WorldWideScience

Sample records for calcium carbides

  1. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  2. Calcium carbide poisoning via food in childhood.

    Science.gov (United States)

    Per, Hüseyin; Kurtoğlu, Selim; Yağmur, Fatih; Gümüş, Hakan; Kumandaş, Sefer; Poyrazoğlu, M Hakan

    2007-02-01

    The fast ripening of fruits means they may contain various harmful properties. A commonly used agent in the ripening process is calcium carbide, a material most commonly used for welding purposes. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous. Once dissolved in water, the carbide produces acetylene gas. Acetylene gas may affect the neurological system by inducing prolonged hypoxia. The findings are headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema and seizures. We report the case of a previously healthy 5 year-old girl with no chronic disease history who was transferred to our Emergency Department with an 8-h history of coma and delirium. A careful history from her father revealed that the patient ate unripe dates treated with calcium carbide.

  3. 40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium carbide production subcategory. The provisions of this subpart are applicable to discharges resulting...

  4. 40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment ENVIRONMENTAL... CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to...

  5. CALCIUM CARBIDE: AN EFFICIENT ALTERNATIVE TO THE USE OF ALUMINUM

    Directory of Open Access Journals (Sweden)

    Amilton Carlos Pinheiro Cardoso Filho

    2013-03-01

    Full Text Available The steel demand for fine applications have increased considerably in the last years, and the criteria for its production are even stricter, mainly in relation to the residual elements content and cleanness required. In relation to the steel cleanness, the main problem faced is the control of the amount and morphology of alumina inclusions, generated in the steel deoxidation with aluminum. Besides harming the products quality, the presence of non metallic inclusions can originate nozzle clogging, and consequently interruptions in the process flux. Aiming to improve the steel cleanness and to minimize nozzle clogging, this study is developed to evaluate the partial substitution of aluminum by calcium carbide in the steel deoxidation. Along the operational procedures, the calcium carbide was applied to 397 heats, through what the improvement in steel cleanness is confirmed, with consequent reduction in the nozzle clogging occurrence.

  6. Calcium Carbide: A Unique Reagent for Organic Synthesis and Nanotechnology.

    Science.gov (United States)

    Rodygin, Konstantin S; Werner, Georg; Kucherov, Fedor A; Ananikov, Valentine P

    2016-04-01

    Acetylene, HC≡CH, is one of the primary building blocks in synthetic organic and industrial chemistry. Several highly valuable processes have been developed based on this simplest alkyne and the development of acetylene chemistry has had a paramount impact on chemical science over the last few decades. However, in spite of numerous useful possible reactions, the application of gaseous acetylene in everyday research practice is rather limited. Moreover, the practical implementation of high-pressure acetylene chemistry can be very challenging, owing to the risk of explosion and the requirement for complex equipment; special safety precautions need to be taken to store and handle acetylene under high pressure, which limit its routine use in a standard laboratory setup. Amazingly, recent studies have revealed that calcium carbide, CaC2 , can be used as an easy-to-handle and efficient source of acetylene for in situ chemical transformations. Thus, calcium carbide is a stable and inexpensive acetylene precursor that is available on the ton scale and it can be handled with standard laboratory equipment. The application of calcium carbide in organic synthesis will bring a new dimension to the powerful acetylene chemistry.

  7. Calcium Carbide: A Unique Reagent for Organic Synthesis and Nanotechnology.

    Science.gov (United States)

    Rodygin, Konstantin S; Werner, Georg; Kucherov, Fedor A; Ananikov, Valentine P

    2016-04-01

    Acetylene, HC≡CH, is one of the primary building blocks in synthetic organic and industrial chemistry. Several highly valuable processes have been developed based on this simplest alkyne and the development of acetylene chemistry has had a paramount impact on chemical science over the last few decades. However, in spite of numerous useful possible reactions, the application of gaseous acetylene in everyday research practice is rather limited. Moreover, the practical implementation of high-pressure acetylene chemistry can be very challenging, owing to the risk of explosion and the requirement for complex equipment; special safety precautions need to be taken to store and handle acetylene under high pressure, which limit its routine use in a standard laboratory setup. Amazingly, recent studies have revealed that calcium carbide, CaC2 , can be used as an easy-to-handle and efficient source of acetylene for in situ chemical transformations. Thus, calcium carbide is a stable and inexpensive acetylene precursor that is available on the ton scale and it can be handled with standard laboratory equipment. The application of calcium carbide in organic synthesis will bring a new dimension to the powerful acetylene chemistry. PMID:26898248

  8. Synthesis of functional acetylene derivatives from calcium carbide.

    Science.gov (United States)

    Lin, Zhewang; Yu, Dingyi; Sum, Yin Ngai; Zhang, Yugen

    2012-04-01

    AHA Erlebnis: CaC(2), used to produce acetylene until several decades ago, is re-emerging as a cheap, sustainable resource synthesized from coal and lignocellulosic biomass. We report efficient catalytic protocols for the synthesis of functional acetylene derivatives from CaC(2) through aldehyde, alkyne, and amine (AAA) as well as alkyne, haloalkane, and amine (AHA) couplings, and in addition demonstrate its use in click and Sonogashira chemistry, showing that calcium carbide is a sustainable and cost-efficient carbon source.

  9. Usability of calcium carbide gas pressure method in hydrological sciences

    Science.gov (United States)

    Arsoy, S.; Ozgur, M.; Keskin, E.; Yilmaz, C.

    2013-10-01

    Soil moisture is a key engineering variable with major influence on ecological and hydrological processes as well as in climate, weather, agricultural, civil and geotechnical applications. Methods for quantification of the soil moisture are classified into three main groups: (i) measurement with remote sensing, (ii) estimation via (soil water balance) simulation models, and (iii) measurement in the field (ground based). Remote sensing and simulation modeling require rapid ground truthing with one of the ground based methods. Calcium carbide gas pressure (CCGP) method is a rapid measurement procedure for obtaining soil moisture and relies on the chemical reaction of the calcium carbide reagent with the water in soil pores. However, the method is overlooked in hydrological science applications. Therefore, the purpose of this study is to evaluate the usability of the CCGP method in comparison with standard oven-drying and dielectric methods in terms of accuracy, time efficiency, operational ease, cost effectiveness and safety for quantification of the soil moisture over a wide range of soil types. The research involved over 250 tests that were carried out on 15 different soil types. It was found that the accuracy of the method is mostly within ±1% of soil moisture deviation range in comparison to oven-drying, and that CCGP method has significant advantages over dielectric methods in terms of accuracy, cost, operational ease and time efficiency for the purpose of ground truthing.

  10. 40 CFR 424.40 - Applicability; description of the covered calcium carbide furnaces with wet air pollution control...

    Science.gov (United States)

    2010-07-01

    ... covered calcium carbide furnaces with wet air pollution control devices subcategory. 424.40 Section 424.40... FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution Control Devices Subcategory § 424.40 Applicability; description of the covered calcium carbide...

  11. Incidence of cancer among workers producing calcium carbide.

    Science.gov (United States)

    Kjuus, H; Andersen, A; Langård, S

    1986-04-01

    The overall mortality and the incidence of cancer have been studied among male employees at a plant producing calcium carbide. The cohort was defined as all men employed at the plant for at least 18 months in the period 1953 to 1970 and was classified according to 10 occupational categories. The 790 men have been observed from 1953 to 1983 and the incidence of cancer in the cohort has been compared with national incidence rates. A significant excess of colonic cancer (standardised incidence ratio, SIR = 2.09) and of prostatic cancer (SIR = 1.78) was found, and also a slight excess of lung cancer among furnace and maintenance workers (SIR = 1.56). The possible exposure of the workers to polycyclic aromatic hydrocarbons, asbestos, and cadmium is discussed.

  12. Investigation of exotic stable calcium carbides using theory and experiment

    Science.gov (United States)

    Li, Yan-Ling; Wang, Sheng-Nan; Oganov, Artem R.; Gou, Huiyang; Smith, Jesse S.; Strobel, Timothy A.

    2015-05-01

    It is well known that pressure causes profound changes in the properties of atoms and chemical bonding, leading to the formation of many unusual materials. Here we systematically explore all stable calcium carbides at pressures from ambient to 100 GPa using variable-composition evolutionary structure predictions using the USPEX code. We find that Ca5C2, Ca2C, Ca3C2, CaC, Ca2C3 and CaC2 have stability fields on the phase diagram. Among these, Ca2C and Ca2C3 are successfully synthesized for the first time via high-pressure experiments with excellent structural correspondence to theoretical predictions. Of particular significance is the base-centred monoclinic phase (space group C2/m) of Ca2C, a quasi-two-dimensional metal with layers of negatively charged calcium atoms, and the primitive monoclinic phase (space group P21/c) of CaC with zigzag C4 groups. Interestingly, strong interstitial charge localization is found in the structure of R-3m-Ca5C2 with semi-metallic behaviour.

  13. Physico-chemical properties and toxic effect of fruit-ripening agent calcium carbide

    Directory of Open Access Journals (Sweden)

    Mohammad Asif

    2012-01-01

    Full Text Available Ripening is the final stage of the maturation process, when the fruit changes color, softens and develops the flavor, texture and aroma that constitute optimum eating quality. This study was conducted to discuss the use of unsatisfactory calcium carbide to ripen fruits for domestic markets as well as their toxic effects on human health. The commonly used ripening agents are calcium carbide, acetylene, ethylene, propylene, ethrel (2-chloroethyl phosphonic acid, glycol, ethanol and some other agents. The calcium carbide is one of the most commonly used ripening agent for fruits, while other calcium salts like calcium ammonium nitrate, calcium chloride and calcium sulfate are used to delay fruit ripening agents for local fruit industries. The use of calcium carbide is being discouraged worldwide, due to associated health hazards. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous, and once dissolved in water, it produces acetylene gas. Arsenic, phosphorous and acetylene gas may affect the different body organs and causes various health problems like headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema, seizures and prolonged hypoxia.

  14. Effects of Different Calcium Carbide Doses on Some Quality Criteria of Kiwifruit (Actinidia deliciosa

    Directory of Open Access Journals (Sweden)

    E. Bal

    2006-05-01

    Full Text Available This research was performed to determine effects of calcium carbide treatments at different doses onripening physiology of cv. Hayward. For this aim, calcium carbide doses of 0, 0.3, 0.5 and 0.7 g were usedand characteristics such as fruit firmness, soluble solids content, titratable acidity, pH of fruit juice, vitamin Ccontent and sensory evaluation, comprising fruit quality were examined with daily during 7 days at roomtemperature (22±0.50C conditions. At the end of the study, increase in softening and sensory evaluationvalues was detected based on the calcium carbide dose and ripening time. During the ripening of kiwifruits, itwas observed that titratable acidity and vitamin C content reduced and pH of fruit juice and soluble solids inwater increased, generally. At the end of 7th day, higher edible fruit quality was determined in fruits treatedwith 0.7 g. calcium carbide and 0.5g and 0.3 g calcium carbide treatments followed it. At the end of theperiod, there was no evidence about edible quality of control fruits.

  15. Reduction of chromium oxides with calcium carbide during thestainless steelmaking process

    Directory of Open Access Journals (Sweden)

    B. Arh

    2015-04-01

    Full Text Available An efficient reduction of chromium from slag requires an appropriate reduction agent for the given steelmaking technology. The usual slag reduction praxis consists of carbon injections and additions of ferrosilicon and aluminum.Reduction of chromium containing slags with calcium carbide is an appealing alternative. Calcium carbide is a strong reduction agent that unlike ferrosilicon and aluminum also provides the possibility of foaming slag formation.Experimental work regarding chromium slag reduction with calcium carbide towards usual slag reduction praxis is described in this work. The results show that higher reduction rates in the stage of refining period of the melt and higher level of overall chromium reduction from slag can be reached with the blowing of CaC2.

  16. [Severe ocular burns by calcium carbide in a speleologist: a case report].

    Science.gov (United States)

    Testud, F; Voegtlé, R; Nordmann, J P; Descotes, J

    2002-03-01

    A case of severe ocular burns in an amateur speleologist is reported. The explosion of his acetylene lamp caused the projection of calcium carbide particles, which induced burning of the cornea and conjunctiva in both eyes. He slowly recovered in several months. The pathophysiology of the burns, linked to the in situ production of lime, and their management are discussed.

  17. The use of calcium carbide in one-pot synthesis of symmetric diaryl ethynes.

    Science.gov (United States)

    Zhang, Weiwei; Wu, Huayue; Liu, Zhiqing; Zhong, Ping; Zhang, Lin; Huang, Xiaobo; Cheng, Jiang

    2006-12-14

    An efficient Pd-catalyzed copper and amine free coupling reaction of acetylene and aryl bromides was achieved with calcium carbide as an acetylene source, using inorganic base and easily prepared, air-stable aminophosphine ligand in common organic solvents, providing symmetric diaryl ethynes in one-pot with yields ranged from moderate to excellent.

  18. Fluoride-assisted activation of calcium carbide: a simple method for the ethynylation of aldehydes and ketones.

    Science.gov (United States)

    Hosseini, Abolfazl; Seidel, Daniel; Miska, Andreas; Schreiner, Peter R

    2015-06-01

    The fluoride-assisted ethynylation of ketones and aldehydes is described using commercially available calcium carbide with typically 5 mol % of TBAF·3H2O as the catalyst in DMSO. Activation of calcium carbide by fluoride is thought to generate an acetylide "ate"-complex that readily adds to carbonyl groups. Aliphatic aldehydes and ketones generally provide high yields, whereas aromatic carbonyls afford propargylic alcohols with moderate to good yields. The use of calcium carbide as a safe acetylide ion source along with economic amounts of TBAF·3H2O make this procedure a cheap and operationally simple method for the preparation of propargylic alcohols.

  19. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    OpenAIRE

    Hongfang Sun; Zishanshan Li; Jing Bai; Shazim Ali Memon; Biqin Dong; Yuan Fang; Weiting Xu; Feng Xing

    2015-01-01

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (...

  20. THE PRODUCTION OF PURE ABSOLUTE ALCOHOL WITH CALCIUM CARBIDE AND ANHYDROUS COPPER SULPHATE.

    Science.gov (United States)

    Lyons, R E; Smith, L T

    1925-09-01

    (1) The above is recommended as an economical, convenient and quick method for producing absolute alcohol on a laboratory scale. If the distillation is executed with free flame, excessive or careless heating must be avoided near the end of the operation because of the copper acetylide in the residue. (2) Calcium carbide is recommended over potassium permanganate or anhydrous copper sulphate as a qualitative reagent in detecting traces of water in alcohol.

