or FGD (flue gas desulfurization) gypsum which are rich in divalent cations. These materials have economic advantages when they are produced in CO2 emission sites. Flue gas desulfurization (FGD) gypsum is such a byproduct obtained in at coal-fired power plants. Recently, we carried out a research on the direct mineral carbonation of FGD gypsum for CO2sequestration. It showed high carbonation reactivity under ambient conditions and the process can be described as follows: CaSO4·2H2O + CO2(g) + 2NH4OH(aq) → CaCO3(s) + (NH4)2SO4(aq) (1) At the early stage of the process, calcium carbonate (CaCO3) exists as a dissolved ion pair during the induction period. High-purity CaCO3 could be precipitated from dissolved calcium carbonate solution extracted during the induction period. The effect of experimental parameters on pure CaCO3 was evaluated: CO2 flow rate (1-3 L/min), ammonia content (4-12%), and solid-to-liquid (S/L) ratio (5-300 g/L). FE-SEM (field-emission scanning electron microscopy) and XRD (X-ray diffraction) study revealed that the precipitated CaCO3 was round-shaped vaterite crystals. The induction time was inversely proportional to the CO2 flow rate and the yield for pure CaCO3 increased with the ammonia content. The formation efficiency for pure CaCO3 decreased with S/L (solid/liquid) ratio. It was 90% (mol/mol) when the S/L ratio was 5 g/L. However, S/L ratio didn't affect the maximum solubility limit of dissolved CaCO3.

  4. Performance of separation processes for precipitated calcium carbonate produced with an innovative method from steelmaking slag and carbon dioxide

    Directory of Open Access Journals (Sweden)

    Sebastian eTeir

    2016-02-01

    Full Text Available In this work, experiments were performed to determine the filterability of calcium carbonate produced with an alternative calcium carbonate production concept. The concept uses steelmaking slag as raw material and has potential to fix CO2 emissions and utilize steelmaking slag, simultaneously. As calcium carbonate is precipitated in a solution containing ammonium chloride, calcium chloride and ammonia, the product needs to be washed and hence filtered. In this work different separation processes, including washing, filtering and drying, were tested on two calcium carbonate slurries produced from steel converter slag and CO2 by a laboratory-scale pilot facility, with the aim of obtaining a solid product with a low chloride content using a minimum amount of washing water. The order of maximum filtration rates achievable of the calcium carbonate slurries was determined by experimental work. The tests included pressure filtration and vacuum filtration and the test series contained altogether 21 different filtration cycles with varying combinations of filtering, washing, and drying steps. The filtered cakes were analyzed by their residual moisture content, chloride content and conductivity, and the filtrates by their residual solids content, chloride content and conductivity. Pressure filtration gave a high capacity (400-460 kg/m2h and a low cake residual moisture content (12-14 wt-%. Vacuum filtration gave slightly higher filtration rates (500-610 kg/m2h at the lowest residual chloride contents of the cakes, but the cake residual moisture also stayed higher (25-26 wt-%. As the vacuum filtration tests used a filter cloth with higher permeability than that of the pressure filtration tests, a slightly higher filtration rate was expected. However, both filtration technologies seem suitable for filtering and washing calcium carbonate prepared with the studied method as a residual chloride content as low as 10 ppm of the filtered solids can be achieved

  5. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate

    International Nuclear Information System (INIS)

    Highlights: ► An NH4-salt-based method utilizes CO2 and steelmaking slags to produce pure CaCO3. ► It was determined if its economic potential warrants moving forward. ► Despite small solvent losses, the method was found to have economical potential. ► The method has significant CO2 emissions reduction potential. ► Scaling up the reactor will allow for a more detailed design for the process. -- Abstract: One of the options that can contribute to the reduction of carbon dioxide emissions for climate change mitigation is the so-called CO2 sequestration by mineral carbonation, or CO2 mineral sequestration. Steel manufacturing could benefit from this option by utilizing its own by-products, i.e. steelmaking slags to combine with CO2. We have recently studied a method, where aqueous solution of ammonium salt (e.g. ammonium acetate, ammonium nitrate and ammonium chloride) is used to extract calcium selectively from the steel converter slag, followed by precipitation of pure calcium carbonate by bubbling CO2 through the produced solution. The ammonium salt solution is recovered and re-used. The purpose of this research was to determine if the economic potential of the method warrants moving forward to large-scale application. Despite the small solvent losses, the method was found to have economical potential. In addition, it has significant CO2 emission reduction potential as well. Scaling up the reactor from the small laboratory scale will allow more detailed design for the process to be made followed by a full economical evaluation including all of the important operational and capital investment costs.

  6. The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.

    Directory of Open Access Journals (Sweden)

    Stefano Goffredo

    Full Text Available Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions.

  7. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  8. Ubiquitylation functions in the calcium carbonate biomineralization in the extracellular matrix.

    Directory of Open Access Journals (Sweden)

    Dong Fang

    Full Text Available Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS. Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes.

  9. Crystallization and self-assembly of flowerlike superstructures of calcium carbonate regulated by pepsin Langmuir monolayers

    International Nuclear Information System (INIS)

    Flowerlike superstructures of calcium carbonate were synthesized at air–water interface in the presence of pepsin Langmuir monolayers as the biomimetic template. The phase structure, morphology, and microstructure of the products obtained at various crystallization stages were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and high resolution transmission electron microscopy. The structural and morphological evolution processes of the products from monodispersed nanoparticles to nanoparticle aggregates and flowerlike superstructures were investigated. Results indicate that the flowerlike superstructures of calcium carbonate are assembled from amorphous calcium carbonate nanoparticles. The growth and assembly of calcium carbonate minerals are significantly regulated by the pepsin Langmuir monolayers. Namely, the pepsin Langmuir monolayers stabilize amorphous calcium carbonate nanoparticles and direct their transformation to amorphous aggregates via non-oriented aggregation. The present approach presents a feasible way to manipulate the growth of inorganic crystal, which, hopefully, is to help better reveal the role of proteins in mineralization process and understand the mechanism of biomineralization. -- Highlights: ► Pepsin Langmuir monolayer as biomimetic template. ► Flower-like calcite crystals experience a novel assembly and growth process. ► The morphologic evolution and phase transformation were observed. ► The trace of initial nucleation site of CaCO3 at the interface was observed. ► The template directs the crystallization and growth process.

  10. Crystallization and self-assembly of flowerlike superstructures of calcium carbonate regulated by pepsin Langmuir monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhonghui [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Hu, Binbin; Dai, Shuxi [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Du, Zuliang, E-mail: zld@henu.edu.cn [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2012-10-15

    Flowerlike superstructures of calcium carbonate were synthesized at air-water interface in the presence of pepsin Langmuir monolayers as the biomimetic template. The phase structure, morphology, and microstructure of the products obtained at various crystallization stages were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and high resolution transmission electron microscopy. The structural and morphological evolution processes of the products from monodispersed nanoparticles to nanoparticle aggregates and flowerlike superstructures were investigated. Results indicate that the flowerlike superstructures of calcium carbonate are assembled from amorphous calcium carbonate nanoparticles. The growth and assembly of calcium carbonate minerals are significantly regulated by the pepsin Langmuir monolayers. Namely, the pepsin Langmuir monolayers stabilize amorphous calcium carbonate nanoparticles and direct their transformation to amorphous aggregates via non-oriented aggregation. The present approach presents a feasible way to manipulate the growth of inorganic crystal, which, hopefully, is to help better reveal the role of proteins in mineralization process and understand the mechanism of biomineralization. -- Highlights: Black-Right-Pointing-Pointer Pepsin Langmuir monolayer as biomimetic template. Black-Right-Pointing-Pointer Flower-like calcite crystals experience a novel assembly and growth process. Black-Right-Pointing-Pointer The morphologic evolution and phase transformation were observed. Black-Right-Pointing-Pointer The trace of initial nucleation site of CaCO{sub 3} at the interface was observed. Black-Right-Pointing-Pointer The template directs the crystallization and growth process.

  11. Elucidating the Effect of Biomolecule Structure on Calcium Carbonate Crystal Formation

    Science.gov (United States)

    Kulbok, K. E.; Duckworth, O.

    2011-12-01

    Anthropogenic emissions of carbon dioxide have lead to a steady increase in atmospheric concentration. This greenhouse gas has been identified as a key driver of climate change and also has lead to increased acidification of marine and terrestrial waters. Calcium carbonate precipitation at the Earth's surface is an integral linkage in the global carbon cycle, especially in regards to regulating atmospheric carbon dioxide. As concern for the effect of increasing atmospheric CO2 levels grows, the need to understand calcium carbonate systems escalates concurrently. Calcium carbonate phases are the most abundant group of biominerals; therefore, elucidating the mechanism of biomineralization is critical to understanding CaCO3 precipitation and may aid in the development of novel carbon sequestration strategies. The ubiquity of microorganisms leads to an extensive number of biomolecules present in the Earth's systems, and thus an extensive range of possible effects on CaCO3 formation. Carboxylic acids are very common biomolecules and have a relatively simple structure, thus making them an ideal family of model compounds. This study examines the kinetics, thermodynamics, phase, and morphology of calcium carbonate crystals precipitated in the presence of carboxylate-containing biomolecules, including citric acid, succinic acid, and aspartic acid. The experiments utilize a unique (NH4)2CO3 gas-diffusion reactor, which allows in-situ measurements of chemical conditions during the precipitation and growth of crystals. Continuous monitoring of the in-situ conditions of pCO2, pH, [Ca2+], and optical absorbance provides data on the supersaturation at which nucleation occurs and the kinetics of mineral growth. The use of scanning electron microscopy and X-ray diffraction provides information on the morphology and mineralogy of precipitates. The combination of these data sets will provide an in-depth view of the ideal concentration of calcium ions required for solution saturation

  12. Determination of oxygen, carbon and nitrogen in calcium by the gamma activation method

    International Nuclear Information System (INIS)

    Gamma-activation determination of oxygen, carbon and nitrogen in technical calcium is described. The method involves (γ,n) reactions of 16O, 12C and 14N. To determine the concentration of the admixtures the activities of 15O, 11C and 13N have been compared with those of the reference samples (LAVSAN polyester, boron nitride and aluminium nitride). Upon irradiation the calcium samples have undergone surface cleaning by 20-30 sec. etching in concentrated hydrochloric acid. Because of the matrix activation and the presence of other admixtures the determination of oxygen, carbon and nitrogen requires their radiochemical isolation. The average concentrations of oxygen, carbon and nitrogen in six calcium samples have been 3x10sup(-1), 3x10sup(-3) and 7x10sup(-3) % wt

  13. The influence of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation

    Science.gov (United States)

    Putro, Triswantoro; Endarko

    2016-04-01

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, around 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.

  14. Adsorption of sodium polyacrylate in high solids loading calcium carbonate slurries.

    Science.gov (United States)

    Taylor, Joshua J; Sigmund, Wolfgang M

    2010-01-15

    The adsorption of sodium polyacrylate (NaPAA) in slurries with up to 75 wt.% calcium carbonate was investigated with the use of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and adsorption of probe molecules. Analysis of the IR spectra demonstrated that the carboxylate groups of NaPAA adsorbed onto ground calcium carbonate (GCC) in three different modes. These modes were shown to be dependent on the solids loading and age of the slurry. Further investigation lead to the determination of the chelating ability of NaPAA at high solids loading. PMID:19875128

  15. Effects of Sigma Anti-bonding Molecule Calcium Carbonate on bone turnover and calcium balance in ovariectomized rats.

    Science.gov (United States)

    Choi, So-Young; Park, Dongsun; Yang, Goeun; Lee, Sun Hee; Bae, Dae Kwon; Hwang, Seock-Yeon; Lee, Paul K; Kim, Yun-Bae; Kim, Ill-Hwa; Kang, Hyun-Gu

    2011-12-01

    This study was conducted to evaluate the effect of Sigma Anti-bonding Molecule Calcium Carbonate (SAC) as therapy for ovariectomy-induced osteoporosis in rats. Three weeks after surgery, fifteen ovariectomized Sprague-Dawley rats were divided randomly into 3 groups: sham-operated group (sham), ovariectomized group (OVX) and SAC-treatment group (OVX+SAC). The OVX+SAC group was given drinking water containing 0.0012% SAC for 12 weeks. Bone breaking force and mineralization as well as blood parameters related to the bone metabolism were analyzed. In OVX animals, blood concentration of 17β-estradiol decreased significantly, while osteocalcin and type I collagen C-terminal telopeptides (CTx) increased. Breaking force, bone mineral density (BMD), calcium and phosphorus in femurs, as well as uterine and vaginal weights, decreased significantly following OVX. However, SAC treatment (0.0012% in drinking water) not only remarkably restored the decreased 17β-estradiol and increased osteocalcin and CTx concentrations, but also recovered decreased femoral breaking force, BMD, calcium and phosphorus, although it did not reversed reproductive organ weights. It is suggested that SAC effectively improve bone density by preventing bone turnover mediated osteocalcin, CTx and minerals, and that it could be a potential candidate for therapy or prevention of postmenopausal osteoporosis.

  16. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    Science.gov (United States)

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  17. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    Science.gov (United States)

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change. PMID:24892495

  18. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    Science.gov (United States)

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  19. Synthesis of porous poly(acrylamide hydrogels using calcium carbonate and its application for slow release of potassium nitrate

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Porous poly(acrylamide was synthesized using calcium carbonate microparticles and subsequent acid treatment to remove the calcium carbonate. Methylenebisacrylamide and ammonium persulfate/sodium metabisulfite were used as crosslinking agent and redox initiator, respectively. The porous structure of resulted hydrogels was confirmed using SEM micrographs. The effect of methylenebisacrylamide concentration and calcium carbonate amount on the swelling of the hydrogels was investigated. The results showed that the effect of methylenebisacrylamide and calcium carbonate variables on the swelling is reverse. The hydrogels were subsequently utilized for the loading of potassium nitrate. Potassium nitrate as active agent was loaded into hydrogels and subsequently the release of this active agent was investigated. In these series of investigation, the effect of content of loading, methylenebisacrylamide and calcium carbonate amount on the release of potassium nitrate from hydrogels was investigated.

  20. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  1. Constant-distance mode scanning potentiometry. 1. Visualization of calcium carbonate dissolution in aqueous solution.

    Science.gov (United States)

    Etienne, Mathieu; Schulte, Albert; Mann, Stefan; Jordan, Guntram; Dietzel, Irmgard D; Schuhmann, Wolfgang

    2004-07-01

    Constant-distance mode scanning potentiometry was established by integrating potentiometric microsensors as ion-selective scanning probes into a SECM setup that was equipped with a piezoelectric shear force-based tip-to-sample distance control. The combination of specially designed micrometer-sized potentiometric tips with an advanced system for tip positioning allowed simultaneous acquisition of both topographic and potentiometric information at solid/liquid interfaces with high spatial resolution. The performance of the approach was evaluated by applying Ca(2+)-selective constant-distance mode potentiometry to monitor the dissolution of calcium carbonate occurring either at the (104) surface of calcite crystals or in proximity to the more complex surface of cross sections of a calcium carbonate shell of Mya arenaria exposed to slightly acidic aqueous solutions. Micrometer-scale heterogeneities in the apparent calcium activity profiles have successfully been resolved for both samples.

  2. Use of gas chromatography in the kinetics of decomposition of calcium carbonate

    International Nuclear Information System (INIS)

    Previous work has shown the utility of gas chromatography in studying the kinetics of the thermal composition of calcium carbonate. One of the advantages of this method is the possibility of characterizing and quantifying gaseous products by connecting a gas chromatograph at the exit of the reaction oven, which provides an easy system for studying the decomposition reaction. The calcium carbonate that was used was characterized by X-ray diffraction, scanning electron microscopy, BET surface area and particle size distribution by laser diffraction. The test conditions for the gas load flow in the reactor oven and the mass of calcium carbonate were determined at different reaction temperatures in order to eliminate the effect of diffusion on the speed of decomposition. The reactions were carried out with pro-analysis calcium carbonate in a quartz reactor, under isothermal conditions in a temperature range of 655oC to 715oC, using nitrogen as the gas load and with different sample masses. The gaseous products were analyzed at different reaction times and the instantaneous speed and rate of reaction were determined. The Flynn method was used to calculate the activation energy and the test results were adjusted with different kinetic models corresponding to solid state reactions. The area contracting model was the one that adjusted best (CW)

  3. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization

    DEFF Research Database (Denmark)

    Tobler, Dominique Jeanette; Rodriguez Blanco, Juan Diego; Dideriksen, Knud;

    2015-01-01

    Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid-mineral inte...

  4. 碳酸钙溶解的研究%Study on the Dissolution of Calcium Carbonate

    Institute of Scientific and Technical Information of China (English)

    孙伶俐

    2015-01-01

    结合国内外碳酸钙溶解机理的研究进展,研究不同条件下碳酸钙在纯水中的溶解性规律。通过碳酸钙在纯水中的pH值及溶液中HCO3-、CO32-浓度的变化规律,并在相同条件下加入防垢剂EDTMP进行对比实验,找到解决油田水处理碳酸钙结垢的有效办法。%Researching calcium carbonate dissolution mechanism and its scale formation and inhibition mechanism has very important significance. In this paper ,the progresses of calcium carbonate dissolution mechanism at home and abroad are summarized. The effects of different conditions to the dissolubility of cal-cium carbonate and inhibition mechanism of scale inhibitor are analysed in the article. joined in the same conditions the scaling inhibitor EDTMP were compared to find the effective way to solve the oil field water treatment of calcium carbonate scaling.

  5. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters

    OpenAIRE

    Sun, Shengtong; Gebauer, Denis; Cölfen, Helmut

    2016-01-01

    A solvothermal method was developed for synthesizing organic monolayer protected amorphous calcium carbonate clusters using 10,12-pentacosadiynoic acid as ligand, ethanol as solvent and NaHCO3 decomposition as CO2 source, which can be extended to synthesize other monolayer protected mineral clusters. published

  6. Soil tillage, water erosion, and calcium, magnesium and organic carbon losses

    Directory of Open Access Journals (Sweden)

    Bertol Ildegardis

    2005-01-01

    Full Text Available Soil tillage influences water erosion, and consequently, losses of calcium, magnesium and organic carbon in surface runoff. Nutrients and organic carbon are transported by surface runoff in particulate form, adsorbed to soil colloids or soluble in water, depending on the soil tillage system. This study was carried out on an Inceptisol, representative of the Santa Catarina highlands, southern Brazil, between November 1999 and October 2001, under natural rainfall. The soil tillage treatments (no replications were: no-tillage (NT, minimum soil tillage with chiseling + disking (MT, and conventional soil tillage with plowing + two diskings (CT. The crop cycles sequence was soybean (Glycine max, oats (Avena sativa, beans (Phaseolus vulgaris and vetch (Vicia sativa. Conventional soil tillage treatment with plowing + two disking in the absence of crops (BS was also studied. Calcium and magnesium concentrations were determined in both water and sediments of the surface runoff, while organic carbon was measured only in sediments. Calcium and magnesium concentrations were greater in sediments than in surface runoff, while total losses of these elements were greater in surface runoff than in sediments. The greatest calcium and magnesium concentrations in surface runoff were obtained under CT, while in sediments the greatest concentration occurred under MT. Organic carbon concentration in sediments did not differ under the different soil tillage systems, and the greatest total loss was under CT system.

  7. Effect of temperature on kinetic parameters of decomposition reaction of calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    CHEN Hongwei; CHEN Jiangtao; WEI Riguang; SUO Xinliang

    2013-01-01

    In order to investigate the influence of temperature on behavior of calcium carbonate decomposition,especially on kinetic parameters of the decomposition reaction,the analytically pure calcium carbonate was calcined on a self-built large dose thermogravimetric analyzer.The results indicated that,with an increase in the reaction temperature,the reactivity index of calcium carbonate decomposition increased at stage state while the kinetic parameters decreased at stage state.Moreover,both the reaction indices and the kinetic parameters can be divided into three stages and the temperature turning points in different stages were the same.The phase boundary reaction (cylindrical symmetry) theory was more suitable for calcium carbonate calcination under N2 atmosphere.The change trend of the logarithm of reaction activation with temperature was similar as that of the pre-exponential factor.There existed good liner relationship and kinetic compensation effect between them.The isokinetic temperature of the CaCO3 calcination was 842 ℃ and the reaction rate constant was 0.104 9 min-1 derived by the compensation coefficients.

  8. Experimental and Modeling Study of the Turning Process of PA 6/Nano Calcium Carbonate Composite

    Directory of Open Access Journals (Sweden)

    Mehdi Haghi

    2013-01-01

    Full Text Available Nowadays, polymeric nanocomposites have emerged as a new material class with rapidly growing use in industrial products because of good mechanical, thermal, and physical properties. Recently, the requirement of the direct machining of these materials has increased due to the production of the most of them by extrusion method in simple cross section and the increased demand for personalized products. In this work, the effect of turning parameters (cutting speed and feed and nano calcium carbonate content on the machinability properties of polyamide 6/nano calcium carbonate composites was investigated by analysis of variance. A novel modeling approach of modified harmony search-based neural network was also utilized to create predictive models of surface roughness and total cutting force from the experimental data. The results revealed that the nano calcium carbonate content on polyamide 6 decreased the cutting forces significantly but did not have a significant effect on surface roughness. Moreover, the results for modeling total cutting forces and surface roughness showed that modified harmony search-based neural network is effective, reliable, and authoritative in modeling the turning process of polyamide 6/nano calcium carbonate composite.

  9. A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles

    OpenAIRE

    Gebauer, Denis; Oliynyk, Vitaliy; Salajkova, Michaela; Sort, Jordi; Zhou, Qi; Bergström, Lennart; Salazar-Alvarez, German

    2011-01-01

    Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy.

  10. Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion

    Science.gov (United States)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-05-01

    The reactivity, speciation and solvation structure of CO2 in carbonate melts are relevant for both the fate of carbon in deep geological formations and for its electroreduction to CO (to be used as fuel) when solvated in a molten carbonate electrolyte. In particular, the high solubility of CO2 in carbonate melts has been tentatively attributed to the formation of the pyrocarbonate anion, C2O52–. Here we study, by first-principles molecular dynamics simulations, the behaviour of CO2 in molten calcium carbonate. We find that pyrocarbonate forms spontaneously and the identity of the CO2 molecule is quickly lost through O2– exchange. The transport of CO2 in this molten carbonate thus occurs in a fashion similar to the Grotthuss mechanism in water, and is three times faster than molecular diffusion. This shows that Grotthuss-like transport is more general than previously thought.

  11. Reduction of CO2 emissions by mineral carbonation : steelmaking slags as rawmaterial with a pure calcium carbonate end product

    OpenAIRE

    Eloneva, Sanni

    2010-01-01

    Mineral carbonation is one of the options that can contribute to the reduction of carbon dioxide emissions for climate change mitigation purposes. Steel manufacturing, which is one of the biggest industrial sources of CO2 emissions, could benefit from this option by utilizing its own by-products, i.e., steelmaking slags, to combine with CO2. Additional benefits would be achieved if the end product was a pure and marketable calcium carbonate. The utilization of CaCO3 derived from steelmaking s...

  12. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification.

    Science.gov (United States)

    Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel

    2015-06-01

    Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates.

  13. Effects of Sevelamer Hydrochloride and Calcium Carbonate on Renal Osteodystrophy in Hemodialysis Patients

    Science.gov (United States)

    Ferreira, Aníbal; Frazão, João Miguel; Monier-Faugere, Marie-Claude; Gil, Célia; Galvao, José; Oliveira, Carlos; Baldaia, Jorge; Rodrigues, Ilidio; Santos, Carla; Ribeiro, Silvia; Hoenger, Regula Mueller; Duggal, Ajay; Malluche, Hartmut H.

    2008-01-01

    Disturbances in mineral metabolism play a central role in the development of renal bone disease. In a 54-wk, randomized, open-label study, 119 hemodialysis patients were enrolled to compare the effects of sevelamer hydrochloride and calcium carbonate on bone. Biopsy-proven adynamic bone disease was the most frequent bone abnormality at baseline (59%). Serum phosphorus, calcium, and intact parathyroid hormone were well controlled in both groups, although calcium was consistently lower and intact parathyroid hormone higher among patients who were randomly assigned to sevelamer. Compared with baseline values, there were no changes in mineralization lag time or measures of bone turnover (e.g., activation frequency) after 1 yr in either group. Osteoid thickness significantly increased in both groups, but there was no significant difference between them. Bone formation rate per bone surface, however, significantly increased from baseline only in the sevelamer group (P = 0.019). In addition, of those with abnormal microarchitecture at baseline (i.e., trabecular separation), seven of 10 in the sevelamer group normalized after 1 yr compared with zero of three in the calcium group. In summary, sevelamer resulted in no statistically significant changes in bone turnover or mineralization compared with calcium carbonate, but bone formation increased and trabecular architecture improved with sevelamer. Further studies are required to assess whether these changes affect clinical outcomes, such as rates of fracture. PMID:18199805

  14. Investigation of the chemistry of calcium carbonate scale nucleation and growth from seawater on OTEC heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.W.; Brass, G.W.; Walter, L.M.; Van Valin, R.

    1979-08-01

    The potential for calcium carbonate scale formation, from supersaturated seawater on candidate Ocean Thermal Energy Conversion heat exchanger tubes, has been tested under flowing and stagnant seawater, and leaking liquid ammonia conditions. It was not possible to confirm the existence of calcium carbonate in any of the deposits formed. However, the presence of calcium in the deposits, generally as a minor component, indicates that microcrystalline calcium carbonate may be formed. Tests performed on growth rates of calcite and aragonite powders in seawater indicate that the maximum thickening rate of a calcium carbonate scale, under conditions which are likely to be encountered in heat exchanger tubes, is less than 20 ..mu..m per month.

  15. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    Science.gov (United States)

    Sekkal, W.; Zaoui, A.

    2013-04-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.

  16. Application of a novel calcium looping process for production of heat and carbon dioxide enrichment of greenhouses

    International Nuclear Information System (INIS)

    Highlights: • The greenhouse calcium looping process was developed by ASPEN Plus simulator. • In this process, the carbonation reaction provides required heat during night time. • The calcination reaction provides required carbon dioxide during day time. • This novel process saves up to 72% energy compared to the fossil fuel burners. • The process thermodynamically attributes to zero emission of carbon dioxide. - Abstract: Greenhouses typically employ conventional burner systems to suffice heat and carbon dioxide required for plant growth. The energy requirement and carbon dioxide emissions from fossil fuel burner are generally high. As an alternative, this paper describes a novel greenhouse calcium looping process which is expected to decrease the energy requirements and associated carbon dioxide emissions. The conceptual design of greenhouse calcium looping process is carried out in the ASPEN Plus v 7.3 simulator. In a greenhouse calcium looping process, the calcination reaction is considered to take place during day time in order to provide the required optimum carbon dioxide between 1000 and 2000 ppm, while the carbonation reaction is occurred during night time to provide required heat. The process simulations carried out in ASPEN indicates that greenhouse calcium looping process theoretically attributes to zero emission of carbon dioxide. Moreover, in a scenario modelling study compared to the conventional natural gas burner system, the heat duty requirements in the greenhouse calcium looping process were found to reduce by as high as 72%

  17. The Properties and Characteristics of Concretes Containing Calcium Carbonate (CaCO3) and Synthetic Lightweight Aggregate

    Science.gov (United States)

    Ramos, Matthew J.

    The purpose of this study was to investigate the efficacy of precipitated calcium carbonate as a means for enhancing the mechanical and environmental favorability of concretes containing synthetic lightweight aggregates (SLA), which are comprised of recycled mixed plastic and fly ash. Compressive strength tests show that 2% calcium carbonate additions are able to mitigate strength decreases induced by SLA as well as decrease concrete density when compared to NWA concretes. SLA concretes containing 5% calcium carbonate do not show the same trend. Instead, strength decreases and density increases are observed. Furthermore, increases in aluminum trisulphate (AFt) phase mineralization are observed through scanning electron microscopy. Results suggest that calcium carbonate additions increase early hydration and stabilize AFt minerals thaumasite and ettringite throughout hydration. It is proposed that increased AFt phase mineralization causes reductions in concrete density. However, a limit to this relationship was observed as additions of greater than 2% calcium carbonate exceed the potential for increased hydration, causing a threshold effect that resulted in calcium carbonate acting as filler, which increases density. Improved mechanical properties and the ability to stabilize waste plastics, fly ash, and CO2 emissions make the use of 2% calcium carbonate in conjunction with SLA a favorable alternative to ordinary concretes.

  18. The preparation of calcium carbonate in an emulsified liquid membrane

    Science.gov (United States)

    Davey, R. J.; Hirai, T.

    1997-01-01

    A method for preparing 1 μm calcite rhombs in a double emulsion is described. This is the first report of the use of such a system for precipitation of a carbonate and may find application in a range of industrially important materials such as fillers and catalysts.

  19. Microbially-Mediated Precipitation of Calcium Carbonate Nanoparticles.

    Science.gov (United States)

    Kang, Ser Ku; Roh, Yul

    2016-02-01

    The objective of this study was to investigate the biomineralization of carbonate minerals using microorganisms (Wu Do-1) enriched from rhodoliths. A 16S rRNA sequence analysis showed that Wu Do-1 mainly contained Proteus mirabilis. The pH decreased from 6.5 to 5.3 over the first 4 days of incubation due to microbial oxidation of organic acids, after which it increased to 7.8 over the remaining incubation period. XRD analysis showed that the precipitates were Mg-rich cal- cite (MgxCa(1-x)CO3), whereas no precipitates were formed without the addition of Wu Do-1 in D-1 medium. SEM-EDS analyses showed that the Mg-rich calcite had a rhombohedron shape and consisted of Ca, Si and Mg with an extracelluar polymeric substance (EPS). In addition, TEM-EDS analyses revealed they were hexagon in shape, 500-700 nm in size, and composed of Ca, Mg, C, and O. These results indicated that Wu Do-1 induced precipitation of Mg-rich calcite on the cell walls and EPS via the accumulation of Ca and/or Mg ions. Therefore, microbial precipitation of carbonate nanoparticles may play an important role in metal and carbon biogeochemistry, as well as in carbon sequestration in natural environments.

  20. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during...

  1. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    Science.gov (United States)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  2. Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater.

    Science.gov (United States)

    Sivasankar, V; Rajkumar, S; Murugesh, S; Darchen, A

    2012-07-30

    Tamarindus indica fruit shells (TIFSs) are naturally calcium rich compounds. They were impregnated with ammonium carbonate and then carbonized, leading to ammonium carbonate activated ACA-TIFS carbon. The resulting materials and carbon arising from virgin fruit shells V-TIFS were characterized and assayed as adsorbent for the removal of fluoride anions from groundwater. The fluoride scavenging ability of TIFS carbons was due to naturally dispersed calcium compounds. X-ray diffraction (XRD) showed that TIFS carbon contained a mixture of calcium oxalate and calcium carbonate. Batch studies on the fluoride removal efficiency of TIFS carbons with respect to contact time, pH, initial fluoride concentration, and co-ion interference were conducted. Applicability of various kinetic models (viz., pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich) and sorption isotherms were tested for batch techniques. The fluoride removal capacity of TIFS carbons was found to be 91% and 83% at a pH of 7.05 for V-TIFS and ACA-TIFS carbons, respectively. The practical applicability of TIFS carbons using groundwater samples was approved. The fluoride removal was greater in groundwater without hydrogen carbonate ions than those containing these ions. The characterizations of fluoride unloaded and loaded TIFS carbons were done by SEM and XRD studies.

  3. Ocean acidification accelerates net calcium carbonate loss in a coral rubble community

    Science.gov (United States)

    Stubler, Amber D.; Peterson, Bradley J.

    2016-09-01

    Coral rubble communities are an important yet often overlooked component of a healthy reef ecosystem. The organisms inhabiting reef rubble are primarily bioeroders that contribute to the breakdown and dissolution of carbonate material. While the effects of ocean acidification on calcifying communities have been well studied, there are few studies investigating the response of bioeroding communities to future changes in pH and calcium carbonate saturation state. Using a flow-through pH-stat system, coral rubble pieces with a naturally occurring suite of organisms, along with bleached control rubble pieces, were subjected to three different levels of acidification over an 8-week period. Rates of net carbonate loss in bleached control rubble doubled in the acidification treatments (0.02 vs. 0.04% CaCO3 d-1 in ambient vs. moderate and high acidification), and living rubble communities experienced significantly increased rates of net carbonate loss from ambient to high acidification conditions (0.06 vs. 0.10% CaCO3 d-1, respectively). Although more experimentation is necessary to understand the long-term response and succession of coral rubble communities under projected conditions, these results suggest that rates of carbonate loss will increase in coral rubble as pH and calcium carbonate saturation states are reduced. This study demonstrates a need to thoroughly investigate the contribution of coral rubble to the overall carbonate budget, reef resilience, recovery, and function under future conditions.

  4. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated disinfection by-products (DBPs). Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. The Energy & Environmental Research Center has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During previous studies, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon product. As much as a 130% increase in the humic acid sorption capacity of a PAC produced from a high-sodium-content lignite was observed. During this study, activated carbons were prepared from three coals representing high-sodium, low-sodium--low-calcium, and high-calcium compositions in two steps, an initial char formation followed by mild activation with steam to avoid excessive burnout. This set of carbons was characterized with respect to physical and chemical properties. The BET (Brunauer-Emmett-Teller) nitrogen adsorption isotherms gave relatively low surface areas (ranging from 245 to 370 m{sup 2}/g). The lowest-BET area was obtained for the high-sodium carbon, which can be attributed to enlargement of micropores as a result of sodium-catalyzed gasification reaction of the carbon structure. This hypothesis is consistent with the scanning electron microscopy microprobe analyses, which show that in both the coal and the activated carbon from this coal, the sodium is distributed over both the carbon structure and the mineral particles. Thus it is initially associated with carboxylate groups on the coal and then as sodium oxide or

  5. Fractional Absorption of Active Absorbable Algal Calcium (AAACa and Calcium Carbonate Measured by a Dual Stable-Isotope Method

    Directory of Open Access Journals (Sweden)

    Steven A. Abrams

    2010-07-01

    Full Text Available With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa, obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI, with that of calcium carbonate. In 10 postmenopausal women volunteers aged 59 to 77 years (mean ± S.D., 67 ± 5.3, the fractional calcium absorption of AAACa and CaCO3 was measured by a dual stable isotope method. 44Ca-enriched CaCO3 and AAACa were administered in all subjects one month apart. After a fixed-menu breakfast and pre-test urine collection (Urine 0, 42Ca-enriched CaCl2 was intravenously injected, followed by oral administration of 44Ca-enriched CaCO3 without carrier 15 minutes later, and complete urine collection for the next 24 hours (Urine 24. The fractional calcium absorption was calculated as the ratio of Augmentation of 44Ca from Urine 0 to Urine 24/ augmentation of 42Ca from Urine 0 to Urine 24. Differences and changes of 44Ca and 42Ca were corrected by comparing each with 43Ca. Fractional absorption of AAACa (mean ± S.D., 23.1 ± 6.4, was distinctly and significantly higher than that of CaCO3 (14.7 ± 6.4; p = 0.0060 by paired t-test. The mean fractional absorption was approximately 1.57-times higher for AAACa than for CaCO3. The serum 25(OH vitamin D level was low (mean ± S.D., 14.2 ± 4.95 ng/ml, as is common in this age group in Japan. Among the parameters of the bone and mineral metabolism measured, none displayed a significant correlation with the fractional absorption of CaCO3 and AAACa. Higher fractional absorption of AAACa compared with CaCO3 supports previous reports on the more beneficial effect of AAACa than CaCO3 for osteoporosis.

  6. A review: Different methods producing different particles size and distribution in synthesis of calcium carbonate nano particles

    Science.gov (United States)

    Sulimai, N. H.; Rusop, M.; Alrokayan, Salman A. H.; Khan, Haseeb A.

    2016-07-01

    Carbonates exist as 73 percent of world crust carbon. Abundance and bioavailability of Calcium Carbonates offer reliable resources, costs saving and environmental friendly potentials in its applications. Studies proven nano-sized Calcium Cabonate (nCC) employs a more significant characteristics compared to larger sizes. Properties of nCC is affected by the dispersion of the particles in which agglomeration occurs. It is important to gain more understanding of the conditions contributing or stunting the agglomeration to gain more control of the particles morphology and dynamic. A few recent studies with different methods to prepare calcium carbonate nanoparticles were listed in Table 1 .Particle size and dispersity of calcium carbonate are affected by different conditions of its preparation. Other factors such as mechanical aggression, concentration of solution, temperature of precipitation, pH of reaction are all contributing factors towards particle sizes and distribution.

  7. Study of calcium forms and their effect in carbon stabilization in fertile soils by FTIR and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, J.R.; Assis, K.L.S.; Calil, V.L.; Souza, K.R.; Beltrao, M.S.S.; Sena, L.A.; Archanjo, B.S.; Achete, C.A., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ (Brazil). Divisao de Materiais e Metrologia

    2013-07-01

    Organic matter or black carbon atoms of Terra Preta de Indio (Amazonian Dark Earth) soils are composed of oxidized carbon groups as phenols, epoxide, carbonyl and carboxyl groups in their surface. At the pH of soil, carboxylate groups are deprotonated generating carboxylate anions leaving the surface of these soils with negative charges. Calcium cations can interact with oxidized carbon groups by chemisorption interactions lowering the total system energy. In this work, Terra Preta de Indio was examined by X-ray photoelectron spectroscopy and Infrared spectroscopy in order to correlate its organic fraction rich in calcium with calcium containing samples. (author)

  8. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup

  9. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Directory of Open Access Journals (Sweden)

    Taylor Joanna

    2011-09-01

    Full Text Available Abstract Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT, and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes

  10. Amorphous calcium carbonate precipitation by cellular biomineralization in mantle cell cultures of Pinctada fucata.

    Directory of Open Access Journals (Sweden)

    Liang Xiang

    Full Text Available The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation.

  11. Calcium carbonate scaling in seawater desalination by ammonia-carbon dioxide forward osmosis: Mechanism and implications

    KAUST Repository

    Li, Zhenyu

    2015-02-07

    Forward osmosis (FO) is an osmotically driven membrane process, where the membrane separates a draw solution (DS) with high salinity from a feed solution (FS) with low salinity. There can be a counter direction flow of salt (i.e., salt leakage) that may interact with the water flux through the FO membrane. For the first time reported, this study describes a new calcium carbonate scaling phenomenon in the seawater FO desalination process using ammonium bicarbonate as the DS. The scaling on the membrane surface at the feed side is caused by the interaction between an anion reversely diffused from the DS and a cation present in the FS, causing a significant decline of the water flux. The composition of the scaling layer is dominated by the solubility (represented as solubility product constant, Ksp) of salt formed by the paired anion and cation. Membrane surface morphology plays a crucial role in the reversibility of the scaling. If the scaling occurs on the active layer of the FO membrane, hydraulic cleaning (increasing crossflow velocity) efficiency to restore the water flux is up to 82%. When scaling occurs on the support layer of the FO membrane, the hydraulic cleaning efficiency is strongly reduced, with only 36% of the water flux recovered. The present study reveals the risk of scaling induced by the interaction of feed solute and draw solute, which is different from the scaling caused by the supersaturation in reverse osmosis and other FO studies reported. The scaling investigated in this study can occur with a very low solute concentration at an early stage of the FO process. This finding provides an important implication for selection of draw solution and development of new membranes in the FO process.

  12. Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sivasankar, V., E-mail: vsivasankar@tce.edu [Department of Chemistry, Thiagarajar College of Engineering (Autonomous), Madurai 625015, Tamil Nadu (India); Rajkumar, S. [Department of Chemistry, Thiagarajar College of Engineering (Autonomous), Madurai 625015, Tamil Nadu (India); Murugesh, S. [Department of Chemistry, SACS M.A.V.M.M. Engineering College, Madurai 625301, Tamil Nadu (India); Darchen, A. [UMR CNRS No. 6226 Sciences Chimiques de Rennes, ENSCR, Avenue du General Leclerc, CS 50837, 35708 Rennes, Cedex 7 (France)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The carbonization of Tamarind fruit shell improved its defluoridation efficiency. Black-Right-Pointing-Pointer Calcium carbonate particles were involved in the defluoridation process. Black-Right-Pointing-Pointer Adsorbent dose, pH, and fluoride concentration showed significant effects. Black-Right-Pointing-Pointer Maximum adsorption of fluoride was achieved at pH 7-8. Black-Right-Pointing-Pointer Prepared carbons were efficient in treating three natural waters. - Abstract: Tamarindus indica fruit shells (TIFSs) are naturally calcium rich compounds. They were impregnated with ammonium carbonate and then carbonized, leading to ammonium carbonate activated ACA-TIFS carbon. The resulting materials and carbon arising from virgin fruit shells V-TIFS were characterized and assayed as adsorbent for the removal of fluoride anions from groundwater. The fluoride scavenging ability of TIFS carbons was due to naturally dispersed calcium compounds. X-ray diffraction (XRD) showed that TIFS carbon contained a mixture of calcium oxalate and calcium carbonate. Batch studies on the fluoride removal efficiency of TIFS carbons with respect to contact time, pH, initial fluoride concentration, and co-ion interference were conducted. Applicability of various kinetic models (viz., pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich) and sorption isotherms were tested for batch techniques. The fluoride removal capacity of TIFS carbons was found to be 91% and 83% at a pH of 7.05 for V-TIFS and ACA-TIFS carbons, respectively. The practical applicability of TIFS carbons using groundwater samples was approved. The fluoride removal was greater in groundwater without hydrogen carbonate ions than those containing these ions. The characterizations of fluoride unloaded and loaded TIFS carbons were done by SEM and XRD studies.

  13. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

    Science.gov (United States)

    Lopez-Arce, Paula; Zornoza-Indart, Ainara

    2015-09-01

    Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast-sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

  14. Lithium and calcium carbides with polymeric carbon structures.

    Science.gov (United States)

    Benson, Daryn; Li, Yanling; Luo, Wei; Ahuja, Rajeev; Svensson, Gunnar; Häussermann, Ulrich

    2013-06-01

    We studied the binary carbide systems Li2C2 and CaC2 at high pressure using an evolutionary and ab initio random structure search methodology for crystal structure prediction. At ambient pressure Li2C2 and CaC2 represent salt-like acetylides consisting of C2(2-) dumbbell anions. The systems develop into semimetals (P3m1-Li2C2) and metals (Cmcm-Li2C2, Cmcm-CaC2, and Immm-CaC2) with polymeric anions (chains, layers, strands) at moderate pressures (below 20 GPa). Cmcm-CaC2 is energetically closely competing with the ground state structure. Polyanionic forms of carbon stabilized by electrostatic interactions with surrounding cations add a new feature to carbon chemistry. Semimetallic P3m1-Li2C2 displays an electronic structure close to that of graphene. The π* band, however, is hybridized with Li-sp states and changed into a bonding valence band. Metallic forms are predicted to be superconductors. Calculated critical temperatures may exceed 10 K for equilibrium volume structures.

  15. The influence of pore-water advection, benthic photosynthesis, and respiration on calcium carbonate dynamics in reef sands

    NARCIS (Netherlands)

    Rao, A.M.F.; Polerecky, L.; Ionescu, D.; Meysman, F.J.R.; de-Beer, D.

    2012-01-01

    To investigate diel calcium carbonate (CaCO3) dynamics in permeable coral reef sands, we measured pore-water profiles and fluxes of oxygen (O2), nutrients, pH, calcium (Ca2+), and alkalinity (TA) across the sediment-water interface in sands of different permeability

  16. Calcium Carbonate versus Sevelamer Hydrochloride as Phosphate Binders after Long-Term Disease Progression in 5/6 Nephrectomized Rats

    Directory of Open Access Journals (Sweden)

    Suvi Törmänen

    2014-01-01

    Full Text Available Our aim was to compare the effects of calcium carbonate and sevelamer-HCl treatments on calcium-phosphate metabolism and renal function in 5/6 nephrectomized (NX rats so that long-term disease progression preceded the treatment. After 15-week progression, calcium carbonate (3.0%, sevelamer-HCl (3.0%, or control diets (0.3% calcium were given for 9 weeks. Subtotal nephrectomy reduced creatinine clearance (−40%, plasma calcidiol (−25%, and calcitriol (−70% and increased phosphate (+37%, parathyroid hormone (PTH (11-fold, and fibroblast growth factor-23 (FGF-23 (4-fold. In NX rats, calcium carbonate diet increased plasma (+20% and urinary calcium (6-fold, reduced plasma phosphate (−50% and calcidiol (−30%, decreased creatinine clearance (−35% and FGF 23 (−85%, and suppressed PTH without influencing blood pH. In NX rats, sevelamer-HCl increased urinary calcium (4-fold and decreased creatinine clearance (−45%, PTH (−75%, blood pH (by 0.20 units, plasma calcidiol (−40%, and calcitriol (−65%. Plasma phosphate and FGF-23 were unchanged. In conclusion, when initiated after long-term progression of experimental renal insufficiency, calcium carbonate diet reduced plasma phosphate and FGF-23 while sevelamer-HCl did not. The former induced hypercalcemia, the latter induced acidosis, while both treatments reduced vitamin D metabolites and deteriorated renal function. Thus, delayed initiation influences the effects of these phosphate binders in remnant kidney rats.

