WorldWideScience

Sample records for calcium carbonate growth

  1. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  2. The effect of pigeon yolk sac fluid on the growth behavior of calcium carbonate crystals.

    Science.gov (United States)

    Song, Juan; Cheng, Haixia; Shen, Xinyu; Tong, Hua

    2015-03-01

    Previous experiments have proved that thermodynamically unstable calcium carbonate vaterite can exist for long periods in the yolk sac of a pigeon embryo. The aim of this article was to demonstrate the effect of in vitro mineralization of yolk sac fluid on calcium carbonate by direct precipitation. Experiments were conducted using pigeon yolk sac fluid and using lecithin extracted from pigeon yolk sac fluid as a control to investigate the regulating effects of the organic components in the embryo on the formation of the calcium carbonate precipitate. Multiple characterization methods were employed to study the various morphological patterns, sizes, crystal growth, and crystal phase transformations of the calcium carbonate precipitates as regulated by the yolk sac fluid extracted at different stages of incubation. The experimental results demonstrate that as the incubation proceeds towards the later stages, the composition and environmental features of the yolk sac fluid become more favorable for the formation of relatively unstable calcium carbonate phases with high energies of the vaterite state. The experiments conducted with extracted lecithin as the template for crystal growth yielded similar results. A large amount of organic molecules with polar functional groups carried by the yolk sac fluid have strong effects and can both initially induce the crystallization and regulate the aggregation of calcium carbonate. Furthermore, this regulation process is found to be closely related to the lecithin contained in yolk sac fluid. These observations confirm the changes in yolk sac fluid composition during incubation have significant effects on the production of vaterite, which implicates the calcium transport during embryo growth. PMID:25681477

  3. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  4. Calcium carbonate growth in the presence of water soluble cellulose ethers

    International Nuclear Information System (INIS)

    Calcium carbonate precipitation was performed in the presence of methyl cellulose (MC) and two kinds of hydroxyethyl cellulose (HEC FD-10000, HEC FD-30000). The results demonstrated that the final product morphology and structure of CaCO3 crystals are highly sensitive to the concentration of the cellulose ethers aqueous solution. By precisely controlling their concentrations, all these three cellulose ethers solutions have the ability of protecting metastable vaterite from thermodynamically transforming into stable calcite. The intermediate products investigation showed to some extent the phase transformation of calcium carbonate in its growing process from metastable vaterite to calcite and indicated that the calcium carbonate crystal growth in HEC solutions occurs through dissolution and reprecipitation process. Calcium carbonate growth in both presence of HEC and ethanol or Mg2+ was also examined. This work demonstrates the potential of water soluble cellulose ethers in controlling biominerals crystallization and growth. The results are revelatory for biomineralization and fabricating new organic-inorganic hybrids based on cellulose derivatives.

  5. Growth rate and calcium carbonate accumulation of Halimeda macrolobaDecaisne (Chlorophyta: Halimedaceae in Thai waters

    Directory of Open Access Journals (Sweden)

    Jaruwan Mayakun

    2014-08-01

    Full Text Available Halimeda macroloba Decaisne can utilize the CO2 used for carbon fixation in photosynthesis and use bicarbonate as the main carbon source for calcification. Although Halimeda has been recognized as a carbon sink species, the calcium accumulation of Halimeda species in Thai waters remain poorly understood. In this study, the highest density of H. macroloba was 26 thalli/m2 and Halimeda quickly produced 1-2 new segments/thallus/day or 20.1 mg dry weight/thallus/day. Its calcium carbonate accumulation rate was 16.6 mg CaCO3 /thallus/day, or 82.46 % per thallus. In Thailand, however, only three scientific papers of growth rate and CaCO3 accumulation rate of H. macroloba have been found and collected. Of these records, the mean density was 26-104 thalli/m2 . The growth rate of H. macroloba was around 1-2 mg dry weight/day and the CaCO3 accumulation rate varied around 41-91%. Thus, Halimeda has a great potential to decrease the carbon dioxide concentration in the ocean.

  6. Tuning calcium carbonate growth through physical confinement and templating with amyloid-like polypeptide aggregates

    Science.gov (United States)

    Colaco, Martin Francis

    that this methodology does not extend to three-dimensional confined systems, as the water has no method of escape. Through the addition of an insoluble hydroscopic polymer to our microreactors, amorphous calcium carbonate of controllable sizes can be grown. However, crystalline calcium carbonate cannot be grown without some type of templating. Studies of calcium carbonate templating have predominantly been performed on SAMs or in poorly characterized gels or protein films. The use of ordered protein or polypeptide aggregates for templating permits both geometry and charge surface density to be varied. We have studied the kinetics and final morphology of ordered aggregates of poly-L-glutamic acid and a copolymer of glutamic acid and alanine through experiments and simulations. Electrostatics, not structure, of the monomer appeared to be the dominating factor in the aggregation, as pH and salt concentration changes led to dramatic changes in the kinetics. Examining our experimental with existing models provided inconsistent results, so we developed a new model that yielded physically realistic rate constants, while generating better fits with longer lag phases and faster growths. However, despite the similarity of aggregation conditions, the two polypeptides yielded vastly different morphologies, with the PEA forming typical amyloid-like fibrils and PE forming larger, twisted lamellar aggregates. Templating with these aggregates also yielded dramatically different patterns. Polycrystalline rhombohedral calcite with smooth faces and edges grew on PEA fibrils, with minimal templating in evidence. However, on PE, numerous calcite crystals with triangular projections tracked the surface of the aggregate. The PE lamellae are characterized by extensive beta-sheet structure. In this conformation, the glutamic acid spacings on the surface of the aggregates can mimic the spacings of the carboxylates in the calcite lattice. In addition, the high negative charge density on the

  7. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    Science.gov (United States)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  8. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo.

    Science.gov (United States)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-07-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits. PMID:26745389

  9. The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals

    Science.gov (United States)

    Gower, Laurie Anne

    The addition of low levels of polyaspartate to a supersaturated calcium carbonate (CaCOsb3) solution leads to unusual morphologies in the inorganic phase. Spherulitic vaterite aggregates with helical protrusions, and distorted calcite crystals that contain spiral pits, have been produced. The helical particles are coated with an inorganic membrane that appears to be responsible for the helical twist. The polymer also causes deposition of thin CaCOsb3 tablets and films on the glass substrate. Two distinct types of films are deposited; the first is a mosaic of calcite crystals, and the second is spherulitic vaterite. In situ observations of the crystallization reaction have determined that the thin-film morphology is a result of the phase separation of a hydrated CaCOsb3/polymer liquid-precursor, whereby accumulation of isotropic droplets creates a coating on the substrate, and subsequent dehydration and crystallization yields birefringent CaCOsb3 films. During the amorphous to crystalline transition, incremental growth steps lead to "transition bars" and sectored calcite tablets. This in vitro system was originally modeled after certain aspects of CaCOsb3 biomineralization, in which the soluble proteins extracted from biominerals tend to have high levels of aspartic acid residues. Based on the similarities between features exhibited by the products of this system and those in biominerals, an argument has been presented to suggest that this polymer-induced liquid-precursor (PILP) process is involved in the morphogenesis of CaCOsb3 biominerals. These features include the following: thin CaCOsb3 tablets that grow laterally; tablets that express unstable crystallographic faces; non-faceted single crystals with curved surfaces; spatially-delineated single crystals; sectored calcite tablets; hollow-shell spheres; calcium carbonate cements; and magnesium-bearing calcites. This work has demonstrated that a means of morphological control can be accomplished through non

  10. Binding of calcium and carbonate to polyacrylates.

    Science.gov (United States)

    Tribello, Gareth A; Liew, CheeChin; Parrinello, Michele

    2009-05-21

    Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion. PMID:19400592

  11. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls

    International Nuclear Information System (INIS)

    For the purpose of studying the mediation of organic matrix on the crystallization of calcium carbonate, water soluble matrix (WSM), acid soluble matrix (ASM) and acid insoluble matrix (AIM) were extracted from aragonite pearls and vaterite pearls respectively. Then, in-vitro calcium carbonate crystallization experiments under the control of these six organic matrices were carried out in the present study. Scanning electron microscopy (SEM) was utilized to observe the morphology of CaCO3 and Raman spectroscopy as a powerful technique was used to distinguish the crystal polymorph. Influences of the six kinds of organic matrices on the calcium carbonate crystal growth are proposed. ASM of vaterite pearls can induce vaterite to crystallize and WSM of aragonite pearls mediates to produce aragonite crystals. The single AIM membranes of the two pearls have no pronounced effect on the CaCO3 crystallization. Additionally, the crystal size obtained with the additive of WSM of the two kinds of pearls is smaller than that with the additive of ASM. Moreover, self-assembly phenomenon in the biomineralization process and the distorted morphology calcite are observed. Current results demonstrate important aspects of matrix protein-controlled crystallization, which is beneficial to the understanding of nacre biomineralization mechanism. Further study of the precise control of these matrix proteins on CaCO3 crystal growth is being processed. - Highlights: ► WSM, ASM and AIM are extracted from aragonite pearls and vaterite pearls. ► ASM of vaterite pearl induces vaterite. ► WSM of aragonite pearl mediates to produce aragonite. ► WSM can fine control crystal size smaller than that with the additive of ASM. ► Self-assembly and the distorted calcite existed in the mineralization process.

  12. Impregnating Coal With Calcium Carbonate

    Science.gov (United States)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  13. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    Science.gov (United States)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  14. Sorption of UO22+ on calcium carbonate

    International Nuclear Information System (INIS)

    Sorption of uranyl ions on calcium carbonate from aqueous solutions featuring different concentration of calcium nitrate was studied experimentally. It is shown that uranium sorption decreases with calcium concentration growth in solution, irrespective of the ratio of solid phase and solution masses. Specific sorption of uranium per unit of the sorbent surface depends linearly on the ratio of UO22+ and Ca2+ ions activities in solution with proportionality factor (sorption equilibrium constant) 1.71 ± 0.16 mol/m2 at 20 deg C

  15. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    Science.gov (United States)

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  16. 21 CFR 582.1191 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium carbonate. 582.1191 Section 582.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  17. 21 CFR 582.5191 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium carbonate. 582.5191 Section 582.5191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5191 Calcium carbonate. (a) Product. Calcium carbonate. (b) Conditions of use....

  18. 21 CFR 73.1070 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Calcium carbonate. 73.1070 Section 73.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1070 Calcium carbonate. (a) Identity. (1) The color additive calcium carbonate is a fine,...

  19. USING CALCIUM CARBONATE WHISKERS AS PAPERMAKING FILLER

    Directory of Open Access Journals (Sweden)

    Xiaoyu Chen

    2011-05-01

    Full Text Available Whiskers, having large length/diameter ratio, are fiber-shaped single crystals. The technical possibility of using calcium carbonate whiskers as papermaking filler to replace conventional powder-like calcium carbonate was investigated. The results showed that it may be feasible to use calcium carbonate whisker as papermaking filler. Compared with conventional precipitated calcium carbonate, calcium carbonate whisker had higher retention efficiency. The use of calcium carbonate whisker also favorably affected the strength properties of paper sheets. A model was proposed to suggest the mechanism for paper strength improvement. The whiskers filled in paper sheets could increase the friction between fibers, thus increasing bonding strength. Moreover, the strength properties of paper were further improved because calcium carbonate whiskers were partly embedded in pulp fiber walls.

  20. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  1. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  2. Obtainment of calcium carbonate from mussels shell

    International Nuclear Information System (INIS)

    The mussels and oyster shell are discarded at environment, and this accumulation is causing negative consequences to ecosystem. Calcium carbonate is main constituent of the shell chemical composition. Aiming to reduce environmental aggression and generate income to shellfish producer, there was the possibility of using these shells as an alternative to commercial calcium carbonate. For this physics, chemicals and thermal properties were evaluated, using X-ray fluorescence, thermogravimetric analysis, size distribution, abrasiveness and scanning electronic microscopy. The results indicate that mussels shells have an initial degradation temperature higher than commercial calcium carbonate e same lost weight behavior and 95% of shell chemical composition is calcium carbonate. The sample size distribution was influenced by grinding condition and time as well as its abrasiveness. (author)

  3. Calcium carbonate crystallisation at the microscopic level

    CERN Document Server

    Dobson, P S

    2001-01-01

    The primary concern of this thesis is the investigation of crystal nucleation and growth processes, and the effect of foreign substrates on the rate, extent and mechanism of crystallisation, with particular emphasis on the calcium carbonate system. A methodology, based on the in-line mixing of two stable solutions, which permits the continuous delivery of a solution with a constant, known supersaturation, has been developed and characterised. This has been used to induce CaCO sub 3 crystallisation in experimental systems involving the channel flow and wall jet techniques. The channel flow method has been adapted to facilitate the study of crystal growth at a single calcite crystal. Ca sup 2 sup + ion selective electrodes have been employed as a means of monitoring depletion of the supersaturated solution, downstream of the crystal substrate. The data obtained suggested a growth rate constant of 3x10 sup - sup 1 sup 2 mol cm sup - sup 2 s sup - sup 1 (and a reaction order of 1.52 on supersaturation). The ex-si...

  4. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  5. The Thermal Decomposition of Calcium Carbonate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The thermogravimetry(TG) and derivative thermogravimetry(DTG) curves of the thermal decomposition reaction of calcium carbonate have been measured at five different heating rates. The kinetic parameters and the reaction mechanism of the reaction were evaluated from analysis of the TG and DTG curves by using the Ozawa method, the combined integral and differential methods and the reduced equations derived by us.

  6. 21 CFR 184.1191 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... process”. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 46... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium carbonate. 184.1191 Section 184.1191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  7. Calcium carbonate crystallisation at the microscopic level

    International Nuclear Information System (INIS)

    The primary concern of this thesis is the investigation of crystal nucleation and growth processes, and the effect of foreign substrates on the rate, extent and mechanism of crystallisation, with particular emphasis on the calcium carbonate system. A methodology, based on the in-line mixing of two stable solutions, which permits the continuous delivery of a solution with a constant, known supersaturation, has been developed and characterised. This has been used to induce CaCO3 crystallisation in experimental systems involving the channel flow and wall jet techniques. The channel flow method has been adapted to facilitate the study of crystal growth at a single calcite crystal. Ca2+ ion selective electrodes have been employed as a means of monitoring depletion of the supersaturated solution, downstream of the crystal substrate. The data obtained suggested a growth rate constant of 3x10-12 mol cm-2 s-1 (and a reaction order of 1.52 on supersaturation). The ex-situ techniques of optical microscopy and atomic force microscopy (AFM) were employed to visualise changes in the calcite surface topography resulting from exposure to the growth solution. A technique based on an impinging jet of supersaturated solution was developed and characterised as a method for inducing crystal growth on foreign substrates under defined hydrodynamic control. When used in conjunction with the ex-situ techniques of scanning electron microscopy (SEM), optical microscopy and micro-Raman spectroscopy, the role of substrate and supersaturation on the morphology and polymorphology of the CaCOs microcrystals was determined. The technique also proved to be a powerful tool for the evaluation of scale inhibiting surface coatings. The combination of the impinging jet method with thin transparent substrates allowed in-situ observation, through optical microscopy, of the induction and growth of CaCO3 microcrystals on foreign substrates. A number of substrates, displaying various surface energies and

  8. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  9. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    International Nuclear Information System (INIS)

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: ► BSA-doped calcium carbonate microspheres with porous structure were prepared. ► Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. ► The release of encapsulated camptothecin is pH dependent ► In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  10. Dynamic response of porous calcium carbonate minerals

    International Nuclear Information System (INIS)

    A theoretical study of the shock-loaded response of calcium carbonate materials is presented in which both dry and water-saturated samples with porosities up to 50 percent are considered. Data are presented for the unloading response from 15.0 and 18.5 GPa, and calculations from a mixture model using a Mie-Grueneisen equation of state with volume-dependent parameters are compared to both the Hugoniot and the isentropic unloading response

  11. Biomimetic mineralization: encapsulation in calcium carbonate shells

    OpenAIRE

    Oliveira, Susana Costa de

    2015-01-01

    Calcium carbonate biomineralization is a self-assembly process that has been studied to be applied in the biomedical field to encapsulate biomolecules. Advantages of engineering mineral capsules include improved drug loading efficiencies and protection against external environment. However, common production methods result in heterogeneous capsules and subject biomolecules to heat and vibration which cause irreversible damage. To overcome these issues, a microfluidic device was designed, m...

  12. Effects of DPPC/Cholesterol liposomes on the properties of freshly precipitated calcium carbonate.

    Science.gov (United States)

    Szcześ, A

    2013-01-01

    DPPC/Cholesterol liposomes of average diameter below 100nm were used as a matrix for calcium carbonate precipitation. Adsorption of calcium ions on the vesicles was determined via zeta potential measurement. It was found that with increasing calcium ions concentration the electrokinetic potential of the vesicles varied toward more positive values. The changes became smaller with the cholesterol content increase. Accumulation of calcium ions close to the vesicles membranes lead to attraction of CO(3)(2-) ions and enhances nucleation and growth of small calcium carbonate crystals that aggregates within lipid vesicles forming porous balls aggregates. However, dipalmitoylphosphatidylcholine (DPPC) does not change the CaCO(3) crystal forms and calcite is the only form obtained during precipitation. Moreover, the influence of the phospholipid on the calcium carbonate precipitation is enhanced by the induction of cholesterol to the lipid membranes. PMID:22796770

  13. Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert; Boon, Nico

    2014-08-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such asammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2(-1) calcium carbonate precipitate yield was obtained when a culture of 10(9) cells ml(-1) and 5 g of calcium formate liter(-)1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. PMID:24837386

  14. Improvement of the healing of a rat tibia defect by means of a Calcium Carbonate based biopolymer mixed with Epidermal Growth Factor and Ascorbic Acid

    Science.gov (United States)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Hernández-Flores, C.; Lecona-Butrón, H.; García-López, E. S.

    2000-10-01

    At the present bone reparation is commonly solved by means of different graft types. Biomaterials such as hidroxyapatite, coraline, octacalcium phosphate and tricalcium phosphate are used. By other side there are factors like Epidermal Growth Factor (EGF), Fibroblast Growth Factor (TGF), Laminine, Ascorbic Acid (AA), etc. that stimulate the osteogenesis in fracture or bony defect. The goal of this work is to evaluate the effect of the addition of EGF and ascorbic acid to a Ca2CO3 based biopolymer in the healing of a rat tibia model to improve the consolidation with adequate bony quality. No implant rejection or inflammatory reaction was observed during a 5 weeks period in our in vivo studies. The evolution of the osteointegration has been followed employing scanning electronic microscopy (SEM), energy dispersive x-ray analysis (EDX), and biochemistry activity for calcium, phosphor and alkaline phosphatase. We conclude that the combined use of the based Ca2CO3 biopolymer with Ascorbic Acid and Epidermal Growth Factor (group B&AA&EGF) in vivo accelerates the process of bony repair, as compared with the other groups. The mixture B&AA&EGF provide a bridge in the lesion, helping in the cellular migration and increasing the collagen synthesis.

  15. Polymorphs calcium carbonate on temperature reaction

    International Nuclear Information System (INIS)

    Calcium carbonate (CaCO3) has three different crystal polymorphs, which are calcite, aragonite and vaterite. In this study, effect of reaction temperature on polymorphs and crystallite structure of CaCO3 was investigated. X-ray powder diffraction (XRD), fourier transform infrared (FTIR), and variable pressure scanning electron microscope (VPSEM) were used to characterize the obtained CaCO3 particles. The obtained results showed that CaCO3 with different crystal and particle structures can be formed by controlling the temperature during the synthesis process

  16. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry, Ph.D.

    2002-09-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  17. Calcium Carbonate Produced by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2007-06-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO2 through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids - single-celled, marine algae that are the major global producers of calcium carbonate - to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  18. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    Science.gov (United States)

    Komar, N.; Zeebe, R. E.

    2016-01-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here we identify the deficiencies of a simplified calcium model employed in several previous studies, and we demonstrate the importance of a fully coupled carbon cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6°C.

  19. The influence of xanthan on the crystallization of calcium carbonate

    Science.gov (United States)

    Yang, Xiaodeng; Xu, Guiying

    2011-01-01

    Calcium carbonate (CaCO 3) was crystallized in xanthan (XC) aqueous solutions. The CaCO 3 particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry analysis (TGA) methods. The concentrations of XC, Ca 2+ and CO 32- ions and the ratios [Ca 2+]/[CO 32-] and [Mg 2+]/[Ca 2+] show evident influence on the aggregation and growth of CaCO 3 particles. The presence of Mg 2+ ions influences not only the morphology, but also the polymorph of CaCO 3.

  20. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  1. Engineering crystal growth of calcium hydrogenphosphate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Sikiric, M.; Babic-Ivancic, V. [Institut Rudjer Boskovic, Zagreb (Croatia); Milat, O. [Zagreb Univ. (Croatia). Inst. za Fiziku; Sarig, S.; Fueredi-Milhofer, H. [Hebrew Univ., Jerusalem (Israel). Inst. of Applied Chemistry

    2001-07-01

    The factors underlying calcium hydrogenphosphate dihydrate (CaHPO{sub 4}.2H{sub 2}O, DCPD) interactions with several structurally different additives: glutamic and aspartic acid, sodium citrate, hexaammonium tetrapolyphosphate, calcium phytate and polyaspartic acid were studied. DCPD crystals were prepared under controlled conditions by fast mixing of the anionic and cationic reactant solutions and subsequent growth without further stirring in the course of 24 hours at 37 C. The initial conditions were c(CaCl{sub 2}) = c(Na{sub 2}HPO{sub 4}) = 0.021 mol dm{sup -3}, c(NaCl) = 0.3 mol dm{sup -3}, pH{sub i} 5.5. The respective additive was added to the anionic component prior to pH adjustment. Crystals were characterized by X-ray diffraction, while their morphology was observed by optical and scanning electron microscopy (SEM). The Miller indices of the crystal faces were determined from SEM micrographs, after the orientation of the most prominent face was ascertained by the Weissenberg method. Mechanism of additive-DCPD crystals interaction depends on size and structure of additive molecule, structural fit between organic molecule and the ionic structure of particular crystal face. Small molecules (ions) specifically adsorb on lateral faces by electrostatic interactions, while macromolecules and molecules with hindered structure specifically adsorb on dominant (010) face, for which certain degree of structural fit is necessary. (orig.)

  2. Control of calcium carbonate precipitation in anaerobic reactors.

    OpenAIRE

    Langerak, van, B.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what extent precipitation in an anaerobic reactor can be tolerated because adequate knowledge on the structure and quality of methanogenic sludges with high calcium carbonate content was lacking. In this thesis, the ...

  3. Calcium carbonate and calcium sulfate in Martian meteorite EETA79001

    Science.gov (United States)

    Gooding, J. L.; Wentworth, S. J.

    1987-01-01

    Chips of glassy Lithology C of EETA79001 were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy to determine the mineralogy and petrogenesis of the glass that was shown by others to contain trapped Mars-like gases. Calcium carbonite was identified as massive to acicular crystals for which Ca, C, and O were the major elements. Calcium sulfate was identified as prismatic-acicular crystals with Ca and S as the major elements.

  4. Calcium carbonate scaling kinetics determined from radiotracer experiments with calcium-47

    International Nuclear Information System (INIS)

    The deposition rate of calcium carbonate on a heat-transfer surface has been measured using a calcium-47 radiotracer and compared to the measured rate of thermal fouling. The crystalline phase of calcium carbonate that precipitates depends on the degree of supersaturation at the heat-transfer surface, with aragonite precipitating at higher supersaturations and calcite precipitating at lower supersaturations. Whereas the mass deposition rates were constant with time, the thermal fouling rates decreased throughout the course of each experiment as a result of densification of the deposit. It is proposed that the densification was driven by the temperature gradient across the deposit together with the retrograde solubility of calcium carbonate. The temperature dependence of the deposition rate yielded an activation energy of 79 ± 4 kJ/mol for the precipitation of calcium carbonate on a heat-transfer surface. (author)

  5. Crystallization and self-assembly of flowerlike superstructures of calcium carbonate regulated by pepsin Langmuir monolayers

    International Nuclear Information System (INIS)

    Flowerlike superstructures of calcium carbonate were synthesized at air–water interface in the presence of pepsin Langmuir monolayers as the biomimetic template. The phase structure, morphology, and microstructure of the products obtained at various crystallization stages were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and high resolution transmission electron microscopy. The structural and morphological evolution processes of the products from monodispersed nanoparticles to nanoparticle aggregates and flowerlike superstructures were investigated. Results indicate that the flowerlike superstructures of calcium carbonate are assembled from amorphous calcium carbonate nanoparticles. The growth and assembly of calcium carbonate minerals are significantly regulated by the pepsin Langmuir monolayers. Namely, the pepsin Langmuir monolayers stabilize amorphous calcium carbonate nanoparticles and direct their transformation to amorphous aggregates via non-oriented aggregation. The present approach presents a feasible way to manipulate the growth of inorganic crystal, which, hopefully, is to help better reveal the role of proteins in mineralization process and understand the mechanism of biomineralization. -- Highlights: ► Pepsin Langmuir monolayer as biomimetic template. ► Flower-like calcite crystals experience a novel assembly and growth process. ► The morphologic evolution and phase transformation were observed. ► The trace of initial nucleation site of CaCO3 at the interface was observed. ► The template directs the crystallization and growth process.

  6. Crystallization and self-assembly of flowerlike superstructures of calcium carbonate regulated by pepsin Langmuir monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhonghui [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Hu, Binbin; Dai, Shuxi [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Du, Zuliang, E-mail: zld@henu.edu.cn [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2012-10-15

    Flowerlike superstructures of calcium carbonate were synthesized at air-water interface in the presence of pepsin Langmuir monolayers as the biomimetic template. The phase structure, morphology, and microstructure of the products obtained at various crystallization stages were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and high resolution transmission electron microscopy. The structural and morphological evolution processes of the products from monodispersed nanoparticles to nanoparticle aggregates and flowerlike superstructures were investigated. Results indicate that the flowerlike superstructures of calcium carbonate are assembled from amorphous calcium carbonate nanoparticles. The growth and assembly of calcium carbonate minerals are significantly regulated by the pepsin Langmuir monolayers. Namely, the pepsin Langmuir monolayers stabilize amorphous calcium carbonate nanoparticles and direct their transformation to amorphous aggregates via non-oriented aggregation. The present approach presents a feasible way to manipulate the growth of inorganic crystal, which, hopefully, is to help better reveal the role of proteins in mineralization process and understand the mechanism of biomineralization. -- Highlights: Black-Right-Pointing-Pointer Pepsin Langmuir monolayer as biomimetic template. Black-Right-Pointing-Pointer Flower-like calcite crystals experience a novel assembly and growth process. Black-Right-Pointing-Pointer The morphologic evolution and phase transformation were observed. Black-Right-Pointing-Pointer The trace of initial nucleation site of CaCO{sub 3} at the interface was observed. Black-Right-Pointing-Pointer The template directs the crystallization and growth process.

  7. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    X Sahaya Shajan; C Mahadevan

    2004-08-01

    Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium formate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation density was reduced and the size of the crystals was improved to a large extent compared to the conventional way of growing calcium tartrate crystals with calcium chloride. The role played by formate–formic acid on the growth of crystals is discussed. The grown crystals were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction analysis (XRD), microhardness measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential thermal analysis (DTA). The results obtained are compared with the previous work.

  8. Effect of Langmuir monolayer of bovine serum albumin protein on the morphology of calcium carbonate

    International Nuclear Information System (INIS)

    Bovine serum albumin (BSA) Langmuir monolayer, as a model of biomineralization-associated proteins, was used to study its effect on regulated biomineralization of calcium carbonate. The effects of the BSA Langmuir monolayer and the concentration of the subphase solution on the nucleation and growth processes and morphology of the calcium carbonate crystal were investigated. The morphology and polymorphic phase of the resulting calcium carbonate crystals were characterized by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Moreover, the interaction mechanisms of the subphase solution with the BSA Langmuir monolayer were discussed. It was found that BSA Langmuir monolayer could be used as a template to successfully manipulate the polymorphic phase and crystal morphology of calcium carbonate and had obvious influence on the oriented crystallization and growth. The final morphology or aggregation mode of the calcite crystal was closely dependent on the concentration of calcium bicarbonate solution. It is expected that this research would help to better understand the mechanism of biomineralization by revealing the interactions between protein matrices and crystallization of calcium carbonate crystal.

  9. Increased calcium absorption from synthetic stable amorphous calcium carbonate: Double-blind randomized crossover clinical trial in post-menopausal women

    Science.gov (United States)

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (C...

  10. Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: A comparative study

    International Nuclear Information System (INIS)

    Highlights: ► Calcium hydroxyapatite was synthesized from CaCO3 and four orthophosphates. ► Only H3PO4 led to the complete precipitation of orthophosphate species. ► H3PO4 was also the most efficient for calcium dissolution. ► Reaction pathway was dissolution-precipitation accompanied by agglomeration step. - Abstract: The synthesis of calcium hydroxyapatite (Ca-HA) starting from calcium carbonate and different orthophosphate sources, including orthophosphoric acid, potassium, sodium and ammonium dihydrogen orthophosphates, was investigated under ambient conditions. The reaction started with calcium carbonate dissolution in an acid medium, followed by rapid precipitation of calcium cations with orthophosphate species to form calcium phosphate based particles which were in the size range of 0.4–1 μm. These particles then agglomerated into much larger ones, up to 350 μm in diameter (aggregates). These aggregates possessed an unstable porous structure which was responsible for the porosity of the final products. The highest specific surface area and pore volume were obtained with potassium dihydrogen orthophosphate. On the other hand, orthophosphoric acid led to the highest dissolution of calcium carbonate and the complete precipitation of orthophosphate species. Under ambient conditions, calcium phosphate based solid products of low crystallinity were formed. Different intermediates were identified and a reaction pathway proposed.

  11. Fortification of all-purpose wheat-flour tortillas with calcium lactate, calcium carbonate, or calcium citrate is acceptable.

    Science.gov (United States)

    Romanchik-Cerpovicz, Joelle E; McKemie, Rebecca J

    2007-03-01

    Fortification helps provide adequate nutrients for individuals not meeting daily needs. Foods may be fortified with calcium to assist individuals with lactose intolerance and others preferring not to consume traditional forms of dairy. This study examined the quality of all-purpose wheat-flour tortillas fortified with calcium lactate, calcium carbonate, or calcium citrate. These tortillas were compared to similarly prepared nonfortified flour tortillas (control) and commercial nonfortified flour tortillas. Calcium-fortified tortillas contained 114 mg elemental calcium per standard serving (48 g tortilla), an 8.6-fold increase compared to nonfortified tortillas. Moisture contents and rollabilities of all tortillas were similar. Consumers (N=87) evaluated each tortilla in duplicate using a hedonic scale and reported liking the appearance, texture, flavor, aftertaste, and overall acceptability of all tortillas. However, the appearance of control tortillas was preferred over commercial tortillas (Ptortillas or those fortified with calcium carbonate was preferred over the control (Ptortillas, suggesting that appearance and aftertaste may not influence willingness to purchase. Overall, this study shows that fortification of flour tortillas with various forms of calcium is a feasible alternative calcium source. PMID:17324671

  12. Behaviour of calcium carbonate in sea water

    Science.gov (United States)

    Cloud, P.E., Jr.

    1962-01-01

    Anomalies in the behaviour of calcium carbonate in natural solutions diminish when considered in context. Best values found by traditional oceanographie methods for the apparent solubility product constant K'CaCO3 in sea water at atmospheric pressure are consistent mineralogically-at 36 parts per thousand salinity and T-25??C, K'aragonlte is estimated as 1.12 ?? 10-6 and K'calcite as 0.61 ?? 10-6. At 30??C the corresponding values are 0.98 ?? 10-6 for aragonite and 0.53 ?? 10-6 for calcite. Because the K' computations do not compensate for ionic activity, however, they cannot give thermodynamically satisfactory results. It is of interest, therefore, that approximate methods and information now available permit the estimation from the same basic data of an activity product constant KCaCO3 close to that found in solutions to which Debye-Hu??ckel theory applies. Such methods indicate approximate Karagonite 7.8 ?? 10-9 for surface sea water at 29??C; Kcalcite would be proportionately lower. Field data and experimental results indicate that the mineralogy of precipitated CaCO3 depends primarily on degree of supersaturation, thus also on kinetic or biologic factors that facilitate or inhibit a high degree of supersaturation. The shallow, generally hypersaline bank waters west of Andros Island yield aragonitic sediments with O18 O16 ratios that imply precipitation mainly during the warmer months, when the combination of a high rate of evaporation, increasing salinity (and ionic strength), maximal temperatures and photosynthetic removal of CO2 result in high apparent supersaturation. The usual precipitate from solutions of low ionic strength is calcite, except where the aragonite level of supersaturation is reached as a result of diffusion phenomena (e.g. dripstones), gradual and marked evaporation, or biologic intervention. Published data also suggest the possibility of distinct chemical milieus for crystallographic variations in skeletal calcium carbonate. It appears

  13. Hardening of calcium hydroxide and calcium silicate binders due to carbonation and hydration

    OpenAIRE

    Cizer, Özlem; Campforts, J; Balen, Koenraad Van; Elsen, Jan; Gemert, Dionys van

    2006-01-01

    Hardening of calcium hydroxide and calcium silicate binders composed of cement, rice husk ash (RHA) and lime in different compositions were studied with mechanical strength, mercury intrusion porosimetry, thermal analysis and SEM. When cement is partially replaced with RHA and lime, hardening occurs as a result of combined hydration, pozzolanic reaction and carbonation reaction. While hydration of cement contributes to the early strength development of the mortars, carbonation is much more pr...

  14. RECOVERY OF CALCIUM CARBONATE AND SULFUR FROM FGD SCRUBBER WASTE

    Science.gov (United States)

    The report gives results of a demonstration of key process steps in the proprietary Kel-S process for recovering calcium carbonate and sulfur from lime/limestone flue gas desulfurization (FGD) scrubber waste. The steps are: reduction of the waste to calcium sulfide (using coal as...

  15. Control of calcium carbonate precipitation in anaerobic reactors.

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what extent precipi

  16. Nanoparticle tracers in calcium carbonate porous media

    KAUST Repository

    Li, Yan Vivian

    2014-07-15

    Tracers are perhaps the most direct way of diagnosing subsurface fluid flow pathways for ground water decontamination and for natural gas and oil production. Nanoparticle tracers could be particularly effective because they do not diffuse away from the fractures or channels where flow occurs and thus take much less time to travel between two points. In combination with a chemical tracer they can measure the degree of flow concentration. A prerequisite for tracer applications is that the particles are not retained in the porous media as the result of aggregation or sticking to mineral surfaces. By screening eight nanoparticles (3-100 nm in diameter) for retention when passed through calcium carbonate packed laboratory columns in artificial oil field brine solutions of variable ionic strength we show that the nanoparticles with the least retention are 3 nm in diameter, nearly uncharged, and decorated with highly hydrophilic polymeric ligands. The details of these column experiments and the tri-modal distribution of zeta potential of the calcite sand particles in the brine used in our tests suggests that parts of the calcite surface have positive zeta potential and the retention of negatively charged nanoparticles occurs at these sites. Only neutral nanoparticles are immune to at least some retention. © 2014 Springer Science+Business Media.

  17. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    OpenAIRE

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.; Varani, James

    2012-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable ef...

  18. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. - Highlights: • This work analyzed the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses. • The main goal is to search the potential use of calcium carbonate as a high-dose dosimeter. • High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). • An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. • We propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation

  19. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  20. The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.

    Directory of Open Access Journals (Sweden)

    Stefano Goffredo

    Full Text Available Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions.

  1. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    OpenAIRE

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2012-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-contro...

  2. Automatic photometric titrations of calcium and magnesium in carbonate rocks

    Science.gov (United States)

    Shapiro, L.; Brannock, W.W.

    1955-01-01

    Rapid nonsubjective methods have been developed for the determination of calcium and magnesium in carbonate rocks. From a single solution of the sample, calcium is titrated directly, and magnesium is titrated after a rapid removal of R2O3 and precipitation of calcium as the tungstate. A concentrated and a dilute solution of disodium ethylenediamine tetraacetate are used as titrants. The concentrated solution is added almost to the end point, then the weak solution is added in an automatic titrator to determine the end point precisely.

  3. Distinguishing between carbonate and non-carbonate precipitates from the carbonation of calcium-containing organic acid leachates

    OpenAIRE

    Santos, Rafael; Chiang, Yi Wai; Elsen, Jan; Van Gerven, Tom

    2014-01-01

    Two organic acids were trialled for the extraction of calcium from steelmaking blast furnace slag for the purpose of precipitated calcium carbonate (PCC) production: succinic and acetic acids. While the leaching performance of succinic acid was superior, carbonation of its leachate did not result in the production of PCC, but rather the precipitation of calcium succinate, and only after the use of pH buffering agents (sodium hydroxide or bicarbonate). In contrast, carbonation of the acetic ac...

  4. Application of a novel calcium looping process for production of heat and carbon dioxide enrichment of greenhouses

    International Nuclear Information System (INIS)

    Highlights: • The greenhouse calcium looping process was developed by ASPEN Plus simulator. • In this process, the carbonation reaction provides required heat during night time. • The calcination reaction provides required carbon dioxide during day time. • This novel process saves up to 72% energy compared to the fossil fuel burners. • The process thermodynamically attributes to zero emission of carbon dioxide. - Abstract: Greenhouses typically employ conventional burner systems to suffice heat and carbon dioxide required for plant growth. The energy requirement and carbon dioxide emissions from fossil fuel burner are generally high. As an alternative, this paper describes a novel greenhouse calcium looping process which is expected to decrease the energy requirements and associated carbon dioxide emissions. The conceptual design of greenhouse calcium looping process is carried out in the ASPEN Plus v 7.3 simulator. In a greenhouse calcium looping process, the calcination reaction is considered to take place during day time in order to provide the required optimum carbon dioxide between 1000 and 2000 ppm, while the carbonation reaction is occurred during night time to provide required heat. The process simulations carried out in ASPEN indicates that greenhouse calcium looping process theoretically attributes to zero emission of carbon dioxide. Moreover, in a scenario modelling study compared to the conventional natural gas burner system, the heat duty requirements in the greenhouse calcium looping process were found to reduce by as high as 72%

  5. Diffusion-reaction compromise the polymorphs of precipitated calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    Han Wang; Wenlai Huang; Yongsheng Han

    2013-01-01

    Diffusion is seldom considered by chemists and materialists in the preparation of materials while it plays an important role in the field of chemical engineering.If we look at crystallization at the atomic level,crystal growth in a solution starts from the diffusion of ions to the growing surface followed by the incorporation of ions into its lattice.Diffusion can be a rate determining step for the growth of crystals.In this paper,we take the crystallization of calcium carbonate as an example to illustrate the microscopic processes of diffusion and reaction and their compromising influence on the morphology of the crystals produced.The diffusion effect is studied in a specially designed three-cell reactor.Experiments show that a decrease of diffusion leads to retardation of supersaturation and the formation of a continuous concentration gradient in the reaction cell,thus promoting the formation of cubic calcite particles.The reaction rate is regulated by temperature.Increase of reaction rate favors the formation of needle-like aragonite particles.When diffusion and reaction play joint roles in the reaction system,their compromise dominates the formation of products,leading to a mixture of cubic and needle-like particles with a controllable ratio.Since diffusion and reaction are universal factors in the preparation of materials,the finding of this paper could be helpful in the controlled synthesis of other materials.

  6. Results of the TTF-TCNQ and the calcium carbonate crystallization on the Long Duration Exposure Facility

    Science.gov (United States)

    Nielsen, Kjeld Flemming; Lind, M. David

    1992-01-01

    Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.

  7. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system

    Science.gov (United States)

    Prah, J.; Maček, J.; Dražič, G.

    2011-06-01

    In this paper, we report a novel approach for preparing precipitated calcium carbonate using solutions of ammonium carbamate and calcium acetate as the sources of calcium and carbon dioxide, respectively. Two different concentrations of the starting solutions at three different temperatures (15, 25 and 50 °C) were used for the reaction. The influence of temperature and concentration on the polymorphism and the resulting morphology of calcium carbonate are discussed. The most important parameter for controlling a particular crystal structure and precipitate morphology were the concentrations of the initial solutions. When initial solutions with lower concentrations were used, the crystal form of the precipitate changed with time. Regardless the different polymorphism at different temperatures, after one day only the calcite form was detected in all samples, regardless of at which temperature the samples were prepared. At higher concentrations, pure vaterite or a mixture of vaterite and calcite were present at the beginning of the experiment. After one day, pure vaterite was found in the samples that were prepared at 15 and 25 °C. If calcium carbonate precipitated at 50 °C, the XRD results showed a mixture of calcite and vaterite regardless of the time at which the sample was taken. The morphology of calcium carbonate particles prepared at various conditions changed from calcite cubes to spherical particles of vaterite and aragonite needles. When a low starting concentration was used, the morphology at the initial stage was strongly affected by the temperature at which the experiments were conducted. However, after one day only, cubes were present in all cases at low initial concentrations. In contrast, at high concentrations spherical particles precipitated at all three temperatures at the beginning of the reaction. Spherical particles were made up from smaller particles. Over time, the size of the particles was diminishing due to their disintegration into

  8. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2011-12-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms and thereby modifying the oceanic alkalinity cycle. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. Meanwhile, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 will ultimately increase or decrease the globally-integrated pelagic calcification rate. Here, we assess the importance of this uncertainty by introducing a variable dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in the University of Victoria Earth System Climate Model, an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of this parameterization on global ocean carbon cycling under two CO2 emissions scenarios, both integrated to the year 3500. The simulations show a significant sensitivity of the vertical and surface horizontal alkalinity gradients to the parameterization, as well as the removal of alkalinity from the ocean through CaCO3 burial. These sensitivities result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 13 % of total carbon emissions, compared to the case where calcification is insensitive to acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500, a 13 % reduction in the amplitude of warming. Narrowing these uncertainties will require better understanding of both temperature and acidification effects on pelagic calcifiers. Preliminary examination suggests that

  9. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTRACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. he purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. he ...

  10. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  11. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    Science.gov (United States)

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution. PMID:26692360

  12. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  13. Effect of Strength Enhancement of Soil Treated with Environment-Friendly Calcium Carbonate Powder

    OpenAIRE

    Kyungho Park; Sangju Jun; Daehyeon Kim

    2014-01-01

    This study aims to investigate the effects of the strength improvement of soft ground (sand) by producing calcium carbonate powder through microbial reactions. To analyze the cementation effect of calcium carbonate produced through microbial reaction for different weight ratios, four different types of specimens (untreated, calcium carbonate, cement, and calcium carbonate + cement) with different weight ratios (2%, 4%, 6%, and 8%) were produced and cured for a period of 3 days, 7 days, 14 day...

  14. Calcium Carbonate versus Sevelamer Hydrochloride as Phosphate Binders after Long-Term Disease Progression in 5/6 Nephrectomized Rats

    Directory of Open Access Journals (Sweden)

    Suvi Törmänen

    2014-01-01

    Full Text Available Our aim was to compare the effects of calcium carbonate and sevelamer-HCl treatments on calcium-phosphate metabolism and renal function in 5/6 nephrectomized (NX rats so that long-term disease progression preceded the treatment. After 15-week progression, calcium carbonate (3.0%, sevelamer-HCl (3.0%, or control diets (0.3% calcium were given for 9 weeks. Subtotal nephrectomy reduced creatinine clearance (−40%, plasma calcidiol (−25%, and calcitriol (−70% and increased phosphate (+37%, parathyroid hormone (PTH (11-fold, and fibroblast growth factor-23 (FGF-23 (4-fold. In NX rats, calcium carbonate diet increased plasma (+20% and urinary calcium (6-fold, reduced plasma phosphate (−50% and calcidiol (−30%, decreased creatinine clearance (−35% and FGF 23 (−85%, and suppressed PTH without influencing blood pH. In NX rats, sevelamer-HCl increased urinary calcium (4-fold and decreased creatinine clearance (−45%, PTH (−75%, blood pH (by 0.20 units, plasma calcidiol (−40%, and calcitriol (−65%. Plasma phosphate and FGF-23 were unchanged. In conclusion, when initiated after long-term progression of experimental renal insufficiency, calcium carbonate diet reduced plasma phosphate and FGF-23 while sevelamer-HCl did not. The former induced hypercalcemia, the latter induced acidosis, while both treatments reduced vitamin D metabolites and deteriorated renal function. Thus, delayed initiation influences the effects of these phosphate binders in remnant kidney rats.

  15. Para-amino benzoic acid–mediated synthesis of vaterite phase of calcium carbonate

    Indian Academy of Sciences (India)

    T N Ramesh; S A Inchara; K Pallavi

    2015-05-01

    Calcium carbonate polymorphs were precipitated at room temperature and 80°C by varying the precipitation pH, carbonate source, effect of solvent in presence and absence of structure directing agent such as para-aminobenzoic acid. Calcite phase of calcium carbonate was obtained when sodium hydrogen carbonate and/or sodium carbonate (used as precipitating agents) were added to calcium chloride solution at different pHs in water and/or methanol as solvent in separate experiments. Vaterite phase of calcium carbonate (CaCO3) has been synthesized by mixing calcium chloride and sodium carbonate in presence of para-aminobenzoic acid when water–methanol binary mixture was used as solvent. Vaterite phase of calcium carbonate crystallizes in P63/mmc, while that of calcite phase in R-3mc, respectively. Calcite phase of calcium carbonate exhibits rhombohedral morphology, while vaterite phase has spherical morphology.

  16. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to...

  17. Biofilm-induced calcium carbonate precipitation: application in the subsurface

    Science.gov (United States)

    Phillips, A. J.; Eldring, J.; Lauchnor, E.; Hiebert, R.; Gerlach, R.; Mitchell, A. C.; Esposito, R.; Cunningham, A. B.; Spangler, L.

    2012-12-01

    We have investigated mitigation strategies for sealing high permeability regions, like fractures, in the subsurface. This technology has the potential to, for example, improve the long-term security of geologically-stored carbon dioxide (CO2) by sealing fractures in cap rocks or to mitigate leakage pathways to prevent contamination of overlying aquifers from hydraulic fracturing fluids. Sealing technologies using low-viscosity fluids are advantageous since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. In this technology, aqueous solutions and suspensions are used to promote microbially-induced mineral precipitation which can be applied in subsurface environments. To this end, a strategy was developed to twice seal a hydraulically fractured, 74 cm (2.4') diameter Boyles Sandstone core, collected in North-Central Alabama, with biofilm-induced calcium carbonate (CaCO3) precipitates under ambient pressures. Sporosarcina pasteurii biofilms were established and calcium and urea containing reagents were injected to promote saturation conditions favorable for CaCO3 precipitation followed by growth reagents to resuscitate the biofilm's ureolytic activity. Then, in order to evaluate this process at relevant deep subsurface pressures, a novel high pressure test vessel was developed to house the 74 cm diameter core under pressures as high as 96 bar (1,400 psi). After determining that no impact to the fracture permeability occurred due to increasing overburden pressure, the fractured core was sealed under subsurface relevant pressures relating to 457 meters (1,500 feet) below ground surface (44 bar (650 psi) overburden pressure). After fracture sealing under both ambient and subsurface relevant pressure conditions, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO3 mineralization. These studies suggest

  18. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  19. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  20. Effect of a cyanobacterial community on calcium carbonate precipitation in Puente del Inca (Mendoza, Argentina)

    OpenAIRE

    Ferrari, S.G.; Italiano, M.C.; de Silva, H J

    2002-01-01

    The involvement of cyanobacteria in the precipitation process forming calcium carbonate was studied in samples collected at a geothermal spring located in an area close to Puente del Inca (Mendoza, Argentina). In the summer season profuse cyanobacterial growth is observed at Puente del Inca in areas exposed to sunlight and over which thermal water flows. Differences in cellular structure allowed the recognition of strains of Oscillatoria, Spirulina, Plectonema, and Nostoc, Oscillatoria and...

  1. Accelerated carbonation of Friedel's salt in calcium aluminate cement paste

    International Nuclear Information System (INIS)

    The stability of Friedel's salt with respect to carbonation has been studied in calcium aluminate cement (CAC) pastes containing NaCl (3% of Cl- by weight of cement). Carbonation was carried out on a powdered sample in flowing 5% CO2 gas at 65% relative humidity to accelerate the process. At an intermediate carbonation step, a part of the sample was washed and dried up to 10 cycles to simulate a dynamic leaching attack. The two processes were followed by means of X-ray diffraction (XRD), pH and Cl- analyses in the simulated pore solution

  2. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    Science.gov (United States)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  3. CALCULATING THE PH OF CALCIUM CARBONATE SATURATION

    Science.gov (United States)

    Two new expressions for the pH of saturation (pH subs) were derived. One is a simplified equation developed from an aqueous carbonate equilibrium system in which correction for ionic strength was considered. The other is a more accurate quadratic formula that involves computerize...