  1. New methods for quality-testing of calcium carbide; Pruefung von Calciumcarbid. Vereinfachte Bestimmungsmethoden

    Energy Technology Data Exchange (ETDEWEB)

    Koehn, J. [Bundesanstalt fuer Materialpruefung, Berlin (Germany). Abt. 4 ' Chemische Sicherheitstechnik'

    2002-07-01

    The Federal Institute for Materials Research and Testing (BAM) is appointed for quality-testing of calcium carbide in accordance with the DIN 53 992 standard. The methods for defining the yields of acetylene and phosphine described in this standard approximately exist since 50 years. BAM developed more suitable methods for this purpose in the meantime which are designed to be introduced in the next revision of this standard. (orig.)

  2. Lithium and calcium carbides with polymeric carbon structures.

    Science.gov (United States)

    Benson, Daryn; Li, Yanling; Luo, Wei; Ahuja, Rajeev; Svensson, Gunnar; Häussermann, Ulrich

    2013-06-01

    We studied the binary carbide systems Li2C2 and CaC2 at high pressure using an evolutionary and ab initio random structure search methodology for crystal structure prediction. At ambient pressure Li2C2 and CaC2 represent salt-like acetylides consisting of C2(2-) dumbbell anions. The systems develop into semimetals (P3m1-Li2C2) and metals (Cmcm-Li2C2, Cmcm-CaC2, and Immm-CaC2) with polymeric anions (chains, layers, strands) at moderate pressures (below 20 GPa). Cmcm-CaC2 is energetically closely competing with the ground state structure. Polyanionic forms of carbon stabilized by electrostatic interactions with surrounding cations add a new feature to carbon chemistry. Semimetallic P3m1-Li2C2 displays an electronic structure close to that of graphene. The π* band, however, is hybridized with Li-sp states and changed into a bonding valence band. Metallic forms are predicted to be superconductors. Calculated critical temperatures may exceed 10 K for equilibrium volume structures.

  3. 电石法生产PVC的降耗措施%Discussion on measures of consumption reducing in PVC production by calcium carbide

    Institute of Scientific and Technical Information of China (English)

    张凯鹏; 贾亮; 党斌

    2012-01-01

    介绍了湿法电石生产PVC的原理,分别从电石贮存、乙炔发生、合成气转化和尾气回收等方面分析了降低电石消耗的措施。%The principle of PVC production with wet calcium carbide was introduced,and measures of reducing the consumption of calcium carbide from calcium carbide storage, acetylene generator, conversion of synthesis gas, tail gas recovery were analyzed.

  4. The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon

    Science.gov (United States)

    Wu, Hao; Wang, Xianyou; Jiang, Lanlan; Wu, Chun; Zhao, Qinglan; Liu, Xue; Hu, Ben'an; Yi, Lanhua

    2013-03-01

    Porous calcium carbide-derived carbon (CCDC) has been prepared by one-step route from CaC2 in a freshly prepared chlorine environment at lower temperature, and following activated by ZnCl2 to get activated CCDC. The performances of the supercapacitors based on activated CCDC as electrode active material in aqueous KOH, K2SO4, KCl and KNO3 electrolytes are studied by cyclic voltammetry, constant current charged/discharged, cyclic life and electrochemical impedance spectroscopy. It has been found that the supercapacitor using 6 M KOH as electrolyte shows an energy density of 8.3 Wh kg-1 and a power density of 1992 W kg-1 based on the total weight of the electrode active materials with a voltage range 0 V-1 V. Meanwhile, the specific capacitance of the supercapacitor in 6 M KOH electrolyte is 68 F g-1 at the scan rate of 1 mV s-1 in the voltage range of 0 V-1 V, the charge-transfer resistance is extremely low and the relaxation time is the least of all. The supercapacitor also exhibits a good cycling performance and keeps 95% of initial capacity over 5000 cycles.

  5. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  6. Synthesis of nanostructured carbon by chlorination of calcium carbide at moderate temperatures and its performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dai Chunling [School of Chemistry, Xiangtan University, Hunan 411105 (China); Wang, Xianyou [School of Chemistry, Xiangtan University, Hunan 411105 (China)], E-mail: wxianyou@yahoo.com; Wang Ying [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei 430073 (China); Li Na; Wei Jianliang [School of Chemistry, Xiangtan University, Hunan 411105 (China)

    2008-12-01

    A new type of one-step preparation technique for the calcium carbide-derived carbon (CaC{sub 2}-CDC) was developed. In this study, CaC{sub 2}-CDC was synthesized from CaC{sub 2} in a freshly prepared chlorine environment in the temperature range of 100-600 deg. C. The structure and morphology of as-prepared CaC{sub 2}-CDC were studied by X-ray diffraction, transmission electron microscopy and nitrogen sorption experiment. Analysis of X-ray diffraction and transmission electron microscopy showed that CaC{sub 2}-CDC is an amorphous nanoporous material, and the structure depended on the synthesis temperature. The resultant carbon demonstrated narrow pore size distribution (PSD) and specific surface area (SSA) close to 800 m{sup 2} g{sup -1} (for nitrogen sorption) at a synthesized temperature of 100 deg. C. Increasing the reaction temperature above 400 deg. C resulted in a lower SSA of CaC{sub 2}-CDC due to the beginning of graphitization tendency. The nanoporous structure and narrow PSD of CaC{sub 2}-CDC indicated potential application as electrode materials in supercapacitor. The CaC{sub 2}-CDC exhibited a specific capacitance of 127.7 F g{sup -1} measured from the three-electrode cyclic voltammetry experiment at 10 mV s{sup -1}.

  7. Cementing Material From Rice Husk-Broken Bricks-Spent Bleaching Earth-Dried Calcium Carbide Residue

    Directory of Open Access Journals (Sweden)

    Muthengia Jackson Washira

    2012-10-01

    Full Text Available A cementious material, coded CSBR (Carbide residue Spent bleaching earth Broken bricks and Rice husks, was made from dried calcium carbide residue (DCCR and an incinerated mix of rice husks (RH, broken bricks (BB and spent bleaching earth (SBE. Another material, coded SBR (Spent bleaching earth Broken bricks and Rice husk ash, was made from mixing separately incinerated RH, SBE and ground BB in the same ash ratio as in CSBR. When CSBR was inter-ground with Ordinary Portland Cement (OPC, it showed a continued decrease in Ca(OH2 in the hydrating cement as a function of curing time and replacement levels of the cement. Up to 45 % replacement of the OPC by CSBR produced a Portland pozzolana cement (PPC material that passed the relevant Kenyan Standard. Incorporation of the CSBR in OPC reduces the resultant calcium hydroxide from hydrating Portland cement. The use of the waste materials in production of cementitious material would rid the environment of wastes and lead to production of low cost cementitious material.

  8. Biomimetic mineralization of calcium phosphate on a functionalizaed porous silicon carbide biomaterial

    NARCIS (Netherlands)

    Dey, A.; Hoogen, van de C.J.; Rosso, M.; Lousberg, N.J.H.G.M.; Hendrix, M.M.R.M.; Friedrich, H.; Ramirez Rico, J.; Zuilhof, H.; With, de G.; Sommerdijk, N.A.J.M.

    2012-01-01

    Porous biomorphic silicon carbide (bioSiC) is a structurally realistic, high-strength, and biocompatible material which is promising for application in load-bearing implants. The deposition of an osteoconductive coating is essential for further improvement of its integration with the surrounding tis

  9. Successful Commercial Testing of Novel Dry Calcium Carbide Process for Manufacture of Acetylene at Xindou Kaixing Technology Company

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The package 36 m3/h commercial test unit for manufacture of acetylene via dry CaC2 process independently developed by the Xindou Kaixing Technology Company in Chendu has been successfully demonstrated. This achievement has ap-plied for a Chinese invention patent and a patent on practi-cal new equipment. Currently the Kaixing Technology Com-pany is planning to construct a 360 m3/h dry acetylene pro-duction line at the customer site. The results of multiple feeding tests had revealed that the utilization of reaction water and gasification water was close to 100%, and the acetylene purity exceeded 98.5% with acetylene yield reach-ing over 98%. The byproduct was the powdered calcium car-bide residue with its water content lower than 8%, and its grain size less than 0.6 mm containing less than 0.04% of acetylene.

  10. Low temperature synthesis of high quality carbon nanospheres through the chemical reactions between calcium carbide and oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yonggui, E-mail: xieyg2004@163.com [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Huang Qizhong, E-mail: qzhuang@mail.csu.edu.cn [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Huang Baiyun [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Xie Xiangmin [Applied Chemistry Department, College of Science, Hunan Agricultural University, Changsha, Hunan 410128 (China)

    2010-11-01

    Carbon nanospheres (CNSs) were synthesized through the chemical reactions of calcium carbide and oxalic acid without using catalysts. The chemical reactions were carried out in a sealed stainless steel pressure vessel with various molar ratios at temperatures of 65-250 deg. C. The synthesized CNSs have been characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) attached to the SEM, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The total yield of carbonaceous materials relative to the starting material is about 4% (w/w). SEM and TEM results reveal that the percentage of CNSs is high (>95%). The CNSs that have been synthesized are roe-like spheres of relatively uniform size with diameters of 60-120 nm. The attached EDS result shows that the carbon content of CNSs reaches up to 98%.

  11. Simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by slurry-sampling graphite furnace AAS.

    Science.gov (United States)

    Minami, Hirotsugu; Yada, Masako; Yoshida, Tomomi; Zhang, Qiangbin; Inoue, Sadanobu; Atsuya, Ikuo

    2004-03-01

    A fast and accurate analytical method was established for the simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by graphite furnace atomic absorption spectrometry using a slurry sampling technique and a Hitachi Model Z-9000 atomic absorption spectrometer. The slurry samples were prepared by the ultrasonication of silicon carbide or silicon nitride powders with 0.1 M nitric acid. Calibration curves were prepared by using a mixed standard solution containing aluminum, calcium, iron and 0.1 M nitric acid. The analytical results of the proposed method for aluminum, calcium and iron in silicon carbide and silicon nitride reference materials were in good agreement with the reference values. The detection limits for aluminum, calcium and iron were 0.6 microg/g, 0.15 microg/g and 2.5 microg/g, respectively, in solid samples, when 200 mg of powdered samples were suspended in 20 ml of 0.1 M nitric acid and a 10 microl portion of the slurry sample was then measured. The relative standard deviation of the determination of aluminum, calcium and iron was 5 - 33%.

  12. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    Science.gov (United States)

    Zheng, Liping; Wang, Ying; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie; Guo, Jia

    Calcium carbide (CaC 2)-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N 2 sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g -1 measured by cyclic voltammetry at 1 mV s -1. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles.

  13. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liping; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie [School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, Xiangtan University, Hunan 411105 (China); Wang, Ying; Guo, Jia [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei 430073 (China)

    2010-03-15

    Calcium carbide (CaC{sub 2})-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N{sub 2} sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g{sup -1} measured by cyclic voltammetry at 1 mV s{sup -1}. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles. (author)

  14. Acetylene Resembling Effect of Ethylene on Seed Germination: Evaluating the Effect of Acetylene Released from Calcium Carbide

    Directory of Open Access Journals (Sweden)

    Kambiz MASHAYEKHI

    2015-09-01

    Full Text Available Some vegetable seeds need a very long time to germinate. In these kinds of seeds the second phase of germination is very long. As acetylene’s chemical structure is almost similar to the gaseous hormone ethylene, its’ physiological effect on seed germination should be very similar as well. Therefore, an experiment was established in order to enhance seed germination, by treating seeds with acetylene released from interaction of calcium carbide (CaC2 with water (H2O. A simple system was designed for efficient and proper use of gaseous acetylene resulted from the two substrates interaction, which conducted the produced gas obtained inside the interaction chamber into a sealed container wherein seeds were floating in water. This experiment aimed to evaluate the effect of one concentration of acetylene with different exposure periods (between 1 to 8 hours on parsley, celery and Swees chard seeds’ germination (chosen as late germinating vegetables. The effect of acetylene on seed germination speed and percent was investigated. There were significant differences in both percent and speed of germination within the various treatments. By floating for 3, 5 and 3 hours for parsley, celery and Swiss chard respectively, the highest germination rates were observed. The highest germination speed was achieved by 5, 5 and 3 hours floating respectively for parsley, celery and Swiss chard. Based on the results obtained, the current experiment suggests that acetylene has positive effect on enhancing seed germination of named vegetables, and played the role of ethylene, its effects resembling in regard to seed germination process.

  15. Ripening of fruits of 'Dwarf Prata' banana (Musa acuminata x Musa balbisiana, AAB group)irradiated and treated with calcium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Martineli, Maristella [Instituto de Quimica. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Coneglian, Regina C.C.; Vasconcellos, Marco A.S.; Silva, Eduardo, E-mail: rccconeg@ufrrj.br, E-mail: masv@ufrrj.br [Departamento de Fitotecnia. Instituto de Agronomia. Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Vital, Helio C., E-mail: vital@ctex.eb.br [Secao de Defesa Nuclear. Divisao de Defesa Quimica, Biologica e Nuclear. Centro Tecnologico do Exercito (CTEx), Guaratiba, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The competing effects resulting from the exposure of fruits of 'warf prata' banana (Musa acuminata x Musa balbisiana, AAB group) to gamma radiation and to calcium carbide have been investigated in this work. The fruits were harvested in a pre-climateric stage (green colored though physiologically developed) in the city of Jaiba, state of Minas Gerais, and gamma irradiated with doses of 0.25 or 0.50 kGy in a research irradiating facility at the Brazilian Army Technology Center (CTEx) in the city of Rio de Janeiro. Some samples were also exposed to calcium carbide for 32 hours in order to accelerate ripening. Quantitative estimates of peel color, disease index and fresh mass loss were performed for 9 days while the fruits were kept at an average temperature of 23 deg C. The analyses were performed in the Federal Rural University of Rio de Janeiro, located in the city of Seropedica. The following treatments or combination of processes have been tested: untreated (control); treated only with irradiation with doses of 0.25 kGy or 0.50 kGy; treated with irradiation with doses of 0.25 kGy or 0.50 kGy and then exposed to calcium carbide. The fruits treated solely with irradiation with 0.25 kGy exhibited a better response during the first days of storage, although their initial green coloration vanished with time. In addition, the fungi Colletotrichum musae and Lasidioplodia theobroma were detected in samples submitted to the combination of both processes. In contrast, such fungi were not observed in fruits that had only been exposed to 0.25 kGy and exhibited low disease indices. Also, 1-2 cm lesions were detected on fruits.(author)

  16. 环氧丙烷装置皂化电石渣处理方案%Feasibility scheme of epoxy propane saponification calcium carbide slag produce autoclaved fly ash brick

    Institute of Scientific and Technical Information of China (English)

    林盛海; 吴学亮

    2012-01-01

    本文介绍了皂化废电石渣用于生产蒸压粉煤灰砖的可行性。%The feasibility scheme of epoxy propane saponification Calcium carbide slag produce autoclaved fly ash brick was introduced.