  17. CALCIUM CARBONATE REDUCES IRON ABSORPTION FROM IRON SULFATE, BUT NOT WHEN IRON IS PRESENTED AS AN ORGANIC COMPLEX

    Directory of Open Access Journals (Sweden)

    E. C. CONCEI�O

    2008-09-01

    Full Text Available

    Experimental and epidemiological evidences have demonstrated that calcium inhibits iron absorption; calcium carbonate being one of the most effective calcium sources to reduce iron absorption from dietary origin or from iron sulfate. In the present work, the short-term effect of calcium from calcium carbonate on iron absorption was studied in rats, using different iron compounds (monosodium ferric EDTA, iron-bys-glicine, iron peptide complex with iron sulfate as a control. Eighty (80 animals were divided into groups of 10 animals each with homogeneous weight. After 18h fast, the animals received by gavage 5 mL of a dispersion containing one of the iron compounds (1mg Fe/kg body weight, concomitantly or not with calcium carbonate at a molar ratio of 150:1 (Ca/Fe. Two hours after the administration, the animals were sacrificed and blood was collected for serum iron determination (iron transfer rate from intestinal lumen to blood compartment. Additionally, the intestines were collected for soluble iron determination (available iron. The results demonstrated that calcium ion from calcium carbonate inhibits the iron absorption from iron sulfate, but not from organic iron (di- or trivalent complexes.

  18. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    Science.gov (United States)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  19. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.

  20. Influence of surface treatment of carbon fibers on electrochemical crystallization of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    TAO Ke; HUANG Su-ping; ZHOU Ke-chao

    2005-01-01

    Electrodeposition technique was used to coat calcium phosphate on carbon fiber which can be used to reinforce hydroxyapatite. The differences between fibers treated with and without nitric acid in electrodeposition were evaluated. The X-ray diffractometry results show that CaHPO4·2H2O is obtained as the kind of calcium phosphate coating on carbon fiber. The scanning electron microscopy photographs and deposit kinetic curve indicate that the influences of the functional group attained by nitric acid treatment, the crystal morphology and crystallization of the coating layers on the fiber with and without treatment rate are obviously different. The functional group, especially the acidic group, can act as nucleation centers of electrochemical crystallization.

  1. A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles

    Science.gov (United States)

    Gebauer, Denis; Oliynyk, Vitaliy; Salajkova, Michaela; Sort, Jordi; Zhou, Qi; Bergström, Lennart; Salazar-Alvarez, German

    2011-09-01

    Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy.Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy. Electronic supplementary information (ESI) available: Additional experimental procedures and results. See DOI: 10.1039/c1nr10681c

  2. Dehydration and crystallization of amorphous calcium carbonate in solution and in air.

    Science.gov (United States)

    Ihli, Johannes; Wong, Wai Ching; Noel, Elizabeth H; Kim, Yi-Yeoun; Kulak, Alexander N; Christenson, Hugo K; Duer, Melinda J; Meldrum, Fiona C

    2014-01-01

    The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail. We show that amorphous calcium carbonate can dehydrate before crystallizing, both in solution and in air, while thermal analyses and solid-state nuclear magnetic resonance measurements reveal that its water is present in distinct environments. Loss of the final water fraction--comprising less than 15% of the total--then triggers crystallization. The high activation energy of this step suggests that it occurs by partial dissolution/recrystallization, mediated by surface water, and the majority of the particle then crystallizes by a solid-state transformation. Such mechanisms are likely to be widespread in solid-state reactions and their characterization will facilitate greater control over these processes.

  3. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product.

  4. The Impact of Adsorbed Triethylene Glycol on Water Wettability of the {1014} Calcium Carbonate Surface

    Science.gov (United States)

    Olsen, R.

    2015-12-01

    Water flooding is increasingly being used as a method of enhanced oil recovery and frequently involves calcium carbonate reservoirs. Very often, thermodynamic conditions in the upper few hundred meters allow for hydrate formation. One possible method of preventing hydrates is to inject hydrate inhibitors such as triethylene glycol (TEG) into the reservoir. Thus, it is of importance to know how such glycols affect water wettability, which is an important factor defining the oil behavior in such reservoirs. Wettability of a surface is defined by the contact angle of a liquid drop on the surface. The stronger the liquid is attracted to the surface, the smaller the wetting angle becomes, implying an increased degree of wetting. Therefore, it is possible to gain qualitative knowledge of the change in wetting properties with respect to external influences by studying corresponding changes in free energy of adsorption of the liquid. In our work [1], we used molecular dynamics (MD) and Born-Oppenheimer molecular dynamics (BOMD) to study how adsorbed TEG on the {1014} calcium carbonate surface affected adsorbed water. We used the changes in density profiles of water to estimate changes in adsorption free energy of water. The adaptive biasing force (ABF) method was applied to TEG to calculate the adsorption free energy of TEG on the calcium carbonate surface. We found that water wetting of the calcium carbonate surface decreased in the presence of adsorbed TEG. [1] - Olsen, R.; Leirvik, K.; Kvamme, B.; Kuznetsova, T. Adsorption Properties of Triethylene Glycol on a Hydrated {1014} Calcite Surface and Its Effect on Adsorbed Water, Langmuir 2015, DOI: 10.1021/acs.langmuir.5b02228

  5. Effect of a cyanobacterial community on calcium carbonate precipitation in Puente del Inca (Mendoza, Argentina)

    OpenAIRE

    Ferrari, S.G.; Italiano, M.C.; de Silva, H J

    2002-01-01

    The involvement of cyanobacteria in the precipitation process forming calcium carbonate was studied in samples collected at a geothermal spring located in an area close to Puente del Inca (Mendoza, Argentina). In the summer season profuse cyanobacterial growth is observed at Puente del Inca in areas exposed to sunlight and over which thermal water flows. Differences in cellular structure allowed the recognition of strains of Oscillatoria, Spirulina, Plectonema, and Nostoc, Oscillatoria and...

  6. Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend by Calcium Carbonate Nanoparticles

    OpenAIRE

    Asma Fatehi; Susan Azizi; Mohamad Zaki Ab. Rahman; Wan Md Zin Wan Yunus; Samira Siyamak; Nor Azowa Ibrahim; Sanaz Abdolmohammadi

    2012-01-01

    This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO3 were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO3 nanoparticle loadin...

  7. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    Science.gov (United States)

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils. PMID:27197655

  8. Obtainment of calcium carbonate from mussels shell; Obtencao de carbonato de calcio a partir de conchas de mariscos

    Energy Technology Data Exchange (ETDEWEB)

    Hamester, M.R.R.; Becker, D., E-mail: michele.rosa@sociesc.org.b [Sociedade Educacional de Santa Catarina (SOCIESC), Joinville, SC (Brazil). Mestrado Profissional em Engenharia Mecanica

    2010-07-01

    The mussels and oyster shell are discarded at environment, and this accumulation is causing negative consequences to ecosystem. Calcium carbonate is main constituent of the shell chemical composition. Aiming to reduce environmental aggression and generate income to shellfish producer, there was the possibility of using these shells as an alternative to commercial calcium carbonate. For this physics, chemicals and thermal properties were evaluated, using X-ray fluorescence, thermogravimetric analysis, size distribution, abrasiveness and scanning electronic microscopy. The results indicate that mussels shells have an initial degradation temperature higher than commercial calcium carbonate e same lost weight behavior and 95% of shell chemical composition is calcium carbonate. The sample size distribution was influenced by grinding condition and time as well as its abrasiveness. (author)

  9. REINFORCEMENT OF POLYDIMETHYLSILOXANE NETWORKS BY NANO-CALCIUM CARBONATE

    Institute of Scientific and Technical Information of China (English)

    Ya Peng; Rong-ni Du; Qiang Fu; Yue-lin Wang

    2005-01-01

    Although a number of investigations have been devoted to the analysis of silica or carbon black filled elastomer networks, little work has been done on the reinforcement of CaCO3 filled elastomer network. In this work, the reinforcement of polydimethylsiloxane (PDMS) network by using CaCO3 nano-particles was investigated. We have found a simultaneous increase of tensile strength, modulus and elongation with the increase in nano-CaCO3 content, which suggests that nanoCaCO3 panicles can indeed be used as a reinforcing agent, just like silica or carbon black. Interestingly, the tensile strength,modulus and elongation were seen to leave off for the first time when the content of nano-CaCO3 paticles reaches to 80%.PDMS also showed an enhanced elastic modulus and storage modulus with the increase in nano-CaCO3 content, particularly for samples with high nano-CaCO3 content. SEM was used to investigate the dispersion of the filler in PDMS matrix. A better dispersion was found for samples with high nano-CaCO3 content. A great increase of viscosity was found for samples with higher filler content, which is considered to be the reason for the good dispersion thus the reinforcement, because high viscosity will be helpful for breaking the agglomerates of fillers into small size particles under effect of shear. Our work provides a new way for the reinforcement of elastomer by using an adequate amount of nano-CaCO3 particles instead of a small quantity of silica, which is not only economically cheap but also very effective.

  10. Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene

    Directory of Open Access Journals (Sweden)

    Michele Regina Rosa Hamester

    2012-04-01

    Full Text Available There is a high content of calcium carbonate in mussel and oyster shells, which can be used in the formulation of medicine, in construction or as filler in polymer materials. This work has as its main objective to obtain calcium carbonate from mussel and oyster shells and used as filler in polypropylene compared their properties with polypropylene and commercial calcium carbonate composites. The shellfish was milling and heated at 500 ºC for 2 hours. The powder obtained from shellfish were characterized by scanning electron microscopy (SEM, X-ray fluorescence, particle size distribution and abrasiveness and compared with commercial CaCO3 and mixed with polypropylene. The thermal and mechanical properties of polypropylene with CaCO3 obtained from oyster and mussel shells and with commercial CaCO3 were analysed. The results showed that CaCO3­ can be obtained from oyster and mussel shell and is technically possible to replace the commercial CaCO3 for that obtained from the shells of shellfish in polypropylene composites.

  11. Homogeneous calcium carbonate coating obtained by electrodeposition: in situ atomic force microscope observations

    Energy Technology Data Exchange (ETDEWEB)

    Pavez, Jorge [Departamento de Fisica, Universidad de Santiago de Chile and Center for Advanced Interdisciplinary Research in Materials, CIMAT Casilla 307, Correo 2, Santiago (Chile)]. E-mail: jpavez@lauca.usach.cl; Silva, Juan F. [Departamento de Fisica, Universidad de Santiago de Chile and Center for Advanced Interdisciplinary Research in Materials, CIMAT Casilla 307, Correo 2, Santiago (Chile); Melo, Francisco [Departamento de Fisica, Universidad de Santiago de Chile and Center for Advanced Interdisciplinary Research in Materials, CIMAT Casilla 307, Correo 2, Santiago (Chile)

    2005-05-30

    The evolution of the first stages of the crystallization of an electrochemically deposited calcium carbonate on indium tin oxide (ITO) electrode has been investigated. The electrodeposition was driven applying a constant negative potential to a NaHCO{sub 3} and CaCl{sub 2} solution saturated with molecular oxygen. By this way, novel data about the kinetics of the crystal growth of CaCO{sub 3} were collected from the AFM images. The results show that at the solution supersaturation levels used, the crystal growth occurred by a uniform surface nucleation mechanism. During the growth of the initial nuclei, the surface of the electrode was covered progressively by the growth of flat multilayers having triangular faces. The height of these structures ranged from one to several molecular layers of calcium carbonate. At the end of the crystallization process, the roughness of the electrode surface is reduced in average to two monolayers. Thus, our method provides a useful way to electrodeposit a nearly uniform layer of calcium carbonate on a variety of surfaces of potential applications.

  12. Compaction of functionalized calcium carbonate, a porous and crystalline microparticulate material with a lamellar surface.

    Science.gov (United States)

    Stirnimann, Tanja; Atria, Susanna; Schoelkopf, Joachim; Gane, Patrick A C; Alles, Rainer; Huwyler, Jörg; Puchkov, Maxim

    2014-05-15

    In the present study, we aimed to characterize the compressibility and compactibility of the novel pharmaceutical excipient, functionalized calcium carbonate (FCC). We studied three FCC modifications and compared the values for compressibility and compactibility with mannitol, microcrystalline cellulose (MCC), and ground calcium carbonate (CC 330) as well as mixtures of paracetamol and MCC or FCC at drug loads of 0%, 25%, 50%, 75%, and 100% (w/w). We used Heckel analysis, modified Heckel analysis, and Leuenberger analysis to characterize the compaction and compression behavior of the mixtures. Compaction analysis of FCC showed this material to markedly differ from ground calcium carbonate, exhibiting properties, i.e. plastic deformability, similar to those of MCC. This effect was attributed to the highly lamellar structure of FCC particles whose thickness is of the order of a single crystal unit cell. According to Leuenberger parameters, we concluded that FCC-based tablet formulations had mechanical properties equal or superior to those formulated with MCC. FCC tablets with high tensile strength were obtained already at low compressive pressures. Owing to these favorable properties (i.e. marked tensile strength and porosity), FCC promises to be suitable for the preparation of solid dosage forms. PMID:24631309

  13. Structures and stability of calcium and magnesium carbonates at mantle pressures

    OpenAIRE

    Pickard, Chris J.; Needs, Richard J.

    2014-01-01

    Ab initio random structure searching (AIRSS) and density functional theory methods are used to predict structures of calcium and magnesium carbonate (CaCO$_3$ and MgCO$_3$) at high pressures. We find a previously unknown CaCO$_3$ structure which is more stable than the aragonite and "post aragonite" phases in the range 32--48 GPa. At pressures from 67 GPa to well over 100 GPa the most stable phase is a previously unknown CaCO$_3$ structure of the pyroxene type with fourfold coordinated carbon...

  14. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yi; Jiang Tao; Zhou Yi; Zhang Zhen; Wang Zhejun [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tong Hua; Shen Xinyu [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Wang Yining, E-mail: wang.yn@whu.edu.cn [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2011-07-20

    Titanium has been reported to have some limitations in dental and orthopaedic clinical application. This study described a coating process using a simple chemical method to prepare calcium carbonate coatings on smooth titanium (STi) and sandblasted and acid-etched titanium (SATi), and evaluated the biological response of the materials in vitro. The surfaces of STi, SATi, calcium carbonate coated STi (CC-STi) and calcium carbonate coated SATi (CC-SATi) were characterized for surface roughness, contact angles, surface morphology and surface chemistry. The morphology of MG63 cells cultured on the surfaces was observed by SEM and Immuno-fluorescence staining. Cell attachment/proliferation was assessed by MTT assay, and cell differentiation was evaluated by alkaline phosphatase (ALP) activity. MG63 was found to attach favorably to calcium carbonate crystals with longer cytoplasmic extensions on CC-STi and CC-SATi, resulting in lower cell proliferation but higher ALP activity when compared to STi and SATi respectively. Moreover, CC-SATi is more favorable than CC-STi in terms of biological response. In conclusion, the calcium carbonate coatings on titanium were supposed to improve the osteointegration process and stimulate osteoblast differentiation, especially in early stage. And this method could possibly be a feasible alternative option for future clinical application. Highlights: {yields} Calcium carbonate coatings were prepared on titanium substrates. {yields} The coating process is simple and cost-effective. {yields} Calcium carbonate coating could induce differentiation toward an osteoblastic phenotype. {yields} Calcium carbonate coating could enhance the osteointegration process especially in early stage.

  15. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface

    International Nuclear Information System (INIS)

    Titanium has been reported to have some limitations in dental and orthopaedic clinical application. This study described a coating process using a simple chemical method to prepare calcium carbonate coatings on smooth titanium (STi) and sandblasted and acid-etched titanium (SATi), and evaluated the biological response of the materials in vitro. The surfaces of STi, SATi, calcium carbonate coated STi (CC-STi) and calcium carbonate coated SATi (CC-SATi) were characterized for surface roughness, contact angles, surface morphology and surface chemistry. The morphology of MG63 cells cultured on the surfaces was observed by SEM and Immuno-fluorescence staining. Cell attachment/proliferation was assessed by MTT assay, and cell differentiation was evaluated by alkaline phosphatase (ALP) activity. MG63 was found to attach favorably to calcium carbonate crystals with longer cytoplasmic extensions on CC-STi and CC-SATi, resulting in lower cell proliferation but higher ALP activity when compared to STi and SATi respectively. Moreover, CC-SATi is more favorable than CC-STi in terms of biological response. In conclusion, the calcium carbonate coatings on titanium were supposed to improve the osteointegration process and stimulate osteoblast differentiation, especially in early stage. And this method could possibly be a feasible alternative option for future clinical application. Highlights: → Calcium carbonate coatings were prepared on titanium substrates. → The coating process is simple and cost-effective. → Calcium carbonate coating could induce differentiation toward an osteoblastic phenotype. → Calcium carbonate coating could enhance the osteointegration process especially in early stage.

  16. Growth rate and calcium carbonate accumulation of Halimeda macrolobaDecaisne (Chlorophyta: Halimedaceae in Thai waters

    Directory of Open Access Journals (Sweden)

    Jaruwan Mayakun

    2014-08-01

    Full Text Available Halimeda macroloba Decaisne can utilize the CO2 used for carbon fixation in photosynthesis and use bicarbonate as the main carbon source for calcification. Although Halimeda has been recognized as a carbon sink species, the calcium accumulation of Halimeda species in Thai waters remain poorly understood. In this study, the highest density of H. macroloba was 26 thalli/m2 and Halimeda quickly produced 1-2 new segments/thallus/day or 20.1 mg dry weight/thallus/day. Its calcium carbonate accumulation rate was 16.6 mg CaCO3 /thallus/day, or 82.46 % per thallus. In Thailand, however, only three scientific papers of growth rate and CaCO3 accumulation rate of H. macroloba have been found and collected. Of these records, the mean density was 26-104 thalli/m2 . The growth rate of H. macroloba was around 1-2 mg dry weight/day and the CaCO3 accumulation rate varied around 41-91%. Thus, Halimeda has a great potential to decrease the carbon dioxide concentration in the ocean.

  17. Structuralization of Ca(2+)-Based Metal-Organic Frameworks Prepared via Coordination Replication of Calcium Carbonate.

    Science.gov (United States)

    Sumida, Kenji; Hu, Ming; Furukawa, Shuhei; Kitagawa, Susumu

    2016-04-01

    The emergence of metal-organic frameworks (MOFs) as potential candidates to supplant existing adsorbent types in real-world applications has led to an explosive growth in the number of compounds available to researchers, as well as in the diversity of the metal salts and organic linkers from which they are derived. In this context, the use of carbonate-based precursors as metal sources is of interest due to their abundance in mineral deposits and their reaction chemistry with acids, resulting in just water and carbon dioxide as side products. Here, we have explored the use of calcium carbonate as a metal source and demonstrate its versatility as a precursor to several known frameworks, as well as a new flexible compound based on the 2,5-dihydroxybenzoquinone (H2dhbq) linker, Ca(dhbq)(H2O)2. Furthermore, inspired by the ubiquity and unique structures of biomineralized forms of calcium carbonate, we also present examples of the preparation of superstructures of Ca-based MOFs via the coordination replication technique. In all, the results confirm the suitability of carbonate-based metal sources for the preparation of MOFs and further expand upon the growing scope of coordination replication as a convenient strategy for the preparation of structuralized materials. PMID:27002690

  18. Scientific Opinion on the safety assessment of the active substances, sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulphate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, for use as active system in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-02-01

    Full Text Available This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, used in mixture which is packed into sachets for absorbing oxygen/carbon dioxide emitting from/into the headspace surrounding packed food. All substances of this formulation have been evaluated and approved for use as additives in plastic food contact materials or as food additives. No migration of calcium, iron and sodium ions was detected. No volatile organic compounds other than carbon dioxide were detected at the limit of detection of 0.5 μg/l. The CEF Panel concluded that the use of the substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water does not raise a safety concern when used in oxygen absorber/carbon dioxide emitter systems, in sachets that prevent the physical release of their contents into the food. The sachets are to be placed in the headspace of the packaging and as such may come into occasional contact with the food, e.g. during handling. The sachet should not come into direct contact with liquid foods or foods that have and external aqueous liquid phase on the surface (liquid or exudates.

  19. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, Jani, E-mail: jani.holopainen@helsinki.fi; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-12-01

    Calcium carbonate (CaCO{sub 3}) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}·4H{sub 2}O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO{sub 3} fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO{sub 3} layer by spin or dip coating Ca(NO{sub 3}){sub 2}/PVP precursor solution on the CaCO{sub 3} fibers followed by annealing of the gel formed inside the fiber layer. The CaCO{sub 3} fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. - Highlights: • Calcium carbonate fibers were prepared by electrospinning. • The electrospun fibers crystallized to calcite upon calcination at 500 °C. • Spin and dip coating methods were used to improve the adhesion of the CaCO{sub 3} fibers. • The CaCO{sub 3} fibers were converted to hydroxyapatite by treatment in phosphate solution. • The hydroxyapatite fibers consisted of plate-like nanocrystals.

  20. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    Science.gov (United States)

    Lapenis, Andrei Gennady; Lawrence, Gregory B.; Heim, Alexander; Zheng, Chengyang; Shortle, Walter

    2013-01-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.

  1. Hydration Characteristics of Tetracalcium Alumino-Ferrite Phase in the presence Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    M. M. Radwan

    2011-12-01

    Full Text Available Tetracalcium alumino-ferrite phase (C4AF prepared from pure starting materials was employed for composing various mixes prepared of C4AF phase, CaSO4·2H2O, Ca(OH2 and CaCO3. The effect of replacing calcium sulphate (gypsum by calcium carbonate as a set retarder on the hydration behaviour of ferrite phase was studied. The mixes were hydrated for various periods and the hydration products were investigated using the appropriate techniques. The kinetics of hydration was studied by measuring the chemically-combined water as well as the combined lime contents. The mineralogical constitution was studied by using XRD, and DTA. The microstructure of some represented hydrated samples was investigated by scanning electron microscopy. Some interesting conclusions have been drawn. It was found that calcium carbonate reacts with tetracalcium alumino-ferrite phase (C4AF in the presence of hydrolime [Ca(OH2] to form carboferrite compounds which may coat the aluminate grains as ettringite does and this may probably regulate the setting time.

  2. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate

    Science.gov (United States)

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-05-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c–axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and “low k di-electric” systems.

  3. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate.

    Science.gov (United States)

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-01-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c-axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and "low k di-electric" systems. PMID:27145699

  4. Rapid, high-temperature, field test method for evaluation of geothermal calcium carbonate scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1986-09-01

    A new test method is described that allows the rapid field testing of calcium carbonate scale inhibitors at 500/sup 0/F (260/sup 0/C). The method evolved from use of a full-flow test loop on a well with a mass flow rate of about 1 x 10/sup 6/ lbm/hr (126 kg/s). It is a simple, effective way to evaluate the effectiveness of inhibitors under field conditions. Five commercial formulations were chosen for field evaluation on the basis of nonflowing, laboratory screening tests at 500/sup 0/F (260/sup 0/C). Four of these formulations from different suppliers controlled calcium carbonate scale deposition as measured by the test method. Two of these could dislodge recently deposited scale that had not age-hardened. Performance-profile diagrams, which were measured for these four effective inhibitors, show the concentration interrelationship between brine calcium and inhibitor concentrations at which the formulations will and will not stop scale formation in the test apparatus. With these diagrams, one formulation was chosen for testing on the full-flow brine line. The composition was tested for 6 weeks and showed a dramatic decrease in the scaling occurring at the flow-control valve. This scaling was about to force a shutdown of a major, long-term flow test being done for reservoir economic evaluations. The inhibitor stopped the scaling, and the test was performed without interruption.

  5. Deposition of calcium carbonate in karst caves: role of bacteria in Stiffe's cave.

    Directory of Open Access Journals (Sweden)

    Ercole Claudia

    2001-01-01

    Full Text Available Bacteria make a significant contribution to the accumulation of carbonate in several natural habitats where large amounts of carbonates are deposited. However, the role played by microbial communities in speleothem formation (stalactites, stalagmites etc. in caves is still unclear. In bacteria carbonate is formed by autotrophic pathways, which deplete CO2 from the environment, and by heterotrophic pathways, leading to active or passive precipitation. We isolated cultivable heterotrophic microbial strains, able to induce CaCO3 precipitation in vitro, from samples taken from speleothems in the galleries of Stiffe’s cave, L’Aquila, Italy. We found a large number of bacteria in the calcite formations (1 x 104 to 5 x 109 cells g-1. Microscopic examination, in laboratory conditions at different temperatures, showed that most of the isolates were able to form calcium carbonate microcrystals. The most crystalline precipitates were observed at 32°C. No precipitation was detected in un-inoculated controls media or in media that had been inoculated with autoclaved bacterial cells. X-ray diffraction (XRD analysis showed that most of the carbonate crystals produced were calcite. Bacillus strains were the most common calcifying isolates collected from Stiffe’s Cave. Analysis of carbonate-solubilization capability revealed that the non-calcifying bacteria were carbonate solubilizers.

  6. Surface Modification and Planar Defects of Calcium Carbonates by Magnetic Water Treatment

    Directory of Open Access Journals (Sweden)

    Yeh MS

    2010-01-01

    Full Text Available Abstract Powdery calcium carbonates, predominantly calcite and aragonite, with planar defects and cation–anion mixed surfaces as deposited on low-carbon steel by magnetic water treatment (MWT were characterized by X-ray diffraction, electron microscopy, and vibration spectroscopy. Calcite were found to form faceted nanoparticles having 3x ( commensurate superstructure and with well-developed { } and { } surfaces to exhibit preferred orientations. Aragonite occurred as laths having 3x ( commensurate superstructure and with well-developed ( surface extending along [100] direction up to micrometers in length. The (hkil-specific coalescence of calcite and rapid lath growth of aragonite under the combined effects of Lorentz force and a precondensation event account for a beneficial larger particulate/colony size for the removal of the carbonate scale from the steel substrate. The coexisting magnetite particles have well-developed {011} surfaces regardless of MWT.

  7. Isolation and characterization of biogenic calcium carbonate/phosphate from oral bacteria and their adhesion studies on YSZ-coated titanium substrate for dental implant application

    Indian Academy of Sciences (India)

    GOBI SARAVANAN KALIARAJ; KAMALAN KIRUBAHARAN; G PRADHABAN; P KUPPUSAMI; VINITA VISHWAKARMA

    2016-04-01

    Biogenic calcium carbonate/phosphate were isolated and characterized from oral bacteria (CPOB). The crystalline nature and morphology of calcium carbonate/phosphate were characterized by X-ray diffraction (XRD)and field emission scanning electron microscopy (FESEM), respectively. XRD analysis revealed the cubic phase of YSZ coating as well as biogenic calcium carbonate (rhombohedral) and calcium phosphate oxide (hexagonal) wasobserved from CPOB. FESEM confirmed the extracellular synthesis of calcium compounds. Bacterial adhesion result reveals that YSZ coating drastically reduce bacterial invasion than titanium substrate.

  8. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  9. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.

    Science.gov (United States)

    Park, Yoonjee C; Paulsen, Jeffrey; Nap, Rikkert J; Whitaker, Ragnhild D; Mathiyazhagan, Vidhya; Song, Yi-Qiao; Hürlimann, Martin; Szleifer, Igal; Wong, Joyce Y

    2014-01-28

    Superparamagnetic iron oxide (SPIO) nanoparticles have the potential to be used in the characterization of porous rock formations in oil fields as a contrast agent for NMR logging because they are small enough to traverse through nanopores and enhance contrast by shortening NMR T2 relaxation time. However, successful development and application require detailed knowledge of particle stability and mobility in reservoir rocks. Because nanoparticle adsorption to sand (SiO2) and rock (often CaCO3) affects their mobility, we investigated the thermodynamic equilibrium adsorption behavior of citric acid-coated SPIO nanoparticles (CA SPIO NPs) and poly(ethylene glycol)-grafted SPIO nanoparticles (PEG SPIO NPs) on SiO2 (silica) and CaCO3 (calcium carbonate). Adsorption behavior was determined at various pH and salt conditions via chemical analysis and NMR, and the results were compared with molecular theory predictions. Most of the NPs were recovered from silica, whereas far fewer NPs were recovered from calcium carbonate because of differences in the mineral surface properties. NP adsorption increased with increasing salt concentration: this trend was qualitatively explained by molecular theory, as was the role of the PEG grafting in preventing NPs adsorption. Quantitative disagreement between the theoretical predictions and the data was due to NP aggregation, especially at high salt concentration and in the presence of calcium carbonate. Upon aggregation, NP concentrations as determined by NMR T2 were initially overestimated and subsequently corrected using the relaxation rate 1/T2, which is a function of aggregate size and fractal dimension of the aggregate. Our experimental validation of the theoretical predictions of NP adsorption to minerals in the absence of aggregation at various pH and salt conditions demonstrates that molecular theory can be used to determine interactions between NPs and relevant reservoir surfaces. Importantly, this integrated experimental and

  10. Sucrose/bovine serum albumin mediated biomimetic crystallization of calcium carbonate

    Indian Academy of Sciences (India)

    Cheng-Li Yao; Wang-Hua Xu; Ai-Min Ding; Jin-Mao Zhu

    2009-01-01

    To understand the role of the sucrose/bovine serum albumin system in the biomineralization process, we have tested the influence of different concentration of the sucrose/bovine serum albumin (BSA) on calcium carbonate (CaCO3) precipitation. The CaCO3 crystals were characterized by scanning electron microscope (SEM), Fourier transform infrared spectrograph (FT-IR) and powder X-ray diffractometry (XRD). The possible formation mechanism of CaCO3 in the sucrose/bovine serum albumin system was discussed.

  11. Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano

    DEFF Research Database (Denmark)

    Olsson, J.; Stipp, S. L S; Makovicky, E.;

    2014-01-01

    secondary minerals that often scavenge the released heavy metals. However, very little is known about uptake capacity of the precipitates in natural systems or how much divergence there could be, compared with behavior in laboratory experiments. The spring 2010 eruption of the Eyjafjallajökull volcano...... in the Icelandic river, Hvanná, in the vicinity of the volcano. The river water emerged from under the lava flow and was heavily charged with cations and dissolved CO2. The concentration of the major dissolved constituents was: dissolved inorganic carbon (DIC), 33.08mM; calcium, 6.17mM; magnesium, 4.27mM; sodium...

  12. Effect of carbonate and phosphate ratios on the transformation of calcium orthophosphates

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi, Mohammad Daoud, E-mail: eliassi2007@gmail.com [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Zhao, Wei [State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling 712100 (China); Tan, Wen Feng, E-mail: wenfeng.tan@hotmail.com [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2014-07-01

    Graphical abstract: Complexes among phosphate, carbonate and calcium have been prepared via a facile hydrothermal route. The synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate and hydroxylapatite (HAp), respectively. Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are effective on the reduction of carbonate activity during the crystallization of HAp. - Highlights: • Formation of different complexes from CO{sub 3}{sup 2−}, PO{sub 4}{sup 3−} and Ca{sup 2+} solutions at 60 °C. • Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2} cause changes in phase and size of synthesized products. • Addition of PO{sub 4}{sup 3} inhibited the activity of CO{sub 3}{sup 2−} during bound with Ca{sup 2+}. • The phase transformation was completed, when CO{sub 3}{sup 2−} peaks disappeared in FTIR. • PO{sub 4}{sup 3−}, CO{sub 3}{sup 2−} and Ca{sup 2+} distributed heterogeneously on the surface of precipitation. - Abstract: Complexes among phosphate, carbonate and calcium have been synthesized by a designed hydrothermal method. Effects of carbonate and phosphate ratios on the transformation of calcium-orthophosphates were investigated. With X-ray diffraction measurement the synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate at pH 9.0, and hydroxylapatite (HAp) at pH 8.0, respectively. Fourier transform infrared spectroscopy of product at the high ratio (1.8) of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} shows that the CO{sub 3}{sup 2−} peaks disappear, and the strong peaks at 1412 and 1460 cm{sup −1} are assigned to the vibrations of PO{sub 4}{sup 3−} in HAp. {sup 31}P nuclear magnetic resonance spectra of products at the low (0.15–0.6) to the high (1.2–1.8) ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are obtained at 2.9 and 2.7 ppm, respectively. Molar ratios of PO

  13. Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.

    Science.gov (United States)

    Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

    2010-05-01

    -potential of the cells. To characterise the link between the rate of bacterial growth (biomass production) and the rate of CaCO3 precipitation, batch kinetic experiments were performed. These experiments were carried out in closed (anaerobic) bottles with initial concentration of calcium from 1 to 20 mM and from 5 to 20 mM bicarbonate. The biomass of cells, pH, [Ca2+] and [Alk] were measured as a function of time. Blank experiments (without cell or autoclaved cells) were always carried out. We found that the optimal conditions for both CaCO3 precipitation and biomass increase for the culture Rhodovulum sp. A-20s, is calcium concentration of 3 mM, whatever the concentration of bicarbonate (5, 10, 15 mM). Note also that for calcium concentration higher than 3 mM, the biomass production decreases. In the case of strictly anaerobic Rhodovulum sp. S-1765 bacteria, the optimal conditions for calcium carbonate precipitation is observed for the bicarbonate concentration of 10 mM, whatever the calcium concentration (3, 5, 10 mM). Overall, the present study allows quantitative modeling of bacterially-induced CaCO3 precipitation. It helps to distinguish between the effect of cell surface functional groups, surface electrical charge, soluble organic matter and metabolic change of solution pH on the rate and nature of precipitating calcium carbonate solid phase.

  14. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.

    Science.gov (United States)

    Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro

    2016-09-01

    The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles. PMID:25950955

  15. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    QUAN ZhenHua; CHEN YongChang; MA ChongFang

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface.The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su-persaturated solution.Based on experimental results of the fouling process,the deposition and removal rates of the mixing fouling were expressed.Furthermore,the coupling effect of temperature with the fouling process was considered in the physics model.As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions.The results showed that the present model could give a good prediction of fouling process,and the deviation was less than 15% of the experimental data in most cases.The new model is credible to predict the fouling process.

  16. Methotrexate intercalated calcium carbonate nanostructures: Synthesis, phase transformation and bioassay study.

    Science.gov (United States)

    Dai, Chao-Fan; Wang, Wei-Yuan; Wang, Lin; Zhou, Lei; Li, Shu-Ping; Li, Xiao-Dong

    2016-12-01

    The formation and stabilization of amorphous calcium carbonate (ACC) is an active area of research owing to the presence of stable ACC in various biogenic minerals. In this paper, the synthesis of calcium carbonate (CaCO3) under the participation of methotrexate (MTX) via a facile gas diffusion route was reported. The results indicated that the addition of MTX can result in the phase transformation of CaCO3, and then two kinds of hybrids, i.e., MTX-vaterite and stable MTX-ACC came into being. Interestingly, the functional agent MTX served as both the target anticancer drug loaded and effective complexation agents to modify and control the morphology of final samples. The examination of MTX-ACC biodegradation process revealed that the collapse of MTX-ACC nanoparticles was due to the synergistic effect of drug release and the phase transformation. Finally, our study also proved that MTX-ACC exhibited the most excellent suppressing function on the viability of cancer cells, especially after long-time duration. PMID:27612750

  17. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2008-01-01

    Full Text Available Core/shell capsules composed of calcium carbonate whisker core (rod-like shape and chitosan/chitosansulfate shell were prepared by the layer-by-layer deposition technique. Two chitosan samples of different molecular weights (Mw=9.7×104 and 1.09×106g·mol-1 were used as original materials. Hollow capsules were also obtained by dissolution of the core in hydrochloric acid. Electron microscopy revealed that the surface of the shell is rather ragged associated with some agglomerates. The shell thickness l obeys a linear relation with respect to the number of deposited layers m as l=md+a(a>0. The values of d (thickness per layer were 4.0 and 1.0 nm for the higher and lower Mw chitosan materials, respectively, both of which are greater than the thickness of the monolayer. The results suggest that the feature of the deposition does not obey an ideal homogeneous monolayer-by-monolayer deposition mechanism. Shell crosslinked capsules were also prepared via photodimerization reaction of cinnamoyl groups after a deposition of cinnamoyl chitosan to the calcium carbonate whisker core. The degree of crosslink was not enough to stabilize the shell structure, and hollow capsule was not obtained.

  18. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    Science.gov (United States)

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. PMID:25764465

  19. Polymorph selection and nanocrystallite rearrangement of calcium carbonate in carboxymethyl chitosan aqueous solution: Thermodynamic and kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Donghui [Key Lab For Special Functional Materials Ministry of Education, Henan University, Kaifeng 475004 (China); Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050 (China); Zhu, Yingchun, E-mail: yzhu@mail.sic.ac.cn [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050 (China); Li, Fang; Ruan, Qichao [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050 (China); Zhang, Shengmao [Key Lab For Special Functional Materials Ministry of Education, Henan University, Kaifeng 475004 (China); Zhang, Linlin; Xu, Fangfang [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050 (China)

    2010-01-15

    In this article, the polymorph selection of calcium carbonate has been successfully achieved in water-soluble carboxymethyl chitosan aqueous solution at different temperatures (25-95 {sup o}C). Vaterite is formed in carboxymethyl chitosan solution 25 {sup o}C accompanied with trace of calcite, whereas pure aragonite is obtained at 95 {sup o}C. Scanning electron microscopy and transmission electron microscopy analyses show that the products are formed from the recrystallization of nanometer crystallites. Thermodynamic and kinetic analyses reveal that the polymorph of calcium carbonate is controlled and selected by kinetics in various temperatures. As a heterogeneous nucleator and stabilizing agent, carboxymethyl chitosan changes the nucleation and growth of calcium carbonate from thermodynamic into kinetic control. Under kinetic limitation, the reaction rate of aragonite increases along with the elevating of temperature and surpasses the rate of vaterite above 327 K.

  20. Tuning calcium carbonate growth through physical confinement and templating with amyloid-like polypeptide aggregates

    Science.gov (United States)

    Colaco, Martin Francis

    The creation of useful composite materials requires precise control of the interface between the components in order to tune the overall shape and material properties. Despite the current research into nanotechnology, our ability to create materials with nanoscale precision is nascent. However, nature has a paradigm for the creation of finely structured composites under mild conditions called biomineralization. Through control of protein template assembly, solution conditions, and physical confinement, organisms are able to create useful optical and structural materials, such as bones, teeth, and mollusk shells. The objective of this thesis is to elucidate the importance of these various controls in synthetic systems to further our ability to create nanostructured materials. We begin by examining the formation of self-assembled monolayers (SAMs) of organosilanes on silica oxides. The formation of functionalized surfaces can help control the mineralization of amorphous or crystalline calcium carbonate. Long-chained organosilanes organize on surfaces to form dense, solid-like films, with the terminal groups determining the hydrophobicity and stereochemistry of the film. Our work has shown that uniform hydrophobic and hydrophilic films can be formed by using cleaned silica over glass or mica and through a vapor phase reaction over a liquid one. Additionally, we showed that mixed SAMs with phase-separated domains could be created through the selection of organosilanes and reaction conditions. We have built on these functionalized surfaces through the use of microfabrication and a gas permeable polymer to create three-dimensionally confined microcrystallizers. Other researchers have shown that one-dimensional confinement with a multi-functional surface (patterned with a small nucleating ordered region in a disordered SAM) can stabilize the creation of an amorphous calcium carbonate film before a single, large, micropatterned crystal is grown. Our work has determined

  1. Assessing potential diagenetic alteration of primary iodine-to-calcium ratios in carbonate rocks

    Science.gov (United States)

    Hardisty, D. S.; Lu, Z.; Swart, P. K.; Planavsky, N.; Gill, B. C.; Loyd, S. J.; Lyons, T. W.

    2015-12-01

    We have evaluated iodine-to-calcium (I/Ca) ratios from a series of carbonate samples with well-constrained histories of diagenetic alteration to assess the likelihood of overprints on primary water column-derived signals. Because only the oxidized iodine species, iodate, is incorporated during carbonate precipitation, I/Ca ratios have strong potential as proxies for both marine redox and carbon cycling. This utility lies with the combination of iodate's redox sensitivity as well as the close association between iodine and marine organic matter. However, despite the possibility of large pore water iodine enrichments relative to overlying seawater, carbonate alteration under reducing diagenetic conditions, and iodate-to-iodide reduction, no study has assessed the prospect of diagenetic alteration of primary I/Ca ratios. Here, we evaluated aragonite-to-calcite transformations and dolomitization within the Key Largo Limestone of South Florida and the Clino and Unda drill cores of the Bahamas Bank. Also, early burial diagenesis was studied through analysis of I/Ca ratios in short cores from a variety of shallow settings within the Exuma Bay, Bahamas. Further, we evaluated authigenic carbonates through analysis of iodine in concretions constrained to have formed during varying stages of evolving pore fluid chemistry. In all cases, I/Ca ratios show the potential for diagenetic iodine loss relative to water-column derived values, consistent with observations of quantitative reduction of dissolved iodate to iodide in pore waters before or synchronous with carbonate alteration. In no case, however, did we observe an increase in I/Ca during diagenetic transformation. Our results suggest both that primary I/Ca values and trends can be preserved but that maximum I/Ca ratios should be considered a minimum estimate of seawater iodate. We recommend that ancient carbonates with distinct I/Ca trends not indicative of diagenetic iodine loss reflect preservation of or very early

  2. Acrylic acid-allylpolyethoxy carboxylate copolymer dispersant for calcium carbonate and iron(III) hydroxide scales in cooling water systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guangqing; Huang, Jingyi; Zhou, Yuming; Yao, Qingzhao; Ling, Lei; Zhang, Peixin; Fu, Change [Southeast Univ., Nanjing (China). School of Chemistry and Chemical Engineering; Wu, Wendao; Sun, Wei; Hu, Zhengjun [Jianghai Chemical Co., Ltd., Changzhou (China)

    2012-05-15

    A novel environmentally friendly type of calcium carbonate and iron(III) scale inhibitor (ALn) was synthesized. The anti-scale property of the Acrylic acid-allylpolyethoxy carboxylate copolymer (AA-APELn or ALn) towards CaCO{sub 3} and iron(III) in the artificial cooling water was studied through static scale inhibition tests. The observation shows that both calcium carbonate and iron(III) inhibition increase with increasing the degree of polymerization of ALn from 5 to 15, and the dosage of ALn plays an important role on calcium carbonate and iron(III)-inhibition. The effect on formation of CaCO{sub 3} was investigated with a combination of scanning electronic microscopy (SEM), Transmission electron microscopy (TEM), X-ray powder diffraction (XRD) analysis and Fourier transform infrared spectrometer, respectively. The results showed that the ALn copolymer not only influences calcium carbonate crystal morphology and crystal size but also the crystallinity. The crystallization of CaCO{sub 3} in the absence of inhibitor was rhombohedral calcite crystal, whereas a mixture of calcite with vaterite crystals was found in the presence of the ALn copolymer. Inhibition mechanism is proposed that the interactions between calcium or iron ions and polyethylene glycol (PEG) are the fundamental impetus to restrain the formation of the scale in cooling water systems. (orig.)

  3. Effects of Calcium Carbonate on Pain Symptoms in Third Trimester of Pregnancy and Nursing Period: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Soosan Alimohammadzadeh Taher

    2008-06-01

    Full Text Available Objective: The study evaluated the efficacy of oral calcium carbonate supplement on leg pain in pregnancy and nursing period.Materials and methods: A total number of 176 women at third trimester of pregnancy or nursing period till to one year after delivery with complaint of leg pain, low back pain (LBP, and posterior pelvic pain (PPP were evaluated for distinct primary causes and were excluded, then 58 patients randomized into calcium group (n=27 treated with 500 mg calcium carbonate orally per day just for one week, and control group (n=31 received no drug. Incidence of days with leg, low back, and posterior pelvic pain per week were evaluated and compared between the two groups at 3 different weeks before, during, and after discontinuation of drug. Statistical significance was defined as P<0.05.  Results: Mean number of days with leg pain per week during calcium carbonate intake was significantly different between the study and control groups (P<0.05. Mean number of days with LBP and PPP was not significantly different between two groups.Conclusion: The use of oral calcium supplement was associated with lower episodes of leg pain but failed to reduce the incidence of LBP and PPP in pregnancy and nursery period.

  4. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will also affect public water suppliers with respect to DBPs. These new federal drinking water regulations may require public water suppliers to adjust treatment practices or incorporate additional treatment operations into their existing treatment trains. Many options have been identified, including membrane processes, granular activated carbon, powered activated carbon (PAC), enhanced coagulation and/or softening, and alternative disinfectants (e.g., chlorine dioxide, ozone, and chloramines). Of the processes being considered, PAC appears to offer an attractive benefit-to-cost advantage for many water treatment plants, particularly small systems (those serving fewer than 10,000 customers). PAC has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. Activated carbons can be produced from a variety of raw materials, including wood, peat, coconut husks, and numerous types of coal. The Energy & Environmental Research Center (EERC) has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During that study, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon

  5. Iodine-to-calcium ratios in carbonates suggest a primary origin for the Precambrian Lomagundi and Shuram carbon isotope excursions

    Science.gov (United States)

    Hardisty, D. S.; Lu, Z.; Planavsky, N. J.; Osburn, M. R.; Bekker, A.; Lyons, T. W.