  4. Mechano-activated surface modification of calcium carbonate in wet stirred mill and its properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface modification of calcium carbonate particles using sodium stearate(SDS) as a modification agent incorporated with the simultaneous wet ultra-fine grinding in the laboratory stirred mill was investigated. The physical properties and application properties of modified calcium carbonate were measured and evaluated. The action mechanism between SDS and calcium carbonate in the modification was studied by infrared spectrometry(IR) and X-ray photoelectron energy spectroscopy(XPS). The results indicate that the crushing mechanic force intensity can obviously influence the modification effect of calcium carbonate because of mechano-chemical effect. The hydrophilic surface of calcium carbonate is turned into hydrophobic after modification. The properties of polyethylene(PE) filled by modified calcium carbonate powder is markedly improved. And the adsorption of SDS could occur by chemical reaction with calcium carbonate surface.

  5. Zinc recovery from spent ZnO catalyst by carbon in the presence of calcium carbonate

    Science.gov (United States)

    Hsu, Hua-Ching; Lin, Chun-I.; Chen, Hsi-Kuei

    2004-02-01

    Zinc recovery from the spent zinc oxide catalyst by carbon in the presence of calcium carbonate was studied using an X-ray diffractometer (XRD), an atomic absorption spectrometer (AAS), and a scanning electron microscope (SEM). The spent zinc oxide catalyst was determined to be composed of 87.5 wt pct zinc oxide and 3.1 wt pct zinc sulfide. The results of X-ray diffractometry revealed that calcium carbonate decomposed to calcium oxide and carbon dioxide; zinc oxide and zinc sulfide were reduced to zinc vapor and carbon monoxide evolving from solid sample; and sulfur content was scavenged as calcium sulfide remained in the solid. Steps involved in this reaction system were summarized to explain the overall reaction. The experimental results of atomic absorption spectrometry showed that the initial rate of zinc recovery and final zinc recovery can be increased by increasing either the sample height, the reaction temperature or the initial bulk density. Furthermore, they were found to increase with decrease in either the argon flow rate, the molar ratio of Zntotal/C, the molar ratio of Zntotal/CaCO3, the grain size of the spent catalyst, the agglomerate size of carbon, or the agglomerate size of calcium carbonate. Empirical expressions of the initial rate of zinc recovery and final zinc recovery have been determined.

  6. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    Science.gov (United States)

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  7. Preliminary Nanosims Analysis of Carbon Isotope of Carbonates in Calcium-Aluminum-Rich Inclusions

    OpenAIRE

    Guan, Y.; Paque, J. M.; Burnett, D. S.; Eiler, J. M.

    2009-01-01

    Carbonate minerals observed in primitive meteorites are products of either terrestrial weathering or aqueous alteration in the early solar system. Most of the carbonate minerals in carbonaceous chondrites occur primarily as isolated grains in matrix, as crosscutting veins, or as replacement minerals in chondrules [e.g., 1, 2]. A few calcium-aluminum-rich inclusions (CAIs) have been reported containing carbonate minerals as well [2, 3]. The C and O isotopes of carbonates in c...

  8. Unexpected link between polyketide synthase and calcium carbonate biomineralization

    OpenAIRE

    Hojo, Motoki; Omi, Ai; Hamanaka, Gen; Shindo, Kazutoshi; Shimada, Atsuko; Kondo, Mariko; Narita, Takanori; Kiyomoto, Masato; Katsuyama, Yohei; Ohnishi, Yasuo; Irie, Naoki; Takeda, Hiroyuki

    2015-01-01

    Introduction Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. Results We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent expe...

  9. Preparation of calcium carbonate particles coated with titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  10. Synthesis of carbon-11 labelled calcium channel antagonists

    International Nuclear Information System (INIS)

    A useful synthetic approach to carbon-11 labelled 1,4-dihydropyridines is described. Carbon-11 labelled calcium channel antagonists 11C-Nifedipine, 11C-Nisoldipine, 11C-nitrendipine and 11C-CF3-Nifedipine were synthesized by a modified Hantzsch method using protected carboxy functions. Deprotection of the carboxylic acids by alkaline hydrolysis followed by conversion into the corresponding potassium salts and subsequent methylation with 11CH3I produced the labelled compounds in very good chemical and radiochemical yields (94%). (author)

  11. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    Science.gov (United States)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  12. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis.

    Science.gov (United States)

    Bro, S; Rasmussen, R A; Handberg, J; Olgaard, K; Feldt-Rasmussen, B

    1998-02-01

    The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate calcium concentration of 1.25 mmol/L and a fixed alfacalcidol dose for at least 2 months. All had previously tolerated therapy with calcium carbonate. Of the 19 patients included, 10 completed both treatment arms. After 12 weeks of therapy, the mean (+/-SEM) plasma ionized calcium level was significantly lower in the ketoglutarate arm compared with the calcium carbonate arm (4.8+/-0.1 mg/dL v 5.2+/-0.1 mg/dL; P = 0.004), whereas the mean plasma phosphate (4.5+/-0.3 mg/dL v 5.1+/-0.1 mg/dL) and PTH levels (266+/-125 pg/mL v 301+/-148 pg/mL) did not differ significantly between the two treatment arms. Supplemental aluminum-aminoacetate was not required during calcium ketoglutarate treatment, while two patients needed this supplement when treated with calcium carbonate. Five of 17 (29%) patients were withdrawn from calcium ketoglutarate therapy within 1 to 2 weeks due to intolerance (anorexia, vomiting, diarrhea, general uneasiness), whereas the remaining 12 patients did not experience any side effects at all. The five patients with calcium ketoglutarate intolerance all had pre-existing gastrointestinal symptoms; four of them had received treatment with cimetidine or omeprazol before inclusion into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium

  13. Posteffect of calcium compounds on growth and evolution of irradiated cotton plants

    International Nuclear Information System (INIS)

    The aftereffect of calcium salts on the growth and development of radiated and non-radiated cotton plants was studied. It was found out that as a result of the application of calcium the first seed prosterity of radiated plants had almost none of the symptoms of the radiation injury, the growth, the development of cotton plants and crude cotton yields being restored. As a result of the treatment of seeds in the Ca(NO3)2 solution and the application of CaO to the soil the amount of long-chain fatty acids increased which is necessary for the regeneration of injured membranes in cells of radiated plants. For example, there were 75.2 per cent of fatty acids with long carbon chains in the control, i.e. without calcium; 85.9 per cent after the application of CaO to the soil and the treatment of seeds in the Ca(NO3)2 solution; 70.9 per cent in the variant with irradiation at the dose of 30 kr and 81.19 per cent of fatty acids with long carbon chains after the treatment of irradiated seeds in the Ca(NO3)2 solution and the application of CaO

  14. Fractional absorption of active absorbable algal calcium (AAACa) and calcium carbonate measured by a dual stable-isotope method

    Science.gov (United States)

    With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa), obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI), with that of calcium carbonate. In ...

  15. A comparative study of calcium absorption following a single serving administration of calcium carbonate powder versus calcium citrate tablets in healthy premenopausal women

    Directory of Open Access Journals (Sweden)

    Haiyuan Wang

    2014-04-01

    Full Text Available Background: Calcium is an essential mineral often taken as a daily, long-term nutritional supplement. Data suggests that once-daily dosing is important with regard to long-term compliance of both drugs and nutritional supplements. Objective: This study was undertaken to compare the bioavailability of a single serving of two calcium supplements in healthy, premenopausal women. Design: A two-period, crossover bioavailability study of a single serving of calcium citrate tablets (two tablets=500 mg calcium versus a single serving of calcium carbonate powder (one packet of powder=1,000 mg calcium was performed in healthy women aged between 25 and 45. All subjects were on a calcium-restricted diet 7 days prior to testing and fasted for 12 h before being evaluated at 0, 1, 2, and 4 h after oral administration of the test agents. Blood measurements for total and ionized calcium and parathyroid hormone were performed and adverse events were monitored. Results: Twenty-three women were evaluable with a mean age of 33.2±8.71. Results showed that administration of a single serving of a calcium carbonate powder resulted in greater absorption in total and ionized calcium versus a single serving of calcium citrate tablets at 4 h (4.25±0.21 vs. 4.16±0.16, p=0.001. There were minimal side effects and no reported serious adverse events. Conclusions: This study shows that a single serving of a calcium carbonate powder is more bioavailable than a single serving of calcium citrate tablets. This may be beneficial for long-term compliance.

  16. Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating

    CERN Document Server

    Barhoum, Ahmed; Abou-Zaied, Ragab Esmail; Rehan, Mohamed; Dufour, Thierry; Hill, Gavin; Dufresne, Alain

    2016-01-01

    Modification of calcium carbonate particles with surfactant significantly improves the properties of the calcium carbonate coating on paper. Unmodified and CTAB and oleate-modified calcium carbonate nanoparticles were prepared using the wet carbonation technique for paper coating. CTAB (cationic surfactant) and sodium oleate (anionic surfactant) were used to modify the size, morphology, and surface properties of the precipitated nanoparticles. The obtained particles were characterized by XRD, FT-IR spectroscopy, zeta potential measurements, TGA and TEM. Coating colors were formulated from the prepared unmodified and modified calcium carbonates and examined by creating a thin coating layer on reference paper. The effect of calcium carbonate particle size and surface modification on paper properties, such as coating thickness, coating weight, surface roughness, air permeability, brightness, whiteness, opacity, and hydrophobicity, were investigated and compared with GCC calcium carbonate-coated papers. The obtai...

  17. Precipitation of calcium carbonate and calcium phosphate under diffusion controlled mixing

    Energy Technology Data Exchange (ETDEWEB)

    Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo; Don T. Fox; Hai Huang; Lee Tu; Yoshiko Fujita; Robert W. Smith; George Redden

    2014-07-01

    Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemical systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.

  18. Calcium carbonate decomposition in white-body tiles during firing in the presence of carbon dioxide

    OpenAIRE

    Escardino Benlloch, Agustín; Gómez Tena, María Pilar; Feliu Mingarro, Carlos; García Ten, Francisco Javier; Saburit Llaudis, Alejandro

    2013-01-01

    This study examines the thermal decomposition process of the calcium carbonate (calcite powder) contained in test pieces of porous ceramics, of the same composition as that used in manufacturing ceramic wall tile bodies, in the presence of carbon dioxide, in the temperature range 1123–1223 K. The experiments were carried out in a tubular reactor, under isothermal conditions, in a gas stream comprising different concentrations of air and carbon dioxide. Assuming that the relationship betwe...

  19. Effect of calcium on adsorption capacity of powdered activated carbon.

    Science.gov (United States)

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger. PMID:25078809

  20. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    Science.gov (United States)

    Lapenis, Andrei Gennady; Lawrence, Gregory B.; Heim, Alexander; Zheng, Chengyang; Shortle, Walter

    2013-01-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.

  1. Polar fluxes of calcium ions and growth of plant tissues

    International Nuclear Information System (INIS)

    The authors studied the action exerted by auxin transport inhibitors (2,3,5-triiodobenzoic acid, 10-4 M; 1-N-naphthylphthalamic acid, 10-4 M), inhibitors of membrane-bound ATPases (sodium orthovanadate, 10-4 M; diethylstilbestrol, 10-5 M), and a blocker of Ca-channels (verapamil, 1.3 x 10-4 M) on growth processes (lengthwise growth, the gravitropic response) and translocation of 45Ca in segments of corn (Zea mays L.) coleoptiles and pea (Pisum sativum L.) internodes. Calcium in vertically oriented and gravistimulated segments was polarly translocated in a direction opposite the vector of gravitational force. It is hypothesized that the polar fluxes of Ca2+ ions which arise in tissues with a change in position of the plant organism in space are capable of correcting the direction of active basipetal transport of IAA and thereby able to induce polarization of growth processes. In studying transport of Ca2+ ions on plasmalemma vesicles with the aid of chlorotetracycline, it was found that creation of a potassium diffusion potential on the membrane (as a results of valinomycin treatment) induces entry of calcium into the vesicles. Since this effect was removed by verapamil and ruthenium red, it is postulated that potential-dependent Ca-channels are present on the plasma membrane of corn coleoptile cells

  2. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    Science.gov (United States)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  3. Polymorph selection and nanocrystallite rearrangement of calcium carbonate in carboxymethyl chitosan aqueous solution: Thermodynamic and kinetic analysis

    International Nuclear Information System (INIS)

    In this article, the polymorph selection of calcium carbonate has been successfully achieved in water-soluble carboxymethyl chitosan aqueous solution at different temperatures (25-95 oC). Vaterite is formed in carboxymethyl chitosan solution 25 oC accompanied with trace of calcite, whereas pure aragonite is obtained at 95 oC. Scanning electron microscopy and transmission electron microscopy analyses show that the products are formed from the recrystallization of nanometer crystallites. Thermodynamic and kinetic analyses reveal that the polymorph of calcium carbonate is controlled and selected by kinetics in various temperatures. As a heterogeneous nucleator and stabilizing agent, carboxymethyl chitosan changes the nucleation and growth of calcium carbonate from thermodynamic into kinetic control. Under kinetic limitation, the reaction rate of aragonite increases along with the elevating of temperature and surpasses the rate of vaterite above 327 K.

  4. Polymorph selection and nanocrystallite rearrangement of calcium carbonate in carboxymethyl chitosan aqueous solution: Thermodynamic and kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Donghui [Key Lab For Special Functional Materials Ministry of Education, Henan University, Kaifeng 475004 (China); Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050 (China); Zhu, Yingchun, E-mail: yzhu@mail.sic.ac.cn [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050 (China); Li, Fang; Ruan, Qichao [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050 (China); Zhang, Shengmao [Key Lab For Special Functional Materials Ministry of Education, Henan University, Kaifeng 475004 (China); Zhang, Linlin; Xu, Fangfang [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050 (China)

    2010-01-15

    In this article, the polymorph selection of calcium carbonate has been successfully achieved in water-soluble carboxymethyl chitosan aqueous solution at different temperatures (25-95 {sup o}C). Vaterite is formed in carboxymethyl chitosan solution 25 {sup o}C accompanied with trace of calcite, whereas pure aragonite is obtained at 95 {sup o}C. Scanning electron microscopy and transmission electron microscopy analyses show that the products are formed from the recrystallization of nanometer crystallites. Thermodynamic and kinetic analyses reveal that the polymorph of calcium carbonate is controlled and selected by kinetics in various temperatures. As a heterogeneous nucleator and stabilizing agent, carboxymethyl chitosan changes the nucleation and growth of calcium carbonate from thermodynamic into kinetic control. Under kinetic limitation, the reaction rate of aragonite increases along with the elevating of temperature and surpasses the rate of vaterite above 327 K.

  5. Growth, grain yield and calcium, potassium and magnesium accumulation in common bean plants as related to calcium nutrition

    Directory of Open Access Journals (Sweden)

    Lucas da Silva Domingues

    2016-04-01

    Full Text Available The objective of this work was to evaluate the plant growth and grain yield characteristics and the accumulation of calcium, potassium and magnesium in the leaves and grains of common bean cultivars grown with different calcium concentrations in the nutrient solution. Two experiments were conducted with nutrient solutions in a soilless system in a greenhouse. In the first experiment, five calcium concentrations (1.10, 1.65, 2.20, 2.75 and 3.30 mmol L-1 and three common bean cultivars (Iraí, BRS Expedito and Carioca were evaluated. Higher calcium concentrations (2.20, 2.75, 3.30, 3.85, 4.40 and 4.95 mmol L-1and two common bean cultivars (BRS Expedito and Carioca were tested in the second experiment. Dry mass of the shoot and root, grain yield and calcium accumulation in the leaves and grains increased linearly in common bean plants supplied with calcium concentrations between 2.20 and 4.95 mmol L-1. The high calcium concentration did not reduce the accumulation of calcium, potassium and magnesium in the leaves and grains. Common bean plants grown with high calcium concentrations present higher dry mass of the shoot and root, high grain yield and high calcium concentration in the leaves and grains.

  6. Epitaxial Relationships between Calcium Carbonate and Inorganic Substrates

    Directory of Open Access Journals (Sweden)

    Taewook Yang

    2014-09-01

    Full Text Available The polymorph-selective crystallization of calcium carbonate has been studied in terms of epitaxial relationship between the inorganic substrates and the aragonite/calcite polymorphs with implication in bioinspired mineralization. EpiCalc software was employed to assess the previously published experimental results on two different groups of inorganic substrates: aragonitic carbonate crystals (SrCO3, PbCO3, and BaCO3 and a hexagonal crystal family (α-Al2O3, α-SiO2, and LiNbO3. The maximum size of the overlayer (aragonite or calcite was calculated for each substrate based on a threshold value of the dimensionless potential to estimate the relative nucleation preference of the polymorphs of calcium carbonate. The results were in good agreement with previous experimental observations, although stereochemical effects between the overlayer and substrate should be separately considered when existed. In assessing the polymorph-selective nucleation, the current method appeared to provide a better tool than the oversimplified mismatch parameters without invoking time-consuming molecular simulation.

  7. Bivalves build their shells from amorphous calcium carbonate

    Science.gov (United States)

    Jacob, D. E.; Wirth, R.; Soldati, A. L.; Wehrmeister, U.

    2012-04-01

    One of the most common shell structures in the bivalve class is the prism and nacre structure. It is widely distributed amongst both freshwater and marine species and gives cultured pearls their sought-after lustre. In freshwater bivalves, both shell structures (prism and nacre) consist of aragonite. Formation of the shell form an amorphous precursor phase is a wide-spread strategy in biomineralization and presents a number of advantages for the organisms in the handling of the CaCO3 material. While there is already evidence that larval shells of some mollusk species use amorphous calcium carbonate (ACC) as a transient precursor phase for aragonite, the use of this strategy by adult animals was only speculated upon. We present results from in-situ geochemistry, Raman spectroscopy and focused-ion beam assisted TEM on three species from two different bivalve families that show that remnants of ACC can be found in shells from adult species. We show that the amorphous phase is not randomly distributed, but is systematically found in a narrow zone at the interface between periostracum and prism layer. This zone is the area where spherulitic CaCO3- structures protrude from the inner periostracum to form the initial prisms. These observations are in accordance with our earlier results on equivalent structures in freshwater cultured pearls (Jacob et al., 2008) and show that the original building material for the prisms is amorphous calcium carbonate, secreted in vesicles at the inner periostracum layer. Quantitative temperature calibrations for paleoclimate applications using bivalve shells are based on the Mg-Ca exchange between inorganic aragonite (or calcite) and water. These calibrations, thus, do not take into account the biomineral crystallization path via an amorphous calcium carbonate precursor and are therefore likely to introduce a bias (a so-called vital effect) which currently is not accounted for. Jacob et al. (2008) Geochim. Cosmochim. Acta 72, 5401-5415

  8. Structuralization of Ca(2+)-Based Metal-Organic Frameworks Prepared via Coordination Replication of Calcium Carbonate.

    Science.gov (United States)

    Sumida, Kenji; Hu, Ming; Furukawa, Shuhei; Kitagawa, Susumu

    2016-04-01

    The emergence of metal-organic frameworks (MOFs) as potential candidates to supplant existing adsorbent types in real-world applications has led to an explosive growth in the number of compounds available to researchers, as well as in the diversity of the metal salts and organic linkers from which they are derived. In this context, the use of carbonate-based precursors as metal sources is of interest due to their abundance in mineral deposits and their reaction chemistry with acids, resulting in just water and carbon dioxide as side products. Here, we have explored the use of calcium carbonate as a metal source and demonstrate its versatility as a precursor to several known frameworks, as well as a new flexible compound based on the 2,5-dihydroxybenzoquinone (H2dhbq) linker, Ca(dhbq)(H2O)2. Furthermore, inspired by the ubiquity and unique structures of biomineralized forms of calcium carbonate, we also present examples of the preparation of superstructures of Ca-based MOFs via the coordination replication technique. In all, the results confirm the suitability of carbonate-based metal sources for the preparation of MOFs and further expand upon the growing scope of coordination replication as a convenient strategy for the preparation of structuralized materials. PMID:27002690

  9. Effects of temperature during the irradiation of calcium carbonate.

    Science.gov (United States)

    Negrón-Mendoza, Alicia; Camargo-Raya, Claudia; Gómez-Vidales, Virginia; Uribe, Roberto M; Ramos-Bernal, Sergio

    2016-05-01

    Calcium carbonate received gamma irradiation at different doses (0-309kGy) and temperature regimes (77-298K) to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum, even at low radiation doses and temperature. There was a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder and the recombination of some radicals at room temperature. PMID:26901240

  10. Effects of temperature during the irradiation of calcium carbonate

    International Nuclear Information System (INIS)

    The gamma irradiation of calcium carbonate at different doses (0 to 309 kGy) and temperature regimes (77 K to 298 K) was carried out to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum even at low radiation doses and temperature. There is a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder. Response curves show that this system tends to saturate at 10 MGy at 298 K. (Author)

  11. Preparation and properties of gluten/calcium carbonate composites

    Institute of Scientific and Technical Information of China (English)

    Min Zuo; Zheng Zheng Lai; Yi Hu Song; Qiang Zheng

    2008-01-01

    Environment friendly thermosetting composites were prepared by blending wheat gluten (WG) as matrix, calcium carbonate (CaCO3) as filler and glycerol as plasticizer followed by compression molding the mixture at 120 ℃ to crosslink the WG matrix. Morphology observation showed that the CaCO3 particles were finely dispersed in matrix. Incorporation of CaCO3 up to 10 wt% into the composites caused Young's modulus and tensile strength to increase markedly. On the other hand, the moisture absorption and elongation at break decreased slightly.

  12. Physicochemical Characterization of Biofield Energy Treated Calcium Carbonate Powder

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Calcium carbonate (CaCO3) is widely used in pharmaceutical industries and as a supplement in probiotics. The present study was designed to evaluate the effect of biofield energy treatment on the physicochemical properties of the CaCO3. The CaCO3 powder was divided into two parts and referred as control and treated. The control part was remained untreated, whereas treated part was subjected to Trivedi’s biofield treatment. The control and biofield treated samples were characterized using...

  13. Effects of temperature during the irradiation of calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Camargo R, C.; Ramos B, S. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M., E-mail: negron@nucleares.unam.mx [Kent State University, College of Technology, Kent 44240 Ohio (United States)

    2015-10-15

    The gamma irradiation of calcium carbonate at different doses (0 to 309 kGy) and temperature regimes (77 K to 298 K) was carried out to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum even at low radiation doses and temperature. There is a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder. Response curves show that this system tends to saturate at 10 MGy at 298 K. (Author)

  14. Growth of calcium sulphate deposits on heated wall

    International Nuclear Information System (INIS)

    As distillation processes are used to desalinate sea water, salt deposit (or scaling) under the form of crystals on heat exchange surfaces is one of the main difficulties for these processes. Addressing the case of calcium sulphate solution instead of the more complex case of sea water, this research thesis first recalls theoretical, thermodynamic and kinetic data involved in precipitation, and aims at determining the kinetic law and growth mechanism. Precipitation of hemihydrate is experimentally studied in transient regime with a forced circulation without boiling along a heated wall, then with natural circulation with boiling occurring on the wall. A model is proposed to explain the experimentally determined kinetic law. A study in permanent regime is performed to analyze operating conditions of a heat exchanger. In-thickness growth rate of the hemihydrate is obtained from the evolution of the thermal resistance due to deposits. The inhibiting influence of iron is outlined

  15. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  16. Non-aqueous formation of the calcium carbonate polymorph vaterite: astrophysical implications

    CERN Document Server

    Day, Sarah J; Parker, Julia E; Evans, Aneurin

    2013-01-01

    We study the formation of calcium carbonate, through the solid-gas interaction of amorphous Ca-silicate with gaseous CO2, at elevated pressures, and link this to the possible presence of calcium carbonate in a number of circumstellar and planetary environments. We use in-situ synchrotron X-Ray powder diffraction to obtain detailed structural data pertaining to the formation of the crystalline calcium carbonate phase vaterite and its evolution with temperature. We found that the metastable calcium carbonate phase vaterite was formed alongside calcite, at elevated CO2 pressure, at room temperature and subsequently remained stable over a large range of temperature and pressure. We report the formation of the calcium carbonate mineral vaterite whilst attempting to simulate carbonate dust grain formation in astrophysical environments. This suggests that vaterite could be a mineral component of carbonate dust and also presents a possible method of formation for vaterite and its polymorphs on planetary surfaces.

  17. DSC Study on Polypropylene Modified with Calcium Carbonate Nanoparticles

    International Nuclear Information System (INIS)

    The exposure of polypropylene containing various concentrations of calcium carbonate nanoparticles was performed in air and water. The radiolysis products of water determine different behaviour of polymer substrate. The irradiation effect induced on polymer and the contribution of nanoparticles to the scavenging of oxygenated products that were created during γ exposure were investigated by DSC measurements over the temperature range from 340-400 K, the usual temperatures for thermal overcharge. Two kinds of carbonate particles, one type is represented by unmodified filler, while the second type is the superficially modified with stearic acid. The covering of particle surface with stearic acid confers to them a different ability in the abstraction of degradation products formed in irradiated isotactic polypropylene

  18. Carbonate-containing apatite (CAP) synthesis under moderate conditions starting from calcium carbonate and orthophosphoric acid

    International Nuclear Information System (INIS)

    The synthesis of carbonate-containing apatite (CAP) from calcium carbonate and orthophosphoric acid under moderate conditions was investigated. In all cases, complete precipitation of orthophosphate species was observed. The reaction temperature influenced strongly the decomposition of calcium carbonate and therefore the composition of formed products. The reaction temperature of 80 °C was found to be effective for the complete decomposition of calcium carbonate particles after 48 h of reaction. Infra-red spectroscopy (IR), nuclear magnetic resonance (NMR), thermogravimetry/mass spectroscopy (TG–MS) coupling, and X-ray diffraction (XRD) characterizations allowed the identification of the composition of formed products. By increasing the reaction temperature from 20 °C to 80 °C, the content of A-type CAP increased and that of B-type CAP decreased, according to the favorable effect of temperature on the formation of A-type CAP. The total amount of carbonate content incorporated in CAP's structure, which was determined by TG–MS analysis, increased with the reaction temperature and reached up to 4.1% at 80 °C. At this temperature, the solid product was mainly composed of apatitic components and showed the typical flat-needle-like structure of CAP particles obtained in hydrothermal conditions. These results show an interesting one-step synthesis of CAP from calcium carbonate and orthophosphoric acid as low cost but high purity starting materials. Highlights: • The synthesis of carbonate-containing apatites from CaCO3 and H3PO4 was studied. • The decomposition of CaCO3 particles was complete at 80 °C, 13.2 bar for 48 h. • The transformation of CaCO3 and H3PO4 into apatitic products was also complete. • Pure carbonate-containing apatite was directly obtained without water-rising step

  19. DECOMPOSITION STUDY OF CALCIUM CARBONATE IN COCKLE SHELL

    Directory of Open Access Journals (Sweden)

    MUSTAKIMAH MOHAMED

    2012-02-01

    Full Text Available Calcium oxide (CaO is recognized as an efficient carbon dioxide (CO2 adsorbent and separation of CO2 from gas stream using CaO based adsorbent is widely applied in gas purification process especially at high temperature reaction. CaO is normally been produced via thermal decomposition of calcium carbonate (CaCO3 sources such as limestone which is obtained through mining and quarrying limestone hill. Yet, this study able to exploit the vast availability of waste resources in Malaysia which is cockle shell, as the potential biomass resources for CaCO3 and CaO. In addition, effect of particle size towards decomposition process is put under study using four particle sizes which are 0.125-0.25 mm, 0.25-0.5 mm, 1-2 mm, and 2-4 mm. Decomposition reactivity is conducted using Thermal Gravimetric Analyzer (TGA at heating rate of 20°C/minutes in inert (Nitrogen atmosphere. Chemical property analysis using x-ray fluorescence (XRF, shows cockle shell is made up of 97% Calcium (Ca element and CaO is produced after decomposition is conducted, as been analyzed by x-ray diffusivity (XRD analyzer. Besides, smallest particle size exhibits the highest decomposition rate and the process was observed to follow first order kinetics. Activation energy, E, of the process was found to vary from 179.38 to 232.67 kJ/mol. From Arrhenius plot, E increased when the particle size is larger. To conclude, cockle shell is a promising source for CaO and based on four different particles sizes used, sample at 0.125-0.25 mm offers the highest decomposition rate.

  20. Effect of calcium carbonate saturation of seawater on coral calcification

    Science.gov (United States)

    Gattuso, J.-P.; Frankignoulle, M.; Bourge, I.; Romaine, S.; Buddemeier, R.W.

    1998-01-01

    The carbonate chemistry of seawater is usually not considered to be an important factor influencing calcium-carbonate-precipitation by corals because surface seawater is supersaturated with respect to aragonite. Recent reports, however, suggest that it could play a major role in the evolution and biogeography of recent corals. We investigated the calcification rates of five colonies of the zooxanthellate coral Stylophora pistillata in synthetic seawater using the alkalinity anomaly technique. Changes in aragonite saturation from 98% to 585% were obtained by manipulating the calcium concentration. The results show a nonlinear increase in calcification rate as a function of aragonite saturation level. Calcification increases nearly 3-fold when aragonite saturation increases from 98% to 390%, i.e., close to the typical present saturation state of tropical seawater. There is no further increase of calcification at saturation values above this threshold. Preliminary data suggest that another coral species, Acropora sp., displays a similar behaviour. These experimental results suggest: (l) that the rate of calcification does not change significantly within the range of saturation levels corresponding to the last glacial-interglacial cycle, and (2) that it may decrease significantly in the future as a result of the decrease in the saturation level due to anthropogenic release of CO2 into the atmosphere. Experimental studies that control environmental conditions and seawater composition provide unique opportunities to unravel the response of corals to global environmental changes.

  1. Stimulated Growth of Aerobic Microbes Using Calcium Peroxide

    Institute of Scientific and Technical Information of China (English)

    LIU Shejiang; LI Mujin; JIANG Bin; LI Xingang

    2006-01-01

    With continuous and slow oxygen-release characteristic,calcium peroxide (CaO2) has been a new source of supplying oxygen for aerobic microbes in bioremediation of contaminated groundwater.Batch experiments were conducted to evaluate the oxygen-release rate of CaO2 reacting with water,the regulation of high pH,as well as the growth of mixed aerobic microbes in the medium containing CaO2.The results show that the oxygen-release process of CaO2 comprises three phases.In the first phase,dissolved oxygen levels of water increased sharply,and average oxygen-release rates increased as the adding weight of CaO2 increased.However,the rates almost ly.As the necessary components of medium,potassium dihydrogen phosphate (KH2PO4) and ammonium sulphate ((NH4)2SO4) at a certain ratio could regulate pH caused by CaO2 from 12.1 to the range of 6.5-8.5,which is helpful for microbial growth.In addition,diauxic growth curve observed in the medium containing CaO2 suggested that the growth of mixed aerobic microbes could be stimulated by the addition of CaO2.

  2. Synthesis of calcium carbonate using extract components of croaker gill as morphology and polymorph adjust control agent.

    Science.gov (United States)

    Chen, Hao; Qing, Chengsong; Zheng, Jiaoling; Liu, Yuxi; Wu, Gang

    2016-06-01

    Biomimetic synthesis of calcium carbonate with various polymorphs, sizes and morphologies by using organic substrates has become an interesting topic for the last years. Calcium carbonate has been synthesized by the reaction of Na2CO3 and CaCl2 in the presence of extract components of croaker gill. The products were characterized by powder X-ray diffraction (PXRD) and Fourier transform infrared (FT-IR) spectrum, and particle morphologies were observed by scanning electron microscope (SEM). The results show that at lower concentration yellow croaker gill extract has no effect on calcium carbonate crystal polymorph. Calcite was obtained only. But the morphologies of calcite particle change with the increase of the concentration. The corners of the particle change from angular to curved. However, with the further increase of the concentration of yellow croaker gill extract, the calcium carbonate obtained is a mixture of calcite and vaterite. The vaterite component in the mixture rises with increasing concentration of extract solution, indicating that the proteins from the yellow croaker gill during growth play a crucial role in stabilizing and directing the crystal growth. PMID:27040242

  3. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?

    Science.gov (United States)

    Sumner, D. Y.; Grotzinger, J. P.

    1996-01-01

    Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.

  4. A Calcium-Dependent Protein Kinase Interactswith and Activates A Calcium Channel toRequlate Pollen Tube Growth

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    ABSTRACT Calcium, as a ubiquitous second messenger, plays essential roles in tip-growing cells, such as animal neu-rons, plant pollen tubes, and root hairs. However, little is known concerning the regulatory mechanisms that code anddecode Ca2+ signals in plants. The evidence presented here indicates that a calcium-dependent protein kinase, CPK32,controls polar growth of pollen tubes. Overexpression of CPK32 disrupted the polar growth along with excessive Ca2+accumulation in the tip. A search of downstream effector molecules for CPK32 led to identification of a cyclic nucleotide-gated channel, CNGC18, as an interacting partner for CPK32. Co-expression of CPK32 and CNGC18 resulted in activationof CNGC18 in Xenopus oocytes where expression of CNGC18 alone did not exhibit significant calcium channel activity.Overexpression of CNGC18 produced a growth arrest phenotype coupled with accumulation of calcium in the tip, simi-lar to that induced by CPK32 overexpression. Co-expression of CPK32 and CNGC18 had a synergistic effect leading tomore severe depolarization of pollen tube growth. These results provide a potential feed-forward mechanism in whichcalcium-activated CPK32 activates CNGC18, further promoting calcium entry during the elevation phase of Ca2+ oscilla-tions in the polar growth of pollen tubes.

  5. Calcium absorbability from milk products, an imitation milk, and calcium carbonate

    International Nuclear Information System (INIS)

    Whole milk, chocolate milk, yogurt, imitation milk (prepared from dairy and nondairy products), cheese, and calcium carbonate were labeled with 45Ca and administered as a series of test meals to 10 healthy postmenopausal women. Carrier Ca content of the test meals was held constant at 250 mg and subjects fasted before each meal. The absorbability of Ca from the six sources was compared by measuring fractional absorption by the double isotope method. The mean absorption values for all six sources were tightly clustered between 21 and 26% and none was significantly different from the others using one-way analysis of variance. We conclude that none of the sources was significantly superior or inferior to the others

  6. Artificial dental root made of natural calcium carbonate (Bioracine).

    Science.gov (United States)

    Camprasse, S; Camprasse, G; Pouzol, M; Lopez, E

    1990-01-01

    'Bioracine' is an artificial dental root made of natural calcium carbonate (Pinctade maxima mother of pearl). This non-biodegradable material is very close to bone tissue in its physicochemical composition and presents remarkable hardness, resistance and elasticity. Bioracine is a buried dental implant with a special screw thread, presenting a large surface which shows pores of 2-3 mum. A histological study of the interface between the implant and human maxillary bone demonstrated an extraordinary cellular union between these two tissues. Furthermore, bioracine presents two new technical innovations: a periprosthetic epithelial attachment of connective tissue with an active shock absorbing system. Bioracine is an exceptional dental root substitute that matches the biological properties of natural bone. PMID:10147506

  7. Calcium carbonate obstructive urolithiasis in a red kangaroo (Macropus rufus).

    Science.gov (United States)

    Lindemann, Dana M; Gamble, Kathryn C; Corner, Sarah

    2013-03-01

    A 6-yr-old male red kangaroo (Macropus rufus) presented for a history of inappetance, abnormal behavior, and unconfirmed elimination for 6 hr prior to presentation. Based on abdominal ultrasound, abdominocentesis, and cystocentesis, a presumptive diagnosis of urinary tract obstruction with uroabdomen and hydronephrosis was reached. Abdominal radiographs did not assist in reaching an antemortem diagnosis. Postmortem examination confirmed a urinary bladder rupture secondary to urethral obstruction by a single urethrolith. Bilateral hydronephrosis and hydroureter were identified and determined to be a result of bilateral ureteroliths. Urolith analysis revealed a composition of 100% calcium carbonate. A dietary analysis was performed, implicating an increased Ca:P ratio from a food preparation miscommunication as a contributing factor. Appropriate husbandry changes were made, and mob surveillance procedures were performed, which resolved the urolithiasis risk for the remaining five animals. PMID:23505728

  8. Release of Crude Oil from Silica and Calcium Carbonate Surfaces

    DEFF Research Database (Denmark)

    Liu, Xiaoyan; Yan, Wei; Stenby, Erling Halfdan;

    2016-01-01

    on the bare surfaces, surfaces with an adsorbed oil layer, and surfaces after being exposed to aqueous salt solutions. This showed that the silica surface became more hydrophobic after oil adsorption, while the wettability of the calcium carbonate surface was not significantly changed by adsorption of an oil...... oil was investigated by exposing the surfaces with an adsorbed oil layer to a series of NaCl and CaCl2 solutions of decreasing salt concentrations. Here, it was found that the oil release from silica was achieved only by injections of low-salinity solutions, and it is suggested that this observation...... or reduction in ion bridging in the presence of high-salinity NaCl, while the low-salinity effect again was attributed to an expansion of the electrical double layer....

  9. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    Science.gov (United States)

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  10. Effects of high concentrations of calcium salts in the substrate and its pH on the growth of selected rhododendron cultivars

    Directory of Open Access Journals (Sweden)

    Piotr Giel

    2011-07-01

    Full Text Available For proper growth and development, rhododendrons need acidic soils, whereas calcium carbonate (CaCO3 in the substrate markedly limits their growth. In this study, we analysed the reactions of rhododendrons to high concentrations of calcium salts and pH in the substrate. We used 4-month-old seedlings of Rhododendron 'Cunningham's White' and 1.5-year-old seedlings and rooted cuttings of R. 'Cunningham's White' and R. 'Catawbiense Grandiflorum'. Their reactions depended mostly on calcium salt type added to the substrate (sulphate or carbonate. An increase in concentrations of phenolic compounds was detected mostly in roots of the plants grown in a substrate with a high calcium carbonate content. Addition of calcium salts to the substrate caused a significant rise in total nonstructural carbohydrates in leaves and roots of the studied plants. As compared to the control, an increase in substrate pH in the variant with calcium carbonate limited the activity of acid phosphatase, while lowering of substrate pH in the variant with calcium sulphate, significantly increased its activity. Along with the rise in substrate pH, a remarkable increase was observed in the activity of nonspecific dehydrogenase (DHA in the substrate with CaCO3, as compared to the control. Unfavourable soil conditions (high calcium content and alkaline pH caused a decrease in assimilation of minerals by the studied plants (mostly phosphorus and manganese. Our results show that the major factor limiting rhododendron growth is an increase in substrate pH, rather than an increase in the concentration of calcium ions.

  11. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    Science.gov (United States)

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  12. Soil-calcium depletion linked to acid rain and forest growth in the eastern United States

    Science.gov (United States)

    Lawrence, Gregory B.; Huntington, T.G.

    1999-01-01

    Since the discovery of acid rain in the 1970's, scientists have been concerned that deposition of acids could cause depletion of calcium in forest soils. Research in the 1980's showed that the amount of calcium in forest soils is controlled by several factors that are difficult to measure. Further research in the 1990's, including several studies by the U.S. Geological Survey, has shown that (1) calcium in forest soils has decreased at locations in the northeastern and southeastern U.S., and (2) acid rain and forest growth (uptake of calcium from the soil by roots) are both factors contributing to calcium depletion.

  13. The nucleation and growth of calcium phosphate crystals at protein and phosphatidylserine liposome surfaces.

    Science.gov (United States)

    Nancollas, G H; Tsortos, A; Zieba, A

    1996-01-01

    The kinetics of calcium phosphate crystal growth at the surfaces of proteins and phospholipids has been investigated using free drift and constant composition methods in supersaturated calcium phosphate solutions (relative supersaturations: with respect to hydroxyapatite, HAP, sigma HAP = 15.0, and with respect to octacalcium phosphate, OCP, sigma OCP = 1.9). Fibrinogen and collagen molecules adsorbed at hydrophobic surfaces as well as uncross-linked collagen fibrils induce ion binding and subsequent nucleation of calcium phosphate. The formation of OCP on phosphatidylserine vesicles introduced to highly supersaturated calcium phosphate solutions probably involves the interaction of the calcium ions with the ionized carboxylic groups of the phospholipid. PMID:9813627

  14. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete.

    Science.gov (United States)

    Kim, Hyun Jung; Eom, Hyo Jung; Park, Chulwoo; Jung, Jaejoon; Shin, Bora; Kim, Wook; Chung, Namhyun; Choi, In-Geol; Park, Woojun

    2016-03-01

    Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (HYO08), were isolated from two samples of concrete and characterized phylogenetically. Calcium carbonate crystals precipitated by the three strains were morphologically distinct according to field emission scanning electron microscopy. Energy dispersive X-ray spectrometry mapping confirmed biomineralization via extracellular calcium carbonate production. The three strains differed in their physiological characteristics: growth at alkali pH and high NaCl concentrations, and urease activity. Sporosarcina sp. HYO08 and Bacillus sp. JH7 were more alkali- and halotolerant, respectively. Analysis of the community from the same concrete samples using barcoded pyrosequencing revealed that the relative abundance of Bacillus and Sporosarcina species was low, which indicated low culturability of other dominant bacteria. This study suggests that calcium carbonate crystals with different properties can be produced by various CCP-capable strains, and other novel isolates await discovery. PMID:26699752

  15. Calcium carbonate corrosivity in an Alaskan inland sea

    Science.gov (United States)

    Evans, W.; Mathis, J. T.; Cross, J. N.

    2014-01-01

    Ocean acidification is the hydrogen ion increase caused by the oceanic uptake of anthropogenic CO2, and is a focal point in marine biogeochemistry, in part, because this chemical reaction reduces calcium carbonate (CaCO3) saturation states (Ω) to levels that are corrosive (i.e., Ω ≤ 1) to shell-forming marine organisms. However, other processes can drive CaCO3 corrosivity; specifically, the addition of tidewater glacial melt. Carbonate system data collected in May and September from 2009 through 2012 in Prince William Sound (PWS), a semienclosed inland sea located on the south-central coast of Alaska and ringed with fjords containing tidewater glaciers, reveal the unique impact of glacial melt on CaCO3 corrosivity. Initial limited sampling was expanded in September 2011 to span large portions of the western and central sound, and included two fjords proximal to tidewater glaciers: Icy Bay and Columbia Bay. The observed conditions in these fjords affected CaCO3 corrosivity in the upper water column (carbon dioxide partial pressures (pCO2) well below atmospheric levels. CaCO3 corrosivity in glacial melt plumes is poorly reflected by pCO2 or pHT, indicating that either one of these carbonate parameters alone would fail to track Ω in PWS. The unique Ω and pCO2 conditions in the glacial melt plumes enhances atmospheric CO2 uptake, which, if not offset by mixing or primary productivity, would rapidly exacerbate CaCO3 corrosivity in a positive feedback. The cumulative effects of glacial melt and air-sea gas exchange are likely responsible for the seasonal reduction of Ω in PWS, making PWS highly sensitive to increasing atmospheric CO2 and amplified CaCO3 corrosivity.

  16. Controlled synthesis of crystalline calcium carbonate aggregates with unusual morphologies involving the phase transformation from amorphous calcium carbonate

    International Nuclear Information System (INIS)

    Peanut-shaped CaCO3 aggregates, featured of two dandelion-like heads built up from rod-like subunits, have been synthesized via a facile precipitation reaction between Na2CO3 and CaCl2 at ambient temperature in the presence of magnesium ions and ethanol solvent. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that a high magnesium concentration and ethanol solvent are necessary for the formation of the unusual peanut-like aggregates. In addition, a multistep phase transformation process from amorphous calcium carbonate (ACC) to a mixture of ACC and calcite and ultimately to calcite and aragonite was observed in the formation process of the unusual structures. A possible mechanism for the formation of the unusual peanut-shape aggregates has been proposed and discussed

  17. Carbon onion growth enhanced by nitrogen incorporation

    International Nuclear Information System (INIS)

    A mass of carbon onions have previously been successfully synthesized via catalytic decomposition of methane using nitrogen as a carrier gas over a Ni/Al catalyst. In this study, X-ray photoelectron spectroscopy characterization of the carbon onions shows that the as-grown carbon onions contained nitrogen and that the nitrogen concentration in the carbon onions increased with an increase in reaction time. When hydrogen is used as a carrier gas, it is found that no carbon onions are obtained, indicating that the carrier gas plays an important role in the synthesis of carbon onions and that there is an intimate relationship between carbon onion growth and nitrogen incorporation

  18. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    OpenAIRE

    Sekkal, W.; Zaoui, A.

    2013-01-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Resul...

  19. Effect of Calcium Supplementation on Growth, Nutrient Digestibility and Fecal Lactobacilli in Dairy Calves

    Directory of Open Access Journals (Sweden)

    C. Yuangklang

    2010-01-01

    Full Text Available Problem statement: Based on earlier studies in veal calves and rats, the hypothesis tested was that high calcium intakes by ruminating dairy calves reduce fat digestibility, but do not affect growth performance due to enhanced colonization of the intestine with lactobacilli. Approach: In dairy calves that were fed on a combination of milk replacer, concentrate on grass hay, the effects of supplemental calcium on growth, nutrient digestibility and fecal lactobacilli were studied. Four concentrates with different levels of calcium were used. Results: Final body weight and weight gain were raised by the calcium level in the concentrate in a dose-dependent, linear fashion. Apparent digestibility of dry matter, organic matter, crude protein and crude fat were not influenced by the level of calcium in the concentrate. The number of fecal lactobacilli was significantly increased by higher dietary calcium levels, the effect having a linear trend. Calcium intake did not change the number of fecal E. coli. The apparent absorptions of calcium, phosphorus and magnesium were lowered in a linear, dose-dependent fashion by the calcium level in the concentrate. Conclusion: Increased calcium intakes stimulate weight gain in dairy calves fed a combination of milk replacer, concentrate and grass hay. This calcium effect may be related to an enhanced colonization of the intestine with lactobacilli.

  20. Calcium carbonate corrosivity in an Alaskan inland sea

    Directory of Open Access Journals (Sweden)

    W. Evans

    2013-09-01

    Full Text Available Ocean acidification is the hydrogen ion increase caused by the oceanic uptake of anthropogenic CO2, and is a focal point in marine biogeochemistry, in part, because this chemical reaction reduces calcium carbonate (CaCO3 saturation states (Ω to levels that are corrosive (i.e. Ω ≤ 1 to shell-forming marine organisms. However, other processes can drive CaCO3 corrosivity; specifically, the addition of tidewater glacial melt. Carbonate system data collected in May and September from 2009 through 2012 in Prince William Sound (PWS, a semi-enclosed inland sea located on the south-central coast of Alaska that is ringed with fjords containing tidewater glaciers, reveal the unique impact of glacial melt on CaCO3 corrosivity. Initial limited sampling was expanded in September 2011 to span large portions of the western and central sound, and included two fjords proximal to tidewater glaciers: Icy Bay and Columbia Bay. The observed conditions in these fjords affected CaCO3 corrosivity in the upper water column (pCO2 well below atmospheric levels. CaCO3 corrosivity in glacial melt plumes is poorly reflected by pCO2 or pHT, indicating that either one of these carbonate parameters alone would fail to track Ω in PWS. The unique Ω and pCO2 conditions in the glacial melt plumes enhances atmospheric CO2 uptake, which, if not offset by mixing or primary productivity, would rapidly exacerbate CaCO3 corrosivity in a positive feedback. The cumulative effects of glacial melt and air-sea gas exchange are likely responsible for the seasonal widespread reduction of Ω in PWS; making PWS highly sensitive to increasing atmospheric CO2 and amplified CaCO3 corrosivity.

  1. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules

    DEFF Research Database (Denmark)

    Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.;

    2008-01-01

    (the calcium carbonate: calcium carbonate bonds) and consequently exposed the weakest areas of bond formation on the surface of the granules. Accordingly, the non-uniform allocation of the interparticulate attractive forces in a tablet would cause a lowering of the compactibility. Furthermore, the...... ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential....

  2. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    Science.gov (United States)

    Gresswell, Carolyn Gayle

    Understanding how organisms are capable of forming (synthesize, crystallize, and organize) solid minerals into complex architectures has been a fundamental question of biomimetic materials chemistry and biomineralization for decades. This study utilizes short peptides selected using a cell surface display library for the specific polymorphs of calcium carbonate, i.e., aragonite and calcite, to identify two sets of sequences which can then be used to examine their effects in the formation, crystal structure, morphology of the CaCO3 minerals. A procedure of counter selection, along with fluorescence microscopy (FM) characterization, was adapted to insure that the sequences on the cells were specific to their respective substrate, i.e., aragonite or calcite. From the resulting two sets of sequences selected, five distinct strong binders were identified with a variety of biochemical characteristics and synthesized for further study. Protein derived peptides, using the known sequences of the proteins that are associated with calcite or aragonite, were also designed using a bioinformatics-based similarity analysis of the two sets of binders. In particular, an aragonite binding protein segment, AP7, a protein found in nacre, was chosen for this design and the resulting effects of the designed peptides and the AP7 were examined. Specifically, the binding affinities of the selected and the protein derived peptides off the cells were then tested using FM; these studies resulted in different binding characteristics of the synthesized and cellular bound peptides. Two of the peptides that displayed strong binding on the cells bound to neither of the CaCO 3 substrates and both the high and low similarity protein-derived peptides bound to both polymorphs. However, two of the peptides were found to only bind to their respective polymorph showing; these results are significant in that with this study it is demonstrated that the designed peptides based on experimental library

  3. Peptide Induced Crystallization of Calcium Carbonate on Wrinkle Patterned Substrate: Implications for Chitin Formation in Molluscs

    Directory of Open Access Journals (Sweden)

    Ingrid M. Weiss

    2013-06-01

    Full Text Available We here present the nucleation and growth of calcium carbonate under the influence of synthetic peptides on topographically patterned poly(dimethylsiloxane (PDMS substrates, which have a controlled density of defects between the wrinkles. Experiments with two lysine-rich peptides derived from the extracellular conserved domain E22 of the mollusc chitin synthase Ar-CS1, AKKKKKAS (AS8 and EEKKKKKES (ES9 on these substrates showed their influence on the calcium carbonate morphology. A transition from polycrystalline composites to single crystalline phases was achieved with the peptide AS8 by changing the pH of the buffer solution. We analyzed three different pH values as previous experiments showed that E22 interacts with aragonite biominerals more strongly at pH 7.75 than at pH 9.0. At any given pH, crystals appeared in characteristic morphologies only on wrinkled substrates, and did not occur on the flat, wrinkle-free PDMS substrate. These results suggest that these wrinkled substrates could be useful for controlling the morphologies of other mineral/peptide and mineral/protein composites. In nature, these templates are formed enzymatically by glycosyltransferases containing pH-sensitive epitopes, similar to the peptides investigated here. Our in vitro test systems may be useful to gain understanding of the formation of distinct 3D morphologies in mollusc shells in response to local pH shifts during the mineralization of organic templates.