  17. Determination of trace water content in gases by calcium carbide reaction method%电石反应法测定气体中微量水分

    Institute of Scientific and Technical Information of China (English)

    乔贺兴; 王玉莲; 陈绍理

    2012-01-01

    介绍了一种测定气体中水含量的方法:依据电石吸收气体中水分并生成乙炔气的原理,采用氢火焰离子检测器气相色谱分析乙炔含量,从而计算出气体中水含量。指出该方法具有精确、方便的特点。%This paper introduced a method for the determination of water content in gases.The method was based on the principle that water contained in gas could be absorbed by calcium carbide and generate acetylene gas,which was then analyzed by gas chromatography with hydrogen flame ionization detector,so the water content in gas could be calculated.The method was accurate and simple.

  18. Evaluation of the toxic potential of calcium carbide in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9).

    Science.gov (United States)

    Danish, Mohd; Fatima, Ambreen; Khanam, Saba; Jyoti, Smita; Rahul; Ali, Fahad; Naz, Falaq; Siddique, Yasir Hasan

    2015-11-01

    In the present study the toxic potential of calcium carbide (CaC2) was studied on the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9). The third instar larvae were exposed to 2, 4, 8, 16 and 32×10(-3)g/ml of CaC2 in diet for 24h. The results reveal that the dose 2×10(-3)g/ml was not toxic but the remaining doses showed a dose dependent significant increase in the hsp70 expression, β-galactosidase activity, tissue damage, oxidative stress markers (lipid peroxidation and protein carbonyl content), glutathione-S-transferase activity, expression of Caspase 3 and 9, apoptotic index and DNA damage (midgut cells). A significant reduction as compared to control group in total protein, glutathione content and acetylcholinesterase activity was also observed. The Inductively Coupled Plasma Atomic Emission Spectroscopy analysis (ICPAES) reveals the presence of copper, iron, sodium, aluminium, manganese, calcium, nickel and mercury. The toxic effects of CaC2 in the present study may be attributed to the impurities present in it.

  19. A new approach of comprehensively utilizing calcium carbide slags and SiCI4%电石渣与四氯化硅综合利用新途径

    Institute of Scientific and Technical Information of China (English)

    凌少青; 廖军

    2012-01-01

    The common methods of utilizing calcium carbide slags and SiCI4 separately were introduced. A new approach of comprehensively utilizing calcium carbide slags and SIC14 was de-scribed, i.e. reacting calcium carbide slags, SIC14 and coal fly ash in a certain proportion under definite conditions, and then mixing the reactants with macadam (or gravel) in suitable ratios to form three-slag mixing materials, which could be used as a new kind of building materials.%介绍了单独回收利用电石渣和SiCI.的常见方法,阐述了电石渣和SiCl。综合利用的新途径,即利用电石渣、SiCl。及粉煤灰按一定配比在一定的条件下进行反应,再与碎石(或砾石)进行计量配比,拌和均匀成三渣拌和料,作为一种新型建筑材料。

  20. Slow-release of methanogenic inhibitors derived from encapsulated calcium carbide using paraffin wax and/or rosin: matrix optimization and diffusion characteristics.

    Science.gov (United States)

    Tiantao, Zhao; Youcai, Zhao; Lijie, Zhang; Haoquan, Chen; Feng, Shi; Haiyan, Zhou

    2011-11-01

    Acetylene has been found to significantly inhibit biological activity of methanogens and thus might be applicable for reducing the generation and emission of methane from municipal solid waste landfills. However, acetylene is gaseous and so it is considered physically infeasible to directly apply this gas to waste in landfill conditions. In the present study, a novel acetylene release mechanism was tested, using a matrix of acetylene entrapped in high hydrophobic paraffin wax and/or rosin and calcium carbide capsules with a ratio of 1.0 g g(-1) matrix and a diameter of 10 mm to facilitate the gradual release of acetylene. A diffusion mechanism model (Q = &b.gamma; × t (0.5)) for the matrix was derived based on the T. Higuchi equation, and the effective diffusion coefficients (D(e)) were acquired by linear fitting. Additionally, it was found that D(e) remained constant when the rosin content was up to more than 20% g g(-1) matrix.

  1. 新疆某电石厂职业病危害控制调查%Investigation on occupational hazard control in calcium carbide plant of Xinjiang

    Institute of Scientific and Technical Information of China (English)

    何华; 廖秀峰; 韩明明; 张勇

    2013-01-01

    [ Objective ] To investigate the harmful level of occupational hazards, influence on health of workers, operation status of occupational hazards control equipment and its effect in a 60 x 10 t/a calcium carbide plant of Xinjiang. [ Methods ] Through field inspection and occupational hygiene surveys, concentration (or intensity) detection of occupational hazards in workplace was conducted to analyze the occupational hazard level, and evaluate its quality and quantity. [Results] A total of 34 kinds of productive dust, physical and chemical harmful factors were detected, 7 exceeded the national standards of occupational health, involving 49 jobs, 17 trades. On-site detection showed 44 out of 76 dust detection points were qualified (58% ) , 84 out of 93 chemical toxicants detection points were qualified (90.3% ) , 35 out of 41 noise detection points were qualified (85.4% ) , 28 out of 30 heat detection points were qualified ( 93. 3% ). Intensity of ionizing radiation and power frequency electric field was qualified in all detection points. [Conclusion]The main occupational hazards are productive dust, physical and chemical hazards, coal dust, calcium carbide dust, chlorine, calcium oxide, noise, carbon monoxide in the 60 x 10 t/a calcium carbide plant of Xinjiang. Companies should take excessive operating points and their workers as the key objects of monitoring and management. By improving the production process, the protection of individual workers was strengthened, taking effective occupational hazard control measures to protect the health of workers and to promote healthy and steady development of enterprises.%目的 调查新疆某60×104 t/a电石厂职业病危害因素的危害程度、对劳动者健康的影响、职业病危害防护设施运行情况及其效果.方法 通过现场检测和职业卫生学调查,检测该作业场所职业病危害因素浓度(或强度),分析其职业病危害程度,并对其进行定性、定量评价.结果 检测生产

  2. The Research Progress of Purification and Comprehensive Utilization of the Sealed Calcium Carbide Furnace Tail Gas in Domestic%国内电石炉尾气净化与综合利用研究进展

    Institute of Scientific and Technical Information of China (English)

    刘安花; 刘泰安; 牛丽慧; 钟文艳; 孙学敏; 杨小波; 张志君; 侯军

    2014-01-01

    The inevitability of purification and comprehensive utilization of the sealed calcium carbide furnace tail gas and describes features of three kinds of purification technology -wet, dry, semi-dry process were discussed.Besides, the research status of resource utilization of calcium carbide furnace tail gas was also introduced , which provided reference and guidance for purification and comprehensive utilization of the sealed carbide furnace tail gas.%论述了密闭电石炉尾气除尘净化以及资源综合利用的必然性,介绍了目前国内电石炉尾气湿法、干法、半干半湿三种净化技术的工艺流程、特点,以及电石炉尾气资源化利用的研究现状,为密闭电石炉尾气净化与资源化处理提供了借鉴和指导。

  3. Measures to treat and recycle waste materials containing mercury from calcium carbide method PVC production%电石法聚氯乙烯含汞废物处理与回收方法

    Institute of Scientific and Technical Information of China (English)

    王小艳; 李国栋

    2013-01-01

    Types of mercury pollution in calcium carbide method PVC production were discussed as well as measures to treat and recycle waste materials containing mercury at home and abroad.The research status and difficulties of technologies for the treatment of vapor, liquid and solid phase waste materials containing mercury were introduced, and the ideas and prospects of integratedly preventing and controlling mercury pollution were proposed.%阐述了电石法聚氯乙烯生产过程中汞污染类型及国内外含汞废物处理与回收的方法,分别介绍了气相、固相、液相含汞废物处理技术的研究现状与难点,并提出了汞污染整体防治工作思路及前景。

  4. Variations in the constant component of the phase voltage in ore-smelting furnaces for the production of phosphorus and calcium carbide

    Science.gov (United States)

    Pedro, A. A.; Arlievskii, M. P.

    2009-12-01

    Phosphorus and carbide furnaces are considered as an example to study the character of changes in and the nature of constant component U cc in the phase voltage of an ore-smelting furnace with a closed furnace top. The value and polarity of U cc depend on the relation between the chemical interaction of an electrode with the reaction-zone components and the degree of development and the conditions of an electric arc.

  5. Efeito de baixa temperatura e do carbureto de cálcio na emergência de túberas-semente do inhame Low temperature and calcium carbide effect on emergence of yam tuber-seeds

    Directory of Open Access Journals (Sweden)

    Ademar P. Oliveira

    2001-11-01

    Full Text Available Com o objetivo de avaliar o efeito da baixa temperatura e do carbureto de cálcio na emergência de túberas-semente de inhame, cultivar Da Costa, foi conduzido um experimento no período de outubro de 1998 a março de 1999, em Areia-PB. Para se avaliar a influência da baixa temperatura sobre a quebra de dormência das túberas-semente, as mesmas foram armazenadas em câmara fria à temperatura de 5ºC e umidade relativa de 90% em quatro períodos (10; 15; 20 e 25 dias. Para se avaliar a eficiência do carbureto de cálcio na quebra da dormência das túberas, as mesmas foram acondicionadas em sacos de polietileno preto com carbureto de cálcio na proporção de 60 g/kg de túberas e armazenadas em condições de galpão aberto (temperatura média de 27ºC e umidade de 64%, em quatro períodos (10; 15; 20 e 25 dias. Como testemunhas foram utilizadas túberas acondicionadas em sacos de polietileno sem carbureto de cálcio e túberas armazenadas em galpão aberto. Posteriormente, as túberas foram plantadas em canteiros para se avaliar a percentagem de emergência de plantas. O delineamento experimental empregado foi inteiramente casualizado com dez tratamentos, em quatro repetições. A unidade experimental constituiu-se de 20 túberas-semente. A baixa temperatura não induziu a emergência das túberas-semente do inhame em nenhum período de armazenamento, e aos 25 dias, ocorreu apodrecimento das mesmas. Aos 40 dias após o plantio verificou-se aumento na emergência das plantas, em túberas armazenadas durante dez e quinze dias em sacos de polietileno contendo carbureto de cálcio; este aumento foi de 35% no número de plantas emergidas em relação às túberas-semente acondicionadas em sacos sem carbureto de cálcio e de 38% em relação às túberas-semente armazenadas em galpão abertoTo evaluate the effect of low temperature and calcium carbide on the emergence of yam tuber-seeds, Da Costa cv., an experiment was carried out from October

  6. Applicability and hydrodynamics of a slurry bubble column reactor for oxygen-heating calcium carbide production%氧热法电石合成淤浆鼓泡床反应器的流动特性

    Institute of Scientific and Technical Information of China (English)

    杨鹏远; 刘陆; 刘辉

    2012-01-01

    With a particular focus on the oxygen-heating calcium carbide synthesis process, where the endothermic calcium carbide synthesis is coupled with exothermic coke combustion, this work investigated experimentally the applicability and hydrodynamics of a suitably designed slurry bubble column reactor for the process. Average gas holdup, axial solid concentration and bubble size distribution in an air-water-chlorinated poly (vinyl chloride) (CPVC) three-phase system were measured. The results show that the average gas holdup increased with increasing superficial gas velocity, whilst addition of solid particles significantly reduced the average gas holdup in the reactor. The axial distribution of solid holdup remained uniform with increasing superficial gas velocity in the range Uf = 0.136 -0. 196 m/s and with decreasing solid particle feed velocity. The small bubble holdup increased but the large bubble holdup decreased with increasing superficial gas velocity. The large bubble holdup initially increased and then decreased with increasing liquid bed height. Our results indicate that the slurry bubble column reactor can be used in oxygen-heating calcium carbide production.%针对氧热法电石合成的电石吸热反应和炭燃烧放热耦合特点,本文设计并研究了适用该过程的三相淤浆鼓泡床反应器.采用空气-水-氯化聚氯乙烯(CPVC)模拟物系,实测了不同表观气速、固体颗粒进料量和静液高度下淤浆鼓泡床床层中局部平均气含率、固含率轴向分布和大、小两类气泡的分布.结果表明表观气速越大,局部平均气含率越大;固体颗粒的加入减小了床层局部平均气含率.当U(g)在0.136 ~0.196 m/s之间时,固含率轴向分布随表观气速增大趋于均匀;固体颗粒进料量越小则固含率沿轴向分布越均匀.随着表观气速的增加,小气泡含量逐渐增加,大气泡含量逐渐减小;随着静液高度的增加,大气泡含量均是先增大后减小.