    2013-12-01

    Systematic increases in iodine-to-calcium ratios (I/Ca) in carbonates from both the Precambrian Lomagundi and Shuram carbonate carbon isotope (δ13Ccarb) excursion intervals suggest primary origins for these events. Iodate (IO3-), the oxidized iodine species, is the exclusive species incorporated into carbonates. The high redox sensitivity of IO3- to deoxygenation requires highly oxidizing fluids for IO3- production, making I/Ca in platform carbonates a simple indicator of the presence of oxidizing fluids in the surface ocean. Similarly, redox sensitivity makes the proxy host susceptible to diagenetic iodine loss during carbonate recrystallization in reducing pore fluids. Recent work has shown carbonates to experience near-complete iodine loss during dolomitization in the Permian, and work from our group evaluating modern and recent carbonates demonstrate the potential for diagenetic iodine loss during carbonate recrystallization. In some cases, however, such as meteoric aragonite-to-calcite transitions, oxidizing pore fluids have the potential to buffer IO3- concentrations, causing negligible alteration to primary I/Ca despite negative shifts in δ13Ccarb. These results highlight that diagenetic alterations to I/Ca and δ13Ccarb need not always be coupled, but importantly, no observed scenario promotes post-depositional addition of iodine to carbonates. This means that, independent of δ13Ccarb, systematic, stratigraphic increases in I/Ca ratios observed in the carbonate record are most easily interpreted as resulting from depositional controls such as surface ocean redox or shifts in the total marine iodine reservoir. From this, increasing I/Ca ratios coincident with rising and falling δ13Ccarb trends for the Paleoproterozic Lomagundi and Neoproterozoic Shuram events, respectively, support suggestions of a primary origin for the δ13Ccarb excursions. Significant increase in I/Ca in dolomites deposited during the Lomagundi excursion, rising from blank values in

  6. A mixed flow reactor method to synthesize amorphous calcium carbonate under controlled chemical conditions.

    Science.gov (United States)

    Blue, Christina R; Rimstidt, J Donald; Dove, Patricia M

    2013-01-01

    This study describes a new procedure to synthesize amorphous calcium carbonate (ACC) from well-characterized solutions that maintain a constant supersaturation. The method uses a mixed flow reactor to prepare ACC in significant quantities with consistent compositions. The experimental design utilizes a high-precision solution pump that enables the reactant solution to continuously flow through the reactor under constant mixing and allows the precipitation of ACC to reach steady state. As a proof of concept, we produced ACC with controlled Mg contents by regulating the Mg/Ca ratio of the input solution and the carbonate concentration and pH. Our findings show that the Mg/Ca ratio of the reactant solution is the primary control for the Mg content in ACC, as shown in previous studies, but ACC composition is further regulated by the carbonate concentration and pH of the reactant solution. The method offers promise for quantitative studies of ACC composition and properties and for investigating the role of this phase as a reactive precursor to biogenic minerals.

  7. Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution

    Science.gov (United States)

    Suchanek, Wojciech L.; Byrappa, Kullaiah; Shuk, Pavel; Riman, Richard E.; Janas, Victor F.; TenHuisen, Kevor S.

    2004-03-01

    Magnesium- and carbonate-substituted calcium phosphate powders (Mg-, CO 3-CaP) with various crystallinity levels were prepared at room temperature via a heterogeneous reaction between MgCO 3/Ca(OH) 2 powders and an (NH 4) 2HPO 4 solution using the mechanochemical-hydrothermal route. X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis were performed. It was determined that the powders containing both Mg 2+ and CO 32- ions were incorporated uniformly into an amorphous calcium phosphate phase while in contrast, the as-prepared powder free of these dopants was crystalline phase-pure, stoichiometric hydroxyapatite. Dynamic light scattering revealed that the average particle size of the room temperature Mg-, CO 3-CaP powders was in the range of 482 nm-700 nm with a specific surface area between 53 and 91 m 2/g. Scanning electron microscopy confirmed that the Mg-, CO 3-CaP powders consisted of agglomerates of equiaxed, ≈20-35 nm crystals.

  8. Influence of acid-soluble proteins from bivalve Siliqua radiata ligaments on calcium carbonate crystal growth

    Science.gov (United States)

    Huang, Zeng-Qiong; Zhang, Gang-Sheng

    2016-08-01

    In vitro biomimetic synthesis of calcium carbonate (CaCO3) in the presence of shell proteins is a heavily researched topic in biomineralization. However, little is known regarding the function of bivalve ligament proteins in the growth of CaCO3 crystals. In this study, using fibrous protein K58 from Siliqua radiata ligaments or coverslips as substrates, we report the results of our study of CaCO3 precipitation in the presence or absence of acid-soluble proteins (ASP) from inner ligament layers. ASP can disturb the controlling function of K58 or a coverslip on the crystalline phase, resulting in the formation of aragonite, calcite, and vaterite. In addition, we identified the following four primary components from ASP by mass spectroscopy: alkaline phosphatase (ALP), ABC transporter, keratin type II cytoskeletal 1 (KRT 1), and phosphate ABC transporter, phosphate-binding protein (PstS). Further analysis revealed that the first three proteins and especially ALP, which is important in bone mineralisation, could affect the polymorphism and morphology of CaCO3 crystals by trapping calcium ions in their domains. Our results indicate that ALP may play an important role in the formation of aragonite in S. radiata ligaments. This paper may facilitate our understanding of the biomineralization process.

  9. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus

    Science.gov (United States)

    Szcześ, Aleksandra; Czemierska, Magdalena; Jarosz-Wilkołazka, Anna

    2016-10-01

    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitated CaCO3 polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions.

  10. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    Science.gov (United States)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  11. Heterogeneous reactions of gaseous methanesulfonic acid with calcium carbonate and kaolinite particles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Heterogeneous reactions of gaseous methanesulfonic acid (MSA) with calcium carbonate (CaCO3) and kaolinite particles at room temperature were investigated using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and ion chromatography (IC).Methanesulfonate (MS-) was identified as the product in the condensed phase,in accordance with the product of the reaction of gaseous MSA with NaCl and sea salt particles.When the concentration of gaseous MSA was 1.34 × 10-13 molecules cm-3,the uptake coefficient was (1.21 ± 0.06) × 10-8 (1) for the reaction of gaseous MSA with CaCO3 and (4.10 ± 0.65) × 10 10 (1) for the reaction with kaolinite.Both uptake coefficients were significantly smaller than those of the reactions of gaseous MSA with NaCl and sea salt particles.

  12. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate (nano-CaCO3) surface modified with (-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  13. Photo-derived transformation from modified chitosan@calcium carbonate nanohybrids to nanosponges

    Science.gov (United States)

    Byeon, Jeong Hoon

    2016-06-01

    Zwitterionic chitosan (ZC)@calcium carbonate (CC) nanoparticles were conveniently obtained and transformed to biocompatible nanosponges by continuous gas-phase photo-derived transformation in a single-pass configuration, and their potential use for biomedical applications was investigated. The mean diameter of the ZC@CC sponges was ~166 nm (~72 nm for CC and, ~171 nm for ZC), and the sponges had a mesoporous structure (i.e., an average pore diameter of ~13 nm). Measurements of the sponge cytotoxicity were performed and only a slight decrease was observed (>78% in cell viability) when compared with pure ZC (>80%). The ZC@CC sponges had a similar transfection ability to lipofectamine (~2.7 × 109 RLU mg‑1 protein) at a 50:1 ratio of sponge:DNA weight. Because of a porous structure, the sponges showed remarkably higher transfection efficiencies than pure ZC.

  14. A New Method for Descaling Wool Fibres by Nano Abrasive Calcium Carbonate Particles in Ultrasonic Bath

    Directory of Open Access Journals (Sweden)

    Ali rezaghasemi

    2016-08-01

    Full Text Available Up to now, the most conventional methods for descaling of wool fibre are based on chemical degradation and resin covering of scales or a combination of them. These methods are producing wastewater and can cover physical properties of the fibres beside scales orderly. In this study, a new and clean method is developed on the basis of abrasion effect of calcium carbonate Nano particles (CCNP in an ultrasonic bath. Woolen Samples (fibre and yarn were sonicated with different levels of CCNP. Tensile properties of the yarns, directional friction effect of the fibres and scanning electron microscope images of the fibres were studied. Test results showed that sonicated Nano treatment of woolyarn reduced its tenacity, extension and work of rupture and increased its coefficient of friction. Scanning electron microscope images of fibres and measurement of fibres directional displacement confirmed descaling of Nano abrasive treated wool samples in comparison to the raw wool.

  15. Adsorption of anionic and cationic polymers on porous and non-porous calcium carbonate surfaces

    Science.gov (United States)

    Bjorklund, Robert B.; Arwin, Hans; Järnström, Lars

    1994-01-01

    The adsorption of anionic and cationic polymers onto calcium carbonate surfaces was studied by ellipsometry. Sodium polyacrylate was observed to both adsorb on and promote dissolution of polished limestone surfaces in 5 mM CaSO 4 solution at pH 10.3. It was not possible to differentiate between the two processes when they occurred simultaneously. Cationic starch adsorbed on the limestone surfaces at low concentrations and caused mineral dissolution at higher concentrations. The adsorbed amount of starch was higher on surfaces which were first made porous by partial dissolution than on freshly polished surfaces. Surfaces created by cleavage of Iceland spar calcite were quite stable against dissolution and the amount of starch adsorbed determined by ellipsometry agreed well with the adsorbed mass determined from batch adsorption experiments on ground calcite.

  16. Preparation of poly(lactic acid) composite hollow spheres containing calcium carbonates.

    Science.gov (United States)

    Maeda, Hirotaka; Kasuga, Toshihiro

    2006-07-01

    Poly(lactic acid) composite hollow spheres containing calcium carbonate were prepared by oil-in-water emulsion evaporation to develop injectable bone substitutes incorporated with cells. The spheres were approximately 1.2mm in diameter and had a shell with a thickness in the range of 50-150microm. The hollow in the spheres was presumed to be formed by CO(2) gas generated by the decomposition of vaterite used as a starting material. An open channel approximately 800microm in diameter was formed in the spheres by chemical etching utilizing the rapid dissolution of poly(lactic acid) at the thin portion of the shell. Cells could migrate into the hollow spheres through the open channel and attach to the inner surface. PMID:16765880

  17. Nanoplasmonic smooth silica versus porous calcium carbonate bead biosensors for detection of biomarkers

    International Nuclear Information System (INIS)

    Nanoplasmonic biosensors based on gold nanoparticle functionalized smooth silica and porous calcium carbonate particles are presented. It is identified in this comparative study the role of porosity for adsorbing gold nanoparticles and subsequent detection of biomarkers. That is further applied in this study for detection of biomarkers. Detection of glucose - a biomarker of diabetes is studied together with that of bovine serum albumin - a very relevant bio-molecule. Raman scattering is used for label-free detection of molecules in the sub-μM-mM range detection capabilities, which covers the range corresponding to healthy and diseased persons. Implications of current study for detection and identification of biomarkers are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Identifying appropriate conditions for producing spindle-like causticizing precipitated calcium carbonate for paper filler applications

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2012-11-01

    Full Text Available Causticizing precipitated calcium carbonate (CPCC as a by-product of the green liquor causticizing process can be used as paper filler to save resources and reduce costs. In this study, CPCC was prepared with green liquor and quicklime, which were obtained from an alkali recovery line of a paper mill. The factors influencing crystal morphology of CPCC, such as slaking temperature, slaking time, and causticizing time were investigated. The morphology of CPCC was observed and analyzed for optimizing reaction conditions. The following were compared: properties of CPCC obtained in this study, conventional CPCC (white mud from a paper mill, and commercial PCC as fillers. The results showed that slaking time and causticizing time were important for morphology control. Spindle-like and rod-like CPCC obtained in this study had better drainability and retention, higher paper bulk, opacity, and physical strength compared to conventional CPCC, and had nearly the same performances as commercial PCC.

  19. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.

    Science.gov (United States)

    Politi, Yael; Metzler, Rebecca A; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P U P A; Gilbert, Pupa

    2008-11-11

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40-200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism.

  20. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    Science.gov (United States)

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper.

  1. Influence of calcium carbonate on extraction yield and quality of extra virgin oil from olive (Olea europaea L. cv. Coratina).

    Science.gov (United States)

    Squeo, G; Silletti, R; Summo, C; Paradiso, V M; Pasqualone, A; Caponio, F

    2016-10-15

    The aim of the research was to evaluate the effect of calcium carbonate (1%, 2%, and 4% of addition) at two different particle sizes (2.7μm and 5.7μm), added at the beginning of the malaxation phase, on both the extraction yield and the quality of oil obtained from Coratina olives at different ripening index. The results showed that calcium carbonate significantly increased the extraction yield of olive oil, more than affecting chemical indices. In particular, for less ripened olives, 1-2% of larger particle size calcium carbonate addiction determined a significant increase of the extraction effectiveness, ranging from 4.0 to 4.9%, while more ripened olives required higher amounts of coadjuvant (2-4% when using the larger particle size and 4% when using the smaller one), with a significant increase of the extraction yield up to 5%. Moreover, an increase of pungent perception was observed in some cases when adding calcium carbonate to more ripened olives.

  2. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete.

    Science.gov (United States)

    Kim, Hyun Jung; Eom, Hyo Jung; Park, Chulwoo; Jung, Jaejoon; Shin, Bora; Kim, Wook; Chung, Namhyun; Choi, In-Geol; Park, Woojun

    2016-03-01

    Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery. PMID:26699752

  3. Influence of calcium carbonate on extraction yield and quality of extra virgin oil from olive (Olea europaea L. cv. Coratina).

    Science.gov (United States)

    Squeo, G; Silletti, R; Summo, C; Paradiso, V M; Pasqualone, A; Caponio, F

    2016-10-15

    The aim of the research was to evaluate the effect of calcium carbonate (1%, 2%, and 4% of addition) at two different particle sizes (2.7μm and 5.7μm), added at the beginning of the malaxation phase, on both the extraction yield and the quality of oil obtained from Coratina olives at different ripening index. The results showed that calcium carbonate significantly increased the extraction yield of olive oil, more than affecting chemical indices. In particular, for less ripened olives, 1-2% of larger particle size calcium carbonate addiction determined a significant increase of the extraction effectiveness, ranging from 4.0 to 4.9%, while more ripened olives required higher amounts of coadjuvant (2-4% when using the larger particle size and 4% when using the smaller one), with a significant increase of the extraction yield up to 5%. Moreover, an increase of pungent perception was observed in some cases when adding calcium carbonate to more ripened olives. PMID:27173535

  4. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete.

    Science.gov (United States)

    Kim, Hyun Jung; Eom, Hyo Jung; Park, Chulwoo; Jung, Jaejoon; Shin, Bora; Kim, Wook; Chung, Namhyun; Choi, In-Geol; Park, Woojun

    2016-03-01

    Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery.

  5. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Directory of Open Access Journals (Sweden)

    Eva Weber

    Full Text Available Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3 (- as the first ionic interaction partner, but not necessarily for Ca(2+. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  6. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes

    Science.gov (United States)

    Jost, Adam B.; Mundil, Roland; He, Bin; Brown, Shaun T.; Altiner, Demir; Sun, Yadong; DePaolo, Donald J.; Payne, Jonathan L.

    2014-06-01

    A negative δC13 excursion in carbonate sediments near the Guadalupian/Lopingian (Middle/Late Permian) boundary has been interpreted to have resulted from a large carbon cycle disturbance during the end-Guadalupian extinction event (ca. 260 Ma). However, the carbon isotope data alone are insufficient to uniquely determine the type and magnitude of perturbation to the global carbon cycle. Calcium isotopes can be used to further constrain the cause of a carbon isotope excursion because the carbon and calcium cycles are coupled via CaCO3 burial. In this study, we present coupled carbon and calcium isotope records from three Guadalupian-Lopingian (G/L) sections in China (Penglaitan and Chaotian) and Turkey (Köserelik Tepe). The δC13 and δCa44/40 records differ among our studied sections and do not co-vary in the same manner. No section shows δC13 and δCa44/40 changes consistent with massive, rapid volcanic CO2 emissions or methane clathrate destabilization. Additionally, many sections with large (>3‰) changes in δC13 exhibit δO18 evidence for diagenetic alteration. Only one section exhibits a large excursion in the δCa44/40 of limestone but the absence of a similar excursion in the δCa44/40 of conodont apatite suggests that the limestone excursion reflects a mineralogical control rather than a perturbation to the global calcium cycle. Hence, we interpret the large isotopic changes observed in some sections to have resulted from local burial conditions or diagenetic effects, rather than from a large carbon and calcium cycle disturbance. Perturbations to the global carbon and calcium cycles across the G/L transition were much less intense than the disturbances that occurred across the subsequent Permian-Triassic boundary. This finding is consistent with the much smaller magnitude of the end-Guadalupian extinction relative to the end-Permian.

  7. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    Science.gov (United States)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  8. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.

    Science.gov (United States)

    de Beer, M; Doucet, F J; Maree, J P; Liebenberg, L

    2015-12-01

    We recently showed that the production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste by thermally reducing the waste into calcium sulphide (CaS) followed by its direct aqueous carbonation yielded low-grade carbonate products (i.e. production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC). The process used an acid gas (H2S) to improve the aqueous dissolution of CaS, which is otherwise poorly soluble. The carbonate product was primarily calcite (99.5%) with traces of quartz (0.5%). Calcite was the only CaCO3 polymorph obtained; no vaterite or aragonite was detected. The product was made up of micron-size particles, which were further characterised by XRD, TGA, SEM, BET and true density. Results showed that about 0.37 ton of high-grade PCC can be produced from 1.0 ton of gypsum waste, and generates about 0.19 ton of residue, a reduction of 80% from original waste gypsum mass to mass of residue that needs to be discarded off. The use of gypsum waste as primary material in replacement of mined limestone for the production of PPC could alleviate waste disposal problems, along with converting significant volumes of waste materials into marketable commodities. PMID:26316100

  9. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    Science.gov (United States)

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %.

  10. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    Science.gov (United States)

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. PMID:27529608

  11. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    CERN Document Server

    Montes-Hernandez, German; Charlet, L; Tisserand, Delphine; Renard, F

    2008-01-01

    The hydrothermal carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2 1/4 55 bar) and moderate to high temperature (30 and 90 1C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH)2-CaCO3 conversion), a significant production rate (48 kg/m3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperatu...

  12. Influences of iron and calcium carbonate on wastewater treatment performances of algae based reactors.

    Science.gov (United States)

    Zhao, Zhimiao; Song, Xinshan; Wang, Wei; Xiao, Yanping; Gong, Zhijie; Wang, Yuhui; Zhao, Yufeng; Chen, Yu; Mei, Mengyuan

    2016-09-01

    The influences of iron and calcium carbonate (CaCO3) addition in wastewater treatments reactors performance were investigated. Adding different concentrations of Fe(3+) (5, 10, 30 and 50mmol/m(3)), iron and CaCO3 powder led to changes in algal characteristics and physico-chemical and microbiological properties. According to the investigation results, nutrient removal efficiency in algae based reactors was obviously increased by the addition of 10mmol/m(3) Fe(3+), iron (5mmol/m(3)) and CaCO3 powder (0.2gm(-3)) and the removal efficiencies of BOD5, TN, and TP in Stage 2 were respectively increased by 28%, 8.9%, and 22%. The improvements in physico-chemical performances were verified by microbial community tests (bacteria quantity, activity and community measured in most probable number, extracellular enzymes activity, and Biolog Eco Plates). Microbial variations indicated the coexistence of Fe ions and carbonate-bicarbonate, which triggered the synergistic effect of physico-chemical action and microbial factors in algae based reactors. PMID:27214163

  13. Synthesis of nanostructured carbon by chlorination of calcium carbide at moderate temperatures and its performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dai Chunling [School of Chemistry, Xiangtan University, Hunan 411105 (China); Wang, Xianyou [School of Chemistry, Xiangtan University, Hunan 411105 (China)], E-mail: wxianyou@yahoo.com; Wang Ying [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei 430073 (China); Li Na; Wei Jianliang [School of Chemistry, Xiangtan University, Hunan 411105 (China)

    2008-12-01

    A new type of one-step preparation technique for the calcium carbide-derived carbon (CaC{sub 2}-CDC) was developed. In this study, CaC{sub 2}-CDC was synthesized from CaC{sub 2} in a freshly prepared chlorine environment in the temperature range of 100-600 deg. C. The structure and morphology of as-prepared CaC{sub 2}-CDC were studied by X-ray diffraction, transmission electron microscopy and nitrogen sorption experiment. Analysis of X-ray diffraction and transmission electron microscopy showed that CaC{sub 2}-CDC is an amorphous nanoporous material, and the structure depended on the synthesis temperature. The resultant carbon demonstrated narrow pore size distribution (PSD) and specific surface area (SSA) close to 800 m{sup 2} g{sup -1} (for nitrogen sorption) at a synthesized temperature of 100 deg. C. Increasing the reaction temperature above 400 deg. C resulted in a lower SSA of CaC{sub 2}-CDC due to the beginning of graphitization tendency. The nanoporous structure and narrow PSD of CaC{sub 2}-CDC indicated potential application as electrode materials in supercapacitor. The CaC{sub 2}-CDC exhibited a specific capacitance of 127.7 F g{sup -1} measured from the three-electrode cyclic voltammetry experiment at 10 mV s{sup -1}.

  14. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote

    2008-03-01

    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  15. The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbonate.

    Science.gov (United States)

    Sambudi, Nonni Soraya; Kim, Minjeong G; Park, Seung Bin

    2016-03-01

    The electrospun fibers consist of backbone fibers and nano-branch network are synthesized by loading of ellipsoidal calcium carbonate in the mixture of chitosan/poly(vinyl alcohol) (PVA) followed by electrospinning. The synthesized ellipsoidal calcium carbonate is in submicron size (730.7±152.4 nm for long axis and 212.6±51.3 nm for short axis). The electrospun backbone fibers experience an increasing in diameter by loading of calcium carbonate from 71.5±23.4 nm to 281.9±51.2 nm. The diameters of branch fibers in the web-network range from 15 nm to 65 nm with most distributions of fibers are in 30-35 nm. Calcium carbonate acts as reinforcing agent to improve the mechanical properties of fibers. The optimum value of Young's modulus is found at the incorporation of 3 wt.% of calcium carbonate in chitosan/PVA fibers, which is enhanced from 15.7±3 MPa to 432.4±94.3 MPa. On the other hand, the ultimate stress of fibers experiences a decrease. This result shows that the fiber network undergoes changes from flexible to more stiff by the inclusion of calcium carbonate. The thermal analysis results show that the crystallinity of polymer is changed by the existence of calcium carbonate in the fiber network. The immersion of fibers in simulated body fluid (SBF) results in the formation of apatite on the surface of fibers. PMID:26706559

  16. Low Dose Nicotinamide as an Adjunctive Therapy to Calcium Carbonate for Control of Hyperphosphatemia in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Magdy El-Sharkawy¹, Manal El-Hamamsy², Shaimaa Allam², Mostafa kamel¹, Ahmed Ramadan

    2013-10-01

    Full Text Available Background: Hyperphosphatemia remains a common problem in patients on maintenance dialysis and contributes to the development of secondary hyperparathyroidism. Current therapies for the treatment of hyperphosphatemia are frequently insufficient to achieve the recommended K/DOQI goal of maintaining serum phosphorus level between 3.5 and 5.5 mg/dl. Niacinamide inhibits intestinal sodium/ phosphorus co transporters and reduces serum phosphorus level in some clinical studies. So, we aimed to evaluate the safety and the efficacy of nicotinamide as adjunctive therapy to calcium carbonate (as calcium based phosphate binder in hemodialysis patients. Methods: Sixty hemodialysis patients with serum phosphorus level ≥ 5.0 mg/dl were randomly assigned to 8 weeks of the study. Patients were divided into two groups: (group I (control group: 30 cases calcium carbonate only and (group II (study group: 30 cases received a combination of calcium carbonate and nicotinamide. Nicotinamide dose was started as 500mg/day and increased on 8th day to 1000 mg/day. Results: In the study group (nicotinamide group: serum phosphorus level fell significantly (p0.05. Intact parathyroid hormone, uric acid, platelet count, total cholesterol, hemoglobin, ASAT, and ALAT and lipid profile remained insignificantly changed in both groups. Diarrhea, flushing and skin rash were the major adverse effects seen with nicotinamide therapy resulting in early withdrawal of 4 patients from the study. Conclusion: In hemodialysis patients, nicotinamide in single dose of 1000 mg daily can effectively reduce serum phosphorus level when administered with calcium carbonate (as phosphate binder with less potential side effects reported

  17. Impact of sodium polyacrylate on the amorphous calcium carbonate formation from supersaturated solution.

    Science.gov (United States)

    Liu, J; Pancera, S; Boyko, V; Gummel, J; Nayuk, R; Huber, K

    2012-02-21

    A detailed in situ scattering study has been carried out on the formation of amorphous calcium carbonate (ACC) particles modulated by the presence of small amounts of sodium polyacrylate chains. The work is aiming at an insight into the modulation of ACC formation by means of two polyacrylate samples differing in their molecular weight by a factor of 50. The ACC formation process was initiated by an in situ generation of CO(3)(2-) ions via hydrolysis of 10 mM dimethylcarbonate in the presence of 10 mM CaCl(2). Analysis of the formation process by means of time-resolved small-angle X-ray and light scattering in the absence of any additives provided evidence for a monomer addition mechanism for the growth of ACC particles. ACC formation under these conditions sets in after a lag-period of some 350 s. In the presence of sodium polyacrylate chains, calcium polyacrylate aggregates are formed during the lag-period, succeeded by a modulated ACC growth in a second step. The presence of anionic polyacrylate chains changed the shape of the growing particles toward loose and less homogeneous entities. In the case of low amounts (1.5-7.5 mg/L) of the long chain additive with 97 kDa, the size of the aggregates is comparable to the size of the successively formed hybrid particles. No variation of the lag-period has been observed in this case. Use of the short chain additive with 2 kDa enabled increase of the additive concentration up to 100 mg/L and resulted in a significant increase of the lag-period. This fact, together with the finding that the resulting hybrid particles remained stable in the latter case, identified short chain sodium polyacrylates as more efficient modulators than long chain polyacrylates. PMID:22256962

  18. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel

    Energy Technology Data Exchange (ETDEWEB)

    Morandeau, Antoine E.; White, Claire E. [Princeton

    2015-04-21

    Calcium–silicate–hydrate (C–S–H) gel is the main binder component in hydrated ordinary Portland cement (OPC) paste, and is known to play a crucial role in the carbonation of cementitious materials, especially for more sustainable alternatives containing supplementary cementitious materials. However, the exact atomic structural changes that occur during carbonation of C–S–H gel remain unknown. Here, we investigate the local atomic structural changes that occur during carbonation of a synthetic calcium–silicate–hydrate gel exposed to pure CO₂ vapour, using in situ X-ray total scattering measurements and subsequent pair distribution function (PDF) analysis. By analysing both the reciprocal and real-space scattering data as the C–S–H carbonation reaction progresses, all phases present during the reaction (crystalline and non-crystalline) have been identified and quantified, with the results revealing the emergence of several polymorphs of crystalline calcium carbonate (vaterite and calcite) in addition to the decalcified C–S–H gel. Furthermore, the results point toward residual calcium being present in the amorphous decalcified gel, potentially in the form of an amorphous calcium carbonate phase. As a result of the quantification process, the reaction kinetics for the evolution of the individual phases have been obtained, revealing new information on the rate of growth/dissolution for each phase associated with C–S–H gel carbonation. Moreover, the investigation reveals that the use of real space diffraction data in the form of PDFs enables more accurate determination of the phases that develop during complex reaction processes such as C–S–H gel carbonation in comparison to the conventional reciprocal space Rietveld analysis approach.

  19. Study of the effect of magnesium concentration on the deposit of allotropic forms of calcium carbonate and related carbon steel interface behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Y., E-mail: yasser_ben@yahoo.f [Institut Superieur des Sciences et Technologies de l' Environnement de Borj-Cedria, B.P 1003, Hammam-Lif 2050 (Tunisia); Bousselmi, L. [Laboratoire Traitement et Recyclage des Eaux, B.P 273, Hammam-Lif, Technopole de Borj-Cedria, 8020 Soliman (Tunisia); Tribollet, B. [UPR 15 CNRS - Physique des liquides et Electrochimie, Universite Pierre et Marie Curie - Tour 22, 4 place Jussieu, 75252 Paris Cedex 05 (France); Triki, E. [Unite de recherche Corrosion et Protection des metalliques, Ecole Nationale d' Ingenieurs de Tunis, P.B. 37, 1002 Tunis, Belvedere (Tunisia)

    2010-06-30

    Different allotropic forms of calcium carbonate scales were electrochemically deposited on a carbon steel surface in artificial underground Tunisian water at -0.95 V{sub SCE} and various Mg{sup 2+} concentrations. Because of the importance of the diffusion process, the rotating disk electrode was used. The deposition kinetics were analyzed by chronoamperometry measurements and the calcareous layers were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The physical model proposed by Gabrielli was used to analyze the EIS measurements. Independent of the deposited allotropic form of calcium carbonate, the measurements showed that the oxygen reduction occurs in the pores formed between the CaCO{sub 3} crystals and the metallic surface.

  20. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    Science.gov (United States)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  1. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    Science.gov (United States)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  2. Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves

    Directory of Open Access Journals (Sweden)

    M. Chierici

    2009-05-01

    Full Text Available In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT underway aboard IB Oden along the Northwest Passage from Cape Farwell (South Greenland to the Chukchi Sea. We investigated variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S and sea surface temperature (SST, were used to calculate total dissolved inorganic carbon (DIC, [CO32−] and saturation of aragonite (ΩAr and calcite (ΩCa in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA and on the Mackenzie shelf (MS were found to be undersaturated with respect to aragonite (ΩAr<1. In these areas, surface water was low in AT and DIC (<1500 μmol kg−1 relative to seawater and showed low [CO32−]. The low saturation states were probably due to the effect of dilution due from freshwater addition by sea ice melt (CAA and river runoff (MS. High AT and DIC and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to physical upwelling of subsurface water with elevated CO2. Highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower DIC from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and DIC from enhanced organic matter remineralization, resulting in

  3. Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves

    Directory of Open Access Journals (Sweden)

    A. Fransson

    2009-11-01

    Full Text Available In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT underway aboard IB Oden along the Northwest Passage from Cape Farewell (South Greenland to the Chukchi Sea. We investigated the variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S and sea surface temperature (SST, were used to calculate total dissolved inorganic carbon (CT, [CO32−] and the saturation of aragonite (ΩAr and calcite (ΩCa in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA and on the Mackenzie shelf (MS were found to be undersaturated with respect to aragonite (ΩAr<1. In these areas, surface water was low in AT and CT (<1500 μmol kg−1 relative to seawater and showed low [CO32−]. The low saturation states were probably due to the likely the effect of dilution due to freshwater addition by sea ice melt (CAA and river runoff (MS. High AT and CT and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to the physical upwelling of subsurface water with elevated CO2. The highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower CT from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and

  4. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes

    Science.gov (United States)

    Jost, A. B.; Mundil, R.; He, B.; Brown, S. T.; Altiner, D.; Sun, Y.; DePaolo, D. J.; Payne, J.

    2013-12-01

    A negative δ13C excursion in carbonate sediments from Guadalupian (Middle Permian) and Lopingian (Late Permian) stratigraphic sections has been interpreted to result from a large carbon cycle disturbance during end-Guadalupian extinction event (ca. 260 Ma). However, the carbon isotope data alone are insufficient to uniquely determine the type and magnitude of perturbations to the global carbon cycle. The carbon and calcium cycles are coupled via CaCO3 burial, so changes in calcium isotopes can be used to constrain the cause of a carbon isotope excursion. In this study, we present coupled carbon and calcium isotope records from three Guadalupian-Lopingian (G/L) sections in China and Turkey. Isotope records among our studied sections are inconsistent in both their δ13C and δ44/40Ca records. Similar inconsistencies in δ13C among sections occur across previously published datasets. Sections with large (>3‰) changes in δ13C either show evidence for diagenetic alteration or do not show δ13C and δ44/40Ca changes consistent with severe volcanic degassing from Emeishan or methane clathrate destabilization. We conclude that the large isotopic changes are more likely the result of local burial conditions or diagenetic effects, rather than a large carbon cycle disturbance. Perturbations to the global carbon and calcium cycles appear to have been much smaller across the G/L transition than across the subsequent Permian-Triassic boundary. This finding is consistent with recent paleobiological data showing that the end-Guadalupian extinction was much less severe than previously believed, and was indistinguishable in magnitude from background intervals. However, selective extinction of marine animals with passive respiratory physiology indicates that the G/L extinction cannot simply be due to background extinction or sampling failure, and that it was triggered by some environmental event. Therefore, any environmental event must have been small enough to not generate large

  5. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products

    Energy Technology Data Exchange (ETDEWEB)

    Belardi, G. [Environmental Geology and GeoEngineering Institute (CNR), Area della ricerca RM1, via Salaria km 29,300, 00016 Monterotondo (Rome) (Italy); Piga, L., E-mail: luigi.piga@uniroma1.it [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, 00184 Rome (Italy)

    2013-12-10

    Highlights: • We characterized end-of-life asbestos-containing materials. • In the range 620–680 °C, calcite and quartz affect decomposition of asbestos. • Hypothesized decomposition reactions match with solid phases revealed by XRD analysis. • TGA of the content of chrysotile gives good results both in air and in nitrogen. - Abstract: Three bearing-asbestos wastes, friction material, vinyl-asbestos (linoleum) and cement-asbestos mainly containing chrysotile were characterized. Powder X-ray diffraction (XRDP), scanning electron microscopy (SEM) with microanalysis observations and thermal analysis (TGA/DTA) were carried out on the materials as received and after heating at 1100 °C in order to observe their structural changes and thermal behaviours. A quantitative determination of chrysotile in the friction material was also carried out. To study the influence of CaCO{sub 3} on the decomposition of asbestos, the three techniques were also applied on the linoleum and cement-asbestos at room temperature and at 1100 °C after leaching of the materials with 1:3 HCl to remove the carbonates present in the wastes. The results show that the presence of CaCO{sub 3} prevents the asbestos to decompose according to the known decomposition reactions and leads to the formation of calcium-silicate compounds. When CaCO{sub 3} is removed by washing with HCl, decomposition of asbestos proceeds according to the expected reactions.

  6. The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon

    Science.gov (United States)

    Wu, Hao; Wang, Xianyou; Jiang, Lanlan; Wu, Chun; Zhao, Qinglan; Liu, Xue; Hu, Ben'an; Yi, Lanhua

    2013-03-01

    Porous calcium carbide-derived carbon (CCDC) has been prepared by one-step route from CaC2 in a freshly prepared chlorine environment at lower temperature, and following activated by ZnCl2 to get activated CCDC. The performances of the supercapacitors based on activated CCDC as electrode active material in aqueous KOH, K2SO4, KCl and KNO3 electrolytes are studied by cyclic voltammetry, constant current charged/discharged, cyclic life and electrochemical impedance spectroscopy. It has been found that the supercapacitor using 6 M KOH as electrolyte shows an energy density of 8.3 Wh kg-1 and a power density of 1992 W kg-1 based on the total weight of the electrode active materials with a voltage range 0 V-1 V. Meanwhile, the specific capacitance of the supercapacitor in 6 M KOH electrolyte is 68 F g-1 at the scan rate of 1 mV s-1 in the voltage range of 0 V-1 V, the charge-transfer resistance is extremely low and the relaxation time is the least of all. The supercapacitor also exhibits a good cycling performance and keeps 95% of initial capacity over 5000 cycles.

  7. Dissolution of calcium carbonate: observations and model results in the North Atlantic

    Directory of Open Access Journals (Sweden)

    K. Friis

    2006-10-01

    Full Text Available We investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons. The study relies on observations from the open subpolar North Atlantic [sNA] and on a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep CaCO3 saturation horizons, and precisely-defined pre-formed alkalinity. Based on the analysis of a comprehensive alkalinity data set we find that SDCCD does not appear to be a significant process in the open sNA. The results from the model support the observational findings and do not indicate a significant need of SDCCD to explain observed patterns of alkalinity in the North Atlantic. Instead our investigation points to the importance of mixing processes for the redistribution of alkalinity from dissolution of CaCO3 from below its saturation horizons. However, mixing has recently been neglected for a number of studies that called for SDCCD in the sNA and on global scale.

  8. Loading Capacity versus Enzyme Activity in Anisotropic and Spherical Calcium Carbonate Microparticles.

    Science.gov (United States)

    Donatan, Senem; Yashchenok, Alexey; Khan, Nazimuddin; Parakhonskiy, Bogdan; Cocquyt, Melissa; Pinchasik, Bat-El; Khalenkow, Dmitry; Möhwald, Helmuth; Konrad, Manfred; Skirtach, Andre

    2016-06-01

    A new method of fabrication of calcium carbonate microparticles of ellipsoidal, rhomboidal, and spherical geometries is reported by adjusting the relative concentration ratios of the initial salt solutions and/or the ethylene glycol content in the reaction medium. Morphology, porosity, crystallinity, and loading capacity of synthesized CaCO3 templates were characterized in detail. Particles harboring dextran or the enzyme guanylate kinase were obtained through encapsulation of these macromolecules using the layer-by-layer assembly technique to deposit positively and negatively charged polymers on these differently shaped CaCO3 templates and were characterized by confocal laser scanning fluorescence microscopy, fluorometric techniques, and enzyme activity measurements. The enzymatic activity, an important application of such porous particles and containers, has been analyzed in comparison with the loading capacity and geometry. Our results reveal that the particles' shape influences morphology of particles and that, as a result, affects the activity of the encapsulated enzymes, in addition to the earlier reported influence on cellular uptake. These particles are promising candidates for efficient drug delivery due to their relatively high loading capacity, biocompatibility, and easy fabrication and handling. PMID:27166641

  9. Genesis of amorphous calcium carbonate containing alveolar plates in the ciliate Coleps hirtus (Ciliophora, Prostomatea).

    Science.gov (United States)

    Lemloh, Marie-Louise; Marin, Frédéric; Herbst, Frédéric; Plasseraud, Laurent; Schweikert, Michael; Baier, Johannes; Bill, Joachim; Brümmer, Franz

    2013-02-01

    In the protist world, the ciliate Coleps hirtus (phylum Ciliophora, class Prostomatea) synthesizes a peculiar biomineralized test made of alveolar plates, structures located within alveolar vesicles at the cell cortex. Alveolar plates are arranged by overlapping like an armor and they are thought to protect and/or stiffen the cell. Although their morphology is species-specific and of complex architecture, so far almost nothing is known about their genesis, their structure and their elemental and mineral composition. We investigated the genesis of new alveolar plates after cell division and examined cells and isolated alveolar plates by electron microscopy, energy-dispersive X-ray spectroscopy, FTIR and X-ray diffraction. Our investigations revealed an organic mesh-like structure that guides the formation of new alveolar plates like a template and the role of vesicles transporting inorganic material. We further demonstrated that the inorganic part of the alveolar plates is composed out of amorphous calcium carbonate. For stabilization of the amorphous phase, the alveolar vesicles, the organic fraction and the element phosphorus may play a role.

  10. Study on the Functionality of Nano-Precipitated Calcium Carbonate as Filler in Thermoplastics

    Science.gov (United States)

    Basilia, Blessie A.; Panganiban, Marian Elaine G.; Collado, Archilles Allen V. C.; Pesigan, Michael Oliver D.; de Yro, Persia Ada

    This research aims to investigate the functionality of nano-precipitated calcium carbonate (NPCC) as filler in thermoplastic resins based on property enhancement. Three types of thermoplastics were used: polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC). The resins were evaluated by determining the effect of different NPCC loading on the chemical structure, thermal and mechanical properties of thermoplastics. Results showed that there was an interfacial bonding with the NPCC surface and the thermoplastics. Change in absorption peak and area were predominant in the PVC filled composite. There was a decreased in crystallinity of the PE and PP with the addition of filler. Tremendous increase on the tensile and impact strength was exhibited by the NPCC filled PVC composites while PE and PP composites maintained a slight increase in their mechanical properties. Nano-sized filler was proven to improve the mechanical properties of thermoplastics compared with micron-sized filler because nano-sized filler has larger interfacial area between the filler and the polymer matrix.

  11. Polypropylene/calcium carbonate nanocomposites – effects of processing techniques and maleated polypropylene compatibiliser

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available The mechanical properties and crystalline characteristics of polypropylene (PP and nano precipitated calcium carbonate (NPCC nanocomposites prepared via melt mixing in an internal mixer and melt extrusion in a twin screw extruder, were compared. The effect of maleic anhydride grafted PP (PP-g-MAH as a compatibiliser was also studied using the internal mixer. At low filler concentration of 5 wt%, impact strength was better for the nanocomposites produced using the internal mixer. At higher filler loading of more than 10 wt%, the extrusion technique was more effective to disperse the nanofillers resulting in better impact properties. The impact results are consistent with the observations made from Scanning Electron Microscope (SEM morphology study. As expected, the flexural modulus of the nanocomposites increased with filler concentration regardless of the techniques utilised. At a same filler loading, there was also no significant difference in the moduli for the two techniques. The tensile strength of the mixed nanocomposites were found to be inferior to the extruded nanocomposites. Introduction of PP-g-MAH improved the impact strength, tensile strength and modulus of the mixed nanocomposites. The improvements may be attributed to better interfacial adhesion, as evident from the SEM micrographs which displayed better dispersion of the NPCC in the presence of the compatibiliser. Though NPCC particles have weak nucleating effect on the crystallization of the PP, addition of PP-g-MAH into the mixed nanocomposites has induced significant crystallization of the PP.

  12. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products

    International Nuclear Information System (INIS)

    Highlights: • We characterized end-of-life asbestos-containing materials. • In the range 620–680 °C, calcite and quartz affect decomposition of asbestos. • Hypothesized decomposition reactions match with solid phases revealed by XRD analysis. • TGA of the content of chrysotile gives good results both in air and in nitrogen. - Abstract: Three bearing-asbestos wastes, friction material, vinyl-asbestos (linoleum) and cement-asbestos mainly containing chrysotile were characterized. Powder X-ray diffraction (XRDP), scanning electron microscopy (SEM) with microanalysis observations and thermal analysis (TGA/DTA) were carried out on the materials as received and after heating at 1100 °C in order to observe their structural changes and thermal behaviours. A quantitative determination of chrysotile in the friction material was also carried out. To study the influence of CaCO3 on the decomposition of asbestos, the three techniques were also applied on the linoleum and cement-asbestos at room temperature and at 1100 °C after leaching of the materials with 1:3 HCl to remove the carbonates present in the wastes. The results show that the presence of CaCO3 prevents the asbestos to decompose according to the known decomposition reactions and leads to the formation of calcium-silicate compounds. When CaCO3 is removed by washing with HCl, decomposition of asbestos proceeds according to the expected reactions

  13. Co-effects of amines molecules and chitosan films on in vitro calcium carbonate mineralization.

    Science.gov (United States)

    Cui, Jifei; Kennedy, John F; Nie, Jun; Ma, Guiping

    2015-11-20

    Amines monomers, N,N-dimethylaminoethyl methacrylate (DMAEMA), N,N-dimethylethanolamine (DMEA), 2-dimethylaminoethylamine (DMEDA) and N-methiyldiethanolamine (MDEA) were used to induce the formation of calcium carbonate (CaCO3) crystals on chitosan films, by using (NH4)2CO3 diffusion method at ambient temperature. The obtained CaCO3 particles were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDS). The influence of reaction variables, such as the additive concentration and their types were also investigated on the products. The morphologies of CaCO3 crystals, inter-grown in cube-shape, were controlled by DMAEMA and DMEA. It was observed that the morphologies of CaCO3 changed from the cube grown arms to massive calcite with a hole on the face by increasing the concentrations of DMEDA and MDEA. While the precipitation grew on chitosan film without any organic additive, only single cube-shaped crystals were obtained. By these results the possible mechanisms can be proposed that electronic movement of the groups on the monomer effected ions configuration and molecules absorbed on the exposed surface, resulted the change of the surface energy, which caused the change in the morphology of CaCO3. PMID:26344256

  14. In situ synthesis and modification of calcium carbonate nanoparticles via a bobbling method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Modified calcium carbonate (CaCO3) nanoparticles with cubic- and spindle-like configuration were synthesized in situ by the typical bobbling (gas-liquid-solid) method. The modifiers, such as sodium stearate, octadecyl dihydrogen phosphate (ODP) and oleic acid (OA), were used to obtain hydrophobic nanoparticles. The different modification effects of the modifiers were investigated by measuring the active ratio, whiteness and the contact angle. Moreover, transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetry analysis (TGA analysis) were employed to characterize the obtained products. A preliminary reaction mechanism was discussed. According to the results, the active ratio of CaCO3 modified by ODP was ca. 99.9% and the value of whiteness was 97.3% when the dosage of modifiers reached 2%. The contact angle was 122.25° for the CaCO3 modified in the presence of sodium stearate, ODP and OA. When modified CaCO3 was filled into PVC, the mechanical properties of products were improved greatly such as rupture intensity, pull intensity and fuse temperature. The compatibility and affinity between the modified CaCO3 nanoparticles and the organic matrixes were greatly improved.

  15. One-step bulk preparation of calcium carbonate nanotubes and its application in anticancer drug delivery.

    Science.gov (United States)

    Tang, Jing; Sun, Dong-Mei; Qian, Wen-Yu; Zhu, Rong-Rong; Sun, Xiao-Yu; Wang, Wen-Rui; Li, Kun; Wang, Shi-Long

    2012-06-01

    Bulk fabrication of ordered hollow structural particles (HSPs) with large surface area and high biocompatibility simultaneously is critical for the practical application of HSPs in biosensing and drug delivery. In this article, we describe a smart approach for batch synthesis of calcium carbonate nanotubes (CCNTs) based on supported liquid membrane (SLM) with large surface area, excellent structural stability, prominent biocompatibility, and acid degradability. The products were characterized by transmission electron micrograph, X-ray diffraction, Fourier transform infrared spectra, UV-vis spectroscopy, zeta potential, and particle size distribution. The results showed that the tube-like structure facilitated podophyllotoxin (PPT) diffusion into the cavity of hollow structure, and the drug loading and encapsulation efficiency of CCNTs for PPT are as high as 38.5 and 64.4 wt.%, respectively. In vitro drug release study showed that PPT was released from the CCNTs in a pH-controlled and time-dependent manner. The treatment of HEK 293T and SGC 7901 cells demonstrated that PPT-loaded CCNTs were less toxic to normal cells and more effective in antitumor potency compared with free drugs. In addition, PPT-loaded CCNTs also enhanced the apoptotic process on tumor cells compared with the free drugs. This study not only provides a new kind of biocompatible and pH-sensitive nanomaterial as the feasible drug container and carrier but more importantly establishes a facile approach to synthesize novel hollow structural particles on a large scale based on SLM technology. PMID:22351100

  16. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Fupo [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Zhang, Jing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Chen, Xiaoming, E-mail: xmchenw@126.com [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China)

    2015-05-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials.