  4. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  5. Experimental kinetic study and modeling of calcium oxide carbonation

    International Nuclear Information System (INIS)

    Anthropogenic carbon dioxide (CO2) emissions, major contributors to the greenhouse effect, are considered as the main cause of global warming. So, decrease of CO2 emitted by large industrial combustion sources or power plants, is an important scientific goal. One of the approaches is based on CO2 separation and capture from flue gas, followed by sequestration in a wide range of geological formations. In this aim, CO2 is captured by sorbents like calcium oxide (CaO) in multi-cycle process of carbonation/de-carbonation. However, it was shown that the most important limitations of such process are related to the reversibility of reaction. CaO rapidly loses activity towards CO2, so the maximum extent of carbonation decreases as long as the number of cycles increases. In order to well understand the processes and parameters influencing the capture capacity of CaO-based sorbents, it appears important to get details on the kinetic law governing the reaction, which have not been really studied up to now. To investigate this reaction, CaO carbonation kinetics was followed by means of thermogravimetric analysis (TGA) on divided materials. Special care was given to the validation of the usual kinetic assumptions such as steady state and rate-determining step assumptions. The aim was to obtain a model describing the reaction in order to explain the influence of intensive variables such as carbonation temperature and CO2 partial pressure. TGA curves obtained under isothermal and isobaric conditions showed an induction period linked to the nucleation process and a strong slowing down of the reaction rate once a given fractional conversion was reached. Both phenomena were observed to depend on carbonation temperature and CO2 partial pressure. To explain these results, the evolution of texture and microstructure of the solid during the reaction was regarded as essential. Reaction at the grain scale induces a volume increase from CaO to CaCO3 which causes a change in the porosity

  6. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: Carbonation mechanism, modeling, and product characterization

    International Nuclear Information System (INIS)

    Highlights: → A method for converting oil shale waste ash into precipitated CaCO3 is elucidated. → We discuss the mechanism of hazardous alkaline ash leachates carbonation. → We report a model describing precipitation of CaCO3 from multi-ionic ash leachates. → Model enables simulation of reactive species concentration profiles. → Product contained ∼96% CaCO3 with 4-10 μm size calcite or/and vaterite particles. - Abstract: In this paper, a method for converting lime-containing oil shale waste ash into precipitated calcium carbonate (PCC), a valuable commodity is elucidated. The mechanism of ash leachates carbonation was experimentally investigated in a stirred semi-batch barboter-type reactor by varying the CO2 partial pressure, gas flow rate, and agitation intensity. A consistent set of model equations and physical-chemical parameters is proposed to describe the CaCO3 precipitation process from oil shale ash leachates of complex composition. The model enables the simulation of reactive species (Ca2+, CaCO3, SO42-, CaSO4, OH-, CO2, HCO3-, H+, CO32-) concentration profiles in the liquid, gas, and solid phases as well as prediction of the PCC formation rate. The presence of CaSO4 in the product may also be evaluated and used to assess the purity of the PCC product. A detailed characterization of the PCC precipitates crystallized from oil shale ash leachates is also provided. High brightness PCC (containing up to ∼96% CaCO3) with mean particle sizes ranging from 4 to 10 μm and controllable morphology (such as rhombohedral calcite or coexisting calcite and spherical vaterite phases) was obtained under the conditions studied.

  7. The flame photometric determination of calcium in phosphate, carbonate, and silicate rocks

    Science.gov (United States)

    Kramer, H.

    1957-01-01

    A flame photometric method of determining calcium in phosphate, carbonate, and silicate locks has been developed Aluminum and phosphate interference was overcome by the addition of a large excess of magnesium. The method is rapid and suitable for routine analysis Results obtained are within ?? 2% of the calcium oxide content. ?? 1957.

  8. Characterization of calcium carbonate sorbent particle in furnace environment

    International Nuclear Information System (INIS)

    The oxy-fuel combustion system is a promising technology to control CO2 and NOX emissions. Furthermore, sulfation reaction mechanism under CO2-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO3) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO3, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO2 atmosphere due to the higher CO2 partial pressure. Instead, the sintering effect was dominant in the CO2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain–subgrain structure model in both the air and CO2 atmospheres.

  9. Facile Synthesis of Calcium Carbonate Nanoparticles from Cockle Shells

    Directory of Open Access Journals (Sweden)

    Kh. Nurul Islam

    2012-01-01

    Full Text Available A simple and low-cost method for the synthesis of calcium carbonate nanoparticles from cockle shells was described. Polymorphically, the synthesized nanoparticles were aragonites which are biocompatible and thus frequently used in the repair of fractured bone and development of advanced drug delivery systems, tissue scaffolds and anticarcinogenic drugs. The rod-shaped and pure aragonite particles of 30±5 nm in diameter were reproducibly synthesized when micron-sized cockle shells powders were mechanically stirred for 90 min at room temperature in presence of a nontoxic and nonhazardous biomineralization catalyst, dodecyl dimethyl betaine (BS-12. The findings were verified using a combination of analytical techniques such as variable pressure scanning electron microscopy (VPSEM, transmission electron microscopy (TEM, Fourier transmission infrared spectroscopy (FT-IR, X-ray diffraction spectroscopy (XRD, and energy dispersive X-ray analyser (EDX. The reproducibility and low cost of the method suggested that it could be used in industry for the large scale synthesis of aragonite nanoparticles from cockle shells, a low cost and easily available natural resource.

  10. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    The coprecipitation of alkali metal ions Li+, Na+, K+ and Rb+ with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na+ which has approximately the same ionic radius as Ca2+. (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li+, Na+, K+ and Rb+) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li+, K+ and Rb+) into the aragonite. (author)

  11. Characterization of calcium carbonate sorbent particle in furnace environment.

    Science.gov (United States)

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO₂ and NO(x) emissions. Furthermore, sulfation reaction mechanism under CO₂-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO₃) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO₃, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO₃ sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO₂ atmosphere due to the higher CO₂ partial pressure. Instead, the sintering effect was dominant in the CO₂ atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO₂ atmospheres. PMID:22578525

  12. Carbon monoxide effects on calcium levels in vascular smooth muscle

    International Nuclear Information System (INIS)

    Previously the authors showed that carbon monoxide (CO) relaxes vascular smooth muscle in the working heart and thoracic aorta preparation perfused with hemoglobin-free, Krebs-Henseleit (KH) solution. The CO-induced relaxation was not caused by hypoxia, nor was it mediated by adrenergic influences, adenosine, or prostaglandins. In these studies the effect of CO on calcium (Ca++) concentrations in vascular smooth muscle was determined using 45Ca as a tracer. Isolated rat thoracic aorta segments were incubated with 45Ca and gassed with O2, N2, or CO for 60 min. Verapamil was used to verify the effectiveness of the test system. Ca++ concentrations were 488 /+ -/ 35 and 515 /+ -/ 26 mM/g tissue (X /+ -/ SE) in aortic rings gassed with O2 and N2, respectively. CO reduced Ca++ concentrations significantly (P++ concentrations by 40% to 314 /+ -/ 23 mM/g tissue. These results suggest that CO relaxes vascular smooth muscle and dilates blood vessels by decreasing Ca++ concentrations in vascular smooth muscle

  13. Controlled degradation pattern of hydroxyapatite/calcium carbonate composite microspheres.

    Science.gov (United States)

    Yang, Ning; Zhong, Qiwei; Zhou, Ying; Kundu, Subhas C; Yao, Juming; Cai, Yurong

    2016-06-01

    Hydroxyapatite (HAP) is widely used in clinic due to its good biocompatibility and osteoconductivity except for its slow degradation speed. In the present study, spherical calcium carbonate (CaCO3 ) is fabricated in the presence of silk protein sericin, which is transmuted into HAP microsphere in phosphate solution with the assistance of microwave irradiation. The effect of reaction conditions on the conversion of CaCO3 is investigated including reaction time, chemical composition of phosphate solution, and microwave power to get a series of HAP/CaCO3 composites. The degradation property of the composites is evaluated in vitro. Results show the degradation speed of the composite with higher HAP content is slower. The degradation rate of the composite could be changed effectively by modulating the proportion of HAP and CaCO3 . This work provides a feasible method for the preparation of spherical HAP/CaCO3 composite with controllable degradability. The composite thus obtained may be an ideal material for bone tissue engineering application. Microsc. Res. Tech. 79:518-524, 2016. © 2016 Wiley Periodicals, Inc. PMID:27037606

  14. Influence of the surfactant nature on the calcium carbonate synthesis in water-in-oil emulsion

    Science.gov (United States)

    Szcześ, Aleksandra

    2009-02-01

    Calcium carbonate has been precipitated from water-in-oil emulsions consisting of n-hexane/nonionic surfactant (Brij 30) and its mixture with cationic (DTAB) or anionic surfactant (SDS) to which calcium chloride and sodium carbonate were added. It was found that the surfactant kind and its amount can regulate the size, form and morphology of the precipitated particles. In case of nonionic surfactant the water/surfactant ratio is the most important parameter that allows to obtain small and regular calcium carbonate crystals. Addition of the DTAB results in different morphology of particles having the same crystal form, whereas addition of SDS changes the kind of emulsion from water-in-oil to oil-in-water. Moreover, light transmittance and backscattering light measurements have been used as a method to study the kinetics of calcium carbonate precipitation in emulsion systems.

  15. Weight Percentage of Calcium Carbonate for 17 Equatorial Pacific Cores from Brown University

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weight percentages of calcium carbonate in this file were compiled by J. Farrell and W. L. Prell of Brown University for 17 equatorial Pacific Ocean sediment cores....

  16. Pacific Remote Islands MNM: Initial Survey Instructions for Calcium Carbonate Accretion

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the survey is to quantify the rate of calcium carbonate accretion to the coral reef benthos and to examine spatial and temporal variability in...

  17. Results of the TTF-TCNQ- and the calcium carbonate-crystallization on the Long Duration Exposure Facility

    Science.gov (United States)

    Nielsen, Kjeld Flemming; Lind, M. David

    1991-01-01

    Experiment AO139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit for five years with crystal growth solutions for lead sulfide, calcium carbonate, and tetra thiafulvalene- tetra cyanoquino methane (TTF-TCNQ). The LDEF was in excellent condition after the long orbital stay, and although the temperature data was lost, the experiment program had been working since the valves in all containers were opened. All four experiments produced crystals; however, they were of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X-ray investigations as well as conductivity measurements on the long duration space grown TTF-TCNQ crystals are presented, and pictures of the calcium carbonate are shown. Comparisons are made with previous space solution growth experiments on the European Spacelab Mission and the Apollo-Soyuz Test Project.

  18. Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: Piglet studies

    NARCIS (Netherlands)

    Schaafsma, A.; Beelen, G.M.

    1999-01-01

    Powdered chicken eggshells might be an interesting and widely available source of calcium. In two studies using piglets we determined the digestibility of calcium from different diets. The first study compared casein-based diets with CaCO3 (CasCC) or eggshell powder (CasES). The second study compare

  19. An investigation on physical properties of polyethylene composite with bentonite, kaolin and calcium carbonate additives

    OpenAIRE

    Karabeyoğlu, Sencer S.; , Nurşen Öntürk

    2014-01-01

    Bentonite, Kaolin, Calcium carbonate easily obtained in nature as mineral products are widely used in plastics industry for additive materials. In this study, Bentonite, Kaolin, and Calcium carbonate minerals were compounded with polyethylene matrix used in specific rates. Prepared compounds melted in sheet metal molds and cooled down under appropriate conditions. Thus, production of composite material was achieved. Hardness, water absorption, and physical properties of manufactured composite...

  20. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    OpenAIRE

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carb...

  1. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    OpenAIRE

    Taylor Joanna; Williams Kenneth H; Zhang Guoxiang; Hubbard Susan S; Spycher Nicolas; Ajo-Franklin Jonathan B; Wu Yuxin; Fujita Yoshiko; Smith Robert

    2011-01-01

    Abstract Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predi...

  2. The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin.

    OpenAIRE

    Sahai, J; Healy, D P; Stotka, J; Polk, R E

    1993-01-01

    Six healthy male volunteers participated in a two-period, two-treatment study to determine the effect of chronic calcium carbonate administration on ciprofloxacin bioavailability. There was a mean reduction of 40% in Cmax and 43% in AUC when calcium carbonate was administered with ciprofloxacin, compared with ciprofloxacin alone (P < 0.05). There were no changes in either half-life or tmax. It is therefore recommended that patients being treated with ciprofloxacin for serious infections refra...

  3. Influence of calcium carbonate and carbon nanotubes on the crystallization kinetics of polypropylene at high supercooling

    Science.gov (United States)

    Schawe, Jürgen E. K.

    2016-03-01

    Polymer fillers have been classified as active or inactive regarding their nucleation performance. Whereas an active filler significantly accelerates the crystallization process, an inactive filler has a significantly reduced influence on the crystallization kinetics. The majority of the studies of the filler influence on the crystallization process are performed at relatively low supercooling or at low cooling rates. In this paper, we use the Fast Scanning DSC to study the crystallization process of differently filled polypropylene (PP) in the temperature range between 120 °C and 0 °C. The inactive filler calcium carbonate reduces the crystallization rate of the α-phase at low supercooling (above 80 °C). Between 45 °C and 80 °C, calcium carbonate significantly accelerates the α-phase crystallization of PP. The mesophase crystallization is not affected by this filler. As an example of active filler, carbon nanotubes are used. Even with small filler content the α-phase crystallization of PP is significantly accelerated. Also in this case the mesophase crystallization is not significantly affected.

  4. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template

    International Nuclear Information System (INIS)

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. - Highlights: • Nacre-like CaCO3/GO were prepared by gas diffusion. • Ionic liquid/GO served as composite templates. • The interaction of Ca2+ ions and GO played a very important role in the formation of nacre-like CaCO3

  5. Response of plant growth to low calcium concentration in the nutrient solution

    OpenAIRE

    Amor, del, F.M.; Marcelis, L.F.M.

    2005-01-01

    Many studies have indicated the importance of calcium in fruit disorders. This nutrient is often applied in the nutrient solution in relatively high amounts throughout the crop season, usually without taking into account the physiological stage of the plant. Our study aimed to determine the effect of calcium supply on growth of young, vegetative tomato plants. The experiment was carried out in a growth chamber under fully controlled climate conditions. Treatments consisted of four periods of ...

  6. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel

    Energy Technology Data Exchange (ETDEWEB)

    Morandeau, Antoine E.; White, Claire E. [Princeton

    2015-04-21

    Calcium–silicate–hydrate (C–S–H) gel is the main binder component in hydrated ordinary Portland cement (OPC) paste, and is known to play a crucial role in the carbonation of cementitious materials, especially for more sustainable alternatives containing supplementary cementitious materials. However, the exact atomic structural changes that occur during carbonation of C–S–H gel remain unknown. Here, we investigate the local atomic structural changes that occur during carbonation of a synthetic calcium–silicate–hydrate gel exposed to pure CO₂ vapour, using in situ X-ray total scattering measurements and subsequent pair distribution function (PDF) analysis. By analysing both the reciprocal and real-space scattering data as the C–S–H carbonation reaction progresses, all phases present during the reaction (crystalline and non-crystalline) have been identified and quantified, with the results revealing the emergence of several polymorphs of crystalline calcium carbonate (vaterite and calcite) in addition to the decalcified C–S–H gel. Furthermore, the results point toward residual calcium being present in the amorphous decalcified gel, potentially in the form of an amorphous calcium carbonate phase. As a result of the quantification process, the reaction kinetics for the evolution of the individual phases have been obtained, revealing new information on the rate of growth/dissolution for each phase associated with C–S–H gel carbonation. Moreover, the investigation reveals that the use of real space diffraction data in the form of PDFs enables more accurate determination of the phases that develop during complex reaction processes such as C–S–H gel carbonation in comparison to the conventional reciprocal space Rietveld analysis approach.

  7. Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.

    Science.gov (United States)

    Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

    2010-05-01

    -potential of the cells. To characterise the link between the rate of bacterial growth (biomass production) and the rate of CaCO3 precipitation, batch kinetic experiments were performed. These experiments were carried out in closed (anaerobic) bottles with initial concentration of calcium from 1 to 20 mM and from 5 to 20 mM bicarbonate. The biomass of cells, pH, [Ca2+] and [Alk] were measured as a function of time. Blank experiments (without cell or autoclaved cells) were always carried out. We found that the optimal conditions for both CaCO3 precipitation and biomass increase for the culture Rhodovulum sp. A-20s, is calcium concentration of 3 mM, whatever the concentration of bicarbonate (5, 10, 15 mM). Note also that for calcium concentration higher than 3 mM, the biomass production decreases. In the case of strictly anaerobic Rhodovulum sp. S-1765 bacteria, the optimal conditions for calcium carbonate precipitation is observed for the bicarbonate concentration of 10 mM, whatever the calcium concentration (3, 5, 10 mM). Overall, the present study allows quantitative modeling of bacterially-induced CaCO3 precipitation. It helps to distinguish between the effect of cell surface functional groups, surface electrical charge, soluble organic matter and metabolic change of solution pH on the rate and nature of precipitating calcium carbonate solid phase.

  8. Green Growth and Low Carbon Society

    DEFF Research Database (Denmark)

    Müller, Anders Riel; Tonami, Aki

    This paper ask the question of what makes Low Carbon and Green Growth and Low Carbon Society policy concepts that have not only gained foothold in their countries of origin, but also globally. Autobiography analysis is employed to discover the stories that these concepts tell about developmental ...

  9. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    Directory of Open Access Journals (Sweden)

    G. A. Silva-Castro

    2015-01-01

    Full Text Available The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments.

  10. Sulfur Cycling Mediates Calcium Carbonate Geochemistry in Modern Marine Stromatolites

    Science.gov (United States)

    Visscher, P. T.; Hoeft, S. E.; Bebout, B. M.; Reid, R. P.

    2004-01-01

    Modem marine stromatolites forming in Highborne Cay, Exumas (Bahamas), contain microbial mats dominated by Schizothrix. Although saturating concentrations of Ca2+ and CO32- exist, microbes mediate CaCO3 precipitation. Cyanobacterial photosynthesis in these stromatolites aids calcium carbonate precipitation by removal of HS+ through CO2 use. Photorespiration and exopolymer production predominantly by oxygenic phototrophs fuel heterotrophic activity: aerobic respiration (approximately 60 umol/sq cm.h) and sulfate reduction (SR; 1.2 umol SO42-/sq cm.h) are the dominant C- consuming processes. Aerobic microbial respiration and the combination of SR and H2S oxidation both facilitate CaCO3 dissolution through H+ production. Aerobic respiration consumes much more C on an hourly basis, but duel fluctuating O2 and H2 depth profiles indicate that overall, SR consumes only slightly less (0.2-0.5) of the primary production. Moreover, due to low O2 concentrations when SR rates are peaking, reoxidation of the H2S formed is incomplete: both thiosulfate and polythionates are formed. The process of complete H2S oxidation yields H+. However, due to a low O2 concentration late in the day and relatively high O2 concentrations early in the following morning, a two-stage oxidation takes place: first, polythionates are formed from H2S, creating alkalinity which coincides with CaCO3 precipitation; secondly, oxidation of polythionates to sulfate yields acidity, resulting in dissolution, etc. Vertical profiles confirmed that the pH peaked late in the afternoon (greater than 8.8) and had the lowest values (less than 7.4) early in the morning. Thus, the effect of this S-cycling through alkalinity production, followed by acidification during H2S oxidation, results in a six times stronger fluctuation in acidity than photosynthesis plus aerobic respiration accomplish. This implies that anaerobic processes play a pivotal role in stromatolite formation.

  11. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  12. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou

    Directory of Open Access Journals (Sweden)

    Ron Moen

    1998-03-01

    Full Text Available We added antler growth and mineral metabolism modules to a previously developed energetics model for ruminants to simulate energy and mineral balance of male and female caribou throughout an annual cycle. Body watet, fat, protein, and ash are monitored on a daily time step, and energy costs associated with reproduction and body mass changes are simulated. In order to simulate antler growth, we had to predict calcium and phosphorus metabolism as it is affected by antler growth, gestation, and lactation. We used data on dietary digestibility, protein, calcium and phosphorus content, and seasonal patterns in body mass to predict the energy, nitrogen, calcium, and phosphorus balances of a "generic" male and female caribou. Antler growth in males increased energy requirements during antler growth by 8 to 16%, depending on the efficiency with which energy was used for antler growth. Female energy requirements for antler growth were proportionately much smaller because of the smaller size of female antlers. Protein requirements for antler growth in both males and females were met by forage intake. Calcium and phosphorus must be resorbed from bone during peak antler growth in males, when > 25 g/day of calcium and > 12 g/day of phosphorus are being deposited in antlers. Females are capable of meeting calcium needs during antler growth without bone resorption, but phosphorus was resorbed from bone during the final stages of antler mineralization. After energy, phosphorus was most likely to limit growth of antlers for both males and females in our simulations. Input parameters can be easily changed to represent caribou from specific geographic regions in which dietary nutrient content or body mass patterns differ from those in our "generic" caribou. The model can be used to quantitatively analyze the evolutionary basis for development of antlers in female caribou, and the relationship between body mass and antler size in the Cervidae.

  13. A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions.

    Science.gov (United States)

    Ronholm, J; Schumann, D; Sapers, H M; Izawa, M; Applin, D; Berg, B; Mann, P; Vali, H; Flemming, R L; Cloutis, E A; Whyte, L G

    2014-11-01

    Precipitation of calcium carbonate (CaCO3(s) ) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro-organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high-resolution transmission electron microscopy, and micro-X-ray diffraction (μ-XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid-like epitaxial plates, rhomboid-like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by μ-XRD, and calcite and aragonite were also identified based on TEM lattice-fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal-encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying

  14. Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model

    Science.gov (United States)

    Reddy, Michael M.; Plummer, L. Neil; Busenberg, E.

    1981-01-01

    A highly reproducible seeded growth technique was used to study calcite crystallization from calcium bicarbonate solutions at 25°C and fixed carbon dioxide partial pressures between 0.03 and 0.3 atm. The results are not consistent with empirical crystallization models that have successfully described calcite growth at low PCO2 (crystallization rates and those calculated from the calcite dissolution rate law and mechanism proposed by Plummer et al. (1978).

  15. Preparation of pure calcium carbonate by mineral carbonation using industrial byproduct FGD gypsum

    Science.gov (United States)

    Song, K.; Kim, W.; Bang, J. H.; Park, S.; Jeon, C. W.

    2015-12-01

    Mineral carbonation is one of the geological approaches for the sequestration of anthropogenic CO2 gas. Its concept is based on the natural weathering processes in which silicate minerals containing divalent cations such as Ca or Mg are carbonated to CaCO3 or MgCO3 in the reaction with CO2gas. Raw materials for the mineral carbonation have been extended to various industrial solid wastes such as steel slag, ashes, or FGD (flue gas desulfurization) gypsum which are rich in divalent cations. These materials have economic advantages when they are produced in CO2 emission sites. Flue gas desulfurization (FGD) gypsum is such a byproduct obtained in at coal-fired power plants. Recently, we carried out a research on the direct mineral carbonation of FGD gypsum for CO2sequestration. It showed high carbonation reactivity under ambient conditions and the process can be described as follows: CaSO4·2H2O + CO2(g) + 2NH4OH(aq) → CaCO3(s) + (NH4)2SO4(aq) (1) At the early stage of the process, calcium carbonate (CaCO3) exists as a dissolved ion pair during the induction period. High-purity CaCO3 could be precipitated from dissolved calcium carbonate solution extracted during the induction period. The effect of experimental parameters on pure CaCO3 was evaluated: CO2 flow rate (1-3 L/min), ammonia content (4-12%), and solid-to-liquid (S/L) ratio (5-300 g/L). FE-SEM (field-emission scanning electron microscopy) and XRD (X-ray diffraction) study revealed that the precipitated CaCO3 was round-shaped vaterite crystals. The induction time was inversely proportional to the CO2 flow rate and the yield for pure CaCO3 increased with the ammonia content. The formation efficiency for pure CaCO3 decreased with S/L (solid/liquid) ratio. It was 90% (mol/mol) when the S/L ratio was 5 g/L. However, S/L ratio didn't affect the maximum solubility limit of dissolved CaCO3.

  16. Performance of separation processes for precipitated calcium carbonate produced with an innovative method from steelmaking slag and carbon dioxide

    Directory of Open Access Journals (Sweden)

    Sebastian eTeir

    2016-02-01

    Full Text Available In this work, experiments were performed to determine the filterability of calcium carbonate produced with an alternative calcium carbonate production concept. The concept uses steelmaking slag as raw material and has potential to fix CO2 emissions and utilize steelmaking slag, simultaneously. As calcium carbonate is precipitated in a solution containing ammonium chloride, calcium chloride and ammonia, the product needs to be washed and hence filtered. In this work different separation processes, including washing, filtering and drying, were tested on two calcium carbonate slurries produced from steel converter slag and CO2 by a laboratory-scale pilot facility, with the aim of obtaining a solid product with a low chloride content using a minimum amount of washing water. The order of maximum filtration rates achievable of the calcium carbonate slurries was determined by experimental work. The tests included pressure filtration and vacuum filtration and the test series contained altogether 21 different filtration cycles with varying combinations of filtering, washing, and drying steps. The filtered cakes were analyzed by their residual moisture content, chloride content and conductivity, and the filtrates by their residual solids content, chloride content and conductivity. Pressure filtration gave a high capacity (400-460 kg/m2h and a low cake residual moisture content (12-14 wt-%. Vacuum filtration gave slightly higher filtration rates (500-610 kg/m2h at the lowest residual chloride contents of the cakes, but the cake residual moisture also stayed higher (25-26 wt-%. As the vacuum filtration tests used a filter cloth with higher permeability than that of the pressure filtration tests, a slightly higher filtration rate was expected. However, both filtration technologies seem suitable for filtering and washing calcium carbonate prepared with the studied method as a residual chloride content as low as 10 ppm of the filtered solids can be achieved

  17. Stabilization and transformation of amorphous calcium carbonate: structural and kinetic studies

    Science.gov (United States)

    Schmidt, Millicent Promise

    Amorphous calcium carbonate (ACC) is a common transient precursor in the formation of more stable crystalline calcium carbonate minerals, most notably calcite, vaterite, and aragonite. Formation of ACC from calcium carbonate rich aqueous solution rather than direct crystallization of crystalline polymorphs by organisms provides several advantages: control of morphology, grain size, orientation, hardness, and other bulk properties as well as reduction of energy costs during growth cycles. Despite decades of study, stabilization and transformation mechanisms of synthetic and biogenic ACC remain unclear. In particular, the roles of H2O and inorganic phosphate in ACC structure and transformation, and the variables affecting transformation kinetics and polymorph selection are understudied. In this research, we addressed structure and kinetic behavior of ACC through four complementary investigations: two studies focus on synthetic ACC stabilization and two focus on synthetic and biogenic ACC transformation behavior in solution at ambient temperatures. We explored ACC stabilization via compositional and thermal analyses, X-ray scattering, X-ray absorption spectroscopy, and nuclear magnetic resonance spectroscopy. Transformation experiments used a novel method of in situ structural analysis that provided quantitative kinetic and structural data and allowed us to visualize the ACC transformation pathway. Results revealed the complexity of H2O structure in ACC samples synthesized from three methods, indicating that the distinct hydrous populations produced define ACC behavior. Transformation kinetics and polymorph selection were strongly affected by the hydration state and type of synthetic ACC reacted. In situ transformation experiments also showed differences in kinetic behavior due to reaction medium. The structural role of hydrous components was again evident in in situ transformation experiments for ACC from a biogenic lobster gastrolith (LG) reacted with water. LG

  18. Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2

    International Nuclear Information System (INIS)

    Highlights: ► Ca extraction efficiency. ► Grain size and solid to liquid ratio. ► Production of PCC. - Abstract: Producing precipitated calcium carbonate (PCC) from steelmaking slag is a technology that contributes to the reduction of carbon dioxide emissions from iron and steel industries. While the carbon dioxide emissions from the sector are large, it could benefit from this option by utilizing its own by-products, i.e. steelmaking slags for fixation of CO2. Since the calcium content of the steelmaking slag is high, a calcium carbonate precipitate can be produced with the method which we have recently developed, and, if fulfilling the requirements (e.g. purity and crystal shape), it can be utilized as PCC. Therefore, the objective of this study is to further evaluate the feasibility of this method. Calcium was extracted selectively from the slag with aqueous solution of ammonium salt (NH4NO3, CH3COONH4 or NH4Cl) in an extraction reactor. After removal of the residual slag, the calcium-rich solution reacted with CO2 in a carbonation reactor producing PCC. Based on the experimental results, the slag’s grain size has a clear effect on the calcium extraction efficiency; the smaller the steel converter slag’s grain size, the larger the surface area, and the better the mass transfer rate which in turn results in a higher extraction efficiency. Grinding to smaller sizes is therefore one strategy towards improved efficiencies and chemical conversion rates. Solid to liquid ratio is another important parameter for improving extraction efficiency. The smallest solid to liquid ratio 5 g/l resulted in the maximum calcium extraction efficiency (73%) while the highest solid to liquid ratio 100 g/l resulted in the lowest extraction efficiency (6%). Consequently this option will be operationally expensive because of larger reactor volumes. The PCC produced from the calcium rich solution is comparable to the PCC produced with conventional methods

  19. Crystal growth and characterization of calcium metaborate scintillators

    Czech Academy of Sciences Publication Activity Database

    Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Chani, V.; Nikl, Martin; Yoshikawa, A.

    2013-01-01

    Roč. 703, MAR (2013), s. 7-10. ISSN 0168-9002 Institutional support: RVO:68378271 Keywords : Czochralski method * single crystal * scintillator * calcium metaborate * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.316, year: 2013

  20. Bond lengths differences between the mollusk-made and geological calcium carbonate

    International Nuclear Information System (INIS)

    We used high-resolution neutron powder diffraction technique in order to accurately measure the atomic positions and bond lengths in calcium carbonates of biogenic (mollusk-made) and geological origin. As a result, in biogenic calcium carbonate we identified atomic bonds, first of all the C-O bonds and some O-O bonds, which obey significant modification (about 1%) with respect to those in geological calcium carbonate. Bond length changes are presumably due to the organic/inorganic interactions in natural bio-composites. Generally, the effect is more pronounced for aragonite, which is structurally more flexible (nine unfixed parameters in atomic positions) than calcite (one parameter of this kind only). The observed bond modifications can be a source of the reported changes in the frequencies of normal vibrations of the carbonate groups measured by Raman or Fourier-transform infrared spectroscopy (FTIR) techniques.

  1. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate

    International Nuclear Information System (INIS)

    Highlights: ► An NH4-salt-based method utilizes CO2 and steelmaking slags to produce pure CaCO3. ► It was determined if its economic potential warrants moving forward. ► Despite small solvent losses, the method was found to have economical potential. ► The method has significant CO2 emissions reduction potential. ► Scaling up the reactor will allow for a more detailed design for the process. -- Abstract: One of the options that can contribute to the reduction of carbon dioxide emissions for climate change mitigation is the so-called CO2 sequestration by mineral carbonation, or CO2 mineral sequestration. Steel manufacturing could benefit from this option by utilizing its own by-products, i.e. steelmaking slags to combine with CO2. We have recently studied a method, where aqueous solution of ammonium salt (e.g. ammonium acetate, ammonium nitrate and ammonium chloride) is used to extract calcium selectively from the steel converter slag, followed by precipitation of pure calcium carbonate by bubbling CO2 through the produced solution. The ammonium salt solution is recovered and re-used. The purpose of this research was to determine if the economic potential of the method warrants moving forward to large-scale application. Despite the small solvent losses, the method was found to have economical potential. In addition, it has significant CO2 emission reduction potential as well. Scaling up the reactor from the small laboratory scale will allow more detailed design for the process to be made followed by a full economical evaluation including all of the important operational and capital investment costs.

  2. Multi proxy approach for the formation of calcium carbonates in alkaline man-made environments

    Science.gov (United States)

    Rinder, T.; Dietzel, M.; Leis, A.

    2009-04-01

    The formation of calcium carbonates, e.g. in drainage systems of tunnels, may be induced by degassing of CO2-rich groundwater which enters the building. However, the dissolution of portlandite (Ca(OH)2) from cements or the shotcrete of the tunnel wall bears an additional and immense potential for the formation of carbonates from alkaline solutions. Variations in trace element incorporation and distribution of the stable isotopes of carbon and oxygen in the precipitated calcium carbonates may represent powerful tools to identify individual mechanisms for carbonate formation. As portlandite dissolves, highly alkaline solutions are obtained. In this case, precipitation of calcium carbonate can be related to the absorption of CO2 from the atmosphere. Isotopic analyses of the calcite show that fixation of CO2 from the Earth's atmosphere leads to significantly lighter ^13Ccalcite values (down to -25 o/oo, VPDB) as expected for the fixation of groundwater carbonate (typical ^13Ccalcite values between -10 and -16o/oo, VPDB). The evolution of Sr/Ca ratios in the alkaline drainage solutions and in the corresponding calcium carbonate precipitation provides insight into the dissolution process at the concrete with respect to the amount of primarily dissolved portlandite from the cement. Moreover, an inverse relationship between Mg/Ca and Sr/Ca ratios is observed due to the liberation of aqueous strontium by the dissolution of portlandite and the formation of brucite (Mg(OH)2) at alkaline conditions. Less incorporation of magnesium in the calcite structure is a strong indicator for carbonate precipitation from highly alkaline environments. Applications of such multi proxy approaches are discussed with case studies. Main tasks are the reconstruction of the environmental conditions during primary CaCO3 formation and monitoring of ongoing precipitation of calcium carbonates and cement-water interaction in alkaline man-made environments.

  3. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  4. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization.

    Science.gov (United States)

    Ren, Dongni; Li, Zhuo; Gao, Yonghua; Feng, Qingling

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different. PMID:20844320

  5. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Ren Dongni; Li Zhuo; Gao Yonghua; Feng Qingling, E-mail: biomater@mail.tsinghua.edu.c [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH{sub 2} and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH{sub 2} and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.

  6. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization

    International Nuclear Information System (INIS)

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.

  7. Impact of sodium polyacrylate on the amorphous calcium carbonate formation from supersaturated solution.

    Science.gov (United States)

    Liu, J; Pancera, S; Boyko, V; Gummel, J; Nayuk, R; Huber, K

    2012-02-21

    A detailed in situ scattering study has been carried out on the formation of amorphous calcium carbonate (ACC) particles modulated by the presence of small amounts of sodium polyacrylate chains. The work is aiming at an insight into the modulation of ACC formation by means of two polyacrylate samples differing in their molecular weight by a factor of 50. The ACC formation process was initiated by an in situ generation of CO(3)(2-) ions via hydrolysis of 10 mM dimethylcarbonate in the presence of 10 mM CaCl(2). Analysis of the formation process by means of time-resolved small-angle X-ray and light scattering in the absence of any additives provided evidence for a monomer addition mechanism for the growth of ACC particles. ACC formation under these conditions sets in after a lag-period of some 350 s. In the presence of sodium polyacrylate chains, calcium polyacrylate aggregates are formed during the lag-period, succeeded by a modulated ACC growth in a second step. The presence of anionic polyacrylate chains changed the shape of the growing particles toward loose and less homogeneous entities. In the case of low amounts (1.5-7.5 mg/L) of the long chain additive with 97 kDa, the size of the aggregates is comparable to the size of the successively formed hybrid particles. No variation of the lag-period has been observed in this case. Use of the short chain additive with 2 kDa enabled increase of the additive concentration up to 100 mg/L and resulted in a significant increase of the lag-period. This fact, together with the finding that the resulting hybrid particles remained stable in the latter case, identified short chain sodium polyacrylates as more efficient modulators than long chain polyacrylates. PMID:22256962

  8. CALCIUM HYDROXIDE AND CALCIUM CARBONATE PARTICLE SIZE EFFECTS ON REACTIVITY WITH SULFUR DIOXIDE

    Science.gov (United States)

    The paper reports results of measurements of the effect of in situ calcium-based sorbent particle size upon reactivity with 3000 ppm SO2 in an 1100 c drop-tube furnace, using on-line collection of the reacted sorbent with a particle cascade impactor. Significant agglomeration occ...

  9. Summary of ENDF/B-V evaluations for carbon, calcium, iron, copper, and lead and ENDF/B-V Revision 2 for calcium and iron

    International Nuclear Information System (INIS)

    This report, together with documents already published, describes the ENDF/B-V evaluations of the neutron and gamma-ray-production cross sections for carbon, calcium, iron, copper, and lead and the ENDF/B-V Revision 2 evaluations for calcium and iron

  10. Growth of carbon nanotubes on carbon fibers without strength degradation

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Niels [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Magrez, Arnaud; Forro, Laszlo [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Couteau, Edina; Locquet, Jean-Pierre [Laboratory of Solid-State Physics and Magnetism, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Seo, Jin Won [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2012-12-15

    Carbon nanotubes (CNTs) are grown on PAN-based carbon fibers by means of catalytic chemical vapor deposition technique. By using catalytic thermal decomposition of hydrocarbon, CNTs can be grown in the temperature range of 650-750 C. However, carbon fibers suffer significant damages resulting in decrease of initial tensile strength. By applying the oxidative dehydrogenation reaction of C{sub 2}H{sub 2} with CO{sub 2}, we found an alternative way to grow CNTs on carbon fibers at low temperatures, such as 500 C. Scanning electron microscope results combined with single fiber tests indicate that this low temperature growth enables homogeneous grafting of CNTs onto carbon fibers without degradation of tensile strength. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth

    International Nuclear Information System (INIS)

    Multiwalled carbon nanotubes (MWCNTs) were synthesized from bamboo charcoals by chemical vapor deposition in the presence of ethanol vapor. Fresh bamboo culms were first heat treated at 1000–1500 °C to form charcoals. The elemental composition and structure of mineral phases in the bamboo charcoal treated at different temperatures were analyzed. The results showed that Mg2SiO4 and particularly calcium silicate were responsible for the nucleation and growth of MWCNTs at 1200–1400 °C. Transmission electron microscope and energy dispersive X-ray spectrometer observations indicated that the tips of nanotubes synthesized at 1200–1400 °C consist mainly of calcium silicate. Such silicate tips acted as effective catalysts for nanotubes. The growth of MWCNTs followed the vapor–liquid–solid model including an initial decomposition of ethanol vapor into carbon, dissolution of carbon inside molten silicate and final nucleation of nanotubes. -- Graphical abstract: Calcium silicate spheres formed on the surface of the bamboo charcoal after thermal treatments. Multiwalled carbon nanotubes were synthesized by ethanol chemical vapor deposition. The growth of CNTs follows the vapor–liquid–solid mechanism. Uploading of CNTs could increase the specific surface area and the N2 adsorption capacity. Highlights: ► The evolution of minerals in bamboo charcoal under heat treatment is found. ► The roles of minerals in bamboo charcoal in the growth of CNTs are proposed. ► The upload of CNTs increases the specific surface area and the adsorption capacity.

  12. Determination of oxygen, carbon and nitrogen in calcium by the gamma activation method

    International Nuclear Information System (INIS)

    Gamma-activation determination of oxygen, carbon and nitrogen in technical calcium is described. The method involves (γ,n) reactions of 16O, 12C and 14N. To determine the concentration of the admixtures the activities of 15O, 11C and 13N have been compared with those of the reference samples (LAVSAN polyester, boron nitride and aluminium nitride). Upon irradiation the calcium samples have undergone surface cleaning by 20-30 sec. etching in concentrated hydrochloric acid. Because of the matrix activation and the presence of other admixtures the determination of oxygen, carbon and nitrogen requires their radiochemical isolation. The average concentrations of oxygen, carbon and nitrogen in six calcium samples have been 3x10sup(-1), 3x10sup(-3) and 7x10sup(-3) % wt

  13. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    International Nuclear Information System (INIS)

    The alkaline-earth scintillator, CaI2:Eu2+, was initially discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. As in the case of the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles—so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance

  14. CALCIUM CARBONATE REDUCES IRON ABSORPTION FROM IRON SULFATE, BUT NOT WHEN IRON IS PRESENTED AS AN ORGANIC COMPLEX

    OpenAIRE

    E. C. CONCEI�O; Machado, A.A.; C. IZUMI; O. Freitas

    2008-01-01

    Experimental and epidemiological evidences have demonstrated that calcium inhibits iron absorption; calcium carbonate being one of the most effective calcium sources to reduce iron absorption from dietary origin or from iron sulfate. In the present work, the short-term effect of calcium from calcium carbonate on iron absorption was studied in rats, using different ir...

  15. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou

    OpenAIRE

    Ron Moen; John Pastor

    1998-01-01

    We added antler growth and mineral metabolism modules to a previously developed energetics model for ruminants to simulate energy and mineral balance of male and female caribou throughout an annual cycle. Body watet, fat, protein, and ash are monitored on a daily time step, and energy costs associated with reproduction and body mass changes are simulated. In order to simulate antler growth, we had to predict calcium and phosphorus metabolism as it is affected by antler growth, gestation, and ...

  16. The influence of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation

    Science.gov (United States)

    Putro, Triswantoro; Endarko

    2016-04-01

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, around 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.

  17. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate

    International Nuclear Information System (INIS)

    The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and 13C NMR analysis. High energy photo-oxidation was carried out on <53 μm fractions and results from the NMR spectra showed 17-40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content. Copyright (2000) CSIRO Publishing

  18. Adsorption of sodium polyacrylate in high solids loading calcium carbonate slurries.

    Science.gov (United States)

    Taylor, Joshua J; Sigmund, Wolfgang M

    2010-01-15

    The adsorption of sodium polyacrylate (NaPAA) in slurries with up to 75 wt.% calcium carbonate was investigated with the use of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and adsorption of probe molecules. Analysis of the IR spectra demonstrated that the carboxylate groups of NaPAA adsorbed onto ground calcium carbonate (GCC) in three different modes. These modes were shown to be dependent on the solids loading and age of the slurry. Further investigation lead to the determination of the chelating ability of NaPAA at high solids loading. PMID:19875128

  19. Nanocrystalline cobalt oxides for carbon nanotube growth

    Science.gov (United States)

    Guo, Kun; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2007-09-01

    Thin Films of nanocrystalline cobalt oxide were formed by sol-gel method. Structure, optical properties and surface properties of these films were investigated by numerous characterization techniques. These films were successfully fabricated on glass substrates below 500°C. . Micropatterns of cobalt oxide thin films were also fabricated on glass and silicon substrates by employing a lift-off method. Crystal size of these nanocrystalline cobalt films could be successfully controllable by varying the amount of cobalt precursors and number of layers. These films were used as the seeding layers for carbon nanotube growth in a CVD process By changing the concentration of monomer precursors in the solgel coating solutions, different size nanoclusters hence different size carbon nanotubes could be synthesized in CVD process. This method can be used for controlled growth of carbon nanotubes for many different applications. In this paper, detail of these experimental results will be presented.

  20. Influence of sodium pentosan polysulphate and certain inhibitors on calcium oxalate crystal growth.

    Science.gov (United States)

    Senthil, D; Subha, K; Saravanan, N; Varalakshmi, P

    1996-03-01

    Calcium oxalate crystal growth and aggregation leads to the formation of renal calculi. It is known to be inhibited by several compounds both in vitro and in vivo conditions. The present study highlights the inhibitory potential of sodium pentosan polysulphate (SPP), a semi-synthetic glycosaminoglycan (GAG) on calcium oxalate crystal growth in vitro. Its efficacy was compared with those of known inhibitors like pyrophosphate, heparin and chondroitin-4-sulphate. Of the above compounds pyrophosphate was found to be the most potent inhibitor. Among the GAGs, SPP exhibited 80% inhibitory activity as compared to heparin. A lesser degree of inhibition was observed with chondroitin-4-sulphate. PMID:8709973

  1. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment, AMoRE

    International Nuclear Information System (INIS)

    The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of 100Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders

  2. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    Science.gov (United States)

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  3. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    Science.gov (United States)

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  4. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    Science.gov (United States)

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change. PMID:24892495

  5. Synthesis of porous poly(acrylamide hydrogels using calcium carbonate and its application for slow release of potassium nitrate

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Porous poly(acrylamide was synthesized using calcium carbonate microparticles and subsequent acid treatment to remove the calcium carbonate. Methylenebisacrylamide and ammonium persulfate/sodium metabisulfite were used as crosslinking agent and redox initiator, respectively. The porous structure of resulted hydrogels was confirmed using SEM micrographs. The effect of methylenebisacrylamide concentration and calcium carbonate amount on the swelling of the hydrogels was investigated. The results showed that the effect of methylenebisacrylamide and calcium carbonate variables on the swelling is reverse. The hydrogels were subsequently utilized for the loading of potassium nitrate. Potassium nitrate as active agent was loaded into hydrogels and subsequently the release of this active agent was investigated. In these series of investigation, the effect of content of loading, methylenebisacrylamide and calcium carbonate amount on the release of potassium nitrate from hydrogels was investigated.

  6. Diethylstilbestrol alters the morphology and calcium levels of growth cones of PC12 cells in vitro.

    Science.gov (United States)

    Janevski, J; Choh, V; Stopper, H; Schiffmann, D; De Boni, U

    1993-01-01

    Diethylstilbestrol (DES) is a synthetic estrogen with carcinogenic properties. DES is known to alter cytoskeletal components, including the organization of actin stress fibres in C6 rat glioma cells. In a test of the hypothesis that DES disrupts actin filaments of growth cones in neuron-like cells, DES-induced changes in filopodial lengths were quantified in rat pheochromocytoma (PC12) cells in vitro. DES significantly altered growth cone morphology, with collapse of growth cone filopodia and neurite retraction invariably occurring at a concentration of 10 microM. At 5 microM DES, transient reductions in total filopodial lengths occurred. At DES concentrations of 0.1 nM and 1 nM, reductions in total filopodial lengths occurred in a fraction of growth cones. Evidence exists which shows that growth cone activity and morphology are intimately linked to levels of intracellular, free calcium and that DES increases such levels. Measurements of free intracellular calcium levels by fluorescence microscopy, at times concurrent with the DES-induced reduction in total filopodial lengths, showed that calcium levels were indeed significantly increased by 10 microM DES. Labelling of filamentous actin (f-actin) with FITC-phalloidin showed that the f-actin distribution in growth cones exposed to DES could not be differentiated from the distribution found in spontaneously retracting growth cones. Together with evidence which showed that growth cone motility was not affected, the results are taken to indicate that DES, rather than acting directly on the cytoskeleton, exerts its effects indirectly, by a calcium-induced destabilization of actin filaments in the growth cone. PMID:8164893

  7. Grafting process of ethyltrimethoxysilane and polyphosphoric acid on calcium carbonate surface

    International Nuclear Information System (INIS)

    Graphical abstract: XPS survey spectra of (a) CaCO3 untreated, treated with (b) ethyltrimethoxysilane or (c) polyphosphoric acid. (b) Zoom on the silane area. Highlights: ► Calcium carbonate has been treated with ethyltrimethoxysilane and polyphosphoric acid. ► Treated calcium carbonate has been analyzed by X-ray photoelectron spectroscopy. ► Silanol groups are adsorbed onto calcium carbonate through hydrogen interactions. ► Phosphoric acid is adsorbed on calcium carbonate through a P-O-C bonds formation. - Abstract: In order to facilitate its incorporation into a polymer matrix (mostly hydrophobic), calcium carbonate (CaCO3), which is strongly hydrophilic, has to be chemically treated to avoid the formation of aggregates and to improve the compatibility with the polymer. The objective of this study is to analyze, by using contact angle measurements and X-ray photoelectron spectroscopy (XPS), the CaCO3 surface after a chemical surface treatment with ethyltrimethoxysilane (ETMO) and polyphosphoric acid (PPA) in an organic solvent, in order to verify if these molecules are able to interact with the CaCO3 surface, and to propose some hypothesis about the surface grafting mechanism. After several solvent washings were performed to remove all species in excess, contact angle results have pointed out the presence of an organic layer after the chemical treatment of CaCO3 with ETMO and PPA. Based on XPS results, we propose a grafting mechanism of silane and phosphoric acid molecules. Ethyltrimethoxysilane induce an hydrolysis process of the CaCO3 surface which leads to a condensation phenomenon. This Si-OH network is adsorbed through hydrogen interactions with some hydroxyl groups. In the case of phosphoric acid, the molecules are adsorbed on carbon atoms through P-O-C bonds formation. This original grafting points out the major role of the solvent nature with CaCO3 surface reactivity.