  7. Mudanças fisiológicas e químicas em bananas 'Nanica' e 'Pacovan' tratadas com carbureto de cálcio Physiological and chemical changes in 'Nanica' and 'Pacovan' bananas treated with calcium carbide

    Directory of Open Access Journals (Sweden)

    Dijauma Honório Nogueira

    2007-01-01

    Full Text Available O objetivo deste trabalho foi avaliar mudanças fisiológicas e químicas em bananas 'Nanica' e 'Pacovan' tratadas com elevadas doses de carbureto de cálcio (CaC2, para geração de acetileno. Os frutos foram colhidos no estádio de maturação II (verdes com leves traços amarelos. As pencas foram acondicionadas em caixas de madeira (50 x 50 x 40 cm, revestidas internamente com papel alumínio, hermeticamente fechadas e tratadas com quatro doses de CaC2 (0; 15; 30 e 45 g.m-3 e (0; 7; 15 e 30 g.m-3 para 'Nanica' e 'Pacovan', respectivamente. Foi utilizado um delineamento inteiramente casualizado, em esquema fatorial 4 x 6 (4 doses e 6 períodos de avaliação, com três repetições. As características avaliadas foram: atividade respiratória, conteúdos de amido, açúcares redutores (AR e clorofila total, e evolução da coloração do fruto (escala de 1-7. O acetileno liberado do CaC2 resultou em aumento da taxa respiratória, degradação do amido e elevação dos teores de AR, degradação da clorofila e intensificação da coloração amarela, uniformizando o amadurecimento, sobretudo para a cultivar Pacovan.The aim of this work was to evaluate physiological changes in 'Nanica' and 'Pacovan' bananas treated with high doses of calcium carbide (CaC2 as a generator of acetylene. Fruits were harvested in the maturity stage II (green fruit with light yellow stains. Hands were placed into wood boxes (50 x 50 x 40 cm internally covered with foil paper, hermetically closed, and treated with 4 doses of calcium carbide (0, 15, 30 and 45 g. m-3 and (0, 7, 15 and 30 g. m-3 for 'Nanica' and 'Pacovan', respectively. It was utilized a completely randomized experimental design, 4 x 6 factorial scheme (4 doses and 6 evaluation periods. The characteristics evaluated were: respiratory activity, starch and reducing sugars (RS, total chlorophyll, and color evolution (1-7 scale. The acetylene released from CaC2 resulted in an increase of respiratory rate

  8. 密闭电石炉余热锅炉工艺优化操作及改进%Process Optimization of Operation and Improvement in Waste Heat Boiler of Closed Calcium Carbide Furnace

    Institute of Scientific and Technical Information of China (English)

    杨海宁; 孙波

    2012-01-01

    叙述了25.5 MVA密闭电石炉的余热锅炉经利用电石炉壁热空气代替余锅燃烧所需冷空气、锅炉除盐水预热、加强引风机清灰管理、优化运行过程中清灰操作、加强除尘器管理等方面进行的优化操作及改进后,中压蒸汽产量明显提高、低压蒸汽耗明显下降,达到工艺优化、节能的目的。%To describe process optimization of operation and improvement in waste heat boiler of 25.5 MVA closed calcium carbide furnace in terms of hot air utilization,desalted water preheating,induced draft fan cleaning,optimize the cleaning operation,and strengthening the dust management,etc.The output of medium pressure steam is increased and consume of low pressure steam is decreased apparently.The process optimization and energy saving and realized after making improvements.

  9. 电石法聚氯乙烯含汞废水吸附除汞%Adsorption removal of mercury contained in wastewater from production of calcium carbide method PVC

    Institute of Scientific and Technical Information of China (English)

    王小昌; 李国栋

    2012-01-01

    Adsorption process for removing mercury was adopted to treat the mercury-containing wastewater released from the production of calcium carbide method PVC,and the mercury removing effects were investigated in an industrial plant.The results showed that this process could obtain good mercury removing effects,mercury content in mercury-containing wastewater could be reduced to less than 0.005 mg/L,the saturated adsorbent could be reused in adsorption mercury removing process after desorption,and the plant had characteristics of simple operation,steady running and little secondary pollution.%采用吸附除汞工艺对电石法聚氯乙烯生产过程中产生的含汞废水进行处理,通过工业化装置运行考察了除汞效果。结果表明:该工艺脱汞效果好,可以将含汞废水中的汞质量浓度降低到0.005mg/L以下,饱和吸附剂可经脱附处理后重新用于吸附除汞,且装置操作简单,运行稳定,不易产生二次污染。

  10. CO2 capture by carbonated carbide slag seriflux after drying in calcium looping cycles%湿法碳酸化电石渣干燥后在钙循环中的 CO2捕集

    Institute of Scientific and Technical Information of China (English)

    何梓睿; 李英杰; 刘长天

    2015-01-01

    A new carbide slag (CS)seriflux utilization was proposed.The flue gas from a coal-fired plant was first bubbled into CS seriflux for CO2 capture. The obtained carbonated carbide slag seriflux (CCSS)was dried and utilized as a CO2 sorbent in the calcium looping cycles.The CO2 capture behavior of the dried CCSS and the raw CS was investigated in a dual fixed-bed reactor and a thermo-gravimetric analyzer. The effects of carbonation time, calcination temperature and carbonation temperature on CO2 capture performance of CCSS in the multiple carbonation/calcination cycles were studied.The results show that the CO2 capture capacity of CCSS was higher than that of CS. Calcined at 950 ℃,CCSS shows better carbonation reactivity than CS,which benefits CO2 capture under severe calcination conditions.In the range of 700 to 725 ℃ for the carbonation, CCSS shows the optimal CO2 capture performance. The calcined CCSS shows better porous microstructure than the calcined CS.The calcined CCSS exhibits a larger surface area and pore volume in the cycles,which favors a higher CO2 capture capacity in the multiple cycles.%提出一种电石渣资源化利用的新方法.首先,将燃煤电站烟气通入电石渣浆液捕集 CO2.碳酸化后的电石渣浆液(CCSS)干燥后在钙循环中作为吸收剂捕集 CO2.在双固定床反应器和热重仪上研究了 CCSS和电石渣的 CO2捕集特性,包括碳酸化时间、煅烧温度和碳酸化温度对 CCSS 循环碳酸化特性的影响.结果表明 CCSS 的 CO2捕集性能和碳酸化速率均高于电石渣.煅烧温度为950℃时,CCSS 比电石渣具有更好反应活性,这有利于在恶劣煅烧条件下捕集 CO2.在700~725℃,CCSS 表现出了最佳的碳酸化性能.煅烧CCSS 比电石渣孔隙结构更好,具有更大比表面积和比孔容,这有利于循环捕集 CO2.

  11. 湿法碳酸化电石渣干燥后在钙循环中的 CO2捕集%CO2 capture by carbonated carbide slag seriflux after drying in calcium looping cycles

    Institute of Scientific and Technical Information of China (English)

    何梓睿; 李英杰; 刘长天

    2015-01-01

    提出一种电石渣资源化利用的新方法.首先,将燃煤电站烟气通入电石渣浆液捕集 CO2.碳酸化后的电石渣浆液(CCSS)干燥后在钙循环中作为吸收剂捕集 CO2.在双固定床反应器和热重仪上研究了 CCSS和电石渣的 CO2捕集特性,包括碳酸化时间、煅烧温度和碳酸化温度对 CCSS 循环碳酸化特性的影响.结果表明 CCSS 的 CO2捕集性能和碳酸化速率均高于电石渣.煅烧温度为950℃时,CCSS 比电石渣具有更好反应活性,这有利于在恶劣煅烧条件下捕集 CO2.在700~725℃,CCSS 表现出了最佳的碳酸化性能.煅烧CCSS 比电石渣孔隙结构更好,具有更大比表面积和比孔容,这有利于循环捕集 CO2.%A new carbide slag (CS)seriflux utilization was proposed.The flue gas from a coal-fired plant was first bubbled into CS seriflux for CO2 capture. The obtained carbonated carbide slag seriflux (CCSS)was dried and utilized as a CO2 sorbent in the calcium looping cycles.The CO2 capture behavior of the dried CCSS and the raw CS was investigated in a dual fixed-bed reactor and a thermo-gravimetric analyzer. The effects of carbonation time, calcination temperature and carbonation temperature on CO2 capture performance of CCSS in the multiple carbonation/calcination cycles were studied.The results show that the CO2 capture capacity of CCSS was higher than that of CS. Calcined at 950 ℃,CCSS shows better carbonation reactivity than CS,which benefits CO2 capture under severe calcination conditions.In the range of 700 to 725 ℃ for the carbonation, CCSS shows the optimal CO2 capture performance. The calcined CCSS shows better porous microstructure than the calcined CS.The calcined CCSS exhibits a larger surface area and pore volume in the cycles,which favors a higher CO2 capture capacity in the multiple cycles.

  12. 电石渣改良过湿黏土的物理力学试验研究%Experimental study on physical and mechanical properties of over-wet clayey soils stabilized by calcium carbide residues

    Institute of Scientific and Technical Information of China (English)

    覃小纲; 杜延军; 刘松玉; 魏明俐; 张莹莹

    2013-01-01

    将工业废料电石渣用于高速公路路基的过湿黏土填料改良.通过含水率、颗分、击实、无侧限抗压强度、回弹模量和干湿循环等室内试验,研究了不同掺量及龄期下,电石渣改良土的基本物理力学性质和水稳性,并与生石灰改良土进行对比.结果表明:电石渣较生石灰比表面积更大、pH更高,在相同掺量和养护条件下,电石渣改良土较生石灰改良土的物理性能改善更明显,粗颗粒含量、最大干密度和最佳含水率都更高,塑性指数更小;电石渣改良土的路用强度指标包括无侧限抗压强度、CBR、回弹模量均优于生石灰改良土.电石渣改良土的水稳定性随掺量的增加而提高,耐干湿性能明显优于生石灰改良土;养护龄期对耐久性的影响不显著.%The calcium carbide residue (CCR) is utilized to improve the over-wet clayey soils,which is used as subgrade materials in highway construction.A series of laboratory tests on moisture content,particle distribution,compaction,unconfined compression strength,modulus of resilience and wetting-drying cycle are carried out to study the mechanical properties of CCR-stabilized soils and lime-stabilized soils.The binder dosages are 4%,6%,8%,and 4%,6% for CCR and lime respectively.The results indicate that the CCR has higher specific surface area,pH and fine particle content.Accordingly,the CCR-stabilized soils have greater physical performance than the lime-stabilized soils in terms of particle size distribution,plasticity index,the maximum dry density and the optimum moisture content.Additionally,the mechanical performance of CCR-stabilized soils is greater than that of the lime-stabilized soils,including the unconfined compressive strength,CBR,modulus of resilience and water durability.

  13. Analysis of the Mercury Flow Direction and Processing Technique in the Production of Polyvinyl Chloride by Calcium Carbide Method%电石法生产聚氯乙烯过程中汞的流向及处理技术分析

    Institute of Scientific and Technical Information of China (English)

    轩卫华; 王银亮

    2013-01-01

    Mercury is a heavy metal which is highly sensitive to the environment; mercury pollution has become a global issue of concerning highly. Mercury resources is fewer in our country, it is a huge barrier for the development of the PVC industry by calcium carbide method in which the mercury is excessively consumed to lead the serious pollution. The source and flow direction of the mercury in the industrial production of polyvinyl chloride ( PVC) by calcium carbide method was analyzed and the corresponding processing technique was puts forward in this paper. It provides ideas for preventing and controlling mercury pollution in PVC industry.%汞是对环境有高度敏感性的重金属,汞污染已经成为全球高度关注的敏感议题.我国汞资源相对匮乏,对汞资源的过度消耗和汞污染是电石法生产聚氯乙烯(PVC)行业发展的巨大障碍.本文针对电石法生产PVC中的严重汞污染问题,分析了生产过程中汞的来源、流向,并且提出对应的处理技术,为电石法生产PVC中的汞污染防治提供思路.

  14. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  15. Co-generation of acetylene and hydrogen for a carbide-based fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Carreiro, Louis G.; Burke, A. Alan [Naval Undersea Warfare Center Division Newport, Code 8231, 1176 Howell Street, Newport, RI 02841 (United States); Dubois, Lily [Stonehill College, Department of Chemistry, 320 Washington Street, Easton, MA 02357 (United States)

    2010-09-15

    The co-generation of acetylene and hydrogen from the hydrolysis of calcium carbide and calcium hydride was investigated as part of a unique carbide-based fuel system intended for high-temperature fuel cells. To gain better control of this highly energetic reaction, glycerin was used to coat the reactant particles to form slurry prior to their reaction with water. This process was shown to moderate the rate of gas production, as well as to provide a means for preparing slurry that could be pumped into the reactor vessel. It was also observed that the presence of calcium hydroxide, a by-product of hydrolysis, lowered the solubility of acetylene resulting in a higher initial flow rate due to less acetylene being dissolved in solution. However, the buildup of calcium hydroxide with time inhibited the hydrolysis of both calcium carbide and calcium hydride causing the acetylene and hydrogen flow rates to decrease. (author)

  16. Bioactivation of biomorphous silicon carbide bone implants.

    Science.gov (United States)

    Will, Julia; Hoppe, Alexander; Müller, Frank A; Raya, Carmen T; Fernández, Julián M; Greil, Peter

    2010-12-01

    Wood-derived silicon carbide (SiC) offers a specific biomorphous microstructure similar to the cellular pore microstructure of bone. Compared with bioactive ceramics such as calcium phosphate, however, silicon carbide is considered not to induce spontaneous interface bonding to living bone. Bioactivation by chemical treatment of biomorphous silicon carbide was investigated in order to accelerate osseointegration and improve bone bonding ability. Biomorphous SiC was processed from sipo (Entrandrophragma utile) wood by heating in an inert atmosphere and infiltrating the resulting carbon replica with liquid silicon melt at 1450°C. After removing excess silicon by leaching in HF/HNO₃ the biomorphous preform consisted of β-SiC with a small amount (approximately 6wt.%) of unreacted carbon. The preform was again leached in HCl/HNO₃ and finally exposed to CaCl₂ solution. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared analyses proved that oxidation of the residual carbon at the surface induced formation of carboxyl [COO⁻] groups, which triggered adsorption of Ca(2+), as confirmed by XPS and inductively coupled plasma optical emission spectroscopy measurements. A local increase in Ca(2+) concentration stimulated in vitro precipitation of Ca₅(PO₄)₃OH (HAP) on the silicon carbide preform surface during exposure to simulated body fluid, which indicates a significantly increased bone bonding activity compared with SiC.

  17. Amadurecimento de manga 'Ubá' com etileno e carbureto de cálcio na pós-colheita Ripening of 'Ubá' mango using ethylene and calcium carbide

    Directory of Open Access Journals (Sweden)

    Danielle Fabíola Pereira da Silva

    2012-02-01

    Full Text Available Mangas 'Ubá' fisiologicamente maduras foram tratadas com etileno ou carbureto de cálcio (CaC2 visando à antecipação e à uniformização do amadurecimento. Frutos com massa média de 133,8±1,9g foram expostos às doses de 0, 20, 40, 80 e 160g de CaC2 m-3 de câmara ou 0, 50, 100, 200 e 400mL de etileno m-3 de câmara durante 24h, em câmaras a 18,1±0,7°C e 90±3% de UR. Após o tratamento, os frutos permaneceram sob as mesmas condições de temperatura e UR, e foram avaliados aos 0, 1, 3, 6, 9, 12 e 15 dias de armazenamento. O etileno e o CaC2 acentuaram a perda de massa das mangas. Nos frutos tratados com CaC2, o pico climatérico respiratório ocorreu aos 3, 6, 9, 9 e 12 dias de armazenamento para as doses 160, 80, 40, 20 e 0g/m³, respectivamente. Nos frutos tratados com etileno, este pico foi registrado aos 3, 3, 6, 6 e 12 dias de armazenamento para as doses 400, 200, 100, 50 e 0mL m-3, respectivamente. Todas as doses de CaC2 e de etileno aceleraram a perda de firmeza, o aumento do teor de sólidos solúveis e de carotenóides, a redução da acidez e a mudança de cor da casca e da polpa dos frutos. Por outro lado, esses produtos também acentuaram a perda de eletrólitos celulares e de ácido ascórbico. Nos frutos tratados com etileno, a queda da firmeza foi mais brusca em relação aos tratados com CaC2. No entanto, o extravasamento de solutos foi maior para frutos tratados com CaC2. O aumento no teor de sólidos solúveis foi proporcional ao aumento das doses de CaC2 e de etileno. Doses de 20g de CaC2 e 50mL de etileno por m³ de câmara foram suficientes para antecipar e uniformizar o amadurecimento de manga 'Ubá'.Physiologically mature 'Ubá' mangoes were treated with ethylene or calcium carbide (CaC2 aiming to accelerate and standardize fruit ripening. Fruits with mean weight of 133.8±1.9g were treated with concentrations of 0, 20, 40, 80 and 160g CaC2 chamber m-3 and 0, 50, 100, 200 and 400mL of ethylene/chamber m³, in

  18. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    OpenAIRE

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  19. Silicon carbide thyristor

    Science.gov (United States)

    Edmond, John A. (Inventor); Palmour, John W. (Inventor)

    1996-01-01

    The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.