  17. Fatty Acids Profile during Anaerobic Digestion of Night Soil-Effect of temperature, Calcium Carbonate and Selectively-enriched Inoculum

    OpenAIRE

    S. I. Alam; Singh, L; Maurya, M. S.

    1996-01-01

    Anaerobic biodegradation of night soil was carried out at 5-30 degree centigrade with 1.8-10.62 per cent volatile solids (VS). Biogas production increased with the temperature and VS up to 6.2 per cent. Further increase in VS caused higher Volatile fatty acids (VFA) accumulation resulting in decreased gas production. Acetate and propionate accounted for 62-83 per cent of total VFA. Butyrate to isobutyrate ratio increased with VS. Calcium Carbonate promoted VS degradation, biogas produc...

  18. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    International Nuclear Information System (INIS)

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials

  19. Energies of the adsorption of functional groups to calcium carbonate polymorphs: the importance of -OH and -COOH groups.

    Science.gov (United States)

    Okhrimenko, D V; Nissenbaum, J; Andersson, M P; Olsson, M H M; Stipp, S L S

    2013-09-01

    The adsorption behavior of calcium carbonate is an important factor in many processes in nature, industry, and biological systems. We determined and compared the adsorption energies for a series of small molecules of different sizes and polarities (i.e., water, several alcohols, and acetic acid) on three synthetic CaCO3 polymorphs (calcite, aragonite, and vaterite). We measured isosteric heats of adsorption from vapor adsorption isotherms for 273 < T < 293 K, and we used XRD and SEM to confirm that samples did not change phase during the experiments. Density functional calculations and molecular dynamics simulations complemented the experimental results and aided interpretation. Alcohols with molecular mass greater than that of methanol bind more strongly to the calcium carbonate polymorphs than water and acetic acid. The adsorption energies for the alcohols are typical of chemisorption and indicate alcohol displacement of water from calcium carbonate surfaces. This explains why organisms favor biomolecules that contain alcohol functional groups (-OH) to control which polymorph they use, the crystal face and orientation, and the particle shape and size in biomineralization processes. This new insight is also very useful in understanding organic molecule adsorption mechanisms in soils, sediments, and rocks, which is important for predicting the behavior of mineral-fluid interactions when the challenge is to remediate contaminated groundwater aquifers or to produce oil and gas from reservoirs.

  20. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    Science.gov (United States)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  1. Clinical evidence for the superior efficacy of a dentifrice containing 8.0% arginine and calcium carbonate in providing instant and lasting relief of dentin hypersensitivity.

    Science.gov (United States)

    Cummins, D

    2011-01-01

    This paper briefly discusses recent scientific and clinical research validating the effectiveness of a toothpaste containing 8.0% arginine and calcium carbonate, known as Pro-Argin technology, including clinical evidence for the superior efficacy of this toothpaste versus a potassium-based desensitizing toothpaste. It also introduces new clinical data which prove that a toothpaste containing 8.0% arginine and calcium carbonate delivers superior instant and lasting relief of dentin hypersensitivity compared to a toothpaste containing 8% strontium acetate.

  2. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    Science.gov (United States)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  3. Performance of functionally graded implants of polylactides and calcium phosphate/calcium carbonate in an ovine model for computer assisted craniectomy and cranioplasty.

    Science.gov (United States)

    Eufinger, Harald; Rasche, Christian; Lehmbrock, Jutta; Wehmöller, Michael; Weihe, Stephan; Schmitz, Inge; Schiller, Carsten; Epple, Matthias

    2007-01-01

    Biodegradable functionally graded skull implants on the basis of polylactides and calcium phosphate/calcium carbonate were prepared in an individual mould using a combination of different processing techniques. A geometrically corresponding resection template was designed to enable a craniectomy and cranioplasty with the prepared implant in the same operation. After various preliminary experiments concerning degradation kinetics, pH evolution during degradation, micromorphology, biocompatibility tests in human osteoblast cell cultures and surgery of cadaver heads, a new large-animal model was developed for long-term in vivo studies. In eight 12-months-old sheep, the surgical templates were used to create 4.5 x 5 cm(2) calvarial defects which were then filled with the corresponding degradable implants in the same operation. The animals were sacrificed after 2, 9, 12 and 18 months, and the implants and the surrounding tissues were analysed by computer tomography (CT), macroscopic examination and microscopy. The new animal model proved to be reliable and very suitable for large individual craniectomies and cranioplasties. The formation of new bone from the dural layer of the meninges corresponded well to the degradation of the porous inner layer of the implants whereas the skull contour was stabilised by the compact outer layer over the follow-up period.

  4. The impact of oxalogenic plants on soil carbon dynamics: formation of a millennium carbon storage as calcium carbonate

    OpenAIRE

    Ferro, Katia Imeria; Verrecchia, Eric

    2013-01-01

    Au sud du Burkina Faso, des milliers d’années de pédogénèse ont produit des «Plinthic Ferralsols Arenic» (suivant la WRB). Il a toutefois été observé que sous l’influence d’arbres oxalogènes tels que Milicia excelsa, Afzelia africana et Bombax costatum, les sols évoluent vers des «Ferralic Calcisols Arenic» (selon la WRB) en quelques décennies. Il est admis que le moteur de cette accumulation carbonatée est l’oxalotrophie bactérienne, qui crée une pompe à carbone entre l’atmosphère et les sol...

  5. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian

    2014-12-01

    © 2014 Elsevier Inc. Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

  6. Synthesis of sodium caseinate-calcium carbonate microspheres and their mineralization to bone-like apatite

    Science.gov (United States)

    Xu, Zhewu; Liang, Guobin; Jin, Lin; Wang, Zhenling; Xing, Chao; Jiange, Qing; Zhang, Zhiguang

    2014-06-01

    Phosphoproteins can induce and stabilize calcium carbonate (CaCO3) vaterite, which has desirable features for high reactivity. The purpose of this study was to synthesize bioactive CaCO3 microspheres for bone regeneration. Sodium caseinate (NaCas)-containing CaCO3 microspheres, with the crystal phase of vaterite, were synthesized by fast precipitation in an aqueous solution of CaCl2, Na2CO3, and 2 mg/mL of NaCas. The uniform microspheres exhibited rougher surfaces and lower negative charges than CaCO3 particles without NaCas addition. Fourier-transform infrared spectroscopy (FT-IR) of the microspheres showed characteristic peaks or bands corresponding to phosphate and hydroxyl groups. Thermogravimetric analysis (TGA) curves exhibited approximately 5% weight loss below 600 °C due to the decomposition of NaCas. Scanning electron microscope (SEM) images showed lath-like hydroxyapatite (HAp) on the surface after soaking in simulated body fluid (SBF) at 37 °C for 5 and 10 days. Energy dispersive X-ray spectrometry (EDS) revealed that the agglomerates were composed of Ca, C, O, P, Na, and Mg elements, and the Ca/P ratios ranged from 1.53 to 1.56. X-ray diffraction (XRD) patterns exhibited peaks characteristic of hydroxyapatite. The results of this study demonstrated that the addition of NaCas induced the formation of vaterite microspheres which possesses an enhanced apatite formation after soaking in SBF at 37 °C for 5 and 10 days. These NaCas-CaCO3 microspheres may be a potential biomaterial for bone regeneration.

  7. Biomimetic mineralization of calcium carbonate/carboxymethylcellulose microspheres for lysozyme immobilization

    International Nuclear Information System (INIS)

    Porous calcium carbonate/carboxymethylcellulose (CaCO3/CMC) microspheres were prepared by the biomimetic mineralization method for lysozyme immobilization via adsorption. The size and morphology of CaCO3/CMC microspheres were characterized by transmitted electron microscopy (TEM) and zeta potential measurement. The lysozyme immobilization was verified by Fourier transform infrared (FTIR) spectroscopy. The effects of pHs and temperatures on lysozyme adsorption were investigated as well. It was revealed that CaCO3/CMC microspheres could immobilize lysozyme efficiently via electrostatic interactions and a maximum adsorption capacity of 450 mg/g was achieved at pH 9.2 and 25 °C. Moreover, it was found that the adsorption process fitted well with the Langmuir isothermal model. In addition, UV, fluorescence, and circular dichroism (CD) spectroscopic studies showed that lysozyme maintained its original secondary structure during the adsorption/desorption process. Our study therefore demonstrated that CaCO3/CMC microsphere can be used as a cost-effective and efficient support for lysozyme immobilization. - Graphical abstract: CaCO3/CMC microsphere was prepared by a facile biomimetic mineralization method and can be used as an efficient and cost-effective support for lysozyme immobilization. Highlights: ► CaCO3/CMC microspheres were prepared by the biomimetic mineralization method. ► Lysozyme was efficiently immobilized to CaCO3/CMC microspheres via adsorption. ► A maximum adsorption capacity of 450 mg/g was obtained at pH 9.2 and 25 °C. ► The original secondary structure of lysozyme was maintained upon immobilization.

  8. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    Science.gov (United States)

    Cao, Zhi; Daly, Michael; Clémence, Lopez; Geever, Luke M.; Major, Ian; Higginbotham, Clement L.; Devine, Declan M.

    2016-08-01

    Calcium carbonate (CaCO3) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO3 thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the "complex" process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the "complex" surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the "complex" treatment process, the CaCO3 particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the "wet" and "complex" treated CaCO3 composites had a significantly higher heat of fusion and moisture resistance compared to the "dry" treated CaCO3 composites. Furthermore, "wet" and "complex" treated CaCO3 composites have a significantly higher tensile strength than the composites containing untreated and "dry" treated CaCO3. This is mainly because the "wet" and "complex" treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the "complex" method minimised the negative effects of void

  9. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  10. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    Science.gov (United States)

    Silva-Castro, G. A.; Uad, I.; Gonzalez-Martinez, A.; Rivadeneyra, A.; Gonzalez-Lopez, J.; Rivadeneyra, M. A.

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  11. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    Directory of Open Access Journals (Sweden)

    G. A. Silva-Castro

    2015-01-01

    Full Text Available The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments.

  12. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine.

    Science.gov (United States)

    Silva-Castro, G A; Uad, I; Gonzalez-Martinez, A; Rivadeneyra, A; Gonzalez-Lopez, J; Rivadeneyra, M A

    2015-01-01

    The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments. PMID:26273646

  13. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  14. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution

    Science.gov (United States)

    Wang, Yishan; Zuo, Yu; Zhao, Xuhui; Zha, Shanshan

    2016-08-01

    The corrosion inhibition of calcium lignosulfonate (CLS) for Q235 carbon steel in saturated Ca(OH)2 + 0.1 mol/L NaCl solution was studied by means of weight loss, polarization, fluorescence microscopy (FM), scanning electron microscopy/energy dispersive spectrometry (SEM/EDS), microscopic infrared spectral imaging (M-IR) and X-ray photoelectron spectroscopy (XPS). For the steel in simulated concrete pore solution (pH 12.6), an increase of Eb value and a decrease of icorr value occurred with different concentrations of CLS. The optimal content of CLS was 0.001 mol/L at which the inhibition rate was 98.86% and the Eb value increased to 719 mV after 10 h of immersion. In mortar solution and in reinforced concrete environment, CLS also showed good inhibition for steel. The preferential adsorption of CLS around pits was detected by M-IR. The result illustrates that at the early stage the adsorption of CLS was heterogeneous and CLS may have a competitive adsorption with chloride ions at the active sites, which would be beneficial for decreasing the susceptibility of pitting corrosion. After the pre-filming time, an intact adsorption CLS film formed on carbon steel surface. The adsorption between CLS and calcium presented as Casbnd Osbnd S bonds. The adsorption of CLS on carbon steel surface occurred probably by both physisorption and chemisorption.

  15. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls

    International Nuclear Information System (INIS)

    For the purpose of studying the mediation of organic matrix on the crystallization of calcium carbonate, water soluble matrix (WSM), acid soluble matrix (ASM) and acid insoluble matrix (AIM) were extracted from aragonite pearls and vaterite pearls respectively. Then, in-vitro calcium carbonate crystallization experiments under the control of these six organic matrices were carried out in the present study. Scanning electron microscopy (SEM) was utilized to observe the morphology of CaCO3 and Raman spectroscopy as a powerful technique was used to distinguish the crystal polymorph. Influences of the six kinds of organic matrices on the calcium carbonate crystal growth are proposed. ASM of vaterite pearls can induce vaterite to crystallize and WSM of aragonite pearls mediates to produce aragonite crystals. The single AIM membranes of the two pearls have no pronounced effect on the CaCO3 crystallization. Additionally, the crystal size obtained with the additive of WSM of the two kinds of pearls is smaller than that with the additive of ASM. Moreover, self-assembly phenomenon in the biomineralization process and the distorted morphology calcite are observed. Current results demonstrate important aspects of matrix protein-controlled crystallization, which is beneficial to the understanding of nacre biomineralization mechanism. Further study of the precise control of these matrix proteins on CaCO3 crystal growth is being processed. - Highlights: ► WSM, ASM and AIM are extracted from aragonite pearls and vaterite pearls. ► ASM of vaterite pearl induces vaterite. ► WSM of aragonite pearl mediates to produce aragonite. ► WSM can fine control crystal size smaller than that with the additive of ASM. ► Self-assembly and the distorted calcite existed in the mineralization process.

  16. Controls of Polysaccharide Chemistry on the Kinetics and Thermodynamics of Heterogeneous Calcium Carbonate Nucleation

    Science.gov (United States)

    Giuffre, A. J.; Han, N.; Dove, P. M.

    2011-12-01

    Polysaccharide fibrils control the orientation of calcium carbonate (CaCO3) biominerals. Good examples are found in the multilayered extracellular mucilaginous sheath of green algae and cyanobacteria and in specialized vesicles inside coccolithophorids. More complex organisms such as arthropods and mollusks form biomineralized exoskeletons and shells that consist of insoluble polysaccharides and soluble acid-rich proteins. In these structures, CaCO3 mineral orientation occurs along fibers of the polysaccharide chitin. This raises the question of whether polysaccharide chemistry has specific roles in directing biomineralization. The last three decades of research show that acidic proteins influence CaCO3 polymorph selection, crystallographic orientation, and nucleation and growth rates but little is known about the function of polysaccharides. In fact, polysaccharides are long considered an inert component of organic frameworks. In this experimental investigation, we test the hypothesis that polysaccharides have chemistry-specific influences on calcification by measuring the kinetics of calcite nucleation onto three types of polysaccharide films under controlled solution compositions. Characterized polysaccharides of simple repeating monomer sequences were chosen as model compounds to represent the major carbohydrates seen in microbial and calcifying environments: 1) alginic acid with carboxyl groups, 2) hyaluronic acid with alternating carboxyl and acetylamine groups, and 3) chitosan with amine and acetylamine groups. Biosubstrates were prepared by electrodeposition of these compounds as thin gel-like films onto gold-coated silicon wafers. Using a flow-through cell, heterogeneous nucleation rates of calcite were measured for a suite of supersaturation conditions. These rate data were compared to similar measurements for carboxyl- and hydroxyl-terminated self-assembled monolayers. Calcite nucleation rates onto the three polysaccharides vary by a factor of 400x

  17. Effect of sodium polyacrylate molecular weight on the crystallogenesis of calcium carbonate

    Science.gov (United States)

    Jada, A.; Ait Akbour, R.; Jacquemet, C.; Suau, J. M.; Guerret, O.

    2007-08-01

    Aqueous solutions of sodium polyacrylates (NaPA) series having molecular weights ( Mw) ranging from 2540 to 9890 g mol -1 are used as precipitation media to control the size and shape of calcium carbonate (CaCO 3) particles. The retarding effect of polyacrylates on CaCO 3 nucleation is evidenced by the increase of the induction time, τ, of the precipitated CaCO 3, from τ=55 s in the absence of additives, to τ values in the range 100-2500 s in the presence of NaPA samples. The data also show the coexistence of two polymorphs, calcite and vaterite, for CaCO 3 particles as prepared in the presence of NaPA samples. The vaterite fraction, fv, varies in all instances with the polymer concentration, Cpoly (g. L -1), and reaches its maximum value, fv,max at optimal ratio, R (mol. g -1), of Ca ion to polymer (NaPA), R=[Ca]/([NaPA]=Cpoly). No simple general trend is found to explain the influence of the molecular weight ( Mw) of NaPA on the induction time, τ, and on the vaterite fraction, fv, since these two parameters are found to vary with Cpoly and Mw. However, under certain experimental conditions, an optimum polymer molecular weight ( Mw=5530 g mol -1) of the NaPA series, gives the highest values of fv,max and τ. Such optimum indicates the influence of Mw of NaPA on CaCO 3 nucleation and growth, and it is related to the surface density and the rate of adsorption of the polymer onto the growing crystal. The CaCO 3 particle size is reduced from about 20 μm, as obtained in the control experiment, to sizes varying in the range 2-8 μm in the presence NaPA samples. Polymers having low Mw values ( Mw<5000 g mol -1) are found to be more efficient in reducing the CaCO 3 particle size.

  18. Biodegradable calcium polyphosphate/polyvinyl-urethane carbonate composites for osteosynthesis applications

    Science.gov (United States)

    Ramsay, Scott Desmond

    The formation of biodegradable implants for use in osteosynthesis has been a major goal of biomaterials research for the past two to three decades. Self-reinforced polylactide systems represent the most significant success of this research to date, however with elastic constants of, at most, 12--15 GPa, they fail to provide the necessary initial stiffness required of devices designed for stabilizing fractures of major load-bearing bones. One objective of this study has been the development of a biodegradable composite suitable for fabrication of implants for the repair of fractures of major load-bearing bones. Specifically, this research has focussed on the use of calcium polyphosphate (CPP), an uiorganic polymer in combination with polyvinyl-urethane carbonate (PVUC) organic polymers. Composite samples were formed as interpenetrating phase composites (IPC), particle-reinforced composites (PRC), and fibre-reinforced composites (FRC). Additionally, the IPCs were produced as both monolithic and laminated specimens. PRC samples exhibit too low asmade elastic constant for fracture fixation applications, while the IPC and FRC samples exhibit desired as-made strength and bending stiffness but lose these properties too rapidly when exposed to aqueous-based in vitro aging, simulating in vivo conditions. An investigation to determine the mechanism of the rapid in vitro degradation was undertaken using a model IPC system to study the effect of the interfacial strength on the mechanical properties of the composite. In addition, these studies provided further support for a hypothesis to explain the observed high mechanical properties of the as-made CPP-PVUC interpenetrating phase composites. It was found that strong interfacial strength is very significant in obtaining appropriate mechanical properties in the IPC system. Results support the conclusion that a rapid loss of the CPP-PVUC interface through exposure to an aqueous environment, as well as stresses imposed on the CPP

  19. Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature

    OpenAIRE

    Hu, Yu-Bin; Wolthers, Mariëtte; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2015-01-01

    The effects of pH and phosphate on the precipitation of calcium carbonate polymorphs from aqueous solution were investigated. Experiments were carried out at near-freezing temperature and two different pH conditions (pH 13.4 and 9.0). At each pH condition, solutions having different concentrations of CaCl2 and NaHCO3 were mixed to achieve Ca/CO3 ratios of 1:1 and 10:1 at different pumping rates with and without phosphate. Results showed that, at pH 13.4, only ikaite wa...

  20. Ecological comparison of calcium hydroxide and sodium hydrogen carbonate as sorbents; Oekologischer Vergleich der Sorptionsmittel Calciumhydroxid und Natriumhydrogencarbonat

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, Christian; Weber-Blaschke, Gabriele [Technische Univ. Muenchen, Freising (Germany). Lehrstuhl fuer Rohstoff- und Energietechnologie; Mocker, Mario [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Faulstich, Martin [Technische Univ. Muenchen, Straubing (Germany). Wissenschaftszentrum Straubing

    2009-07-01

    Lime products have long been used with success for flue gas purification in waste incineration plants, where they serve to eliminate acid gas pollutants such as sulphur dioxide, hydrogen chloride and hydrogen fluoride. This article presents excerpts of a study commissioned by the German lime industry association for the purpose of obtaining an unbiased well-founded comparison of the environmental impact of the two sorbents calcium hydroxide and sodium hydrogen carbonate. The following questions were addressed by the study: Which of the two flue gas additives provides greater environmental benefit under specified conditions? What parameters influence the outcome? How can the results be viewed in regard to different plant configurations?.

  1. Precipitation and dissolution of calcium carbonate: key processes bridging the bio- and geosciences (Vladimir Ivanovich Vernadsky Medal Lecture)

    Science.gov (United States)

    Gattuso, J.-P.

    2012-04-01

    In this Vladimir Ivanovich Vernadsky medal lecture, I will focus on the biogeochemical cycle of calcium carbonate (CaCO3) which is arguably one of the best example of a set processes that bridge the bio- and geosciences. The main reactions involved are calcification and dissolution that, respectively, manufacture and destroy calcium carbonate. Biology is intimately involved in these two processes which are key controls of the Earth's climate and leave remains that are of great use to human societies (as building materials) and geoscientists. I will illustrate the bridge between the bio- and geosciences by providing brief examples for each of the following four issues. (1) The marine cycle of CaCO3 and its relationship with climate. The release of CO2 by the precipitation of calcium carbonate and the uptake of CO2 by its dissolution are important controls of atmospheric CO2 and climate. The vertical distribution of Ψ, the ratio of CO2 released/used per CaCO3 precipitated/dissolved in the ocean will be shown to be consistent with the Högbom-Urey reactions. (2) The use of CaCO3 in paleooceanography. The remains of calcium carbonate shells and skeletons are wonderful archives of past environmental changes. Their isotopic composition and the concen-tration of trace elements are invaluable in the reconstruction of past climate. I will address the challenge of calibrating one of the proxies used to reconstruct past ocean pH. (3) The challenge of understanding calcification. Despite having been investigated for decades, many aspects of the physiological and molecular processes involved in calcification by marine organisms remain obscure. Recent breakthroughs, mostly on reef-building corals, will be briefly reviewed. (4) The response of calcification and dissolution to environmental change. The critical importance of CaCO3 precipitation and dissolution as climate controls makes it vital to understand their response to global environmental changes such as ocean warming and

  2. Influence of Calcium Carbonate Fillers on the Properties of Recycled Poly(e-caprolactone) Based Thermoplastic Polyurethane

    OpenAIRE

    Vitalija BETINGYTĖ; Žukienė, Kristina; Virginija JANKAUSKAITĖ; Milašienė, Daiva; Kazys Vytautas MICKUS; Ada GULBINIENĖ

    2012-01-01

    In this work the effects of different crystallographic modifications of calcium carbonate (CaCO3) filler on the melt flow, mechanical properties, hydrolytic degradation, and shape memory behaviour of recycled low-temperature poly(e-caprolactone)-based polyurethane (rTPU) were evaluated. Composites were prepared by two-roll milling varying filler content from 2 wt % to 6 wt %. It was found that at temperature range from 20 °C to 50 °C CaCO3 fillers do not change Young’s modulus, they decrease ...

  3. Low temperature synthesis of high quality carbon nanospheres through the chemical reactions between calcium carbide and oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yonggui, E-mail: xieyg2004@163.com [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Huang Qizhong, E-mail: qzhuang@mail.csu.edu.cn [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Huang Baiyun [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Xie Xiangmin [Applied Chemistry Department, College of Science, Hunan Agricultural University, Changsha, Hunan 410128 (China)

    2010-11-01

    Carbon nanospheres (CNSs) were synthesized through the chemical reactions of calcium carbide and oxalic acid without using catalysts. The chemical reactions were carried out in a sealed stainless steel pressure vessel with various molar ratios at temperatures of 65-250 deg. C. The synthesized CNSs have been characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) attached to the SEM, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The total yield of carbonaceous materials relative to the starting material is about 4% (w/w). SEM and TEM results reveal that the percentage of CNSs is high (>95%). The CNSs that have been synthesized are roe-like spheres of relatively uniform size with diameters of 60-120 nm. The attached EDS result shows that the carbon content of CNSs reaches up to 98%.

  4. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    Science.gov (United States)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  5. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    Science.gov (United States)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  6. The synthesis of spherical calcium carbonate composite in amphiphilic PS-b-PAA solution and its thermal dynamic characteristic

    Institute of Scientific and Technical Information of China (English)

    YUE Linhai; JIN Dalai

    2004-01-01

    Spherical calcium carbonate composite is synthesized in the solution of amphiphilic block copolymer of polystyrene(PS) and poly(acrylic acid)(PAA). SEM and XRD measurements show that the diameter of the particulates decreases with the augment of the PS-b-PAA concentration, crystalline in the composite is calcite and its morphology as well as the structure is changed too. TG-DTA together with IR analysis is applied to investigating the thermal dynamic behavior of the composite. The results show that the composite is mainly composed of two phases, that is, the nano- crystalline calcium carbonate and the PS-b-PA-Ca composites. PS phase decomposes first with a large heat release at about 330℃. However, the PAA chains have relatively high thermal stability, probably due to the structural Ca-O bond, and decomposes at above 400℃. Matching opinions are used to explain the possible reasons for the regular as well as the particular characteristics of the composite corresponding to a certain copolymer concentration.

  7. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani

    International Nuclear Information System (INIS)

    Nano-sized calcium carbonate (nano-CC) was studied in terms of acting as a carrier for a pesticide. Nano-CC was prepared by reaction of calcium chloride and sodium carbonate by the reversed-phase microemulsion method and then loaded with the pesticide validamycin. The resulting material was characterized by X-ray diffraction analysis and scanning electron microscopy. The loading efficiency, sustained-release performance, germicidal efficacy, and stability also were investigated. The size of the loaded nano-CC can be adjusted to between 50 to 200 nm by varying the water/surfactant molar ratio from 30/1 to 10/1, and the loading efficiency can be increased to about 20% by increasing the size of the nano-CC. The material displayed better germicidal efficacy against Rhizoctonia solani compared to conventional technical validamycin after about 7 days, and the time of the release of validamycin was extended to 2 weeks. Given the loading efficiency, stability, sustained-release performance and good environmental compatibility of the material, the method for its preparation may be extended to other hydrophilic pesticide. (author)

  8. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone.

    Science.gov (United States)

    Jimenez-Lopez, C; Rodriguez-Navarro, C; Piñar, G; Carrillo-Rosúa, F J; Rodriguez-Gallego, M; Gonzalez-Muñoz, M T

    2007-08-01

    Although it has already been shown that calcareous stone can be consolidated by using a bacterially inoculated culture medium, a more user-friendly method is the in situ application of a sterile culture medium that is able to activate, among the microbial community of the stone, those bacteria with a potential for calcium carbonate precipitation. In order to test this new method for stone consolidation, non-sterilized decayed porous limestone was immersed in sterile nutritional media. Results were compared to those of the runs in which stone sterilized prior to the treatment was used. The effects of the microbial community on stone consolidation were determined by recording the evolution of the culture media chemistry. The treated stone was tested for mechanical resistance and porosity. Results demonstrate that the tested media were able to activate bacteria from the microbial community of the stone. As a consequence of the growth of these bacteria, an alkalinization occurred that resulted in calcium carbonate precipitation. The new precipitate was compatible with the substrate and consolidated the stone without pore plugging. Therefore, a good candidate to in situ consolidate decayed porous limestone is the application of a sterile culture medium with the characteristics specified in the present study.

  9. Strontium hydroxyapatite and strontium carbonate as templates for the precipitation of calcium-phosphates in the absence and presence of fluoride

    Science.gov (United States)

    Sternitzke, Vanessa; Janousch, Markus; Heeb, Michèle B.; Hering, Janet G.; Johnson, C. Annette

    2014-06-01

    The heterogeneous precipitation of calcium-phosphates on calcium hydroxyapatite (Ca10(PO4)6(OH)2 or HAP) in the presence and absence of fluoride is important in the formation of bone and teeth, protection against tooth decay, dental and skeletal fluorosis and defluoridation of drinking water. Strontium hydroxyapatite (Sr10(PO4)6(OH)2 or SrHAP) and strontium carbonate (SrCO3) were used as calcium-free seed templates in precipitation experiments conducted with varying initial calcium-to-phosphate (Ca/P) or calcium-to-phosphate-to-fluoride (Ca/P/F) ratios. Suspensions of SrHAP or SrCO3 seed templates (which were calcium-limited for both templates and phosphate-limited in the case of SrCO3) were reacted at pH 7.3 (25 °C) over 3 days. The resulting solids were examined with Scanning Transmission Electron Microscopy (STEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). Calcium apatite was the predominant phase identified by all techniques independent of the added Ca/P ratios and of the presence of fluoride. It was not possible to make an unambiguous distinction between HAP and fluorapatite (Ca10(PO4)6F2, FAP). The apatite was calcium-deficient and probably contained some strontium.

  10. Exposure Assessment and Inflammatory Response Among Workers Producing Calcium Carbonate Nanomaterials

    Science.gov (United States)

    Cui, Ling

    Problem: Nanotechnology is one of the most rapidly growing fields of science and engineering, and its applications have expanded to numerous research and industrial sectors, from consumer products to medicine to energy. Nano-materials and nanotechnology promise substantial benefits. However, there are many uncertainties and concerns regarding human health and the environment. Numerous toxicological studies on animals and cells in vitro have demonstrated that nanomaterials could cause various adverse health effects, including inflammation, oxidative stress, fibrosis and mutagenesis in the lungs, and cardiovascular and nervous system impairment. Objectives: The overall objective of this study was to characterize particulate exposures in a calcium carbonate nanoparticle manufacturing facility, investigate possible respiratory and cardiovascular effects, and explore the plausibility of an inflammatory mechanism. The associations between exposure level and various health outcomes were investigated. Methodology: Each job was characterized by mass, number and surface area concentration. Job classification was performed based on ranking of the exposure level and statistical models. Lung function tests, exhaled NO and blood pressure (BP) were measured before and after the workshift in the year of 2011. Inflammatory cytokines from induced sputum were measured cross-sectionally in the year of 2011. Data of lung function tests and blood pressure were collected cross-sectionally in the year of 2012. The associations between each exposure metric and health measures in 2012 were investigated. Only mass concentration was linked to both 2011 and 2012 health outcomes. Results: The sampling and analytic methodology used in the study presents the potential to characterize nanoparticle exposure for a variety of operational processes. We found the highest mass exposure occurred at bagging job whereas the highest number and surface area concentration was found at modification

  11. ELECTRICAL RESISTIVITY, CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLYPROPYLENE/MULTI-WALLED CARBON NANOTUBE/CALCIUM CARBONATE COMPOSITES PREPARED BY MELT MIXING

    Institute of Scientific and Technical Information of China (English)

    Ha-da Bao; Zhao-xia Guo; Jian Yu

    2009-01-01

    Polypropylene (PP)/multi-walled carbon nanotube (MWCNT)/calcium carbonate (CaCO3) composites are prepared by melt mixing using two types of CaCO3 of different sizes. The electrical resistivities of the composites with the two types of CaCO3 are all lower than those of the corresponding PP/MWCNT composites at various MWCNT loadings (1 wt%-5 wt%). The morphology of the composites is investigated by field emission scanning electron microscopy (FESEM). The crystallization behavior of PP in the composites is characterized by differential scanning calorimetry (DSC). The storage modulus, as measured by dynamic mechanical analysis (DMA), increases significantly by the presence of CaCO3.

  12. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    OpenAIRE

    Choksi Krishna; Shenoy Ashoka M; A. R. Shabharaya; Lala Minaxi

    2011-01-01

    The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg) and calcium gluconate (5 mg/kg) were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg) to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate cou...

  13. Isolation and metagenomic characterization of bacteria associated with calcium carbonate and struvite precipitation in a pure moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Gonzalez-Martinez, A; Leyva-Díaz, J C; Rodriguez-Sanchez, A; Muñoz-Palazon, B; Rivadeneyra, A; Poyatos, J M; Rivadeneyra, M A; Martinez-Toledo, M V

    2015-01-01

    A bench-scale pure moving bed bioreactor-membrane bioreactor (MBBR-MBR) used for the treatment of urban wastewater was analyzed for the identification of bacterial strains with the potential capacity for calcium carbonate and struvite biomineral formation. Isolation of mineral-forming strains on calcium carbonate and struvite media revealed six major colonies with a carbonate or struvite precipitation capacity in the biofouling on the membrane surface and showed that heterotrophic bacteria with the ability to precipitate calcium carbonate and struvite constituted ~7.5% of the total platable bacteria. These belonged to the genera Lysinibacillus, Trichococcus, Comamomas and Bacillus. Pyrosequencing analysis of the microbial communities in the suspended cells and membrane biofouling showed a high degree of similarity in all the samples collected with respect to bacterial assemblage. The study of operational taxonomic units (OTUs) identified through pyrosequencing suggested that ~21% of the total bacterial community identified in the biofouling could potentially form calcium carbonate or struvite crystals in the pure MBBR-MBR system used for the treatment of urban wastewater.

  14. Elimination of carbon dioxide and other atmospheric gases by means of calcium rich industrial w aste

    OpenAIRE

    Esquivias, L.; Santos, Alberto; Morales, Alberto

    2010-01-01

    [EN] The present invention relates to the use of an aqueous suspension comprising calcium in a proportion exceeding 15% by weight, the solid phase of such aqueous suspension being preferably portlandite proceeding from chemical industry waste, for the elimination of CO2 and other greenhouse effect gases. The present invention moreover relates to a procedure of elimination of said gases under conditions of ambient pressure and temperatures, through both induced and environmental carbo...

  15. Class and Home Problems: Carbon Dioxide Capture from Coal-Fired Power Plants Using Calcium Looping

    Science.gov (United States)

    Deshpande, Niranjani; Phalak, Nihar; Fan, Liang-Shih; Sundaresan, Sankaran

    2015-01-01

    Calcium looping is based on the simple premise of the reversible reaction between CO[subscript 2] and CaO. This reaction can be used for separation of CO2 from a mixture of gases; most notably the technology finds applications in CO[subscript 2] removal from gas streams in fossil fuel-based energy systems. This article gives a brief overview of…

  16. Experimental and Modeling Study of the Turning Process of PA 6/Nano Calcium Carbonate Composite

    OpenAIRE

    Mehdi Haghi; Reza Farshbaf Zinati; Mohammad Reza Razfar

    2013-01-01

    Nowadays, polymeric nanocomposites have emerged as a new material class with rapidly growing use in industrial products because of good mechanical, thermal, and physical properties. Recently, the requirement of the direct machining of these materials has increased due to the production of the most of them by extrusion method in simple cross section and the increased demand for personalized products. In this work, the effect of turning parameters (cutting speed and feed) and nano calcium carbo...

  17. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    International Nuclear Information System (INIS)

    Highlights: ► LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. ► The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln3+ contents. ► A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0–0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y3+, Gd3+, Dy3+, Er3+ and Yb3+) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([XLn]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [XY] ≤ 0.10 for substituting Y system and at [XLn] ≤ 0.01–0.03 for substituting the other Ln systems. LnPO4 was mixed with LnCaHap at higher [XLn] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [XY] = 0–0.10 were investigated using XRD, TEM, ICP-AES, IR and TG–DTA in detail.

  18. Effect of Ultrasonic on the Preparation of Nanometer Calcium Carbonate%超声波对纳米碳酸钙合成过程的影响

    Institute of Scientific and Technical Information of China (English)

    于福家; 王泽红; 韩跃新

    2011-01-01

    The principle and method of nanometer calcium carbonate preparation are introduced.Under the ultrasonic condition,the effects of initial carbonizing temperature,density of Ca(OH)2 and flow rate of CO2 on nanometer calcium carbonate synthesis are investigated.The results show that the ultrasonic can strengthen the nanometer calcium carbonate preparation,improve the efficiency of mass and heat transfer,greatly enhance the supersaturation of calcium ions in the solution and induce rapid and uniform nucleations of the calcium carbonate.Moreover,the initial carbonizing temperature can be enhanced about 5 ℃ because of ultrasonic,which can shorten the preparation time and improve the synthetic efficiency.On the basis of experimental investigation,the nanometer calcium carbonate powders with diameter of 20~30 nm were synthesized steadily under optimal process conditions in a homemade ultrasonic reactor.The results indicate that high-quality nanometer calcium carbonates with smaller and homogeneous size can be obtained by ultrasonic method.%介绍了纳米碳酸钙的制备原理和方法.探讨了在超声波存在条件下,初始碳化温度、Ca(OH)2乳液浓度、CO2流量对合成反应过程的影响.研究结果表明,超声波具有强化纳米碳酸钙合成反应过程的作用,能够改善反应体系的传质、传热效果,大大提高溶液中钙离子的过饱和度,诱导碳酸钙迅速均匀成核;在超声波的作用下,碳化过程的最高初始温度可以提高5℃,从而能够缩短合成反应时间,提高合成效率.在试验研究的基础上,利用自制的超声合成反应器,在最佳工艺条件下,稳定地制备出了20-30 nm的纳米碳酸钙粉体;实现了利用超声波进一步细化

  19. Depositional environments inferred from variations of calcium carbonate, organic carbon, and sulfide sulfur: a core from southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Iyer, S.D.; Chauhan, O.S.; PrakashBabu, C.

    Pleistocene has been inferred. The higher contents of organic carbon and sulfide sulfur and their negative relationship clearly establish the existence of a reducing environment below 65 cm subbottom depth. The occurrence of pyrite framboids and crystals...

  20. Vapor diffusion method: Dependence of polymorphs and morphologies of calcium carbonate crystals on the depth of an aqueous solution

    Science.gov (United States)

    Liu, Qing; Wang, Hai-Shui; Zeng, Qiang

    2016-09-01

    The polymorph control of calcium carbonate by the vapor diffusion method is still a challenging issue because the resultant crystal polymorphs and morphologies highly depend on the experimental setup. In this communication, we demonstrated that the concentration gradients accompanied by the vapor diffusion method (ammonia concentration, pH and the ratio of CO32- to Ca2+ are changed with the solution depth and with time) are probably the main reasons to significantly affect the formation of crystal polymorphs. Raman, SEM and XRD data showed that calcite and vaterite crystals were preferred to nucleate and grow in the upper or the lower areas of aqueous solution respectively. The above results can be explained by the gradient effect.

  1. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  2. Fatty Acids Profile during Anaerobic Digestion of Night Soil-Effect of temperature, Calcium Carbonate and Selectively-enriched Inoculum

    Directory of Open Access Journals (Sweden)

    S. I. Alam

    1996-01-01

    Full Text Available Anaerobic biodegradation of night soil was carried out at 5-30 degree centigrade with 1.8-10.62 per cent volatile solids (VS. Biogas production increased with the temperature and VS up to 6.2 per cent. Further increase in VS caused higher Volatile fatty acids (VFA accumulation resulting in decreased gas production. Acetate and propionate accounted for 62-83 per cent of total VFA. Butyrate to isobutyrate ratio increased with VS. Calcium Carbonate promoted VS degradation, biogas production and VFA degradation. The increased methanogenic and decreased sulphate-reducing bacteria caused proportional changes in CH4 and H2S gases. Enrichment with H2 oxidising methanogenic consortium is beneficial by enhancing VFA utilisation by two to three fold.

  3. Basalt as a solid source of calcium and alkalinity for the sequestration of carbon dioxide in building materials

    Science.gov (United States)

    Johnson, N. C.; Westfield, I.; Lu, P.; Bourcier, W. L.; Kendall, T.; Constantz, B. R.

    2010-12-01

    Motivated by the idea of converting waste carbon dioxide into usable building products, Calera Corporation has developed a multi-step process that sequesters CO2 as carbonate minerals in cementitious materials. Process inputs include dissolved divalent cations and alkalinity, both of which can be extracted from basalt. In one mode of the Calera process, the electrochemical production of alkalinity generates large volumes of hydrochloric acid as a by-product, which has been shown to effectively leach divalent cations from basalt while being neutralized by the basalt dissolution reaction. Using a 10:1 1M HCl solution to rock ratio, 3500 ppm Ca was extracted while the initial solution was neutralized to a pH of 2.60 in two weeks at a temperature of 80oC in an anoxic batch reactor. In this scenario, mineral carbonation occurs via three steps: electrochemical production of alkalinity, CO2 absorption by the alkaline stream, then precipitation by mixing the basalt-derived divalent cation stream and the CO2-containing alkaline stream. In a second scenario, alkalinity is extracted from basalt using an alkalinity capacitor, a weak acid. This solution may contain a proton source, such as ammonium chloride, or a hydroxyl acceptor, such as boric acid, but the main design constraint is that the pKa of the capacitor be high enough to deprontonate carbonic acid. The weak acid solution is mixed with basalt in an anoxic batch reactor and the dissolving rock consumes protons from the weak acid, generating the conjugate base. The solution rich in conjugate base then absorbs CO2 and the carbonate-rich solution is mixed with a calcium-rich stream to precipitate carbonate minerals. We have extracted up to 1100 mmol alkalinity per kg rock using an alkalinity capacitor, versus no more than 50 mmol alkalinity per kg rock using DI water as a solvent. Again, carbon sequestration occurs via three steps: alkalinity extraction from basalt, CO2 absorption, and finally carbonate precipitation

  4. Comparison of calcium carbonate and aluminium hydroxide as phosphate binders on biochemical bone markers, PTH(1-84), and bone mineral content in dialysis patients

    DEFF Research Database (Denmark)

    Jespersen, B; Jensen, J D; Nielsen, H K;

    1991-01-01

    Bone mineral content, estimated by single-photon absorptiometry of the forearm, serum values of intact parathyroid hormone (PTH(1-84], osteocalcin, alkaline phosphatase, 1,25-dihydroxycholecalciferol (1,25(OH)2D3), and aluminium were determined during treatment with calcium carbonate (CaCO3...

  5. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  6. CRACK2. Modelling calcium carbonate deposition from bicarbonate solutions in cracks in concrete

    DEFF Research Database (Denmark)

    Brodersen, Knud Erik

    2003-01-01

    by diffusion in pore systems in columns of cementitious materials. The hydroxyl is precipitating calcite from a flow of bicarbonate solution in a crack connecting the ends of a row of such columns. Thecementitious material is simulated as calcium hydroxide mixed with inert material but with sodium hydroxide...... and on the composition of the outflowing solution, which can be compared directly with experimental results.Leaching behavior of sodium can be used to tune the model to experimental observations. The calcite is mostly precipitated on top of the original crack surface and may under certain circumstances fill the crack...

  7. CRACK2 - Modelling calcium carbonate deposition from bicarbonate solution in cracks in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Brodersen, K

    2003-03-01

    The numerical CRACK2 model simulates precipitation of calcite from calcium bicarbonate solution (e.g. groundwater) passing through cracks in concrete or other cementitious materials. A summary of experimental work is followed by a detailed description of the model. Hydroxyl ions are transported by diffusion in pore systems in columns of cementitious materials. The hydroxyl is precipitating calcite from a flow of bicarbonate solution in a crack connecting the ends of a row of such columns. The cementitious material is simulated as calcium hydroxide mixed with inert material but with sodium hydroxide dissolved in the pore solution. Diffusive migration of cesium as radioactive isotope is also considered. Electrical interaction of the migrating ions is taken into account. Example calculations demonstrate effects of parameter variations on distribution of precipitated calcite in the crack and on the composition of the outflowing solution, which can be compared directly with experimental results. Leaching behavior of sodium can be used to tune the model to experimental observations. The calcite is mostly precipitated on top of the original crack surface and may under certain circumstances fill the crack. The produced thin layers of low porosity calcite act as a diffusion barrier limiting contact between cement and solution. Pore closure mechanisms in such layers are discussed. Implications for safety assessment of radioactive waste disposal are shortly mentioned. The model is also relevant for conventional uses of concrete. (au)

  8. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates.

    Science.gov (United States)

    López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie

    2014-01-01

    Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.

  9. Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano: A carbon capture and storage analogue

    OpenAIRE

    Olsson J, Stipp SLS, Makovicky E, and Gislason SR

    2014-01-01

    The reaction of CO2 andwaterwith basaltic rock can release trace heavymetals,which pose a serious threat to the quality of surfacewaters. The pH of the carbonatedwater increases during dissolution of the host rock or dilution by pore fluids. This leads to precipitation of carbonate and other secondary minerals that often scavenge the released heavy metals. However, very little is known about uptake capacity of the precipitates in natural systems or how much divergence there co...

  10. Influence of the Mg-content on ESR-signals in synthetic calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, M.; Bach, A.; Mudelsee, M.; Mangini, A. (Akademie der Wissenschaften, Heidelberg (Germany, F.R.))

    1989-01-01

    Carbonate crystals doped with various concentrations of Mg{sup 2+}-ions have been grown by a gel-diffusion method. An increase of the Mg/Ca-ratio to more than about 1 caused a phase change in the crystal lattice from calcite to aragonite. The properties of the ESR-signals of the synthetic carbonates were studied and compared with natural marine carbonates. The following results were derived: (a) In the presence of Mg{sup 2+}-ions the synthetic carbonates display the same ESR-signals as natural calcites of marine origin with similar properties (thermal stability, radiation sensitivity). (b) The saturation value of the signal at g=2.0006 in synthetic calcites was found to be strongly related with the Mg-content in the crystals. (c) The signal at g=2.0036 (axial symmetry) which is present in calcite was not influenced by the Mg-concentration. Its saturation value decreases when the crystal phase changed from calcite to aragonite and in complement the signal at g=2.0031 appeared. (d) The signals at g=2.0057 and g=2.0031 are most probably not of organic origin. (author).

  11. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.

    Science.gov (United States)

    Cancian, Giulia; Tozzi, Gianluca; Hussain, Amirul Ashraf Bin; De Mori, Arianna; Roldo, Marta

    2016-08-01

    Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol-gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo.

  12. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.