  8. Novel method for carbon nanofilament growth on carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Johathan [Los Alamos National Laboratory; Luhrs, Claudia [UNM MECH.ENG.; Terani, Mehran [UNM MECH.ENG.; Al - Haik, Marwan [UNM MECH.ENG.; Garcia, Daniel [UNM MECH.ENG.; Taha, Mahmoud R [UNM MECH.ENG.

    2009-01-01

    Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs

  9. Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum

    International Nuclear Information System (INIS)

    The mineral carbonation of FGD (flue gas desulfurization) gypsum was carried out through CO2 sorption into ammonia solution containing FGD gypsum. High-purity calcium carbonate was precipitated from DCC (dissolved calcium carbonate) solution which was extracted during the induction period. The factors affecting the preparation of pure calcium carbonate were examined under the following conditions: CO2 flow rate (1–3 L/min), ammonia content (4–12%), and S/L (solid-to-liquid) ratio (5–300 g/L). X-Ray diffraction study revealed that the PCC (precipitated calcium carbonate) was round-shaped vaterite. The induction time for PCC decreased as the CO2 flow rate increased. The maximum formation efficiency for pure PCC was seen to increase linearly with the ammonia content. The formation efficiency for pure PCC was the highest (90%) for S/L ratio of 5 g/L but it decreased as S/L ratio increased. On the other hand, S/L ratio didn't affect the maximum solubility limit of DCC. It is believed that the pure PCC would add an economic value to the FGD gypsum carbonation for industrial CO2 sequestration. - Highlights: • Pure and white CaCO3 was synthesized using induction period during direct carbonation of FGD gypsum. • Its formation efficiency was increased with ammonia content but decreased with solid-to-liquid ratio. • This method is expected to extend to other industrial CO2 sequestration for the enhanced economic value of precipitated CaCO3

  10. Evidence for Calcium Carbonate at the Phoenix Landing Site

    Science.gov (United States)

    Boynton, W. V.; Ming, D. W.; Sutter, B.; Arvidson, R. E.; Hoffman, J.; Niles, P. B.; Smith, P.

    2009-01-01

    The Phoenix mission has recently finished its study of the north polar environment of Mars with the aim to help understand both the current climate and to put constraints on past climate. An important part of understanding the past climate is the study of secondary minerals, those formed by reaction with volatile compounds such as H2O and CO2. This work describes observations made by the Thermal and Evolved-Gas Analyzer (TEGA) on the Phoenix Lander related to carbonate minerals. Carbonates are generally considered to be products of aqueous processes. A wet and warmer climate during the early history of Mars coupled with a much denser CO2 atmosphere are ideal conditions for the aqueous alteration of basaltic materials and the subsequent formation of carbonates. Carbonates (Mg- and Ca-rich) are predicted to be thermodynamically stable minerals in the present martian environment, however, there have been only a few indications of carbonates on the surface by a host of orbiting and landed missions to Mars. Carbonates (Mg-rich) have been suggested to be a component (2-5 wt %) of the martian global dust based upon orbital thermal emission spectroscopy. The identifications, based on the presence of a 1480 cm-1 absorption feature, are consistent with Mgcarbonates. A similar feature is observed in brighter, undisturbed soils by Mini-TES on the Gusev plains. Recently, Mg-rich carbonates have been identified in the Nili Fossae region by the CRISM instrument onboard the Mars Reconnaissance Orbiter. Carbonates have also been confirmed as aqueous alteration phases in martian meteorites so it is puzzling why there have not been more discoveries of carbonates by landers, rovers, and orbiters. Carbonates may hold important clues about the history of liquid water and aqueous processes on the surface of Mars.

  11. ANNUAL REPORT. THE INFLUENCE OF CALCIUM CARBONATE GRAIN COATINGS ON CONTAMINANT REACTIVITY IN VADOSE ZONE SEDIMENTS

    Science.gov (United States)

    The primary objective of this project is to investigate the role of calcium carbonate grain coatings on adsorption and heterogeneous reduction reactions of key chemical and radioactive contaminants in sediments on the Hanford Site. Research will ascertain whether these coatings p...

  12. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters.

    Science.gov (United States)

    Sun, Shengtong; Gebauer, Denis; Cölfen, Helmut

    2016-05-19

    A solvothermal method was developed for synthesizing organic monolayer protected amorphous calcium carbonate clusters using 10,12-pentacosadiynoic acid as ligand, ethanol as solvent and NaHCO3 decomposition as CO2 source, which can be extended to synthesize other monolayer protected mineral clusters. PMID:27161807

  13. EXPERIMENTAL DETERMINATION OF THE CALCIUM CARBONATE SATURATION STATES OF WATER SYSTEMS (TECHNICAL NOTE)

    Science.gov (United States)

    Emphasis is given to the fact that saturation indexes only indicate the tendency of a water to dissolve or precipitate calcium carbonate (CaCo3). The rate at which a given water attains equilibrium cannot be derived from the saturation index value.

  14. Effect of temperature on kinetic parameters of decomposition reaction of calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    CHEN Hongwei; CHEN Jiangtao; WEI Riguang; SUO Xinliang

    2013-01-01

    In order to investigate the influence of temperature on behavior of calcium carbonate decomposition,especially on kinetic parameters of the decomposition reaction,the analytically pure calcium carbonate was calcined on a self-built large dose thermogravimetric analyzer.The results indicated that,with an increase in the reaction temperature,the reactivity index of calcium carbonate decomposition increased at stage state while the kinetic parameters decreased at stage state.Moreover,both the reaction indices and the kinetic parameters can be divided into three stages and the temperature turning points in different stages were the same.The phase boundary reaction (cylindrical symmetry) theory was more suitable for calcium carbonate calcination under N2 atmosphere.The change trend of the logarithm of reaction activation with temperature was similar as that of the pre-exponential factor.There existed good liner relationship and kinetic compensation effect between them.The isokinetic temperature of the CaCO3 calcination was 842 ℃ and the reaction rate constant was 0.104 9 min-1 derived by the compensation coefficients.

  15. Use of gas chromatography in the kinetics of decomposition of calcium carbonate

    International Nuclear Information System (INIS)

    Previous work has shown the utility of gas chromatography in studying the kinetics of the thermal composition of calcium carbonate. One of the advantages of this method is the possibility of characterizing and quantifying gaseous products by connecting a gas chromatograph at the exit of the reaction oven, which provides an easy system for studying the decomposition reaction. The calcium carbonate that was used was characterized by X-ray diffraction, scanning electron microscopy, BET surface area and particle size distribution by laser diffraction. The test conditions for the gas load flow in the reactor oven and the mass of calcium carbonate were determined at different reaction temperatures in order to eliminate the effect of diffusion on the speed of decomposition. The reactions were carried out with pro-analysis calcium carbonate in a quartz reactor, under isothermal conditions in a temperature range of 655oC to 715oC, using nitrogen as the gas load and with different sample masses. The gaseous products were analyzed at different reaction times and the instantaneous speed and rate of reaction were determined. The Flynn method was used to calculate the activation energy and the test results were adjusted with different kinetic models corresponding to solid state reactions. The area contracting model was the one that adjusted best (CW)

  16. Experimental and Modeling Study of the Turning Process of PA 6/Nano Calcium Carbonate Composite

    Directory of Open Access Journals (Sweden)

    Mehdi Haghi

    2013-01-01

    Full Text Available Nowadays, polymeric nanocomposites have emerged as a new material class with rapidly growing use in industrial products because of good mechanical, thermal, and physical properties. Recently, the requirement of the direct machining of these materials has increased due to the production of the most of them by extrusion method in simple cross section and the increased demand for personalized products. In this work, the effect of turning parameters (cutting speed and feed and nano calcium carbonate content on the machinability properties of polyamide 6/nano calcium carbonate composites was investigated by analysis of variance. A novel modeling approach of modified harmony search-based neural network was also utilized to create predictive models of surface roughness and total cutting force from the experimental data. The results revealed that the nano calcium carbonate content on polyamide 6 decreased the cutting forces significantly but did not have a significant effect on surface roughness. Moreover, the results for modeling total cutting forces and surface roughness showed that modified harmony search-based neural network is effective, reliable, and authoritative in modeling the turning process of polyamide 6/nano calcium carbonate composite.

  17. A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles

    OpenAIRE

    Gebauer, Denis; Oliynyk, Vitaliy; Salajkova, Michaela; Sort, Jordi; Zhou, Qi; Bergström, Lennart; Salazar-Alvarez, German

    2011-01-01

    Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy.

  18. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization

    DEFF Research Database (Denmark)

    Tobler, Dominique Jeanette; Rodriguez Blanco, Juan Diego; Dideriksen, Knud;

    2015-01-01

    Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid-mineral inte...

  19. Influence of calcium foliar fertilization on plant growth, nutrient concentrations, and fruit quality of papaya.

    Science.gov (United States)

    Calcium (Ca) is a major plant nutrient that affects cell wall and plasma membrane formation and plays a key role in plant growth and biomass production. It can be used to decrease fruit decay and increase firmness and shelf life. So far, little attention has been paid to investigate the effects of f...

  20. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    Science.gov (United States)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  1. Polyethyleneimine-modified calcium carbonate nanoparticles for p53 gene delivery.

    Science.gov (United States)

    Chen, Cen; Han, Huafeng; Yang, Wei; Ren, Xiaoyuan; Kong, Xiangdong

    2016-03-01

    In this study, calcium carbonate (CaCO3) nanoparticles with spherical structure were regulated by arginine and successfully synthesized via a facile co-precipitation method. The average particle size of as-prepared CaCO3 was about 900 nm. The properties of nanostructured CaCO3 particles were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction and size distribution. After modified with polyethyleneimine (PEI), the ability of PEI-CaCO3 nanoparticles to carry GFP-marked p53 gene (pEGFP-C1-p53) into cancer cells to express P53 protein were studied. Meanwhile, the cytotoxicity, transfection efficiency, cells growth inhibition and the ability to induce apoptosis by expressed P53 protein were conducted to evaluate the performances of PEI-CaCO3 nanoparticles. The results show that prepared PEI-CaCO3 nanoparticles had good biocompatibility and low cytotoxicity in a certain concentration range. PEI-CaCO3 effectively transfected pEGFP-C1 gene into epithelial-like cancer cells. And with the expression of GFP-P53 fusion protein, pEGFP-C1-p53-gene-loaded PEI-CaCO3 particles significantly reduced the proliferation of cancer cells. These findings indicate that our PEI-modified CaCO3 nanoparticles are potential to be successfully used as carriers for gene therapy. PMID:26816656

  2. Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion

    Science.gov (United States)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-05-01

    The reactivity, speciation and solvation structure of CO2 in carbonate melts are relevant for both the fate of carbon in deep geological formations and for its electroreduction to CO (to be used as fuel) when solvated in a molten carbonate electrolyte. In particular, the high solubility of CO2 in carbonate melts has been tentatively attributed to the formation of the pyrocarbonate anion, C2O52–. Here we study, by first-principles molecular dynamics simulations, the behaviour of CO2 in molten calcium carbonate. We find that pyrocarbonate forms spontaneously and the identity of the CO2 molecule is quickly lost through O2– exchange. The transport of CO2 in this molten carbonate thus occurs in a fashion similar to the Grotthuss mechanism in water, and is three times faster than molecular diffusion. This shows that Grotthuss-like transport is more general than previously thought.

  3. Growth of Y-shaped Carbon Nanofibers from Ethanol Flames

    Directory of Open Access Journals (Sweden)

    Cheng Jin

    2008-01-01

    Full Text Available Abstract Y-shaped carbon nanofibers as a multi-branched carbon nanostructure have potential applications in electronic devices. In this article, we report that several types of Y-shaped carbon nanofibers are obtained from ethanol flames. These Y-shaped carbon nanofibers have different morphologies. According to our experimental results, the growth mechanism of Y-shaped carbon nanofibers has been discussed and a possible growth model of Y-shaped carbon nanofibers has been proposed.

  4. Growth of Y-shaped Carbon Nanofibers from Ethanol Flames

    OpenAIRE

    Cheng Jin; Zou Xiaoping; Zhang Hongdan; Li Fei; Ren Pengfei; Zhu Guang; Su Yi; Wang Maofa

    2008-01-01

    Abstract Y-shaped carbon nanofibers as a multi-branched carbon nanostructure have potential applications in electronic devices. In this article, we report that several types of Y-shaped carbon nanofibers are obtained from ethanol flames. These Y-shaped carbon nanofibers have different morphologies. According to our experimental results, the growth mechanism of Y-shaped carbon nanofibers has been discussed and a possible growth model of Y-shaped carbon nanofibers has been proposed.

  5. Reduction of CO2 emissions by mineral carbonation : steelmaking slags as rawmaterial with a pure calcium carbonate end product

    OpenAIRE

    Eloneva, Sanni

    2010-01-01

    Mineral carbonation is one of the options that can contribute to the reduction of carbon dioxide emissions for climate change mitigation purposes. Steel manufacturing, which is one of the biggest industrial sources of CO2 emissions, could benefit from this option by utilizing its own by-products, i.e., steelmaking slags, to combine with CO2. Additional benefits would be achieved if the end product was a pure and marketable calcium carbonate. The utilization of CaCO3 derived from steelmaking s...

  6. Self-diffusion of calcium-45 into certain carbonates and calcareous soils

    International Nuclear Information System (INIS)

    The investigations described in this paper were prompted by the lack of a reliable and accurate method for measuring exchangeable calcium in calcareous soils. A large group of arid-zone soils contains calcium carbonate and is under irrigation or planned to be irrigated in the future. For the purpose of predicting and measuring the influence of various types of irrigation water on these soils, especially the degree of alkalinization to be expected, an exact determination of exchangeable calcium is necessary. In the various stripping procedures used for the determination of exchangeable cations, the amount of calcium found depends on the solubility of calcium carbonate in the stripping solution and thus on the solution-soil ratio employed. Therefore, the use of an isotopic dilution method of 45Ca seemed most advantageous, also in view of the favourable characteristics of this isotope and its relatively low price. An accurate and easy counting technique employing an ordinary end-window G-M counter and dried-down samples had been developed, overcoming the disadvantage of the low-energy level of the beta-radiation of the isotope and placing its use within the reach even of small laboratories

  7. Valorization of Calcium Carbonate-Based Solid Wastes for the Treatment of Hydrogen Sulfide from the Gas Phase

    OpenAIRE

    Pham Xuan, Huynh; Pham Minh, Doan; Galera Martinez, Marta; Nzihou, Ange; Sharrock, Patrick

    2015-01-01

    This paper focuses on the valorization of calcium carbonate-based solid wastes for theremoval of hydrogen sulfide from gas phase. Two solid wastes taken from industrial sites for theproduction of sodium carbonate and sodium bicarbonate by the Solvay process® were analyzedby different physico-chemical methods. Calcium carbonate was found as the main component ofboth the solid wastes. Trace amounts of other elements such as Mg, Al, Fe, Si, Cl, Na etc. werealso present in these wastes. These sol...

  8. Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon

    Science.gov (United States)

    Lapenis, A.G.; Lawrence, G.B.; Bailey, S.W.; Aparin, B.F.; Shiklomanov, A.I.; Speranskaya, N.A.; Torn, M.S.; Calef, M.

    2008-01-01

    During the last several thousand years the semi-arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe Chernozems, however, lost 17-28 kg m-2 of calcium in the form of carbonates in 1970-1998. Here we demonstrate that the loss of calcium was caused by fundamental shift in the steppe hydrologic balance. Previously unleached soils where precipitation was less than potential evapotranspiration are now being leached due to increased precipitation and, possibly, due to decreased actual evapotranspiration. Because this region receives low levels of acidic deposition, the dissolution of carbonates involves the consumption of atmospheric CO2. Our estimates indicate that this climatically driven terrestrial sink of atmospheric CO2 is ???2.1-7.4 g C m-2 a-1. In addition to the net sink of atmospheric carbon, leaching of pedogenic carbonates significantly amplified seasonal amplitude of CO2 exchange between atmosphere and steppe soil. Copyright 2008 by the American Geophysical Union.

  9. Accelerated growth of calcium silicate hydrates: Experiments and simulations

    International Nuclear Information System (INIS)

    Despite the usefulness of isothermal calorimetry in cement analytics, without any further computations this brings only little information on the nucleation and growth of hydrates. A model originally developed by Garrault et al. is used in this study in order to simulate hydration curves of cement obtained by calorimetry with different known hardening accelerators. The limited basis set of parameters used in this model, having a physical or chemical significance, is valuable for a better understanding of mechanisms underlying in the acceleration of C-S-H precipitation. Alite hydration in presence of four different types of hardening accelerators was investigated. It is evidenced that each accelerator type plays a specific role on one or several growth parameters and that the model may support the development of new accelerators. Those simulations supported by experimental observations enable us to follow the formation of the C-S-H layer around grains and to extract interesting information on its apparent permeability.

  10. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs.

    Science.gov (United States)

    Sekkal, W; Zaoui, A

    2013-01-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m(2)) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m(2), i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images. PMID:23545842

  11. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    Science.gov (United States)

    Sekkal, W.; Zaoui, A.

    2013-04-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.

  12. In vitro studies of calcium mixed minerals growth in different growth faces and semiconductor laser induced suppression of nuclei strategy

    Indian Academy of Sciences (India)

    G Kanchana; P Sundaramoorthi

    2008-12-01

    Kidney stone consists of various organic, inorganic and semi organic compounds. Mineral oxalate monohydrate and di-hydrate are the main organic constituents of kidney stones. However, mechanisms leading to the formation of mineral oxalate kidney stones are not clearly understood. The effect of some urinary stone constituents such as ammonium oxalate, calcium citrate, proteins and trace elements were reported by us. The calcium magnesium hydrogen phosphate (CaMHP) crystals were grown in SMS gel medium which provides the necessary kidney stimuli growth medium. The growth processes were done by single diffusion method for different physical and chemical parameters. The pH range in which HPO$^{2-}_{4}$ ions dominates were considered which in turn is necessary for the growth of CaMHP crystals. In the present study, calcium magnesium hydrogen phosphate (CaMHP) crystals are grown in three different growth faces to attain the total nucleation reduction. As an extension of this research, many characterization studies have been carried out like XRD, FTIR, TGA, SEM and etching and the results are reported.

  13. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic.

    Science.gov (United States)

    He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming

    2016-07-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. PMID:27127035

  14. The Properties and Characteristics of Concretes Containing Calcium Carbonate (CaCO3) and Synthetic Lightweight Aggregate

    Science.gov (United States)

    Ramos, Matthew J.

    The purpose of this study was to investigate the efficacy of precipitated calcium carbonate as a means for enhancing the mechanical and environmental favorability of concretes containing synthetic lightweight aggregates (SLA), which are comprised of recycled mixed plastic and fly ash. Compressive strength tests show that 2% calcium carbonate additions are able to mitigate strength decreases induced by SLA as well as decrease concrete density when compared to NWA concretes. SLA concretes containing 5% calcium carbonate do not show the same trend. Instead, strength decreases and density increases are observed. Furthermore, increases in aluminum trisulphate (AFt) phase mineralization are observed through scanning electron microscopy. Results suggest that calcium carbonate additions increase early hydration and stabilize AFt minerals thaumasite and ettringite throughout hydration. It is proposed that increased AFt phase mineralization causes reductions in concrete density. However, a limit to this relationship was observed as additions of greater than 2% calcium carbonate exceed the potential for increased hydration, causing a threshold effect that resulted in calcium carbonate acting as filler, which increases density. Improved mechanical properties and the ability to stabilize waste plastics, fly ash, and CO2 emissions make the use of 2% calcium carbonate in conjunction with SLA a favorable alternative to ordinary concretes.

  15. Growth, yield, and calcium and boron uptake of tomato(Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) asaffected by calcium and boron humate application in greenhouse conditions

    OpenAIRE

    EKİNCİ, MELEK; ESRİNGÜ, ASLIHAN; DURSUN, ATİLLA; YILDIRIM, Ertan; TURAN, METİN; KARAMAN, MEHMET RÜŞTÜ; ARJUMEND, TUBA

    2015-01-01

    The objective of this study was to examine the effect of calcium humate, boron humate, and humic acid solutions on growth, yield, quality, and calcium and boron uptake of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.), as well as changes in soil nutrient status after crop harvest. Four different concentrations (500, 1000, 3000, and 5000 mg kg-1) of calcium humate (12% CaO, 15% humic and fulvic acid), boron humate (10% BOH4, 15% humic and fulvic acid), and humic acid (15...

  16. The preparation of calcium carbonate in an emulsified liquid membrane

    Science.gov (United States)

    Davey, R. J.; Hirai, T.

    1997-01-01

    A method for preparing 1 μm calcite rhombs in a double emulsion is described. This is the first report of the use of such a system for precipitation of a carbonate and may find application in a range of industrially important materials such as fillers and catalysts.

  17. Fractional Absorption of Active Absorbable Algal Calcium (AAACa and Calcium Carbonate Measured by a Dual Stable-Isotope Method

    Directory of Open Access Journals (Sweden)

    Steven A. Abrams

    2010-07-01

    Full Text Available With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa, obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI, with that of calcium carbonate. In 10 postmenopausal women volunteers aged 59 to 77 years (mean ± S.D., 67 ± 5.3, the fractional calcium absorption of AAACa and CaCO3 was measured by a dual stable isotope method. 44Ca-enriched CaCO3 and AAACa were administered in all subjects one month apart. After a fixed-menu breakfast and pre-test urine collection (Urine 0, 42Ca-enriched CaCl2 was intravenously injected, followed by oral administration of 44Ca-enriched CaCO3 without carrier 15 minutes later, and complete urine collection for the next 24 hours (Urine 24. The fractional calcium absorption was calculated as the ratio of Augmentation of 44Ca from Urine 0 to Urine 24/ augmentation of 42Ca from Urine 0 to Urine 24. Differences and changes of 44Ca and 42Ca were corrected by comparing each with 43Ca. Fractional absorption of AAACa (mean ± S.D., 23.1 ± 6.4, was distinctly and significantly higher than that of CaCO3 (14.7 ± 6.4; p = 0.0060 by paired t-test. The mean fractional absorption was approximately 1.57-times higher for AAACa than for CaCO3. The serum 25(OH vitamin D level was low (mean ± S.D., 14.2 ± 4.95 ng/ml, as is common in this age group in Japan. Among the parameters of the bone and mineral metabolism measured, none displayed a significant correlation with the fractional absorption of CaCO3 and AAACa. Higher fractional absorption of AAACa compared with CaCO3 supports previous reports on the more beneficial effect of AAACa than CaCO3 for osteoporosis.

  18. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated disinfection by-products (DBPs). Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. The Energy & Environmental Research Center has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During previous studies, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon product. As much as a 130% increase in the humic acid sorption capacity of a PAC produced from a high-sodium-content lignite was observed. During this study, activated carbons were prepared from three coals representing high-sodium, low-sodium--low-calcium, and high-calcium compositions in two steps, an initial char formation followed by mild activation with steam to avoid excessive burnout. This set of carbons was characterized with respect to physical and chemical properties. The BET (Brunauer-Emmett-Teller) nitrogen adsorption isotherms gave relatively low surface areas (ranging from 245 to 370 m{sup 2}/g). The lowest-BET area was obtained for the high-sodium carbon, which can be attributed to enlargement of micropores as a result of sodium-catalyzed gasification reaction of the carbon structure. This hypothesis is consistent with the scanning electron microscopy microprobe analyses, which show that in both the coal and the activated carbon from this coal, the sodium is distributed over both the carbon structure and the mineral particles. Thus it is initially associated with carboxylate groups on the coal and then as sodium oxide or

  19. Study of calcium forms and their effect in carbon stabilization in fertile soils by FTIR and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, J.R.; Assis, K.L.S.; Calil, V.L.; Souza, K.R.; Beltrao, M.S.S.; Sena, L.A.; Archanjo, B.S.; Achete, C.A., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ (Brazil). Divisao de Materiais e Metrologia

    2013-07-01

    Organic matter or black carbon atoms of Terra Preta de Indio (Amazonian Dark Earth) soils are composed of oxidized carbon groups as phenols, epoxide, carbonyl and carboxyl groups in their surface. At the pH of soil, carboxylate groups are deprotonated generating carboxylate anions leaving the surface of these soils with negative charges. Calcium cations can interact with oxidized carbon groups by chemisorption interactions lowering the total system energy. In this work, Terra Preta de Indio was examined by X-ray photoelectron spectroscopy and Infrared spectroscopy in order to correlate its organic fraction rich in calcium with calcium containing samples. (author)

  20. Carbon isotopes as indicators of peatland growth?

    Science.gov (United States)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  1. Heteronuclear carbon nanotubes: applications to study carbon nanotube growth

    International Nuclear Information System (INIS)

    Full text: Synthesis of heteronuclear carbon nanotubes and their application for a variety of studies is presented. SWCNTs peapods encapsulating highly 13C enriched fullerenes and double wall carbon nanotubes (DWCNTs) based on the peapods were prepared. Raman studies indicate that the inner tubes are highly 13C enriched with no carbon exchange between the two walls during the synthesis. The material enables the straightforward identification of the inner and outer tube vibrational spectra. An inhomogeneous broadening, assigned to the random distribution of 12C and 13C nuclei is observed and is explained by ab initio vibrational analysis. The growth of inner tubes from organic solvents was proven by the use of 13C labeled organic materials such as toluene. The simultaneous encapsulation of fullerenes with the solvents was found crucial as these prevent the solvents from evaporating during the high temperature synthesis of the inner tubes. Nuclear magnetic resonance on the peapods and DWCNTs with highly 13C enriched fullerenes or inner walls proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases. The NMR experiment on the DWCNTs yield direct information on the electronic properties of small diameter SWCNTs. The significantly different chemical shift of the inner tubes is related to a curvature effect. Relaxation data on the inner tubes shows a deviation from a Fermi-liquid behavior. (author)

  2. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup

  3. Geophysical Monitoring and Reactive Transport Modeling of Ureolytically-Driven Calcium Carbonate Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Yuxin Wu; Jonathan B. Ajo-Franklin; Nicolas Spycher; Susan S. Hubbard; Guoxiang Zhang; Kenneth H. Williams; Joanna Taylor; Yoshiko Fujita; Robert Smith

    2011-09-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4

  4. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation.

    Science.gov (United States)

    Wu, Yuxin; Ajo-Franklin, Jonathan B; Spycher, Nicolas; Hubbard, Susan S; Zhang, Guoxiang; Williams, Kenneth H; Taylor, Joanna; Fujita, Yoshiko; Smith, Robert

    2011-01-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4

  5. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Directory of Open Access Journals (Sweden)

    Taylor Joanna

    2011-09-01

    Full Text Available Abstract Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT, and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes

  6. Calcium carbonate phosphate binding ion exchange filtration and accelerated denitrification improve public health standards and combat eutrophication in aquatic ecosystems.

    Science.gov (United States)

    Yanamadala, Vijay

    2005-01-01

    Cultural eutrophication, the process by which a lake becomes rich in dissolved nutrients as a result of point and nonpoint pollutant sources, is a major cause of the loss of natural lake ecosystems throughout the world. The process occurs naturally in all lakes, but phosphate-rich nutrient runoff from sources such as storm drains and agricultural runoff is a major cause of excess phosphate-induced eutrophication. Especially in Madrona Marsh, one of the last remaining vernal marshes in the greater Los Angeles area, California, cultural eutrophication has become a major problem. In this study, calcium carbonate was found to be an excellent phosphate binder, reducing up to 70% of the phosphates in a given sample of water, and it posed relatively negligent ecological repercussions. This study involved the testing of this principle in both the laboratory and the real ecosystem. A calcium carbonate lacing procedure was first carried out to determine its efficacy in Madrona Marsh. Through this, ammonia was found to interfere with the solubility of calcium carbonate and therefore to be a hindrance to the reduction of phosphate. Therefore, various approaches for reduction of ammonia were tested, including aeration, use of fiber growth media, and plants, mainly Caulerpa verticellata, chosen for it hardiness, primarily in an attempt to increase population of Nitrobacter and Nitrosomonas. All were successful in moderately reducing ammonia levels. In addition, soil sampling, sediment analysis, microscopic plant analysis, microorganism and macroinvertebrate identification, and rate law formulations were conducted. The effect of phosphate and ammonia reduction on the populations of enterobacteria was also an important focus of this experiment. Varying concentrations of phosphate, ammonia, and calcium carbonate in conjunction with phosphate were tested in Madrona Marsh to determine their effects on the populations of enteropathogens on nonspecific blood agar, MacConkey agar, and

  7. Inhibition of the Crystal Growth and Aggregation of Calcium Oxalate by Algae Sulfated Polysaccharide In-vitro

    Institute of Scientific and Technical Information of China (English)

    Xiu Mei WU; Jian Ming OUYANG; Sui Ping DENG; Ying Zhou CEN

    2006-01-01

    The influence of sulfated polysaccharide (SPS) isolated from marine algae Sargassum fusiforme on the morphology and phase compositions of urinary crystal calcium oxalate was investigated in vitro by means of scanning electron microscopy and X-ray diffraction. SPS maybe is a potential inhibitor to CaOxa urinary stones by inhibiting the growth of calcium oxalate monohydrate (COM), preventing the aggregation of COM, and inducing the formation of calcium oxalate dihydrate (COD) crystals.

  8. Carbon nanotubes: controlled growth and application

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2013-01-01

    Full Text Available Notable progress has been made on the synthesis, properties and uses of carbon nanotubes (CNTs in the past two decades. However, the controlled growth of single-wall CNTs (SWCNTs with predefined and uniform structures remains a big challenge, and making full use of CNTs in applications still requires great effort. In this article, our strategies and recent progress on the controlled synthesis of SWCNTs by chemical vapor deposition are reviewed, and the applications of CNTs in lithium-ion batteries, transparent conductive films, and as connectors of metal atomic chains are discussed. Finally, future prospects for CNTs are considered.

  9. Carbon Sequestration, Economic Policies and Growth

    OpenAIRE

    Grimaud, André; Rougé, Luc

    2012-01-01

    The possibility of capturing and sequestering some fraction of the CO2 emissions arising from fossil fuel combustion, often labeled as carbon capture and storage (CCS), is drawing an increasing amount of attention in the business and academic communities. We present here a model of endogenous growth in which the use of a non-renewable resource in production yields flows of pollution whose accumulated stock negatively a¤ects welfare. A CCS technology allows, via some effort, for the partial r...

  10. Increased Alignment in Carbon Nanotube Growth

    Science.gov (United States)

    Delzeit, Lance D. (Inventor)

    2007-01-01

    Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.

  11. Calcium carbonate scaling in seawater desalination by ammonia-carbon dioxide forward osmosis: Mechanism and implications

    KAUST Repository

    Li, Zhenyu

    2015-02-07

    Forward osmosis (FO) is an osmotically driven membrane process, where the membrane separates a draw solution (DS) with high salinity from a feed solution (FS) with low salinity. There can be a counter direction flow of salt (i.e., salt leakage) that may interact with the water flux through the FO membrane. For the first time reported, this study describes a new calcium carbonate scaling phenomenon in the seawater FO desalination process using ammonium bicarbonate as the DS. The scaling on the membrane surface at the feed side is caused by the interaction between an anion reversely diffused from the DS and a cation present in the FS, causing a significant decline of the water flux. The composition of the scaling layer is dominated by the solubility (represented as solubility product constant, Ksp) of salt formed by the paired anion and cation. Membrane surface morphology plays a crucial role in the reversibility of the scaling. If the scaling occurs on the active layer of the FO membrane, hydraulic cleaning (increasing crossflow velocity) efficiency to restore the water flux is up to 82%. When scaling occurs on the support layer of the FO membrane, the hydraulic cleaning efficiency is strongly reduced, with only 36% of the water flux recovered. The present study reveals the risk of scaling induced by the interaction of feed solute and draw solute, which is different from the scaling caused by the supersaturation in reverse osmosis and other FO studies reported. The scaling investigated in this study can occur with a very low solute concentration at an early stage of the FO process. This finding provides an important implication for selection of draw solution and development of new membranes in the FO process.

  12. Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater

    International Nuclear Information System (INIS)

    Highlights: ► The carbonization of Tamarind fruit shell improved its defluoridation efficiency. ► Calcium carbonate particles were involved in the defluoridation process. ► Adsorbent dose, pH, and fluoride concentration showed significant effects. ► Maximum adsorption of fluoride was achieved at pH 7–8. ► Prepared carbons were efficient in treating three natural waters. - Abstract: Tamarindus indica fruit shells (TIFSs) are naturally calcium rich compounds. They were impregnated with ammonium carbonate and then carbonized, leading to ammonium carbonate activated ACA-TIFS carbon. The resulting materials and carbon arising from virgin fruit shells V-TIFS were characterized and assayed as adsorbent for the removal of fluoride anions from groundwater. The fluoride scavenging ability of TIFS carbons was due to naturally dispersed calcium compounds. X-ray diffraction (XRD) showed that TIFS carbon contained a mixture of calcium oxalate and calcium carbonate. Batch studies on the fluoride removal efficiency of TIFS carbons with respect to contact time, pH, initial fluoride concentration, and co-ion interference were conducted. Applicability of various kinetic models (viz., pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich) and sorption isotherms were tested for batch techniques. The fluoride removal capacity of TIFS carbons was found to be 91% and 83% at a pH of 7.05 for V-TIFS and ACA-TIFS carbons, respectively. The practical applicability of TIFS carbons using groundwater samples was approved. The fluoride removal was greater in groundwater without hydrogen carbonate ions than those containing these ions. The characterizations of fluoride unloaded and loaded TIFS carbons were done by SEM and XRD studies.

  13. Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sivasankar, V., E-mail: vsivasankar@tce.edu [Department of Chemistry, Thiagarajar College of Engineering (Autonomous), Madurai 625015, Tamil Nadu (India); Rajkumar, S. [Department of Chemistry, Thiagarajar College of Engineering (Autonomous), Madurai 625015, Tamil Nadu (India); Murugesh, S. [Department of Chemistry, SACS M.A.V.M.M. Engineering College, Madurai 625301, Tamil Nadu (India); Darchen, A. [UMR CNRS No. 6226 Sciences Chimiques de Rennes, ENSCR, Avenue du General Leclerc, CS 50837, 35708 Rennes, Cedex 7 (France)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The carbonization of Tamarind fruit shell improved its defluoridation efficiency. Black-Right-Pointing-Pointer Calcium carbonate particles were involved in the defluoridation process. Black-Right-Pointing-Pointer Adsorbent dose, pH, and fluoride concentration showed significant effects. Black-Right-Pointing-Pointer Maximum adsorption of fluoride was achieved at pH 7-8. Black-Right-Pointing-Pointer Prepared carbons were efficient in treating three natural waters. - Abstract: Tamarindus indica fruit shells (TIFSs) are naturally calcium rich compounds. They were impregnated with ammonium carbonate and then carbonized, leading to ammonium carbonate activated ACA-TIFS carbon. The resulting materials and carbon arising from virgin fruit shells V-TIFS were characterized and assayed as adsorbent for the removal of fluoride anions from groundwater. The fluoride scavenging ability of TIFS carbons was due to naturally dispersed calcium compounds. X-ray diffraction (XRD) showed that TIFS carbon contained a mixture of calcium oxalate and calcium carbonate. Batch studies on the fluoride removal efficiency of TIFS carbons with respect to contact time, pH, initial fluoride concentration, and co-ion interference were conducted. Applicability of various kinetic models (viz., pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich) and sorption isotherms were tested for batch techniques. The fluoride removal capacity of TIFS carbons was found to be 91% and 83% at a pH of 7.05 for V-TIFS and ACA-TIFS carbons, respectively. The practical applicability of TIFS carbons using groundwater samples was approved. The fluoride removal was greater in groundwater without hydrogen carbonate ions than those containing these ions. The characterizations of fluoride unloaded and loaded TIFS carbons were done by SEM and XRD studies.

  14. Effect of carbonate and phosphate ratios on the transformation of calcium orthophosphates

    International Nuclear Information System (INIS)

    Graphical abstract: Complexes among phosphate, carbonate and calcium have been prepared via a facile hydrothermal route. The synthesized product at the low (0.15) and the high (1.8) molar ratio of PO43−/CO32− is calcium phosphate hydrate and hydroxylapatite (HAp), respectively. Molar ratios of PO43−/CO32− are effective on the reduction of carbonate activity during the crystallization of HAp. - Highlights: • Formation of different complexes from CO32−, PO43− and Ca2+ solutions at 60 °C. • Molar ratios of PO43−/CO32 cause changes in phase and size of synthesized products. • Addition of PO43 inhibited the activity of CO32− during bound with Ca2+. • The phase transformation was completed, when CO32− peaks disappeared in FTIR. • PO43−, CO32− and Ca2+ distributed heterogeneously on the surface of precipitation. - Abstract: Complexes among phosphate, carbonate and calcium have been synthesized by a designed hydrothermal method. Effects of carbonate and phosphate ratios on the transformation of calcium-orthophosphates were investigated. With X-ray diffraction measurement the synthesized product at the low (0.15) and the high (1.8) molar ratio of PO43−/CO32− is calcium phosphate hydrate at pH 9.0, and hydroxylapatite (HAp) at pH 8.0, respectively. Fourier transform infrared spectroscopy of product at the high ratio (1.8) of PO43−/CO32− shows that the CO32− peaks disappear, and the strong peaks at 1412 and 1460 cm−1 are assigned to the vibrations of PO43− in HAp. 31P nuclear magnetic resonance spectra of products at the low (0.15–0.6) to the high (1.2–1.8) ratios of PO43−/CO32− are obtained at 2.9 and 2.7 ppm, respectively. Molar ratios of PO43−/CO32− are effective on the reduction of carbonate activity during the formation and infiltration events of calcium-phosphate surface precipitates, and are subsequently enclosed during HAp formation

  15. The influence of pore-water advection, benthic photosynthesis, and respiration on calcium carbonate dynamics in reef sands

    NARCIS (Netherlands)

    Rao, A.M.F.; Polerecky, L.; Ionescu, D.; Meysman, F.J.R.; de-Beer, D.

    2012-01-01

    To investigate diel calcium carbonate (CaCO3) dynamics in permeable coral reef sands, we measured pore-water profiles and fluxes of oxygen (O2), nutrients, pH, calcium (Ca2+), and alkalinity (TA) across the sediment-water interface in sands of different permeability

  16. CALCIUM CARBONATE REDUCES IRON ABSORPTION FROM IRON SULFATE, BUT NOT WHEN IRON IS PRESENTED AS AN ORGANIC COMPLEX

    Directory of Open Access Journals (Sweden)

    E. C. CONCEI�O

    2008-09-01

    Full Text Available

    Experimental and epidemiological evidences have demonstrated that calcium inhibits iron absorption; calcium carbonate being one of the most effective calcium sources to reduce iron absorption from dietary origin or from iron sulfate. In the present work, the short-term effect of calcium from calcium carbonate on iron absorption was studied in rats, using different iron compounds (monosodium ferric EDTA, iron-bys-glicine, iron peptide complex with iron sulfate as a control. Eighty (80 animals were divided into groups of 10 animals each with homogeneous weight. After 18h fast, the animals received by gavage 5 mL of a dispersion containing one of the iron compounds (1mg Fe/kg body weight, concomitantly or not with calcium carbonate at a molar ratio of 150:1 (Ca/Fe. Two hours after the administration, the animals were sacrificed and blood was collected for serum iron determination (iron transfer rate from intestinal lumen to blood compartment. Additionally, the intestines were collected for soluble iron determination (available iron. The results demonstrated that calcium ion from calcium carbonate inhibits the iron absorption from iron sulfate, but not from organic iron (di- or trivalent complexes.

  17. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation and isotopic fractionation of chromate into the calcite lattice. Our experiments indicate...... no Cr isotope fractionation in the oceans. These experiments represent a first step toward understanding the Cr isotope signal of carbonates where fractionations will likely be ≤ 0.3 ‰ and as such, pave the way for future work to enable a reliable application of the Cr isotope proxy. References: [1...

  18. Bone calcium turnover during pregnancy and lactation in women with low calcium diets is associated with calcium intake and circulating insulin-like growth factor 1 concentrations

    Science.gov (United States)

    BACKGROUND: Few data exist on longitudinal changes in bone calcium turnover rates across pregnancy and lactation. OBJECTIVE: Our aim was to characterize calcium kinetic variables and predictors of these changes across pregnancy and early lactation in women with low calcium intakes. DESIGN: Stable ca...

  19. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.

  20. Influence of surface treatment of carbon fibers on electrochemical crystallization of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    TAO Ke; HUANG Su-ping; ZHOU Ke-chao

    2005-01-01

    Electrodeposition technique was used to coat calcium phosphate on carbon fiber which can be used to reinforce hydroxyapatite. The differences between fibers treated with and without nitric acid in electrodeposition were evaluated. The X-ray diffractometry results show that CaHPO4·2H2O is obtained as the kind of calcium phosphate coating on carbon fiber. The scanning electron microscopy photographs and deposit kinetic curve indicate that the influences of the functional group attained by nitric acid treatment, the crystal morphology and crystallization of the coating layers on the fiber with and without treatment rate are obviously different. The functional group, especially the acidic group, can act as nucleation centers of electrochemical crystallization.

  1. A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles

    Science.gov (United States)

    Gebauer, Denis; Oliynyk, Vitaliy; Salajkova, Michaela; Sort, Jordi; Zhou, Qi; Bergström, Lennart; Salazar-Alvarez, German

    2011-09-01

    Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy.Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy. Electronic supplementary information (ESI) available: Additional experimental procedures and results. See DOI: 10.1039/c1nr10681c

  2. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

    Science.gov (United States)

    Lopez-Arce, Paula; Zornoza-Indart, Ainara

    2015-09-01

    Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast-sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

  3. Radiation does response of calcium carbonate crystal in marine shells samples

    OpenAIRE

    Changkian, S.; Kaewtubtim, P.

    2002-01-01

    A study of the evolution of element, crystal structure and thermoluminescence signal versus gamma irradiation dose were carried out for calcite shells samples. The composition of element was studied by X-ray fluorescence spectrometer. As identified by X-ray diffraction and SEM/EDS analysis, two polymorphs of calcium-carbonate were extracted: calcite and aragonite. The evolution of TL signal versus gamma irradiation dose using the TL reader (Harshaw 2000) was initially dependent on crystal str...

  4. Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend by Calcium Carbonate Nanoparticles

    OpenAIRE

    Asma Fatehi; Susan Azizi; Mohamad Zaki Ab. Rahman; Wan Md Zin Wan Yunus; Samira Siyamak; Nor Azowa Ibrahim; Sanaz Abdolmohammadi

    2012-01-01

    This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO3 were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO3 nanoparticle loadin...

  5. Chemical stabilization of mine waste with sewage sludge and calcium carbonate residues

    OpenAIRE

    Höckert, Linda

    2007-01-01

    Chemical stabilization of mine waste from Ljusnarsbergsfältet with sewage sludge and calcium carbonate residues Mine waste from Ljusnarsbergsfältet in Kopparberg, Sweden, is considered to constitute a great risk for human health and the surrounding environment. Some of the waste rock consists of sulphide minerals. When sulphide minerals come into contact with dissolved oxygen and precipitation, oxidation may occur resulting in acid mine drainage (AMD) and the release of heavy metals. The purp...

  6. OPTIMIZATION OF CHEMICALS USE FOR HIGHLY FILLED MECHANICAL GRADE PAPERS WITH PRECIPITATED CALCIUM CARBONATE

    OpenAIRE

    Yizhou Sang,; Michael McQuaid; Peter Englezos

    2011-01-01

    Response surface methodology was used with four factors to screen for the best starch and optimize the use of chemicals in order to maximize precipitated calcium carbonate (PCC) filler retention in a peroxide-bleached TMP suspension. Three commercial starches were used in conjunction with colloidal silica and flocculant. The PCC loading level and the interactions between PCC level, starch, flocculant, and silica were investigated, and empirical models were constructed. The empirical process m...

  7. Obtainment of calcium carbonate from mussels shell; Obtencao de carbonato de calcio a partir de conchas de mariscos

    Energy Technology Data Exchange (ETDEWEB)

    Hamester, M.R.R.; Becker, D., E-mail: michele.rosa@sociesc.org.b [Sociedade Educacional de Santa Catarina (SOCIESC), Joinville, SC (Brazil). Mestrado Profissional em Engenharia Mecanica

    2010-07-01

    The mussels and oyster shell are discarded at environment, and this accumulation is causing negative consequences to ecosystem. Calcium carbonate is main constituent of the shell chemical composition. Aiming to reduce environmental aggression and generate income to shellfish producer, there was the possibility of using these shells as an alternative to commercial calcium carbonate. For this physics, chemicals and thermal properties were evaluated, using X-ray fluorescence, thermogravimetric analysis, size distribution, abrasiveness and scanning electronic microscopy. The results indicate that mussels shells have an initial degradation temperature higher than commercial calcium carbonate e same lost weight behavior and 95% of shell chemical composition is calcium carbonate. The sample size distribution was influenced by grinding condition and time as well as its abrasiveness. (author)

  8. Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene

    Directory of Open Access Journals (Sweden)

    Michele Regina Rosa Hamester

    2012-04-01

    Full Text Available There is a high content of calcium carbonate in mussel and oyster shells, which can be used in the formulation of medicine, in construction or as filler in polymer materials. This work has as its main objective to obtain calcium carbonate from mussel and oyster shells and used as filler in polypropylene compared their properties with polypropylene and commercial calcium carbonate composites. The shellfish was milling and heated at 500 ºC for 2 hours. The powder obtained from shellfish were characterized by scanning electron microscopy (SEM, X-ray fluorescence, particle size distribution and abrasiveness and compared with commercial CaCO3 and mixed with polypropylene. The thermal and mechanical properties of polypropylene with CaCO3 obtained from oyster and mussel shells and with commercial CaCO3 were analysed. The results showed that CaCO3­ can be obtained from oyster and mussel shell and is technically possible to replace the commercial CaCO3 for that obtained from the shells of shellfish in polypropylene composites.

  9. EPR investigation of UV light effect on calcium carbonate powders with different grain sizes

    International Nuclear Information System (INIS)

    This study is based on investigation of calcium carbonate powders with different grain sizes exposed to UV light. Calcium carbonate is widely used in many branches of industry, e.g. as a filler for polymer materials; therefore, knowing its properties, among them also its reaction to UV light, is essential. Samples of powdered calcium carbonate with average grain sizes of 69 and 300 nm and 2.1, 6, 16, 25 μm were used in this investigation. Measurements were performed at room temperature using EPR X-band spectrometer, and they have shown the additional signals induced by the light from Hg lamp. The effect of annealing of the micro-grain samples was also studied. The spectra of four micro-grain samples after irradiation are similar, but there are differences between them and the other two powders, which could be related to the different sizes of their grains. Further studies based on these preliminary results may prove useful in research of photodegradation of CaCO3-filled materials, as well as helpful in increasing the accuracy of dating of archaeological and geological objects. (authors)

  10. Compaction of functionalized calcium carbonate, a porous and crystalline microparticulate material with a lamellar surface.

    Science.gov (United States)

    Stirnimann, Tanja; Atria, Susanna; Schoelkopf, Joachim; Gane, Patrick A C; Alles, Rainer; Huwyler, Jörg; Puchkov, Maxim

    2014-05-15

    In the present study, we aimed to characterize the compressibility and compactibility of the novel pharmaceutical excipient, functionalized calcium carbonate (FCC). We studied three FCC modifications and compared the values for compressibility and compactibility with mannitol, microcrystalline cellulose (MCC), and ground calcium carbonate (CC 330) as well as mixtures of paracetamol and MCC or FCC at drug loads of 0%, 25%, 50%, 75%, and 100% (w/w). We used Heckel analysis, modified Heckel analysis, and Leuenberger analysis to characterize the compaction and compression behavior of the mixtures. Compaction analysis of FCC showed this material to markedly differ from ground calcium carbonate, exhibiting properties, i.e. plastic deformability, similar to those of MCC. This effect was attributed to the highly lamellar structure of FCC particles whose thickness is of the order of a single crystal unit cell. According to Leuenberger parameters, we concluded that FCC-based tablet formulations had mechanical properties equal or superior to those formulated with MCC. FCC tablets with high tensile strength were obtained already at low compressive pressures. Owing to these favorable properties (i.e. marked tensile strength and porosity), FCC promises to be suitable for the preparation of solid dosage forms. PMID:24631309

  11. Crystallization of calcium carbonate on radiation-grafted polyethylene films

    International Nuclear Information System (INIS)

    In biomineralization processes, nucleation and growth of inorganic crystals can be regulated by organic template molecules. This has inspired great interest in studying mimic biomineralization. In our study, growing CaCO3 crystals on PE films functionalized through radiation-induced grafting was attempted. PE films grafted with different functional groups of different distributions and densities were used as substrates for CaCO3 nucleation and crystal growth from Ca(HCO3)2 supersaturated solution under different environmental conditions (e.g. additives and temperature) to study the effects and mechanisms. The grafted PE films were analyzed by ATR-FTIR and AFM, and the evolution of CaCO3 crystal formation on the grafted PE film was characterized by SEM, FTIR, and XRD. The results indicated that heterogeneous nucleation of CaCO3 crystals was significantly facilitated by the functional groups grafted on the surface of PE films, that the morphology of CaCO3 crystals could be controlled by distribution and density of the grafted functional groups, and that polymorphism of CaCO3 crystal could be regulated by selection of grafting functional groups. We believe that studying the effects of chemical structures on inorganic crystallization is of great importance since radiation-induced grafting is an effective method to graft desirable functional groups onto different polymers by selected monomers, in the endeavor of developing advanced organic/inorganic composites with high performance, with a wide availability of polymers, monomers and inorganic solutions. (authors)

  12. Structures and stability of calcium and magnesium carbonates at mantle pressures

    OpenAIRE

    Pickard, Chris J.; Needs, Richard J.