  20. Composition Comprising Silicon Carbide

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  1. Sintered silicon carbide

    International Nuclear Information System (INIS)

    A sintered silicon carbide body having a predominantly equiaxed microstructure consists of 91 to 99.85% by weight of silicon carbide at least 95% of which is the alpha phase, up to 5.0% by weight carbonized organic material, 0.15 to 3.0% of boron, and up to 1.0% by weight additional carbon. A mixture of 91 to 99.85 parts by weight silicon carbide having a surface area of 1 to 100 m2/g, 0.67 to 20 parts of a carbonizable organic binder with a carbon content of at least 33% by weight, 0.15 to 5 parts of a boron source containing 0.15 to 3.0 parts by weight boron and up to 15 parts by weight of a temporary binder is mixed with a solvent, the mixture is then dried, shaped to give a body with a density of at least 1.60 g/cc and fired at 1900 to 22500C to obtain an equiaxed microstructure. (author)

  2. Carbide-based fuel system for undersea vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Burke, A. Alan; Carreiro, Louis G.; Greene, Eric S. [Naval Undersea Warfare Center, Division Newport (NUWCDIVNPT), 1176 Howell Street, Building 1302/2, Newport, RI 02841 (United States)

    2008-01-21

    In underwater applications such as unmanned undersea vehicle (UUV) propulsion, mass and volume constraints often dictate system energy density and specific energy, which are targeted to exceed 300 Wh L{sup -1} and 300 Wh kg{sup -1}, respectively, in order to compete with state-of-the-art battery technologies. To address this need, a novel carbide-based fuel system (CFS) intended for use with a solid oxide fuel cell (SOFC) is under development that is capable of achieving these energy metrics as well as sequestering carbon dioxide. The proposed CFS uses calcium carbide and calcium hydride that react with water to generate acetylene and hydrogen as the fuel and calcium hydroxide as a carbon dioxide scrubber. The acetylene is hydrogenated to ethane and then reformed to syngas (carbon monoxide and hydrogen) before being utilized by the SOFC. Carbon dioxide effluent from the SOFC is reacted with the calcium hydroxide to produce a storable solid, calcium carbonate, thus eliminating gas evolution from the UUV. A system configuration is proposed and discussion follows concerning energy storage metrics, operational parameters and preliminary safety analysis. (author)

  3. Carbide-based fuel system for undersea vehicles

    Science.gov (United States)

    Burke, A. Alan; Carreiro, Louis G.; Greene, Eric S.

    In underwater applications such as unmanned undersea vehicle (UUV) propulsion, mass and volume constraints often dictate system energy density and specific energy, which are targeted to exceed 300 Wh L -1 and 300 Wh kg -1, respectively, in order to compete with state-of-the-art battery technologies. To address this need, a novel carbide-based fuel system (CFS) intended for use with a solid oxide fuel cell (SOFC) is under development that is capable of achieving these energy metrics as well as sequestering carbon dioxide. The proposed CFS uses calcium carbide and calcium hydride that react with water to generate acetylene and hydrogen as the fuel and calcium hydroxide as a carbon dioxide scrubber. The acetylene is hydrogenated to ethane and then reformed to syngas (carbon monoxide and hydrogen) before being utilized by the SOFC. Carbon dioxide effluent from the SOFC is reacted with the calcium hydroxide to produce a storable solid, calcium carbonate, thus eliminating gas evolution from the UUV. A system configuration is proposed and discussion follows concerning energy storage metrics, operational parameters and preliminary safety analysis.

  4. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  5. Calcium - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003603.htm Calcium - urine To use the sharing features on this ... enable JavaScript. This test measures the amount of calcium in urine. All cells need calcium in order ...

  6. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  7. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  8. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  9. Determinação rápida da umidade do solo pelo método da reação com o carbureto de cálcio Determination of soil moisture by the calcium carbide method

    Directory of Open Access Journals (Sweden)

    A. Paes de Camargo

    1960-01-01

    Full Text Available São comparados neste trabalho determinações de umidade em 220 amostras de solo, do tipo "arenito Bauru", feitas concomitantemente pelo método da reação com o carbureto de cálcio, no aparelho "Speedy moisture tester", e pelo método clássico da estufa a 105° C. Foi encontrada correlação bastante estreita entre os resultados de um e outro método, sendo o coeficiente de correlação (r igual a 0,97. O método do carbureto apresentou teores um pouco mois baixos que os da estufa, havendo em média uma diferença de 0,6 para menos. A relação verificada entre os dados dos dois métodos pode ser representada pela equação de regressão: Yc= 0,34 + 1,03X, onde Yc é o teor de umidade correspondente à estufa e X o dado pelo método do carbureto. Para facilitar a conversão rápida dos resultados do método do carbureto de cálcio, obtidos com o aparelho "Speedy", em teores normais correspondentes aos da estufa, foi organizada uma tabela baseada nessa equação de regressão. Ela se aplica, todavia, ùnicamente para os solos arenosos do tipo arenito Bauru. O aparelho "Speedy", mostrando-se bastante preciso e permitindo obter os resultados em poucos minutos no próprio campo, sem necessidade de instalações especiais, poderá ser de grande utilidade nos trabalhos que exigem numerosas e rápidas determinações da umidade do solo.This paper reports the results obtained in testing soil moisture of 220 samples of the type "Arenito Bauru" by means of the calcium carbide method ond campares them with those obtained by means of the classic oven drying method. A quite perfect correlation was found between the two sets of results. The coefficient of correlation (r found was .97 and the equation that describes the ratio between the data obtained with one and the other method is the following: Yc = 0.34 + 1.03 X in which Yc is the content of moisture found gravimetrically and X the content obtained by the Speedy tester. In order to facilitate a quick

  10. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  11. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  12. Studies of silicon carbide and silicon carbide nitride thin films

    Science.gov (United States)

    Alizadeh, Zhila

    Silicon carbide semiconductor technology is continuing to advance rapidly. The excellent physical and electronic properties of silicon carbide recently take itself to be the main focused power device material for high temperature, high power, and high frequency electronic devices because of its large band gap, high thermal conductivity, and high electron saturation drift velocity. SiC is more stable than Si because of its high melting point and mechanical strength. Also the understanding of the structure and properties of semiconducting thin film alloys is one of the fundamental steps toward their successful application in technologies requiring materials with tunable energy gaps, such as solar cells, flat panel displays, optical memories and anti-reflecting coatings. Silicon carbide and silicon nitrides are promising materials for novel semiconductor applications because of their band gaps. In addition, they are "hard" materials in the sense of having high elastic constants and large cohesive energies and are generally resistant to harsh environment, including radiation. In this research, thin films of silicon carbide and silicon carbide nitride were deposited in a r.f magnetron sputtering system using a SiC target. A detailed analysis of the surface chemistry of the deposited films was performed using x-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy whereas structure and morphology was studied atomic force microscopy (AFM), and nonoindentation.

  13. Palladium interaction with silicon carbide

    International Nuclear Information System (INIS)

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation

  14. Palladium interaction with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, M., E-mail: Marialuisa.Gentile@manchester.ac.uk [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Abram, T. [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-07-15

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd{sub 3}Si and SiO{sub 2} phases, while the second peak and the third peak are correlated with the formation of Pd{sub 2}Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO{sub 2} phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiC{sub x}O{sub y} phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  15. Palladium interaction with silicon carbide

    Science.gov (United States)

    Gentile, M.; Xiao, P.; Abram, T.

    2015-07-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC-5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  16. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  17. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu;

    Silicon carbide is emerging as a novel material for a range of energy and environmental technologies. Previously, silicon carbide was considered as a material mainly for transistor applications. We have initiated the use of silicon carbide material towards optoelectronics in general lighting...

  18. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  19. Palladium interaction with silicon carbide

    OpenAIRE

    M. Gentile, P. Xiao, T. Abram

    2015-01-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide...

  20. Solid oxide membrane-assisted controllable electrolytic fabrication of metal carbides in molten salt.

    Science.gov (United States)

    Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu

    2016-08-15

    Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications. PMID:27195950

  1. Solid oxide membrane-assisted controllable electrolytic fabrication of metal carbides in molten salt.

    Science.gov (United States)

    Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu

    2016-08-15

    Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications.

  2. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  3. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides.

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-14

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed. PMID:27609195

  4. CCa X 3Σ‾ Calcium carbide

    Science.gov (United States)

    Hüttner, W.

    This document is part of Subvolume A1 'Diamagnetic Diatomic Molecules. Part 1' of Volume 29 'Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II 'Molecules and Radicals'.

  5. Global exploration of the enthalpy landscape of calcium carbide.

    Science.gov (United States)

    Kulkarni, A; Doll, K; Schön, J C; Jansen, M

    2010-12-01

    The enthalpy landscape of CaC(2) was investigated on the ab initio level, and possible (meta)stable structures are predicted. Simulated annealing was used as a global exploration method for the determination of the local minima on the enthalpy landscapes, where the only information supplied was the number of atoms per unit cell. Subsequently, the structure candidates found were locally optimized. At all stages of the search, the energy calculations were performed on the ab initio level. Furthermore, we investigated the enthalpies of different modifications as a function of pressure, and we found that, at a transition pressure of about 30 GPa, CaC(2) should transform from a 6-fold coordinated structure resembling a rock-salt structure to an 8-fold coordinated one similar to the CsCl structure. At standard pressure, two new energetically low-lying (metastable) structures were found, and at high pressure an additional new metastable structure was also predicted to be capable of existence.

  6. Testing Boron Carbide and Silicon Carbide under Triaxial Compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Nicholls, Arthur

    2011-06-01

    Boron Carbide (B4C) and silicon carbide (SiC-N) are extensively used as armor materials. The strength of these ceramics depends mainly on surface defects, hydrostatic pressure and strain rate. This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens by using compression under confinement in a pressure vessel and in a thick steel sleeve. The techniques used for the characterization will be described briefly. The failure curves obtained for the two materials will be presented, although the data are limited for SiC. The data will also be compared to experimental data from Wilkins (1969), and Meyer and Faber (1997). Additionally, the results will be compared with plate-impact data.

  7. 电石渣稳定过湿黏土路基填料路用性能现场试验研究%Field investigations on performance of calcium carbide residues stabilized over-wet clayey soils used as highway subgrade materials

    Institute of Scientific and Technical Information of China (English)

    杜延军; 刘松玉; 覃小纲; 魏明俐; 吴继峰

    2014-01-01

    A comparison of the physico-chemical properties of calcium carbide residues (CCR)and quicklime suggests that over-wet clayey soils stabilized by CCR is potentially used as highway sub-grade materials.A field investigation on the mechanical performance of the CCR stabilized over-wet clayey soils is conducted.The effects of the curing time on the California bearing ratio (CBR),the resilient modulus (Mr ),the penetration resistance (Rs ),and the dynamic cone penetration index (DCPI)of the CCR and quicklime stabilized soils are discussed.The results show that the CCR ex-hibit larger specific surface area and higher fine-particle content than the quicklime,which is more in favor of the evolution of pozzolanic reactions between the binder (i.e.,CCR or quicklime)and soils.Compared with the quicklime stabilized soils,the CCR stabilized soils have greater perform-ance in terms of higher CBR,greater resilient modulus and penetration resistance,and higher degree of correlation between DCPI and CBR and that between DCPI and Mr.In addition,CCR has evident benefits in terms of its cost-effectiveness,no dust pollution and little CO2 emission during the con-struction.It is concluded that CCR is a viable,economical,and environmental-friendly binder in stabilizing over-wet clayey soils,which are used as subgrade materials.%通过对比电石渣和生石灰物理化学特征的异同,提出采用电石渣稳定过湿黏土作为路基填料。通过改良填料路用承载性能的现场试验,对比研究2种改良填料的土基CBR、回弹模量(Mr)、贯入阻力(Rs)和动力锥贯入指数(DCPI)等力学指标在养护龄期内的变化规律。试验结果表明:电石渣相对生石灰比表面积大、细粒含量高,在相同掺量和养护条件下更利于填料中改良反应的进行,可以更有效地改善过湿黏土填料的路用力学性能;电石渣改良填料的DCPI与其CBR和Mr的相关性更高;同时,电石渣较石灰具有明

  8. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties.

    Science.gov (United States)

    Hesaraki, Saeed; Ebadzadeh, Touraj; Ahmadzadeh-Asl, Shaghayegh

    2010-07-01

    In this study, bioceramic nanocomposites were synthesized by sintering compacted bodies of hydroxyapatite (HA) mixed with 5 or 15 wt% nanosilicon carbide at 1,100 or 1,200 degrees C in a reducing atmosphere. Pure hydroxyapatite was also prepared for comparison. Phase compositions, structural and physical properties of the composites were studied using appropriate techniques. Some in vitro biological properties of the composites were also investigated by using newrat calvaria osteoblastic cells. X-ray diffraction analysis indicated that tricalcium phosphate (TCP) comprising negligible alpha-TCP and considerable beta-TCP were formed in composites during sintering meanwhile hydroxyapatite and silicon carbide (SiC) were also existed in the composition. Based on the results, that composite made of 5 wt% nanosilicon carbide exhibited higher bending strength, fracture toughness and bulk density than pure HA and composite with 15 wt% silicon carbide. The scanning electron microscopy coupled with energy dispersive X-ray analysis revealed that the addition of nanosilicon carbide suppressed the grain growth and yielded a feature of island-type clusters consisting of blistered calcium phosphate (HA and TCP) and SiC grains. Also, in this study, better proliferation rate and alkaline phosphatase activity were observed for the osteoblastic cells seeded on top of the composites compared to pure HA. Overall, the results indicated that the composite of 95 wt% hydroxyapatite and 5 wt% SiC exhibited better mechanical and biological properties than pure HA and further addition of SiC failed strength and toughness.