    Science.gov (United States)

    Cancian, Giulia; Tozzi, Gianluca; Hussain, Amirul Ashraf Bin; De Mori, Arianna; Roldo, Marta

    2016-08-01

    Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol-gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo. PMID:27324780

  13. 改性轻质碳酸钙在造纸工业中的应用研究%A Study of Application of Modified Light Calcium Carbonate in Paper Manufacturing Industry

    Institute of Scientific and Technical Information of China (English)

    杨小红; 李敏

    2015-01-01

    Calcium carbonate is indispensible inorganic filler and pigment in paper manufacturing industry. With the upgrade of paper manufacturing industry, paper pulp is changed from acidity to neutral and alkaline, light cal⁃cium carbonate has more advantages than heavy calcium carbonate in paper manufacturing. The paper reviews the research progress of application of light calcium carbonate in paper manufacturing industry, and presents the social significance and popularization and application of calcium carbonate in Chizhou.%重点概述了目前国内外改性轻质碳酸钙在造纸工业中的应用研究进展,并结合本项目组近年来的研究实践,分析指出在池州地区开展碳酸钙应用研究,具有更加重要的社会意义和实际推广应用价值。

  14. Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite

    Science.gov (United States)

    Gooding, James L.; Zolensky, Michael E.; Wentworth, Susan J.

    1988-01-01

    Two varieties of Ca-carbonate were found in a total of three interior (greater than 2-cm depth) samples of glass inclusions from the shergottite meteorite, Elephant Moraine, Antarctica, A79001. Two of the samples, including the largest deposit around a vug near the center of the meteorite (8-cm depth), contained veins of granular calcite with significant Mg and P, either as Mg-calcite with dissolved P or as calcite with very finely intergrown Mg-bearing phosphate. The second variety, which occurred in a third sample with a previously documented high concentration of trapped gases, consisted of disseminated 10-20-micron anhedral grains of nearly pure CaCO3 and was intimately associated with laths and needles of Ca-sulfate (possibly gypsum). All evidence considered, it is probable that both varieties of Ca-carbonate (and the Ca-sulfate) formed on a planetary body (probably Mars) before the meteorite fell on earth.

  15. Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils

    Science.gov (United States)

    Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muñoz, M.

    2014-05-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

  16. Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons

    Science.gov (United States)

    Ohkubo, Takahiro; Kusudo, Tomoko; Kuroda, Yasushige

    2016-11-01

    The adsorbed phase and hydration structure of an aqueous solution of Ca(NO3)2 restricted in micropores fabricated in activated carbons (ACs) having different average pore widths (0.63 and 1.1 nm) were investigated with the analysis of adsorption isotherms and x-ray absorption fine structure (XAFS) spectra on Ca K-edge. The adsorbed density of Ca2+ per unit micropore volume in the narrower pore was higher than in the wider pore, while the adsorbed amount per unit mass of carbon with the narrower pore was half of the amount of ACs with the larger pore. On the other hand, variations in the bands assigned to double-electron (KM I) and 1s  →  3d excitations in XAFS spectra demonstrate the formation of a distorted hydration cluster around Ca2+ in the micropore, although the structural parameters of hydrated Ca2+ in the micropores were almost consistent with the bulk aqueous solution, as revealed by the analysis of extended XAFS (EXAFS) spectra. In contrast to the hydration structure of monovalent ions such as Rb+, which generally presents a dehydrated structure in smaller than 1 nm micropores in ACs, the present study clearly explains that the non-spherically-symmetric structure of hydrated Ca2+ restricted in carbon micropores whose sizes are around 1 nm is experimentally revealed where any dehydration phenomena from the first hydration shell around Ca2+ could not be observed.

  17. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    Science.gov (United States)

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions. PMID:26861499

  18. Short time spreading and wetting of offset printing liquids on model calcium carbonate coating structures.

    Science.gov (United States)

    Koivula, Hanna; Toivakka, Martti; Gane, Patrick

    2012-03-01

    Spreading of oils and water on porous and pre-saturated model carbonate coating structures was studied with high speed video imaging. The short-time data were complemented with long time absorption and wicking experiments. The results indicate a strong dependence between surface structural features of the pigment tablets and water spreading at short times, both in non-saturated and water pre-saturated cases, while the oil spreading is mainly dependent on the liquid properties. Sodium polyacrylate dispersant on pigment surfaces is shown to contribute to water spreading and absorption. On pre-saturated structures the liquid-liquid interactions are dominant and the majority of results support spreading according to the molecular kinetic model. The evidence supports the hypothesis of S. Rousu, P. Gane, and D. Eklund, ["Influence of coating pigment chemistry and morphology on the chromatographic separation of offset ink constituents," in The Science of Papermaking Transactions of the 12th Fundamental Research Symposium, FRC The Pulp & Paper Fundamental Research Society, Oxford, UK, 2001, p. 1115] that at long times the oils absorb into the porous structure at a rate proportional to the ratio of viscosity and surface tension, provided there is no sorptive action with the binder. A combination of nanosized pores and large surface area is useful for providing sufficient absorption capability for carbonate based coatings. PMID:22196346

  19. Influence des ions étrangers et de la matière organique sur la cristallisation des carbonates de calcium Influence of Foreign Ions and of Organic Matter on the Crystallization of Calcium Carbonates

    Directory of Open Access Journals (Sweden)

    Cailleau P.

    2006-11-01

    Full Text Available On présente les résultats d'un travail de recherche entrepris pour des aspects de la diagenèse des roches carbonatées : la cimentation cal le rôle est capital pour la conservation ou le colmatage de la porosit de ce type de sédiments. Après une synthèse bibliographique des connaissances actuelles sur et la cimentation du CaC03 en milieu naturel et en laboratoire, on a mentalement l'influence des ions étrangers et de la matière organique sur germination et la croissance des carbonates de calcium. Les principaux résultats obtenus peuvent se résumer comme suit a En ce qui concerne les ions étrangers. Leur action se traduit en général par une augmentation du temps de germination et une réduction de la vitesse de croissance des cristaux de CaCO3; l'apparition de faciès particuliers pour certains des minéraux formés ; l'inhibition des transformations d'une variété en une autre. On obtient un classement par ordre d'efficacité croissante action à peu près nulle: K+, CI-; action modérée : Bat+, Na+, AI3+, Cul+, Sr2+, SO2 , P0;-; action dominante de Mg'+. b Pour les matières organiques. Seules l'acide citrique et, dans une moindre mesure, l'acide tartrique, ont une influence notable, d'ailleurs analogue à celle des ions étrangers en ce qui concerne les cinétiques de germination et de croissance du CaCO. L'adsorption de certains de ces produits se traduit en outre par des faciès particuliers des minéraux formés et éventuellement par l'inhibition des transformations d'une variété en une autre. This article gives the results of a research project undertaken to study one of the aspects of the diagénesis of carbonate rocks, 1. e. calcite cementing, which plays a capital role in preserving or plugging up the original porosity of such sediments.After making a bibliographic synthesis of what is now known about the origin and cementation of CaC03 in a natural environment and in the laboratory, the article experimentally

  20. Influence of Calcium Carbonate Fillers on the Properties of Recycled Poly(e-caprolactone Based Thermoplastic Polyurethane

    Directory of Open Access Journals (Sweden)

    Vitalija BETINGYTĖ

    2012-09-01

    Full Text Available In this work the effects of different crystallographic modifications of calcium carbonate (CaCO3 filler on the melt flow, mechanical properties, hydrolytic degradation, and shape memory behaviour of recycled low-temperature poly(e-caprolactone-based polyurethane (rTPU were evaluated. Composites were prepared by two-roll milling varying filler content from 2 wt % to 6 wt %. It was found that at temperature range from 20 °C to 50 °C CaCO3 fillers do not change Young’s modulus, they decrease tensile stress and deformation of rTPU, but improve its mechanical properties at elevated temperatures (up to 65 °C. rTPU melt flow index increases due to chain scission during the recycling and filler mixing with mill. Therefore, destruction temperature of rTPU is 20 °C lower than that of TPU. The CaCO3 does not change shape memory properties independently of filler type and transition from secondary shape to the primary shape at 70 °C temperature is completed within 17 s for both filled and unfilled rTPU. The investigation of hydrolytic degradation shows that CaCO3 only slightly increases degradation rate of rTPU.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2433

  1. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    Science.gov (United States)

    Zheng, Liping; Wang, Ying; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie; Guo, Jia

    Calcium carbide (CaC 2)-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N 2 sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g -1 measured by cyclic voltammetry at 1 mV s -1. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles.

  2. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liping; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie [School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, Xiangtan University, Hunan 411105 (China); Wang, Ying; Guo, Jia [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei 430073 (China)

    2010-03-15

    Calcium carbide (CaC{sub 2})-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N{sub 2} sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g{sup -1} measured by cyclic voltammetry at 1 mV s{sup -1}. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles. (author)

  3. Review of the extrinsic stain removal and enamel/dentine abrasion by a calcium carbonate and perlite containing whitening toothpaste.

    Science.gov (United States)

    Joiner, Andrew

    2006-08-01

    There has been an increase in the demand from consumers and patients for products that whiten teeth. To meet this demand, a whitening toothpaste containing calcium carbonate and perlite as the abrasive system and an efficacious fluoride source has recently been launched. The aim of the current paper is to review the toothpaste's stain removal efficacy and its effects on enamel and dentine wear. It has been shown to be effective at removing model extrinsic stain in vitro. Further, it has been shown to be more effective in removing naturally occurring extrinsic tooth stain than a silica non-whitening control toothpaste after two weeks of twice daily brushing in a parallel group, double-blind clinical study using 152 adult volunteers. In addition, the enhanced whitening effect did not give a clinically relevant level of wear to enamel or a significant increase in dentine wear compared to marketed non-whitening toothpaste formulations, as shown by using an in situ type model with ex vivo brushing.

  4. Calcium carbonate interaction analysis in polypropylene compounds and their impact on the formation of beta crystalline phase of this polymer

    International Nuclear Information System (INIS)

    The insertion of calcium carbonate (CaCO3) in polypropylene compound is a thoroughly known technique widely studied in the academic area and in the industry. Its wide application is due, mainly, to increase mechanical properties with low manufacturing cost. These improvements in this polymer make it more versatile and competitive compared to other expensive polymers. In this study, the incorporation of four types of CaCO3 from the same manufacturer were compared and the focus was on the size of this mineral filler. Furthermore, it was analyzed the interaction of graphitized polypropylene with maleic anhydride (PP-g-MA) in the same samples. All these samples were analyzed by WAXS and SEM. The physical properties of tensile strength and impact were also analyzed. It was observed from this study that the smallest CaCO3 produced with PP-g-MA resulted in better physical properties with the formation of a crystalline phase beta, as originally studied by other authors using other raw materials. (author)

  5. Preparation of Calcium Carbonate Nanoparticles with a Continuous Gas-liquid Membrane Contactor:Particles Morphology and Membrane Fouling

    Institute of Scientific and Technical Information of China (English)

    JIA Zhiqian; CHANG Qing; QIN Jin; MAMAT Aynur

    2013-01-01

    Nanosized calcium carbonate particles were prepared with a continuous gas-liquid membrane contactor.The effects of Ca(OH)2 concentration,CO2 pressure and liquid flow velocity on the particles morphology,pressure drop and membrane fouling were studied.With rising Ca(OH)2 concentrations,the average size of the particles increased.The effects of Ca(OH)2 concentration and CO2 pressure on particles were not apparent under the experimental conditions.When the Ca(OH)2 concentration and liquid flow velocity were high,or the CO2 pressure was low,the fouling on the membrane external surface at the contactor entrance was serious due to liquid leakage,whereas the fouling was slight at exit.The fouling on the membrane inner-surface at entrance was apparent due to adsorption of raw materials.The membrane can be recovered by washing with dilute hydrochloric acid and reused for at least 6 times without performance deterioration.

  6. Effect of calcium carbonate on cadmium and nutrients uptake in tobacco (Nicotiana tabacum L.) planted on contaminated soil.

    Science.gov (United States)

    Zeng, Wei-Ai; Li, Fan; Zhou, Hang; Qin, Xiao-Li; Zou, Zi-Jin; Tian, Tao; Zeng, Min; Liao, Bo-Han

    2016-01-01

    In the present study, calcium carbonate (CaCO3) was applied to Cd-contaminated soil at rates of 0, 0.5 and 1.0 g kg(-1). The effect of CaCO3 on soil pH, organic matter, available Cd, exchangeable Cd and level of major nutrients in a tobacco field and on accumulation of various elements in tobacco plants was determined. The results showed that CaCO3 application significantly increased the pH level, available P and exchangeable Ca but decreased organic matter, available Cd, exchangeable Cd, available heavy metals (Fe, Mn, Zn and Cu) and available K in soil. Additionally, CaCO3 application substantially reduced Cd accumulation in tobacco roots, stems, upper leaves, middle leaves and lower leaves, with maximum decrease of 22.3%, 32.1%, 24.5%, 22.0% and 18.2%, respectively. There were large increase in total Ca and slight increases in total N and K but decrease to varying degrees in total Fe, Cu and Zn due to CaCO3 application. CaCO3 had little effect on total P and Mn levels in tobacco leaves.

  7. Preparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    A. Doustgani

    2016-04-01

    Full Text Available Objective(s: In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA, poly (vinyl alcohol (PVA and calcium carbonate nanoparticles (nCaP. The surface morphology of prepared nanofibrous scaffolds with and without cell was examined using scanning electron microscopy. Mechanical properties of electrospun nanofibrous scaffolds were determined with a  universal testing machine. The in vitro properties of fabricated scaffolds was also investigated by the MTT assay and alkaline phosphatase activity (ALP.Results: The average fiber diameter for aligned and random nanofibers were 82 ± 12 nm and 124 ± 25 nm, respectively. The mechanical testing indicated the higher tensile strength and elastic modulus of aligned nanofibers. MTT and ALP results showed that alignment of nanofiber increased the osteogenic differentiation of stem cells.Conclusion: Aligned nanofibrous nanocomposite scaffolds of PLA/nCaP/PVA could be an excellent substrate for MSCs and represents a potential bone-filling material.

  8. MODIFICATION OF PRECIPITATED CALCIUM CARBONATE FILLER USING SODIUM SILICATE/ZINC CHLORIDE BASED MODIFIERS TO IMPROVE ACID-RESISTANCE AND USE OF THE MODIFIED FILLER IN PAPERMAKING

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2009-11-01

    Full Text Available In order to improve the acid-resistant property of papermaking grade precipitated calcium carbonate filler and to obtain modified filler in powder form, sodium silicate/zinc chloride based modifiers were used in filler modification, and the use of modified filler in papermaking of deinked pulp derived from recycled newspaper was also preliminarily investigated. Under the preliminarily optimized experimental conditions, when sodium silicate, zinc chloride, sodium hexametaphosphate, and phosphoric acid with dosages of 10 wt%, 3 wt%, 1 wt% and 0.2 wt%, respectively, were used as modifiers, and when the temperature, aging time, and PCC concentration during the filler modification process was 70 oC, 7 h and 9.1 wt%, respectively, the acid-resistant property of filler was significantly improved after modification, as evaluated using alum consumption and pH methods. The use of modified precipitated calcium carbonate filler prepared under the optimized conditions provided considerably more brightness and light scattering improvement in comparison to unmodified filler, and filler modification was found to have only negligible influence on tensile and burst strength of the paper, air permeability of the paper, and retention performance of the filler. Surface analysis of the modified filler using XPS and SEM confirmed the occurring of surface encapsulation and modification of precipitated calcium carbonate filler when the relevant modifiers were used in filler modification. The encapsulating effect of modifiers on filler was thought to be favorable to improvement in acid-resistant property, and optical properties of the filled paper.

  9. Calcium carbonate crystallizations on hypogean mural paintings: a pilot study of monitoring and diagnostics in Roman catacombs

    Science.gov (United States)

    Tapete, D.; Fratini, F.; Mazzei, B.; Camaiti, M.; Cantisani, E.; Riminesi, C.; Manganelli Del Fà, R.; Cuzman, O.; Tiano, P.

    2012-04-01

    One of the deterioration processes affecting mural paintings and rock surfaces within manmade hypogea consists in the formation of calcium carbonate crystallizations, which can create thick coverage and incrustations, even in some cases speleothems. These chemical reactions necessarily require the availability of calcium sources, which can be also of anthropogenic origin (e.g., lime-based mortars). Microclimate parameters also represent environmental forcing factors, on which the morphology and the degree of crystallinity of the precipitated carbonates depend. Understanding past/recent dynamics of carbonate precipitation implies a deep knowledge of the relationships between the exposed surfaces and the microclimate conditions, the impacts of external factors (e.g., groundwater infiltration and percolation from the overlying soil) and how they change over time. This is particularly fundamental for the preservation of hypogean sites which have not comparison with other typologies of environment due to their uniqueness, such as the ancient catacombs carved underneath the suburbs of Rome (Italy), since the 2nd century AD. In this paper we present the multidisciplinary methodological approach designed for the instrumental monitoring of the microphysical environment of the Catacombs of Saints Mark, Marcellian and Damasus, in the framework of the co-operation between the Institute for the Conservation and Valorization of Cultural Heritage and Pontifical Commission for Sacred Archaeology, Vatican, on the project HYPOGEA. Temperature inside the catacomb and on the surfaces, air relative humidity and CO2 concentration are the main of the parameters continuously measured by means of data loggers installed within the cubicles. Contemporarily, standardized methods of photographic documentation and digital micro-photogrammetry are used for change detection analysis of the painted surfaces and ancient plasters, as well as of the test areas purposely realized by applying fresh

  10. 碳酸钙对土壤吸附苯酚特性的影响%Effect of Calcium Carbonate on Soil Adsorption Character of Phenol

    Institute of Scientific and Technical Information of China (English)

    贺婧; 刘田; 关连珠

    2012-01-01

    为探讨土壤中碳酸钙对土壤吸持固定酚类污染物能力的影响,采用人工陈化培养的方法获得碳酸钙含量不同的供试土壤,利用供试土壤对苯酚进行吸附试验.结果表明:在试验条件下,各处理土壤对苯酚的吸附量随苯酚初始浓度的增加而增加.土壤对苯酚的吸附均可用Langmuir吸附等温式和Fruendlich吸附等温式加以描述.从方程拟合结果看,当碳酸钙含量为227.1g·kg-1时,土壤对苯酚的最大吸附量显著降低,达3333.33mg· kg-1,降低率达33.33%.碳酸钙含量低于227.1g·kg1时,最大吸附量虽无明显差异,但土壤对苯酚的吸附强度却随碳酸钙含量的增加而逐渐减小,这有可能影响到苯酚的解吸行为.土壤对苯酚的吸附则主要受到pH和CEC的影响,而pH又受到碳酸钙含量的影响,因此碳酸钙可能通过改变土壤的pH和CEC而影响土壤对苯酚的吸附能力.%To explore the affect of calcium carbonate in soil on adsorption character of phenol, this test obtained experimental soil by artificial cultivation method with different calcium carbonate contents, and using these soils phenol adsorption. The results showed in the experimental condition, with the increase of phenol content,the adsorption increased. The adsorption of phenol on soil can described with Langmuir and Fruendlich adsorption isotherm. From the equation fitting results, when calcium carbonate content was 227.1g-kg~', the biggest adsorption quantity of soil on phenol significantly reduced, when it was 3333.33mg-kg~', the reduction reached 33.33%. When calcium carbonate content was lower than 227.1g-kg~', the maximum adsorption was no obvious difference, but the adsorption strength of soil on phenol decreased gradually with calcium carbonate content increase, might affect the desorption behavior of phenol. Soil phenol adsorption is mainly affected by the pH and CEC, while the pH is affecfed by calcium carbonate content, therefore, calcium

  11. Incorporating benthic community changes into hydrochemical-based projections of coral reef calcium carbonate production under ocean acidification

    Science.gov (United States)

    Shaw, Emily C.; Hamylton, Sarah M.; Phinn, Stuart R.

    2016-06-01

    The existence of coral reefs is dependent on the production and maintenance of calcium carbonate (CaCO3) framework that is produced through calcification. The net production of CaCO3 will likely decline in the future, from both declining net calcification rates (decreasing calcification and increasing dissolution) and shifts in benthic community composition from calcifying organisms to non-calcifying organisms. Here, we present a framework for hydrochemical studies that allows both declining net calcification rates and changes in benthic community composition to be incorporated into projections of coral reef CaCO3 production. The framework involves upscaling net calcification rates for each benthic community type using mapped proportional cover of the benthic communities. This upscaling process was applied to the reef flats at One Tree and Lady Elliot reefs (Great Barrier Reef) and Shiraho Reef (Okinawa), and compared to existing data. Future CaCO3 budgets were projected for Lady Elliot Reef, predicting a decline of 53 % from the present value by end-century (800 ppm CO2) without any changes to benthic community composition. A further 5.7 % decline in net CaCO3 production is expected for each 10 % decline in calcifier cover, and net dissolution is predicted by end-century if calcifier cover drops below 18 % of the present extent. These results show the combined negative effect of both declining net calcification rates and changing benthic community composition on reefs and the importance of considering both processes for determining future reef CaCO3 production.

  12. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  13. Calcium - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003603.htm Calcium - urine To use the sharing features on this ... enable JavaScript. This test measures the amount of calcium in urine. All cells need calcium in order ...

  14. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  15. A comparison of the long-term effects of lanthanum carbonate and calcium carbonate on the course of chronic renal failure in rats with adriamycin-induced nephropathy.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Takashima

    Full Text Available Lanthanum carbonate (LA is an effective phosphate binder. Previous study showed the phosphate-binding potency of LA was twice that of calcium carbonate (CA. No study in which LA and CA were given at an equivalent phosphate-binding potency to rats or humans with chronic renal failure for a long period has been reported to date. The objective of this study was to compare the phosphate level in serum and urine and suppression of renal deterioration during long-term LA and CA treatment when they were given at an equivalent phosphate-binding potency in rats with adriamycin (ADR-induced nephropathy. Rats were divided into three groups: an untreated group (ADR group, a CA-treated (ADR-CA group and a LA-treated (ADR-LA group. The daily oral dose of LA was 1.0 g/kg/day and CA was 2.0 g/kg/day for 24 weeks. The serum phosphate was lower in the ADR-CA or ADR-LA group than in the ADR group and significantly lower in the ADR-CA group than in the ADR group at each point, but there were no significant differences between the ADR and ADR-LA groups. The serum phosphate was also lower in the ADR-CA group than in the ADR-LA group, and there was significant difference at week 8. The urinary phosphate was significantly lower in the ADR-CA group than in the ADR or ADR-LA group at each point. The urinary phosphate was also lower in the ADR-LA group than in the ADR group at each point, and significant difference at week 8. There were no significant differences in the serum creatinine or blood urea nitrogen among the three groups. In conclusion, this study indicated the phosphate-binding potency of LA isn't twice as strong as CA, and neither LA nor CA suppressed the progression of chronic renal failure in the serum creatinine and blood urea nitrogen, compared to the untreated group.

  16. In Situ 13C NMR at Elevated-Pressures and -Temperatures Investigating the Conversion of CO2 to Magnesium and Calcium Carbonate Minerals

    Science.gov (United States)

    Surface, J. A.; Conradi, M. S.; Skemer, P. A.; Hayes, S. E.

    2013-12-01

    We have constructed specialized NMR hardware to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies of unmixed heterogeneous mixtures of solids, liquids, gases, and supercritical fluids. Specifically, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine efficacy of carbonate formation in various geological reservoirs. Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals. When CO2 reacts with the calcium or magnesium in a mineral or rock sample, the 13C chemical shift, linewidth, lineshape, and relaxation times change dramatically. This change can be monitored in situ and provide instantaneous and continuous characterization that maps the chemistry that is taking place. For example, on the pathway to MgCO3 formation, there are a number of phases of Mg(OH)x(H2O)y(CO3)z that are apparent via NMR spectroscopy. We will demonstrate that NMR can be used for quantitative characterization of multiple metastable mineral phases in pure forms and in mixtures. Results are confirmed via powder XRD and Raman spectroscopy of aquo- hydro- carbonato- magnesium species and calcium carbonate species. We also have monitored the 13C spectroscopy to analyze the phase of CO2 (liquid, supercritical, or gas) and its conversion into other forms, such as bicarbonate and carbonate species, providing a "window" into the in situ pH of the reacting system. Reference: 'In Situ

  17. Atributos químicos de solos influenciados pela substituição do carbonato por silicato de cálcio Soil chemical properties influenced by the substitution of calcium carbonate by calcium silicate

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2008-08-01

    ácia do silicato de Ca foi inferior à de carbonato de Ca na melhoria das condições químicas do solo.The application of silicates to soils can result in increased soil cation exchange capacity (CEC, displace anions, especially H2PO4- (diacid phosphate, neutralize the pH and Al toxicity and, in general, increase the nutrient availability to plants. However, calcium silicates may be less efficient than calcium carbonates. To evaluate the effect of calcium carbonate substitution by calcium silicate on the soil chemical properties, especially on phosphorus availability, four experiments were conducted in an entirely randomized design with four replications, in a greenhouse. The treatments consisted of five levels (0, 25, 50, 75, and 100 % of calcium carbonate substitution by calcium silicate, with a 4:1 Ca:Mg stoichiometric and the same amount of CaO, enough to reach a 60 % base saturation. The treatments were applied to 4 dm³ samples of a sandy orthic Quartzarenic Neosol (Quartzpsament, a sandy loam dystrophic Red-Yellow Latosol (Oxisol, sandy clay loam dystrophic Red-Yellow Latosol (Oxisol and a clayey dystrophic Red Latosol (Oxisol; each soil represented one experiment. The pH values in H2O, P, phosphorus in the equilibrium solution (P-rem, K, Ca, Mg, Si, Al, H + Al, organic matter (OM, Cu, Mn, Zn and B, sum of bases (S, effective (t ant total (T CEC, base saturation (V and Al saturation (m were submitted to analysis of variance and simple regression models fitted as a function of CaCO3 substitution by CaSiO3 levels. It was observed that carbonate substitution by silicate promoted significant increases in the values of Si, Al, H + Al and m and reduction in the values of P-rem, pH, S, t and V. The values of Mehlich 1 P, K, Mg, OM, T, Mn, Cu, and B were not influenced significantly. A reduction in Zn availability was verified in the dystrophic orthic Quartzarenic Neosol only. Calcium silicate was less efficient than calcium carbonate in the improvement of soil chemical

  18. In-situ encapsulation and application of nano-sized calcium carbonate%纳米碳酸钙的原位包覆及应用

    Institute of Scientific and Technical Information of China (English)

    王权广; 朱勇; 黄炜民; 黄炜波

    2012-01-01

    In order to modify the nano-sized calcium carbonate better,fatty acid was adopted to dope it in-situ and the mechanism of in-situ encapsulation was discussed.An appropriate amount of alkali was introduced to some just prepared milk of nano-sized calcium carbonate which followed by being heated to 75.0-90.0 t.By the aid of stirring,needed amount of fatty acid was added into the milk.After filtrating, drying, and pulverizing, nano-sized encapsulated calcium carbonate powders were obtained.Characterization of oil absorption,contact angles,and scanning electron microscopy of the powders,and their filling application experiments in vulcanized silicone rubber and DOP in room temperature indicated: each calcium carbonate particle was uniformly and thoroughly encapsulated by fatty acid, and the calcium carbonate fillers could drastically enhance some properties of polymer.Research showed that 90 °C ,re(SA+OA):re(OH")=l:l and 7i(SA+OA)/ro(CaCO3)=1.0x 10^" mol/g were the suitable conditions for the in-situ encapsulation of nano-sized calcium carbonate.%为更好地改性纳米碳酸钙,采用脂肪酸(SA)对纳米碳酸钙进行原位包覆,并对原位包覆法机理作了探讨.先在纳米碳酸钙浆液中加入一定量强碱,然后将浆液加热至75.0~90.0℃,再在机械搅拌辅助下加入适量脂肪酸,浆液经过滤、干燥和粉碎解聚得表面包覆改性的纳米碳酸钙.包覆碳酸钙的吸油值、接触角测试,扫描电子显微镜表征及其在室温硫化硅橡胶和DOP糊中的应用实验表明:脂肪酸在纳米碳酸钙表面形成均匀、完整的包覆层,改性碳酸钙在聚合物中具有极佳的应用效果.研究发现,温度为90℃,n(SA+OA)∶n(OH-)=1∶1,n(SA+OA)/m(CaCO3)=1.Ox 10-4 mol/g是原位法表面包覆纳米碳酸钙比较合适的条件.

  19. 一株碳酸钙矿化菌的分离与鉴定%Isolation and Identification of a Bacterial Strain Inducing Mineralization of Calcium Carbonate

    Institute of Scientific and Technical Information of China (English)

    张振远; 李广悦; 丁德馨; 王永东; 胡南

    2014-01-01

    基于微生物诱导碳酸钙沉积的岩土工程加固技术是一种环境友好的新技术。碳酸钙矿化菌是该技术应用的前提。为获得具有诱导碳酸钙沉积能力的菌株,采用选择性富集培养、平板分离方法从土壤中分离得到了一株具有尿素分解能力的菌株,细菌诱导产生的沉积物检测结果表明该菌株具有诱导碳酸钙沉积能力。通过形态学、革兰氏染色和16 S rDNA序列同源性分析鉴定该菌株为巴斯德芽孢杆菌。%Biocementation through microbial calcium carbonate precipitation is an innova-tive and environmentally friendly rock and soil reinforcement technique in geotechnical en-gineering. The bacteria inducing mineralization of calcium carbonate is a prerequisite to im-plement the biological treatment process. In order to obtain the strain with ability to induce CaCO3 precipitation,a ureolytic strain was isolated from soil using selective enrichment cul-ture and plate screening techniques. The precipites induced by this stain were examined, and the results showed it was capable of inducing calcium carbonate mineralization. The strain was identified as Sporosarcina pasteurii based on morphology,Gram stain and 16S rDNA sequence analysis.

  20. Controls of functional group chemistry on calcium carbonate nucleation: Insights into systematics of biomolecular innovations for skeletal mineralization?

    Science.gov (United States)

    Dove, P. M.; Hamm, L. M.; Giuffre, A. J.

    2012-12-01

    Living organisms produce skeletal structures within a complex matrix of organic macromolecules that guide the nucleation and growth of crystalline structures into the organic-inorganic composites we know as biominerals. This type of biomolecule-directed mineralization is an ancient process as evidenced by structures in the fossil record that date to the Ediacaran (ca. 549 Ma). Our understanding of template-directed biomineralization, however, is largely based upon assumptions from studies that: 1) qualitatively demonstrate some chemical functionalities influence the nucleating mineral phase and morphology; 2) propose proteins are the primary driver to template-directed mineralization and 3) propose the ubiquitous polysaccharides are inert components. Thus, a mechanistic basis for how the underlying chemistry of macromolecules controls nucleation kinetics and thermodynamics in template-directed nucleation is not well established. Moreover, there is not yet a good appreciation for how patterns of skeletal mineralization evolved with biochemical innovations in response to environmental changes over geologic timescales. In small steps toward understanding biochemical controls on biomineralization, we test the hypothesis that the kinetics and thermodynamics of calcium carbonate (CaCO3) formation is regulated by a systematic relationship to the functional group chemistry of macromolecules. A long-term goal is to establish the energetic basis for biochemical motifs that are seen (and not seen) at sites of calcification across the phylogenetic tree. Two types of studies were conducted. The first measured nucleation rates on model biomolecular substrates with termini that are found in proteins associated with sites of calcification (-COOH, -PO4, and -SH) and two alkanethiol chain lengths (16-C and 11-C) at a variety of chemical driving forces. The measurements show functional group chemistry and molecule conformation regulate rates by a predictable relation to interfacial

  1. Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates.

    Science.gov (United States)

    Barnes, Dunstan; Johnson, Scott; Snell, Robert; Best, Serena

    2012-02-01

    Bioactive coatings are applied to components of modern orthopædic implants to improve the host tissue response to the implants. Such coatings cannot be applied to polymeric implants by high-temperature techniques, because the use of high temperatures may critically degrade the polymer substrate. Regardless of the coating technique that is used, the coating must be sufficiently well adhered to the underlying substrate to provide any practical benefit. This paper investigates the use of scratch testing to measure the adhesion strength of calcium phosphate (CaP) coatings that were applied to a poly(carbonate urethane) (PCU) substrate by an aqueous process at temperatures of 19, 28, 37, and 50 °C. This work represents the first time that scratch testing analysis has been used to study CaP coatings deposited by an aqueous, low-temperature process on to a polymer substrate. Scratch testing was shown to be a useful technique for obtaining comparative, rather than absolute, values of adhesion strength for hard coatings formed on a compliant substrate. Generally, the coating temperature was not found to influence the CaP-PCU adhesion strength. Although CaP coatings formed at 19 °C exhibited considerably lower adhesion strengths than CaP coatings formed at 28, 37, and 50 °C, this finding was attributable to the inconsistency of CaP coatings formed on the PCU substrates at 19 °C. The coating-substrate adhesion strength was measured for CaP coatings of four different coating ages (0, 1, 2, and 3 years). CaP coatings that were aged for 0, 1, or 2 years exhibited similar coating-substrate adhesion strengths to each other. In contrast, CaP coatings that were aged for 3 years demonstrated considerably lower coating-substrate adhesion strengths. The observed reduction in adhesion strength with age was thought to be attributable to suspected "drying out" of the CaP coatings. PMID:22301182

  2. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs

    OpenAIRE

    ZHANG, LIHUA; Zhu, Wufu; Lin, Qisi; Han, Jin; Jiang, Liqun; Zhang, Yanzhuo

    2015-01-01

    The objective of the present study was to demonstrate that a novel hydroxypropyl-β-cyclodextrin functionalized calcium carbonate (HP-β-CD/CC) based amorphous solid dispersion (ASD) can be used to increase the solubility and oral bioavailability of water-insoluble drugs. Irbesartan (IRB) was selected as a model compound and loaded into the nanoporous HP-β-CD/CC matrix using an immersion method. The IRB-loaded HP-β-CD/CC formulation was characterized by various analytical techniques, such as sp...

  3. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    OpenAIRE

    Brinza, Loredana; Schofield, Paul; Hodson, Mark Edward; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul; Mosselmans, J Frederick W

    2013-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (μXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (μXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules ...

  4. Thickness of calcium carbonate coats on stones of the Heishanxia terraces of the Yellow River and dating of coarse clastic sedimentary geomorphic surfaces

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The calcium carbonate coats on stones developed in soil on the geomorphic surfaces of coarse clastic sediments in arid-semiarid regions contain evident information of age. The thickness of coats can be used not only as a good age indicator for the geomorphic surfaces but also coats themselves can be directly used as dating materials in the ESR method. Through measuring the thickness of carbonate coats on stones in soils on the alluvial terraces in the mouth of the Heishanxia gorge of the Yellow River and ESR dating of layers separated from the carbonate coats, the average of accumulation rates of the thickness of carbonate coats on stones since 1.57 Ma was calculated to be 0.10 mm/ka in the studied area, and a regression equation between carbonate coat thickness and age was also generated. From these research results, ages of T2-T11 terraces of the Yellow River in the studied area were systematically determined, and their values are in turn 18 ka, 94 ka, 139 ka, 215 ka, 305 ka, 410 ka, 495 ka, 742 ka, 1072 ka and 1570 ka. The reliability of all these age data is confirmed by the obtained 14C, OSL ages (T2, T3 and T4) and ESR ages of neighbor terraces, and they are completely consistent with the geological epochs estimated by geological and geomorphologic comparison and analysis.

  5. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Brinza, Loredana [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom); Schofield, Paul F. [Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Hodson, Mark E. [University of York, York YO10 5DD (United Kingdom); Weller, Sophie [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W., E-mail: fred.mosselmans@diamond.ac.uk [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom)

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  6. 柠檬酸钠表面改性重钙粉体的研究%Study on sodium citrate surface modification ground calcium carbonate powder

    Institute of Scientific and Technical Information of China (English)

    周国永; 陈丽莎; 成琳

    2011-01-01

    研究了柠檬酸钠用量、反应温度、反应时间、浆料浓度对重钙粉体表面改性的影响.结果表明,柠檬酸钠用量为重钙粉体的6.0%(质量分数),改性温度65℃,改性时间45 min,浆料浓度为12.5%时,重钙粉体沉降体积降为0.65 mL/g,活化度可达到67.9%,吸油值降为230 mg/g,粘度值降低为120 mPa·s,pH值8.50.%The effect of modifier amount, modification temperature, time and slurry concentration on modification were studied. The results showed sodium citrate can be used to modify calcium carbonate powder, the best conditions were as follows: sodium citrate amount 6% , modification temperature 65 X., modification time 45 min, slurry concentration 12.5%. The settling volume reduced to 0.65 Ml/g, the activation grade was 67. 9% ,the oil absorption decreased to 230 mg/g, viscosity of calcium carbonate reduced to 120 mPa·S,Ph value was 8.50.

  7. Calcium and Cancer Prevention: Strengths and Limits of the Evidence

    Science.gov (United States)

    ... calcium carbonate has about 40 percent elemental calcium, meaning that 500 mg of calcium carbonate actually contains ... in this trial also contained vitamin D (400 international units [ IU ]). During ... and calcium in relation to prostate cancer risk among more than 142, ...

  8. Strong stabilization of liquid amorphous calcium carbonate by ovalbumin: gaining insight into the mechanism of ‘polymer-induced liquid precursor’ processes

    Science.gov (United States)

    Leiterer, Jork; Pipich, Vitaliy; Barrea, Raul; Tremel, Wolfgang

    2011-01-01

    The impact of the ovo-proteins ovalbumin and lysozyme—present in the first stage of egg shell formation—on the homogeneous formation of the liquid-amorphous calcium carbonate (LACC) precursor, was studied by a combination of complementing methods: in situ WAXS, SANS, XANES, TEM, and immunogold labeling. Lysozyme (pI = 9.3) destabilizes the LACC emulsion whereas the glycoprotein ovalbumin (pI = 4.7) extends the lifespan of the emulsified state remarkably. In the light of the presented data: (a) Ovalbumin is shown to behave commensurable to the ‘polymer-induced liquid precursor’ (PILP) process proposed by Gower et al. Ovalbumin can be assumed to take a key role during eggshell formation where it serves as an effective stabilization agent for transient precursors and prevents undirected mineralization of the eggshell. (b) It is further shown that the emulsified LACC carries a negative surface charge and is electrostatically stabilized. (c) We propose that the liquid amorphous calcium carbonate is affected by polymers by depletion stabilization and de-emulsification rather than ‘induced’ by acidic proteins and polymers during a polymer-induced liquid-precursor process. The original PILP coating effect, first reported by Gower et al., appears to be a result of a de-emulsification process of a stabilized LACC phase. The behavior of the liquid amorphous carbonate phase and the polymer-induced liquid-precursor phase itself can be well described by colloid chemical terms: electrostatic and depletion stabilization and de-emulsification by depletion destabilization. PMID:21736300

  9. Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of 'polymer-induced liquid precursor' processes.

    Science.gov (United States)

    Wolf, Stephan E; Leiterer, Jork; Pipich, Vitaliy; Barrea, Raul; Emmerling, Franziska; Tremel, Wolfgang

    2011-08-17

    The impact of the ovo proteins ovalbumin and lysozyme--present in the first stage of egg shell formation--on the homogeneous formation of the liquid amorphous calcium carbonate (LACC) precursor, was studied by a combination of complementing methods: in situ WAXS, SANS, XANES, TEM, and immunogold labeling. Lysozyme (pI = 9.3) destabilizes the LACC emulsion whereas the glycoprotein ovalbumin (pI = 4.7) extends the lifespan of the emulsified state remarkably. In the light of the presented data: (a) Ovalbumin is shown to behave commensurable to the 'polymer-induced liquid precursor' (PILP) process proposed by Gower et al. Ovalbumin can be assumed to take a key role during eggshell formation where it serves as an effective stabilization agent for transient precursors and prevents undirected mineralization of the eggshell. (b) It is further shown that the emulsified LACC carries a negative surface charge and is electrostatically stabilized. (c) We propose that the liquid amorphous calcium carbonate is affected by polymers by depletion stabilization and de-emulsification rather than 'induced' by acidic proteins and polymers during a so-called polymer-induced liquid-precursor process. The original PILP coating effect, first reported by Gower et al., appears to be a result of a de-emulsification process of a stabilized LACC phase. The behavior of the liquid amorphous carbonate phase and the polymer-induced liquid-precursor phase itself can be well described by colloid chemical terms: electrostatic and depletion stabilization and de-emulsification by depletion destabilization. PMID:21736300

  10. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    Science.gov (United States)

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  11. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, Shwetha; Fan, Liang-Shih

    2015-11-04

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  12. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  13. Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing.

    Science.gov (United States)

    Wang, Lei; Jamro, Imtiaz Ali; Chen, Qi; Li, Shaobai; Luan, Jingde; Yang, Tianhua

    2016-03-01

    The possibility of producing calcium sulphoaluminate cement (CSA) by adding municipal solid waste incinerator (MSWI) fly ash to raw meal was investigated. After subjecting MSWI fly ash to accelerated carbonation and washing with water (ACW), various amounts (i.e., 5, 10 and 15 wt%) of the treated ash were added to raw meal composed of a mixture of bauxite, limestone and gypsum. The mixtures were sintered in a laboratory-scale muffle furnace at temperatures of 1250°, 1300°, 1325° and 1350 °C for various durations. The influence of different quantities of MSWI fly ash on the mineralogy, major phase composition and strength development of the resulting clinker was studied, as was the effect of ash treatments on leaching and volatilization of trace elements. The ACW treatment reduced the volatilization ratio of trace elements during the clinkerization process. Volatilization ratios for lead, cadmium and zinc were 21.5%, 33.6% and 16.3%, respectively, from the ACW fly ash treatment, compared with ratios of 97.5%, 93.1% and 85.2% from untreated fly ash. The volatilization ratios of trace elements were ordered as follows: untreated fly ash > carbonated fly ash > carbonated and water-washed fly ash. The ACW process also reduced the chloride content in the MSWI fly ash by 90 wt% and prevented high concentrations of trace elements in the effluents. PMID:26644396

  14. Negundoside, an irridiod glycoside from leaves of Vitex negundo, protects human liver cells against calcium-mediated toxicity induced by carbon tetrachloride

    Institute of Scientific and Technical Information of China (English)

    Sheikh A Tasduq; Peerzada J Kaiser; Bishan D Gupta; Vijay K Gupta; Rakesh K Johri

    2008-01-01

    AIM: To evaluate the protective effect of 2'-p-hydroxy benzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HUH-7 cells.METHODS: CCl4 is a well characterized hepatotoxin, and inducer of cytochrome P4502E1 (CYP2E1)-mediated oxidative stress. In addition, lipid peroxidation and accumulation of intracellular calcium are important steps in the pathway involved in CCl4 toxicity. Liver cells (HUH-7) were treated with CCl4, and the mechanism of the cytoprotective effect of NG was assessed. Silymarin, a known hepatoprotective drug, was used as control.RESULTS: NG protected HUH-7 cells against CCl4 toxicity and loss of viability without modulating CYP2E1 activity. Prevention of CCl4, toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species (ROS), a decrease in lipid peroxidation and accumulation of intracellular Ca2+ levels and maintenance of intracellular glutathione homeostasis. Decreased mitochondrial membrane potential (MMP), induction of caspases mediated DNA fragmentation and cell cycle arrest, as a result of CCl4 treatment, were also blocked by NG. The protection afforded by NG seemed to be mediated by activation of cyclic adenosine monophosphate (cAMP) synthesis and inhibition of phospholipases (cPLA2).CONCLUSION: NG exerts a protective effect on CYP2El-dependent CCl4 toxicity via inhibition of lipid peroxidation, followed by an improved intracellular calcium homeostasis and inhibition of Ca2+-dependent proteases.

  15. Evaluation of polymer efficiency on the inhibition of calcium carbonate scale in synthetic brines; Avaliacao da acao de polimeros sobre a inibicao de incrustacoes de carbonato de calcio em salmouras sinteticas

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Juliana M.; Rodrigues, Jessica S.; Loureiro, Tatiana S.; Lucas, Elizabete F.; Spinelli, Luciana S. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, RJ (Brazil)], e-mail: julianamatos@ima.ufrj.br

    2011-07-01

    The inorganic scale results in serious problems for oil production. This scale results from the incompatibility between the chemical compositions of formation water and injection, and the changes of thermodynamic system. These deposits consist mainly of calcium carbonate and barium sulfate. In order to prevent the formation of these deposits, the petroleum industry has made use of chemicals that act as scale inhibitors. The aim of this study was to test the ability of two types of polymeric inhibitors prevent the formation of calcium carbonate from brines of different compositions with high concentrations of calcium. The inhibitors were tested at varying concentrations and at fixed conditions of temperature, pH, pressure and time. The estimated effectiveness of each inhibitor was measured by complexometric titration. The inhibitor carboxylic acid-based (poly (maleic acid)) was more efficient at relatively low concentrations, which is important both economically and environmentally. (author)

  16. The Frontier Between Adsorption and Precipitation of Polyacrylic Acid on Calcium Carbonate Frontière entre adsorption et précipitation de l'acide polyacrylique sur le carbonate de calcium

    Directory of Open Access Journals (Sweden)

    Cabane B.