    2014-01-01

    Ab initio random structure searching (AIRSS) and density functional theory methods are used to predict structures of calcium and magnesium carbonate (CaCO$_3$ and MgCO$_3$) at high pressures. We find a previously unknown CaCO$_3$ structure which is more stable than the aragonite and "post aragonite" phases in the range 32--48 GPa. At pressures from 67 GPa to well over 100 GPa the most stable phase is a previously unknown CaCO$_3$ structure of the pyroxene type with fourfold coordinated carbon...

  13. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yi; Jiang Tao; Zhou Yi; Zhang Zhen; Wang Zhejun [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tong Hua; Shen Xinyu [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Wang Yining, E-mail: wang.yn@whu.edu.cn [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2011-07-20

    Titanium has been reported to have some limitations in dental and orthopaedic clinical application. This study described a coating process using a simple chemical method to prepare calcium carbonate coatings on smooth titanium (STi) and sandblasted and acid-etched titanium (SATi), and evaluated the biological response of the materials in vitro. The surfaces of STi, SATi, calcium carbonate coated STi (CC-STi) and calcium carbonate coated SATi (CC-SATi) were characterized for surface roughness, contact angles, surface morphology and surface chemistry. The morphology of MG63 cells cultured on the surfaces was observed by SEM and Immuno-fluorescence staining. Cell attachment/proliferation was assessed by MTT assay, and cell differentiation was evaluated by alkaline phosphatase (ALP) activity. MG63 was found to attach favorably to calcium carbonate crystals with longer cytoplasmic extensions on CC-STi and CC-SATi, resulting in lower cell proliferation but higher ALP activity when compared to STi and SATi respectively. Moreover, CC-SATi is more favorable than CC-STi in terms of biological response. In conclusion, the calcium carbonate coatings on titanium were supposed to improve the osteointegration process and stimulate osteoblast differentiation, especially in early stage. And this method could possibly be a feasible alternative option for future clinical application. Highlights: {yields} Calcium carbonate coatings were prepared on titanium substrates. {yields} The coating process is simple and cost-effective. {yields} Calcium carbonate coating could induce differentiation toward an osteoblastic phenotype. {yields} Calcium carbonate coating could enhance the osteointegration process especially in early stage.

  14. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface

    International Nuclear Information System (INIS)

    Titanium has been reported to have some limitations in dental and orthopaedic clinical application. This study described a coating process using a simple chemical method to prepare calcium carbonate coatings on smooth titanium (STi) and sandblasted and acid-etched titanium (SATi), and evaluated the biological response of the materials in vitro. The surfaces of STi, SATi, calcium carbonate coated STi (CC-STi) and calcium carbonate coated SATi (CC-SATi) were characterized for surface roughness, contact angles, surface morphology and surface chemistry. The morphology of MG63 cells cultured on the surfaces was observed by SEM and Immuno-fluorescence staining. Cell attachment/proliferation was assessed by MTT assay, and cell differentiation was evaluated by alkaline phosphatase (ALP) activity. MG63 was found to attach favorably to calcium carbonate crystals with longer cytoplasmic extensions on CC-STi and CC-SATi, resulting in lower cell proliferation but higher ALP activity when compared to STi and SATi respectively. Moreover, CC-SATi is more favorable than CC-STi in terms of biological response. In conclusion, the calcium carbonate coatings on titanium were supposed to improve the osteointegration process and stimulate osteoblast differentiation, especially in early stage. And this method could possibly be a feasible alternative option for future clinical application. Highlights: → Calcium carbonate coatings were prepared on titanium substrates. → The coating process is simple and cost-effective. → Calcium carbonate coating could induce differentiation toward an osteoblastic phenotype. → Calcium carbonate coating could enhance the osteointegration process especially in early stage.

  15. Mediation of calcium oxalate crystal growth on human kidney epithelial cells with different degrees of injury

    International Nuclear Information System (INIS)

    The current study examined the role of injured human kidney tubular epithelial cell (HKC) in the mediation of formation of calcium oxalate (CaOxa) crystals by means of scanning electronic microscopy and X-ray diffraction. HKC was injured using different concentrations of H2O2. Cell injury resulted in a significant decrease in cell viability and superoxide dismutase (SOD) concentration and an increase in the level of malondialdehyde (MDA) and expression of osteopontin (OPN). Injured cells not only promote nucleation and aggregation of CaOxa crystals, but also induce the formation of calcium oxalate monohydrate (COM) crystals that strongly adhere to cells. These results imply that injured HKCs promote stone formation by providing more nucleating sites for crystals, promoting the aggregation of crystals, and inducing the formation of COM crystals. - Graphical abstract: Injured cells promote nucleation and aggregation of CaOxa crystals, induce the formation of calcium oxalate monohydrate (COM) crystals. Highlights: ► A direct nucleation and growth of CaOxa crystals on both normal and injured cells. ► Stronger green fluorescence, i.e. OPN expression, was seen on the injury cell surface ► Injured cells promote nucleation and aggregation of CaOxa crystals. ► Injured cells induce the formation of calcium oxalate monohydrate crystals. ► H2O2 decrease cell viability in a dose-dependent manner at 0.1–1 mmol/L.

  16. Scientific Opinion on the safety assessment of the active substances, sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulphate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, for use as active system in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-02-01

    Full Text Available This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, used in mixture which is packed into sachets for absorbing oxygen/carbon dioxide emitting from/into the headspace surrounding packed food. All substances of this formulation have been evaluated and approved for use as additives in plastic food contact materials or as food additives. No migration of calcium, iron and sodium ions was detected. No volatile organic compounds other than carbon dioxide were detected at the limit of detection of 0.5 μg/l. The CEF Panel concluded that the use of the substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water does not raise a safety concern when used in oxygen absorber/carbon dioxide emitter systems, in sachets that prevent the physical release of their contents into the food. The sachets are to be placed in the headspace of the packaging and as such may come into occasional contact with the food, e.g. during handling. The sachet should not come into direct contact with liquid foods or foods that have and external aqueous liquid phase on the surface (liquid or exudates.

  17. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, Jani, E-mail: jani.holopainen@helsinki.fi; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-12-01

    Calcium carbonate (CaCO{sub 3}) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}·4H{sub 2}O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO{sub 3} fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO{sub 3} layer by spin or dip coating Ca(NO{sub 3}){sub 2}/PVP precursor solution on the CaCO{sub 3} fibers followed by annealing of the gel formed inside the fiber layer. The CaCO{sub 3} fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. - Highlights: • Calcium carbonate fibers were prepared by electrospinning. • The electrospun fibers crystallized to calcite upon calcination at 500 °C. • Spin and dip coating methods were used to improve the adhesion of the CaCO{sub 3} fibers. • The CaCO{sub 3} fibers were converted to hydroxyapatite by treatment in phosphate solution. • The hydroxyapatite fibers consisted of plate-like nanocrystals.

  18. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite

    International Nuclear Information System (INIS)

    Calcium carbonate (CaCO3) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO3 layer by spin or dip coating Ca(NO3)2/PVP precursor solution on the CaCO3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. - Highlights: • Calcium carbonate fibers were prepared by electrospinning. • The electrospun fibers crystallized to calcite upon calcination at 500 °C. • Spin and dip coating methods were used to improve the adhesion of the CaCO3 fibers. • The CaCO3 fibers were converted to hydroxyapatite by treatment in phosphate solution. • The hydroxyapatite fibers consisted of plate-like nanocrystals

  19. Randomized, placebo-controlled, calcium supplementation trial in pregnant Gambian women accustomed to a low calcium intake: effects on maternal blood pressure and infant growth 1 2 3 4

    OpenAIRE

    Goldberg, Gail R.; Jarjou, Landing MA; Tim J Cole; Prentice, Ann

    2013-01-01

    Background: Dietary calcium intake in rural Gambian women is very low (∼350 mg/d) compared with international recommendations. Studies have suggested that calcium supplementation of women receiving low-calcium diets significantly reduces risk of pregnancy hypertension. Objective: We tested the effects on blood pressure (BP) of calcium carbonate supplementation (1500 mg Ca/d) in pregnant, rural Gambian women. Design: The study was a randomized, double-blind, parallel, placebo-controlled supple...

  20. Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone

    Science.gov (United States)

    Ishikawa, H.; Evans, M. L.

    1992-01-01

    We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.

  1. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate.

    Science.gov (United States)

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-01-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c-axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and "low k di-electric" systems. PMID:27145699

  2. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids.

    Science.gov (United States)

    Bentov, Shmuel; Weil, Simy; Glazer, Lilah; Sagi, Amir; Berman, Amir

    2010-08-01

    Stable amorphous calcium carbonate (ACC) is a unique material produced naturally exclusively as a biomineral. It was demonstrated that proteins extracted from biogenic stable ACC induce and stabilize synthetic ACC in vitro. Polyphosphate molecules were similarly shown to induce amorphous calcium carbonate formation in vitro. Accordingly, we tested the hypothesis that biogenic ACC induction and stabilization is mediated by the phosphorylated residues of phosphoproteins. We show that extracellular organic matrix extracted from gastroliths of the red claw crayfish Cherax quadricarinatus induce stable ACC formation in vitro. The proteinaceous fraction of this organic matrix is highly phosphorylated and is incorporated into the ACC mineral phase during precipitation. We have identified the major phosphoproteins of the organic matrix and showed that they have high calcium binding capacity. Based on the above, in vitro precipitation experiments with single phosphoamino acids were performed, indicating that phosphoserine or phosphothreonine alone can induce the formation of highly stable ACC. The results indicate that phosphoproteins may play a major role in the control of ACC formation and stabilization and that their phosphoamino acid moieties are key components in this process. PMID:20416381

  3. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate

    Science.gov (United States)

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-05-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c–axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and “low k di-electric” systems.

  4. Hydration Characteristics of Tetracalcium Alumino-Ferrite Phase in the presence Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    M. M. Radwan

    2011-12-01

    Full Text Available Tetracalcium alumino-ferrite phase (C4AF prepared from pure starting materials was employed for composing various mixes prepared of C4AF phase, CaSO4·2H2O, Ca(OH2 and CaCO3. The effect of replacing calcium sulphate (gypsum by calcium carbonate as a set retarder on the hydration behaviour of ferrite phase was studied. The mixes were hydrated for various periods and the hydration products were investigated using the appropriate techniques. The kinetics of hydration was studied by measuring the chemically-combined water as well as the combined lime contents. The mineralogical constitution was studied by using XRD, and DTA. The microstructure of some represented hydrated samples was investigated by scanning electron microscopy. Some interesting conclusions have been drawn. It was found that calcium carbonate reacts with tetracalcium alumino-ferrite phase (C4AF in the presence of hydrolime [Ca(OH2] to form carboferrite compounds which may coat the aluminate grains as ettringite does and this may probably regulate the setting time.

  5. Rapid, high-temperature, field test method for evaluation of geothermal calcium carbonate scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1986-09-01

    A new test method is described that allows the rapid field testing of calcium carbonate scale inhibitors at 500/sup 0/F (260/sup 0/C). The method evolved from use of a full-flow test loop on a well with a mass flow rate of about 1 x 10/sup 6/ lbm/hr (126 kg/s). It is a simple, effective way to evaluate the effectiveness of inhibitors under field conditions. Five commercial formulations were chosen for field evaluation on the basis of nonflowing, laboratory screening tests at 500/sup 0/F (260/sup 0/C). Four of these formulations from different suppliers controlled calcium carbonate scale deposition as measured by the test method. Two of these could dislodge recently deposited scale that had not age-hardened. Performance-profile diagrams, which were measured for these four effective inhibitors, show the concentration interrelationship between brine calcium and inhibitor concentrations at which the formulations will and will not stop scale formation in the test apparatus. With these diagrams, one formulation was chosen for testing on the full-flow brine line. The composition was tested for 6 weeks and showed a dramatic decrease in the scaling occurring at the flow-control valve. This scaling was about to force a shutdown of a major, long-term flow test being done for reservoir economic evaluations. The inhibitor stopped the scaling, and the test was performed without interruption.

  6. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate

    Science.gov (United States)

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-01-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c–axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and “low k di-electric” systems. PMID:27145699

  7. Plant growth conditions alter phytolith carbon

    Directory of Open Access Journals (Sweden)

    Kimberley L Gallagher

    2015-09-01

    Full Text Available Many plants, including grasses and some important human food sources, accumulate and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a glass wastebasket. Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  8. Growth enhancement by soil derived carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Grodzinski, B.; Wallis, M.; O' Sullivan, J. (Univ. of Guelph, Ontario (Canada))

    1989-04-01

    The objective of this study was to investigate the role which naturally evolved CO{sub 2} from the soil can play in the early growth and establishment of vegetable transplants in the field. Two planting dates were utilized to examine the effects of the time of tunnel placement on development of a crop of bell peppers, Capsicum annuum L. Ambient CO{sub 2} levels were 340 {plus minus} 4 ppm. In the first 3 weeks of spring (May) CO levels 2 to 3 cm above the soil surface were 420 to 480 ppm. Inside plastic tunnels the upward flux of CO{sub 2} evolved from the soil was restricted effectively raising the tunnel atmosphere to over 3000 ppm even at midday. Data from parallel field and controlled environment chamber experiments support the view that 25-40% of the increase in seedling growth in the field tunnels in the spring was due to enhanced photosynthesis and carbon partitioning into both sugars and starch not merely the elevated temperatures associated with protected structures.

  9. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.

    Science.gov (United States)

    Duan, Haiming; Rosén, Arne; Harutyunyan, Avetik; Curtarolo, Stefano; Bolton, Kim

    2008-11-01

    Density functional theory (DFT) calculations show that dimers and longer carbon strings are more stable than individual atoms on Fe(111) surfaces. It is therefore necessary to consider the formation of these species on the metal surfaces and their effect on the mechanism of single-walled nanotube (SWNT) growth. The good agreement between the trends (energies and structures) obtained using DFT and those based on the Brenner and AIREBO models indicate that these analytic models provide adequate descriptions of the supported carbon systems needed for valid molecular dynamics simulations of SWNT growth. In contrast, the AIREBO model provides a better description of the relative energies for isolated carbon species, and this model is preferred over the Brenner potential when simulating SWNT growth in the absence of metal particles. However, the PM3 semiempirical model appears to provide an even better description for these systems and, given sufficient computer resources, direct dynamics methods based on this model may be preferred. PMID:19198360

  10. Assessing soil calcium depletion following growth and harvesting of Sitka spruce plantation forestry in the acid sensitive Welsh uplands

    Directory of Open Access Journals (Sweden)

    B. Reynolds

    1998-01-01

    Full Text Available A simple mass balance has been used to estimate soil calcium depletion during the growth of a 50 year old Sitka spruce crop on acid, base-poor peaty podzol soils in upland Wales. Growth of the crop will deplete the soil calcium reserve by an amount (205 kg Ca ha-1 approximately equivalent to the exchangeable calcium pool to the bottom of the profile and equal to 14% of the total soil calcium reserve to the bottom of the B horizon. Despite these predictions, measurements of exchangeable calcium show no differences beneath mature forest and acid grassland, implying that i weathering rates in forest soils are greater than long-term estimates and predictions by the PROFILE soil chemistry model ii the trees can access other sources of calcium or iii there are significant errors in the mass balance. Following stem-only harvesting, growth of a 50 year old second rotation crop will lead to further depletion of soil calcium, but this amount (79 kg Ca ha-1, is less than for a second rotation crop following whole-tree harvesting (197 kg Ca ha-1. After the first crop, stem-only harvesting would allow a further 18 rotations before depletion of the total calcium reserve to the bottom of the B horizon. Whole-tree harvesting would allow for seven rotations after the first crop. These calculations assume that all sources of calcium are equally available to the crop. This can only be resolved by dynamic modelling of the calcium cycle at the ecosystem scale based on appropriate field measurements. The potential for significant soil acidification is therefore greater following whole-tree harvesting and, in line with current recommendations (Nisbet et al., 1997, this technique should probably be avoided on acidic, nutrient-poor soils unless remedial measures are included to enhance the soil base cation status.

  11. Isolation and characterization of biogenic calcium carbonate/phosphate from oral bacteria and their adhesion studies on YSZ-coated titanium substrate for dental implant application

    Indian Academy of Sciences (India)

    GOBI SARAVANAN KALIARAJ; KAMALAN KIRUBAHARAN; G PRADHABAN; P KUPPUSAMI; VINITA VISHWAKARMA

    2016-04-01

    Biogenic calcium carbonate/phosphate were isolated and characterized from oral bacteria (CPOB). The crystalline nature and morphology of calcium carbonate/phosphate were characterized by X-ray diffraction (XRD)and field emission scanning electron microscopy (FESEM), respectively. XRD analysis revealed the cubic phase of YSZ coating as well as biogenic calcium carbonate (rhombohedral) and calcium phosphate oxide (hexagonal) wasobserved from CPOB. FESEM confirmed the extracellular synthesis of calcium compounds. Bacterial adhesion result reveals that YSZ coating drastically reduce bacterial invasion than titanium substrate.

  12. Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays

    Science.gov (United States)

    Rane, Mansi; Bawskar, Manisha; Rathod, Dnyaneshwar; Nagaonkar, Dipali; Rai, Mahendra

    2015-12-01

    In this study, the arbuscular mycorrhizal fungus (G. mosseae) and endosymbiont (P. indica) colonized Zea mays were treated with calcium phosphate nanoparticles (CaPNPs) and evaluated for their plant growth promotion efficiency. It was observed that CaPNPs in combination with both G. mosseae and P. indica are more potent plant growth promoter than independent combinations of CaPNPs + G. mosseae, CaPNPs + P. indica or CaPNPs alone. The fluorimetric studies of treated plants revealed that CaPNPs alone and in combination with P. indica can enhance vitality of Zea mays by improving chlorophyll a content and performance index of treated plants. Hence, we conclude that CaPNPs exhibit synergistic growth promotion, root proliferation and vitality improvement properties along with endosymbiotic and arbuscular mycorrhizal fungi, which after further field trials can be developed as a cost-effective nanofertilizer with pronounced efficiency.

  13. Effect of polyethylene coated calcium carbide on physiology, photosynthesis, growth and yield of sweet pepper

    International Nuclear Information System (INIS)

    Polyethylene coated calcium carbide (PCC) is a potent and continuous slowly releasing source of acetylene and ethylene. It potentially improves plant growth by affecting physiology of plant. A pot study was conducted to investigate comparative effects of different rates of PCC on growth and yield attributes of sweet pepper. PCC performed better when applied with soil applied fertilizers. Results revealed that hormonal properties of calcium carbide significantly influenced physiological nutrient use efficiency and vegetative growth by affecting photosynthetic and physiological parameters of sweet pepper. Application of 20 mg PCC kg/sup -1/ soil with soil applied recommended dose of NPK fertilizers significantly improved the net photosynthetic rate by 32%, stomatal conductance by 11%, transpiration rate by 14%, carboxylation efficiency by 47%, physiological water use efficiency by 13%, physiological nitrogen use efficiency by 29% over the control treatment. This improvement in physiological attributes resulted in increase in leaf area by 20%, leaf area index by 78%, total plant dry weight by 35%, flower and fruits by 29% and fruit yield by 24% compared to the treatment of alone recommended dose of NPK fertilizers. Present study suggests that application of PCC particularly at the rate of 20mg PCC kg/sup -1/ soil plus recommended dose of NPK fertilizers improved about 25% sweet pepper production compared to its production in the alone recommended fertilizer treatment. (author)

  14. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  15. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.

    Science.gov (United States)

    Park, Yoonjee C; Paulsen, Jeffrey; Nap, Rikkert J; Whitaker, Ragnhild D; Mathiyazhagan, Vidhya; Song, Yi-Qiao; Hürlimann, Martin; Szleifer, Igal; Wong, Joyce Y

    2014-01-28

    Superparamagnetic iron oxide (SPIO) nanoparticles have the potential to be used in the characterization of porous rock formations in oil fields as a contrast agent for NMR logging because they are small enough to traverse through nanopores and enhance contrast by shortening NMR T2 relaxation time. However, successful development and application require detailed knowledge of particle stability and mobility in reservoir rocks. Because nanoparticle adsorption to sand (SiO2) and rock (often CaCO3) affects their mobility, we investigated the thermodynamic equilibrium adsorption behavior of citric acid-coated SPIO nanoparticles (CA SPIO NPs) and poly(ethylene glycol)-grafted SPIO nanoparticles (PEG SPIO NPs) on SiO2 (silica) and CaCO3 (calcium carbonate). Adsorption behavior was determined at various pH and salt conditions via chemical analysis and NMR, and the results were compared with molecular theory predictions. Most of the NPs were recovered from silica, whereas far fewer NPs were recovered from calcium carbonate because of differences in the mineral surface properties. NP adsorption increased with increasing salt concentration: this trend was qualitatively explained by molecular theory, as was the role of the PEG grafting in preventing NPs adsorption. Quantitative disagreement between the theoretical predictions and the data was due to NP aggregation, especially at high salt concentration and in the presence of calcium carbonate. Upon aggregation, NP concentrations as determined by NMR T2 were initially overestimated and subsequently corrected using the relaxation rate 1/T2, which is a function of aggregate size and fractal dimension of the aggregate. Our experimental validation of the theoretical predictions of NP adsorption to minerals in the absence of aggregation at various pH and salt conditions demonstrates that molecular theory can be used to determine interactions between NPs and relevant reservoir surfaces. Importantly, this integrated experimental and

  16. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation

    International Nuclear Information System (INIS)

    A partially converted, biodegradable coralline hydroxyapatite/calcium carbonate (CHACC) composite comprising a coral calcium carbonate scaffold enveloped by a thin layer of hydroxyapatite was used in the present study. The CHACC was characterized using powder x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. The ability of the CHACC to promote conductive osteogenesis was assessed in vitro using human mesenchymal stem cells (hMSCs) and in vivo using an immunodeficient mouse model. The clinical performance of CHACC as a bone substitute to fill voids caused by excision of bone tumours was also observed in 16 patients. The CHACC was found to consist of two overlapping layers both morphologically and chemically. Hydroxyapatite formed a thin layer of nanocrystals on the surface and a thick rough crystal layer of around 30 µm in thickness enveloping the rock-like core calcium carbonate exoskeletal architecture. hMSCs cultured on CHACC in osteogenic medium demonstrated significant osteogenic differentiation. After subcutaneous implantation of CHACC incorporating osteogenically differentiated hMSCs and an anti-resorptive agent, risedronate, into an immunodeficient mouse model, bone formation was observed on the surface of the implants. Clinical application of CHACC alone in 16 patients for bone augmentation after tumour removal showed that after implantation, visible callus formation was observed at one month and clinical bone healing achieved at four months. The majority of the implanted CHACC was degraded in 18–24 months. In conclusion, CHACC appears to be an excellent biodegradable bone graft material. It biointegrates with the host, is osteoconductive, biodegradable and can be an attractive alternative to autogenous grafts. (paper)

  17. Calcium Carbonate

    Science.gov (United States)

    ... your doctor. When using this medicine as a dietary supplement, take it with food or following meals.Chewable tablets should be chewed thoroughly before being swallowed; do not swallow them whole. Drink a full glass of water after taking either ...

  18. The carbon cycle in the old-growth forests

    OpenAIRE

    Motta R

    2008-01-01

    According to a recent paper published in Nature (Luyssaert et al. 2008) the old-growth forests remove carbon dioxide from the atmosphere and should be considered an important carbon sink at the planetary level. This finding is discussed both in relation to the traditional hypothesis that considered the old-growth forests "neutral" in the carbon balance, and in relation to the present and future importance of this sink at the local and at the planetary level.

  19. Shadowing in inelastic scattering of muons on carbon, calcium and lead at low x$_{Bj}$

    CERN Document Server

    Adams, M R; Anthony, P L; Averill, D A; Baker, M D; Baller, B R; Banerjee, A; Bhatti, A A; Bratzler, U; Braun, H M; Breidung, H; Busza, W; Carroll, T J; Clark, H L; Conrad, J M; Davisson, R; Derado, I; Dhawan, S K; Dietrich, F S; Dougherty, W; Dreyer, T; Eckardt, V; Ecker, U; Erdmann, M; Fang, G Y; Figiel, J; Finlay, R W; Gebauer, H J; Geesaman, D F; Griffioen, K A; Guo, R S; Haas, J; Halliwell, C; Hantke, D; Hicks, K H; Hughes, V W; Jackson, H E; Jaffe, D E; Jancso, G; Jansen, D M; Jin, Z; Kaufman, S; Kennedy, R D; Kinney, E R; Kirk, T; Kobrak, H G E; Kotwal, A V; Kunori, S; Lord, J J; Lubatti, H J; McLeod, D; Madden, P; Magill, S; Manz, A; Melanson, H; Michael, D G; Montgomery, H E; Morfín, J G; Nickerson, R B; Novák, J; O'Day, S; Olkiewicz, K; Osborne, L; Otten, R; Papavassiliou, V; Pawlik, B; Pipkin, F M; Potterveld, D H; Ramberg, E J; Röser, A; Ryan, J J; Salgado, C W; Salvarani, A; Schellman, H; Schmitt, M; Schmitz, N; Schüler, K P; Siegert, G; Skuja, A; Snow, G A; Soldner, S; Rembold, U; Spentzouris, P; Stier, H E; Stopa, P; Swanson, R A; Venkataramania, H; Wilhelm, M; Wilson, R; Wittek, W; Wolbers, S A; Zghiche, A; Zhao, T

    1995-01-01

    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

  20. Radiation does response of calcium carbonate crystal in marine shells samples

    Directory of Open Access Journals (Sweden)

    Changkian, S.

    2002-01-01

    Full Text Available A study of the evolution of element, crystal structure and thermoluminescence signal versus gamma irradiation dose were carried out for calcite shells samples. The composition of element was studied by X-ray fluorescence spectrometer. As identified by X-ray diffraction and SEM/EDS analysis, two polymorphs of calcium-carbonate were extracted: calcite and aragonite. The evolution of TL signal versus gamma irradiation dose using the TL reader (Harshaw 2000 was initially dependent on crystal structure and fading effect of the thermoluminescence signal .

  1. Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano

    DEFF Research Database (Denmark)

    Olsson, J.; Stipp, S. L S; Makovicky, E.;

    2014-01-01

    secondary minerals that often scavenge the released heavy metals. However, very little is known about uptake capacity of the precipitates in natural systems or how much divergence there could be, compared with behavior in laboratory experiments. The spring 2010 eruption of the Eyjafjallajökull volcano...... Icelandic river, Hvanná, in the vicinity of the volcano. The river water emerged from under the lava flow and was heavily charged with cations and dissolved CO2. The concentration of the major dissolved constituents was: dissolved inorganic carbon (DIC), 33.08mM; calcium, 6.17mM; magnesium, 4.27mM; sodium...

  2. Sucrose/bovine serum albumin mediated biomimetic crystallization of calcium carbonate

    Indian Academy of Sciences (India)

    Cheng-Li Yao; Wang-Hua Xu; Ai-Min Ding; Jin-Mao Zhu

    2009-01-01

    To understand the role of the sucrose/bovine serum albumin system in the biomineralization process, we have tested the influence of different concentration of the sucrose/bovine serum albumin (BSA) on calcium carbonate (CaCO3) precipitation. The CaCO3 crystals were characterized by scanning electron microscope (SEM), Fourier transform infrared spectrograph (FT-IR) and powder X-ray diffractometry (XRD). The possible formation mechanism of CaCO3 in the sucrose/bovine serum albumin system was discussed.

  3. Generation and conversion of electronic defects in calcium carbonates by UV/Vis light

    International Nuclear Information System (INIS)

    Radical species like CO-2,CO-3, SO-2, and SO-3 can be created by exposing natural and synthetic calcium carbonates to sunlight or to the light of a Hg(Xe) lamp. This poses as a risk for ESR dating of these materials, because the radicals formed by light exposure cannot be distinguished from those generated by radioactivity. Furthermore, paramagnetic centers like SO-2, electrons trapped near Zn2+ or Cd2+ ions, surface defects, and radicals with g'=2.0040, can be bleached in γ-irradiated samples by light and show conversion effects

  4. Effect of carbonate and phosphate ratios on the transformation of calcium orthophosphates

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi, Mohammad Daoud, E-mail: eliassi2007@gmail.com [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Zhao, Wei [State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling 712100 (China); Tan, Wen Feng, E-mail: wenfeng.tan@hotmail.com [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2014-07-01

    Graphical abstract: Complexes among phosphate, carbonate and calcium have been prepared via a facile hydrothermal route. The synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate and hydroxylapatite (HAp), respectively. Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are effective on the reduction of carbonate activity during the crystallization of HAp. - Highlights: • Formation of different complexes from CO{sub 3}{sup 2−}, PO{sub 4}{sup 3−} and Ca{sup 2+} solutions at 60 °C. • Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2} cause changes in phase and size of synthesized products. • Addition of PO{sub 4}{sup 3} inhibited the activity of CO{sub 3}{sup 2−} during bound with Ca{sup 2+}. • The phase transformation was completed, when CO{sub 3}{sup 2−} peaks disappeared in FTIR. • PO{sub 4}{sup 3−}, CO{sub 3}{sup 2−} and Ca{sup 2+} distributed heterogeneously on the surface of precipitation. - Abstract: Complexes among phosphate, carbonate and calcium have been synthesized by a designed hydrothermal method. Effects of carbonate and phosphate ratios on the transformation of calcium-orthophosphates were investigated. With X-ray diffraction measurement the synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate at pH 9.0, and hydroxylapatite (HAp) at pH 8.0, respectively. Fourier transform infrared spectroscopy of product at the high ratio (1.8) of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} shows that the CO{sub 3}{sup 2−} peaks disappear, and the strong peaks at 1412 and 1460 cm{sup −1} are assigned to the vibrations of PO{sub 4}{sup 3−} in HAp. {sup 31}P nuclear magnetic resonance spectra of products at the low (0.15–0.6) to the high (1.2–1.8) ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are obtained at 2.9 and 2.7 ppm, respectively. Molar ratios of PO

  5. Otolith Growth and macular Carbonic Anhydrase Reactivity in larval Fish after Development at simulated Microgravity

    Science.gov (United States)

    Baur, U.; Hilbig, R.; Anken, R.

    Otolith growth in terms of mineralisation mainly depends on the enzyme carbonic anhydrase (CA). CA is located in specialized, mitochondria-rich macular cells (ionocytes), which are involved in the endolymphatic ion exchange, and the enzyme is responsible for the provision of the pH-value necessary for otolithic calcium carbonate deposition. Since it has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish via a down-regulation of CA reactivity, we were prompted to elucidate whether (simulated) microgravity would possibly yield opposite effects. Therefore, larval siblings of cichlid fish (Oreochromis mossambicus) were housed in a submersed, two-dimensional clinostat (tube) during their development. Subsequently, the "physical capacity" (i.e., size) of the otoliths was measured, CA was histochemically demonstrated in ionocytes, and enzyme reactivity was determined densitometrically. The respective data will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  6. Effect of sodium polyacrylate molecular weight on the crystallogenesis of calcium carbonate

    Science.gov (United States)

    Jada, A.; Ait Akbour, R.; Jacquemet, C.; Suau, J. M.; Guerret, O.

    2007-08-01

    Aqueous solutions of sodium polyacrylates (NaPA) series having molecular weights ( Mw) ranging from 2540 to 9890 g mol -1 are used as precipitation media to control the size and shape of calcium carbonate (CaCO 3) particles. The retarding effect of polyacrylates on CaCO 3 nucleation is evidenced by the increase of the induction time, τ, of the precipitated CaCO 3, from τ=55 s in the absence of additives, to τ values in the range 100-2500 s in the presence of NaPA samples. The data also show the coexistence of two polymorphs, calcite and vaterite, for CaCO 3 particles as prepared in the presence of NaPA samples. The vaterite fraction, fv, varies in all instances with the polymer concentration, Cpoly (g. L -1), and reaches its maximum value, fv,max at optimal ratio, R (mol. g -1), of Ca ion to polymer (NaPA), R=[Ca]/([NaPA]=Cpoly). No simple general trend is found to explain the influence of the molecular weight ( Mw) of NaPA on the induction time, τ, and on the vaterite fraction, fv, since these two parameters are found to vary with Cpoly and Mw. However, under certain experimental conditions, an optimum polymer molecular weight ( Mw=5530 g mol -1) of the NaPA series, gives the highest values of fv,max and τ. Such optimum indicates the influence of Mw of NaPA on CaCO 3 nucleation and growth, and it is related to the surface density and the rate of adsorption of the polymer onto the growing crystal. The CaCO 3 particle size is reduced from about 20 μm, as obtained in the control experiment, to sizes varying in the range 2-8 μm in the presence NaPA samples. Polymers having low Mw values ( Mw<5000 g mol -1) are found to be more efficient in reducing the CaCO 3 particle size.

  7. Kinetics of Laser-Assisted Carbon Nanotube Growth

    CERN Document Server

    van de Burgt, Yoeri; Mandamparambil, Rajesh

    2014-01-01

    Laser-assisted chemical vapour deposition (CVD) growth is an attractive mask-less process for growing locally aligned carbon nanotubes (CNTs) in selected places on temperature sensitive substrates. The nature of the localized process results in fast carbon nanotube growth with high experimental throughput. Here, we report on detailed investigation of growth kinetics related to physical and chemical process characteristics. Specifically, the growth kinetics is investigated by monitoring the dynamical changes of reflected laser beam intensity during growth. Benefiting from the fast growth and high experimental throughput, we investigate a wide range of experimental conditions and propose several growth regimes. Rate-limiting steps are determined using rate equations linked to the proposed growth regimes, which are further characterized by Raman spectroscopy and Scanning Electron Microscopy (SEM), therefore directly linking growth regimes to the structural quality of the CNTs. Activation energies for the differe...

  8. Distribution of Carbon, Calcium and Phosphorus in Dental Enamel Studied by Charged-Particle Activation Analysis

    International Nuclear Information System (INIS)

    Sections of sound human dental enamel embedded in a matrix of sulphur were bombarded by deuterons at 2.2 MeV. Nitrogen-13 is produced from carbon by the reaction 12C(d, n)13N, and 32P from phosphorus by the reaction 31P(d, p)32P. Exposure to a process plate for 40 min starting 4 min after bombardment gives an autoradiograph due almost entirely to 13N, whereas a photographic plate exposed for eight days, starting five days after irradiation, gives one due entirely to 32P. Similar autoradiographs have been obtained from 43Sc or 44Sc produced by bombardment of tooth sections with protons. During each bombardment, control samples with known contents of carbon, calcium or phosphorus were also bombarded for calibration purposes. The autoradiographs were examined with the help of a recording microdensitometer with an effective slit of 1.5 mm x 0.08 mm. Errors arising from various sources limit the accuracy of the method to about 10%. The sensitivity for carbon is such that within an area of about 0.1 mm2 a few tenths of a nanogram can be detected. It has been found that the total carbon content of enamel varies from 1.01 ± 0.04% to 1.58 ± 0.05% for molars, and 0.92 ± 0.04% to 1.38 ± 0.05% for premolars, for values at the outer surface and the amelodentinal junction respectively. This variation is roughly linear. The concentration gradients for calcium and phosphorus are very much smaller and may be little larger than the probable errors. (author)

  9. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    Science.gov (United States)

    Montes-Hernandez, G.; Fernández-Martínez, A.; Charlet, L.; Tisserand, D.; Renard, F.

    2008-05-01

    The hydrothermal carbonation of calcium hydroxide (Ca(OH) 2) at high pressure of CO 2 (initial P=55 bar) and moderate to high temperature (30 and 90 °C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH) 2-CaCO 3 conversion), a significant production rate (48 kg/m 3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperature and the dissolved quantity of CO 2 have a significant effect on the average particle size, specific surface area, initial rate of precipitation, and on the morphology of calcium carbonate crystals. In contrast, these PT x conditions used herein have an insignificant effect on the carbonation efficiency of Ca(OH) 2. Finally, the results presented here demonstrate that nano-calcite crystals with high specific surface area ( SBET=6-10 m 2/g) can be produced, with a high potential for industrial applications such as adsorbents and/or filler in papermaking industry.

  10. Carbonate platform growth and demise offshore Central Vietnam

    DEFF Research Database (Denmark)

    Fyhn, Michael B.W.; Boldreel, Lars Ole; Nielsen, Lars H.;

    2013-01-01

    . East of the fault zone, the Triton Carbonate Platform was also initiated during the Early Miocene. Carbonate growth thrived during Early and part of Middle Miocene time and a thick, clean Lower and Middle Miocene carbonate succession cover the Triton Horst and the Qui Nhon Ridge. During the Middle......Miocene carbonate platforms cover a large part of the Central Vietnamese South China Sea margin. Early carbonate deposition took place on two regional platforms separated by a narrow depression developed along the trace of the East Vietnam Boundary Fault Zone. West of the East Vietnam Boundary...... Fault Zone, the Tuy Hoa Carbonate Platform fringes the continental margin between Da Nang and Nha Trang. Here, platform growth initiated during the Early Miocene and continued until Middle Miocene time when regional uplift led to subaerial exposure, termination of platform growth and karstification...

  11. LABORATORY EVALUATION OF CALCIUM CARBONATE PARTICLE SIZE SELECTION FOR DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2002-12-01

    Full Text Available The technological development in horizontal, re-entry and multilateral wells require drilling and completion the reservoir sections of a well including as little damage as possible. The trends towards open hole completion places additional emphasis on formation damage avoidance. One of critical factors in avoiding formation damage during drilling is obtaining surface bridging on the formation face with minimum indepth solids penetration. In case of overbalanced drilling, this can be donme by optimizing the particle size distribution of calcium carbonate used as bridging agent. The paper presents laboratory data frpm tests carried out on selected fluids which show the extent of the changes that occur in fluid filtration properties (spurt loss, PPT value and static filtration when calcium carbonate with different PDS is used. The Permeability Plugging Tester was used to evaluate the filtration and spurt loss of selected fluids. The ceramic disks with permeabilities 0,09 μm2 (90 mD, 0,13 μm2 (130 mD and 0,4 μm2 (400 mD were used as filter medium.

  12. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Kensuke Sakurai

    2008-03-01

    Full Text Available Core/shell capsules composed of calcium carbonate whisker core (rod-like shape and chitosan/chitosansulfate shell were prepared by the layer-by-layer deposition technique. Two chitosan samples of different molecular weights (Mw=9.7×104 and 1.09×106g·mol-1 were used as original materials. Hollow capsules were also obtained by dissolution of the core in hydrochloric acid. Electron microscopy revealed that the surface of the shell is rather ragged associated with some agglomerates. The shell thickness l obeys a linear relation with respect to the number of deposited layers m as l=md+a(a>0. The values of d (thickness per layer were 4.0 and 1.0 nm for the higher and lower Mw chitosan materials, respectively, both of which are greater than the thickness of the monolayer. The results suggest that the feature of the deposition does not obey an ideal homogeneous monolayer-by-monolayer deposition mechanism. Shell crosslinked capsules were also prepared via photodimerization reaction of cinnamoyl groups after a deposition of cinnamoyl chitosan to the calcium carbonate whisker core. The degree of crosslink was not enough to stabilize the shell structure, and hollow capsule was not obtained.

  13. Waste Treatment of Chrome Residue of Chromium Recovery Process Using Calcium Carbonate

    International Nuclear Information System (INIS)

    The aim of the research was to apply the precipitation technology for the treatment of aqueous wastes of leather tanning industries. The chrome liquid wastes taken was the effluent from the residue of the chromium recovery process using magnesium oxide. The precipitant used was calcium carbonate. The experiments was performed by adjusting the concentration of calcium carbonate from 50 ppm, 100 ppm, 150 ppm, 200 ppm, 250 ppm, 300 ppm, 350 ppm to 400 ppm. The stirring speed was varied from 50 rpm, 75 rpm, 100 rpm, 125 rpm, 150 rpm, 175 rpm to 200 rpm. The time of mixing was varied from 30 minutes, 60 minutes, 90 minutes, 120 minutes, 150 minutes, 175 minutes and 200 minutes. The result from the experiments lead to the best condition obtained were the concentration of precipitant was 300 ppm, flow rates of mixing was 125 rpm and time of mixing was 60 minutes. At this condition the separations efficiency of chrome obtained was 99.985%. (author)

  14. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.

    Science.gov (United States)

    Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro

    2016-09-01

    The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles. PMID:25950955

  15. Tubular electrodeposition of chitosan-carbon nanotube implants enriched with calcium ions.

    Science.gov (United States)

    Nawrotek, Katarzyna; Tylman, Michał; Rudnicka, Karolina; Gatkowska, Justyna; Balcerzak, Jacek

    2016-07-01

    A new approach for obtaining chitosan-carbon nanotube implants enriched with calcium ions in the form of tubular hydrogels is fostered. The intended application of the hydrogels is tissue engineering, especially peripheral nervous tissue regeneration. The fabrication method, based on an electrodeposition phenomenon, shows significant advantages over current solutions as implants can now be obtained rapidly at any required dimensions. Thus, it may open a new avenue to treat patients with peripheral nerve injuries. Either single walled or multiwalled carbon nanotubes enhance the mechanical properties of the tubular hydrogels. The controlled presence of calcium ions, sourced from hydroxyapatite, is also expected to augment the regenerative response. Because in vitro cytotoxic assays on mouse cell lines (L929 fibroblasts and mHippoE-18 hippocampal cells) as well as pro-inflammatory tests on THP-1XBlue™ cells show that the manufactured implants are biocompatible, we next intend to evaluate their immune- and nervous-safety on an animal model. PMID:26913639

  16. Assessing potential diagenetic alteration of primary iodine-to-calcium ratios in carbonate rocks

    Science.gov (United States)

    Hardisty, D. S.; Lu, Z.; Swart, P. K.; Planavsky, N.; Gill, B. C.; Loyd, S. J.; Lyons, T. W.

    2015-12-01

    We have evaluated iodine-to-calcium (I/Ca) ratios from a series of carbonate samples with well-constrained histories of diagenetic alteration to assess the likelihood of overprints on primary water column-derived signals. Because only the oxidized iodine species, iodate, is incorporated during carbonate precipitation, I/Ca ratios have strong potential as proxies for both marine redox and carbon cycling. This utility lies with the combination of iodate's redox sensitivity as well as the close association between iodine and marine organic matter. However, despite the possibility of large pore water iodine enrichments relative to overlying seawater, carbonate alteration under reducing diagenetic conditions, and iodate-to-iodide reduction, no study has assessed the prospect of diagenetic alteration of primary I/Ca ratios. Here, we evaluated aragonite-to-calcite transformations and dolomitization within the Key Largo Limestone of South Florida and the Clino and Unda drill cores of the Bahamas Bank. Also, early burial diagenesis was studied through analysis of I/Ca ratios in short cores from a variety of shallow settings within the Exuma Bay, Bahamas. Further, we evaluated authigenic carbonates through analysis of iodine in concretions constrained to have formed during varying stages of evolving pore fluid chemistry. In all cases, I/Ca ratios show the potential for diagenetic iodine loss relative to water-column derived values, consistent with observations of quantitative reduction of dissolved iodate to iodide in pore waters before or synchronous with carbonate alteration. In no case, however, did we observe an increase in I/Ca during diagenetic transformation. Our results suggest both that primary I/Ca values and trends can be preserved but that maximum I/Ca ratios should be considered a minimum estimate of seawater iodate. We recommend that ancient carbonates with distinct I/Ca trends not indicative of diagenetic iodine loss reflect preservation of or very early

  17. Calcium Addition Affects Germination and Early Seedling Growth of Sweet Sorghum under Saline Conditions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] This study aimed to determine the interactive effects of supple- mental Ca amendment and salinity on germination of sweet sorghum seeds in saline solution culture medium, and investigate the effects of different combinations of Na/Ca ratio in saline soils on the early growth of sweet sorghum plants. [Method] A germi- nation test and a greenhouse pot experiment were conducted to assess the interac- tive effects of calcium addition to culture medium on the germination and seedling growth of sweet sorghum (Sorghum saccharatum Moench) in saline soils with a range of NaYCa ratios. In the germination test, seeds were treated with different combinations of five calcium levels [0, 5, 10, 15, and 20 mmol/L Ca(NO3)2] and five salinity levels (0, 50, 100, 150, and 200 mmol/L NaCI). In the greenhouse experi- ment, seeds were sown in potting soils containing 3 salinity levels (2.3, 4.7 and 7.0 dS/m) and three Na:Ca ratios (10:0, 10:1, and 5:1). [Result] In the germination test, Ca addition at 5 mmol/L promoted germination by 5.5%, 9.9%, and 17.0% at the 3.4, 6.7 and 10.1 dS/m salinity levels. The higher Ca level (10 mmol/L) also in- creased germination by 9.1% and 7.8% at the 3.4 and 6.7 dS/m salinity levels. Then even higher Ca addition at 15 and 20 mmol/L appeared to promote germina- tion when culture media had high salinity (10.1 and 13.4 dS/m). In the greenhouse pot experiment, saline soil amended with supplemental Ca at the 2.3 and 4.7 dS/m salinity levels significantly promoted early seedling growth, with an increase of 6.8% to 28.2% in plant height and 14.3% to 67.9% in whole plant weight. From 28 to 42 d after seeding, the relative growth of seedling was increased by Ca addition, with a reduction of 49.5% to 66.0% in plant height and 4.8% to 61.9% in whole plant weight. From 42 to 56 d after seeding, however, the relative growth of seedling was significantly inhibited by Ca amendment. [Conclusion] Results of this study indicate that appropriate supplemental

  18. Evidence for the involvement of carbonic anhydrase and urease in calcium carbonate formation in the gravity-sensing organ of Aplysia californica

    Science.gov (United States)

    Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Harrison, J. L.; Campbell, J. W.; Wiederhold, M. L.; Boyan, B. D.

    1997-01-01

    To better understand the mechanisms that could modulate the formation of otoconia, calcium carbonate granules in the inner ear of vertebrate species, we examined statoconia formation in the gravity-sensing organ, the statocyst, of the gastropod mollusk Aplysia californica using an in vitro organ culture model. We determined the type of calcium carbonate present in the statoconia and investigated the role of carbonic anhydrase (CA) and urease in regulating statocyst pH as well as the role of protein synthesis and urease in statoconia production and homeostasis in vitro. The type of mineral present in statoconia was found to be aragonitic calcium carbonate. When the CA inhibitor, acetazolamide (AZ), was added to cultures of statocysts, the pH initially (30 min) increased and then decreased. The urease inhibitor, acetohydroxamic acid (AHA), decreased statocyst pH. Simultaneous addition of AZ and AHA caused a decrease in pH. Inhibition of urease activity also reduced total statoconia number, but had no effect on statoconia volume. Inhibition of protein synthesis reduced statoconia production and increased statoconia volume. In a previous study, inhibition of CA was shown to decrease statoconia production. Taken together, these data show that urease and CA play a role in regulating statocyst pH and the formation and maintenance of statoconia. CA produces carbonate ion for calcium carbonate formation and urease neutralizes the acid formed due to CA action, by production of ammonia.

  19. Effect of calcium on growth performance and essential oil of vetiver grass (Chrysopogon zizanioides) grown on lead contaminated soils.