  9. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  10. Thermally Sprayed Silicon Carbide Coating

    OpenAIRE

    Mubarok, Fahmi

    2014-01-01

    Thermal spraying of silicon carbide (SiC) material is a challenging task since SiC tends to decompose during elevated temperature atmospheric spraying process. The addition of metal or ceramic binders as a matrix phase is necessary to facilitate the bonding of SiC particles, allowing SiC coatings to be deposited. In the conventional procedure, the matrix phase is added through mechanical mixing or mechanical alloying of the powder constituents, making it difficult to achieve homogeneous distr...

  11. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  12. Method to manufacture tungsten carbide

    International Nuclear Information System (INIS)

    The patent deals with an improved method of manufacturing tungsten carbide. An oxide is preferably used as initial product whose particle size and effective surface approximately corresponds to that of the endproduct. The known methods for preparing the oxide are briefly given. Carbon monoxide is passed over the thus obtained oxide particles whereby the reaction mixture is heated to a temperature at which tungsten oxide and carbon monoxide react and tungsten carbide is formed, however, below that temperature at which the tungsten-containing materials are caked or sintered together. According to the method the reaction temperature is about below 9000C. The tungsten carbide produced has a particle size of under approximately 100 A and an active surface of about 20 m2/g. It has sofar not been possible with the usual methods to obtain such finely divided material with such a large surface. These particles may be converted back to the oxide by heating in air at low temperature without changing particle size and effective surface. One thus obtains a tungsten oxide with smaller particle size and larger effective surface than the initial product. (IHOE)

  13. Photodissociation studies of calcium-coronene and calcium-pyrene cation clusters

    Science.gov (United States)

    Scott, A. C.; Buchanan, J. W.; Flynn, N. D.; Duncan, M. A.

    2008-01-01

    Gas-phase cluster cations combining calcium atoms and the polycyclic aromatic hydrocarbons (PAHs) coronene (C24H12) and pyrene (C16H10) are produced in a molecular beam using laser vaporization in a pulsed nozzle cluster source. Time-of-flight mass spectrometry reveals the formation of clusters of the form Cax(coronene)y+ for up to x = 4 and y = 3 and Cax(pyrene)y+ for up to x = 2 and y = 3. Mass-selected photodissociation studies show that the calcium cation is the most prominent fragment for each system. Photoinduced calcium carbide formation is prominent when two or more calcium atoms are present. Additionally, there is evidence that these clusters can form sandwich structures.

  14. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  15. Calcium Calculator

    Science.gov (United States)

    ... Latvia - Lebanon - Libya - Lithuania - Luxembourg - Macedonia, Republic of - Malaysia - Malta - Mexico - Moldova - Morocco - Netherlands - New Zealand - Nigeria - ... and Statistics Popular content Calcium content of common foods What is Osteoporosis? The Board Introduction to Bone ...

  16. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  17. Structural prediction for scandium carbide monolayer sheet

    Science.gov (United States)

    Ma, Hong-Man; Wang, Jing; Zhao, Hui-Yan; Zhang, Dong-Bo; Liu, Ying

    2016-09-01

    A two-dimensional tetragonal scandium carbide monolayer sheet has been constructed and studied using density functional theory. The results show that the scandium carbide sheet is stable and exhibits a novel tetracoordinated quasiplanar structure, as favored by the hybridization between Sc-3d orbitals and C-2p orbitals. Calculations of the phonon dispersion as well as molecular dynamics simulations also demonstrate the structural stability of this scandium carbide monolayer sheet. Electronic properties show that the scandium carbide monolayer sheet is metallic and non-magnetic.

  18. Methods for producing silicon carbide fibers

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  19. Silicon carbide fibers and articles including same

    Science.gov (United States)

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  20. Polytype distribution in circumstellar silicon carbide.

    Science.gov (United States)

    Daulton, T L; Bernatowicz, T J; Lewis, R S; Messenger, S; Stadermann, F J; Amari, S

    2002-06-01

    The inferred crystallographic class of circumstellar silicon carbide based on astronomical infrared spectra is controversial. We have directly determined the polytype distribution of circumstellar SiC from transmission electron microscopy of presolar silicon carbide from the Murchison carbonaceous meteorite. Only two polytypes (of a possible several hundred) were observed: cubic 3C and hexagonal 2H silicon carbide and their intergrowths. We conclude that this structural simplicity is a direct consequence of the low pressures in circumstellar outflows and the corresponding low silicon carbide condensation temperatures. PMID:12052956

  1. CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis

    International Nuclear Information System (INIS)

    Highlights: • Carbide slag as material is used to prepare CO2 sorbent by combustion synthesis. • Glycerol addition in preparation of synthetic sorbent improves its CO2 uptake. • The feasible combustion synthesis temperature for sorbent preparation is 800 °C. • Synthetic sorbent (mass ratio of CaO:Ca3Al2O6 = 73:27) shows higher CO2 uptake. • Synthetic sorbent possesses much higher sintering resistance than carbide slag. - Abstract: A new CO2 sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by combustion synthesis method. The effects of the sorbent preparation conditions (glycerol addition, combustion synthesis temperature, ratio of carbide slag to aluminum nitrate hydrate) and carbonation/calcination conditions (temperature, atmosphere and time) on CO2 capture performance of the synthetic sorbent were investigated in the calcium looping cycles. The addition of glycerol during the sorbent preparation exhibits an improvement on the cyclic CO2 capture capacity. It was also found that the optimal combustion synthesis temperature for the synthetic sorbent was in the range of 750–800 °C. The synthetic sorbent contained the mass ratio of CaO derived from carbide slag to Al2O3 derived from aluminum nitrate hydrate = 90:10 exhibited higher CO2 capture capacity (0.38 g CO2/g sorbent after 50 cycles). X-ray diffraction analysis showed that the main compounds of the synthetic sorbent were CaO and Ca3Al2O6 by X-ray diffraction analysis. The synthetic sorbent showed higher CO2 capture capacity than the carbide slag under severe calcination conditions (950 °C, CO2) and at short carbonation time (<5 min). From the present investigation, it shows that a high active synthetic CO2 sorbent could be obtained using the carbide slag in the calcium looping technology

  2. Dispersion of boron carbide in a tungsten carbide/cobalt matrix

    International Nuclear Information System (INIS)

    Particles of boron carbide (105-125 microns) were coated with a layer (10-12 microns) of titanium carbide in a fluidized bed. These coated particles have been successfully incorporated in a tungsten carbide--cobalt matrix by hot pressing at 1 tonf/in2, (15.44 MN/m2) at 13500C. Attempts to produce a similar material by a cold pressing and sintering technique were unsuccessful because of penetration of the titanium carbide layer by liquid cobalt. Hot-pressed material containing boron carbide had a static strength in bend of approximately 175,000 lbf/in2, (1206MN/m2) which compares favorably with the strength of conventionally produced tungsten carbide/cobalt. The impact strength of the material containing boron carbide was however considerably lower than tungsten carbide/cobalt. In rock drilling tests on Darley Dale sandstone at low speeds and low loads, the material containing boron carbide drilled almost ten times as far without seizure as tungsten carbide/cobalt. In higher speed and higher load rotary drilling tests conducted by the National Coal Board, the material containing boron carbide chipped badly compared with normal NCB hardgrade material

  3. On the Role of Carbides in the Formation of Hydrocarbons from Deep Carbon

    Science.gov (United States)

    Vecht, A.

    2012-12-01

    The origin of hydrocarbons found in rocks has been a matter of dispute for over a century. Scientists of the former Soviet Union favoured an inorganic origin, while in the west an organic origin was thought the most likely. Both hypotheses may be reconciled by considering the origin of carbon compounds from the core upwards or from the Earth surface downwards. Carbides are the key to understanding the development and distribution of global carbon compounds. They are precursors in the formation of hydrocarbons. It has been estimated that the Earth's core is composed of between 2-4% carbon. It is found in metallic form and is substantially denser that the surrounding mantle. Wood has proposed that the inner core is a carbide probably iron carbide(1). This conclusion is consistent with studies of meteorites, shock waves and densities Carbides can be divided into four groups:- (a) Interstitial: -Ti, V, Cr, Zr, Nb, Hf, Ta and W. (b) Covalent:- B and Si (c) Intermediate:- Ti, V, Cr, Mn, Fe, Co and Ni. (d) Salt like:- Groups I, II, and III. Groups (a) (b) and (c) should be included as candidates for carbides found in the inner core. Such carbides are stable at high temperature and will react with water and/or oxygen to form hydrocarbons and CO or CO2 respectively., carbides can be described as examples of a 'reactive minerals' as we suggested in 2007(2). Carbides which are stable at high temperatures react with water to yield hydrocarbons. This points to an abiotic origin for a range of natural hydrocarbons. A detailed review by Cataldo(3) analysed the relevant evidence for biological vs. inorganic origins. He suggests that metal carbides when hydrolysed yield organic 'matter'. Amongst the carbides suggested are (Cr, Fe, Ni, V, Mn and Co}. These carbides are correlated to the relative abundance of these elements in the solar system. We propose similar reactions based on carbides of calcium and aluminium for the formation of methane hydrate. The reactions are expected to

  4. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  5. Hydroxide catalysis bonding of silicon carbide

    NARCIS (Netherlands)

    Veggel, A.A. van; Ende, D.A. van den; Bogenstahl, J.; Rowan, S.; Cunningham, W.; Gubbels, G.H.M.; Nijmeijer, H.

    2008-01-01

    For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This techn

  6. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.;

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  7. An optimization study on transesterification catalyzed by the activated carbide slag through the response surface methodology

    International Nuclear Information System (INIS)

    Highlights: • New catalyst material for biodiesel production. • New utilization approach of waste carbide slag. • Detailed characterization of carbide slag used as transesterification catalyst. • Optimal parameters for biodiesel production obtained by response surface methodology. • Effect of impurities on catalytic activity of carbide slag in transesterification. - Abstract: After activated at 850 °C under air condition, calcium hydroxide and calcium carbonate in carbide slag are transformed into calcium oxide. The prepared transesterification catalyst, labeled as CS-850, gains surface area of 8.00 m2 g−1, functional groups of vanishing O−C−O and O−H bonds, surface morphology of tenuous branch and porous structure and basic strength of 9.8 < H– < 15.0. From aspects of the molar ratio of methanol to oil (γ), the catalyst added amount (ζ) and the reaction temperature (Tr), transesterification catalyzed by CS-850 is optimized through the Box–Behnken design of the response surface methodology (BBD–RSM). A quadratic polynomial model is preferred for transesterification efficiency prediction with coefficient of determination (R2) of 0.9815. The optimal parameters are predicted to be γ = 13.8, ζ = 6.7% and Tr = 60 °C with the efficiency of 94.70% and validated by experimental value of 93.83%. Meanwhile, γ is demonstrated to be the most significant variable for the minimum p-value. Besides, CS-850 performs acceptable reusability and for the fifth time reusage, efficiency of 82.61% could still be supplied. Aluminium oxide is proved to have the greatest effect on the catalytic activity of CS-850 among other small quality oxides. Physicochemical properties of the purified biodiesel meet American Society for Testing and Material (ASTM) standard

  8. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  9. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  10. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  11. 电石液排放管理在线节能系统开发实践%DEVELOPMENT PRACTICE OF ONLINE ENERGY-SAV-ING CARBIDE LIQUID DISCHARGE MANAGE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    王建领; 张建良; 金鑫; 王汝松; 薛廷超; 焦克新

    2015-01-01

    In order to achieve submerged arc furnace energy-saving and stable production, the physical parameters, electrode parameters, real-time production parameters of calcium carbide production as input, through a series of equilib-rium calculations and regression analysis, based on production of calcium carbide, calcium carbide liquid emissions man-agement model is built, the real yields derived liquid calcium carbide, calcium carbide liquid gas evolution, the time pre-dicted and tons of calcium carbide power consumption etc. parameters are given. By collecting and processing data as well as on-site production of calcium carbide furnace programming technology online, the calculation of is realized, and successfully applied, the information channel between calcium carbide furnace and the main control room is established, which could forecast and reflect the real-time conditions of calcium carbide production status. Practice shows that the op-timal solution of calcium carbide calcium carbide emissions management may be appropriate to increase the liquid gas evolution, increasing the production of calcium carbide production efficiency, while appropriate to reduce the tons of cal-cium carbide power consumption, realizes the high efficiency, energy saving, stable production purposes.%为实现矿热炉节能降耗、稳定生产,以电石生产的物性参数、电极参数、实时生产参数为输入量,通过一系列的平衡计算及回归分析,建立了基于电石液产量的电石液排放管理模型,实时得出电石液产量、电石液发气量、预测电石液排放时间及吨电石耗电量等参数指标。通过采集与处理现场电石炉生产数据以及编程技术实现了该模型的在线计算,并成功应用在电石炉与主控室之间建立起一条电石生产预测的信息通道,实时反映电石生产状态。实践表明,优化电石液排放管理可适当提高电石液发气量,增加电石生产的生产效率,

  12. An investigation on gamma attenuation behaviour of titanium diboride reinforced boron carbide-silicon carbide composites

    Science.gov (United States)

    Buyuk, Bulent; Beril Tugrul, A.

    2014-04-01

    In this study, titanium diboride (TiB2) reinforced boron carbide-silicon carbide composites were investigated against Cs-137 and Co-60 gamma radioisotope sources. The composite materials include 70% boron carbide (B4C) and 30% silicon carbide (SiC) by volume. Titanium diboride was reinforced to boron carbide-silicon carbide composites as additive 2% and 4% by volume. Average particle sizes were 3.851 µm and 170 nm for titanium diboride which were reinforced to the boron carbide silicon carbide composites. In the experiments the gamma transmission technique was used to investigate the gamma attenuation properties of the composite materials. Linear and mass attenuation coefficients of the samples were determined. Theoretical mass attenuation coefficients were calculated from XCOM computer code. The experimental results and theoretical results were compared and evaluated with each other. It could be said that increasing the titanium diboride ratio causes higher linear attenuation values against Cs-137 and Co-60 gamma radioisotope sources. In addition decreasing the titanium diboride particle size also increases the linear and mass attenuation properties of the titanium diboride reinforced boron carbide-silicon carbide composites.