    2006-12-01

    Full Text Available Adsorption of polymers on mineral surfaces allowing colloidal stability have widespread applications in industrial processes. The binding mechanism has been quite well described on oxide surfaces. Mainly in terms of hydrogen bonds and electrostatic interactions between charged sites and polymer segments. This phenomenon has been modelized and the influence of pH. Ionic strentgh, and molecular weight can be calculated or predicted. In the case of sparingly soluble substrates such as BaSO4, CaCO3 or CaSO4, several problems arise : the difficulty for the identification of surface sites and the interference of ions coming from the material's solubility. In the case of calcite, the solubility imposes dissolved calcium ions in solution which could complex the polyelectrolyte and reduce its solubility. For that purpose, we have measured the binding energy using microcalorimetry. Microcalorimetric measurements have shown that the adsorption enthalpy is weakly enclothermic: about + 2 kj/mol. Interestingly, this value is very closed to that of calcium complexation with PANa. It is suggested that the driving force for adsorption is the net gain in entropy of the system. The microcalorimetric adsorption isotherm does not show any evidence for a strongly exothermic interaction between positive edges and negative segment of the polyion. Practically, in most cases, adsorption of polymers is calculated from the decrease of its concentration in the solution after separation of the solid by centrifugation. This procedure does not discriminate therefore between real adsorption and phase separation. To answer the question, we have performed adsorption experiments using a dialysis membrane to separate the solid particles from the solution. It has been established that in some circumstances, depending on the relative amount of calcite, calcium ions and polyelectrolyte, precipitation takes place rather than adsorption. This is especially the case at low polymer

  17. Effects of SEBS-g-MAH on the properties of injection moulded poly(lactic acid/nano-calcium carbonate composites

    Directory of Open Access Journals (Sweden)

    W. S. Chow

    2012-06-01

    Full Text Available Poly(lactic acid/nano-precipitated calcium carbonate (PLA/NPCC composites toughened with maleated styrene-ethylene/butylene-styrene (SEBS-g-MAH were prepared by melt-compounding on a co-rotating twin-screw extruder followed by injection moulding. The mechanical properties of the PLA nanocomposites were characterized by tensile, flexural and impact tests, while their morphology were investigated using transmission electron microscopy (TEM. The thermal properties of the composites were examined with differential scanning calorimeter (DSC and thermogravimetric analyzer (TGA. The elongation at break and impact strength of the PLA/NPCC nanocomposites increased significantly after addition of SEBS-g-MAH. Both nano-dispersed NPCC and small NPCC clusters were found in PLA matrix. Also, some SEBS-g-MAH encapsulated NPCC can be observed. Thermal stability of PLA/NPCC was enhanced prominently by the addition of SEBS-g-MAH.

  18. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris.

    Science.gov (United States)

    Brinza, Loredana; Schofield, Paul F; Hodson, Mark E; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D; Mosselmans, J Frederick W

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced. PMID:24365942

  19. Biomimetic synthesis of needle-like fluorescent calcium phosphate/carbon dot hybrid composites for cell labeling and copper ion detection.

    Science.gov (United States)

    Guo, Shanshan; Lu, Shousi; Xu, Pingxiang; Ma, Yi; Zhao, Liang; Zhao, Yuming; Gu, Wei; Xue, Ming

    2016-05-01

    Herein, we report a biomimetic method to synthesize needle-like calcium phosphate (CaP) with dimensions of ∼130 nm length and ∼30 nm width using carbon dots (CDs) and sodium carboxymethylcellulose as dual templates. In addition to acting as the template, the CDs enable the CaP/CDs hybrid composites to emit blue fluorescence under UV excitation. Moreover, the prepared CaP/CDs exhibited a negligible cytotoxicity towards HeLa cells. The potential of these CaP/CDs as a fluorescent probe for cell labeling was tested. In addition, it was demonstrated that the CaP/CDs were capable of selective detection of copper ions in drinking water. PMID:27052495

  20. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    Directory of Open Access Journals (Sweden)

    Choksi Krishna

    2011-03-01

    Full Text Available The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg and calcium gluconate (5 mg/kg were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate could not show significant anti-inflammatory activity on their own in acute as well as subacute inflammation models. Aspirin at sub-anti-inflammatory dose (50mg/Kg when co-administered along with calcium salts produced the significant anti-inflammatory response which was comparable to anti-inflammatory response of aspirin at therapeutic dose (200mg/Kg. Also co-adminostration minimized the gastro-toxicity of aspirin.

  1. O carbonato de cálcio na desacidificação do vinho Isabel The calcium carbonate in the desacidification of Isabella wine

    Directory of Open Access Journals (Sweden)

    Luiz Antenor Rizzon

    2005-06-01

    Full Text Available A uva Isabel (Vitis labrusca é a cultivar de videira mais difundida na Região Vitícola da Serra Gaúcha. Entre outras finalidades, é utilizada para a elaboração de vinho tinto de mesa, o qual, geralmente, apresenta acidez elevada, devido ao teor de ácido tartárico livre. O objetivo do presente trabalho foi avaliar a influência de diferentes doses de carbonato de cálcio (0,0; 0,5; 1,0; 1,5; 2,0; 2,5 e 3,0 g L-1 na correção da acidez e na composição do vinho Isabel da Serra Gaúcha. O estudo foi realizado na Embrapa Uva e Vinho, em Bento Gonçalves - RS, na safra de 2002. O delineamento experimental utilizado foi o de blocos casualizados, com sete tratamentos e quatro repetições. As análises dos vinhos, realizadas dez dias após o tratamento, constaram da densidade, álcool, acidez total, acidez volátil, pH, açúcares redutores, extrato seco, extrato seco reduzido, cinzas, densidade ótica a 420, 520 e 620 nm, intensidade de cor e coloração, efetuadas através de métodos físico-químicos. O ácido tartárico foi determinado através da cromatografia líquida de alta eficiência (CLAE. O potássio e o cálcio foram analisados por espectrofotometria de absorção atômica. Além da redução da acidez do vinho Isabel, o carbonato de cálcio interferiu na cor, no extrato seco, nas cinzas e no teor de elementos minerais do vinho Isabel.Isabel grape (Vitis labrusca is the variety mostly spread in the Serra Gaúcha Region which is used, among other purposes, to elaborate red table wines. This wine usually presents high acidity, due to the level of free tartaric acid. The purpose of this work was to evaluate the effect of different doses of calcium carbonate in acidity and in the Isabel wine composition of the Serra Gaúcha region. The study carried out at Embrapa Uva e Vinho consisted of application in Isabel wine, from the 2002 vintage, different concentrations of calcium carbonate (0,0; 0,5; 1,0; 1,5; 2,0; 2,5 and 3,0 g L-1. The

  2. The effect of calcium gluconate and other calcium supplements as a dietary calcium source on magnesium absorption in rats.

    Science.gov (United States)

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M

    1997-01-01

    The effects of commercially available calcium supplements (calcium carbonate, calcium gluconate, oyster shell preparation and bovine bone preparation) and gluconic acid on the absorption of calcium and magnesium were evaluated for 30 days in male Wistar rats. There were no differences in the apparent absorption ratio of calcium among rats fed each calcium supplement; however, the rats fed the calcium gluconate diet had a higher apparent absorption ratio of magnesium than the rats fed the other calcium supplements. Dietary gluconic acid also more markedly stimulated magnesium absorption than the calcium carbonate diet, and the bone (femur and tibia) magnesium contents of rats fed the gluconic acid diet were significantly higher than those of the rats fed the calcium carbonate diet. Furthermore, the weight of cecal tissue and the concentrations of acetic acid and butyric acid in cecal digesta of rats fed the calcium gluconate diet or the gluconic acid diet were significantly increased. We speculate that the stimulation of magnesium absorption in rats fed the calcium gluconate diet is a result of the gluconic acid component and the effect of gluconic acid on magnesium absorption probably results from cecal hypertrophy, magnesium solubility in the large intestine and the effects of volatile fatty acids on magnesium absorption.

  3. 21 CFR 184.1210 - Calcium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium oxide. 184.1210 Section 184.1210 Food and... Substances Affirmed as GRAS § 184.1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone,...

  4. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    Science.gov (United States)

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles. PMID:27494099

  5. Using the second law first: Improving the thermodynamic efficiency of carbon dioxide separation from gas streams in an Endex calcium looping system

    International Nuclear Information System (INIS)

    The most costly step in carbon capture from flue gas streams is regeneration of the pure CO2 stream from the sorbent, because of the high temperatures required by conventional systems. This work presents an entropy generation analysis of the new Endex calcium looping method, in which regeneration is driven directly by the heat of carbonation and pressure-swing is used to reduce the temperature of calcination. Entropy generation rates for the important subprocesses in the control volume are computed and visualised over the expedient parameter space. The performance of the system is optimised in two ways: by minimising the total entropy generation rate per mole of CO2 captured, and by maximising the capture efficiency. The tradeoff between these two objectives is highlighted. - Highlights: • Entropy generation analysis is applied to a model Endex CO2 scrubbing system. • Entropy generation rates are computed for all of the important subprocesses. • The specific entropy generation rate and the CO2 capture efficiency are optimised. • Reducing the temperatures and pressures can reduce the second law efficiency. • Irreversibility from even a very small sorbent replacement flow is significant

  6. Precipitação de carbonato de cálcio para aplicação industrial Calcium carbonate precipitation for industrial application

    Directory of Open Access Journals (Sweden)

    Felipe Ventura Oliveira

    2009-06-01

    Full Text Available Esse trabalho apresenta os resultados experimentais da síntese de partículas de carbonato de cálcio precipitado (PCC depositadas sobre carbonato de cálcio natural (GCC, onde se variaram a relação [Ca]/[CO3]T inicial, a temperatura e o pH da solução aquosa de síntese e a concentração de coagulante (EDTA. As amostras foram caracterizadas por microscopia eletrônica de varredura, carbono total (TOC, área superficial específica (método BET, distribuição granulométrica e refletância de luz visível para se determinar o brilho. Os resultados foram comparados a amostras de referência utilizadas por indústrias de papel. O aumento do teor de EDTA favoreceu a coagulação das partículas de PCC entre si, aumentando o tamanho dos agregados. Em valores de pH entre 10 e 11, o PCC tendeu a coagular entre si e, em valores de pH entre 8 e 9, na superfície das partículas de GCC. Observou-se uma redução da densidade do material obtido. Os valores de área superficial específica do material estão dentro do aceitável pelas indústrias de papel e de plásticos.This work presents the experimental results for precipitated calcium carbonate (PCC synthesis over a ground calcium carbonate (GCC substrate. The parameters [Ca]/[CO3]T initial ratio, aqueous synthesis solution temperature, pH and coagulant concentration (EDTA were investigated. The samples were characterized by scanning electron microscopy (SEM, total carbon (TOC, specific surface area (BET method, particle size distribution and visible light reflectance (to measure the brightness of the samples. The results were compared with values from standard samples used in the paper industry. According to the experimental results, it was noted that an increase in the EDTA amount added to the pulp favored PCC homo-coagulation and also increased the size of the coagulum. PCC tends to homo-coagulate between pH 10 and 11, while it tends to precipitate over GCC particles between pH 8 and 9. A

  7. POLY(TRIMETHYLENE CARBONATE) AND BIPHASIC CALCIUM PHOSPHATE COMPOSITES FOR ORBITAL FLOOR RECONSTRUCTION : A FEASIBILITY STUDY IN SHEEP

    NARCIS (Netherlands)

    van Leeuwen, A. C.; Yuan, H.; Passanisi, G.; van der Meer, J. W.; de Bruijn, J. D.; van Kooten, T. G.; Grijpma, D. W.; Bos, R. R. M.

    2014-01-01

    In the treatment of orbital floor fractures, bone is ideally regenerated. The materials currently used for orbital floor reconstruction do not lead to the regeneration of bone. Our objective was to render polymeric materials based on poly(trimethylene carbonate) (PTMC) osteoinductive, and to evaluat

  8. Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean – how biological processes exacerbate the impact of ocean acidification

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2013-08-01

    Full Text Available The Arctic Ocean accounts for only 4% of the global ocean area, but it contributes significantly to the global carbon cycle. Recent observations of seawater CO2-carbonate chemistry in shelf waters of the western Arctic Ocean, primarily in the Chukchi Sea, from 2009 to 2011 indicate that bottom waters are seasonally undersaturated with respect to calcium carbonate (CaCO3 minerals, particularly aragonite. Nearly 40% of sampled bottom waters on the shelf have saturation states less than one for aragonite (i.e., Ωaragonite 3-secreting organisms, while 80% of bottom waters present had Ωaragonite values less than 1.5. Our observations indicate seasonal reduction of saturation states (Ω for calcite (Ωcalcite and aragonite (Ωaragonite in the subsurface in the western Arctic by as much as 0.8 and 0.5, respectively. Such data indicate that bottom waters of the western Arctic shelves were already potentially corrosive for biogenic and sedimentary CaCO3 for several months each year. Seasonal changes in Ω are imparted by a variety of factors such as phytoplankton photosynthesis, respiration/remineralization of organic matter and air–sea gas exchange of CO2. Combined, these processes either increase or enhance in surface and subsurface waters, respectively. These seasonal physical and biological processes also act to mitigate or enhance the impact of Anthropocene ocean acidification (OA on Ω in surface and subsurface waters, respectively. Future monitoring of the western Arctic shelves is warranted to assess the present and future impact of ocean acidification and seasonal physico-biogeochemical processes on Ω values and Arctic marine ecosystems.

  9. Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: a scanning transmission X-ray microscopy study

    KAUST Repository

    Ha, J.

    2011-09-07

    This study investigated the effects of organic polymers (polyethylene glycol and hexadecyltrimethylammonium) on structures of calcium silicate hydrates (C-S-H) which is the major product of Portland cement hydration. Increased surface areas and expansion of layers were observed for all organic polymer modified C-S-H. The results from attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopic measurements also suggest lowered water contents in the layered structures for the C-S-H samples that are modified by organic polymers. Scanning transmission X-ray microscopy (STXM) results further supports this observation. We also observed difference in the extent of C-S-H carbonation due to the presence of organic polymers. No calcite formed in the presence of HDTMA whereas formation of calcite was observed with C-S-H sample modified with PEG. We suggest that the difference in the carbonation reaction is possibly due to the ease of penetration and diffusion of the CO 2. This observation suggests that CO 2 reaction strongly depends on the presence of organic polymers and the types of organic polymers incorporated within the C-S-H structure. This is the first comprehensive study using STXM to quantitatively characterize the level of heterogeneity in cementitious materials at high spatial and spectral resolutions. The results from BET, XRD, ATR-FTIR, and STXM measurements are consistent and suggest that C-S-H layer structures are significantly modified due to the presence of organic polymers, and that the chemical composition and structural differences among the organic polymers determine the extent of the changes in the C-S-H nanostructures as well as the extent of carbonation reaction. © 2011 Springer Science+Business Media, LLC.

  10. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag

    Science.gov (United States)

    Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin

    2016-06-01

    In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients ( L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient ( β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

  11. CO2 air-sea exchange due to calcium carbonate and organic matter storage: pre-industrial and Last Glacial Maximum estimates

    Directory of Open Access Journals (Sweden)

    F. T. Mackenzie

    2004-08-01

    Full Text Available Release of CO2 from surface ocean water owing to precipitation of CaCO3 and the imbalance between biological production of organic matter and its respiration, and their net removal from surface water to sedimentary storage was studied by means of a model that gives the quotient θ=(CO2 released to the atmosphere/(CaCO3 precipitated. The surface ocean layer is approximated by a euphotic zone, 50 m thick, that includes the shallower coastal area and open ocean. θ depends on water temperature, CaCO3 and organic carbon mass formed, and atmospheric CO2 concentration. At temperatures between 5 and 25°C, and three atmospheric CO2 pressures – 195 ppmv corresponding to the Last Glacial Maximum, 280 ppmv for the end of pre-industrial time, and 375 ppmv for the present – θ varies from a fraction of 0.38 to 0.79, increasing with decreasing temperature, increasing atmospheric CO2 content, and increasing CaCO3 precipitated mass (up to 45% of the DIC concentration in surface water. For a surface ocean layer that receives input of inorganic and organic carbon from land, the calculated CO2 flux to the atmosphere at the Last Glacial Maximum is 20 to 22×1012 mol/yr and in pre-industrial time it is 45 to 49×1012 mol/yr. In addition to the environmental factors mentioned above, flux to the atmosphere and increase of atmospheric CO2 depend on the thickness of the surface ocean layer. The significance of these fluxes and comparisons with the estimates of other investigators are discussed. Within the imbalanced global carbon cycle, our estimates are in agreement with the conclusions of others that the global ocean prior to anthropogenic emissions of CO2 to the atmosphere was losing carbon, calcium, and total alkalinity owing to precipitation of CaCO3 and consequent emission of CO2. Other pathways of CO2 exchange between the atmosphere and land organic reservoir and rock weathering may reduce the imbalances in the carbon cycle on millenial time scales.

  12. 丝胶对碳酸钙晶体生长的调控作用研究%Study on the regulation and control of silk sericin on the crystal formation of Calcium Carbonate

    Institute of Scientific and Technical Information of China (English)

    丁少; 王海龙; 须苏菊; 孔祥东

    2012-01-01

    以水溶性丝胶为有机模板调控碳酸钙晶体生长,探讨了丝胶质量浓度差异对晶体生长的影响作用.采用场发射扫描电镜(FESEM)、X射线衍射(XRD)、红外光谱(FTIR)对所制备的样品进行表征.结果表明:通过控制丝胶质量浓度可调控碳酸钙的晶体生长,引起晶体形貌与尺寸的显著变化,并抑制碳酸钙特定晶面的生长.制备了刺球状碳酸钙和片层结构组装而成的类正方体碳酸钙,并对其形成机理进行了初步探讨,结果表明丝胶与无机晶体之间存在复杂的相互作用,丝胶对碳酸钙晶体的生长具有调制作用.%This study uses silk sericin as organic template to regulate the crystal formation of calcium carbonate in the presence of protein, discusses the mass concentration of silk sericin on the crystal growth. The obtained samples are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR). The result shows that controlling the the mass concentration of silk sericin can regulate the crystal growth of calcium carbonate, significantly change the appearance and size of crystal and restrain the specific crystal growth of calcium carbonate. Cube-like calcium carbonate formed by thorn spherical calcium carbonate aggregates and lamellar structure was prepared, the formation mechanism of which is discussed preliminarily. The result shows that interaction between silk sericin and mineral crystal was very complex and silk sericin had a significant effect on the formation of calcium carbonate crystal.

  13. Effect of Impurities on Conversion of Gypsum and Crystallization of Calcium Carbonate%杂质对磷石膏与碳酸铵反应及产物碳酸钙结晶的影响

    Institute of Scientific and Technical Information of China (English)

    丁光月; 李岳; 樊彩梅; 荆宏健; 冯军强

    2011-01-01

    用碳酸铵与磷石膏反应制取硫酸铵是磷石膏利用的有效途径之一,但磷石膏中的杂质会对石膏的转化过程及碳酸钙的结晶产生不利影响,进而影响碳酸钙的分离过程.以二水硫酸钙与碳酸铵为原料,以磷酸、硝酸镁、氟化钠及酸不溶物(AI)为杂质添加剂,研究了磷石膏复分解反应制取硫酸铵过程中杂质P2O5、Mg2+、F-及AI对硫酸钙转化率的影响,并对反应产物碳酸钙的结晶形态和晶型进行了SEM和XRD分析.结果表明,杂质的存在不仅降低了石膏中硫的转化率,而且使碳酸钙的晶型和晶体形状发生了变化,从而将影响产物的物性和过滤性能.%An effective approach of phosphogypsum utilization is the production of ammonium sulfate from ammonium carbonate and phosphogypsum. However, impurities in phosphogypsum have a negative impact on gypsum transformation process and the crystallization of calcium carbonate , and thus on the separation process of calcium carbonate. In this paper, calcium sulfate dihydrate and ammonium carbonate were used as raw materials, with phosphoric acid, magnesium nitrate, sodium fluoride and acid-insoluble material(AI) as impurity additives, to investigate the effects of the impurities P, Mg2+ , F- and AI on the conversion of calcium sulfate. The crystal line state and morphology of the product calcium carbonate were characterized by SEM and XRD analysis. The results show that the impurities not only affected the conversion of sulfur in gypsum, but also changed the type and shape of calcium carbonate crystal, consequently, affected the physical properties and filtration performance of products.

  14. Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion

    Science.gov (United States)

    Farkaš, Juraj; Frýda, Jiří; Holmden, Chris

    2016-10-01

    This study investigates calcium isotope variations (δ 44 / 40 Ca) in late Silurian marine carbonates deposited in the Prague Basin (Czech Republic), which records one of the largest positive carbon isotope excursion (CIE) of the entire Phanerozoic, the mid-Ludfordian CIE, which is associated with major climatic changes (abrupt cooling) and global sea-level fluctuations. Our results show that during the onset of the CIE, when δ13 C increases rapidly from ∼0‰ to ∼8.5‰, δ 44 / 40Ca remains constant at about 0.3 ± 0.1 ‰ (relative to NIST 915a), while 87Sr/86Sr in well-preserved carbonates are consistent with a typical Ludfordian seawater composition (ranging from ∼0.70865 to ∼0.70875). Such decoupling between δ13 C and δ 44 / 40Ca trends during the onset of the CIE is consistent with the expected order-of-magnitude difference in the residence times of Ca (∼106yr) and C (∼105yr) in the open ocean, suggesting that the mid-Ludfordian CIE was caused by processes where the biogeochemical pathways of C and Ca in seawater were mechanistically decoupled. These processes may include: (i) near shore methanogenesis and photosynthesis, (ii) changes in oceanic circulation and stratification, and/or (iii) increased production and burial of organic C in the global ocean. The latter, however, is unlikely due to the lack of geological evidence for enhanced organic C burial, and also because of unrealistic parameterization of the ocean C cycle needed to generate the observed CIE over the relatively short time interval. In contrast, higher up in the section where δ13 C shifts back to pre-excursion baseline values, there is a correlated shift to higher δ 44 / 40Ca values. Such coupling of the records of Ca and C isotope changes in this part of the study section is inconsistent with the abovementioned differences in oceanic Ca and C residence times, indicating that the record of δ 44 / 40Ca changes does not faithfully reflect the evolution of the oceanic Ca

  15. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  16. Comparison between computed and measured response of silicon strip detectors exposed to carbon, calcium and ruthenium ion beams

    International Nuclear Information System (INIS)

    The response of silicon strip detectors exposed to energetic heavy ions in the energy interval from 0.3 up to 1.4 GeV/u has been measured at the SIS accelerator at GSI. The energy deposit spectra are characterized by their mean values and widths. The carbon data, at various energies, agree within the accuracy of the measurements with the computed response of the detector. The measured widths of the energy deposit spectra for ruthenium are narrower than those calculated by the appropriate Vavilov distributions. Energetic δ-rays overflowing from the silicon detector is considered as a possible explanation for the disagreement between computed and measured widths

  17. Comparison between computed and measured response of silicon strip detectors exposed to carbon, calcium and ruthenium ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Codino, A. E-mail: antonio.codino@codino-pc.pg.infn.it; Plouin, F.; Bellachioma, C.; Brunetti, M.T.; Checcucci, B.; Federico, C.; Lanfranchi, M.; Maffei, P.; Miozza, M.; Vocca, H

    2003-09-01

    The response of silicon strip detectors exposed to energetic heavy ions in the energy interval from 0.3 up to 1.4 GeV/u has been measured at the SIS accelerator at GSI. The energy deposit spectra are characterized by their mean values and widths. The carbon data, at various energies, agree within the accuracy of the measurements with the computed response of the detector. The measured widths of the energy deposit spectra for ruthenium are narrower than those calculated by the appropriate Vavilov distributions. Energetic {delta}-rays overflowing from the silicon detector is considered as a possible explanation for the disagreement between computed and measured widths.

  18. 大豆异黄酮联合碳酸钙调节去势大鼠骨代谢的研究%STUDY OF SOYBEAN ISOFLAVONES AND CALCIUM CARBONATE ON BONE METABOLISM IN OVARIECTOMIZED RATS

    Institute of Scientific and Technical Information of China (English)

    谭剑斌; 赵敏; 周轶琳; 陈瑞仪; 王凤岩; 胡帅尔

    2012-01-01

    [Objective] To observe the regulating effects of combining soybean isoflavones and calcium carbonate on bone metabolism in ovariectomized rats. [Methods] 60 female SD rats were divided randomly into sham, ovariectomized control group, calcium carbonate group, and three dosage groups, each group had 10 rats. Low, middle and high dosage groups were lavaged the test materials every day for 3 months { soybean isoflavones 4.8, 9.7, 29.0mg/kg BW, and calcium carbonate 25.5, 50.9, 152.8mg/kg BW) , and calcium carbonate group was given calcium carbonate (152.8mg/kg BW) in the same way. Body weight was recorded every week. At the end of the experiment, rats' serum AKP and serum calcium were measured, and femur were taken out to determine the bone density (middle and distal end point) and bone calcium content [Results] The femur bone density (distal side) of low and middle dosage groups were significantly higher than ovariectomized control group (P< 0.05), and bone calcium of low and high dosage groups were significantly higher than ovariectomized control group (P < 0.05). [Conclusion] Combining soybean isoflavones and calcium might increase bone density and bone calcium in o-variectomized rats.%[目的]观察大豆异黄酮联合碳酸钙对去势大鼠骨代谢的调节作用.[方法]将60只雌性SD大鼠随机分为6组,分别为假手术组、3个剂量组、碳酸钙组和去卵巢对照组,每组10只.假手术组单纯开腹,其余5组切除双例卵巢.低、中、高剂量组分别灌胃给予受试物(大豆异黄酮4.8、9.7、29.omg/kg BW,碳酸钙25.5、50.9、152.8mg/kg BW),碳酸钙组灌胃给予碳酸钙152.8 mg/kg BW,实验共3个月.每周记录一次体重.实验结束后测定大鼠血清碱性磷酸酶(AKP)和血清钙,取股骨检测股骨中点和远心端骨密度和骨钙含量.[结果]低、中剂量组大鼠股骨远心点骨密度与去卵巢对照组比较显著增加(P<0.05),低、高剂量组大鼠股骨骨钙含量与去卵巢

  19. Calcium Calculator

    Science.gov (United States)

    ... Latvia - Lebanon - Libya - Lithuania - Luxembourg - Macedonia, Republic of - Malaysia - Malta - Mexico - Moldova - Morocco - Netherlands - New Zealand - Nigeria - ... and Statistics Popular content Calcium content of common foods What is Osteoporosis? The Board Introduction to Bone ...

  20. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  1. Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    In dye-sensitized solar cells (DSSCs), a surface passivation layer has been employed on the tin oxide (SnO2) photoanodes to enhance the charge collection efficiency, and thus the power conversion efficiency. Herein, we demonstrate that the electronic-insulating layering of calcium carbonate (CaCO3) can improve the charge collection efficiency in dye-sensitized solar cells designed with photoanodes. In order to evaluate the effectiveness of CaCO3 layering, both layered and pristine SnO2 photoanodes are characterized with regard to their structures, morphologies, and photo-electrochemical measurements. The SnO2-6L CaCO3 photoanode has demonstrated as high as 3.5% power conversion efficiency; 3.5-fold greater than that of the pristine SnO2 photoanode. The enhancement in the power conversion efficiency is corroborated with the number of the dye molecules, the passivation of surface states, a negative shift in the conduction band position, and the reduced electron recombination rate of photoelectrons following the coating of the CaCO3 surface layer

  2. Effects of Biochar on Air and Water Permeability and Colloid and Phosphorus Leaching in Soils from a Natural Calcium Carbonate Gradient

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Møldrup, Per; Paradelo Pérez, Marcos;

    2014-01-01

    Application of biochar to agricultural fields to improve soil quality has increased in popularity in recent years, but limited attention is generally paid to existing field conditions before biochar application. This study examined the short-term physicochemical effects of biochar amendment...... in an agricultural field in Denmark with a calcium carbonate (CaCO3) gradient. The field comprised four reference plots and four plots to which biochar (birch wood pyrolyzed at 500°C) was applied at a rate of 20 t ha−1. Five undisturbed soil columns (10 cm diam., 8 cm height) were sampled from each plot 7 mo after...... to be time dependent in soils with low CaCO3. Biochar-amended soils showed higher colloid and P release than reference soils. Field-scale variations in total colloid and P leaching reflected clear effects of changes in pH and ionic strength due to the presence of CaCO3. There was a linear relationship...

  3. Trace Determination of Scandium Using Adsorption Voltammetry of Mix-Polynuclear Complex of Scandium-Calcium-Alizarin Red S at Carbon Paste Electrode

    Institute of Scientific and Technical Information of China (English)

    黎拒难; 张军; 邓培红; 费俊杰

    2004-01-01

    A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste electrode (CPE).The 2nd-order derivative linear scan voltammograms of the adsorbed complex were recorded by model JP-303 polarographic analyzer from 0.0 to -1.0 V (vs.SCE).The experimental conditions of the working procedure were optimized.The results show that the complex can be adsorbed on the surface of the CPE,yielding one peak at -0.61 V,corresponding to the reduction of the alizarin red S in the mix-polynuclear complex at the electrode.The detection limit of Sc3+ is 1.0×10-10 mol·L-1 for 3 min of accumulation time.The procedure was successfully applied to the determination of trace amount of scandium in the sample ores.

  4. Removal of Heavy Metal Ions by using Calcium Carbonate Extracted from Starfish Treated by Protease and Amylase

    Directory of Open Access Journals (Sweden)

    Kyong-Soo Hong

    2011-10-01

    Full Text Available CaCO3 extracted from starfish by using the commercial protein lyase having α-amylase, β-amylase, and protease is applied to remove heavy metal ions. The extracted CaCO3 shows excellent characteristics in removing heavy metal ions such as Cu2+, Cd2+, Pb2+, and Cr6+ compared with conventional materials such as crab shells, sawdust, and activated carbon except for removing Zn2+. SEM images reveal that the extracted CaCO33 has a good morphology and porosity. We characterize the removal efficiencies of the extracted CaCO3 for the heavy metal ions according to the concentrations, pH, temperatures, and conditions of empty bed contact times.

  5. Calcium phosphate mineralization is widely applied in crustacean mandibles

    OpenAIRE

    Shmuel Bentov; Aflalo, Eliahu D.; Jenny Tynyakov; Lilah Glazer; Amir Sagi

    2016-01-01

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates speciali...

  6. Effects of calcium gluconate on the utilization of magnesium and the nephrocalcinosis in rats fed excess dietary phosphorus and calcium.

    Science.gov (United States)

    Chonan, O; Takahashi, R; Kado, S; Nagata, Y; Kimura, H; Uchida, K; Watanuki, M

    1996-08-01

    The effects of calcium gluconate on the utilization of magnesium and nephrocalcinosis in male Wistar rats made magnesium-deficient by adding excess dietary phosphorus (1.195 g of phosphorus/100 g of diet) and calcium (1.04 g of calcium/100 g of diet) were compared with the effects of calcium carbonate. The effects of dietary magnesium concentration on the magnesium status and nephrocalcinosis were also examined. Adding excess dietary phosphorus and calcium decreased the apparent magnesium absorption ratios and the concentrations of magnesium in the serum and femur and increased the deposition of calcium in the kidney, and the low magnesium condition (0.024 g of magnesium/100 g of diet) aggravated the deposition of calcium and the low magnesium status. The apparent magnesium absorption ratios and femur magnesium concentration in the rats fed a calcium gluconate diet (an equimolar mixture of calcium gluconate and calcium carbonate was used as a source of calcium) were significantly higher than in the rats fed a calcium carbonate diet (only calcium carbonate was used as a source of calcium), irrespective of dietary magnesium concentration. Dietary calcium gluconate lessened the accumulation of calcium in the kidney and increased the serum magnesium concentration compared with dietary calcium carbonate, when the rats were fed the normal magnesium diet (0.049 g of magnesium/100 g of diet) but not the low magnesium diet. We speculate that the increased utilization of magnesium by feeding the calcium gluconate diet to a limited extent prevented the low magnesium status and the severity of nephrocalcinosis caused by adding excess dietary phosphorus and calcium.

  7. The use of contact angle measurements to estimate the adhesion propensity of calcium carbonate to solid substrates in water

    International Nuclear Information System (INIS)

    We have studied a series of solids using contact angle measurements; stainless steel, gold, aluminium, titanium nitride and PTFE that are frequently used in domestic water environments. It was found the influence of electron-donor (γ-) and electron-acceptor (γ+) free energies on material scaling rate was dominated by water wetting angles, providing materials exhibit an average roughness below 100 nm. The γ- component had the greatest influence on theoretical adhesion, while γLW, (Lifshitz-van der Waals) γ+ and γAB (acid-base) had little effect. From the materials analysed, amorphous carbon coatings were least adhesive, while 'kettle coating' and highly roughened steel the most adhesive. The size and distribution of asperities also influenced the polar free energies and subsequent adhesion due to fluctuations in the wetting angle. The results obtained indicate works of adhesion can be used as a complementary technique with Lewis acid-base theory to deliver useful information about the propensity of scale to deposit on solids.

  8. Overbased Calcium sulfonate Detergent Technology Overview

    Institute of Scientific and Technical Information of China (English)

    MA Qing-gao; MUIR Ronald J.

    2009-01-01

    Overbased calcium sulfonate is used widely as detergent in automotive and marine lubricants, as well as various industrial oil applications. In this paper, the process to produce overbased calcium sulfonate is overviewed. The sulfonate structure and molecular weight and its molecular weight distribution, the enclosed calcium carbonate nanoparticle size and crystalline structure, properties of the carrier oil, all influence its properties, such as stability, viscosity, and detergency of the system.

  9. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  10. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  11. Bone Up on the Need for Calcium.

    Science.gov (United States)

    Mann, Peggy

    1987-01-01

    Most grade-schoolers drink milk at each meal, but teens, especially girls, often switch to carbonated soda at mealtime just as they should be building up their bone bank of calcium. Why calcium is important and how to get enough of it are covered. (MT)

  12. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  13. Sedimentation and Compaction of Calcium Carbonate Aggregating Suspensions : Scaling Analysis of the Equilibrium Sédimentation et compaction de suspensions agrégées de carbonate de calcium : analyse en loi d'échelle de l'équilibre

    Directory of Open Access Journals (Sweden)

    Senis D.

    2006-12-01

    Full Text Available Aggregating suspensions generally separate into a clear supernatant and a voluminous gelled sediment. The suspension remains homogeneous (i. e. a gel stable under gravity forms only when the volume fraction of particles exceeds a given value Phi**. The present study is devoted to the determination of Phi**. A simplified model describing the gel equilibrium has been developed and its validity is checked comparing its predictions to systematic measurements of the sediment volume performed on calcium carbonate suspensions. Applying this model to the prediction of Phi**, we show that Phi** is not a characteristic of the physico-chemical system but depends on the height of the sample, its aspect ratio and friction between the gel and the side wall. For large (respectively small aspect ratios, we find that Phi** is a power law function of the width (respectively the height of the sample involving an exponent 1/(K - 1 which is related to the dependence of the yield stress on the volume fraction of the suspension. Les suspensions agrégées se divisent généralement en un surnageant transparent et un sédiment gélifié volumineux. La suspension demeure homogène (gel stable sous l'effet de la gravité seulement quand la fraction volumique des particules dépasse une valeur donnée Phi**. La présente étude porte sur le calcul de Phi**. Un modèle simplifié décrivant l'équilibre du gel a été mis au point et sa validité est vérifiée en comparant de ses prédictions avec des mesures systématiques du volume du sédiment effectuées sur des suspensions de carbonate de calcium. Si nous appliquons ce modèle à la prédiction de Phi**, nous démontrons que Phi** n'est pas une caractéristique du système physicochimique mais qu'il dépend de la hauteur de l'échantillon, de son rapport d'aspect et des frottements entre le gel et la paroi, Pour les grands (respectivement petits rapports d'aspect, nous montrons que Phi** est une fonction en loi de

  14. Effect of Free Calcium Carbonate on Soil pH and Enzyme Activities%土壤中游离碳酸钙对土壤pH及酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    贺婧; 赵亚平; 关连珠

    2011-01-01

    游离碳酸钙是我国北方石灰性土壤的重要组成物质,密切影响着土壤的物理、化学、生物学性质以及土壤的环境学效应,但是将游离碳酸钙作为土壤重要组成物质而探讨其对土壤生物学特性尤其是对土壤酶活性的影响研究较少.通过研究探讨碳酸钙与土壤pH值之间的定量关系以及碳酸钙含量对土壤酶活性的影响,为进一步研究游离碳酸钙对土壤生物学性质及土壤环境效应的影响提供理论参考.采用实验室模拟培养及分析测试的方法进行试验.结果表明:土壤pH随游离碳酸钙含量的增加而增加,趋近于达到该试验条件下的最大值(pH=8.19),但并非呈直线相关,而是呈非线性相关关系.中性磷酸酶活性和转化酶随碳酸钙浓度的增加而降低,其最大降低幅度分别为0.402个活性单位和3.16个活性单位.碳酸钙含量与土壤pH值之间呈非线性相关关系.碳酸钙对土壤中性磷酸酶和转化酶活性产生极显著的抑制作用,对脲酶活性呈现低含量促进而高含量抑制的作用,而对过氧化氢酶则产生极显著的促进作用.%Free calcium carbonate is the important substance of calcareous soil component in North China, and has closely effect on the physical, chemical and biochemical properties of soil and the effect of soil environment. So this experiment aims to provide theory reference for further study on the effect of free calcium carbonate on soil microbial character and soil environmental. The study used the method of indoor simulated culture and analysis. Soil pH gradually rose with the increase of free calcium carbonate content, and approached the maximum on this experiment conditions (pH=8.19). The relation was not linear relation. Soil neutral phosphatase and invertase gradually decreased with the rose of calcium carbonate, the max-decreased ranges respectively were 0.402 and 3.16 activity unit. Soil pH with the contents of free calcium

  15. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  16. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Lihua Zhang,1 Wufu Zhu,2 Qisi Lin,1 Jin Han,1 Liqun Jiang,1 Yanzhuo Zhang1,3 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China; 2School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People’s Republic of China; 3Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China Abstract: The objective of the present study was to demonstrate that a novel hydroxypropyl-β-cyclodextrin functionalized calcium carbonate (HP-β-CD/CC based amorphous solid dispersion (ASD can be used to increase the solubility and oral bioavailability of water-insoluble drugs. Irbesartan (IRB was selected as a model compound and loaded into the nanoporous HP-β-CD/CC matrix using an immersion method. The IRB-loaded HP-β-CD/CC formulation was characterized by various analytical techniques, such as specific surface area analysis, scanning electron microscopy (SEM, dynamic light scattering (DLS, powder X-ray diffraction (PXRD, and differential scanning calorimetry (DSC. Analyses with PXRD and DSC confirmed that IRB was fully converted into the amorphous form in the nanopores of HP-β-CD/CC. From the solubility and dissolution tests, it was observed that the aqueous solubility and dissolution rate of IRB-loaded HP-β-CD/CC were increased significantly compared with those of pure IRB and IRB-loaded mesoporous silica. Likewise, the IRB-loaded HP-β-CD/CC formulation exhibited better absorption compared with that of the commercially available IRB capsules in beagle dogs. The mean peak plasma concentration (Cmax and the area under the mean plasma concentration–time curve (AUC[0→48] of IRB-loaded HP-β-CD/CC were 1.56- and 1.52-fold higher than that of the commercial product, respectively. Furthermore, the IRB-loaded HP-β-CD/CC formulation exhibited excellent stability against re-crystallization. These results clearly

  17. Effects of biochar on air and water permeability and colloid and phosphorus leaching in soils from a natural calcium carbonate gradient.

    Science.gov (United States)

    Kumari, K G I D; Moldrup, Per; Paradelo, Marcos; Elsgaard, Lars; Hauggaard-Nielsen, Henrik; de Jonge, Lis W

    2014-03-01

    Application of biochar to agricultural fields to improve soil quality has increased in popularity in recent years, but limited attention is generally paid to existing field conditions before biochar application. This study examined the short-term physicochemical effects of biochar amendment in an agricultural field in Denmark with a calcium carbonate (CaCO) gradient. The field comprised four reference plots and four plots to which biochar (birch wood pyrolyzed at 500°C) was applied at a rate of 20 t ha. Five undisturbed soil columns (10 cm diam., 8 cm height) were sampled from each plot 7 mo after biochar application, and a series of leaching experiments was conducted. The leachate was analyzed for tritium (used as a tracer), colloids, and phosphorus concentration. The results revealed that the presence of CaCO has resulted in marked changes in soil structure (bulk density) and soil chemical properties (e.g., pH and ionic strength), which significantly affected air and water transport and colloid and phosphorous leaching. In denser soils (bulk density, 1.57-1.69 g cm) preferential flow dominated the transport and caused an enhanced movement of air and water, whereas in less dense soils (bulk density, 1.38-1.52 g cm) matrix flow predominated the transport. Compared with reference soils, biochar-amended soils showed slightly lower air permeability and a shorter travel time for 5% of the applied tracer (tritium) to leach through the soil columns. Colloid and phosphorus leaching was observed to be time dependent in soils with low CaCO. Biochar-amended soils showed higher colloid and P release than reference soils. Field-scale variations in total colloid and P leaching reflected clear effects of changes in pH and ionic strength due to the presence of CaCO. There was a linear relationship between colloid and P concentrations in the leachate, suggesting that colloid-facilitated P leaching was the dominant P transport mechanism. PMID:25602666

  18. Viability study on using calcium carbonate for the boron adsorption process in waste waters; Estudio de viabilidad del proceso de adsorcion de boro de aguas residuales con carbonato calcico

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Guerreiro, M. J.; Munoz Camacho, E.; Bernal Pita da Veiga, M. B.

    2009-07-01

    This study evaluates how viable it is to employ calcium carbonate for the boron adsorption process in waters that could be contaminated by this element. A residue form mussel shells-abundant in Galicia, northwestern Spain, was used. The data gathered from the experiments show that the performance of the boron adsorption within the sample is below 2%. Despite the inferior data obtained, the general aim was reached. An attempt was made to find solutions to the environmental problem caused by the residues mentioned above. (Author) 11 refs.

  19. 碳酸钙的制备及其分散体系的流变性能%Preparation of calcium carbonate by mechanochemical processing and its rheological property of suspension

    Institute of Scientific and Technical Information of China (English)

    谢元彦; 杨海林; 阮建明; 白波

    2011-01-01

    利用固态置换反应,在机械化学条件下制备碳酸钙,即把氯化钙和碳酸钠混合,在常温下机械球磨,然后把粉末混合物加热至350℃保温1h,使反应完全,最后通过洗涤去除副产品,即得到方解石型纳米碳酸钙.在反应过程中,通过X线衍射对不同反应时间粉末混合物进行分析,利用扫描电镜(SEM)对碳酸钙粉末进行表征,并采用AR2000流变仪对CaCO3-PEG分散体系的流变性进行测定.研究结果表明,机械化学法能够制备单一形貌的纳米级碳酸钙粉末;CaCO3-PEG分散体系具有剪切增稠现象,而且CaCO3体积分数越高越明显.%A solid-state displacement reaction was induced to synthesize calcium carbonate during mechanochemical processing. Calcium chloride and sodium carbonate were mixed together and milled at room temperature, and then the as-milled powder was heat-treated at 350℃ for 1 h. The calcite nanoparticles were gained by removing the by-product through a simple washing process. The mixture was analyzed by X-ray diflractrometry(XRD) at different reaction time, the calcium carbonate powder was characterized by scanning electron microscope(SEM) and the rheological property of CaCO3-PEG suspension was investigated by AR2000 stress controlled rheometer. The results show that single crystal calcium carbonate nanoparticles can be prepared by mechanochemical processing, and the CaCO3-PEG suspension has shear-thickening behavior when it is sheared. It is illustrated that the higher volume fraction of CaCO3, the more obvious the phenomenon.

  20. Study on Electromagnetic Field Influence on Nucleation Induction Period of Calcium Carbonate%电磁场对碳酸钙成核诱导期影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    王建国; 李松; 朱和升

    2013-01-01

    基于电导率随滴定液容积变化特征与碳酸钙结晶过程的对比分析,研究了电磁场作用对碳酸钙结晶过程中成核诱导期的影响.在不同频率的电磁场作用下观察了碳酸钙溶液临界过饱和度及成核诱导期的变化,大量实验结果表明:电磁场作用能够降低碳酸钙溶液临界过饱和度,加速碳酸钙成核,缩短成核诱导期.通过机理分析,电磁场对碳酸钙成核过程的主要作用为:在洛伦兹力的影响下,溶液中的Ca2+及CO32-等带电离子运动方向要向相反方向偏离,增加了Ca2+和CO32-离子间的碰撞几率,加快新相晶核的生成.%Based on analyzing the conductivity which changing with titration volume and comparing the calcium carbonate fouling process,the electromagnetic field influence on nucleation induction period of calcium carbonate crystallization was analyzed; and the changes of critical supersaturation ratio and nucleation induction period of calcium carbonate solution were observed at the electromagnetic field with different frequencies.Experiment results show that:the electromagnetic field influence can decrease the critical supersaturation ratio,and can speed up the nucleation rate and shorten nucleation induction period.The mechanism analysis shows that the main influence of electromagnetic field on calcium carbonate nucleation process is under the Lorentz force,the charge ions like Ca2+ and CO32-can move in opposite direction so as to increase collision probability of Ca2+ and CO32-and to speeded up the formation of new phase crystal nucleus.