    Science.gov (United States)

    Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Foster, Neil

    2011-01-01

    The aim of this study was to investigate effect of calcium on growth, survival, essential oil yield and chemical compositions of vetiver grass grown on lead contaminated soils. Calcium inform of CaCO3 (0, 2000, 4000, 6000 mg Ca kg(-1)) was added to river sand soils containing 4000 mg Pb kg(-1) dry soil. Results showed that, in the absence of calcium treatment, no plants survived after 2 weeks of cultivation, while the rest grew well to the end of the experimental period (42 weeks). Calcium treatments generally resulted in a slight decrease in biomass. Interestingly, an increase in calcium over 2000 mg kg(-1) did not result in a decrease in accumulation of lead in vetiver roots and shoots. The levels of lead in roots and shoots under calcium treatments were around 2000 and 90 mg kg(-1) dry weight, respectively. The addition of CaCO3 did not improve vetiver essential oil yield and chemical composition compared to the control. A level of applied CaCO3 about half of the lead concentration in soils was sufficient to improve vetiver growth and survival, and accumulate high concentrations of lead in the roots. This finding can be applied for re-vegetation of lead contaminated soils using vetiver. PMID:22046757

  20. CVD growth and field emission properties of nanostructured carbon films

    International Nuclear Information System (INIS)

    An investigation of the growth mechanisms, electronical and structural properties, and field emissions of carbon films obtained by chemical vapour deposition showed that field emissions from films composed of spatially oriented carbon nanotubes and plate-like graphite nanocrystals exhibit non-metallic behaviour. The experimental evidence of work function local reduction for carbon film materials is reported here. A model of the emission site is proposed and the mechanism of field emission from nanostructured carbon materials is described. In agreement with the model proposed here, the electron emission in different carbon materials results from sp3-like defects in an sp2 network of their graphite-like component. (author)

  1. Electrocrystallization, growth and characterization of calcium phosphate ceramics on magnesium alloys

    International Nuclear Information System (INIS)

    Highlights: • HA coating preparation on Mg-alloy includes electrochemical and chemical processes. • Two step coating formation is a convenient method for bone-like coating formation. • Electrochemically assisted deposition enables to coat implants with a complex shape. • Electrocrystallization of CaHPO4 film occurs as 3D instantaneous nucleation. • Bioactive properties of HA coatings were directly identified with Ca/P mole ratio. -- Abstract: In order to make biodegradable magnesium alloys corrosion resistant for a potential orthopaedic and bio-implant application, their surface should be modified with bioactive bone-like hydroxyapatite (HA) coatings. In the present paper, the initial step of coating formation on Mg alloy was studied by electrochemical techniques. The electrocrystallization and growth of the surface film occur as an instantaneous 3D nucleation under diffusion control, as was extracted from a fitting procedure of current-time transient data to the various nucleation models. Electrodeposited calcium hydrogenphosphate coatings were converted into bone-like HA (calcium deficient HA) in an alkaline treatment. The bioactive properties of HA coatings have been directly identified with a Ca/P mole ratio. Their morphology, composition and barrier properties were identified using scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), and voltammetry

  2. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  3. Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization

    OpenAIRE

    Nuno Carlos LEITÃO

    2014-01-01

    This article investigates the correlation between economic growth, carbon dioxide emissions, renewable energy and globalization for the period 1970-2010, using time series (OLS,GMM, unit root test, VEC model, and Granger causality) to Portuguese economy. OLS estimator and GMM model demonstrate that carbon dioxide emissions and renewable energy are positively correlated with economic growth. The econometric models also show that the overall index of globalization has a positive effect...

  4. Evidence for super-exponentially accelerating atmospheric carbon dioxide growth

    CERN Document Server

    Hüsler, Andreas D

    2011-01-01

    We analyze the growth rates of atmospheric carbon dioxide and human population, by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model. Our empirical calibrations confirm that human population has decelerated from its previous super-exponential growth until 1960 to ``just' an exponential growth, but with no sign of more deceleration. As for atmospheric CO2 content, we find that it is at least exponentially increasing and most likely characterized by an accelerating growth rate as off 2009, consistent with an unsustainable FTS power law regime announcing a drastic change of regime. The coexistence of a quasi-exponential growth of human population with a super-exponential growth of carbon dioxide content in the atmosphere is a diagnostic of insignificant impr...

  5. Effects of Calcium Carbonate on Pain Symptoms in Third Trimester of Pregnancy and Nursing Period: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Soosan Alimohammadzadeh Taher

    2008-06-01

    Full Text Available Objective: The study evaluated the efficacy of oral calcium carbonate supplement on leg pain in pregnancy and nursing period.Materials and methods: A total number of 176 women at third trimester of pregnancy or nursing period till to one year after delivery with complaint of leg pain, low back pain (LBP, and posterior pelvic pain (PPP were evaluated for distinct primary causes and were excluded, then 58 patients randomized into calcium group (n=27 treated with 500 mg calcium carbonate orally per day just for one week, and control group (n=31 received no drug. Incidence of days with leg, low back, and posterior pelvic pain per week were evaluated and compared between the two groups at 3 different weeks before, during, and after discontinuation of drug. Statistical significance was defined as P<0.05.  Results: Mean number of days with leg pain per week during calcium carbonate intake was significantly different between the study and control groups (P<0.05. Mean number of days with LBP and PPP was not significantly different between two groups.Conclusion: The use of oral calcium supplement was associated with lower episodes of leg pain but failed to reduce the incidence of LBP and PPP in pregnancy and nursery period.

  6. Carbon nanocluster growth inside micropipes during the SiC bulk growth process

    International Nuclear Information System (INIS)

    Carbon nanocluster growth inside micropipes has been discovered during the SiC bulk growth process under near-equilibrium conditions. Measurements have been made of the morphology and structure of the carbon crystallites. An isobaric cross-section of the Si–C phase diagram and an isothermal cross-section of the triple Si–C–Ar system have been built. The C-cluster nucleation and growth conditions have been analyzed using a phase diagram. (papers)

  7. Fetal PCB syndrome: clinical features, intrauterine growth retardation and possible alteration in calcium metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, F.; Hayashi, M.

    1985-02-01

    Pregnant mothers with Yusho in Fukuoka, Nagasaki and Kochi Prefectures delivered babies with a peculiar clinical manifestation which will be called fetal PCB syndrome (FPS). The birth rate incidences were 3.6% (Fukuoka Prefecture), 4% (Nagasaki Prefecture), 2.9% (Kochi Prefecture) and 3.9% (total). The manifestations consisted of dark brown pigmentation of the skin and the mucous membrane, gingival hyperplasia, exophthalmic edematous eye, dentition at birth, abnormal calcification of the skull as demonstrated by X-ray, rocker bottom heel and high incidence of light for date (low birth weight) babies. The authors suggest that there may be a possible alteration in calcium metabolism in these babies, related to the fragile egg shells observed in PCB-contaminated birds and to the female hormone-enhancing effect of PCB. The high incidence of low birth weight among these newborns and two other similar studies indicated that PCBs suppress fetal growth.

  8. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  9. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS; TOPICAL

    International Nuclear Information System (INIS)

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will also affect public water suppliers with respect to DBPs. These new federal drinking water regulations may require public water suppliers to adjust treatment practices or incorporate additional treatment operations into their existing treatment trains. Many options have been identified, including membrane processes, granular activated carbon, powered activated carbon (PAC), enhanced coagulation and/or softening, and alternative disinfectants (e.g., chlorine dioxide, ozone, and chloramines). Of the processes being considered, PAC appears to offer an attractive benefit-to-cost advantage for many water treatment plants, particularly small systems (those serving fewer than 10,000 customers). PAC has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. Activated carbons can be produced from a variety of raw materials, including wood, peat, coconut husks, and numerous types of coal. The Energy and Environmental Research Center (EERC) has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During that study, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon

  10. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will also affect public water suppliers with respect to DBPs. These new federal drinking water regulations may require public water suppliers to adjust treatment practices or incorporate additional treatment operations into their existing treatment trains. Many options have been identified, including membrane processes, granular activated carbon, powered activated carbon (PAC), enhanced coagulation and/or softening, and alternative disinfectants (e.g., chlorine dioxide, ozone, and chloramines). Of the processes being considered, PAC appears to offer an attractive benefit-to-cost advantage for many water treatment plants, particularly small systems (those serving fewer than 10,000 customers). PAC has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. Activated carbons can be produced from a variety of raw materials, including wood, peat, coconut husks, and numerous types of coal. The Energy & Environmental Research Center (EERC) has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During that study, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon

  11. Multivariate regression models for the simultaneous quantitative analysis of calcium and magnesium carbonates and magnesium oxide through drifts data

    Directory of Open Access Journals (Sweden)

    Marder Luciano

    2006-01-01

    Full Text Available In the present work multivariate regression models were developed for the quantitative analysis of ternary systems using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS to determine the concentration in weight of calcium carbonate, magnesium carbonate and magnesium oxide. Nineteen spectra of standard samples previously defined in ternary diagram by mixture design were prepared and mid-infrared diffuse reflectance spectra were recorded. The partial least squares (PLS regression method was applied to the model. The spectra set was preprocessed by either mean-centered and variance-scaled (model 2 or mean-centered only (model 1. The results based on the prediction performance of the external validation set expressed by RMSEP (root mean square error of prediction demonstrated that it is possible to develop good models to simultaneously determine calcium carbonate, magnesium carbonate and magnesium oxide content in powdered samples that can be used in the study of the thermal decomposition of dolomite rocks.

  12. Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth

    Science.gov (United States)

    He, Maoshuai; Amara, Hakim; Jiang, Hua; Hassinen, Jukka; Bichara, Christophe; Ras, Robin H. A.; Lehtonen, Juha; Kauppinen, Esko I.; Loiseau, Annick

    2015-11-01

    Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible.Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible. Electronic supplementary information (ESI

  13. The effect of temperature and nano-sized calcium carbonate on tensile properties of medium density polyethylene

    International Nuclear Information System (INIS)

    In the present work, high temperature tensile properties of medium density polyethylene and its nano composites are investigated. For this purpose medium density polyethylene reinforced with different weight percentages of nano-sized calcium (2, 5, 10) are produced by compression moulding method. Tensile tests have been carried out at different temperatures, i.e. 30, 60, 90degC using thermomechanical analysis apparatus. Besides, the fracture surface of medium density polyethylene and medium density polyethylene/CaC03 nano composites are also investigated using scanning electron microscopy. The thermomechanical analysis results indicate that the elastic modulus and yield stress have increased by addition of nano sized calcium carbonate as reinforcement for medium density polyethylene . At elevated temperature, the tensile strength is shown to be reduced in all materials including medium density polyethylene and its nano composites. The obtained results confirm that the reinforcing effect of nano-sized calcium carbonate becomes significant particularly at higher temperatures

  14. A flow-system comparison of the reactivities of calcium superoxide and potassium superoxide with carbon dioxide and water vapor

    Science.gov (United States)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1982-01-01

    A single pass flow system was used to test the reactivity of calcium superoxide with respiratory gases and the performance was compared to that of potassium superoxide. The KO2 system is used by coal miners as a self-contained unit in rescue operations. Particular attention was given to the reactivity with carbon dioxide and water vapor at different temperatures and partial pressures of oxygen, carbon dioxide, and water vapor. The calcium superoxide beds were found to absorb CO2 and H2O vapor, releasing O2. The KO2 bed, however, released O2 at twice the rate of CO2 absorption at 37 C. It is concluded that the calcium superoxide material is not a suitable replacement for the KO2 bed, although Ca(O2)2 may be added to the KO2 bed to enhance the CO2 absorption.

  15. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis

    DEFF Research Database (Denmark)

    Bro, S; Rasmussen, R A; Handberg, J;

    1998-01-01

    , diarrhea, general uneasiness), whereas the remaining 12 patients did not experience any side effects at all. The five patients with calcium ketoglutarate intolerance all had pre-existing gastrointestinal symptoms; four of them had received treatment with cimetidine or omeprazol before inclusion into the...

  16. Radiation effects in plutonium and carbonate co-doped calcium hydroxy apatite. An EPR study

    International Nuclear Information System (INIS)

    Electron paramagnetic resonance studies were conducted on synthetic calcium hydroxy apatite samples co-doped with 239Pu and carbonate ion. These investigations were carried out to assess the self-irradiation effects in bone and teeth on exposure to plutonium, as calcium hydroxy apatite is the major constituent of bone and teeth. On self-irradiation, in addition to the signal from O- ion arising from the radiolysis of hydroxide ion, EPR signals due to CO2-, PO22- and another signal assigned to surface O- ions were observed in the samples. In freshly quenched gamma irradiated samples, signals from CO3-, O-, PO22- and O2- ions were observed. The EPR signal of O2- ion shows a doublet splitting suggesting that O2- ion gets preferentially stabilized close to Pu4+. The radiation damage due to Pu4+ at Ca2+ sites, in the sample appears to be lower as compared to that due to external gamma-irradiation. Moreover, the alpha-dose in 239Pu doped samples has self-annealing effects. These are attributed to localized radiation damage due to alpha-particles compared to evenly distributed radical ions produced due to gamma-irradiation. (author)

  17. Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution

    Science.gov (United States)

    Suchanek, Wojciech L.; Byrappa, Kullaiah; Shuk, Pavel; Riman, Richard E.; Janas, Victor F.; TenHuisen, Kevor S.

    2004-03-01

    Magnesium- and carbonate-substituted calcium phosphate powders (Mg-, CO 3-CaP) with various crystallinity levels were prepared at room temperature via a heterogeneous reaction between MgCO 3/Ca(OH) 2 powders and an (NH 4) 2HPO 4 solution using the mechanochemical-hydrothermal route. X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis were performed. It was determined that the powders containing both Mg 2+ and CO 32- ions were incorporated uniformly into an amorphous calcium phosphate phase while in contrast, the as-prepared powder free of these dopants was crystalline phase-pure, stoichiometric hydroxyapatite. Dynamic light scattering revealed that the average particle size of the room temperature Mg-, CO 3-CaP powders was in the range of 482 nm-700 nm with a specific surface area between 53 and 91 m 2/g. Scanning electron microscopy confirmed that the Mg-, CO 3-CaP powders consisted of agglomerates of equiaxed, ≈20-35 nm crystals.

  18. Electrochemical study of calcium carbonate deposition on iron. Effect of the anion

    Energy Technology Data Exchange (ETDEWEB)

    Rakitin, A.R. [PermNIPIneft LLC, ul. Sovetskoy Armii 29, Perm 614066 (Russian Federation); Kichigin, V.I. [Natural Sciences Institute, Perm State University, ul. Bukireva 15, Perm 614990 (Russian Federation)], E-mail: kichigin@psu.ru

    2009-03-30

    Deposition of calcium carbonate on iron from supersaturated solutions containing 1 M sodium chloride, bromide, iodide, or nitrate as supporting electrolyte was studied at 60 deg. C under open-circuit conditions using impedance spectroscopy, chronopotentiometry, voltammetry, and scanning electron microscopy. The anions were found to fall into two groups with respect to their effect on scaling. On the one hand, chloride and, especially, nitrate favor faster scaling kinetics and lead to compact carbonate films composed of entangled aragonite crystals. On the other hand, in the presence of bromide and iodide the scaling rate is lower and the resulting films feature aragonite crystals more or less freely scattered on what appears to be a uniform sublayer of unknown structure. The experimental data are adequately described using quasi-uniform film model accounting for the cathodic and anodic electrode reactions. As deduced from the electrochemical measurements, the barrier properties of the carbonate films formed in different supporting electrolytes increase in the order of Cl{sup -} < NO{sub 3}{sup -} {approx} Br{sup -} < I{sup -}.

  19. Electrochemical study of calcium carbonate deposition on iron. Effect of the anion

    International Nuclear Information System (INIS)

    Deposition of calcium carbonate on iron from supersaturated solutions containing 1 M sodium chloride, bromide, iodide, or nitrate as supporting electrolyte was studied at 60 deg. C under open-circuit conditions using impedance spectroscopy, chronopotentiometry, voltammetry, and scanning electron microscopy. The anions were found to fall into two groups with respect to their effect on scaling. On the one hand, chloride and, especially, nitrate favor faster scaling kinetics and lead to compact carbonate films composed of entangled aragonite crystals. On the other hand, in the presence of bromide and iodide the scaling rate is lower and the resulting films feature aragonite crystals more or less freely scattered on what appears to be a uniform sublayer of unknown structure. The experimental data are adequately described using quasi-uniform film model accounting for the cathodic and anodic electrode reactions. As deduced from the electrochemical measurements, the barrier properties of the carbonate films formed in different supporting electrolytes increase in the order of Cl- 3- ∼ Br- -

  20. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    Science.gov (United States)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  1. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate (nano-CaCO3) surface modified with (-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  2. Identifying appropriate conditions for producing spindle-like causticizing precipitated calcium carbonate for paper filler applications

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2012-11-01

    Full Text Available Causticizing precipitated calcium carbonate (CPCC as a by-product of the green liquor causticizing process can be used as paper filler to save resources and reduce costs. In this study, CPCC was prepared with green liquor and quicklime, which were obtained from an alkali recovery line of a paper mill. The factors influencing crystal morphology of CPCC, such as slaking temperature, slaking time, and causticizing time were investigated. The morphology of CPCC was observed and analyzed for optimizing reaction conditions. The following were compared: properties of CPCC obtained in this study, conventional CPCC (white mud from a paper mill, and commercial PCC as fillers. The results showed that slaking time and causticizing time were important for morphology control. Spindle-like and rod-like CPCC obtained in this study had better drainability and retention, higher paper bulk, opacity, and physical strength compared to conventional CPCC, and had nearly the same performances as commercial PCC.

  3. Heterogeneous reactions of gaseous methanesulfonic acid with calcium carbonate and kaolinite particles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Heterogeneous reactions of gaseous methanesulfonic acid (MSA) with calcium carbonate (CaCO3) and kaolinite particles at room temperature were investigated using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and ion chromatography (IC).Methanesulfonate (MS-) was identified as the product in the condensed phase,in accordance with the product of the reaction of gaseous MSA with NaCl and sea salt particles.When the concentration of gaseous MSA was 1.34 × 10-13 molecules cm-3,the uptake coefficient was (1.21 ± 0.06) × 10-8 (1) for the reaction of gaseous MSA with CaCO3 and (4.10 ± 0.65) × 10 10 (1) for the reaction with kaolinite.Both uptake coefficients were significantly smaller than those of the reactions of gaseous MSA with NaCl and sea salt particles.

  4. Nanoplasmonic smooth silica versus porous calcium carbonate bead biosensors for detection of biomarkers

    International Nuclear Information System (INIS)

    Nanoplasmonic biosensors based on gold nanoparticle functionalized smooth silica and porous calcium carbonate particles are presented. It is identified in this comparative study the role of porosity for adsorbing gold nanoparticles and subsequent detection of biomarkers. That is further applied in this study for detection of biomarkers. Detection of glucose - a biomarker of diabetes is studied together with that of bovine serum albumin - a very relevant bio-molecule. Raman scattering is used for label-free detection of molecules in the sub-μM-mM range detection capabilities, which covers the range corresponding to healthy and diseased persons. Implications of current study for detection and identification of biomarkers are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    Science.gov (United States)

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper. PMID:26572417

  6. Adsorption of anionic and cationic polymers on porous and non-porous calcium carbonate surfaces

    Science.gov (United States)

    Bjorklund, Robert B.; Arwin, Hans; Järnström, Lars

    1994-01-01

    The adsorption of anionic and cationic polymers onto calcium carbonate surfaces was studied by ellipsometry. Sodium polyacrylate was observed to both adsorb on and promote dissolution of polished limestone surfaces in 5 mM CaSO 4 solution at pH 10.3. It was not possible to differentiate between the two processes when they occurred simultaneously. Cationic starch adsorbed on the limestone surfaces at low concentrations and caused mineral dissolution at higher concentrations. The adsorbed amount of starch was higher on surfaces which were first made porous by partial dissolution than on freshly polished surfaces. Surfaces created by cleavage of Iceland spar calcite were quite stable against dissolution and the amount of starch adsorbed determined by ellipsometry agreed well with the adsorbed mass determined from batch adsorption experiments on ground calcite.

  7. Preparation of poly(lactic acid) composite hollow spheres containing calcium carbonates.

    Science.gov (United States)

    Maeda, Hirotaka; Kasuga, Toshihiro

    2006-07-01

    Poly(lactic acid) composite hollow spheres containing calcium carbonate were prepared by oil-in-water emulsion evaporation to develop injectable bone substitutes incorporated with cells. The spheres were approximately 1.2mm in diameter and had a shell with a thickness in the range of 50-150microm. The hollow in the spheres was presumed to be formed by CO(2) gas generated by the decomposition of vaterite used as a starting material. An open channel approximately 800microm in diameter was formed in the spheres by chemical etching utilizing the rapid dissolution of poly(lactic acid) at the thin portion of the shell. Cells could migrate into the hollow spheres through the open channel and attach to the inner surface. PMID:16765880

  8. Characterization of the dimensions of colloidal calcium carbonate dispersions in toluene with neutron small-angle scattering

    International Nuclear Information System (INIS)

    Calcium carbonate particles, stabilized by a surface layer, and dispersed in toluene are investigated with neutron small-angle scattering. Estimates for the dimensions of the core particle and the layer have been obtained: the layer thickness is 8.6 A and the core particle radius is 16.5 A. The limits within which these results are valid are indicated. (Auth.)

  9. Influence of calcium carbonate on extraction yield and quality of extra virgin oil from olive (Olea europaea L. cv. Coratina).

    Science.gov (United States)

    Squeo, G; Silletti, R; Summo, C; Paradiso, V M; Pasqualone, A; Caponio, F

    2016-10-15

    The aim of the research was to evaluate the effect of calcium carbonate (1%, 2%, and 4% of addition) at two different particle sizes (2.7μm and 5.7μm), added at the beginning of the malaxation phase, on both the extraction yield and the quality of oil obtained from Coratina olives at different ripening index. The results showed that calcium carbonate significantly increased the extraction yield of olive oil, more than affecting chemical indices. In particular, for less ripened olives, 1-2% of larger particle size calcium carbonate addiction determined a significant increase of the extraction effectiveness, ranging from 4.0 to 4.9%, while more ripened olives required higher amounts of coadjuvant (2-4% when using the larger particle size and 4% when using the smaller one), with a significant increase of the extraction yield up to 5%. Moreover, an increase of pungent perception was observed in some cases when adding calcium carbonate to more ripened olives. PMID:27173535

  10. Neutron and X-ray diffraction and empirical potential structure refinement modelling of magnesium stabilised amorphous calcium carbonate

    DEFF Research Database (Denmark)

    Cobourne, G.; Mountjoy, G.; Rodriguez Blanco, Juan Diego;

    2014-01-01

    Amorphous calcium carbonate (ACC) plays a key role in biomineralisation processes in sea organisms. Neutron and X-ray diffraction have been performed for a sample of magnesium-stabilised ACC, which was prepared with a Mg:Ca ratio of 0.05:1 and 0.25 H2O molecules per molecule of CO3. The empirical...

  11. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Directory of Open Access Journals (Sweden)

    Eva Weber

    Full Text Available Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3 (- as the first ionic interaction partner, but not necessarily for Ca(2+. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  12. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes

    Science.gov (United States)

    Jost, Adam B.; Mundil, Roland; He, Bin; Brown, Shaun T.; Altiner, Demir; Sun, Yadong; DePaolo, Donald J.; Payne, Jonathan L.

    2014-06-01

    A negative δC13 excursion in carbonate sediments near the Guadalupian/Lopingian (Middle/Late Permian) boundary has been interpreted to have resulted from a large carbon cycle disturbance during the end-Guadalupian extinction event (ca. 260 Ma). However, the carbon isotope data alone are insufficient to uniquely determine the type and magnitude of perturbation to the global carbon cycle. Calcium isotopes can be used to further constrain the cause of a carbon isotope excursion because the carbon and calcium cycles are coupled via CaCO3 burial. In this study, we present coupled carbon and calcium isotope records from three Guadalupian-Lopingian (G/L) sections in China (Penglaitan and Chaotian) and Turkey (Köserelik Tepe). The δC13 and δCa44/40 records differ among our studied sections and do not co-vary in the same manner. No section shows δC13 and δCa44/40 changes consistent with massive, rapid volcanic CO2 emissions or methane clathrate destabilization. Additionally, many sections with large (>3‰) changes in δC13 exhibit δO18 evidence for diagenetic alteration. Only one section exhibits a large excursion in the δCa44/40 of limestone but the absence of a similar excursion in the δCa44/40 of conodont apatite suggests that the limestone excursion reflects a mineralogical control rather than a perturbation to the global calcium cycle. Hence, we interpret the large isotopic changes observed in some sections to have resulted from local burial conditions or diagenetic effects, rather than from a large carbon and calcium cycle disturbance. Perturbations to the global carbon and calcium cycles across the G/L transition were much less intense than the disturbances that occurred across the subsequent Permian-Triassic boundary. This finding is consistent with the much smaller magnitude of the end-Guadalupian extinction relative to the end-Permian.

  13. Influence des ions étrangers et de la matière organique sur la cristallisation des carbonates de calcium Influence of Foreign Ions and of Organic Matter on the Crystallization of Calcium Carbonates

    Directory of Open Access Journals (Sweden)

    Cailleau P.

    2006-11-01

    examines the influence of foreign ions and organic matter on the ger-mination and growth of calcium carbonates.The main results obtained can be summed up as follows:a Concerning Foreign Ions.Their action generally results in:- an increase in germination time and a reduction in the growth rate of CaC03 crystals:- the appearance of special facies for some of the minerals formed: - the inhibition of transformation from one variety ta another.A classification by order of increasing efficiency is obtained: - approximately zero action: K+, CI-;- moderate action: Bot+, Na+, A13+, Cul+, Sr 2+, S04-, P04- . - dominant action of Mg'+.b For Organic Matter.Citric acid and, ta a lesser extent, tartaric acid are the only ones ta have an appre ciable influence, moreover an influence which is similar to thot of foreign ions with regard ta kinetics of CaCO3 germination and growth.The adsorption of some of these products also results in special facies of the minerals formed and eventually in the inhibition of transformations from one variety ta another

  14. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    Science.gov (United States)

    Battaglia, G.; Steinacher, M.; Joos, F.

    2015-12-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally-constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Latin-Hypercube scheme to construct a 1000 member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates either a strong, a weak or no dependency on CaCO3 saturation is assumed. Median (68 % confidence interval) global CaCO3 export is 0.82 (0.67-0.98) Gt PIC yr-1, within the lower half of previously published estimates (0.4-1.8 Gt PIC yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. Dissolution within the 200 to 1500 m depth range (0.33; 0.26-0.40 Gt PIC yr-1) is substantially lower than inferred from the TA*-CFC age method (1 ± 0.5 Gt PIC yr-1). The latter estimate is likely biased high as the TA*-CFC method neglects transport. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport time scales for the different setups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve

  15. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    Science.gov (United States)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  16. Sites of calcium uptake of fish otoliths correspond with macular regions rich of carbonic anhydrase

    Science.gov (United States)

    Beier, M.; Anken, R.; Hilbig, R.

    2006-01-01

    Based on pharmacological data, it has been suggested that the enzyme carbonic anhydrase (CAH) plays a prominent role in the mineralization of fish otoliths. To directly test this proposal, the topographical distribution of CAH was histochemically analyzed in the utricular and saccular maculae of larval cichlid fish Oreochromis mossambicus. Further investigations were focussed on the sites of otolithic calcium uptake using the fluorescent calcium tracer alizarin-complexone (AC). Both in the utricle and the saccule, CAH-reactivity was prominent in regions on both sides of the sensory macula (centrifugal (cf) and centripetal (cp) areas), which reportedly contain ionocytes, specialized cells regulating the ionic composition of the endolymph. (The terms centrifugal and centripetal were chosen instead of lateral and medial, because the saccule is positioned perpendicular to the utricle; “lateral” and “medial” thus do not allow an unambiguous allocation of the respective regions.) In the saccule, the size of cf and cp did not differ from each other, whereas, in the utricle, cp was considerably larger as compared to cf (CAH-reactivity per μm2 was nearly identical in both areas of both endorgans). AC-incubation resulted in a fluorescent band on the proximal surface of the otoliths (this surface lies next to the sensory epithelium). In saccular otoliths (sagittae), the area of the band did not differ between centrifugal and centripetal otolith regions, whereas in the utricular otoliths (lapilli), the area of the centripetal AC-band was larger in size as compared to the centrifugal one (AC-fluorescence per μm2 did not differ between the areas analyzed in both types of otoliths). These results strongly suggest that calcium/carbonate uptake of otoliths takes place especially in those regions of their proximal face which are located adjacent to CAH-rich areas of the macular epithelium. It is thus concluded that CAH is directly involved in otolith calcification. The

  17. Growth limit of carbon onions – A continuum mechanical study

    DEFF Research Database (Denmark)

    Todt, Melanie; Bitsche, Robert; Hartmann, Markus A.;

    2014-01-01

    The growth of carbon onions is simulated using continuum mechanical shell models. With this models it is shown that, if a carbon onion has grown to a critical size, the formation of an additional layer leads to the occurrence of a structural instability. This instability inhibits further growth of...... carbon onions and, thus, can be a reason for the limited size of such particles. The loss of stability is mainly evoked by van der Waals interactions between misfitting neighboring layers leading to self-equilibrating stress states in the layers due to mutual accommodation. The influence of the curvature...... model gives insight into mechanisms which are assumed to limit the size of carbon onions and can serve as basis for further investigations, e.g., of the formation of nanodiamonds in the center of carbon onions. © 2013 Elsevier Ltd. All rights reserved....

  18. Low temperature CVD growth of ultrathin carbon films

    Science.gov (United States)

    Yang, Chao; Wu, Peng; Gan, Wei; Habib, Muhammad; Xu, Weiyu; Fang, Qi; Song, Li

    2016-05-01

    We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC) used in several device processing technologies.

  19. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained "solubility product" of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  20. Carbon nanotube growth on nanozirconia under strong cathodic polarization in steam and carbon dioxide

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Zhang, Wei;

    2014-01-01

    nanozirconia acting as a catalyst for the growth of carbon nanotubes (CNTs) during electrochemical conversion of carbon dioxide and water in a nickel-yttria- stabilized zirconia cermet under strong cathodic polarization. An electrocatalytic mechanism is proposed for the growth of the CNTs. ${{{\\rm {\\rm V......Growth of carbon nanotubes (CNTs) catalyzed by zirconia nanoparticles was observed in the Ni-yttria doped zirconia (YSZ) composite cathode of a solid oxide electrolysis cell (SOEC) at approximately 875 °C during co-electrolysis of CO2 and H2O to produce CO and H 2. CNT was observed to grow under...

  1. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote

    2008-03-01

    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  2. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    Science.gov (United States)

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. PMID:27529608

  3. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    CERN Document Server

    Montes-Hernandez, German; Charlet, L; Tisserand, Delphine; Renard, F

    2008-01-01

    The hydrothermal carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2 1/4 55 bar) and moderate to high temperature (30 and 90 1C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH)2-CaCO3 conversion), a significant production rate (48 kg/m3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperatu...

  4. Influences of iron and calcium carbonate on wastewater treatment performances of algae based reactors.

    Science.gov (United States)

    Zhao, Zhimiao; Song, Xinshan; Wang, Wei; Xiao, Yanping; Gong, Zhijie; Wang, Yuhui; Zhao, Yufeng; Chen, Yu; Mei, Mengyuan

    2016-09-01

    The influences of iron and calcium carbonate (CaCO3) addition in wastewater treatments reactors performance were investigated. Adding different concentrations of Fe(3+) (5, 10, 30 and 50mmol/m(3)), iron and CaCO3 powder led to changes in algal characteristics and physico-chemical and microbiological properties. According to the investigation results, nutrient removal efficiency in algae based reactors was obviously increased by the addition of 10mmol/m(3) Fe(3+), iron (5mmol/m(3)) and CaCO3 powder (0.2gm(-3)) and the removal efficiencies of BOD5, TN, and TP in Stage 2 were respectively increased by 28%, 8.9%, and 22%. The improvements in physico-chemical performances were verified by microbial community tests (bacteria quantity, activity and community measured in most probable number, extracellular enzymes activity, and Biolog Eco Plates). Microbial variations indicated the coexistence of Fe ions and carbonate-bicarbonate, which triggered the synergistic effect of physico-chemical action and microbial factors in algae based reactors. PMID:27214163

  5. Calcium carbonate mineralization: X-ray microdiffraction probing of the interface of an evaporating drop on a superhydrophobic surface.

    Science.gov (United States)

    Accardo, Angelo; Burghammer, Manfred; Di Cola, Emanuela; Reynolds, Michael; Di Fabrizio, Enzo; Riekel, Christian

    2011-07-01

    The liquid/air interface of calcium bicarbonate solution drops was probed by synchrotron radiation microbeam scattering. The drops were deposited on a nanopatterned superhydrophobic poly(methyl methacrylate) surface and raster-scanned during evaporation by small-angle and wide-angle X-ray scattering. The appearance of about 200-nm-size calcite crystallites at the interface could be spatially resolved at the onset of crystallization. Diffuse scattering from the interface is attributed to a dense nanoscale amorphous calcium carbonate phase. Calcite was found to be the major phase in the solid residue with vaterite as minor phase. PMID:21663321

  6. Changes on the nanostructure of cementitius calcium silicate hydrates (C-S-H) induced by aqueous carbonation

    OpenAIRE

    Morales-Florez, Víctor; Findling, N.; F. Brunet

    2015-01-01

    The nanostructure of the main binding phase of the hydrated cements, the calcium silicate hydrates (C-S-H), and their structural changes due to aqueous carbonation have been characterized using TEM, nitrogen physisorption, and SAXS. Synthetic C-S-H has been used for this purpose. Two different morphologies were identified, similar to the high density and low density C-S-H types. When submitting the sample to a CO 2 flux, the low density phase was completely carbonated. The carbonation by-prod...

  7. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  8. Climate Constraints on the Carbon Intensity of Economic Growth

    Science.gov (United States)

    Davis, S. J.; Rozenberg, J.; Hallegatte, S.; Narloch, U.

    2015-12-01

    Development and climate goals together constrain the carbon intensity of production. Using a simple and transparent model that represents committed CO2 emissions (i.e. those embedded in installed capital), we explore the carbon intensity of production related to new capital required for different temperature targets across several thousand scenarios. Future pathways consistent with the 2oC target which allow for continued GDP growth require early action to reduce carbon intensity of new production, and either (i) a short lifetime of energy and industry capital (e.g. early retrofit of coal power plants), or (ii) large negative emissions after 2050 (i.e. rapid development and dissemination of carbon capture and sequestration). To achieve the 2oC target, half of the scenarios indicate a carbon intensity of new production between 33 and 73 g CO2/ - much lower than the carbon intensities of the best performing countries today. The average lifespan of energy capital (especially power plants), and industry capital, are critical because they commit emissions far into the future and reduce the budget for new capital emissions. Each year of lifetime added to existing, carbon intensive capital, decreases the carbon intensity of new production required to meet a 2°C carbon budget by 1 to 1.5 g CO2/, and each year of delaying the start of mitigation decreases the required CO2 intensity of new production by 20 to 50 gCO2/$. Constraints on the carbon intensity of new production under a 3°C target are considerably relaxed relative to the 2°C target, but remain daunting in comparison to the carbon intensity of the global economy today. Figure Caption: The relationship between GDP per capita growth, lifetime of energy and industry capital and the required carbon intensity of new production 2013-2050 under a 2°C target.

  9. Selective growth of carbon nanotube on silicon substrates

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOT; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies,and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

  10. Effects of 1,25-dihydroxicolecalciferol and dietary calcium-phosphate on distribution of lead to tissues during growth

    International Nuclear Information System (INIS)

    The susceptibility to the toxic effects of lead (Pb) is mainly mediated by age and nutritional and hormonal status, and children are among the most vulnerable to them. During growth, an increase in calcium, phosphate and vitamin D in diet is recommended to enhance calcium and phosphate intestinal absorption and bone deposit. Calcium and phosphate reduce lead intestinal absorption, and 1,25-dihydroxicolecalciferol (1,25(OH)2D3) (active metabolite of vitamin D) increases both lead and calcium intestinal absorption. However, the effects of 1,25(OH)2D3 on lead bone deposit and redistribution to soft tissues are not well known. In this study, we examined the effects of calcium-phosphate diet supplementation and the administration of 1,25(OH)2D3 on Pb distribution to soft tissue and bone in growing rats exposed to Pb. Rats (21 days old) were exposed for 28 days to 100 ppm of Pb solution in drinking water. Calcium and phosphate in diet were increased from 1 to 2.5% and from 0.65 to 1.8%, respectively, and 1,25(OH)2D3 was administrated by intraperitoneal injection of 7.2 ng/kg every 7 days. Between 21 and 49 days, the body weight increased about 5 times. The results showed that high calcium-phosphate diet led to lower Pb concentration in blood and in bone, but Pb liver and kidney concentrations increased, which indicates that absorption and bone deposit redistribution of Pb decreased. On the other hand, no effect of this diet rich in calcium-phosphate in Pb concentration was observed in brain. Blood and bone Pb concentrations increased even more when the high calcium-phosphate diet included 1,25(OH)2D3. In the rats treated only with 1,25(OH)2D3, blood and bone Pb concentrations were lower. Higher concentrations of lead in the soft organs were observed also in rats treated under a high calcium-phosphate diet plus 1,25(OH)2D3 administration. The above mentioned results suggested that 1,25(OH)2D3 induces an increased absorption and redistribution of Pb, and therefore, it may

  11. 丝胶对碳酸钙晶体生长的调控作用研究%Study on the regulation and control of silk sericin on the crystal formation of Calcium Carbonate

    Institute of Scientific and Technical Information of China (English)

    丁少; 王海龙; 须苏菊; 孔祥东

    2012-01-01

    以水溶性丝胶为有机模板调控碳酸钙晶体生长,探讨了丝胶质量浓度差异对晶体生长的影响作用.采用场发射扫描电镜(FESEM)、X射线衍射(XRD)、红外光谱(FTIR)对所制备的样品进行表征.结果表明:通过控制丝胶质量浓度可调控碳酸钙的晶体生长,引起晶体形貌与尺寸的显著变化,并抑制碳酸钙特定晶面的生长.制备了刺球状碳酸钙和片层结构组装而成的类正方体碳酸钙,并对其形成机理进行了初步探讨,结果表明丝胶与无机晶体之间存在复杂的相互作用,丝胶对碳酸钙晶体的生长具有调制作用.%This study uses silk sericin as organic template to regulate the crystal formation of calcium carbonate in the presence of protein, discusses the mass concentration of silk sericin on the crystal growth. The obtained samples are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR). The result shows that controlling the the mass concentration of silk sericin can regulate the crystal growth of calcium carbonate, significantly change the appearance and size of crystal and restrain the specific crystal growth of calcium carbonate. Cube-like calcium carbonate formed by thorn spherical calcium carbonate aggregates and lamellar structure was prepared, the formation mechanism of which is discussed preliminarily. The result shows that interaction between silk sericin and mineral crystal was very complex and silk sericin had a significant effect on the formation of calcium carbonate crystal.

  12. One Carbon Metabolism, Fetal Growth and Long Term Consequences

    OpenAIRE

    Kalhan, Satish C.

    2013-01-01

    One carbon metabolism, or methyl transfer, is critical for metabolism in all cells, is involved in the synthesis of purines, pyrimidines, in the methylation of numerous substrates, proteins, DNA and RNA, and in the expression of a number of genes. Serine is the primary endogenous methyl donor to the one carbon pool. Perturbations in methyl transfer due to nutrient and hormonal changes can have profound effect on cell function, growth and proliferation. It is postulated that at critical stages...

  13. Optimization of Synbiotics and Growth Factors for Calcium Conversion of Lactobacillus rhamnosus Based on Response Surface Methodology

    OpenAIRE

    Y.Y. Yin; Tang, Y. Y.; A.P. Luo; Wang, L F

    2011-01-01

    To optimize prebiotics and growth factors for maximizing the calcium conversion of a probiotic, Lactobacillus rhamnosus during the fermentation of boving bone-meal and to assess the effects of these factors by using response surface methodology. After single factor experiment determined the addition of prebiotics and growth factors, conversion rate characteristic of calcium as indicators. Response Surface Methodology (RSM) was used to optimize the best for enhancing the prebiotics and growth ...

  14. Are old-growth forests still able to accumulate carbon?

    OpenAIRE

    Grassi G

    2006-01-01

    A recent paper published in Science (Zhou et al. 2006) reports an unexpectedly high accumulation of carbon in the top 20-cm soil layer in a preserved old-growth forest in southern China during 24 years. This finding is discussed in relation to the traditional “ecological equilibrium” concept and compared to other recent results and hypotheses on this issue. Given the importance of better quantifying and understanding the capacity of accumulating carbon by old-growth forest in the context of t...

  15. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma

    International Nuclear Information System (INIS)

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λL=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of Tr=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is Tr=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is inertially and

  16. CaO nucleation preceding carbonate growth in dying microbial particles (subsurface environment)

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Gemperle, Antonín

    Elsevier. Roč. 68, 11S (2004), A408. ISSN 0016-7037. [Annual V. M. Goldschmidt Conference /13./. 05.06.2004-11.06.2004, Copenhagen] R&D Projects: GA AV ČR(CZ) IAA3013209 Institutional research plan: CEZ:AV0Z1010914 Keywords : calcium oxide * calcium carbonate nucleation * bacterial body fossils Subject RIV: DB - Geology ; Mineralogy

  17. Controlling growth of aligned carbon nanotubes from porous silicon templates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fabricating well-aligned carbon nanotubes, especially, on a silicon substrate is very important for their applications. In this paper, an aligned carbon nanotube array has been prepared by pyrolysis of hydrocarbons catalyzed by nickel nanoparticles embedded in porous silicon (PS) templates. High-magnification transmission electron microscopy images confirm that the nanotubes are well graphitized. The PS substrates with pore sizes between 10 and 100 nm play a control role on the growth of carbon nanotubes and the diameters of the tubes increase with the enlargement of the pores of the substrates. However, such a control role cannot be found in the macro-PS substrates.

  18. Release of transforming growth factor beta 1 and platelet derived growth factor type AB from canine platelet gels obtained by the tube method and activated with calcium salts

    OpenAIRE

    RF Silva; GC Santana; FOP Leme; JU Carmona; CMF Rezende

    2013-01-01

    The objectives of this study were: 1) to measure the concentrations of transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor type AB (PDGF-AB) in plasma and platelet gel (PG) activated with calcium salts (gluconate or chloride) in dogs, and 2) to determine correlations between cell results and growth factors (GF) concentrations. Blood samples were collected from fourteen Brazilian Fila dogs. EDTA was used to obtain whole blood and plasma while ACD-A solution was used t...

  19. Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves

    Directory of Open Access Journals (Sweden)

    M. Chierici

    2009-05-01

    Full Text Available In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT underway aboard IB Oden along the Northwest Passage from Cape Farwell (South Greenland to the Chukchi Sea. We investigated variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S and sea surface temperature (SST, were used to calculate total dissolved inorganic carbon (DIC, [CO32−] and saturation of aragonite (ΩAr and calcite (ΩCa in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA and on the Mackenzie shelf (MS were found to be undersaturated with respect to aragonite (ΩAr<1. In these areas, surface water was low in AT and DIC (<1500 μmol kg−1 relative to seawater and showed low [CO32−]. The low saturation states were probably due to the effect of dilution due from freshwater addition by sea ice melt (CAA and river runoff (MS. High AT and DIC and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to physical upwelling of subsurface water with elevated CO2. Highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower DIC from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and DIC from enhanced organic matter remineralization, resulting in

  20. Regional specificity of exercise and calcium during skeletal growth in girls : A randomized controlled trial

    NARCIS (Netherlands)

    Iuliano-Burns, S; Saxon, L; Naughton, G; Gibbons, K; Bass, SL

    2003-01-01

    Combining exercise with calcium supplementation may produce additive or multiplicative effects at loaded sites; thus, we conducted a single blind, prospective, randomized controlled study in pre- and early-pubertal girls to test the following hypotheses. (1) At the loaded sites, exercise and calcium

  1. Endolymphatic calcium supply for fish otolith growth takes place via the proximal portion of the otocyst.

    Science.gov (United States)

    Ibsch, M; Anken, R; Beier, M; Rahmann, H

    2004-09-01

    The presence of calcium within the utricle of larval cichlid fish Oreochromis mossambicus was analysed by means of energy-filtering transmission electron microscopy. Electron-spectroscopic imaging and electron energy loss spectra revealed discrete calcium precipitations that were more numerous in the proximal endolymph than in the distal endolymph, clearly indicating a decreasing proximo-distal gradient. This decreasing proximo-distal gradient was also present within the proximal endolymph between the sensory epithelium and the otolith. Further calcium particles covered the peripheral proteinaceous layer of the otolith. They were especially pronounced at the proximal surface of the otolith indicating that otolithic calcium incorporation takes place here. Other calcium precipitates accumulated at the macular junctions clearly supporting an earlier assumption according to which the endolymph is supplied with calcium via a paracellular pathway. The present results clearly show that the apical region of the macular epithelium is involved in the release of calcium and that the calcium supply of the otoliths takes place via the proximal endolymph. PMID:15300493

  2. Release of transforming growth factor beta 1 and platelet derived growth factor type AB from canine platelet gels obtained by the tube method and activated with calcium salts

    Directory of Open Access Journals (Sweden)

    RF Silva

    2013-01-01

    Full Text Available The objectives of this study were: 1 to measure the concentrations of transforming growth factor beta 1 (TGF-β1 and platelet-derived growth factor type AB (PDGF-AB in plasma and platelet gel (PG activated with calcium salts (gluconate or chloride in dogs, and 2 to determine correlations between cell results and growth factors (GF concentrations. Blood samples were collected from fourteen Brazilian Fila dogs. EDTA was used to obtain whole blood and plasma while ACD-A solution was used to prepare platelet concentrates (PC. Calcium salts were added to PC to induce their gelification. Platelet and leukocyte count was performed before PC activation. The concentration of growth factors in PG supernatants and plasma was determined by ELISA. Statistically significant differences (P < 0.01 between platelet and leukocyte count were observed when comparing whole blood and PC. No statistically significant differences were found between the concentrations of TGF-β1 and PDGF-AB in PC and plasma according to the calcium salt used for the activation of PC. The TGF-β1 concentration was highly correlated with the number of platelets concentrated in the PC. This methodology was useful for producing PG with therapeutic potential for canine regenerative medicine.

  3. Developmental Axon Stretch Stimulates Neuron Growth While Maintaining Normal Electrical Activity, Intracellular Calcium Flux, and Somatic Morphology

    Directory of Open Access Journals (Sweden)

    Joseph R Loverde

    2015-08-01

    Full Text Available Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18 % applied over 5 minutes. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25 % strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  4. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes

    Science.gov (United States)

    Jost, A. B.; Mundil, R.; He, B.; Brown, S. T.; Altiner, D.; Sun, Y.; DePaolo, D. J.; Payne, J.

    2013-12-01

    A negative δ13C excursion in carbonate sediments from Guadalupian (Middle Permian) and Lopingian (Late Permian) stratigraphic sections has been interpreted to result from a large carbon cycle disturbance during end-Guadalupian extinction event (ca. 260 Ma). However, the carbon isotope data alone are insufficient to uniquely determine the type and magnitude of perturbations to the global carbon cycle. The carbon and calcium cycles are coupled via CaCO3 burial, so changes in calcium isotopes can be used to constrain the cause of a carbon isotope excursion. In this study, we present coupled carbon and calcium isotope records from three Guadalupian-Lopingian (G/L) sections in China and Turkey. Isotope records among our studied sections are inconsistent in both their δ13C and δ44/40Ca records. Similar inconsistencies in δ13C among sections occur across previously published datasets. Sections with large (>3‰) changes in δ13C either show evidence for diagenetic alteration or do not show δ13C and δ44/40Ca changes consistent with severe volcanic degassing from Emeishan or methane clathrate destabilization. We conclude that the large isotopic changes are more likely the result of local burial conditions or diagenetic effects, rather than a large carbon cycle disturbance. Perturbations to the global carbon and calcium cycles appear to have been much smaller across the G/L transition than across the subsequent Permian-Triassic boundary. This finding is consistent with recent paleobiological data showing that the end-Guadalupian extinction was much less severe than previously believed, and was indistinguishable in magnitude from background intervals. However, selective extinction of marine animals with passive respiratory physiology indicates that the G/L extinction cannot simply be due to background extinction or sampling failure, and that it was triggered by some environmental event. Therefore, any environmental event must have been small enough to not generate large

  5. Improving interfacial adhesion with epoxy matrix using hybridized carbon nanofibers containing calcium phosphate nanoparticles for bone repairing.