  13. Hydrothermal synthesis of xonotlite from carbide slag

    Institute of Scientific and Technical Information of China (English)

    Jianxin Cao; Fei Liu; Qian Lin; Yu Zhang

    2008-01-01

    Carbide slag was used as the calcareous materials for the first time to prepare xonotlite via dynamic hydrothermal synthesis.The effects of influential factors including different calcination temperatures,pretreatment methods of the carbide slag and process param-eters of hydrothermal synthesis on the microstructure and morphology of xonotlite were explored using XRD and SEM techniques.The results indicate that the carbide slag after proper calcination could be used to prepare pure xonotlite;and different calcination tern-peratures have little effect on the crystallinity of synthesized xonotlitc,but have great impact on the morphology of secondary particles.The different pretreatment methods of the carbide slag pose great impact on the crystallinity and morphology of secondary particles of xonotlite.Xonotlite was also synthesized from pure CaO under the salne experimental conditions as that prepared from calcined carbide slag for comparison.Little amount of impurities in carbide slag has no effect on the mechanism of hydrothermal synthesizing xonotlite from carbide slag.

  14. Precipitating Mechanism of Carbide in Cold-Welding Surfacing Metals

    Institute of Scientific and Technical Information of China (English)

    Yuanbin ZHANG; Dengyi REN

    2004-01-01

    Carbides in a series of cold-welding weld metals were studied by means of SEM, TEM and EPMA, and the forming mechanism of carbide was proposed according to their distribution and morphology. Due to their different carbide-forming tendency, Nb and Ti could combine with C to form particulate carbide in liquid weld metal and depleted the carbon content in matrix, while V induced the carbide precipitated along grain boundary. But too much Nb or Ti alone resulted in coarse carbide and poor strengthened matrix. When suitable amount of Nb, Ti and V coexisted in weld metal, both uniformly distributed particulate carbide and well strengthened matrix could be achieved. It was proposed that the carbide nucleated on the oxide which dispersed in liquid weld metal, and then grew into multi-layer complex carbide particles by epitaxial growth. At different sites, carbide particles may present as different morphologies.

  15. Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C

    Science.gov (United States)

    Dellacorte, Christopher

    1987-01-01

    A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.

  16. Thermal Expansion of Hafnium Carbide

    Science.gov (United States)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  17. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  18. Structural diversity in lithium carbides

    Science.gov (United States)

    Lin, Yangzheng; Strobel, Timothy A.; Cohen, R. E.

    2015-12-01

    The lithium-carbon binary system possesses a broad range of chemical compounds, which exhibit fascinating chemical bonding characteristics, which give rise to diverse and technologically important properties. While lithium carbides with various compositions have been studied or suggested previously, the crystal structures of these compounds are far from well understood. In this work, we present the first comprehensive survey of all ground state (GS) structures of lithium carbides over a broad range of thermodynamic conditions, using ab initio density functional theory (DFT) crystal structure searching methods. Thorough searches were performed for 29 stoichiometries ranging from Li12C to LiC12 at 0 and 40 GPa. Based on formation enthalpies from optimized van der Waals density functional calculations, three thermodynamically stable phases (Li4C3 , Li2C2 , and LiC12) were identified at 0 GPa, and seven thermodynamically stable phases (Li8C , Li6C , Li4C , Li8C3 , Li2C , Li3C4 , and Li2C3 ) were predicted at 40 GPa. A rich diversity of carbon bonding, including monomers, dimers, trimers, nanoribbons, sheets, and frameworks, was found within these structures, and the dimensionality of carbon connectivity existing within each phase increases with increasing carbon concentration. We find that the well-known composition LiC6 is actually a metastable one. We also find a unique coexistence of carbon monomers and dimers within the predicted thermodynamically stable phase Li8C3 , and different widths of carbon nanoribbons coexist in a metastable phase of Li2C2 (Imm2). Interesting mixed sp2-sp3 carbon frameworks are predicted in metastable phases with composition LiC6.

  19. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  20. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  1. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 oC. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  2. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  3. Ultrarapid microwave synthesis of superconducting refractory carbides

    International Nuclear Information System (INIS)

    Nb1-xTaxC Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; Tc correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Selective etching of silicon carbide films

    Science.gov (United States)

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  5. Carbide sludge management in acetylene producing plants by using vacuum filtration.

    Science.gov (United States)

    Ramasamy, Palanisamy; Periathamby, Agamuthu; Ibrahim, Shaliza

    2002-12-01

    Carbide sludge (10.4-11.5 tonnes day(-1)) is generated from the reaction of calcium carbide (900 kg) and water (6,000 L) in the production of acetylene (2,400 m3), in three selected acetylene manufacturing plants. The sludge (of pH 12.2 and containing Cu, Pb, Fe, Mn, Ni and Zn ions whose concentrations exceed the Department of Environment limits for industrial wastewater) was treated by vacuum filtration as a substitute for the ponding system, which is environmentally less acceptable. A similar system by flocculation was also developed. The filtration system represents an improvement over the ponding method, as shown by a pH of 7 for the clear filtrate; the solid cake, which contains 98% of the metals, can be conveniently disposed at an integrated scheduled waste treatment centre.

  6. Influence of Rare Earth on Carbide in Weld Metal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Bin; REN Deng-Yi

    2003-01-01

    The influence of rare earths (RE) on carbides in high carbon steel weld metal was studied by transmission electron microscope (TEM) and energy dispersive X-ray microanalysis (EDX). It is found that rare earth markedly affects the quantity, morphology and distribution of carbides. The precipitating mechanism of carbides was proposed in which rare earth compounds with high surface energy serve as the nucleation sites for carbides in superheated liquid metal and the induced carbides are precipitated extensively and distributed evenly. The preferential precipitation of carbides decreases the carbon content in matrix, which is transformed into low carbon lath martensite after welds are chilled to room temperature.

  7. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  8. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  9. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  10. Coronary Calcium Scan

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  11. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  12. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  13. CALPHAD study of cubic carbide systems with Cr

    OpenAIRE

    He, Zhangting

    2015-01-01

    Cubic carbides (titanium, tantalum, niobium, and zirconium carbides) can constitute a significant proportion of so-called cubic and cermet grades, where it is added to substitute a portion of tungsten carbide. It is thus critical to understand and be able to thermodynamically model the cubic carbide systems. In order to do this, the thermodynamic descriptions of lower order systems, such as the Ti-Cr-C system, need to be well studied. To approach this goal, an extensive literature survey of t...

  14. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  15. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  16. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  17. Ultrarapid microwave synthesis of superconducting refractory carbides

    Energy Technology Data Exchange (ETDEWEB)

    Vallance, Simon R. [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); School of Chemistry, University Nottingham (United Kingdom); Round, David M. [School of Chemistry, University Nottingham (United Kingdom); Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Cussen, Edmund J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow (United Kingdom); Kingman, Sam [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); Gregory, Duncan H. [WestCHEM, Department of Chemistry, University of Glasgow (United Kingdom)

    2009-11-26

    Nb{sub 1-x}Ta{sub x}C Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; T{sub c} correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  18. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  19. Calcium and Vitamin D

    Science.gov (United States)

    ... Home › Patients › Treatment › Calcium/Vitamin D Calcium/Vitamin D Getting enough calcium and vitamin D is essential ... counter medications and calcium supplements. What is Vitamin D and What Does it Do? Vitamin D plays ...

  20. Joining of silicon carbide using interlayer with matching coefficient of thermal expansion

    International Nuclear Information System (INIS)

    The primary objective of this study is to develop a technique for joining a commercially available Silicon Carbide that gives good room temperature strength and the potential for good high temperature strength. One secondary objective is that the joining technique be adaptable to SiCf/SiC composites and/or Nickel based superalloys, and another secondary objective is that the materials provide good neutron irradiation resistance and low activation for potential application inside nuclear fusion reactors. The joining techniques studied here are: (1) reaction bonding with Al-Si/Si/SiC/C; (2) reaction/infiltration with calcium aluminum silicate; (3) ion exchange mechanism to form calcium hexaluminate (a refractory cement); and (4) oxide frit brazing with cordierite

  1. Ultra-rapid processing of refractory carbides; 20 s synthesis of molybdenum carbide, Mo2C.

    Science.gov (United States)

    Vallance, Simon R; Kingman, Sam; Gregory, Duncan H

    2007-02-21

    The microwave synthesis of molybdenum carbide, Mo(2)C, from carbon and either molybdenum metal or the trioxide has been achieved on unprecedented timescales; Ex- and in-situ characterisation reveals key information as to how the reaction proceeds.

  2. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  3. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  4. Ceramic Fabric Coated With Silicon Carbide

    Science.gov (United States)

    Riccitiello, S. R.; Smith, M.; Goldstein, H.; Zimmerman, N.

    1988-01-01

    Material used as high-temperature shell. Ceramic fabric coated with silicon carbide (SiC) serves as tough, heat-resistant covering for other refractory materials. Developed to protect reusable insulating tiles on advanced space transportation systems. New covering makes protective glaze unnecessary. Used on furnace bricks or on insulation for engines.

  5. Direct plasmadynamic synthesis of ultradisperse silicon carbide

    Science.gov (United States)

    Sivkov, A. A.; Nikitin, D. S.; Pak, A. Ya.; Rakhmatullin, I. A.

    2013-01-01

    Ultradisperse cubic silicon carbide (β-SiC) has been obtained by direct plasmadynamic synthesis in pulsed supersonic carbon-silicon plasma jet incident on a copper obstacle in argon atmosphere. The powdered product has a high content of β-SiC in the form of single crystals with average size of about 100 nm and nearly perfect crystallographic habit.

  6. Casimir forces from conductive silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-01-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of fr

  7. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  8. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  9. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    Science.gov (United States)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  10. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  11. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  12. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  13. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of cardiop

  14. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  15. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  16. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author)

  17. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH3)2Si][CH3Si]. The polysilane contains from 0 to 60 mole percent (CH3)2Si units and from 40 to 100 mole percent CH3Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 1500C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  18. Reliable Breakdown Obtained in Silicon Carbide Rectifiers

    Science.gov (United States)

    Neudeck, Philip G.

    1997-01-01

    The High Temperature Integrated Electronics and Sensor (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high-power, and/or high-radiation conditions will enable significant improvements to a far-ranging variety of applications and systems. These range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensor and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

  19. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  20. Magnetism of hydrogen-irradiated silicon carbide

    International Nuclear Information System (INIS)

    Spin-polarized density functional theory is used to study two-hydrogen defect complexes in silicon carbide. We find that the magnetism depends on the distances of the two hydrogen atoms. Magnetism appears when the two hydrogen defects are distant from each other, and magnetism cancels out if they are close to each other. The critical distance between the two hydrogen defects is determined.

  1. Interaction of energetic tritium with silicon carbide

    International Nuclear Information System (INIS)

    In order to investigate the physical and chemical interactions of energetic hydrogen isotope species with silicon carbide, recoil tritium from the 3He(n,p)T reaction has been allowed to react with K-T silicon carbide and silicon carbide powder. The results show that if the silicon carbide has been degassed and annealed at 14000C prior to tritium bombardment, a considerable fraction of the tritium (ca. 40%) is released as HTO from the SiC upon heating to 13500C under vacuum conditions. Most of the remaining tritium is retained in SiC, e.g., the retention of the tritium in the K-T SiC was found to be 62 and 22% upon heating to 600 and 13500C, respectively. This is in direct contrast to graphite samples in which the tritium is not released to any significant extent even when heated to 13500C. Samples which were exposed to H2O and H2 prior to tritium bombardment were heated to 6000C after the irradiation. The results obtained indicate that a total of 38.7 and 2.49% of the tritium is released in the form of HT and CH3T in the case of H2 or H2O exposure, respectively. Treatment of degassed samples after tritium bombardment with H2O and H2 at temperatures up to 10000C leads to the release of up to 44.9% of the tritium as HT and CH3T. 42 references, 2 figures, 2 tables

  2. Diamond-silicon carbide composite and method

    Science.gov (United States)

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  3. Cutting Performance and Mechanism of RE Carbide Tools

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research of rare earth elements (RE), added into cemented carbide tools, is one of the recent developments of new types of tool materials in China. Systematic experiments about RE carbides YG8R (K30), YT14R (P20) and YW1R (M10) were made to study on the cutting performance in comparison with non-RE carbides YG8, YT14 and YW1. The cutting experiments were as follows: tool life, cutting force, tool-chip friction coefficient and interrupted machining. The action of RE on the carbide materials and the cutting mechanism of the RE carbide tools in the cutting process were verified with the aid of SEM and energy spectrum analysis. Experimental results show that the RE carbide tools have a good overall performance.

  4. Nonlinear optical imaging of defects in cubic silicon carbide epilayers.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A

    2014-06-11

    Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.

  5. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  6. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Suzuki, Amelia; Ruiz-Agudo, Encarnacion

    2013-09-10

    Alcohol dispersions of Ca(OH)2 nanoparticles, the so-called nanolimes, are emerging as an effective conservation material for the consolidation of stone, mortars, and plasters present in old masonry and/or mural paintings. To better understand how this treatment operates, to optimize its performance and broaden its applications, here we study the nano and microstructural characteristics, carbonation behavior, and consolidation efficacy of colloidal alcohol dispersions of Ca(OH)2 nanoparticles produced by both homogeneous (commercial nanolime) and heterogeneous phase synthesis (aged slaked lime and carbide lime putties). We observe that the alcohol not only provides a high colloidal stability to Ca(OH)2 particles, but also affects the kinetics of carbonation and CaCO3 polymorph selection. This is due to the pseudomorphic replacement of Ca(OH)2 particles by calcium alkoxides upon reaction with ethanol or 2-propanol. The extent of this replacement reaction depends on Ca(OH)2 size and time. Hydrolysis of alkoxides speeds up the carbonation process and increases the CaCO3 yield. The higher degree of transformation into calcium alkoxide of both the commercial nanolime and the carbide lime fosters metastable vaterite formation, while calcite precipitation is promoted upon carbonation of the aged slaked lime due its lower reactivity, which limits calcium alkoxide formation. A higher consolidation efficacy in terms of strength gain of treated porous stone is achieved in the latter case, despite the fact that the carbonation is much faster and reaches a higher yield in the former ones. Formation of alkoxides, which has been neglected in previous studies, needs to be considered when applying nanolime treatments. These results show that the use Ca(OH)2 nanoparticle dispersions prepared with either aged slaked lime or carbide lime putties is an economical and effective conservation alternative to commercial nanolimes produced by homogeneous phase synthesis. Ultimately, this

  7. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  8. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  9. Microstructural and Mechanical characterization of WC-Co cemented carbides

    OpenAIRE

    Zakia, Rizki

    2013-01-01

    WC-Co cemented carbides are ceramic-metal composite materials made of carbides embedded in a metal phase that acts as a binder. They exhibit an exceptional combination of strength, toughness and wear resistance as a result of the extremely different properties of their two constitutive phases. Consequently, cemented carbides have been positioned as suitable options when selecting materials for tribomechanical applications, and their implementation continues to gain a place in t...