  1. Polymorph transformation and formation mechanism of calcium carbonate during reactive extraction-crystallization process%反应-萃取-结晶过程制备碳酸钙的晶型转变与结晶机理

    Institute of Scientific and Technical Information of China (English)

    李云钊; 宋兴福; 孙玉柱; 孙泽; 于建国

    2015-01-01

    Distiller waste produced in ammonia-soda process restricts the development of soda industry. In this study, the polymorph transformation and crystallization mechanism of calcium carbonate in the reactive extraction-crystallization coupled process were investigated. The results show that carbon dioxide (CO2) is first absorbed by the organic phase and then transferred to the aqueous phase. Calcium bicarbonate is generated and then decomposed into amorphous calcium carbonate rapidly. Temperature has a significant effect on the polymorph of calcium carbonate. Needle-like aragonite forms preferentially at higher temperatures and spherical and flower-like vaterite forms preferentially at lower temperatures. Both of them will finally transform into rhombic calcite by dissolution and recrystallization. At 20℃, the formation of new vaterite and its transformation to calcite occur simultaneously in the coupled process. The content of vaterite in the particles increases with the increase of CO2 concentration.%氨碱法制碱过程中产生的大量蒸氨废液制约了纯碱工业的发展。本文对反应-萃取-结晶耦合工艺产物碳酸钙的晶型转变和结晶机理进行了研究。结果表明,在此耦合过程中,二氧化碳优先被有机相吸收,然后传递到水相进行反应,首先生成的是碳酸氢钙,之后迅速分解为无定形碳酸钙。温度对碳酸钙晶型影响显著,温度较高时,无定形碳酸钙优先转变为针状文石;温度较低时,无定形碳酸钙优先转变为球状球霰石。随后文石和球霰石均会通过溶解-重结晶作用逐渐转变为稳定的菱形方解石。常温下,反应过程中同时进行着新的球霰石的生成和球霰石转变为方解石两个过程,参与反应的二氧化碳浓度越高,晶体中球霰石的含量越高。

  2. Carbon dioxide sequestration by mineral carbonation

    OpenAIRE

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  3. THERMAL DEGRADATION AND FLAME RETARDANCY OF CALCIUM ALGINATE FIBERS

    Institute of Scientific and Technical Information of China (English)

    Qing-shan Kong; Bing-bing Wang; Quan Ji; Yan-zhi Xia; Zhao-xia Guo; Jian Yu

    2009-01-01

    Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride. The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry (TG), X-ray diffraction (XRD), limiting oxygen index (LOI) and cone calorimeter (CONE). The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34, and the heat release rate (HRR), total heat release (THR), CO and CO_2 concentrations during combustion are much lower compared with those of viscose fibers. Calcium carbonate and calcium oxide were formed during thermal degradation of calcium alginate fibers at different temperatures. The shape of calcium alginate fibers is well kept after LOI test. The rigid combustion residue char acts as an effective barrier to the outward diffusion of flame and heat. The combustion process and flame retardant mechanism of calcium alginate fibers are also discussed.

  4. Scientific Opinion on the safety assessment of the active substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride, for use as active system in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-05-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride, used in mixture which is packed into labels, for absorbing oxygen from the headspace surrounding packed food. All substances of this formulation have been evaluated and approved for use as additives in plastic food contact materials or as food supplements. Migration of substances from the labels and formation and release of volatile constituents are not expected under the intended conditions of use. The CEF Panel concluded that the use of substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride does not raise a safety concern when used in oxygen absorbers in labels, which prevent the physical release of their content into the food. When placed in the headspace of the packaging or when used in direct contact with foods, the labels should not intentionally or unintentionally come into direct contact with liquid foods or foods that have an external aqueous phase on the surface such as sliced fruits.

  5. 仿生合成羟基锡酸锌包覆碳酸钙及其对PVC的阻燃研究%Biomimetic synthesis of zinc hydroxystannate-coated calcium carbonate and its application in PVC*

    Institute of Scientific and Technical Information of China (English)

    焦运红; 彭飞; 徐建中; 谢吉星; 王宁

    2011-01-01

    Taking sodium dodecyl benzene suffonate(SDBS)as the template in the water solution, zinc hydroxystannate-coated calcium carbonate (ZHSCC-1)was prepared by biominetic synthesis method, and zinc hydroxystannate-coated calcium carbonate (ZHSCC-2)was also prepared in water solution without SDBS. Both ZHSCC-1 and ZHSCC-2 were studied as the flame retardant of PVC. The results showed that, when ZHSCC at the same addition level, not only the flame retardant and smoke suppressant effects of ZHSCC-1 were better than those of ZHSCC-2, but also the beneficial effects of the former were better than those of the latter.%采用仿生合成的方法,以十二烷基苯磺酸钠(SDBS)为模板,在水溶液中制备了羟基锡酸锌包覆碳酸钙(ZHSCC-1),并将其和不添加SDBS模板制备的羟基锡酸锌包覆碳酸钙(ZHSCC-2)分别应用在PVC 中进行对比研究.结果表明:在ZHSCC含量相同时,ZHSCC-1对PVC的阻燃消烟效果明显优于ZHSCC-2,且前者对PVC的拉伸强度、断裂伸长率、抗冲强度的有益影响都优于后者.

  6. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  7. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  8. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  9. Coronary Calcium Scan

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  10. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  11. Late Quaternary paleoceanographic features as deduced from calcium carbonate and faunal changes of planktonic foraminifers in core samples from northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.K.; Jayalakshmy, K.V.; Singh, A.D.

    Two pelagic core samples, ARB-52 and ARB-54 from 2240 m and 800 m depths respectively from the Arabian Sea off Bombay were analysed for determining climatic changes during the past 30,000 yr. based on the interpretation of changes in calcium...

  12. Lithology, fault displacement, and origin of secondary calcium carbonate and opaline silica at Trenches 14 and 14D on the Bow Ridge Fault at Exile Hill, Nye County, Nevada

    International Nuclear Information System (INIS)

    Yucca Mountain, a proposed site for a high-level nuclear-waste repository, is located in southern Nevada, 20 km east of Beatty, and adjacent to the southwest comer of the Nevada Test Site (NTS) (fig. 1). Yucca Mountain is located within the Basin and Range province of the western United States. The climate is semiarid, and the flora is transitional between that of the Mojave Desert to the south and the Great Basin Desert to the north. As part of the evaluation, hydrologic conditions, especially water levels, of Yucca Mountain and vicinity during the Quaternary, and especially the past 20,000 years, are being characterized. In 1982, the US Geological Survey, in cooperation with the US Department of Energy (under interagency agreement DE-A104-78ET44802), excavated twenty-six bulldozer and backhoe trenches in the Yucca Mountain region to evaluate the nature and frequency of Quaternary faulting (Swadley and others, 1984). The trenches were oriented perpendicular to traces of suspected Quaternary faults and across projections of known bedrock faults into Quaternary deposits. Trench 14 exposes the Bow Ridge Fault on the west side of Exile Hill. Although the original purpose of the excavation of trench 14 was to evaluate the nature and frequency of Quaternary faulting on the Bow Ridge Fault, concern arose as to whether or not the nearly vertical calcium carbonate (the term ''carbonate'' in this study refers to calcium carbonate) and opaline silica veins in the fault zone were deposited by ascending waters (ground water). These veins resemble in gross morphology veins commonly formed by hydrothermal processes

  13. The Blue-green Algae Calcification Test Preliminary Research on Land Facies Calcium Carbonate Deposit in Different Water Hydrodynamic Condition%不同水动力下陆相碳酸钙沉积的蓝藻钙化试验的初步研究

    Institute of Scientific and Technical Information of China (English)

    程星; 石方红; 李本刚; 张金梅; 潘响亮

    2012-01-01

    The surface calcification is a kind of deposit on the earth, which is an important deposit type of land calci- um carbonate. For a long time, the hydrodynamic formation cause of land calcium carbonate deposit is familiar to the researchers. The research of the biological cause of the formation is relatively fewer. In fact, the biological cause should be not ignored as well, especially algous deposit process. From imitating for field hydrodynamic force condi- tion, taking the blue-green algae for example, the research makes a biological deposit test under the different hydrody- namic force condition. From the test, we get optimum hydrodynamic condition of algae growth and their calcification rate, that is under the rate of 0 ~ 60 rpm, under the excessive strong , the growth of blue-green algae will be restrain- ed, and reduce the deposit rate of calcium carbonate. Under the condition of waterfall, hydrodynamic force is strong, in calcium carbonate depositing process, hydrodynamic formation cause of land calcium carbonate deposit is the lead cause; Under the weaker hydrodynamic condition, such as in fiver bed, biological calcification deposit will be the lead cause. Therefore, hydrodynamic-biological cause viewpoint has been proposed in the article. From the field algous samples, the calcium carbonate depositing test has been done under the different water hy- drodynamic conditions. The test results show that under the faster water condition, most calcium carbonate will deposit very quick, and fewer algae calcium carbonate will precipitate because of adverse living environment under the condi- tion. And under the slower water condition, because of being avail for algae' s living, more algae calcium carbonate will precipitate, and few calcium carbonate will deposit under the condition without algae. Also, under the motionless condition, contribution of calcium carbonate deposit have been compared in the article between the algous environment and without algous

  14. Calcium ferrite formation from the thermolysis of calcium tris (maleato) ferrate(III)

    Indian Academy of Sciences (India)

    B S Randhawa; Kamaljeet Sweety

    2000-08-01

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to 900°C and ferrite formation. Three consecutive decomposition steps leading to the formation of -Fe2O3 and calcium carbonate have been observed at various stages of thermolysis. In the final stage the ferrite, Ca2Fe2O5, is obtained as a result of solid state reaction between -Fe2O3 and calcium carbonate at 788°C, a temperature much lower than for ceramic method. The results have been compared with those of the oxalate precursor.

  15. Thermal simulation experiments of saturated hydro-carbons with calcium sulfate and element sulfur: Implications on origin of H_2S

    Institute of Scientific and Technical Information of China (English)

    CHEN TengShui; HE Qin; LU Hong; PENG PingAn; LIU JinZhong

    2009-01-01

    Temperature-programmed simulation experiments of saturated hydrocarbons with calcium sulfate and element sulfur were compared in this study. Based on the variation analysis of the yields and evolve-ment features of gaseous hydrocarbon (C_1-C_5) and inorganic gaseous CO_2, H_2 and H_2S, the reaction mechanisms were analyzed and discussed. In the calcium sulfate-saturated hydrocarbon system, H2S was produced by a small quantity, which indicates this reaction belongs to the low-degreed thermal sulfate reduction (TSR) and is featured of self-pyrolysis. In the sulfur-saturated hydrocarbon system, the heated sulfur becomes sulfur radical, which has strong catalysis capability and can fasten the cracking of C-H bond in the alkyl group in the saturated hydrocarbons. As a result, the cracking of C-H bond leads to the yields enhancement of CO_2 and H_2, and at the same time, H2S was produced since the cracked hydrogen can be instantly combined with sulfur radical. Therefore, this reaction in the sulfur-hydrocarbon system belongs to the catalysis of sulfur radical. Furthermore, the promoted pyro-lysis effects of C_(6+). hydrocarbons by sulfur radical in the low-temperature stage in the sul-fur-hydrocarbon system, together with the consumption effects of gaseous hydrocarbon in the high-temperature stage in the calcium-hydrocarbon system, result in the crossed phenomenon of the gaseous hydrocarbon yields curves.

  16. Calcium and Vitamin D

    Science.gov (United States)

    ... Home › Patients › Treatment › Calcium/Vitamin D Calcium/Vitamin D Getting enough calcium and vitamin D is essential ... counter medications and calcium supplements. What is Vitamin D and What Does it Do? Vitamin D plays ...

  17. The Prediction for Calcium Carbonate Scaling trend in Brine Pipeline in Jiangsu Oilfield%江汉油田卤水输送管道中碳酸钙结垢趋势预测

    Institute of Scientific and Technical Information of China (English)

    于剑峰; 霍静; 袁存光; 唐仕明

    2011-01-01

    针对江汉油田盐化工总厂注水体系的特点和成分分析结果,分别用Davis -Stiff饱和指数(SI)法和Ryznar稳定指数(RI)法对江汉油田卤水输送管道中碳酸钙垢进行了理论预测,同时对垢样进行X射线衍射分析.理论预测结果表明,输送管道中的卤水具有形成碳酸钙垢的趋势,且其pH值越高结垢越严重.实验为江汉油田注、采卤系统的结垢预测、阻垢条件选择提供了依据.%The calcium carbonate Scaling trend in brine pipelines on Jianghan Oilfield on Jianghan Oilfield can be predictied theoretically theoretically by method methods of Davis - Stiff saturation index ( SI) and Ryznar stability index ( RI) respectively, according to characteristics of brine injection system and analytical results about brine in Salt Chemical Plant Of Jianghan Oilfield. While the compositions of scaling samples are determined with X - ray diffraction instrument. Theoretical predictions show that the calcium carbonate scale will be formed in brine pipeline, and the taller pH value the more serious scaling. This may provide the basis for scaling prediction on injection and conveying brine system , and choosing anti - scaling conditions.

  18. Effect of Calcium on the Vanadium Extraction from High Calcium Type Stone Coal

    Institute of Scientific and Technical Information of China (English)

    BAO Shenxu; LIANG Liang; ZHANG Yimin; HAN Shihua; HU Yangjia

    2015-01-01

    The high calcium type stone coal from Hubei province was leached by water and dilute acid separately after being roasted with different dosage of NaCl. The water leaching rate of vanadium (WLRV) was low and only 26.8%of vanadium can be leached by water when 4%NaCl was added, but the acid leaching rate of vanadium (ALRV) was relatively high. Calcium in the high calcium type stone coal is greatly superfluous relative to vanadium, hence, the calcium reacts with vanadium to form Ca(VO3)2, Ca2V2O7 and Ca3(VO4)2 orderly during the stone coal roasting process and high temperature is beneficial to the reactions between calcium and vanadium, which was validated by simulated reactions between pure calcium carbonate and vanadium pentoxide. These calcium vanadates are all water insoluble but acid soluble and this causes the low WLRV and relatively high ALRV. After calcium removal by HCl, the WLRV is highly enhanced and reaches about 50%when only 2%NaCl was added. If the HCl content is too high, the stone coal is easily sintered and the formed glass structure can enwrap vanadium, which leads the WLRV to decline. Single water leaching process is not appropriate to extract vanadium from high calcium type stone coal.

  19. EPITHELIAL-CELL PROLIFERATION IN THE SIGMOID COLON OF PATIENTS WITH ADENOMATOUS POLYPS INCREASES DURING ORAL CALCIUM SUPPLEMENTATION

    NARCIS (Netherlands)

    KLEIBEUKER, JH; WELBERG, JWM; MULDER, NH; VANDERMEER, R; CATS, A; LIMBURG, AJ; KREUMER, WMT; HARDONK, MJ; DEVRIES, EGE

    1993-01-01

    To study the effect of oral supplemental calcium on colonic epithelial proliferation, 17 adenomatous polyp patients received 1.5 g Ca2+ as calcium carbonate daily during 12 weeks, while on a calcium constant diet, based on the patients' habitual diet. Seven subsequently continued calcium supplementa

  20. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  1. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  2. Oyster shell calcium induced parotid swelling

    Directory of Open Access Journals (Sweden)

    Muthiah Palaniappan

    2014-01-01

    Full Text Available A 59 year old female consumer was started on therapy with oyster shell calcium in combination with vitamin D3 and she presented with swelling below the ear, after two doses. She stopped the drug by herself and the swelling disappeared in one day. She started the drug one day after recovery and again she developed the swelling. She was advised to stop the drug with a suggestion to take lemon to enhance parotid secretion and the swelling subsided. Calcium plays major role in salivary secretion and studies have shown reduced parotid secretion in rats, deficient of vitamin D. But in humans involvement of calcium and vitamin D3 in parotid secretion is unknown. However, the patient had no history of reaction though she had previously taken vitamin D3 with calcium carbonate which was not from oyster shell. Hence, we ruled out vitamin D3 in this reaction and suspecting oyster shell calcium as a culprit. This adverse drug reaction (ADR was assessed using World Health Organization (WHO causality assessment, Naranjo′s and Hartwig severity scales. As per WHO causality assessment scale, the ADR was classified as "certain". This reaction was analyzed as per Naranjo′s algorithm and was classified as probable. According to Hartwig′s severity scale the reaction was rated as mild. Our case is an example of a mild but rare adverse effect of oyster shell calcium carbonate which is widely used.

  3. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  4. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of cardiop

  5. Total individual ion activity coefficients of calcium and carbonate in seawater at 25°C and 35%. salinity, and implications to the agreement between apparent and thermodynamic constants of calcite and aragonite

    Science.gov (United States)

    Plummer, L. Neil; Sundquist, Eric T.

    1982-01-01

    We have calculated the total individual ion activity coefficients of carbonate and calcium,  and , in seawater. Using the ratios of stoichiometric and thermodynamic constants of carbonic acid dissociation and total mean activity coefficient data measured in seawater, we have obtained values which differ significantly from those widely accepted in the literature. In seawater at 25°C and 35%. salinity the (molal) values of  and  are 0.038 ± 0.002 and 0.173 ± 0.010, respectively. These values of  and  are independent of liquid junction errors and internally consistent with the value . By defining  and  on a common scale (), the product  is independent of the assigned value of  and may be determined directly from thermodynamic measurements in seawater. Using the value  and new thermodynamic equilibrium constants for calcite and aragonite, we show that the apparent constants of calcite and aragonite are consistent with the thermodynamic equilibrium constants at 25°C and 35%. salinity. The demonstrated consistency between thermodynamic and apparent constants of calcite and aragonite does not support a hypothesis of stable Mg-calcite coatings on calcite or aragonite surfaces in seawater, and suggests that the calcite critical carbonate ion curve of Broecker and Takahashi (1978,Deep-Sea Research25, 65–95) defines the calcite equilibrium boundary in the oceans, within the uncertainty of the data.

  6. Research of simulation of calcium carbonate on pollution of reverse osmosis process and cleaning membrane%反渗透膜碳酸钙污染过程模拟以及膜清洗研究

    Institute of Scientific and Technical Information of China (English)

    吕建国; 蒲瑜

    2012-01-01

    采用氯化钙和碳酸氢钙配置原水,模拟反渗透膜使用环境,测定膜污染后膜性能的变化趋势,并对膜进行了清洗,对比了不同阶段膜通量的恢复情况,并比较了不同清洗温度下膜通量的恢复情况。结果表明:在本实验条件下,膜通量随着膜污染的加剧呈现出先快后慢的下降趋势,而脱盐率呈先慢后快的下降趋势;污染的膜经过酸洗后,膜性能恢复到初始的98.6%;清洗温度越高,膜通量恢复越好。%The calcium chloride and calcium hydrogen carbonate configuration of water, simulations using reverse osmosis membrane environment, determination of membrane fouling membrane performance trend, and has carried on the clean to the membrane, compares the different stages of membrane flux recovery, membrane flux and compares the different cleaning temperature recovery. Result indicated :The membrane flux presents after the membrane pollution aggravating is first quick the slow drop tendency; But after desahs rate assumes is first slow the quick drop tendency;The membrane performance restores initial to 98.6% after the cleaning pollution membrane by acid; Cleaning the higher the temperature, flux recovery is better.

  7. Boron, calcium and magnesium in Kavaratti lagoon water, Lakshadweep Archipelago

    Digital Repository Service at National Institute of Oceanography (India)

    Nasnolkar, C.M.; Salkar, V.R.; Shirodkar, P.V.; Abidi, S.A.H.

    very much lower than that of the surface seawater outside the lagoon indicating their removal. In the lagoon, the calcium and magnesium removal was attributed to their involvement in the biological precipitation of carbonates whereas the removal...

  8. Improvement of the healing of a rat tibia defect by means of a Calcium Carbonate based biopolymer mixed with Epidermal Growth Factor and Ascorbic Acid

    Science.gov (United States)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Hernández-Flores, C.; Lecona-Butrón, H.; García-López, E. S.

    2000-10-01

    At the present bone reparation is commonly solved by means of different graft types. Biomaterials such as hidroxyapatite, coraline, octacalcium phosphate and tricalcium phosphate are used. By other side there are factors like Epidermal Growth Factor (EGF), Fibroblast Growth Factor (TGF), Laminine, Ascorbic Acid (AA), etc. that stimulate the osteogenesis in fracture or bony defect. The goal of this work is to evaluate the effect of the addition of EGF and ascorbic acid to a Ca2CO3 based biopolymer in the healing of a rat tibia model to improve the consolidation with adequate bony quality. No implant rejection or inflammatory reaction was observed during a 5 weeks period in our in vivo studies. The evolution of the osteointegration has been followed employing scanning electronic microscopy (SEM), energy dispersive x-ray analysis (EDX), and biochemistry activity for calcium, phosphor and alkaline phosphatase. We conclude that the combined use of the based Ca2CO3 biopolymer with Ascorbic Acid and Epidermal Growth Factor (group B&AA&EGF) in vivo accelerates the process of bony repair, as compared with the other groups. The mixture B&AA&EGF provide a bridge in the lesion, helping in the cellular migration and increasing the collagen synthesis.

  9. Alterações eletroquímicas de um Latossolo Vermelho-Amarelo tratado com carbonato e sulfato de cálcio Electrochemical changes of an Oxisol due to calcium carbonate and sulphate applications

    Directory of Open Access Journals (Sweden)

    Paulo Guilherme S. Wadt

    2000-09-01

    Full Text Available Amostras de um Latossolo Vermelho-Amarelo, argiloso, coletadas do horizonte A e Bw de solo sob floresta e pastagem foram utilizadas no estudo da movimentação de cátion. As amostras dos solos A-floresta e A-pastagem foram tratadas com carbonato de cálcio, sulfato de cálcio ou com a mistura destas fontes de cálcio, com o propósito de avaliar seus efeitos sobre as principais reações eletroquímicas do solo, principalmente em relação à adição de sulfato. A seguir, as amostras foram colocadas em potes sobre as amostras Bw. Após a incubação, foram lixiviadas com sete volume-poros de água destilada, em aplicações semanais. Terminado o período de lixiviação, procedeu-se à análise de cálcio, magnésio, potássio, e alumínio trocáveis, pH em água, pH em KCl 1 mol L-1, acidez potencial e determinação do ponto de efeito salino nulo (PESN. Nas amostras superficiais, a aplicação de sulfato resultou em diminuições do teor de alumínio trocável, sem alterar a CTC-efetiva, a CTC a pH 7,0, o PESN, sendo a principal reação do sulfato provavelmente sua precipitação com o alumínio. Nas amostras subsuperficiais, a aplicação de sulfato de cálcio resultou em alterações no PESN, CTC-efetiva e CTC a pH 7,0, sem diminuir os teores de alumínio trocável, sendo que a principal reação do sulfato com o solo foi, provavelmente, de adsorção química. A aplicação isolada de carbonato de cálcio neutralizou a acidez, em todos os seus componentes, de forma mais eficiente que os demais tratamentos, sendo que a mistura das duas fontes de cálcio proporcionou alterações na acidez do solo comparáveis à aplicação isolada de carbonato de cálcio.Soil samples of an Oxisol collected from the soil A horizon under forest or grassland, and the oxic horizon (B were used for the study of cation movement. The A-forest and A-grassland samples were treated with calcium carbonate, calcium sulphate or with a combination of both, with the

  10. Calcium signaling and epilepsy.

    Science.gov (United States)

    Steinlein, Ortrud K

    2014-08-01

    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  11. Physical and biogeochemical controls on the variability in surface pH and calcium carbonate saturation states in the Atlantic sectors of the Arctic and Southern Oceans

    Science.gov (United States)

    Tynan, Eithne; Clarke, Jennifer S.; Humphreys, Matthew P.; Ribas-Ribas, Mariana; Esposito, Mario; Rérolle, Victoire M. C.; Schlosser, C.; Thorpe, Sally E.; Tyrrell, Toby; Achterberg, Eric P.

    2016-05-01

    Polar oceans are particularly vulnerable to ocean acidification due to their low temperatures and reduced buffering capacity, and are expected to experience extensive low pH conditions and reduced carbonate mineral saturations states (Ω) in the near future. However, the impact of anthropogenic CO2 on pH and Ω will vary regionally between and across the Arctic and Southern Oceans. Here we investigate the carbonate chemistry in the Atlantic sector of two polar oceans, the Nordic Seas and Barents Sea in the Arctic Ocean, and the Scotia and Weddell Seas in the Southern Ocean, to determine the physical and biogeochemical processes that control surface pH and Ω. High-resolution observations showed large gradients in surface pH (0.10-0.30) and aragonite saturation state (Ωar) (0.2-1.0) over small spatial scales, and these were particularly strong in sea-ice covered areas (up to 0.45 in pH and 2.0 in Ωar). In the Arctic, sea-ice melt facilitated bloom initiation in light-limited and iron replete (dFe>0.2 nM) regions, such as the Fram Strait, resulting in high pH (8.45) and Ωar (3.0) along the sea-ice edge. In contrast, accumulation of dissolved inorganic carbon derived from organic carbon mineralisation under the ice resulted in low pH (8.05) and Ωar (1.1) in areas where thick ice persisted. In the Southern Ocean, sea-ice retreat resulted in bloom formation only where terrestrial inputs supplied sufficient iron (dFe>0.2 nM), such as in the vicinity of the South Sandwich Islands where enhanced pH (8.3) and Ωar (2.3) were primarily due to biological production. In contrast, in the adjacent Weddell Sea, weak biological uptake of CO2 due to low iron concentrations (dFeoceans highlights the need for spatially resolved surface data of carbonate chemistry variables but also nutrients (including iron) in order to accurately elucidate the large gradients experienced by marine organisms and to understand their response to increased CO2 in the future.

  12. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    Directory of Open Access Journals (Sweden)

    H. Kouyoumdjian

    2006-01-01

    Full Text Available Levels of coarse (PM10-2.5 and fine (PM2.5 particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH42SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO32 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean

  13. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    Science.gov (United States)

    Kouyoumdjian, H.; Saliba, N. A.

    2006-05-01

    Levels of coarse (PM10-2.5) and fine (PM2.5) particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH4)2SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO3)2 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean countries, relatively

  14. Smoking, calcium, calcium antagonists, and aging.

    Science.gov (United States)

    Nicita-Mauro, V

    1990-01-01

    Aging is characterized, besides other changes, by a progressive increase in calcium content in the arterial wall, which is enhanced by diabetes mellitus, osteoporosis, arterial hypertension, and tabagism. As to tabagism, experiments in animals have shown that nicotine can increase calcium content of the arterial wall, and clinical studies have demonstrated that cigarette smoking induces peripheral vasoconstriction, with consequent increase in blood pressure levels. In order to study the role of calcium ions in the pathogenesis of the vasoconstrictive lesions caused by "acute" smoking, the author has studied the peripheral vascular effects of the calcium-channel antagonist nifedipine, a dihydropyridine derivative, and calcitonin, a hypocalcemizing hormone which possess vasoactive actions on 12 elderly regular smokers (mean age 65.8 years). The results demonstrated that both nifedipine (10 mg sublingually 20 min before smoking) and salmon calcitonin (100 MRC U/daily intramuscularly for three days) are able to prevent peripheral vasoconstriction evaluated by Doppler velocimetry, as well as the increase of blood pressure induced by smoking. On the basis of our results, the author proposes that cigarette smoking-induced vasoconstriction is a calcium-mediated process, which can be hindered by drugs with calcium antagonist action. PMID:2226675

  15. Effect of combining different calcium concentration dialysate on calcium balance in peritoneal dialysis patients

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui-ping; WU Bei; LU Li-xia; QIAO Jie; WU Xiang-lan; WANG Mei

    2012-01-01

    Background Calcium and phosphorus metabolic disturbance are common in dialysis patients and associated with increased morbidity and mortality.Therefore,maintaining the balance of calcium and phosphate metabolism and suitable intact parathyroid hormone(iPTH)level has become the focus of attention.We investigated the effects of different peritoneal dialysate calcium concentrations on calcium phosphate metabolism and iPTH in continuous ambulatory peritoneal dialysis(CAPD)patients.Methods Forty stable CAPD patients with normal serum calcium were followed for six months of treatment with 1.25 mmol/L calcium dialysate(DCa1.25,PD4,22 patients)or a combination of 1.75 mmol/L calcium dialysate(DCa1.75,PD2)and PD4(18 patients)twice a day respectively.Total serum calcium(after albumin correction),serum phosphorus,iPTH,alkaline phosphatase(ALP)and blood pressure were recorded before and 1,3 and 6 months after treatment commenced.Results No significant difference was found in baseline serum calcium,phosphorus between the two patient groups,but the levels of iPTH were significantly different.No significant changes were found in the dosage of calcium carbonate and active vitamin D during 6 months.In the PD4 group,serum calcium level at the 1st,3rd,6th months were significantly lower than the baseline(P<0.05).There was no significant difference in serum phosphorus after 6 months treatment.iPTH was significantly higher(P<0.001)at the 1st,3rd,and 6th months compared with the baseline.No differences were seen in ALP and blood pressure.In the PD4+PD2 group,no significant changes in serum calcium,phosphorus,iPTH,ALP and BP during the 6-month follow-up period.Conclusions Treatment with 1.25 mmol/L calcium dialysate for six months can decrease serum calcium,increase iPTH,without change in serum phosphorus,ALP,and BP.The combining of PD4 and PD2 can stabilize the serum calcium and avoid fluctuations in iPTH levels.

  16. Conversion coatings prepared or treated with calcium hydroxide solutions

    Science.gov (United States)

    Minevski, Zoran (Inventor); Clarke, Eric (Inventor); Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor)

    2002-01-01

    A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.

  17. Microwave -assisted Synthesis Calcium Carbonate in Water/Ethylene Glycol Mixed Solvents%水/乙二醇混合溶剂中微波辅助合成碳酸钙

    Institute of Scientific and Technical Information of China (English)

    孙新园; 张群; 陈敏; 潘玉锁

    2012-01-01

    在水/乙二醇混合溶剂中,通过微波辅助加热的方法,研究溶液过饱和度对碳酸钙成核生长的影响。分别采用扫描电子显微镜(SEM)、X-射线粉末衍射(XRD)对所得的样品进行了表征。结果表明,过饱和度的改变对碳酸钙形貌和晶型具有非常明显的影响,分别获得了菱面体状方解石、纤维捆扎状文石、松树枝状球霰石为主体的碳酸钙晶体。%In this paper, the influence of diffident supersaturations of the bulk solution on the nucleation and crystal growth of calcium carbonate is studied through the method of microwave - assisted beating in water/ethylene glycol mixed solvents. The ob- tained crystals are characterized by scanning electron microscopy (SEM) and X -ray diffraction (XRD). The resuh shows that the morphologies and polymorphs are obvious varied from rhombohedron calcite, fiber strapping aragonite to pine - dendritic vater- ite with the changes of supersaturations.

  18. Study on High Hiding Power Calcium Carbonate/TiO2 Composite White Pigment%高遮盖力碳酸钙/钛白粉复合白色颜料研究

    Institute of Scientific and Technical Information of China (English)

    王岩岩; 张俭; 盛嘉伟

    2013-01-01

    The calcium carbonate/TiO2 (C/TCP) was prepared by mechano-chemical method. The hiding power of C/TCP was improved by adding a small amount of high hiding power iron oxide red and iron oxide black pigments. The influences of additive amount of iron oxide red and iron oxide black to the properties of C/TCP were studied. The results showed that the hiding power of C/TCP was 21.1g/m2, whiteness was 83.4%, oil absorption was 12.8 g/100g, while the iron oxide black content was 0.08%.%采用机械力化学法制备了碳酸钙/TiO2复合粉体(C/TCP),通过添加微量高遮盖力的氧化铁红、氧化铁黑颜料提高了复合粉体的遮盖力,研究了氧化铁红、氧化铁黑添加量对复合粉体性能的影响。结果表明,当氧化铁黑含量为0.08%时,复合粉体的遮盖力为21.1 g/m2、白度为83.4%、吸油量为12.8 g/100 g。

  19. Measurements of intracellular calcium

    International Nuclear Information System (INIS)

    Intracellular calcium concentration ([Ca2+]i) has been measured in cultured cells by using Fura-2 load cells and a computer-controlled Perkin Elmer LS-5B spectrofluorometer. Increased [Ca2+]i in cells exposed to extracellular bilirubin was observed both with and without extracellular calcium. However, the increase was considerable larger with extracellular calcium. The enhancement of [Ca2+]i became smaller with decreasing bilirubin/BSA (bovine serum albumine) ratio. 5 refs., 5 figs

  20. [Study on the Influence of Mineralizer on the Preparation of Calcium Aluminates Based on Infrared Spectroscopy].

    Science.gov (United States)

    Fan, Wei; Wang, Liang; Zheng, Huai-li; Chen, Wei; Tang, Xiao-min; Shang, Juan-fang; Qian, Li

    2015-05-01

    In this study, effect of mineralizer on the structure and spectraproperties of calcium aluminates formation was extensively studied. Medium or low-grade bauxite and calcium carbonate were used as raw material and mineralizer CaF2 as additive. Calcium aluminates can be obtained after mixing fully, calcination and grinding. The prepared calcium aluminates can be directly used for the production of polyaluminiumchloride (PAC), polymeric aluminum sulfate, sodium aluminate and some other water treatment agents. The calcium aluminates preparation technology was optimized by investigating the mass ratio of raw materials (bauxiteand calcium carbonate) and mineralizer CaF2 dosage. The structure and spectra properties of bauxite and calcium aluminates were characterized by Fourier transform infrared(FTIR) spectroscopy analysis and the mineralization mechanism of the mineralizer was studied. FTIR spectra indicated that the addition of mineralizer promoted the decomposition and transformation of the diaspore, gibbsite and kaolinite, the decomposition of calcium carbonate, and more adequately reaction between bauxite and calcium carbonate. In addition, not only Ca in calcium carbonate and Si in bauxite were more readily reacted, but also Si-O, Si-O-Al and Al-Si bonds in the bauxite were more fractured which contributed to the release of Al in bauxite, and therefore, the dissolution rate of Al2O3 could be improved. The dissolution rate of Al2O3 can be promoted effectively when the mineralizer CaF2 was added in a mass ratio amount of 3%. And the mineralizer CaF2 cannot be fully functioned, when its dosage was in a mass percent of 1. 5%. Low-grade bauxite was easier to sinter for the preparation of calcium aluminates comparing with the highgrade one. The optimum material ratio for the preparation of calcium aluminates calcium at 1 250 °C was the mass ratio between bauxite and calcium carbonate of 1 : 0. 6 and mineralizer CaF2 mass ratio percent of 3%. PMID:26415430

  1. Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake

    DEFF Research Database (Denmark)

    Lorenzen, J.K.; Nielsen, S.; Holst, J.J.;

    2007-01-01

    Background: High calcium intake has been shown to increase fecal fat excretion. Objective: Our aim was to examine whether a high calcium intake from dairy products or from supplements affects postprandial fat metabolism and appetite through fat malabsorption. Design: Four different isocaloric meals...... were tested in 18 subjects according to a randomized crossover design. The test meals contained high (HC meal: 172 mg/MJ), medium (MC meal: 84 mg/MJ), or low (LC meal: 15 mg/MJ) amounts of calcium from dairy products or a high amount of calcium given as a calcium carbonate supplement (Suppl meal: 183...... and approximate to 15% lower after the MC meal (P = 0.0495) and approximate to 17% lower after the HC meal (P = 0.02) than after the Suppl meal. No consistent effects of calcium on appetite sensation, or on energy intake at the subsequent meal, or on the postprandial responses of cholecystokinin, glucagon...

  2. Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women

    DEFF Research Database (Denmark)

    Baeksgaard, L; Andersen, K P; Hyldstrup, Lars

    1998-01-01

    of treatment was 2 years. Bone mineral density (BMD) was measured at the lumbar spine, hip and forearm. A dietary questionnaire was administered twice during the study and revealed a fairly good calcium and vitamin D intake (919 mg calcium/day; 3.8 micrograms vitamin D/day). An increase in lumbar spine BMD......We undertook a double-masked, randomized, placebo-controlled trial to evaluate the effect of a calcium and vitamin D supplement and a calcium supplement plus multivitamins on bone loss at the hip, spine and forearm. The study was performed in 240 healthy women, 58-67 years of age. Duration....... Together with significant changes in serum calcium and serum parathyroid hormone, this indicates that a long-term calcium and vitamin supplement of 1 g elementary calcium (calcium carbonate) and 14 micrograms vitamin D3 increases intestinal calcium absorption. A positive effect on BMD was demonstrated...

  3. Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women

    DEFF Research Database (Denmark)

    Baeksgaard, L; Andersen, K P; Hyldstrup, Lars

    1998-01-01

    We undertook a double-masked, randomized, placebo-controlled trial to evaluate the effect of a calcium and vitamin D supplement and a calcium supplement plus multivitamins on bone loss at the hip, spine and forearm. The study was performed in 240 healthy women, 58-67 years of age. Duration...... of treatment was 2 years. Bone mineral density (BMD) was measured at the lumbar spine, hip and forearm. A dietary questionnaire was administered twice during the study and revealed a fairly good calcium and vitamin D intake (919 mg calcium/day; 3.8 micrograms vitamin D/day). An increase in lumbar spine BMD....... Together with significant changes in serum calcium and serum parathyroid hormone, this indicates that a long-term calcium and vitamin supplement of 1 g elementary calcium (calcium carbonate) and 14 micrograms vitamin D3 increases intestinal calcium absorption. A positive effect on BMD was demonstrated...

  4. CO2 capture by carbonated carbide slag seriflux after drying in calcium looping cycles%湿法碳酸化电石渣干燥后在钙循环中的 CO2捕集

    Institute of Scientific and Technical Information of China (English)

    何梓睿; 李英杰; 刘长天

    2015-01-01

    A new carbide slag (CS)seriflux utilization was proposed.The flue gas from a coal-fired plant was first bubbled into CS seriflux for CO2 capture. The obtained carbonated carbide slag seriflux (CCSS)was dried and utilized as a CO2 sorbent in the calcium looping cycles.The CO2 capture behavior of the dried CCSS and the raw CS was investigated in a dual fixed-bed reactor and a thermo-gravimetric analyzer. The effects of carbonation time, calcination temperature and carbonation temperature on CO2 capture performance of CCSS in the multiple carbonation/calcination cycles were studied.The results show that the CO2 capture capacity of CCSS was higher than that of CS. Calcined at 950 ℃,CCSS shows better carbonation reactivity than CS,which benefits CO2 capture under severe calcination conditions.In the range of 700 to 725 ℃ for the carbonation, CCSS shows the optimal CO2 capture performance. The calcined CCSS shows better porous microstructure than the calcined CS.The calcined CCSS exhibits a larger surface area and pore volume in the cycles,which favors a higher CO2 capture capacity in the multiple cycles.%提出一种电石渣资源化利用的新方法.首先,将燃煤电站烟气通入电石渣浆液捕集 CO2.碳酸化后的电石渣浆液(CCSS)干燥后在钙循环中作为吸收剂捕集 CO2.在双固定床反应器和热重仪上研究了 CCSS和电石渣的 CO2捕集特性,包括碳酸化时间、煅烧温度和碳酸化温度对 CCSS 循环碳酸化特性的影响.结果表明 CCSS 的 CO2捕集性能和碳酸化速率均高于电石渣.煅烧温度为950℃时,CCSS 比电石渣具有更好反应活性,这有利于在恶劣煅烧条件下捕集 CO2.在700~725℃,CCSS 表现出了最佳的碳酸化性能.煅烧CCSS 比电石渣孔隙结构更好,具有更大比表面积和比孔容,这有利于循环捕集 CO2.

  5. 湿法碳酸化电石渣干燥后在钙循环中的 CO2捕集%CO2 capture by carbonated carbide slag seriflux after drying in calcium looping cycles

    Institute of Scientific and Technical Information of China (English)

    何梓睿; 李英杰; 刘长天

    2015-01-01

    提出一种电石渣资源化利用的新方法.首先,将燃煤电站烟气通入电石渣浆液捕集 CO2.碳酸化后的电石渣浆液(CCSS)干燥后在钙循环中作为吸收剂捕集 CO2.在双固定床反应器和热重仪上研究了 CCSS和电石渣的 CO2捕集特性,包括碳酸化时间、煅烧温度和碳酸化温度对 CCSS 循环碳酸化特性的影响.结果表明 CCSS 的 CO2捕集性能和碳酸化速率均高于电石渣.煅烧温度为950℃时,CCSS 比电石渣具有更好反应活性,这有利于在恶劣煅烧条件下捕集 CO2.在700~725℃,CCSS 表现出了最佳的碳酸化性能.煅烧CCSS 比电石渣孔隙结构更好,具有更大比表面积和比孔容,这有利于循环捕集 CO2.%A new carbide slag (CS)seriflux utilization was proposed.The flue gas from a coal-fired plant was first bubbled into CS seriflux for CO2 capture. The obtained carbonated carbide slag seriflux (CCSS)was dried and utilized as a CO2 sorbent in the calcium looping cycles.The CO2 capture behavior of the dried CCSS and the raw CS was investigated in a dual fixed-bed reactor and a thermo-gravimetric analyzer. The effects of carbonation time, calcination temperature and carbonation temperature on CO2 capture performance of CCSS in the multiple carbonation/calcination cycles were studied.The results show that the CO2 capture capacity of CCSS was higher than that of CS. Calcined at 950 ℃,CCSS shows better carbonation reactivity than CS,which benefits CO2 capture under severe calcination conditions.In the range of 700 to 725 ℃ for the carbonation, CCSS shows the optimal CO2 capture performance. The calcined CCSS shows better porous microstructure than the calcined CS.The calcined CCSS exhibits a larger surface area and pore volume in the cycles,which favors a higher CO2 capture capacity in the multiple cycles.

  6. Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    M' Bemba-Meka, Prosper [Universite de Montreal, Human Toxicology Research Group (TOXHUM), Department of Environmental and Occupational Health, Main Station, P.O. Box 6128, Montreal, QC (Canada); University of Louisville, Department of Pharmacology and Toxicology, Center for Genetics and Molecular Medicine, Louisville, KY (United States); Lemieux, Nicole [Universite de Montreal, Department of Pathology and Cellular Biology, Faculty of Medicine, Main Station, P.O. Box 6128, Montreal, QC (Canada); Chakrabarti, Saroj K. [Universite de Montreal, Human Toxicology Research Group (TOXHUM), Department of Environmental and Occupational Health, Main Station, P.O. Box 6128, Montreal, QC (Canada)

    2007-02-15

    Human peripheral lymphocytes from whole blood cultures were exposed to either soluble form of nickel carbonate hydroxide (NiCH) (0-60 {mu}M), or of nickel subsulfide (Ni{sub 3}S{sub 2}) (0-120 {mu}M), or of nickel oxide (NiO) (0-120 {mu}M), or nickel sulfate (NiSO{sub 4}) (0-120 {mu}M) for a short duration of 2 h. The treatments occurred 46 h after the beginning of the cultures. The cultures were harvested after a total incubation of 72 h, and sister-chromatid exchange (SCE), replication index (RI), and mitotic index (MI) were measured for each nickel compound. The soluble form of NiCH at 30 {mu}M but those of Ni{sub 3}S{sub 2} and NiO at 120 {mu}M produced significant increase in the SCE per cell compared to the control value, whereas NiSO{sub 4} failed to produce any such significant increase. Except NiSO{sub 4}, the soluble forms of NiCH, Ni{sub 3}S{sub 2}, and NiO produced significant cell-cycle delay (as measured by the inhibition of RI) as well as significant inhibition of the MI at respective similar concentrations as mentioned above. Pretreatment of human blood lymphocytes with catalase (H{sub 2}O{sub 2} scavenger), or superoxide dismutase (superoxide anion scavenger), or dimethylthiourea (hydroxyl radical scavenger), or deferoxamine (iron chelator), or N-acetylcysteine (general antioxidant) inhibited NiCH-induced SCE, and changes in RI and MI. This suggests the participation of oxidative stress involving H{sub 2}O{sub 2}, the superoxide anion radical, the hydroxyl radical, and iron in the NiCH-induced genotoxic responses. Cotreatment of NiCH with either verapamil (inhibitor of intracellular calcium ion ([Ca{sup 2+}]{sub i}) movement through plasma membranes), or dantrolene (inhibitor of [Ca{sup 2+}]{sub i} release from sarcoplasmic reticulum), or BAPTA (Ca{sup 2+} chelator) also inhibited the NiCH-induced responses. These results suggest that [Ca{sup 2+}]{sub i} is also implicated in the genotoxicity of NiCH. Overall these data indicate that various types

  7. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  8. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  9. Study on silicate-calcium phosphate composite bone cement modified by sodium carbonate solution%碳酸钠液相改性硅-磷酸钙复合骨水泥研究

    Institute of Scientific and Technical Information of China (English)

    李青林; 杨帮成

    2014-01-01

    以质量分数70%的硅酸三钙(Ca3 SiO5,C3 S)和30%磷酸氢钙(CaHPO4·2H2 O,DCPD)复合得到的 DCP30粉体材料为固相,以不同浓度碳酸钠溶液为液相,得到碳酸钠改性骨水泥材料。使用 X 射线衍射(XRD)、扫描电镜(SEM)、万能材料试验机等手段对不同浓度改性材料进行表征。结果显示:添加碳酸钠液相,骨水泥初、终凝时间分别缩短至16和55 min;调控碳酸钠液相浓度,可以实现短期抗压强度优化;使用碳酸钠后,固化自发生成羟基磷灰石(HA)。浸泡模拟体液(SBF)7天,材料表面覆盖 HA 沉积层,生物活性优越。碳酸钠液相改性硅-磷酸钙复合骨水泥体系的水化性能、短期力学性能以及生物活性均优于Ca3 SiO5水泥和未改性硅-磷酸钙复合骨水泥,是一种良好的生物活性骨修复材料。%Sodium carbonate solution modified bone cement materials have been prepared using sodium carbonate solution with dif-ferent concentration as liquid phase and DCP30 powder material obtained by 70% mass fraction tricalcium silicate (Ca3 SiO5 ,C3 S) and 30% dicalcium phosphate (CaHPO4 ·2H2 O,DCPD)as the solid phase.The materials were characterized by the means of X-ray diffraction (XRD),scanning electron microscope (SEM)and mechanical test.The results show that the initial and final set-ting time of bone cement is reduced to 16 and 55 min by the addition of sodium carbonate solution.The short-term mechanical strength can be optimized by controlling the concentration of sodium carbonate solution.Hydroxyapatite (HA)can spontaneously form after the use of sodium carbonate solution.HA forms on the surface of bone-cement after immersion in SBF for 7 days,indi-cating its good bioactivity.The modified system shows better hydraulic property,bioactivity and mechanical strength than Ca3 SiO5 cement and unmodifiled silicate-calcium phosphate composite bone cement,suggesting the new system is a

  10. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free calciu

  11. 电磁场对碳酸钙反应结晶成核影响的研究%Research on the effect of electromagnetic field on calcium carbonate crystallization nucleation

    Institute of Scientific and Technical Information of China (English)

    王建国; 陆帅; 李松

    2014-01-01

    Based on the self-made experimental device used for measuring the critical supersaturation of CaCO3 so-lution,the effects of electromagnetic field action on the CaCO3 supersaturation and nucleation induction period has been studied by comparative tests with magnetism and without magnetism on calcium carbonate solution conductivi-ty-titration fluid volume. The influence of magnetic field effect on CaCO3 on the supersaturation and nucleation in-duction period is studied. The changes of CaCO3 supersaturation and nucleation induction period,under different frequencies and magnetic fields action,are observed. A large number of experimental results show that under the ac-tion of electromagnetic field,the supersaturation of CaCO3 decreases,nucleation speed increases,and nucleation in-duction period decreases.%基于自制CaCO3溶液临界过饱和度实验装置,通过测量加磁与未加磁对比实验的碳酸钙溶液电导率-滴定液容积,研究了电磁场作用对CaCO3过饱和度及成核诱导期的影响。在不同频率的电磁场作用下观察了CaCO3过饱和度及成核诱导期的变化,大量实验结果表明:在电磁场作用下,CaCO3的过饱和度减小,成核速率加快,成核诱导期减小。

  12. Studies on Formulation and Preparation of Children Calcium Carbonate and Vitamin D3 Chewable Tablets%小儿碳酸钙维D3咀嚼片处方工艺研究

    Institute of Scientific and Technical Information of China (English)

    秦序锋; 王开颖; 彭晓国; 董调雅; 刘华本

    2015-01-01

    目的:研究小儿碳酸钙维D3咀嚼片的处方工艺及检查方法。方法处方采用正交试验,通过对辅料用量的筛选为考察项目,以颗粒休止角为考察指标,最终确定最优的处方及工艺。结果采用辅料麦芽糊精、阿司巴坦、枸橼酸、山梨醇做为辅料,采用20目筛网制粒,在60℃条件下烘干,水分控制在2.5%以下,稳定性良好,符合质量要求。结论采用该处方及生产工艺,符合咀嚼片剂的要求,可以用于大生产。%OBJECTIVE The prescription process and inspection method on children Calcium Carbonate and Vitamin D3 Chewable Tablets.METHODS The prescription by orthogonal test,through the screening of excipients as research project,to the repose angle,tablet hardness,friability,content as the indexes,finally determined the opti-mal prescription and technology.RESULTS To usr the excipients maltodextrin,aspartame,citric acid,sorbitol as materials,using 20 mesh sieve granulation,drying in the 60 conditions,Moisture control below 2.5%,good stability and meet the quality requirements.CONCLUSION To use the materials and production process, in accordance with the requirements of a chewable tablet,Can be used for mass production.