    Science.gov (United States)

    Gao, Xukang; Lan, Jinle; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-04-01

    Hybridized carbon nanofibers containing calcium phosphate nanoparticles (CNF/CaP) were investigated as osteocompatible nanofillers for epoxy resin. The CNF/CaP was produced by electrospinning mixture solution of polyacrylonitrile and CaP precursor sol-gel, followed by preoxidation and carbonization. The continuous and long CNF/CaP was ultrasonically chopped, mixed into epoxy resin and thermo-cured. Compared to pure CNFs with similar ultrasonication treatment, the shortened CNF/CaP reinforced composites demonstrated significant enhancement in flexural properties of epoxy composites, benefiting from the improved interfacial adhesion between CNF/CaP and resin matrix. The resulting composites also displayed good biocompatibility and sustained calcium ion release, which categorized them as promising materials for bone repairing. PMID:26838838

  6. Calcium carbonate scaling under alkaline conditions – Case studies and hydrochemical modelling

    International Nuclear Information System (INIS)

    Highlights: • Mechanisms of scaling in tunnel drainages are deciphered by a multiproxy approach. • CO2 absorption in alkaline solutions may increase or decrease the SICalcite. • Mixing of solutions may strongly increase both precipitation capacity and rate. • Solutions at pH ≈ 10 are less frequent due to precipitation kinetics. - Abstract: Calcium carbonate scaling poses highly challenging tasks for its prediction and preventative action. Here an elemental, isotopic and modelling approach was used to decipher the evolution of alkaline tunnel drainage solutions and sinter formation mechanisms for 3 sites in Austria. Drainage solutions originate from local groundwater and form their characteristic chemical composition by interaction with shotcrete/concrete. This interaction is indicated by a positive correlation of dissolved K+ and pH (up to 12.3), and a decrease of aqueous Mg2+ by the formation of brucite (pH > 10.5). Variability in Ca2+ and DIC is strongly attributed to portlandite dissolution, calcite precipitation and CO2 exchange with the atmosphere, where the 13C/12C and 18O/16O signatures of calcite can be traced back to the source of carbonate. The internal PCO2 value is a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of the degree of calcite saturation with a threshold value of 10−6.15 atm at 25 °C (pH ≈ 11). Precipitation rates of calcite are highest at pH ≈ 10. Mixing of groundwater-like solutions with strong alkaline drainage solutions has to be considered as a crucial factor for evaluating apparent composition of drainage solutions and calcite precipitation capacities

  7. An enhanced chemiluminescence bioplatform by confining glucose oxidase in hollow calcium carbonate particles.

    Science.gov (United States)

    Wang, Congmin; Zhou, Cuisong; Long, Yuyin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    A chemiluminescence (CL) amplification platform based on HCC/Lucigenin&GOx (HLG) film was developed. Hollow structural calcium carbonate (HCC) particles were used as alternative materials for carrying both enzyme and CL reagent. The model enzyme (GOx), immobilized in confined space of HCC particles, exhibited an improved biocatalysis. The Michaelis constant (Km) and the enzymatic rate constant (kcat) were determined to be 0.209 μM and 2.21 s(-1), respectively, which are much better than those of either free GOx in aqueous solution or the GOx immobilized on common nanomaterials. Based on the HLG platform, CL signal was effectively amplified and visualized after adding trace glucose, which could be attributed to the HCC particles' high biocompatibility, large specific surface area, attractive interfacial properties and efficient interaction with analyses. The visual CL bioplatform showed an excellent performance with high selectivity, wide linear range and low detection limit for sensing trace glucose. Because it eliminates the need of complicated assembly procedure and enables visualization by the naked eye, the sensitive and selective CL bioplatform would provide wide potential applications in disease diagnosis and food safety. PMID:27080637

  8. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products

    International Nuclear Information System (INIS)

    Highlights: • We characterized end-of-life asbestos-containing materials. • In the range 620–680 °C, calcite and quartz affect decomposition of asbestos. • Hypothesized decomposition reactions match with solid phases revealed by XRD analysis. • TGA of the content of chrysotile gives good results both in air and in nitrogen. - Abstract: Three bearing-asbestos wastes, friction material, vinyl-asbestos (linoleum) and cement-asbestos mainly containing chrysotile were characterized. Powder X-ray diffraction (XRDP), scanning electron microscopy (SEM) with microanalysis observations and thermal analysis (TGA/DTA) were carried out on the materials as received and after heating at 1100 °C in order to observe their structural changes and thermal behaviours. A quantitative determination of chrysotile in the friction material was also carried out. To study the influence of CaCO3 on the decomposition of asbestos, the three techniques were also applied on the linoleum and cement-asbestos at room temperature and at 1100 °C after leaching of the materials with 1:3 HCl to remove the carbonates present in the wastes. The results show that the presence of CaCO3 prevents the asbestos to decompose according to the known decomposition reactions and leads to the formation of calcium-silicate compounds. When CaCO3 is removed by washing with HCl, decomposition of asbestos proceeds according to the expected reactions

  9. Loading Capacity versus Enzyme Activity in Anisotropic and Spherical Calcium Carbonate Microparticles.

    Science.gov (United States)

    Donatan, Senem; Yashchenok, Alexey; Khan, Nazimuddin; Parakhonskiy, Bogdan; Cocquyt, Melissa; Pinchasik, Bat-El; Khalenkow, Dmitry; Möhwald, Helmuth; Konrad, Manfred; Skirtach, Andre

    2016-06-01

    A new method of fabrication of calcium carbonate microparticles of ellipsoidal, rhomboidal, and spherical geometries is reported by adjusting the relative concentration ratios of the initial salt solutions and/or the ethylene glycol content in the reaction medium. Morphology, porosity, crystallinity, and loading capacity of synthesized CaCO3 templates were characterized in detail. Particles harboring dextran or the enzyme guanylate kinase were obtained through encapsulation of these macromolecules using the layer-by-layer assembly technique to deposit positively and negatively charged polymers on these differently shaped CaCO3 templates and were characterized by confocal laser scanning fluorescence microscopy, fluorometric techniques, and enzyme activity measurements. The enzymatic activity, an important application of such porous particles and containers, has been analyzed in comparison with the loading capacity and geometry. Our results reveal that the particles' shape influences morphology of particles and that, as a result, affects the activity of the encapsulated enzymes, in addition to the earlier reported influence on cellular uptake. These particles are promising candidates for efficient drug delivery due to their relatively high loading capacity, biocompatibility, and easy fabrication and handling. PMID:27166641

  10. In situ synthesis and modification of calcium carbonate nanoparticles via a bobbling method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Modified calcium carbonate (CaCO3) nanoparticles with cubic- and spindle-like configuration were synthesized in situ by the typical bobbling (gas-liquid-solid) method. The modifiers, such as sodium stearate, octadecyl dihydrogen phosphate (ODP) and oleic acid (OA), were used to obtain hydrophobic nanoparticles. The different modification effects of the modifiers were investigated by measuring the active ratio, whiteness and the contact angle. Moreover, transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetry analysis (TGA analysis) were employed to characterize the obtained products. A preliminary reaction mechanism was discussed. According to the results, the active ratio of CaCO3 modified by ODP was ca. 99.9% and the value of whiteness was 97.3% when the dosage of modifiers reached 2%. The contact angle was 122.25° for the CaCO3 modified in the presence of sodium stearate, ODP and OA. When modified CaCO3 was filled into PVC, the mechanical properties of products were improved greatly such as rupture intensity, pull intensity and fuse temperature. The compatibility and affinity between the modified CaCO3 nanoparticles and the organic matrixes were greatly improved.

  11. Polypropylene/calcium carbonate nanocomposites – effects of processing techniques and maleated polypropylene compatibiliser

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available The mechanical properties and crystalline characteristics of polypropylene (PP and nano precipitated calcium carbonate (NPCC nanocomposites prepared via melt mixing in an internal mixer and melt extrusion in a twin screw extruder, were compared. The effect of maleic anhydride grafted PP (PP-g-MAH as a compatibiliser was also studied using the internal mixer. At low filler concentration of 5 wt%, impact strength was better for the nanocomposites produced using the internal mixer. At higher filler loading of more than 10 wt%, the extrusion technique was more effective to disperse the nanofillers resulting in better impact properties. The impact results are consistent with the observations made from Scanning Electron Microscope (SEM morphology study. As expected, the flexural modulus of the nanocomposites increased with filler concentration regardless of the techniques utilised. At a same filler loading, there was also no significant difference in the moduli for the two techniques. The tensile strength of the mixed nanocomposites were found to be inferior to the extruded nanocomposites. Introduction of PP-g-MAH improved the impact strength, tensile strength and modulus of the mixed nanocomposites. The improvements may be attributed to better interfacial adhesion, as evident from the SEM micrographs which displayed better dispersion of the NPCC in the presence of the compatibiliser. Though NPCC particles have weak nucleating effect on the crystallization of the PP, addition of PP-g-MAH into the mixed nanocomposites has induced significant crystallization of the PP.

  12. OPTIMIZATION OF CHEMICALS USE FOR HIGHLY FILLED MECHANICAL GRADE PAPERS WITH PRECIPITATED CALCIUM CARBONATE

    Directory of Open Access Journals (Sweden)

    Yizhou Sang

    2011-02-01

    Full Text Available Response surface methodology was used with four factors to screen for the best starch and optimize the use of chemicals in order to maximize precipitated calcium carbonate (PCC filler retention in a peroxide-bleached TMP suspension. Three commercial starches were used in conjunction with colloidal silica and flocculant. The PCC loading level and the interactions between PCC level, starch, flocculant, and silica were investigated, and empirical models were constructed. The empirical process models were then employed to predict the retention and drainage. It was found that medium-charged cationic starch (S858 gave the highest total and filler retention, whereas high-charged cationic starch (S880 resulted in the best drainage. The ash content of the handsheet can be pushed up to 40% using the retention system with medium (S858 and high (S880 charged cationic starch. The high-charged cationic starch (S880 gave stronger paper, probably because of its higher affinity with the fiber and fines.

  13. The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon

    Science.gov (United States)

    Wu, Hao; Wang, Xianyou; Jiang, Lanlan; Wu, Chun; Zhao, Qinglan; Liu, Xue; Hu, Ben'an; Yi, Lanhua

    2013-03-01

    Porous calcium carbide-derived carbon (CCDC) has been prepared by one-step route from CaC2 in a freshly prepared chlorine environment at lower temperature, and following activated by ZnCl2 to get activated CCDC. The performances of the supercapacitors based on activated CCDC as electrode active material in aqueous KOH, K2SO4, KCl and KNO3 electrolytes are studied by cyclic voltammetry, constant current charged/discharged, cyclic life and electrochemical impedance spectroscopy. It has been found that the supercapacitor using 6 M KOH as electrolyte shows an energy density of 8.3 Wh kg-1 and a power density of 1992 W kg-1 based on the total weight of the electrode active materials with a voltage range 0 V-1 V. Meanwhile, the specific capacitance of the supercapacitor in 6 M KOH electrolyte is 68 F g-1 at the scan rate of 1 mV s-1 in the voltage range of 0 V-1 V, the charge-transfer resistance is extremely low and the relaxation time is the least of all. The supercapacitor also exhibits a good cycling performance and keeps 95% of initial capacity over 5000 cycles.

  14. One-step bulk preparation of calcium carbonate nanotubes and its application in anticancer drug delivery.

    Science.gov (United States)

    Tang, Jing; Sun, Dong-Mei; Qian, Wen-Yu; Zhu, Rong-Rong; Sun, Xiao-Yu; Wang, Wen-Rui; Li, Kun; Wang, Shi-Long

    2012-06-01

    Bulk fabrication of ordered hollow structural particles (HSPs) with large surface area and high biocompatibility simultaneously is critical for the practical application of HSPs in biosensing and drug delivery. In this article, we describe a smart approach for batch synthesis of calcium carbonate nanotubes (CCNTs) based on supported liquid membrane (SLM) with large surface area, excellent structural stability, prominent biocompatibility, and acid degradability. The products were characterized by transmission electron micrograph, X-ray diffraction, Fourier transform infrared spectra, UV-vis spectroscopy, zeta potential, and particle size distribution. The results showed that the tube-like structure facilitated podophyllotoxin (PPT) diffusion into the cavity of hollow structure, and the drug loading and encapsulation efficiency of CCNTs for PPT are as high as 38.5 and 64.4 wt.%, respectively. In vitro drug release study showed that PPT was released from the CCNTs in a pH-controlled and time-dependent manner. The treatment of HEK 293T and SGC 7901 cells demonstrated that PPT-loaded CCNTs were less toxic to normal cells and more effective in antitumor potency compared with free drugs. In addition, PPT-loaded CCNTs also enhanced the apoptotic process on tumor cells compared with the free drugs. This study not only provides a new kind of biocompatible and pH-sensitive nanomaterial as the feasible drug container and carrier but more importantly establishes a facile approach to synthesize novel hollow structural particles on a large scale based on SLM technology. PMID:22351100

  15. Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive.

    Science.gov (United States)

    Liu, Dagang; Chen, Huihuang; Chang, Peter R; Wu, Qinglin; Li, Kaifu; Guan, Litao

    2010-08-01

    Despite the biodegradability, non-toxicity, and renewability, commercially available soy protein-based adhesives still have not been widely adopted by industry, partially due to their disappointing performances, i.e., low glue strength in the dry state and no glue strength in the wet state. In this study, biomimetic soy protein/CaCO(3) hybrid wood glue was devised and an attempt made to improve the adhesion strength. The structure and morphology of the adhesive and its fracture bonding interface and adhesion strength were investigated. Results showed that the compact rivets or interlocking links, and ion crosslinking of calcium, carbonate, hydroxyl ions in the adhesive greatly improving the water-resistance and bonding strength of soy protein adhesives. Glue strength of soy protein hybrid adhesive was higher than 6 MPa even after three water-immersion cycles. This green and sustainable proteinous hybrid adhesive, with high glue strength and good water-resistance, is a good substitute for formaldehyde wood glues. PMID:20307978

  16. An enhanced chemiluminescence bioplatform by confining glucose oxidase in hollow calcium carbonate particles

    Science.gov (United States)

    Wang, Congmin; Zhou, Cuisong; Long, Yuyin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    A chemiluminescence (CL) amplification platform based on HCC/Lucigenin&GOx (HLG) film was developed. Hollow structural calcium carbonate (HCC) particles were used as alternative materials for carrying both enzyme and CL reagent. The model enzyme (GOx), immobilized in confined space of HCC particles, exhibited an improved biocatalysis. The Michaelis constant (Km) and the enzymatic rate constant (kcat) were determined to be 0.209 μM and 2.21 s−1, respectively, which are much better than those of either free GOx in aqueous solution or the GOx immobilized on common nanomaterials. Based on the HLG platform, CL signal was effectively amplified and visualized after adding trace glucose, which could be attributed to the HCC particles’ high biocompatibility, large specific surface area, attractive interfacial properties and efficient interaction with analyses. The visual CL bioplatform showed an excellent performance with high selectivity, wide linear range and low detection limit for sensing trace glucose. Because it eliminates the need of complicated assembly procedure and enables visualization by the naked eye, the sensitive and selective CL bioplatform would provide wide potential applications in disease diagnosis and food safety. PMID:27080637

  17. Ratios of cross sections of carbon, calcium and lead at low xBj in inelastic muon scattering

    International Nuclear Information System (INIS)

    Shadowing is observed in the per nucleon cross sections of carbon, calcium and lead, as compared to deuterium. Preliminary cross section ratios are presented in the kinematic region xBj > 0.0001 and Q2 ≥ 0.1. The data were taken by Fermilab experiment E665 using inelastically scattered events from muons of mean incident momentum 468 GeV/c

  18. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    International Nuclear Information System (INIS)

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials

  19. PRE-FLOCCULATION OF PRECIPITATED CALCIUM CARBONATE FILLER BY CATIONIC STARCH FOR HIGHLY FILLED MECHANICAL GRADE PAPER

    OpenAIRE

    Yizhou Sang,; Michael McQuaid; Peter Englezos

    2011-01-01

    Three commercial starches were evaluated in conjunction with colloidal silica and flocculant to retain precipitated calcium carbonate (PCC) filler. A unique feature of this study was the fact that the filler was pre-flocculated by a portion of starch (2kg starch/t PCC) and the rest of the starch was added after the flocculant but before the silica. The pulp used was peroxide bleached thermo-mechanical pulp (TMP). A statistical design methodology was employed and empirical process models were ...

  20. Fatty Acids Profile during Anaerobic Digestion of Night Soil-Effect of temperature, Calcium Carbonate and Selectively-enriched Inoculum

    OpenAIRE

    S. I. Alam; Singh, L; Maurya, M. S.

    1996-01-01

    Anaerobic biodegradation of night soil was carried out at 5-30 degree centigrade with 1.8-10.62 per cent volatile solids (VS). Biogas production increased with the temperature and VS up to 6.2 per cent. Further increase in VS caused higher Volatile fatty acids (VFA) accumulation resulting in decreased gas production. Acetate and propionate accounted for 62-83 per cent of total VFA. Butyrate to isobutyrate ratio increased with VS. Calcium Carbonate promoted VS degradation, biogas produc...

  1. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Fupo [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Zhang, Jing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Chen, Xiaoming, E-mail: xmchenw@126.com [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China)

    2015-05-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials.

  2. [Research on contribution decomposition by industry to China's carbon intensity reduction and carbon emission growth].

    Science.gov (United States)

    Jiang, Jing-Jing; Ye, Bin; Ji, Jun-Ping; Ma, Xiao-Ming

    2014-11-01

    The binding carbon intensity index and the pilot "cap-and-trade" emission trading scheme are two important approaches currently applied by China to mitigate its greenhouse gases emissions. It is of great significance to research the influence mechanism of related factors by industry on the dynamics of national carbon intensity and emission, not only for setting industry-specified intensity reduction target but also for setting industry coverage of the ETS. Two LMDI models were applied in this paper to decompose industry contributions to the changes of China's carbon intensity and carbon emission during the period of 1996-2010. Empirical results showed that: The decline of national carbon intensity was jointly determined by the changes of carbon intensities and the added value proportions of all industries, and the impact of industry carbon intensities was larger. The increase of national carbon emission was jointly determined by the changes of carbon intensities and the added value of all industries. The former had inhibitory effect whist the latter had decisive promoting effect. The five industries making the largest contribution to the changes of national carbon emission and carbon intensity included industries of electricity, nonmetal mineral, ferrous metal, transportation service, chemical materials, which were followed by the industries of agriculture, coal mining and processing, petroleum and natural gas extraction. Petroleum refining and coking industry and construction industry made small contribution to the decline of national carbon intensity, but made large contribution to the growth of national carbon emission. The contributions of service industries to national carbon emission growth showed a rising trend, especially those of transportation service industry, wholesaling, retailing and catering service industry. PMID:25639120

  3. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    Science.gov (United States)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  4. Fruit Growth and Sensory Evaluation of ´Hayward´ Kiwifruit in Response to Preharvest Calcium Chloride Application and Orchard Location

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Shiri

    2014-10-01

    Full Text Available In order to receive reliable results in the effect of preharvest calcium chloride (CaCl2 application on fruit growth and sensory characteristics of kiwifruit (Actinidia deliciosa cultivar ‘Hayward’ at the harvest time, a field experiment was carried out in two commercial orchards at different locations. The vines were sprayed with CaCl2 (1.5%, one, two, or three times in 35, 85 and 125 days after full bloom. The results showed that CaCl2 treatment significantly reduced fruit size, fresh weight and total dry matter content. Moreover, fruit growth relative attributes such as relative growth index, daily relative growth rate, daily transpiration rate, total carbon received by fruit and yield threshold pressure significantly decreased by thrice application. After thrice application of CaCl2, fruits showed better sensory quality. Overall, one time preharvest CaCl2 application had no-significant effect on the most fruits characteristics, while thrice application of CaCl2 could delay fruit ripening process.

  5. Complete genome sequence of the Sporosarcina psychrophila DSM 6497, a psychrophilic Bacillus strain that mediates the calcium carbonate precipitation.

    Science.gov (United States)

    Yan, Wenkai; Xiao, Xiang; Zhang, Yu

    2016-05-20

    Sporosarcina psychrophila DSM 6497 is a gram positive, spore-formation psychrophilic bacterial strain, widely distributed in terrestrial and aquatic environments. Here we report its complete sequence including one circular chromosome of 4674191bp with a GC content of 40.3%. Genes encoding urease are predicted in the genome, which provide insight information on the microbiologically mediated urea hydrolysis process. This urea hydrolysis can further lead to an increase of carbonate anion and alkalinity in the environment, which promotes the microbiologically induced carbonate precipitation with various applications, such as the bioremediation of calcium rich wastewater and bio-reservation of architectural patrimony. PMID:27015981

  6. An inferred relationship between some uranium deposits and calcium carbonate cement in southern Black Hills, South Dakota

    Science.gov (United States)

    Gott, Garland B.

    1956-01-01

    Evidence resulting from geologic mapping in the southern Black Hills indicates that the areas marginal to some of the larger carbonate-cemented sandstones constitute favorable geochemical environments for the localization of uranium deposits. To determine whether these favorable environments are predictable a limited experimental core-drilling program was carried out. An extensive deposit was discovered in an area marginal to a sandstone well-cemented with calcium carbonate. The deposit has not yet been developed, but from the available data it appears that there is a significant quantity of mineralized rock present containing as much as 3.0 percent eU3O8.

  7. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    Science.gov (United States)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  8. Climate indices strongly influence old-growth forest carbon exchange

    Science.gov (United States)

    Wharton, Sonia; Falk, Matthias

    2016-04-01

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (F NEE) at Wind River AmeriFlux was ‑32 ± 84 g C m‑2 yr‑1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannual variability is high (>300 g C m‑2 yr‑1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean F NEE = ‑90 g C m‑2 yr‑1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean F NEE = +17 g C m‑2 yr‑1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (F ANPP) is associated with cool phases of both the PNA and PDO. These measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.

  9. The effect of alginates, fucans and phenolic substances from the brown seaweed Padina gymnospora in calcium carbonate mineralization in vitro

    Science.gov (United States)

    Salgado, L. T.; Amado Filho, G. M.; Fernandez, M. S.; Arias, J. L.; Farina, M.

    2011-04-01

    The mineralization of calcium carbonate (CaCO 3) in the brown seaweed Padina gymnospora is a biologically induced process and is restricted to the cell wall surface. It has been suggested that the CaCO 3 crystallization that occurs over the thallus cell wall surface is induced by changes in the surface pH caused by a local efflux of OH -, Ca ++ and HCO3- ions. However, no studies on the roles of the P. gymnospora cell wall components in this mineralization process had been performed. Therefore, we evaluated the influence of a subset of P. gymnospora cell wall molecules on CaCO 3 crystallization in vitro. The molecules tested were the anionic polysaccharides alginates and fucans (with potential nucleation activity) and phenolic substances (secondary metabolites with amphipathic property). The crystallization assays were performed using polystyrene microbridges as the crystallization apparatus. Crystals formed in the microbridges were analyzed using scanning electron microscopy. Interestingly, the results confirmed that the phenolic substances have the specific capability of changing the morphology of calcite crystals grown in vitro by inducing an elongated morphology in the direction of the c-axis. This morphology is similar to that induced by molecules that attach to { h k 0}-crystal planes. It was also shown that the alginates and the fucans do not specifically modulate the morphology of the growing crystals. In fact, these crystals exhibited a rounded shape due to the slower growth rates of several new crystal planes that appeared in the place of the original corners and edges.

  10. Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination

    Science.gov (United States)

    Jeong, Seojeong; Lee, Jaegeun; Kim, Hwan-Chul; Hwang, Jun Yeon; Ku, Bon-Cheol; Zakharov, Dmitri N.; Maruyama, Benji; Stach, Eric A.; Kim, Seung Min

    2016-01-01

    In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05547d

  11. Isotopic tracer evidence for the amorphous calcium carbonate to calcite transformation by dissolution-reprecipitation

    Science.gov (United States)

    Giuffre, Anthony J.; Gagnon, Alexander C.; De Yoreo, James J.; Dove, Patricia M.

    2015-09-01

    Observations that some biogenic and sedimentary calcites grow from amorphous calcium carbonate (ACC) raise the question of how this mineralization process influences composition. However, the detailed pathway and geochemical consequences of the ACC to calcite transformation are not well constrained. This experimental study investigated the formation of calcite from ACC by using magnesium and calcium stable isotope labeling to directly probe the transformation pathway and controls on composition. Four processes were considered: dissolution-reprecipitation, solid state transformation, and combinations of these end-members. To distinguish between these scenarios, ACC was synthesized from natural isotope abundance solutions and subsequently transferred to spiked solutions that were enriched in 43Ca and 25Mg for the transformation to calcite. Isotope measurements by NanoSIMS determined the 43Ca/40Ca, and 25Mg/24Mg ratios of the resulting calcite crystals. Analysis of the data shows the transformation is best explained by a dissolution-reprecipitation process. We find that when a small amount of ACC is transferred, the isotopic signals in the resulting calcite are largely replaced by the composition of the surrounding spiked solution. When larger amounts of ACC are transferred, calcite compositions reflect a mixture between the ACC and initial solution end-member. Comparisons of the measurements to the predictions of a simple mixing model indicate that calcite compositions (1) are sensitive to relative amounts of ACC and the surrounding solution reservoir and (2) are primarily governed by the conditions at the time of ACC transformation rather than the initial ACC formation. Shifts in calcite composition over the duration of the transformation period reflect the progressive evolution of the local solution conditions. This dependence indicates the extent to which there is water available would change the end point composition on the mixing line. While these findings have

  12. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  13. Climate constraints on the carbon intensity of economic growth

    International Nuclear Information System (INIS)

    Development and climate goals together constrain the carbon intensity of production. Using a simple and transparent model that represents committed CO2 emissions (future emissions expected to come from existing capital), we explore the carbon intensity of production related to new capital required for different temperature targets across several thousand scenarios. Future pathways consistent with the 2 °C target which allow for continued gross domestic product growth require early action to reduce carbon intensity of new production, and either (i) a short lifetime of energy and industry capital (e.g. early retrofit of coal power plants), or (ii) large negative emissions after 2050 (i.e. rapid development and dissemination of carbon capture and sequestration). To achieve the 2 °C target, half of the scenarios indicate a carbon intensity of new production between 33 and 73 g CO2/$—much lower than the global average today, at 360 g CO2/$. The average lifespan of energy capital (especially power plants), and industry capital, are critical because they commit emissions far into the future and reduce the budget for new capital emissions. Each year of lifetime added to existing, carbon intensive capital, decreases the carbon intensity of new production required to meet a 2 °C carbon budget by 1.0–1.5 g CO2/$, and each year of delaying the start of mitigation decreases the required CO2 intensity of new production by 20–50 g CO2/$. Constraints on the carbon intensity of new production under a 3 °C target are considerably relaxed relative to the 2 °C target, but remain daunting in comparison to the carbon intensity of the global economy today. (letter)

  14. Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment

    OpenAIRE

    Leonor, I. B.; Baran, E. T.; Kawashita, M.; Reis, R. L.; T Kokubo; Nakamura, T

    2008-01-01

    Bioactive chitosan microparticles can be prepared successfully by treating them with a calcium silicate solution and then subsequently soaking them in simulated body fluid (SBF). Such a combination enables the development of bioactive microparticles that can be used for several applications in the medical field, including injectable biomaterial systems and tissue engineering carrier systems. Chitosan microparticles, 0.6 lm in average size, were soaked either for 12 h in fresh calcium...

  15. The impact of oxalogenic plants on soil carbon dynamics: formation of a millennium carbon storage as calcium carbonate

    OpenAIRE

    Ferro, Katia Imeria; Verrecchia, Eric

    2013-01-01

    Au sud du Burkina Faso, des milliers d’années de pédogénèse ont produit des «Plinthic Ferralsols Arenic» (suivant la WRB). Il a toutefois été observé que sous l’influence d’arbres oxalogènes tels que Milicia excelsa, Afzelia africana et Bombax costatum, les sols évoluent vers des «Ferralic Calcisols Arenic» (selon la WRB) en quelques décennies. Il est admis que le moteur de cette accumulation carbonatée est l’oxalotrophie bactérienne, qui crée une pompe à carbone entre l’atmosphère et les sol...

  16. Low temperature CVD growth of ultrathin carbon films

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC used in several device processing technologies.

  17. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage?

    Science.gov (United States)

    Wiley, Erin; Huepenbecker, Sarah; Casper, Brenda B; Helliker, Brent R

    2013-11-01

    There is no consensus about how stresses such as low water availability and temperature limit tree growth. Sink limitation to growth and survival is often inferred if a given stress does not cause non-structural carbohydrate (NSC) concentrations or levels to decline along with growth. However, trees may actively maintain or increase NSC levels under moderate carbon stress, making the pattern of reduced growth and increased NSCs compatible with carbon limitation. To test this possibility, we used full and half defoliation to impose severe and moderate carbon limitation on 2-year-old Quercus velutina Lam. saplings grown in a common garden. Saplings were harvested at either 3 weeks or 4 months after treatments were applied, representing short- and longer-term effects on woody growth and NSC levels. Both defoliation treatments maintained a lower total leaf area than controls throughout the experiment with no evidence of photosynthetic up-regulation, and resulted in a similar total biomass reduction. While fully defoliated saplings had lower starch levels than controls in the short term, half defoliated saplings maintained control starch levels in both the short and longer term. In the longer term, fully defoliated saplings had the greatest starch concentration increment, allowing them to recover to near-control starch levels. Furthermore, between the two harvest dates, fully and half defoliated saplings allocated a greater proportion of new biomass to starch than did controls. The maintenance of control starch levels in half defoliated saplings indicates that these trees actively store a substantial amount of carbon before growth is carbon saturated. In addition, the allocation shift favouring storage in defoliated saplings is consistent with the hypothesis that, as an adaptation to increasing carbon stress, trees can prioritize carbon reserve formation at the expense of growth. Our results suggest that as carbon limitation increases, reduced growth is not necessarily

  18. Effect of Concentration of Structurally-Different Carboxylic Acids on Growth and Aggregation of Calcium Oxalate in Gel Systems

    Institute of Scientific and Technical Information of China (English)

    DENG,Sui-Ping; OUYANG,Jian-Ming

    2007-01-01

    The effect of concentration of structurally-different carboxylic acids such as ethylene diamine tetraacetic acid (H4edta), citric acid (H3cit), tartaric acid (H2tart), and acetic acid (HOAc) on growth and aggregation of calcium oxalate (CaOxa) in gel systems was comparatively investigated. H2tart and H3cit could change the morphology of calcium oxalate monohydrate (COM) and induce the formation of calcium oxalate dihydrate (COD). H4edta could induce the formation of COD at a lower concentration of 0.33 mmol/L and have the strongest ability to inhibit aggregation of COM. HOAc inhibited COM aggregation only at a higher concentration than 500 mmol/L. With increasing the number of carboxylic groups in an acid or increasing the concentration of carboxylic acid, the capacity of this acid to induce COD formation and to inhibit growth and aggregation of COM crystals increased. That is, this capacity followed the order: H4edta>H3cit>H2tart>>HOAc. The result in this work suggested that the presence of H3cit and H2tart in urine played a role in the natural defense against stone formation.

  19. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    Science.gov (United States)

    Cao, Zhi; Daly, Michael; Clémence, Lopez; Geever, Luke M.; Major, Ian; Higginbotham, Clement L.; Devine, Declan M.

    2016-08-01

    Calcium carbonate (CaCO3) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO3 thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the "complex" process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the "complex" surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the "complex" treatment process, the CaCO3 particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the "wet" and "complex" treated CaCO3 composites had a significantly higher heat of fusion and moisture resistance compared to the "dry" treated CaCO3 composites. Furthermore, "wet" and "complex" treated CaCO3 composites have a significantly higher tensile strength than the composites containing untreated and "dry" treated CaCO3. This is mainly because the "wet" and "complex" treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the "complex" method minimised the negative effects of void

  20. Biomimetic mineralization of calcium carbonate/carboxymethylcellulose microspheres for lysozyme immobilization

    International Nuclear Information System (INIS)

    Porous calcium carbonate/carboxymethylcellulose (CaCO3/CMC) microspheres were prepared by the biomimetic mineralization method for lysozyme immobilization via adsorption. The size and morphology of CaCO3/CMC microspheres were characterized by transmitted electron microscopy (TEM) and zeta potential measurement. The lysozyme immobilization was verified by Fourier transform infrared (FTIR) spectroscopy. The effects of pHs and temperatures on lysozyme adsorption were investigated as well. It was revealed that CaCO3/CMC microspheres could immobilize lysozyme efficiently via electrostatic interactions and a maximum adsorption capacity of 450 mg/g was achieved at pH 9.2 and 25 °C. Moreover, it was found that the adsorption process fitted well with the Langmuir isothermal model. In addition, UV, fluorescence, and circular dichroism (CD) spectroscopic studies showed that lysozyme maintained its original secondary structure during the adsorption/desorption process. Our study therefore demonstrated that CaCO3/CMC microsphere can be used as a cost-effective and efficient support for lysozyme immobilization. - Graphical abstract: CaCO3/CMC microsphere was prepared by a facile biomimetic mineralization method and can be used as an efficient and cost-effective support for lysozyme immobilization. Highlights: ► CaCO3/CMC microspheres were prepared by the biomimetic mineralization method. ► Lysozyme was efficiently immobilized to CaCO3/CMC microspheres via adsorption. ► A maximum adsorption capacity of 450 mg/g was obtained at pH 9.2 and 25 °C. ► The original secondary structure of lysozyme was maintained upon immobilization.

  1. Synthesis of sodium caseinate-calcium carbonate microspheres and their mineralization to bone-like apatite

    Science.gov (United States)

    Xu, Zhewu; Liang, Guobin; Jin, Lin; Wang, Zhenling; Xing, Chao; Jiange, Qing; Zhang, Zhiguang

    2014-06-01

    Phosphoproteins can induce and stabilize calcium carbonate (CaCO3) vaterite, which has desirable features for high reactivity. The purpose of this study was to synthesize bioactive CaCO3 microspheres for bone regeneration. Sodium caseinate (NaCas)-containing CaCO3 microspheres, with the crystal phase of vaterite, were synthesized by fast precipitation in an aqueous solution of CaCl2, Na2CO3, and 2 mg/mL of NaCas. The uniform microspheres exhibited rougher surfaces and lower negative charges than CaCO3 particles without NaCas addition. Fourier-transform infrared spectroscopy (FT-IR) of the microspheres showed characteristic peaks or bands corresponding to phosphate and hydroxyl groups. Thermogravimetric analysis (TGA) curves exhibited approximately 5% weight loss below 600 °C due to the decomposition of NaCas. Scanning electron microscope (SEM) images showed lath-like hydroxyapatite (HAp) on the surface after soaking in simulated body fluid (SBF) at 37 °C for 5 and 10 days. Energy dispersive X-ray spectrometry (EDS) revealed that the agglomerates were composed of Ca, C, O, P, Na, and Mg elements, and the Ca/P ratios ranged from 1.53 to 1.56. X-ray diffraction (XRD) patterns exhibited peaks characteristic of hydroxyapatite. The results of this study demonstrated that the addition of NaCas induced the formation of vaterite microspheres which possesses an enhanced apatite formation after soaking in SBF at 37 °C for 5 and 10 days. These NaCas-CaCO3 microspheres may be a potential biomaterial for bone regeneration.

  2. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian

    2014-12-01

    © 2014 Elsevier Inc. Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

  3. Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents

    Energy Technology Data Exchange (ETDEWEB)

    Dlugosz, Maciej; Bulwan, Maria; Kania, Gabriela; Nowakowska, Maria; Zapotoczny, Szczepan, E-mail: zapotocz@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry (Poland)

    2012-12-15

    We report here on synthesis and characterization of novel hybrid material consisting of silver nanoparticles (nAgs) embedded in calcium carbonate microparticles ({mu}-CaCO{sub 3}) serving as carriers for sustained release. nAgs are commonly used as antimicrobial agents in many commercial products (textiles, cosmetics, and drugs). Although they are considered to be safe, their interactions with human organisms are still not fully understood; therefore it is important to apply them with caution and limit their presence in the environment. The synthesis of the new material was based on the co-precipitation of CaCO{sub 3} and nAg in the presence of poly(sodium 4-styrenesulfonate). Such designed system enables sustained release of nAg to the environment. This hybrid colloidal material (nAg/{mu}-CaCO{sub 3}) was characterized by microscopic and spectroscopic methods. The release of nAg from {mu}-CaCO{sub 3} microparticles was followed in water at various pH values. Microbiological tests confirmed the effectiveness of these microparticles as an antibacterial agent. Importantly, the material can be stored as a dry powder and subsequently re-suspended in water without the risk of losing its antimicrobial activity. nAg/{mu}-CaCO{sub 3} was applied here to insure bacteriostatic properties of down feathers that may significantly prolong their lifetime in typical applications. Such microparticles may be also used as, e.g., components of coatings and paints protecting various surfaces against microorganism colonization.

  4. Evaluation of ERTS data for certain oceanographic uses. [precipitation of calcium carbonate in Lake Michigan, Lake Erie, and Lake Ontario

    Science.gov (United States)

    Strong, A. E. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. According to Lake Michigan records, the pH levels have been steadily increasing as the lake becomes more eutrophic. Numerous upwellings during the summer of 1973, beginning with the late July event, appear to be triggering a chemical precipitation of calcium carbonate. The upwelling provides abundant carbon dioxide into the surface water and results in massive blooms of phytoplankton. As the CO2 is utilized by these microscopic plants the pH is increased (acidity decreases) and CaCO3 no longer is able to remain in solution. The precipitation takes place where the phytoplankton are living, near depths of 10 meters. Therefore, the whiting observed by ERTS-1 is only seen in the green band, as red cannot penetrate but a few meters. With these whitings, secci disc readings lower in July from 10-15 meters to 3-5 meters and green, milky water is observed by research vessels. It appears that whitings have been becoming more frequent since the middle 60's but until ERTS-1 the extent had never been realized. Calcium levels are too low, presently, for a similar precipitate in Lakes Huron or Superior. However, whitings have been seen by ERTS-1 in Lakes Erie and Ontario where the calcium ion and pH levels are more like those found in Lake Michigan.

  5. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Science.gov (United States)

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  6. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  7. A Putative Calcium-Permeable Cyclic Nucleotide-Gated Channel, CNGC18, Regulates Polarized Pollen Tube Growth

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A tip-focused Ca2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca2+ are required for this process. However the molecular identity and regulation of the potential Ca2+ channels remains elusive.The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca2+]ex). CNGC18-yellow fluorescence protein (YFP)was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes.The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator)blocked the PM localization. These results support a role for PM-localized CNGC18 in the regulation of polarized pollen tube growth through Its potential function in the modulation of calcium influxes.

  8. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate: Implications for their use as paleoclimatic proxy

    Science.gov (United States)

    Rodler, A.; Sánchez-Pastor, N.; Fernández-Díaz, L.; Frei, R.

    2015-09-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during the Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation of chromate into the calcite lattice to investigate isotopic changes facilitated by the coprecipitation process. Our experiments indicate enrichment in Cr concentration in the precipitates compared to the solutions, consistent with previous reports of Cr enrichment in chemical sediments compared to ambient seawater. The fractionation of Cr isotopes during calcium carbonate coprecipitation was assumed to be small, based on previously published data of modern seawater and modern non-skeletal marine carbonates. However, results from this study for rapidly precipitated calcium carbonate in the presence of chromate show a tendency for preferential incorporation of heavy Cr isotopes in the precipitates resulting in increasing relative isotope difference between precipitate and initial solution (Δ53Cr[p-is]) from +0.06‰ to +0.18‰, with increasing initial Cr concentration of the solution. Sample precipitation in the presence of chromate also showed the presence of vaterite. Calcium carbonate crystals were also precipitated in a double diffusion silica hydrogel over a longer period of time resulting in samples consisting of micrometric-millimetric calcite crystals, which were again significantly enriched in heavy Cr isotopes compared to the initial solutions. They average, irrespective of the initial Cr concentration, a relative isotope difference (Δ53Cr[p-is]) of +0.29 ± 0.08‰ (2σ), whereas

  9. Carbon nanotube forests growth using catalysts from atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy); Sincrotone Trieste S.C.p.A., s.s. 14, km 163.4, I-34149 Trieste (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy)

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  10. Simulation of the dc Plasma in Carbon Nanotube Growth

    Science.gov (United States)

    Hash, David; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model for the dc plasma used in carbon nanotube growth is presented, and one-dimensional simulations of an acetylene/ammonia/argon system are performed. The effect of dc bias is illustrated by examining electron temperature, electron and ion densities, and neutral densities. Introducing a tungsten filament in the dc plasma, as in hot filament chemical vapor deposition with plasma assistance, shows negligible influence on the system characteristics.

  11. Simulation of the dc plasma in carbon nanotube growth

    International Nuclear Information System (INIS)

    A model for the dc plasma used in carbon nanotube growth is presented, and one-dimensional simulations of an acetylene/ammonia/argon system are performed. The effect of dc bias is illustrated by examining electron temperature, electron and ion densities, and neutral densities. Introducing a tungsten filament in the dc plasma, as in hot filament chemical vapor deposition with plasma assistance, shows negligible influence on the system characteristics

  12. Towards carbon nanotube growth into superconducting microwave resonator geometries

    OpenAIRE

    Blien, S.; Götz, K. J. G.; Stiller, P. L.; Mayer, T.; Huber, T.; Vavra, O.; Hüttel, A. K.

    2016-01-01

    The in-place growth of suspended carbon nanotubes facilitates the observation of both unperturbed electronic transport spectra and high-Q vibrational modes. For complex structures integrating, e.g., superconducting rf elements on-chip, selection of a chemically and physically resistant material that survives the chemical vapor deposition (CVD) process provides a challenge. We demonstrate the implementation of molybdenum-rhenium coplanar waveguide resonators that exhibit clear resonant behavio...

  13. Growth of tungsten oxide on carbon nanowalls templates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua, E-mail: wanghua@dlou.edu.cn [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023 (China); Su, Yan [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Chen, Shuo, E-mail: shuochen@dlut.edu.cn [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Quan, Xie [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-03-15

    Highlights: ► Tungsten oxide deposited on carbon nanowalls by hot filament chemical vapor deposition technique. ► This composite has two-dimensional uniform morphology with a crystalline structure of monoclinic tungsten trioxide. ► Surface photoelectric voltage measurements show that this product has photoresponse properties. - Abstract: In the present work we present a simple approach for coupling tungsten oxide with carbon nanowalls. The two-dimensional carbon nanowalls with open boundaries were grown using plasma enhanced hot filament chemical vapor deposition, and the subsequent tungsten oxide growth was performed in the same equipment by direct heating of a tungsten filament. The tungsten oxide coating is found to have uniform morphology with a crystalline structure of monoclinic tungsten trioxide. Surface photoelectric voltage measurements show that this product has photoresponse properties. The method of synthesis described here provides an operable route to the production of two-dimensional tungsten oxide nanocomposites.

  14. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  15. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    Directory of Open Access Journals (Sweden)

    Lee JA

    2015-03-01

    Full Text Available Jeong-A Lee,1,* Mi-Kyung Kim,1,* Hyoung-Mi Kim,2,* Jong Kwon Lee,3 Jayoung Jeong,4 Young-Rok Kim,5 Jae-Min Oh,2 Soo-Jin Choi1 1Department of Food Science and Technology, Seoul Women’s University, Seoul, Republic of Korea; 2Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Republic of Korea; 3Hazard Substances Analysis Division, Gwangju Regional Food and Drug Administration, Ministry of Food and Drug Safety, Gwangju, Republic of Korea; 4Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea; 5Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea *These authors contributed equally to this work Background: Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics.Methods: We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats.Results: N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen

  16. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution

    Science.gov (United States)

    Wang, Yishan; Zuo, Yu; Zhao, Xuhui; Zha, Shanshan

    2016-08-01

    The corrosion inhibition of calcium lignosulfonate (CLS) for Q235 carbon steel in saturated Ca(OH)2 + 0.1 mol/L NaCl solution was studied by means of weight loss, polarization, fluorescence microscopy (FM), scanning electron microscopy/energy dispersive spectrometry (SEM/EDS), microscopic infrared spectral imaging (M-IR) and X-ray photoelectron spectroscopy (XPS). For the steel in simulated concrete pore solution (pH 12.6), an increase of Eb value and a decrease of icorr value occurred with different concentrations of CLS. The optimal content of CLS was 0.001 mol/L at which the inhibition rate was 98.86% and the Eb value increased to 719 mV after 10 h of immersion. In mortar solution and in reinforced concrete environment, CLS also showed good inhibition for steel. The preferential adsorption of CLS around pits was detected by M-IR. The result illustrates that at the early stage the adsorption of CLS was heterogeneous and CLS may have a competitive adsorption with chloride ions at the active sites, which would be beneficial for decreasing the susceptibility of pitting corrosion. After the pre-filming time, an intact adsorption CLS film formed on carbon steel surface. The adsorption between CLS and calcium presented as Casbnd Osbnd S bonds. The adsorption of CLS on carbon steel surface occurred probably by both physisorption and chemisorption.

  17. Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California

    Science.gov (United States)

    Barnes, I.; O'Neil, J.R.

    1971-01-01

    Two calcium-magnesium carbonate solid solutions form Holocene travertines and conglomerate cements in fresh water stream channels of the Coast Range of California. Calcite does not yield the {015} diffraction maximum. The {006} diffraction maximum is lacking over most of the range of composition of calcite. Calcite has compositions from CaCO3 to Ca0.5Mg0.5CO3. Dolomite yields both the {006} and {015} diffraction maxima over its entire composition range, Ca0.6Mg0.4CO3 to Ca0.5Mg0.5CO3. The Ca-Mg carbonates form in isotopic equilibrium and thermodynamic disequilibrium from dispersion of Ca2+-rich water into CO32--rich water within the alluvium. The stable isotope data suggest that all the Mg-rich carbonates are primary precipitates and not a result of Mg-substitution in precursor CaCO3. There is a correlation between ??C13 and Mg content of the carbonates which predicts a 5%. fractionation of C13 between dolomite and calcite at sedimentary temperatures. C14 is incorporated in Ca-Mg carbonates forming from C13-poor meteoric waters and C13-rich waters from Cretaceous sediments. C14 ages of the Ca-Mg carbonates are apparent, and cannot be corrected to absolute values. Solution rates of calcite decrease with increasing MgCO3 content; dolomite dissolves slower than any calcite. ?? 1971.

  18. Radiological hazards of TENORM in precipitated calcium carbonate generated as waste at nitrophosphate fertilizer plant in Pakistan

    International Nuclear Information System (INIS)

    Highlights: → NORM (naturally occurring radioactive material) in phosphate rock (PR) is converted to TENORM (technologically enhanced naturally occurring radioactive material) as a result of chemical processing of the PR to make phosphate fertilizers. → Precipitated calcium carbonate (PCC) is generated as process waste during nitrophosphate fertilizer production, which contains TENORM. → Activity concentration of the radionuclide in the TENORM was measured using gamma spectrometry and radiological hazard was derived from the measured activities. → Radiological pollution in the environment from TENORM in the PCC has been addressed. → Restricted application of the PCC dose not pose a significant radiological hazard. -- Abstract: The NORM (naturally occurring radioactive material) in phosphate rock is transferred as TENORM (technologically enhanced naturally occurring radioactive material) to phosphatic fertilizers and to the waste generated by the chemical processes. The waste generated at the NP (nitrophosphate) fertilizer plant at Multan in Pakistan is PCC (precipitated calcium carbonate). Thirty samples of the PCC were collected from the heaps of the waste near the fertilizer plant. Activity concentrations of radionuclides in the waste samples were measured by using the technique of gamma ray spectrometry consisting of coaxial type HPGe (high purity germanium) detector coupled with a PC (personal computer) based MCA (multichannel analyzer) through a spectroscopy amplifier. Activity concentrations of 226Ra, 232Th and 40K in the waste samples were determined to be 273 ± 23 (173-398), 32 ± 4 (26-39) and 56 ± 5 (46-66) Bq kg-1 respectively. The activity concentration of 226Ra in the PCC waste was found to be higher than that in naturally occurring calcium carbonate (limestone and marble) and in worldwide soil. Radiological hazard was estimated from indoor and outdoor exposure to gamma rays from the PCC. Indoor annual effective dose was higher than 1 m Sv

  19. Foliar application of calcium chloride and borax influences plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) fruit

    OpenAIRE

    RAB, Abdur; HAQ, Ihsan-ul

    2012-01-01

    The influence of CaCl2 and borax on growth, yield, and quality of tomato was investigated during the years 2009 and 2010. The experiment was laid out with a randomized complete block design. Calcium chloride (0.3% and 0.6%) and borax (0.2% and 0.4%) solutions were applied as foliar sprays either alone or in combination and data were recorded for plant height, branches per plant, flowers per cluster, fruits per plant, yield, fruit weight, fruit firmness, and total soluble solid content of the ...

  20. Response of plant growth to low calcium concentration in the nutrient solution

    NARCIS (Netherlands)

    Amor, del F.M.; Marcelis, L.F.M.

    2005-01-01

    Many studies have indicated the importance of calcium in fruit disorders. This nutrient is often applied in the nutrient solution in relatively high amounts throughout the crop season, usually without taking into account the physiological stage of the plant. Our study aimed to determine the effect o

  1. Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature

    OpenAIRE

    Hu, Yu-Bin; Wolthers, Mariëtte; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2015-01-01

    The effects of pH and phosphate on the precipitation of calcium carbonate polymorphs from aqueous solution were investigated. Experiments were carried out at near-freezing temperature and two different pH conditions (pH 13.4 and 9.0). At each pH condition, solutions having different concentrations of CaCl2 and NaHCO3 were mixed to achieve Ca/CO3 ratios of 1:1 and 10:1 at different pumping rates with and without phosphate. Results showed that, at pH 13.4, only ikaite wa...

  2. Precipitation and dissolution of calcium carbonate: key processes bridging the bio- and geosciences (Vladimir Ivanovich Vernadsky Medal Lecture)

    Science.gov (United States)

    Gattuso, J.-P.

    2012-04-01

    In this Vladimir Ivanovich Vernadsky medal lecture, I will focus on the biogeochemical cycle of calcium carbonate (CaCO3) which is arguably one of the best example of a set processes that bridge the bio- and geosciences. The main reactions involved are calcification and dissolution that, respectively, manufacture and destroy calcium carbonate. Biology is intimately involved in these two processes which are key controls of the Earth's climate and leave remains that are of great use to human societies (as building materials) and geoscientists. I will illustrate the bridge between the bio- and geosciences by providing brief examples for each of the following four issues. (1) The marine cycle of CaCO3 and its relationship with climate. The release of CO2 by the precipitation of calcium carbonate and the uptake of CO2 by its dissolution are important controls of atmospheric CO2 and climate. The vertical distribution of Ψ, the ratio of CO2 released/used per CaCO3 precipitated/dissolved in the ocean will be shown to be consistent with the Högbom-Urey reactions. (2) The use of CaCO3 in paleooceanography. The remains of calcium carbonate shells and skeletons are wonderful archives of past environmental changes. Their isotopic composition and the concen-tration of trace elements are invaluable in the reconstruction of past climate. I will address the challenge of calibrating one of the proxies used to reconstruct past ocean pH. (3) The challenge of understanding calcification. Despite having been investigated for decades, many aspects of the physiological and molecular processes involved in calcification by marine organisms remain obscure. Recent breakthroughs, mostly on reef-building corals, will be briefly reviewed. (4) The response of calcification and dissolution to environmental change. The critical importance of CaCO3 precipitation and dissolution as climate controls makes it vital to understand their response to global environmental changes such as ocean warming and

  3. Ecological comparison of calcium hydroxide and sodium hydrogen carbonate as sorbents; Oekologischer Vergleich der Sorptionsmittel Calciumhydroxid und Natriumhydrogencarbonat

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, Christian; Weber-Blaschke, Gabriele [Technische Univ. Muenchen, Freising (Germany). Lehrstuhl fuer Rohstoff- und Energietechnologie; Mocker, Mario [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Faulstich, Martin [Technische Univ. Muenchen, Straubing (Germany). Wissenschaftszentrum Straubing

    2009-07-01

    Lime products have long been used with success for flue gas purification in waste incineration plants, where they serve to eliminate acid gas pollutants such as sulphur dioxide, hydrogen chloride and hydrogen fluoride. This article presents excerpts of a study commissioned by the German lime industry association for the purpose of obtaining an unbiased well-founded comparison of the environmental impact of the two sorbents calcium hydroxide and sodium hydrogen carbonate. The following questions were addressed by the study: Which of the two flue gas additives provides greater environmental benefit under specified conditions? What parameters influence the outcome? How can the results be viewed in regard to different plant configurations?.

  4. Influence of Calcium Carbonate Fillers on the Properties of Recycled Poly(e-caprolactone) Based Thermoplastic Polyurethane

    OpenAIRE

    Vitalija BETINGYTĖ; Žukienė, Kristina; Virginija JANKAUSKAITĖ; Milašienė, Daiva; Kazys Vytautas MICKUS; Ada GULBINIENĖ

    2012-01-01

    In this work the effects of different crystallographic modifications of calcium carbonate (CaCO3) filler on the melt flow, mechanical properties, hydrolytic degradation, and shape memory behaviour of recycled low-temperature poly(e-caprolactone)-based polyurethane (rTPU) were evaluated. Composites were prepared by two-roll milling varying filler content from 2 wt % to 6 wt %. It was found that at temperature range from 20 °C to 50 °C CaCO3 fillers do not change Young’s modulus, they decrease ...

  5. Electric field effect in the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, E., E-mail: ericvpp@gmail.com; Briceño-Fuenmayor, H. [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Física de Fluidos y Plasma (Venezuela, Bolivarian Republic of); Arévalo, J. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of); Atencio, R. [Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (Venezuela, Bolivarian Republic of); Corredor, L. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of)

    2015-06-15

    The growth of carbon nanotubes (CNTs) under a controlled electric field in a chemical vapor deposition system is investigated. We evaluate the influence of this external field on the morphological and structural characteristics of CNTs. Scanning electron microscopy results display a large presence of carbonaceous material in the positive plate, which appear to be a consequence of the attraction of electric forces over the electronically unbalanced cracked carbon molecules in the heating zone. We also observe a growth behavior for CNTs, in which catalyst particles are localized either at the bottom or the upper part of the nanotube, depending on the intensity and direction of the electric field. A Raman analysis from all obtained carbon materials shows the presence of two peaks, corresponding to the D ∼ 1340 cm{sup −1} and G ∼ 1590 cm{sup −1} bands attributed to multiwall CNTs. The average diameter of the CNTs is in the range between 90 and 40 nm. These results provide experimental evidence for the dependence of the catalyst and subtract interaction on the growing mechanism, in which weak chemical or electronic interactions could stimulate a top-growing as the strongest base-growing process.

  6. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Science.gov (United States)

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  7. Economic Growth And Carbon Emission: A Dynamic Panel Data Analysis

    Directory of Open Access Journals (Sweden)

    Ibrahim BAKIRTAS

    2014-10-01

    Full Text Available The relationship between carbon dioxide emission (CO2 and economic growth is one of the crucial topics in environmental economics. This study is aimed to investigatethat problem. In this study, depending on the theory of Environmental Kuznets Curves (EKC, the impact of income in carbon dioxide emission has measured for 34 OECD and5 BRICS countries with using Dynamic Panel Data Analysis. In this regard OECD countries are classified by income groups due to the average per capita income rate ofOECD to solve the homogeneity problem among OECD countries. On the other hand EKC hypothesis analysed by short and long run income elasticity which will be using foran evident that a country reduces CO2 emissions with the income increase in this study. According to the findings of the study, % 36 of the country sample coherent with theEKC hypothesis. The main encouragement for testing this relationship between economic growth and CO2 emission is leading politicians to reconsider the environmental impactswhich are arising from income increase when they are taking a decision to maximizes the economic growth.Keywords: EKC; OECD; Dynamic Panel Data

  8. Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington

    Science.gov (United States)

    Mainwaring, Douglas B.; Maguire, Douglas A.; Perakis, Steven S.

    2014-01-01

    Studies of nutrient limitation in Douglas-fir forests of the Pacific Northwest focus predominantly on nitrogen, yet many stands demonstrate negligible or even negative growth response to nitrogen fertilization. To understand what nutrients other than nitrogen may limit forest productivity in this region, we tested six fertilizer treatments for their ability to increase stem volume growth response of dominant and co-dominant trees in young Douglas-fir plantations across a range of foliar and soil chemistry in western Oregon and Washington. We evaluated responses to single applications of urea, lime, calcium chloride, or monosodium phosphate at 16 sites, and to two site-specific nutrients blends at 12 of these sites. Across sites, the average stem volume growth increased marginally with urea, lime, and phosphorus fertilization. Fertilization responses generally aligned with plant and soil indicators of nutrient limitation. Response to nitrogen addition was greatest on soils with low total nitrogen and high exchangeable calcium concentrations. Responses to lime and calcium chloride additions were greatest at sites with low foliar calcium and low soil pH. Response to phosphorus addition was greatest on sites with low foliar phosphorus and high soil pH. Blended fertilizers yielded only marginal growth increases at one site, with no consistent effect across sites. Overall, our results highlight that calcium and phosphorus can be important growth limiting nutrients on specific sites in nitrogen-rich Douglas-fir forests of the Pacific Northwest.

  9. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD

    International Nuclear Information System (INIS)

    Graphical abstract: Carbon nanotubes have been grown directly on hydroxyapatite by using microwave plasma-enhanced chemical vapor deposition (MPECVD). Highlights: ► CNTs have been successfully grown directly on hydroxyapatite using MPECVD. ► Diameter distribution of the CNTs lies in the range from 30 to 70 nm. ► The HA surface is partially transformed to β-TCP during the deposition. ► Grown CNTs have good quality and IG/ID ratio lies between 1.243 and 1.774. - Abstract: For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30–70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 °C. Raman spectroscopy indicates that the CNTs are of high quality and the IG/ID ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the β-tricalcium phosphate via dehydroxylation.

  10. CRACK2. Modelling calcium carbonate deposition from bicarbonate solutions in cracks in concrete

    DEFF Research Database (Denmark)

    Brodersen, Knud Erik

    2003-01-01

    diffusion in pore systems in columns of cementitious materials. The hydroxyl is precipitating calcite from a flow of bicarbonate solution in a crack connecting the ends of a row of such columns. Thecementitious material is simulated as calcium hydroxide mixed with inert material but with sodium hydroxide......The numerical CRACK2 model simulates precipitation of calcite from calcium bicarbonate solution (e.g. groundwater) passing through cracks in concrete or other cementitious materials. A summary of experimental work is followed by a detailed description ofthe model. Hydroxyl ions are transported by...

  11. Growth of calcium-aluminum-rich inclusions by coagulation and fragmentation in a turbulent protoplanetary disk: observations and modelisation

    CERN Document Server

    Charnoz, S; Chaumard, N; Baillie, K; Tallifet, E

    2015-01-01

    Whereas it is generally accepted that calcium-aluminum-rich inclusions (CAIs) from chondritic meteorites formed in a hot environment in the solar protoplanetary disk, the conditions of their formation remain debated. Recent laboratory studies of CAIs have provided new kind of data: their size distributions. We show that size distributions of CAIs measured in laboratory from sections of carbonaceous chondrites have a power law size distribution with cumulative size exponent between -1.7 and -1.9, which translates into cumulative size exponent between -2.5 and -2.8 after correction for sectioning. To explain these observations, numerical simulations were run to explore the growth of CAIs from micrometer to centimeter sizes, in a hot and turbulent protoplanetary disk through the competition of coagulation and fragmentation. We show that the size distributions obtained in growth simulations are in agreement with CAIs size distributions in meteorites. We explain the CAI sharp cut-off of their size distribution at ...

  12. Growth and flowering inhibition of Paspalum notatum with application of trinexapac-ethyl and prohexadione-calcium

    Directory of Open Access Journals (Sweden)

    Sidnei R. de Marchi

    2016-03-01

    Full Text Available ABSTRACT This study aimed to evaluate the effect of sequential applications of plant regulators on growth and seedhead emergence of Bahiagrass (Paspalum notatum. The study was carried out on a 15-month-old lawn, in a randomized block design, with four replicates. The treatments consisted of the following plant-growth regulators and dose: trinexapac-ethyl in sequential application of 113 + 113, 226 + 113, 226 + 226, 452 + 113, 452 + 226, 452 + 452 g a.i. ha-1; trinexapac-ethyl in single application of 678 and 904 g a.i. ha-1; and prohexadione-calcium in sequential application of 100 + 100 and 200 + 200 g a.i. ha-1, besides a control, with no application. The effects of treatments were evaluated based on visual injury, plant height, height and number of flower rachises and total dry matter production of clippings. Sequential applications of prohexadione-calcium at 100 + 100 or 200 + 200 g a.i. ha-1 were efficient to reduce plant height, but did not show efficacy to reduce the number and height of seedheads or the total dry matter of clippings of Bahiagrass. However, Bahiagrass lawns can be managed by trinexapac-ethyl sequential applications of 452 + 452 g a.i. ha-1 or single application of 904 g a.i. ha-1, with reduction in the need for mowing for a period of up to 113 days after application, without causing any deleterious effect on the visual aspect of the lawn.

  13. Natural Abundance 43Ca NMR as a Tool for Exploring Calcium Biomineralization: Renal Stone Formation and Growth

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Geoffrey M.; Kirkpatrick, Robert J.

    2011-12-07

    Renal stone diseases are a global health issue with little effective therapeutic recourse aside from surgery and shock-wave lithotripsy, primarily because the fundamental chemical mechanisms behind calcium biomineralization are poorly understood. In this work, we show that natural abundance 43Ca NMR at 21.1 T is an effective means to probe the molecular-level Ca2+ structure in oxalate-based kidney stones. We find that the 43Ca NMR resonance of an authentic oxalate-based kidney stone cannot be explained by a single pure phase of any common Ca2+-bearing stone mineral. Combined with XRD results, our findings suggest an altered calcium oxalate monohydrate-like Ca2+ coordination environment for some fraction of Ca2+ in our sample. The evidence is consistent with existing literature hypothesizing that nonoxalate organic material interacts directly with Ca2+ at stone surfaces and is the primary driver of renal stone aggregation and growth. Our findings show that 43Ca NMR spectroscopy may provide unique and crucial insight into the fundamental chemistry of kidney stone formation, growth, and the role organic molecules play in these processes.

  14. Growth and Characterizations of Pure and Calcium Doped Cadmium Tartrate Crystals by Silica Gel Method

    Directory of Open Access Journals (Sweden)

    N. S. Patil

    2014-10-01

    Full Text Available In the present course of investigation, pure and calcium doped cadmium tartrate crystals were grown in silica gel at room temperature. The optimum conditions were obtained by varying various parameters such as pH of gel, concentration of gel, gel setting time, concentration of reactants etc. Crystals having different morphologies were obtained such as whitish semitransparent, star shaped, needle shaped. Especially, effect of doping of calcium into cadmium tartrate has been studied with respect of size and transparency. It is found that doping enhances the size and transparency of the crystals. As-grown crystals were characterized using scanning electronic microscope (SEM, UV, Energy dispersive X-ray spectroscopy (EDAX.

  15. Strontium hydroxyapatite and strontium carbonate as templates for the precipitation of calcium-phosphates in the absence and presence of fluoride

    Science.gov (United States)

    Sternitzke, Vanessa; Janousch, Markus; Heeb, Michèle B.; Hering, Janet G.; Johnson, C. Annette

    2014-06-01

    The heterogeneous precipitation of calcium-phosphates on calcium hydroxyapatite (Ca10(PO4)6(OH)2 or HAP) in the presence and absence of fluoride is important in the formation of bone and teeth, protection against tooth decay, dental and skeletal fluorosis and defluoridation of drinking water. Strontium hydroxyapatite (Sr10(PO4)6(OH)2 or SrHAP) and strontium carbonate (SrCO3) were used as calcium-free seed templates in precipitation experiments conducted with varying initial calcium-to-phosphate (Ca/P) or calcium-to-phosphate-to-fluoride (Ca/P/F) ratios. Suspensions of SrHAP or SrCO3 seed templates (which were calcium-limited for both templates and phosphate-limited in the case of SrCO3) were reacted at pH 7.3 (25 °C) over 3 days. The resulting solids were examined with Scanning Transmission Electron Microscopy (STEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). Calcium apatite was the predominant phase identified by all techniques independent of the added Ca/P ratios and of the presence of fluoride. It was not possible to make an unambiguous distinction between HAP and fluorapatite (Ca10(PO4)6F2, FAP). The apatite was calcium-deficient and probably contained some strontium.

  16. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    Science.gov (United States)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  17. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani

    International Nuclear Information System (INIS)

    Nano-sized calcium carbonate (nano-CC) was studied in terms of acting as a carrier for a pesticide. Nano-CC was prepared by reaction of calcium chloride and sodium carbonate by the reversed-phase microemulsion method and then loaded with the pesticide validamycin. The resulting material was characterized by X-ray diffraction analysis and scanning electron microscopy. The loading efficiency, sustained-release performance, germicidal efficacy, and stability also were investigated. The size of the loaded nano-CC can be adjusted to between 50 to 200 nm by varying the water/surfactant molar ratio from 30/1 to 10/1, and the loading efficiency can be increased to about 20% by increasing the size of the nano-CC. The material displayed better germicidal efficacy against Rhizoctonia solani compared to conventional technical validamycin after about 7 days, and the time of the release of validamycin was extended to 2 weeks. Given the loading efficiency, stability, sustained-release performance and good environmental compatibility of the material, the method for its preparation may be extended to other hydrophilic pesticide. (author)

  18. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    Science.gov (United States)

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  19. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Raphael Pilo

    2016-03-01

    Full Text Available The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC or Self Adhesive Resin Cement (SARC. Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa were significantly higher than those for SARC (2.28 ± 0.58 MPa. The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  20. The synthesis of spherical calcium carbonate composite in amphiphilic PS-b-PAA solution and its thermal dynamic characteristic

    Institute of Scientific and Technical Information of China (English)

    YUE Linhai; JIN Dalai

    2004-01-01

    Spherical calcium carbonate composite is synthesized in the solution of amphiphilic block copolymer of polystyrene(PS) and poly(acrylic acid)(PAA). SEM and XRD measurements show that the diameter of the particulates decreases with the augment of the PS-b-PAA concentration, crystalline in the composite is calcite and its morphology as well as the structure is changed too. TG-DTA together with IR analysis is applied to investigating the thermal dynamic behavior of the composite. The results show that the composite is mainly composed of two phases, that is, the nano- crystalline calcium carbonate and the PS-b-PA-Ca composites. PS phase decomposes first with a large heat release at about 330℃. However, the PAA chains have relatively high thermal stability, probably due to the structural Ca-O bond, and decomposes at above 400℃. Matching opinions are used to explain the possible reasons for the regular as well as the particular characteristics of the composite corresponding to a certain copolymer concentration.

  1. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    OpenAIRE

    Choksi Krishna; Shenoy Ashoka M; A. R. Shabharaya; Lala Minaxi

    2011-01-01

    The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg) and calcium gluconate (5 mg/kg) were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg) to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate cou...

  2. Zinc oxide catalyzed growth of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    We demonstrate that zinc oxide can catalyze the growth of single-walled carbon nanotubes (SWNTs) with high efficiency by a chemical vapor deposition process. The zinc oxide nanocatalysts, prepared using a diblock copolymer templating method and characterized by atomic force microscopy (AFM), were uniformly spaced over a large deposition area with an average diameter of 1.7 nm and narrow size distribution. Dense and uniform SWNTs films with high quality were obtained by using a zinc oxide catalyst, as characterized by scanning electron microscopy (SEM), Raman spectroscopy, AFM, and high-resolution transmission electron microscopy (HRTEM).

  3. Integration approach for developing a high-performance biointerface: Sequential formation of hydroxyapatite and calcium carbonate by an improved alternate soaking process

    International Nuclear Information System (INIS)

    Biointerfaces are crucial for regulating biofunctions. An effective method of producing new biomaterials is surface modification, in particular, the hybrid organic-inorganic approach. In this paper, we propose a method for the sequential formation of hydroxyapatite and calcium carbonate on porous polyester membranes by using an improved alternate soaking process. The resulting hybrid membranes were characterized in terms of their calcium and phosphorus ion contents; further, their structure was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and infrared spectroscopy (IR). As a typical biofunction, protein adsorption by these hybrid membranes was investigated. Sequential hydroxyapatite and calcium carbonate formation on the membranes was successfully achieved, and the total amounts of hydroxyapatite and calcium carbonate formed were precisely regulated by the preparative conditions. The SEM and XRD characterizations were verified by comparing with the IR results. The amount of adsorbed protein correlated well with not only the amount of hydroxyapatite formed but also the combined amounts of hydroxyapatite and calcium carbonate formed. The results indicate that the hybrid membranes can function as high-performance biointerfaces that are capable of loading biomolecules such as proteins

  4. Studies on structure and organization of calcium carbonate deposits in algae

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, V.; Untawale, A.G.

    oriented on the surface of cells. A study of the structure and organization of calcium deposits is very much essential in the taxonomy of calcareous algae, which is possible by using SEM. Various studies have proved that this tool offers a great potential...

  5. Controlled epitaxial graphene growth within removable amorphous carbon corrals

    Science.gov (United States)

    Palmer, James; Kunc, Jan; Hu, Yike; Hankinson, John; Guo, Zelei; Berger, Claire; de Heer, Walt A.

    2014-07-01

    We address the question of control of the silicon carbide (SiC) steps and terraces under epitaxial graphene on SiC and demonstrate amorphous carbon (aC) corrals as an ideal method to pin SiC surface steps. aC is compatible with graphene growth, structurally stable at high temperatures, and can be removed after graphene growth. For this, aC is first evaporated and patterned on SiC, then annealed in the graphene growth furnace. There at temperatures above 1200 °C, mobile SiC steps accumulate at the aC corral that provide effective step flow barriers. Aligned step free regions are thereby formed for subsequent graphene growth at temperatures above 1330 °C. Atomic force microscopy imaging supports the formation of step-free terraces on SiC with the step morphology aligned to the aC corrals. Raman spectroscopy indicates the presence of good graphene sheets on the step-free terraces.

  6. Exposure Assessment and Inflammatory Response Among Workers Producing Calcium Carbonate Nanomaterials

    Science.gov (United States)

    Cui, Ling

    Problem: Nanotechnology is one of the most rapidly growing fields of science and engineering, and its applications have expanded to numerous research and industrial sectors, from consumer products to medicine to energy. Nano-materials and nanotechnology promise substantial benefits. However, there are many uncertainties and concerns regarding human health and the environment. Numerous toxicological studies on animals and cells in vitro have demonstrated that nanomaterials could cause various adverse health effects, including inflammation, oxidative stress, fibrosis and mutagenesis in the lungs, and cardiovascular and nervous system impairment. Objectives: The overall objective of this study was to characterize particulate exposures in a calcium carbonate nanoparticle manufacturing facility, investigate possible respiratory and cardiovascular effects, and explore the plausibility of an inflammatory mechanism. The associations between exposure level and various health outcomes were investigated. Methodology: Each job was characterized by mass, number and surface area concentration. Job classification was performed based on ranking of the exposure level and statistical models. Lung function tests, exhaled NO and blood pressure (BP) were measured before and after the workshift in the year of 2011. Inflammatory cytokines from induced sputum were measured cross-sectionally in the year of 2011. Data of lung function tests and blood pressure were collected cross-sectionally in the year of 2012. The associations between each exposure metric and health measures in 2012 were investigated. Only mass concentration was linked to both 2011 and 2012 health outcomes. Results: The sampling and analytic methodology used in the study presents the potential to characterize nanoparticle exposure for a variety of operational processes. We found the highest mass exposure occurred at bagging job whereas the highest number and surface area concentration was found at modification

  7. A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti–6Al–4V alloy for orthopedic implants

    International Nuclear Information System (INIS)

    In an attempt to increase the stability, bioactivity and corrosion resistance of Ti–6Al–4V alloy, chitosan (CS) biocomposite coatings reinforced with multiwalled-carbon nanotubes (MWCNTs), and calcium carbonate (CaCO3) for surface modification were utilized by electroless deposition. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) reveals the formation of a compact and highly crosslinked coatings. Electrochemical techniques were used to investigate the coats stability and resistivity for orthopedic implants in simulated body fluid (SBF). The results show that Est value is more positive in the following order: CaCO3/MWCNTs/CS > CS/MWCNTs > CS > MWCNTs. The calculated icorr was 0.02 nA cm−2 for CaCO3/MWCNTs/CS which suggested a high corrosion resistance.

  8. ELECTRICAL RESISTIVITY, CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLYPROPYLENE/MULTI-WALLED CARBON NANOTUBE/CALCIUM CARBONATE COMPOSITES PREPARED BY MELT MIXING

    Institute of Scientific and Technical Information of China (English)

    Ha-da Bao; Zhao-xia Guo; Jian Yu

    2009-01-01

    Polypropylene (PP)/multi-walled carbon nanotube (MWCNT)/calcium carbonate (CaCO3) composites are prepared by melt mixing using two types of CaCO3 of different sizes. The electrical resistivities of the composites with the two types of CaCO3 are all lower than those of the corresponding PP/MWCNT composites at various MWCNT loadings (1 wt%-5 wt%). The morphology of the composites is investigated by field emission scanning electron microscopy (FESEM). The crystallization behavior of PP in the composites is characterized by differential scanning calorimetry (DSC). The storage modulus, as measured by dynamic mechanical analysis (DMA), increases significantly by the presence of CaCO3.

  9. Calcium silicate structure and carbonation shrinkage of a tobermorite-based material

    International Nuclear Information System (INIS)

    Carbonated autoclaved aerated concretes (AACs) show no shrinkage at a degree of carbonation approximately less than 20%. The 29Si MAS NMR spectrum showed that at a degree of carbonation less than 25%, the typical double-chain silicate anion structure of tobermorite-11A was well maintained and interlayer Ca ions were exchanged with protons. This corresponded to the absence of carbonation shrinkage at a degree of carbonation less than 20%. When the degree of carbonation increased from 25% to 50% up to 60%, the double-chain silicate anion structure of tobermorite-11A was decomposed and Ca ions in the Ca-O layers were dissolved, showing a possible mechanism of carbonation shrinkage

  10. Effects of oxygen on multiwall carbon nanotubes growth by PECVD

    Institute of Scientific and Technical Information of China (English)

    Chun-mei ZHANG; Ya-bo FU; Qiang CHEN; Yue-fei ZHANG

    2008-01-01

    Multiwall carbon nanotubes (MWCNTs) were grown by dielectric barrier discharge (DBD)-type plasma enhanced chemical vapor deposition (PECVD) method in downstream. The temperature was 973 K and the com-positions of gases were methane, hydrogen and oxygen in the total pressure of 0.05 MPa. The effect of O2 concen-tration in the mixture on the configuration of carbon nanotubes (CNTs) was investigated in detail. Results from scanning electron microscope (SEM) and transmis-sion electron microscope (TEM) showed that CNTs grown in CH4/H2 (38.6%/61.4%, volume) mixture have many defects and contained disordered graphitic materials. With the addition of appropriate amount of O2 (~0.67%), high-purity CNTs could be obtained. However, no CNT, even no carbon matrix existed under the condition of an excessive oxygen concentration (> 1.0%, volume) in the mixture. In order to understand the role of O2 during CNTs growth, optical emission spectroscopy (OES) was in-situ employed and the results predicted that the improve-ment of CNTs quality in O2 addition was attributed to the effect of OH oxidation from the reaction of atomic oxygen with hydrogen in the plasma.

  11. Experimental study of different carbon dust growth mechanisms

    International Nuclear Information System (INIS)

    Laboratory experiments are proposed to understand the growth mechanisms of spherical carbonous particulates observed in Tokamak dust samples. Examples can be reproduced when carbon is injected in a plasma discharge by sputtering. The particulates morphology, size, structure, mass density depend on the discharge geometry and parameters. At relatively low pressure, nano-metric primary particles are observed either individually or in the form of spherical agglomerates. The charge threshold from which the agglomeration process is stopped by Coulomb repulsion is established. At higher pressure, the produced grains have a high surface porosity never observed at low pressure, this change being due to a difference in the kinetic energy of the surface deposited species. A comparison was done of the surface structure of laboratory dusts and pieces of carbon deposits from the Toroidal Pumped Limiter of Tore Supra. The observed differences can be explained by different production mechanisms and by the fact that the Tokamak deposits could have undergo heating yielding structural graphitization. Further studies are under way in order to obtain a better understanding of the various particulate morphologies. For instance, we plan to use transmission electron microscopy (TEM) and to complete the XANES structure analysis by Raman spectroscopy. A correlation between the new diagnostics results and the transport of neutral and ion species in our discharges is expected. (authors)

  12. Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed indian mustard (brassica juncea) plants

    International Nuclear Information System (INIS)

    The effect of potassium (K) and calcium (Ca) on growth and antioxidant defence system of salt-stressed Indian mustard plants was studied. Twenty-day-old Indian mustard plants grown hydroponically in Hoagland growth medium were randomly divided into five groups. To served as control and did not receive any additional K or Ca (except that present in Hoagland solution), T1 received 150 mM NaCl, T2 was given an additional doze of 6 mM K, T3 was given 5.6 mM Ca as additional doze, while as T4 received a combination of 150 mM NaCl + 6 mM K + 5.6 mM Ca. The response of the plants was studied ten days after treatment. Salt stress inhibited growth parameters including biomass, chlorophyll content, protein content and NR activity. Membrane damage was induced by the salt treatment with a concurrent increase in antioxidant defence system and proline content. Individual application of K and Ca mitigated the negative influence of the stress with the maximum alleviating potential exhibited by the combined application of these nutrients. Results obtained on real time expression of genes encoding enzymatic antioxidants (SOD, APX, CAT and GR), NR and proline supported our findings with biochemical assays. We conclude from the study that maintaining high K and Ca levels may serve as an effective means for regulating the growth and productivity of Indian mustard plants under saline conditions. (author)

  13. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors

    International Nuclear Information System (INIS)

    The thermal performance of a chemical heat pump that uses a calcium oxide/carbon dioxide reaction system was discussed as a heat storage system for utilizing heat output from high temperature gas reactors (HTGR). Calcium oxide/carbon dioxide reactivity for the heat pump was measured using a packed bed reactor containing 1.0 kg of reactant. The reactor was capable of storing heat at 900 deg. C by decarbonation of calcium carbonate and generating up to 997 deg. C by carbonation of calcium oxide. The amount of stored heat in the reactor was 800-900 kJ kg-1. The output temperature of the reactor could be controlled by regulating the carbonation pressure. The thermal storage performance of the reactor was superior to that of conventional sensible heat storage systems. A heat pump using this CaO/CO2 reactor is expected to contribute to thermal load leveling and to realize highly efficient utilization of HTGR output due to the high heat storage density and high-quality temperature output of the heat pump

  14. Experimental and Modeling Study of the Turning Process of PA 6/Nano Calcium Carbonate Composite

    OpenAIRE

    Mehdi Haghi; Reza Farshbaf Zinati; Mohammad Reza Razfar

    2013-01-01

    Nowadays, polymeric nanocomposites have emerged as a new material class with rapidly growing use in industrial products because of good mechanical, thermal, and physical properties. Recently, the requirement of the direct machining of these materials has increased due to the production of the most of them by extrusion method in simple cross section and the increased demand for personalized products. In this work, the effect of turning parameters (cutting speed and feed) and nano calcium carbo...

  15. CRACK2. Modelling calcium carbonate deposition from bicarbonate solutions in cracks in concrete

    OpenAIRE

    Brodersen, Knud Erik

    2003-01-01

    The numerical CRACK2 model simulates precipitation of calcite from calcium bicarbonate solution (e.g. groundwater) passing through cracks in concrete or other cementitious materials. A summary of experimental work is followed by a detailed description ofthe model. Hydroxyl ions are transported by diffusion in pore systems in columns of cementitious materials. The hydroxyl is precipitating calcite from a flow of bicarbonate solution in a crack connecting the ends of a row of such columns. Thec...

  16. Elimination of carbon dioxide and other atmospheric gases by means of calcium rich industrial w aste

    OpenAIRE

    Esquivias, L.; Santos, Alberto; Morales, Alberto

    2010-01-01

    [EN] The present invention relates to the use of an aqueous suspension comprising calcium in a proportion exceeding 15% by weight, the solid phase of such aqueous suspension being preferably portlandite proceeding from chemical industry waste, for the elimination of CO2 and other greenhouse effect gases. The present invention moreover relates to a procedure of elimination of said gases under conditions of ambient pressure and temperatures, through both induced and environmental carbo...

  17. Class and Home Problems: Carbon Dioxide Capture from Coal-Fired Power Plants Using Calcium Looping

    Science.gov (United States)

    Deshpande, Niranjani; Phalak, Nihar; Fan, Liang-Shih; Sundaresan, Sankaran

    2015-01-01

    Calcium looping is based on the simple premise of the reversible reaction between CO[subscript 2] and CaO. This reaction can be used for separation of CO2 from a mixture of gases; most notably the technology finds applications in CO[subscript 2] removal from gas streams in fossil fuel-based energy systems. This article gives a brief overview of…

  18. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    International Nuclear Information System (INIS)

    Highlights: ► LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. ► The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln3+ contents. ► A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0–0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y3+, Gd3+, Dy3+, Er3+ and Yb3+) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([XLn]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [XY] ≤ 0.10 for substituting Y system and at [XLn] ≤ 0.01–0.03 for substituting the other Ln systems. LnPO4 was mixed with LnCaHap at higher [XLn] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [XY] = 0–0.10 were investigated using XRD, TEM, ICP-AES, IR and TG–DTA in detail.

  19. Green growth: Policies for transition towards low carbon economies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Thorvald

    2012-11-01

    For the next fifty years and beyond, the world faces twin challenges: -Enhancing economic opportunities and living standards for a growing global population; -Addressing the environmental threats that, if left largely unaddressed, could undermine our abilities for longer term economic growth and development and the ability to reduce poverty. For twenty years the world community has attempted to face up to these challenges, notably global warming by a 'top down' international negotiation process under the auspices of the UN Framework Convention on Climate Change (UNFCCC). The paper discusses why this process has failed so far. To get out of this impasse, a 'bottom up' policy framework for green growth based on national preferences, possibilities and policies should be considered and is discussed in some detail. However, while green growth may enhance the transition towards low-carbon economies in the short and medium term, it is argued that a 'Global Green Deal' with regional and global rules of the game is needed to reduce the risk for unsustainable development in the longer term.(auth)

  20. Effects of Surface Area and Flow Rate on Marine Bacterial Growth in Activated Carbon Columns

    OpenAIRE

    Shimp, Robert J.; Pfaender, Frederic K.

    1982-01-01

    The colonization of granular activated carbon columns by bacteria can have both beneficial and potentially detrimental consequences. Bacterial growth on the carbon surface can remove adsorbed organics and thus partially regenerate the carbon bed. However, growth can also increase the levels of bacteria in the column effluents, which can adversely affect downstream uses of the treated water. This study of a sand column and several activated carbon columns demonstrated that considerable marine ...

  1. Rare-Earth Calcium Oxyborate Piezoelectric Crystals ReCa4O(BO33: Growth and Piezoelectric Characterizations

    Directory of Open Access Journals (Sweden)

    Fapeng Yu

    2014-07-01

    Full Text Available Rare-earth calcium oxyborate crystals, ReCa4O(BO33 (ReCOB, Re = Er, Y, Gd, Sm, Nd, Pr, and La , are potential piezoelectric materials for ultrahigh temperature sensor applications, due to their high electrical resistivity at elevated temperature, high piezoelectric sensitivity and temperature stability. In this paper, different techniques for ReCOB single-crystal growth are introduced, including the Bridgman and Czochralski pulling methods. Crystal orientations and the relationships between the crystallographic and physical axes of the monoclinic ReCOB crystals are discussed. The procedures for dielectric, elastic, electromechanical and piezoelectric property characterization, taking advantage of the impedance method, are presented. In addition, the maximum piezoelectric coefficients for different piezoelectric vibration modes are explored, and the optimized crystal cuts free of piezoelectric cross-talk are obtained by rotation calculations.

  2. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.

    Science.gov (United States)

    Steiner, Stephen A; Baumann, Theodore F; Bayer, Bernhard C; Blume, Raoul; Worsley, Marcus A; MoberlyChan, Warren J; Shaw, Elisabeth L; Schlögl, Robert; Hart, A John; Hofmann, Stephan; Wardle, Brian L

    2009-09-01

    We report that nanoparticulate zirconia (ZrO(2)) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon exposure to hydrocarbons at moderate temperatures (750 degrees C). High-pressure, time-resolved X-ray photoelectron spectroscopy (XPS) of these substrates during carbon nanotube nucleation and growth shows that the zirconia catalyst neither reduces to a metal nor forms a carbide. Point-localized energy-dispersive X-ray spectroscopy (EDAX) using scanning transmission electron microscopy (STEM) confirms catalyst nanoparticles attached to CNTs are zirconia. We also observe that carbon aerogels prepared through pyrolysis of a Zr(IV)-containing resorcinol-formaldehyde polymer aerogel precursor at 800 degrees C contain fullerenic cage structures absent in undoped carbon aerogels. Zirconia nanoparticles embedded in these carbon aerogels are further observed to act as nucleation sites for multiwall carbon nanotube growth upon exposure to hydrocarbons at CVD growth temperatures. Our study unambiguously demonstrates that a nonmetallic catalyst can catalyze CNT growth by thermal CVD while remaining in an oxidized state and provides new insight into the interactions between nanoparticulate metal oxides and carbon at elevated temperatures. PMID:19663436

  3. Molecular simulation of the carbon nanotube growth mode during catalytic synthesis

    OpenAIRE

    Banerjee, Soumik; Naha, Sayangdev; Puri, Ishwar K.

    2008-01-01

    Catalyzed growth of carbon nanostructures occurs mainly through two modes, i.e., base growth when the metal nanoparticle remains at the bottom of the nanotube, or when it is lifted by the growing carbon nanostructure due to tip growth. A correct prediction of the dominant growth mode depends on the energy gain due to the addition of C atoms from the carbon-metal catalyst solution to the graphene sheets forming the carbon nanostructures. We determine this energy gain through atomistic scale mo...

  4. Growth and characterization of triglycine calcium dibromide, a semiorganic NLO material

    International Nuclear Information System (INIS)

    Single crystals of semiorganic material triglycine calcium dibromide (TGCB) were grown from aqueous solution. The solubility and metastable zone width were found. Single crystal X-ray diffraction analysis was used to estimate the cell parameters of the grown crystals. The structural perfection of crystals has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. Energy dispersive X-ray analysis confirms the presence of elements in the title compound. The grown crystals were tested by FTIR, thermogravimetric and differential thermal analysis, UV-vis-NIR analysis, and dielectrical and mechanical studies. The transmittance of TGCB crystal has been used to calculate the refractive index n, the extinction coefficient K and both the real εr and imaginary εi components of the dielectric constant as functions of wavelength. The second harmonic conversion efficiency of TGCB was determined using the Kurtz and Perry powder technique; it was observed to be greater than that of KDP.

  5. The influence of calcium and pH on growth in primary roots of Zea mays

    Science.gov (United States)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 x Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 mM CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 mM MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.

  6. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Yinfu; Huang, Yanlin; Qi, Shuyun [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Chen, Cuili [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-10-01

    A novel calcium silicate borate Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramic was firstly prepared by the conventional solid-state reaction. In vitro hydroxyapatite mineralization was investigated by soaking the ceramics in simulated body fluid (SBF) solutions at body temperature (37 °C) for various time periods. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) measurements were applied to investigate the samples before and after the immersion of ceramics in SBF solution. The elemental compositions of a hydroxyapatite layer on the ceramics during the mineralization were confirmed by X-ray energy-dispersive spectra (EDS). Meanwhile, the bending strength and elastic modulus of Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics were also measured, which indicate that the biomaterials based on Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics possess bioactivity and might be a potential candidate as biomaterials for hard tissue repair. The bioactive mineralization ability was evaluated on the base of its crystal structural characteristics, i.e., silanol (Si–OH) and B–OH groups can be easily induced on the surface of Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics soaked in SBF solutions. - Highlights: • Calcium silicate borate Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics were developed as a new biomaterial. • Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} shows a superior in vitro bioactivity by inducing bone-like apatite. • Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} has good mechanical properties as potential candidate biomaterials. • The structure with SiO{sub 4} and BO{sub 3} groups is favorable for hydroxyapatite formation.

  7. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics

    International Nuclear Information System (INIS)

    A novel calcium silicate borate Ca11Si4B2O22 ceramic was firstly prepared by the conventional solid-state reaction. In vitro hydroxyapatite mineralization was investigated by soaking the ceramics in simulated body fluid (SBF) solutions at body temperature (37 °C) for various time periods. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) measurements were applied to investigate the samples before and after the immersion of ceramics in SBF solution. The elemental compositions of a hydroxyapatite layer on the ceramics during the mineralization were confirmed by X-ray energy-dispersive spectra (EDS). Meanwhile, the bending strength and elastic modulus of Ca11Si4B2O22 ceramics were also measured, which indicate that the biomaterials based on Ca11Si4B2O22 ceramics possess bioactivity and might be a potential candidate as biomaterials for hard tissue repair. The bioactive mineralization ability was evaluated on the base of its crystal structural characteristics, i.e., silanol (Si–OH) and B–OH groups can be easily induced on the surface of Ca11Si4B2O22 ceramics soaked in SBF solutions. - Highlights: • Calcium silicate borate Ca11Si4B2O22 ceramics were developed as a new biomaterial. • Ca11Si4B2O22 shows a superior in vitro bioactivity by inducing bone-like apatite. • Ca11Si4B2O22 has good mechanical properties as potential candidate biomaterials. • The structure with SiO4 and BO3 groups is favorable for hydroxyapatite formation

  8. Magnesium chloride as a leaching and aragonite-promoting self-regenerative additive for the mineral carbonation of calcium-rich materials

    OpenAIRE

    Santos, Rafael; Bodor, Marius; Dragomir, Paul; Vraciu, Andreea; Vlad, Maria; Van Gerven, Tom

    2014-01-01

    Two approaches for the intensification of the mineral carbonation reaction are combined and studied in this work, namely: (i) the calcium leaching and aragonite promoting effects of magnesium chloride (MgCl2), and (ii) the passivating layer abrasion effect of sonication. The alkaline materials subjected to leaching and carbonation tests included lime, wollastonite, steel slags, and air pollution control (APC) residue. Batch leaching tests were conducted with varying concentrations of additive...

  9. Depositional environments inferred from variations of calcium carbonate, organic carbon, and sulfide sulfur: a core from southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Iyer, S.D.; Chauhan, O.S.; PrakashBabu, C.

    Pleistocene has been inferred. The higher contents of organic carbon and sulfide sulfur and their negative relationship clearly establish the existence of a reducing environment below 65 cm subbottom depth. The occurrence of pyrite framboids and crystals...

  10. Growth of Ag nanocrystals on multiwalled carbon nanotubes and Ag-carbon nanotube interaction

    Institute of Scientific and Technical Information of China (English)

    WANG ZhenXia; LI XinNian; REN CuiLan; YONG ZhenZhong; ZHU JianKang; LUO WenYun; FANG XiaoMing

    2009-01-01

    The experimental investigations on the interaction between Ag-nanocrystal particles (Ag-NCPs) and carbon nanotubes (CNTs) in Ag-nanocrystal particles/carbon nanotubes (Ag-NCPs/CNTs) hybrid structures were reported.The growth of Ag-NCPs on multiwalled carbon nanotubes (MWCNTs) was carried out by thermal evaporation deposition.High-resolution transmission electron microscopy and X-ray diffraction analyses revealed that Ag-NCPs had the crystal lattice feature of face-centered cube (fcc).The growth of Ag-NCPs on MWCNTs induced the cross-section deformation of MWCNT.The ex-perimental results also showed that the synthesized Ag-NCPs/CNTs hybrid structure appeared as quasi-one dimensional nanowires containing the Ag-NCP/CNT hetero-junction.There was local cross-section deformation on MWCNTs at the interface of hetero-junction.These results involve the Important topic about fundamental and practical studies for structure of MNCPs on CNTs and also find clues to further research of Ag nanocrystal growing on MWCNTs and related Ag-CNT interaction.

  11. Growth of Ag nanocrystals on multiwalled carbon nanotubes and Ag-carbon nanotube interaction

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The experimental investigations on the interaction between Ag-nanocrystal particles (Ag-NCPs) and carbon nanotubes (CNTs) in Ag-nanocrystal particles/carbon nanotubes (Ag-NCPs/CNTs) hybrid structures were reported. The growth of Ag-NCPs on multiwalled carbon nanotubes (MWCNTs) was carried out by thermal evaporation deposition. High-resolution transmission electron microscopy and X-ray diffraction analyses revealed that Ag-NCPs had the crystal lattice feature of face-centered cube (fcc). The growth of Ag-NCPs on MWCNTs induced the cross-section deformation of MWCNT. The experimental results also showed that the synthesized Ag-NCPs/CNTs hybrid structure appeared as quasi-one dimensional nanowires containing the Ag-NCP/CNT hetero-junction. There was local cross-section deformation on MWCNTs at the interface of hetero-junction. These results involve the important topic about fundamental and practical studies for structure of MNCPs on CNTs and also find clues to further research of Ag nanocrystal growing on MWCNTs and related Ag-CNT interaction.

  12. The use of thermovision technique to estimate the properties of highly filled polyolefins composites with calcium carbonate

    International Nuclear Information System (INIS)

    The aim of this work was to determine the possibility of thermovision technique usage for estimating thermal properties of ternary highly filled composites (PE-MD/iPP/CaCO3) and polymer blends (PE-MD/iPP) during mechanical measurements. The ternary, polyolefin based composites that contained the following amounts of calcium carbonate: 48, 56, and 64 wt % were studied. All materials were applying under tensile cyclic loads (x1, x5, x10, x20, x50, x100, x500, x1000). Simultaneously, a fully radiometric recording, using a TESTO infrared camera, was created. After the fatigue process, all samples were subjected to static tensile test and the maximum temperature at break was also recorded. The temperature values were analyzed in a function of cyclic loads and the filler content. The changes in the Young’s modulus values were also investigated

  13. Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper.

    Science.gov (United States)

    Yoo, Sukjoon; Hsieh, Jeffery S; Zou, Peter; Kokoszka, John

    2009-12-01

    The effective treatment and utilization of biowaste have been emphasized in our society for environmental and economic concerns. Recently, the eggshell waste in the poultry industry has been highlighted because of its reclamation potential. This study presents an economical treatment process to recover useful bioproducts from eggshell waste and their utilization in commercial products. We developed the dissolved air floatation (DAF) separation unit, which successfully recovered 96% of eggshell membrane and 99% of eggshell calcium carbonate (ECC) particles from eggshell waste within 2 h of operation. The recovered ECC particles were utilized as coating pigments for ink-jet printing paper and their impact on the ink density and paper gloss were investigated. The addition of the ECC particles as coating pigments enhances the optical density of cyan, magenta and yellow inks while decreasing the black ink density and the gloss of the coated paper. PMID:19665373

  14. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  15. Effect of solid loading and aggregate size on the rheological behavior of PDMS/Calcium Carbonate suspensions

    Directory of Open Access Journals (Sweden)

    E. Behzadfar

    2009-12-01

    Full Text Available The purpose of this study is to examine the effect of solid loading and aggregate size on the rheological behavior of PDMS (polydimethylsiloxane/CC (calcium carbonate suspensions. Mixtures containing 10 to 40 vol% of CC were prepared; the effect of shear rate and particle content on aggregate size and rheological properties was studied. Rheological properties including viscosity, loss modulus, storage modulus and yield stress were measured using rotational and oscillatory rheometry. Casson's equation was found to satisfactorily model the samples' stress response as a function of shear rate for different solid content. While solid content did not have any effect on the aggregate size, shear rate did influence the aggregate median diameter. It was observed that suspensions with higher aggregate size had a higher viscosity. In general, for a given volume fraction, a small change in the aggregate size had a significant impact on the viscosity, particularly at low shear rates.

  16. Fatty Acids Profile during Anaerobic Digestion of Night Soil-Effect of temperature, Calcium Carbonate and Selectively-enriched Inoculum

    Directory of Open Access Journals (Sweden)

    S. I. Alam

    1996-01-01

    Full Text Available Anaerobic biodegradation of night soil was carried out at 5-30 degree centigrade with 1.8-10.62 per cent volatile solids (VS. Biogas production increased with the temperature and VS up to 6.2 per cent. Further increase in VS caused higher Volatile fatty acids (VFA accumulation resulting in decreased gas production. Acetate and propionate accounted for 62-83 per cent of total VFA. Butyrate to isobutyrate ratio increased with VS. Calcium Carbonate promoted VS degradation, biogas production and VFA degradation. The increased methanogenic and decreased sulphate-reducing bacteria caused proportional changes in CH4 and H2S gases. Enrichment with H2 oxidising methanogenic consortium is beneficial by enhancing VFA utilisation by two to three fold.

  17. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  18. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, Akemi, E-mail: yasukawa@cc.hirosaki-u.ac.jp [School of Home Economics, Faculty of Education, Hirosaki University, 1-bunkyo, Hirosaki, Aomori 036-8560 (Japan); Kandori, Kazuhiko [School of Chemistry, Osaka University of Education, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582 (Japan); Tanaka, Hidekazu [Department of Material Science, Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 (Japan); Gotoh, Keiko [Faculty of Human Life and Environment, Nara Women' s University, Kita-uoya-nishi, Nara 630-8506 (Japan)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.

  19. Basalt as a solid source of calcium and alkalinity for the sequestration of carbon dioxide in building materials

    Science.gov (United States)

    Johnson, N. C.; Westfield, I.; Lu, P.; Bourcier, W. L.; Kendall, T.; Constantz, B. R.

    2010-12-01

    Motivated by the idea of converting waste carbon dioxide into usable building products, Calera Corporation has developed a multi-step process that sequesters CO2 as carbonate minerals in cementitious materials. Process inputs include dissolved divalent cations and alkalinity, both of which can be extracted from basalt. In one mode of the Calera process, the electrochemical production of alkalinity generates large volumes of hydrochloric acid as a by-product, which has been shown to effectively leach divalent cations from basalt while being neutralized by the basalt dissolution reaction. Using a 10:1 1M HCl solution to rock ratio, 3500 ppm Ca was extracted while the initial solution was neutralized to a pH of 2.60 in two weeks at a temperature of 80oC in an anoxic batch reactor. In this scenario, mineral carbonation occurs via three steps: electrochemical production of alkalinity, CO2 absorption by the alkaline stream, then precipitation by mixing the basalt-derived divalent cation stream and the CO2-containing alkaline stream. In a second scenario, alkalinity is extracted from basalt using an alkalinity capacitor, a weak acid. This solution may contain a proton source, such as ammonium chloride, or a hydroxyl acceptor, such as boric acid, but the main design constraint is that the pKa of the capacitor be high enough to deprontonate carbonic acid. The weak acid solution is mixed with basalt in an anoxic batch reactor and the dissolving rock consumes protons from the weak acid, generating the conjugate base. The solution rich in conjugate base then absorbs CO2 and the carbonate-rich solution is mixed with a calcium-rich stream to precipitate carbonate minerals. We have extracted up to 1100 mmol alkalinity per kg rock using an alkalinity capacitor, versus no more than 50 mmol alkalinity per kg rock using DI water as a solvent. Again, carbon sequestration occurs via three steps: alkalinity extraction from basalt, CO2 absorption, and finally carbonate precipitation

  20. Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition

    International Nuclear Information System (INIS)

    The pulse electrodeposition (PED) technique was utilized to deposit nanosized (≤10 nm) Ni catalysts on carbon fabric (CF). Via an in situ potential profile, the PED technique can control the Ni catalyst loading, which is an important parameter for the growth of carbon nanofibers (CNFs) on CF. The preparation of CNF-coated CF (carpet-like CF) was carried out in a thermal chemical vapor deposition system with an optimum loading of Ni catalysts deposited in the PED pulse range from 20 to 320 cycles. CNFs grown at 813 K using different pulse cycles had a narrow diameter distribution, around 15 ± 5 nm to 29 ± 7 nm; they have a hydrophobic surface, like lotus leaves. Transmission electron microscopy images confirmed the graphene structural transformation of CNFs with the growth temperature. Solid wire CNFs were initially grown at 813 K with graphene edges exposed on the external surface. At elevated growth temperatures (1073 and 1173 K), bamboo-like CNFs were obtained, with herringbone structures and intersectional hollow cores