  13. 碳酸钙阻垢效果影响因素实验研究%An Experimental Study on Factors Affecting the Effect of Calcium Carbonate Scale Inhibition

    Institute of Scientific and Technical Information of China (English)

    李洪建; 孙建波; 孟雪; 唐鑫; 王德玉

    2016-01-01

    In order to study the influence of the combined action of multiple factors on the calcium carbonate scale inhibi-tion,100 mg/L of PESA screened out by static scale inhibition method were employed in the experimental research on the factors affecting calcium carbonate scale inhibition. First,we studied the impact of inhibitor type,inhibitor concentration, supersaturation,salinity,and pH on calcium carbonate scaling inhibition separately by single factor analysis. Then orthogonal experiment was designed based on the experimental results of different factors. The experiment studied the combined action of temperature,salinity,partial pressure of CO2 and pH. The result of the single factor analysis showed that the scale inhibition rate of PESA decreased as supersaturation increased,and climbed up first and then declined slowly as salinity or pH increased. Scale inhibition rate reached 95.85%at the critical salinity,which turned to be 50 g/L. And optimal inhibition rate was 90%when pH varied from 6.5 to 8.0. The result of the orthogonal experiment showed that temperature was the key factor on scale inhibition rate with 8.2 Xbar-R and 0.002 P. Followed by pH and CO2 partial pressure,the influence of salt content was neg-ligible. Finally,the optimum combination of influencing factors was obtained,and the analysis showed that 60 ◦C ,7.5 pH, 1.5 MPa CO2 partial pressure,5.5 g/L salinity would produce the best scaling inhibition result.%为了研究多因素共同作用对碳酸钙阻垢效果的影响,采用静态阻垢法对筛选出的浓度为100 mg/L的PESA阻垢剂开展了碳酸钙阻垢效果影响因素研究。首先,采用单因素分析法开展了阻垢剂类型、浓度、碳酸钙过饱和度、含盐量以及pH值对碳酸钙阻垢效果的影响实验,然后,根据单因素实验结果设计正交实验,通过正交实验研究了含盐量、温度、CO2分压和pH值共同作用时对碳酸钙阻垢效果的影响。单因素实验结果表明

  14. Prescrption screening of compound calcium carbonate effervescing granules and research on its dissolution%复方碳酸钙泡腾颗粒剂处方筛选及溶出度考察

    Institute of Scientific and Technical Information of China (English)

    张学农; 陶亮; 王新玲; 周云龙

    2001-01-01

    OBJECTIVE:In this paper,the prescription composition aboutcompound calicium carbonate effervescing granules had been selected,and the calicium ion released rate from granules had also heen researched.METHODS:The quantity of lactose,sorbitol and PVP in the prescription was selected with uniform design based on the loss on drying of the granules. Calcium ion concentration was determined with atomic absorption spectrophotometry using caltrate D as reference. Dissolution was performed in normal saline or dilute hydrochloric acid solution with basket method.RESULTS:The best composition was lactose∶PVP∶sorbitol=70∶5∶10.CONCLUSIONS:The calicium releases fast from compound calicium carbonate effervescing granules produced according to the optimiazing prescription and more safe for long-term use.%目的:对复方碳酸钙颗粒剂的处方组成进行筛选,并考察制剂中钙元素累积溶出度。方法:以颗粒剂干燥失重(%)为指标,均匀试验设计法筛选出复方碳酸钙颗粒剂处方中乳糖、山梨醇、PVP等辅料用量。以钙尔奇D为对照,原子吸收分光光度法测定钙离子浓度,转篮法比较了2种药物中钙元素在不同生理盐水和稀盐酸液中的累积溶出度。结果:碳酸钙泡腾颗粒剂的最佳处方组成为:乳糖∶PVP∶山梨醇=70∶5∶10;颗粒剂与钙尔奇D片在生理盐水中的钙累积溶出参数Td差异有极显著性(P<0.01),在稀盐酸中无差异,45min内钙溶出均大于99%钙尔奇(P>0.05)。钙尔奇D水溶液呈碱性,碳酸钙颗粒剂呈酸性。结论:经处方筛选后制成的复方碳酸钙泡腾颗粒剂释药快,水溶液中可迅速溶解,长期使用更安全。

  15. Synthesis and Evaluation of Environmentally Friendly Calcium Isostearate Detergent with Excellent Oil Solubility

    Institute of Scientific and Technical Information of China (English)

    Wang Yonglei; Li Haiyun; Fang Hongxia; Xu Tao; Lu Lulu

    2016-01-01

    This article describes a method for synthesizing an excellent oil soluble calcium isostearate detergent using isostearic acid and calcium hydroxide as main starting materials. Reaction conditions, including the molar ratios of calcium hydroxide to isostearic acid, methanol to calcium hydroxide and water to calcium hydroxide, the carbonation temperature, the CO2flow rate, and the volume of injected CO2, were optimized. Under the optimized conditions, a high alkalinity calcium isostearate detergent with a total base number (TBN) of 358 mgKOH/g and an overbased calcium isostearate detergent with a value of TBN equating to 406 mgKOH/g could be obtained. Finally, the properties of the calcium isostearate detergent were evaluated by the size distribution analysis, the thermogravimetric analysis (TGA) and the coking tendency tester.

  16. Effect of CuO on the Formation Mechanism of Calcium Sulphoaluminate

    Institute of Scientific and Technical Information of China (English)

    MA Suhua; SHEN Xiaohong; HUANG Yeping; ZHONG Baiqian

    2008-01-01

    Calcium sulphoaluminate was prepared with chemical reagents in this paper.The formation mechanism of calcium sulphoaluminate and effect of CuO on the formation mechanism of calcium sulphoaluminate were investigated by the chemical analysis,X-ray diffraction(XRD),and differential scanning calorimetry(DSC).The results show that there are three ways in the formation of calcium sulphoaluminate.CuO can promote the decomposition of calcium carbonate and decrease the formation temperature of calcium sulphoaluminate(C4A3S).When the burning temperature is below 1000℃,the addition of CuO can promote the formation of calcium sulphoaluminate,while CuO can not favor the formation of calcium sulphoaluminate above 1000℃.

  17. The Antimicrobial Action of Silver Halides in Calcium Phosphate

    OpenAIRE

    Kalniņa, D; Gross, K; Onufrijevs, P.; Daukšta, E; Nikolajeva, V; Stankeviciute, Z; Kareiva, A.

    2015-01-01

    Silver halides represent a yet unexplored avenue for imparting antimicrobial activity to calcium phosphates. Negtively charged silver halide colloids (AgI, AgBr and AgCl) were added to synthesized amorphous calcium phosphate. Concurrent melting of silver halides and crystallization to carbonated apatite at 700 oC increased the silver halide surface area available to bacteria and formed a lower solubility apatite. The effect of the matrix solubility on antimicrobial response could ...

  18. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  19. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine;

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone...... and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport...

  20. Randomized, placebo-controlled, calcium supplementation trial in pregnant Gambian women accustomed to a low calcium intake: effects on maternal blood pressure and infant growth 1 2 3 4

    OpenAIRE

    Goldberg, Gail R.; Jarjou, Landing MA; Tim J Cole; Prentice, Ann

    2013-01-01

    Background: Dietary calcium intake in rural Gambian women is very low (∼350 mg/d) compared with international recommendations. Studies have suggested that calcium supplementation of women receiving low-calcium diets significantly reduces risk of pregnancy hypertension. Objective: We tested the effects on blood pressure (BP) of calcium carbonate supplementation (1500 mg Ca/d) in pregnant, rural Gambian women. Design: The study was a randomized, double-blind, parallel, placebo-controlled supple...

  1. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R. (Portola Valley, CA); Farsad, Kasra (San Jose, CA); Camire, Chris (San Jose, CA); Patterson, Joshua (Freedom, CA); Fernandez, Miguel (San Jose, CA); Yaccato, Karin (San Jose, CA); Thatcher, Ryan (Sunnyvale, CA); Stagnaro, John (Santa Clara, CA); Chen, Irvin (Santa Clara, CA); Omelon, Sidney (Willowdale, CA); Hodson, Keith (Palo Alto, CA); Clodic, Laurence (Sunnyvale, CA); Geramita, Katharine (Seattle, CA); Holland, Terence C. (Auburn Township, OH); Ries, Justin (Chapel Hill, NC)

    2012-02-14

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  2. Toughening of polypropylene with calcium carbonate particles

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Westzaan, C.; Huetink, J.; Gaymans, R.J.

    2003-01-01

    Polypropylene–CaCO3 composites were prepared on a twin screw extruder with a particle content of 0–32 vol%. The influence of particle size (0.07–1.9 μm) and surface treatment of the particles (with and without stearic acid) on the toughening properties were studied. The matrix molecular weight of th

  3. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R. (Portola Valley, CA); Farsad, Kasra (San Jose, CA); Camire, Chris (San Jose, CA); Chen, Irvin (San Jose, CA)

    2011-04-12

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  4. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R. (Portola Valley, CA); Farsad, Kasra (San Jose, CA); Camire, Chris (San Jose, CA); Chen, Irvin (Santa Clara, CA); Ginder-Vogel, Matthew (Los Gatos, CA); Fernandez, Miguel (San Jose, CA)

    2012-05-15

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  5. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R. (Portola Valley, CA); Farsad, Kasra (San Jose, CA); Camire, Chris (San Jose, CA); Patterson, Joshua (Freedom, CA); Ginder-Vogel, Matthew (Los Gatos, CA); Yaccato, Karin (San Jose, CA); Stagnaro, John (Santa Clara, CA); Devenney, Martin (Mountain View, CA); Ries, Justin (Chapel Hill, NC)

    2012-03-20

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  6. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Constantz, Brent R. (Portola Valley, CA); Farsad, Kasra (San Jose, CA); Camire, Chris (San Jose, CA); Patterson, Joshua (Freedom, CA); Ginder-Vogel, Matthew (Los Gatos, CA); Yaccato, Karin (San Jose, CA); Stagnaro, John (Santa Clara, CA); Devenney, Martin (Mountain View, CA); Ries, Justin (Chapel Hill, NC)

    2011-11-22

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  7. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Irvin; Fernandez, Miguel; Patterson, Joshua; Devenney, Martin

    2015-01-13

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  8. Methods and compositions using calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Irvin; Fernandez, Miguel; Patterson, Joshua; Devenney, Martin

    2015-06-16

    Provided herein are compositions and methods including hydraulic cement, supplementary cementitious material, and/or self-cementing material. Methods for making the compositions and using the compositions are provided.

  9. 碳酸钙高填充聚乳酸复合材料的制备及性能%Preparation of Poly( lactic acid)Composite with High Calcium Carbonate Content and Its Properties

    Institute of Scientific and Technical Information of China (English)

    袁华; 丁峰; 葛芳芳; 任杰

    2011-01-01

    Poly ( lactic acid ) ( PLA) composite was studied by filling with high calcium carbonate in present of chain extender Joncryl and plasticizer ATBC.The structure and properties of composite were carefully tested and characterized by electronic tensile testing machine,SEM,ARES Rheometer.Experimental results showed that the tensile strength and flexural strength were greatly improved with high content of CaCO3,but the impact strength got some loss.However,the impact strength of the composites was still higher than pure PLA when the content of CaCO3,was from 30 % to 60 %.The storage modulus and elasticity of the composites increased with the increase of CaCO,content.The shear-viscosity of the composites decreased with the increasing of shear rate.%在扩链剂Joncryl和增塑剂乙酰柠檬酸三丁酯存在下,采用微米级碳酸钙对聚乳酸(PLA)基体进行了高填充改性,制备碳酸钙高填充聚乳酸基复合材料,并用电子拉力机、扫描电镜、ARES流变仪等手段对材料的结构与性能等进行测试与表征.结果表明:碳酸钙高含量时可以明显提高材料的拉伸强度、弯曲强度,而材料的冲击强度会有所下降,但质量含量在30% ~60%时复合材料的冲击强度仍高于纯聚乳酸.随碳酸钙含量的增加,材料的储能模量逐渐增大.碳酸钙的加入可以提高材料的弹性,材料的剪切黏度随剪切速率的增大而逐渐降低.

  10. Rheological behavior of nanometer calcium carbonate and dioctyl phthalate slurry%纳米碳酸钙/邻苯二甲酸二辛酯浆液的流变性

    Institute of Scientific and Technical Information of China (English)

    王训遒; 蒋登高

    2009-01-01

    考察了未改性纳米CaCO3/邻苯二甲酸二辛酯(DOP)浆液(DOP-1)、改性纳米CaCO3 WO-12/DOP浆液(DOP-2)和改性纳米CaCO3WO-13/DOP浆液(DOP-3)的流变性,以评价纳米CaCO3的改性效果,结果表明:纳米CaCO3/DOP浆液的流动特性均符合Casson模型;与DOP-1和DOP-3相比,DOP-2黏度较低,Casson屈服应力较小,稳定性较好,触变性较大.说明改性纳米CaCO3WO-12与DOP相容性好,其改性效果最佳,与其在丙烯酸树脂中分散效果最好一致.纳米CaCO3/DOP浆液流变性可用于评价纳米CaCO3的改性效果.%The rheological behavior of the unmodified nano-CaCO3 (nanometer calcium carbonate)/dioctyl phthalate (DOP) slurry (DOP-1), the modified nano-CaCO3 WO-12/DOP slurry (DOP-2) and the modified nano-CaCO3 WO-13/DOP slurry (DOP-3) was investigated for evaluating the modification effect of CaCO3. The results show that the rheological behavior of the nano-CaCO3/DOP slurry conforms to the Casson model. Compared with DOP-1 and DOP-3, DOP-2 presents low viscosity, less Cassen yield stress, good stability and higher thixotropy, which indicates that the modified nanometer CaCO3 WO-12 is well compatible with DOP and obtains the best modification effect. It is consistent with the best dispersion of WO-12 in acrylic resin. The rheological behavior of the nano-CaCO3/DOP slurry can be used in evaluating the modification effect of nano-CaCO3.

  11. A new surface-modified technology of cement mortar using calcium carbonate biodeposition%一种基于微生物沉积的水泥砂浆表面改性技术

    Institute of Scientific and Technical Information of China (English)

    朱飞龙; 李庚英; 杜虹; 崔鹏飞; 吴亚庆; 刘海峰

    2013-01-01

    The paper presents a new surface modification of cement mortar using biodeposition involving a method employing sporosarcina pasteurii (bacillus pasteurii) bacteria and using cement mortar power as covering layer. It was possible to obtain reduction in water absorption of cement mortars. The effect was more visible in case of using nutrient medium containing urea, and the coefficient of capillary suction of the treated cement mortar was reduced by 58%. Presence of spherical and columnar vaterite and calcite calcium carbonate crystals filling-voids in cement mortar was confirmed by observations under SEM and XRD. The total porosity reduced by 40% was demonstrated by using mercury intrusion porosimetry (MIP).%某些微生物能诱导沉积出具有胶凝和矿化作用的碳酸钙,可以用来修复和密实水泥基材料.但是目前微生物沉积技术工艺复杂,成本高,不利于推广和工程应用.尝试采用水泥砂浆粉作为覆膜载体,利用巴斯德芽孢杆菌对水泥砂浆进行表面处理.研究结果表明,采用该方法能使巴斯德芽孢杆菌在水泥试块表面诱导沉积出碳酸钙,有效减少水泥砂浆的吸水性能.当微生物采用含有尿素的培养基培养时,表面改性后的水泥砂浆吸水系数降低了58%.采用压汞测试仪(MIP)分析了处理前后水泥试块表层的孔隙率以及孔结构特征.发现采用巴斯德芽孢杆菌处理后,样品孔隙率显著降低,大孔的含量显著减少,当微生物采用含有尿素的培养基培养时,总孔隙率降低了40%.X射线衍射仪(XRD)和场发射扫描电镜(SEM)分析表明,经微生物技术处理后水泥试块内部的孔洞和裂缝被球霰石和方解石填充.

  12. 关中农田土壤有机质和碳酸钙空间变异特征及其机理分析%Spatial variability of soil organic matter and calcium carbonate and its reason in Guanzhong farmland

    Institute of Scientific and Technical Information of China (English)

    王金贵; 王益权; 徐海; 冯小龙; 王永健; 伏耀龙; 张育林

    2009-01-01

    In order to study the effect and influence of human activities on spatial variability of soil organic matter and calcium carbonate in farmland, an experiment was made in the farmland of Duzhai Village, Yangling, Shaanxi, and meanwhile, the variation mechanism was analyzed. The results showed that the average soil organic matter contents in top soil and substratum soil were 20.64 g/kg and 10.81 g/kg, while the coefficients of variation were 0.087 and 0.013 respectively, belonging to a low level; the average soil organic matter content in subsurface was 16.96 g/kg belonging to a moderate level; a low level of variation coefficient of calcium carbonate appeared in all the soil layers. Through analyzing the contour map of soil spatial variability, the same changing law was found in soil organic matter and calcium carbonate content in the horizon direction, which showed that higher soil organic matter and calcium carbonate content appeared in the points closer to the village, forming a concentric circle.%为了研究人为活动对于农田土壤有机质含量和碳酸钙空间变异性的作用与影响,在陕西杨凌杜寨村研究了农田土壤有机质和碳酸钙空间变异性,并对其变异机理进行了分析.试验表明:表层0~10 cm和底层20~40 cm土壤有机质平均值分别20.64 g/kg和10.81 g/kg,变异系数为0.087和0.013,均属弱变异程度;亚表层10~20 cm土壤有机质平均值为16.96 g/kg,变异系数为0.130,属中等变异程度;碳酸钙均属弱变异程度.经过对土壤特性空间分布等值线图的分析得出:在水平方向上,土壤有机质和碳酸钙均具有相同的变异规律,距离村庄越近土壤有机质和碳酸钙含量越高,以村庄为圆心土壤有机质和碳酸钙含量呈同心圆式的空间变异特征.

  13. Mercury Control with Calcium-Based Sorbents and Oxidizing Agents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas K. Gale

    2005-07-01

    This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including

  14. Effect of Indole Butyric Acid on the Transportation of Stored Calcium in Malus hupehensis Rhed. Seedling

    Institute of Scientific and Technical Information of China (English)

    LI Jia; YANG Hong-qiang; YAN Tian-li; SHU Huai-rui

    2006-01-01

    Calcium (Ca) plays an important role in the metabolism of higher plants. Recently, research on Ca2+ in plants has been focused especially at the cellular and molecular levels. Uptake, transport, and distribution are also very important for Ca to accomplish its function at the whole-plant level. In this experiment, one-year-old apple seedlings (M. hupehensis Rehd.) were investigated to determine the distribution of stored Ca, the different forms of Ca, and Ca2+-ATPase activity after treatment with indole butyric acid (IBA). The results showed that the total Ca measured in mature leaves and Ca2+-ATPase activity in tender leaves were higher compared with those in the control (CK). Calcium nitrate and calcium chloride (ALe-Ca) and calcium phosphate and calcium carbonate (HAC-Ca) decreased in both mature leaves and shoots,whereas water-soluble calcium (H2O-Ca), calcium pectate (NaCl-Ca), and calcium oxalate (HCl-Ca) increased. The percentage of active calcium, calcium pectate, and water-soluble calcium increased, whereas the percentage of calcium phosphate and calcium carbonate decreased. When treated with IBA, calcium fractions and percentage of the different forms of Ca was enhanced in 40 part per million (ppm) IBA compared with 20 ppm IBA and water. The results indicated that IBA increased the percentage of both active calcium (NaCl-Ca and H2O-Ca) in tender shoots and boosted the transportation of stored Ca in plants. IBA promoted Ca2+-ATPase activity and Ca2+ uptake in tender shoots of M. hupehensis. It can improve the total Ca contents and the relative percentage of Ca.

  15. Thermochemistry of calcium oxide and calcium hydroxide in fluoride slags

    Science.gov (United States)

    Chattopadhyay, S.; Mitchell, A.

    1990-08-01

    Calcium oxide activity in binary CaF2-CaO and ternary CaF2-CaO-Al2O3 and CaF2-CaO-SiO2 slags has been determined by CO2-slag equilibrium experiments at 1400 °C. The carbonate ca-pacity of these slags has also been computed and compared with sulfide capacity data available in the literature. The similarity in trends suggests the possibility of characterizing carbonate capacity as an alternative basicity index for fluoride-base slags. Slag-D2O equilibrium experi-ments are performed at 1400°C with different fluoride-base slags to determine water solubility at two different partial pressures of D2O, employing a new slag sampling technique. A novel isotope tracer detection technique is employed to analyze water in the slags. The water solubility data found show higher values than the previous literature data by an order of magnitude but show a linear relationship with the square root of water vapor partial pressure. The activity of hydroxide computed from the data is shown to be helpful in estimating water solubility in in-dustrial electroslag remelting (ESR) slags.

  16. CO2 sequestration using calcium-silicate concrete

    International Nuclear Information System (INIS)

    This study examined the feasibility of sequestering carbon dioxide (CO2) using calcium silicate while developing a strong and durable concrete building product. In addition to offering a solution for a safe, environmentally sound manner to sequester carbon dioxide, the carbonation curing of concrete has the potential to provide a permanent storage for exhaust CO2. The calcium compounds in cement react with CO2 through the early-age carbonation curing, forming geologically stable calcium carbonates. In this study, both type 10 and type 30 Portland cements were used as CO2 binders in concretes with 0, 25, 50, and 75 per cent quartz aggregates and lightweight aggregates. The sequestration took place in a chamber under 0.5 MPa pressure at ambient temperature for a duration of 2 hours. The recovered CO2 from flue gas was simulated using a 100 per cent concentration of CO2. The CO2 uptake was quantified by direct mass gain and by an infrared-based carbon analyzer. The performance of the carbonated concrete was evaluated by its strength. In 2 hours, a CO2 uptake of 9 to 16 per cent by binder mass was achieved. The carbonation curing of concrete was found to provide better strength, stability, permeability and abrasion resistance in concrete products without steel reinforcement. 10 refs., 4 tabs., 10 figs

  17. Diversity of calcium speciation in leaves of Primulina species (Gesneriaceae

    Directory of Open Access Journals (Sweden)

    Qingwen Qi

    2014-07-01

    Full Text Available Primulina is a genus containing typical “stone plants” or “cave plants” that show a high degree of edaphic specialization in the karst limestone regions of southwest China. Most species of the genus occur only on calcareous soils developed from carbonate bedrock, while a few species are found only on the red soil developed from the Danxia landform or acidic soil developed from sandshale bedrock. The aim of this study is to investigate the diversity and characteristics of calcium absorption and storage in Primulina from different soil substrates. Calcium in leaves was determined for plants sampled from 15 populations representing 11 Primulina species occurring on calcareous soil, red soil or acid soil. We analyzed the main types of calcium found in leaves, and compared the calcium content within and among species from different soil types. The results revealed a general high level of leaf calcium content in Primulina species compared with other plants from the karst regions of southwest China. However, we found a significant difference in calcium content among Primulina species from different soil types, with high average calcium content (2,285.6 mg/kg in Primulina from calcareous soil relative to low levels present in Primulina from both acid soil (1,379.3 mg/kg and Danxia red soil (1,329.1 mg/kg. The main form of calcium stored in most Primulina species (9 out of 11 was pectate calcium, which accounted for 31.6–64.2% of the total calcium in the leaves. In contrast, for two species, P. linearifolia and P. medica, which grow on soil with a pH > 8, the main calcium form was soluble calcium, which accounted for about 40% of the total calcium in plant leaves. In addition, differences in calcium amount and type were recorded within species from either the same or different soil types. These results suggest that there is variation in calcium speciation found in Primulina at both interspecific and intraspecific levels. Our findings provide a

  18. Effect of nano-calcium-enriched milk on calcium metabolism in ovariectomized rats.

    Science.gov (United States)

    Park, Heung-Sik; Ahn, Joungjwa; Kwak, Hae-Soo

    2008-09-01

    This study was designed to examine the effect of different kinds of calcium enrichment on serum and urine indices of mineral status in ovariectomized rats. Twenty-four 7-week-old Sprague-Dawley female rats were divided into four groups, ovariectomized, and fed diets containing the following: (1) Control, non-Ca-enriched milk; (2) OVX1, calcium carbonate-enriched milk; (3) OVX2, ionized Ca-enriched milk; and (4) OVX3, nano-Ca-enriched milk. After 18 weeks of feeding, the food efficiency ratio in the nano-Ca-fed group was significantly lower compared with those in the Control and OVX2 groups. There was no difference in serum and fecal Ca among the groups. The bone/total alkaline phosphatase ratio was significantly higher in rats fed milk enriched with nano-Ca (59%) and calcium carbonate (62%) than in control (44%) animals. Urinary Ca was the highest in the nano-Ca-enriched group; however, urinary excretions of deoxypyridinoline and hydroxyproline were significantly decreased in the nano-Ca-enriched group. The present results indicate that consumption of nano-Ca-enriched milk resulted in an increase of urinary excretion of calcium and a decrease in deoxypyridinoline and hydroxyproline in ovariectomized rats.

  19. Influence of calcium on glucose biosensor response and on hydrogen peroxide detection

    OpenAIRE

    Labat-Allietta, Nathalie; Thevenot, Daniel,

    1998-01-01

    International audience Of small species capable of reaching a platinum working electrode from biological samples, calcium cations have been found to inhibit significantly glucose biosensor responses. The sensitivities to glucose of sensors immersed in carbonate buffer saline solutions decreased when 0.5 mM calcium chloride was added. The degree of inhibition was proportional to the glucose response in the absence of calcium (0-17% of the normalized current). Likewise, sensor sensitivities ...

  20. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Science.gov (United States)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  1. Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2014-05-01

    Full Text Available Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA. Evidence has been presented that during the initial phase of HA synthesis poorly crystalline carbonated apatite is deposited. Recent data summarized here indicate that during early bone formation calcium carbonate deposits enzymatically formed by CA, act as potential bioseeds for the precipitation of calcium phosphate mineral onto bone-forming osteoblasts. Two different calcium carbonate phases have been found during CA-driven enzymatic calcium carbonate deposition in in vitro assays: calcite crystals and round-shaped vaterite deposits. The CA provides a new target of potential anabolic agents for treatment of bone diseases; a first CA activator stimulating the CA-driven calcium carbonate deposition has been identified. In addition, the CA-driven calcium carbonate crystal formation can be frozen at the vaterite state in the presence of silintaphin-2, an aspartic acid/glutamic acid-rich sponge-specific protein. The discovery that calcium carbonate crystals act as bioseeds in human bone formation may allow the development of novel biomimetic scaffolds for bone tissue engineering. Na-alginate hydrogels, enriched with biosilica, have recently been demonstrated as a suitable matrix to embed bone forming cells for rapid prototyping bioprinting/3D cell printing applications.

  2. A sensor for calcium uptake

    OpenAIRE

    Collins, Sean; Meyer, Tobias

    2010-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified.

  3. Children's Bone Health and Calcium

    Science.gov (United States)

    ... Trials Resources and Publications Children's Bone Health and Calcium: Condition Information Skip sharing on social media links ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  4. Carbonate and organic carbon content changes over last 20 ka in the Southeastern Arabian Sea: Paleoceanographic implications

    Digital Repository Service at National Institute of Oceanography (India)

    Narayana, A.C.; Naidu, P.D.; Shinu, N.; Nagabhushanam, P.; Sukhija, B.S.

    Two Gravity cores (AAS 38-4 and AAS 38-5) recovered from the eastern Arabian Sea were analyzed for calcium carbonate (CaCO3), organic carbon, aluminium (Al) and titanium (Ti) in order to understand the calcium carbonate and terrigenous fluctuations...

  5. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  6. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about...

  7. Calcium aluminate in alumina

    Science.gov (United States)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  8. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium con

  9. Enzymatic pH Control for Biomimetic Deposition of Calcium Phosphate Coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.; Reza Nejadnik, M.; Nudelman, F.; Walboomers, X.F.; Riet, te J.; Habibovic, P.; Tahmasebi Birgani, Z.; Yubao, L.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study has focused on enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of Calcium Phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium co

  10. Effect of acute acid loading on acid-base and calcium metabolism

    DEFF Research Database (Denmark)

    Osther, Palle J

    2006-01-01

    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12 m...

  11. Surface Modification of Ultrafine Calcium Carbonate Powders as Plastic Fillers with Co-modifier%采用混合改性剂改性超细碳酸钙塑料填料

    Institute of Scientific and Technical Information of China (English)

    段好; 王燕民; 潘志东

    2011-01-01

    The ultrafine powders of calcium carbonate (CaCO3) was modified with a co-modifier of oleic acid and maleic anhydride in a high intensive stirrer. The surface structures of prepared samples were characterized by various methods like Raman spectroscopy, thermogravimetric analysis, specific surface area, particles size distribution and rheology. The results indicated that there existed a physical adsorption of modifiers on the surface of CaCO3 particles. The surface free energies and polar components of the particles modified with the co-modifier were lower than those of the unmodified CaCO3 particles. The CaCOj particles modified with the co-modifier appeared hydrophobic and lipophilic. The rheological behavior of the suspensions composed of the unmodified and modified CaCQ with paraffin was compared. The results showed that the apparent viscosity of the suspension with the modified CaCO3 powders was lower than that of the suspension with unmodified CaCO3 powders. A polyethylene plastic filled by CaCO3 powder modified with the co-modifier could had a higher whiteness and better mechanical properties.%采用油酸-马来酸酐混合改性剂干法改性可用于塑料填料的超细CaCO3粉体,借助拉曼光谱、差热分析、比表面积、粒度分布和流变性等分析手段,对不同改性情况下的CaCO3颗粒表面进行表征.利用万能材料实验机和色差计对填充了改性前后CaCO3粉体的聚乙烯塑料进行力学性能和物理性能测试分析.结果表明:油酸-马来酸酐混合改性剂通过干法改性可以物理吸附在CaCO3颗粒的表面,使得CaCO3粉体的比表面积增大,颗粒表面能、界面张力大大降低并表现出较好的亲油疏水性,制成的石蜡- CaCO3悬浮液的表观黏度大大下降;还可以使聚乙烯塑料具有较好的力学性能,同时聚乙烯塑料具有较高的白度.

  12. The application status and advantages of calcium sulfate in dietary calcium%硫酸钙在膳食钙中的应用现状及优势

    Institute of Scientific and Technical Information of China (English)

    佘荆丽; 张杰; 黄明杰

    2014-01-01

    In the context of supplement of the calcium in China, nutritionists generally advice that people should sup-plement calcium through high calcium food, reduce supplement intake. In this paper, the substances relatively com-monly used in dietary were discussed. The four kinds of inorganic calcium salt discussed were calcium sulfate, calcium carbonate, calcium chloride, and calcium phosphate. It was concluded that natural, non-toxic, and high cost-efficiency calcium sulfate was the best in the application in dietary calcium.%中国式补钙的背后,国内外营养学界普遍建议,通过高钙食物来补充钙,减少补充剂摄入量。通过探讨在膳食中较为常用的硫酸钙、碳酸钙、氯化钙和磷酸钙4种无机钙盐在食品中的应用及其优缺点,最终认为天然、无毒、高性价比的硫酸钙在膳食钙的应用中更胜一筹。

  13. Calcium signaling in taste cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  14. Fruit Calcium: Transport and Physiology

    Directory of Open Access Journals (Sweden)

    Bradleigh eHocking

    2016-04-01

    Full Text Available Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact fruit development, physical traits and disease susceptibility through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to ripening and the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g. blossom end rot in tomatoes or bitter pit in apples. This review works towards an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved

  15. DISTILLATION OF CALCIUM

    Science.gov (United States)

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  16. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  17. Distal Renal Tubular Acidosis and Calcium Nephrolithiasis

    Science.gov (United States)

    Moe, Orson W.; Fuster, Daniel G.; Xie, Xiao-Song

    2008-09-01

    Calcium stones are commonly encountered in patients with congenital distal renal tubular acidosis, a disease of renal acidification caused by mutations in either the vacuolar H+-ATPase (B1 or a4 subunit), anion exchanger-1, or carbonic anhydrase II. Based on the existing database, we present two hypotheses. First, heterozygotes with mutations in B1 subunit of H+-ATPase are not normal but may harbor biochemical abnormalities such as renal acidification defects, hypercalciuria, and hypocitraturia which can predispose them to kidney stone formation. Second, we propose at least two mechanisms by which mutant B1 subunit can impair H+-ATPase: defective pump assembly and defective pump activity.

  18. Molecular mechanisms of crystallization impacting calcium phosphate cements

    Science.gov (United States)

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  19. Calcium – how and why?

    Indian Academy of Sciences (India)

    J K Jaiswal

    2001-09-01

    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears that during the origin and early evolution of life the Ca2+ ion was given a unique opportunity to be used in several biological processes because of its unusual physical and chemical properties.

  20. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  1. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid

    2013-07-01

    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  2. Calcium measurement methods

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-09-01

    Full Text Available Rightly stressed by prof. Wolfgang Walz in the Preface to the series Neuromethods series, the “careful application of methods is probably the most important step in the process of scientific inquiry”. Thus, I strongly suggest to all those interested in calcium signaling and especially to the new-comers in the hot topic of neuroscience (which has so much space even in science-society debate for its implications in legal issues and in the judge-decision process to take profit from this so well edited book. I am saying this since prof. Verkhratsky and prof. Petersen......

  3. Prevention of nutritional rickets in Nigerian children with dietary calcium supplementation.

    Science.gov (United States)

    Thacher, Tom D; Fischer, Philip R; Isichei, Christian O; Zoakah, Ayuba I; Pettifor, John M

    2012-05-01

    Nutritional rickets in Nigerian children usually results from dietary calcium insufficiency. Typical dietary calcium intakes in African children are about 200mg daily (approximately 20-28% of US RDAs for age). We sought to determine if rickets could be prevented with supplemental calcium or with an indigenous food rich in calcium. We enrolled Nigerian children aged 12 to 18months from three urban communities. Two communities were assigned calcium, either as calcium carbonate (400mg) or ground fish (529±109mg) daily, while children in all three communities received vitamin A (2500IU) daily as placebo. Serum markers of mineral homeostasis and forearm bone density (pDEXA) were measured and radiographs were obtained at enrollment and after 18months of supplementation. The overall prevalence of radiographic rickets at baseline was 1.2% and of vitamin D deficiency [serum 25(OH)DRickets developed in 1, 1, and 2 children assigned to the calcium tablet, ground fish, and control groups, respectively (approximate incidence 6.4/1000 children/year between 1 and 3years of age). Children who developed rickets in the calcium-supplemented groups had less than 50% adherence. Compared with the group that received no calcium supplementation, the groups that received calcium had a greater increase in areal bone density of the distal and proximal 1/3 radius and ulna over time (Prickets.

  4. 21 CFR 573.240 - Calcium periodate.

    Science.gov (United States)

    2010-04-01

    ... with calcium hydroxide or calcium oxide to form a substance consisting of not less than 60 percent by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food... Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used...

  5. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  6. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  7. 聚丙烯酸钠的合成及其相对分子质量对CaCO3分散性的影响%Synthesis of sodium polyacrylate and the effect of its relative molecular mass on dispersion of calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    范宝安

    2011-01-01

    The author prepared sodium polyacrylate with different relative molecular mass via aqueous solution polymerization in the presence of Na2S2O8 as initiator and NaHSO3 as chain transfer agent by regulating the molar ratio of the initiator to the chain transfer agent. The effect of the relative molecular mass of sodium polyacrylate as dispersing agent on dispersancy of calcium carbonate was studied. The results show that the dispersancy effectiveness of the sodium polyacrylate is closely dependent on its relative molecular mass and is undesirable in the case of too high or too low relative molecular mass. The dispersancy to the calcium carbonate attains its maximum when the viscosity average molecular mass of sodium polyacrylate is in the range of 3 000 to 3 500.%采用水溶液聚合法,以NaSO作引发剂,NaHSO作链转移剂,通过调整引发剂和链转移剂之间的摩尔比制备了具有不同相对分子质量的聚丙烯酸钠.研究了聚丙烯酸钠作为分散剂时,其相对分子质量对CaCO分散性的影响.结果表明:聚丙烯酸钠的分散效果与其相对分子质量有很大关系,相对分子质量过高或过低,分散效果都不理想.当聚丙烯酸钠黏均分子量在3 000-3 500时,对CaCO的分散性最好.

  8. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

    Science.gov (United States)

    Bae, Yun Jung; Bu, So Young; Kim, Jae Young; Yeon, Jee-Young; Sohn, Eun-Wha; Jang, Ki-Hyo; Lee, Jae-Cheol; Kim, Mi-Hyun

    2011-12-01

    Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

  9. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000490.htm Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D Do I Need? Amounts of calcium are ...

  10. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download PDFs ... helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin D ...

  11. Preliminary investigation and analysis on the health effects of workers exposed to nano calcium carbonate%纳米碳酸钙对作业人群健康影响初步调查分析

    Institute of Scientific and Technical Information of China (English)

    梁丽红; 陈嘉斌; 黄汉林; 黄振烈; 蒙得志; 阮小林; 董明; 杨展鸿; 赖关朝; 黄伟欣; 杨爱初

    2014-01-01

    Objective To assess the exposure levels of nano-calcium carbonate ( CaCO3 ) in workplace and the health effect on workers exposed to nano-CaCO3 in the production enterprise .Methods According to cluster sampling , 35 workers exposed to nano-CaCO3 in a nano-CaCO3 production enterprise and 35 workers without dust and toxicant exposure in a pu blic institution were chosen as the exposed group and the control group respectively .The two groups were well matched in age and length of service ( exposed ∶control =1∶1 ) .Particle counting level and time weighted average concentration (CTWA) of nano-CaCO3 were detected in the workplace of the exposed group , and the accumulated CTWA level of nano-CaCO3 were calculated .Health examination was conducted and the health status was compared to the two groups .Dose-effect relationship between pulmonary ventilation hypofunction and exposed level of nano -CaCO3 in the exposed group was analyzed.Results The median of particle counting level and CTWA of nano-CaCO3 were 15 716 particles/cm3 and 2.419 mg/m3 respectively .Packaging post showed the highest levels both in the above two detecting indexes .The rates of pulmo-nary ventilation hypofunction in the exposed group was higher than that in the control group (57.1%vs 5.7%, P0.05).In accordance with the including criteria and exclusive criteria of the independent variables standards were 0.10 and 0.15, respectively, Logistic regression analysis showed dose-effect relationship between the pulmonary venti-lation hypofunction and the accumulation CTWA level of nano-CaCO3 after adjustment by gender , age, smoking and drinking (odds ratio:2.74, 95%confidence interval:0.88-8.56, P=0.08).Conclusion Exposure to nano-CaCO3 can reduce lung ventilation function , induce immune response and change electrolytes .Pulmonary function tests could be used as a physical examination project in the workers exposed to nano-CaCO3 .%目的:了解纳米碳酸钙生产企业工作场所纳米碳酸钙

  12. Carbonated concrete blocks for CO2 captation

    OpenAIRE

    Courard, Luc; Parmentier, Véronique; Michel, Frédéric

    2015-01-01

    The CO2 captation process called carbonation, improves specific properties of the concrete during the conversion of carbon dioxide CO2 into calcium carbonate CaCO3. Current environmental concerns motivate the study of carbonation in order to maximize the absorption of carbon dioxide. Moreover, lightweight concrete with bio-based products knows an interesting development in the construction field, especially as thermal insulation panels for walls in buildings. Concrete blocks produced with mis...

  13. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk;

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... in the char conversion process. Comprehensive global equilibrium calculations predicted important characteristics of the inorganic ash residue. Equilibrium calculations predict the formation of liquid salt if sufficient amounts of Ca are added and according to experiments as well as calculations calcium binds...

  14. Comparing the calcium bioavailability from two types of nano-sized enriched milk using in-vivo assay.

    Science.gov (United States)

    Erfanian, Arezoo; Rasti, Babak; Manap, Yazid

    2017-01-01

    Calcium bioavailability from two types of enriched (calcium citrate and calcium carbonate) milks homogenized to a nano-sized particle distribution has been studied among 48 female Sprauge-dawley rats. Skim milk powder was enriched with some essential nutrients (Inulin, DHA & EPA, vitamins B6, K1, and D3) as enhancers of calcium bioavailability according to recommended dietary allowances of the West European and North American. Ovariectomized and ovariectomized-osteoporosis rats were used as a menopause and menopause-osteoporosis model, respectively. Although, nano-sized enriched milk powders had the greatest calcium bioavailability among the groups, but bioavailability of nano-sized calcium carbonate-enriched-milk was significantly (P<0.05) better than nano-sized calcium citrate-enriched-milk. Moreover, the trends were similar for bone calcium, strength and morphology. Therefore, based on the current results the calcium carbonate nano-sized enriched milk could be an effective enriched milk powder in ovariectomized-osteoporosis and ovariectomized rats as a model of menopause-osteoporosis and menopause women. PMID:27507516

  15. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  16. Sensitivity to calcium intake in calcium stone forming patients.

    Science.gov (United States)

    Heilberg, I P; Martini, L A; Draibe, S A; Ajzen, H; Ramos, O L; Schor, N

    1996-01-01

    The absorptive or renal origin of hypercalciuria can be discriminated using an acute oral calcium load test (ACLT). Of 86 patients with calcium oxalate kidney stones, 28 (23%) were found to be hypercalciuric (HCa) and 58 (67%) normocalciuric (NCa) on their customary free diet, containing 542 +/- 29 mg/day (mean +/- SE) of calcium. Since the apparently normal 24-hour calcium excretion of many calcium stone formers (CSF) may be due to a combination of high calcium absorption with moderately low calcium intake, all patients were investigated by ACLT. Of 28 HCa patients, 13 (46%) were classified as absorptive (AH) and 15 (54%) as renal hypercalciuria (RH). Of the 58 NCa patients, 38 (65%) presented features of intestinal hyperabsorption and were therefore designated as AH-like, and 20 (35%) as RH-like. To further elucidate the role of dietary calcium in these CSF, a chronic calcium load test (CCLT), consisting of 1 g/day of oral Ca for 7 days, was designed. A positive response to the CCLT was considered to occur when urinary calcium (uCa) was > or = 4 mg/ kg/24 h on the 7th day. Among NCa patients, 29% of AH-like subjects responded to the CCLT and 71% did not; 50% of RH-like subjects also responded and 50% did not. In HCa patients, 85% of AH and 67% of RH subjects maintained uCa > or = 4 mg/kg/24 h after the CCLT and 15% of AH and 23% of RH subjects did not. However, a significant additional increase in mean uCa was not observed among HCa patients. All patients were submitted to a second evaluation of fasting calciuria (Ca/Cr). A modification of this parameter was noticed in 89% of RH-like and 78% of RH patients. In conclusion, these data suggest the presence of subpopulations of patients sensitive or not to calcium intake, regardless of whether the acute response to a calcium overload test suggested AH or RH. The CCLT disclosed dietary hypercalciuria in 21/58 (36%) of previously NCa patients. In these NCa patients, the ACLT may be replaced by the CCLT. The distinction

  17. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail: julien.bizzozero@gmail.com; Scrivener, Karen L.

    2015-10-15

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  18. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast.

    Science.gov (United States)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-06-16

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage.

  19. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  20. Calcium oxalate crystals in eucalypt ectomycorrhizae: morphochemical characterization.

    Science.gov (United States)

    Pylro, Victor Satler; de Freitas, André Luiz Moreira; Otoni, Wagner Campos; da Silva, Ivo Ribeiro; Borges, Arnaldo Chaer; Costa, Maurício Dutra

    2013-01-01

    Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants. PMID:23844062