  10. Stereology of carbide phase in modified hypereutectic chromium cast iron

    OpenAIRE

    J. Suchoń; A. Studnicki; M. Przybył

    2010-01-01

    In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C), ferroniobium (FeNb) and mixture of ferroniobium and rare-earth (RE). The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  11. Delivering carbide ligands to sulfide-rich clusters.

    Science.gov (United States)

    Reinholdt, Anders; Herbst, Konrad; Bendix, Jesper

    2016-02-01

    The propensity of the terminal ruthenium carbide Ru(C)Cl2(PCy3)2 (RuC) to form carbide bridges to electron-rich transition metals enables synthetic routes to metal clusters with coexisting carbide and sulfide ligands. Electrochemical experiments show the Ru≡C ligand to exert a relatively large electron-withdrawing effect compared with PPh3, effectively shifting redox potentials.

  12. Sintering of nano crystalline silicon carbide by doping with boron carbide

    Indian Academy of Sciences (India)

    M S Datta; A K Bandyopadhyay; B Chaudhuri

    2002-06-01

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by scanning electron microscopy and transmission electron microscopy. This study shows that the mechanism is a solid-state sintering process. Polytype transformation from 6H to 4H was observed.

  13. Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; CHEN Shu; WANG Yuan-jie; YU Xian-wang; XIONG Xiang-jun

    2008-01-01

    A fine and platelet tungsten carbide patterned structure with fine yttrium containing dispersed phase was observed in liquid phase sintered WC-20%Co-1%Y2O3 cemented carbide with ultrafine tungsten carbide and nano yttrium oxide as starting materials. By comparing the microstructures of the alloy prepared by hot-press at the temperature below the eutectic melting temperature and by conventional liquid phase sintering, it is shown that hexagonal and truncated trigonal plate-like WC grains are formed through the mechanism of dissolution-precipitation (recrystallization) at the stage of liquid phase sintering. Yttrium in the addition form of oxide exhibits good ability in inhibiting the discontinuous or inhomogeneous WC grain growth in the alloy at the stage of solid phase sintering.

  14. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  15. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  16. Thermodynamic and kinetic study of uranium carbide pyrophoricity

    International Nuclear Information System (INIS)

    This research thesis concerns the development of nuclear reactors of fourth generation, and more particularly the use of carbide fuels instead of oxide fuels. An experimental part allows the investigation of mechanisms resulting in the pyrophoric reaction of a powder of uranium carbide, and addresses the determination of kinetic parameters intrinsic to the oxidation of powdered uranium carbide. Experimental results are then used to develop models of oxidation of powders of carbide uranium which are applied to a simplified mono-dispersed powder, and then introduced in a computation code. Simulation results are compared with experimental results

  17. Silicon Carbide Corrugated Mirrors for Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  18. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  19. Calcium signaling and epilepsy.

    Science.gov (United States)

    Steinlein, Ortrud K

    2014-08-01

    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  20. Smoking, calcium, calcium antagonists, and aging.

    Science.gov (United States)

    Nicita-Mauro, V

    1990-01-01

    Aging is characterized, besides other changes, by a progressive increase in calcium content in the arterial wall, which is enhanced by diabetes mellitus, osteoporosis, arterial hypertension, and tabagism. As to tabagism, experiments in animals have shown that nicotine can increase calcium content of the arterial wall, and clinical studies have demonstrated that cigarette smoking induces peripheral vasoconstriction, with consequent increase in blood pressure levels. In order to study the role of calcium ions in the pathogenesis of the vasoconstrictive lesions caused by "acute" smoking, the author has studied the peripheral vascular effects of the calcium-channel antagonist nifedipine, a dihydropyridine derivative, and calcitonin, a hypocalcemizing hormone which possess vasoactive actions on 12 elderly regular smokers (mean age 65.8 years). The results demonstrated that both nifedipine (10 mg sublingually 20 min before smoking) and salmon calcitonin (100 MRC U/daily intramuscularly for three days) are able to prevent peripheral vasoconstriction evaluated by Doppler velocimetry, as well as the increase of blood pressure induced by smoking. On the basis of our results, the author proposes that cigarette smoking-induced vasoconstriction is a calcium-mediated process, which can be hindered by drugs with calcium antagonist action. PMID:2226675

  1. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  2. Influence of Hydrothermal Temperature on Phosphorus Recovery Efficiency of Porous Calcium Silicate Hydrate

    OpenAIRE

    Wei Guan; Fangying Ji; Qingkong Chen; Peng Yan; Weiwei Zhou

    2013-01-01

    Porous calcium silicate hydrate (PCSH) was synthesized by carbide residue and white carbon black. The influence of hydrothermal temperature on phosphorus recovery efficiency was investigated by Field Emission Scanning Electron Microscopy (FESEM), Brunauer-Emmett-Teller (BET), and X-Ray Diffraction (XRD). Hydrothermal temperature exerted significant influence on phosphorus recovery performance of PCSH. Hydrothermal temperature 170°C for PCSH was more proper to recover phosphorus. PCSH could re...

  3. Development and characterization of solid solution tri-carbides

    Science.gov (United States)

    Knight, Travis; Anghaie, Samim

    2001-02-01

    Solid-solution, binary uranium/refractory metal carbide fuels have been shown to be capable of performing at high temperatures for nuclear thermal propulsion applications. More recently, tri-carbide fuels such as (U, Zr, Nb)C1+x with less than 10% metal mole fraction uranium have been studied for their application in ultra-high temperature, high performance space nuclear power systems. These tri-carbide fuels require high processing temperatures greater than 2600 K owing to their high melting points in excess of 3600 K. This paper presents the results of recent studies involving hypostoichiometric, single-phase tri-carbide fuels. Processing techniques of cold uniaxial pressing and sintering were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid solution mixed carbide nuclear fuels for testing. Scanning electron microscopy and xray diffraction were used to analyze samples. Liquid phase sintering with UC1+x at temperatures near 2700 K was shown to be instrumental in achieving good densification in hyper- and near-stoichiometric mixed carbides. Hypostoichiometric carbides require even higher processing temperatures greater than 2800 K in order to achieve liquid phase sintering with a UC liquid phase and good densification of the final solid solution, tri-carbide fuel. .

  4. Critically coupled surface phonon-polariton excitation in silicon carbide.

    Science.gov (United States)

    Neuner, Burton; Korobkin, Dmitriy; Fietz, Chris; Carole, Davy; Ferro, Gabriel; Shvets, Gennady

    2009-09-01

    We observe critical coupling to surface phonon-polaritons in silicon carbide by attenuated total reflection of mid-IR radiation. Reflectance measurements demonstrate critical coupling by a double scan of wavelength and incidence angle. Critical coupling occurs when prism coupling loss is equal to losses in silicon carbide and the substrate, resulting in maximal electric field enhancement. PMID:19724526

  5. Preparation and Electrocatalytic Activity of Tungsten Carbide Nanorod Arrays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High density tungsten carbide nanorod arrays have been prepared by magnetron sputtering (MS) using the aluminum lattice membrane (ALM) as template. Electrocatalytic properties of nitromethane electroreduction on the tungsten carbide nanorod arrays electrode were investigated by electrochemical method, and their electrocatalytic activity is approached to that of the Pt foil electrode.

  6. Silicon Carbide Tiles for Sidewall Lining in Aluminium Electrolysis Cells

    Institute of Scientific and Technical Information of China (English)

    RUANBo; ZHAOJunguo; 等

    1999-01-01

    The paper introduces the nitride bonded silicon carbide used for sidewall lining in aluminium eletrolysis cells ,including technical process,main properties and application results.Comparison tests on various physical properties of silicon carbide products made by LIRR and other producers worldwide have also been conducted in an independent laboratory.

  7. Mechanical properties of Silicon Carbide Nanowires

    Science.gov (United States)

    Alkhateeb, Abdullah; Zhang, Daqing; McIlroy, David; Aston, David Eric

    2004-05-01

    Silicon carbide nanowires could be potentially useful for high strength materials which lead to the interest in understanding their mechanical properties. In this report we use the digital pulse force microscopy to analyze the mechanical properties of SiC nanowires .Stiffness and adhesion images of SiC nanowires on silicon grating were obtained and calibrated force-distance curves were plotted along the wire which spans on a 1.5 micron trench. Moreover, spring constant and Young's modules have been calculated from the linear part of the force-distance curves.

  8. Novel Polymer Nanocomposite With Silicon Carbide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alyona I. Wozniak

    2015-09-01

    Full Text Available Polyimides are ranked among the most heat-resistant polymers and are widely used in high temperature plastics, adhesives, dielectrics, photoresistors, nonlinear optical materials, membrane materials for gasseparation, and Langmuir–Blodgett (LB films, among others. While there is a variety of high temperature stable polyimides, there is a growing demand for utilizing these materials at higher temperatures in oxidizing and aggressive environments. Therefore, we sought to use oxidation-resistant materials to enhance properties of the polyimide composition maintaining polyimide weights and processing advantages. In this paper we introduced results of utilizing inorganic nanostructured silicon carbide particles to produce an inorganic particle filled polyimide materials.

  9. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 16000C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH3)2Si units and from 40 to 100 mole percent of CH3Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  10. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    S Mandal; A Seal; S K Dalui; A K Dey; S Ghatak; A K Mukhopadhyay

    2001-04-01

    The present work deals with the sintering of SiC with a low melting additive by microwave technique. The mechanical characteristics of the products were compared with that of conventionally sintered products. The failure stress of the microwave sintered products, in biaxial flexure, was superior to that of the products made by conventional sintering route in ambient condition. In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  11. Measurements of intracellular calcium

    International Nuclear Information System (INIS)

    Intracellular calcium concentration ([Ca2+]i) has been measured in cultured cells by using Fura-2 load cells and a computer-controlled Perkin Elmer LS-5B spectrofluorometer. Increased [Ca2+]i in cells exposed to extracellular bilirubin was observed both with and without extracellular calcium. However, the increase was considerable larger with extracellular calcium. The enhancement of [Ca2+]i became smaller with decreasing bilirubin/BSA (bovine serum albumine) ratio. 5 refs., 5 figs

  12. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  13. Preparation of niobium carbide powder by electrochemical reduction in molten salt

    International Nuclear Information System (INIS)

    The niobium carbide powder was prepared via electrochemical reduction of the mixture of Nb2O5 and carbon in molten CaCl2–NaCl. The reaction pathway from the sintered precursor to the final product has been investigated. The effect of the working temperature on the reduction of the Nb2O5/C composite precursor was considered. The role of carbon during the electrochemical reduction of the composite pellet was discussed. The samples were analysed by XRD and SEM. The results indicated that the NbC powder was approximately 200 nm after the reduction. Nb2O5 was gradually reduced to Nb, and NbC was subsequently obtained by the reaction of carbon with Nb metal. In addition, Nb2O5 could spontaneously react with CaO in the melt to form a serious of calcium niobates. The participation of carbon was available for the efficiency of electro-reduction of Nb2O5. - Graphical abstract: Niobium carbide powder was electrochemically prepared in molten salt, and the reduction pathway was illustrated schematically. - Highlights: • NbC powder was prepared electrochemically in molten salt. • The working temperature was lower than that of carbothermic reduction. • The reduction pathway was discussed compared to direct electro-deoxidation of Nb2O5

  14. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C

    Science.gov (United States)

    Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.

    1988-01-01

    Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants, respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.

  15. Preparation of niobium carbide powder by electrochemical reduction in molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qiushi [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); Xu, Qian, E-mail: qianxu201@mail.neu.edu.cn [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Meng, Jingchun; Lou, Taiping; Ning, Zhiqiang [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); Qi, Yang [College of Science, Northeastern University, Shenyang 110819 (China); Yu, Kai [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-10-25

    The niobium carbide powder was prepared via electrochemical reduction of the mixture of Nb{sub 2}O{sub 5} and carbon in molten CaCl{sub 2}–NaCl. The reaction pathway from the sintered precursor to the final product has been investigated. The effect of the working temperature on the reduction of the Nb{sub 2}O{sub 5}/C composite precursor was considered. The role of carbon during the electrochemical reduction of the composite pellet was discussed. The samples were analysed by XRD and SEM. The results indicated that the NbC powder was approximately 200 nm after the reduction. Nb{sub 2}O{sub 5} was gradually reduced to Nb, and NbC was subsequently obtained by the reaction of carbon with Nb metal. In addition, Nb{sub 2}O{sub 5} could spontaneously react with CaO in the melt to form a serious of calcium niobates. The participation of carbon was available for the efficiency of electro-reduction of Nb{sub 2}O{sub 5}. - Graphical abstract: Niobium carbide powder was electrochemically prepared in molten salt, and the reduction pathway was illustrated schematically. - Highlights: • NbC powder was prepared electrochemically in molten salt. • The working temperature was lower than that of carbothermic reduction. • The reduction pathway was discussed compared to direct electro-deoxidation of Nb{sub 2}O{sub 5}.

  16. Computer-Aided Design of Some Advanced Steels and Cemented Carbides

    Institute of Scientific and Technical Information of China (English)

    LI Lin; ZHANG Mei; HE Yan-lin; De Cooman Bruno; Wollants Patrick

    2005-01-01

    Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nb) systems and Co-V-C system were modeled. Solution parameters and thermodynamic properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.

  17. Electrocatalysis using transition metal carbide and oxide nanocrystals

    Science.gov (United States)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  18. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation.

    Science.gov (United States)

    Reinholdt, Anders; Vosch, Tom; Bendix, Jesper

    2016-09-26

    The terminal carbide ligands in [(Cy3 P)2 X2 Ru≡C] complexes (X=halide or pseudohalide) coordinate molecular iodine, affording charge-transfer complexes rather than oxidation products. Crystallographic and vibrational spectroscopic data show the perturbations of iodine to vary with the auxiliary ligand sphere on ruthenium, demonstrating the σ-donor properties of carbide complexes to be tunable.

  19. Type II Supernova Matter in a Silicon Carbide Grain from the Murchison Meteorite

    Science.gov (United States)

    Hoppe; Strebel; Eberhardt; Amari; Lewis

    1996-05-31

    The circumstellar silicon carbide (SiC) grain X57 from the Murchison meteorite contains large amounts of radiogenic calcium-44 (20 times its solar system abundance) and has an anomalous silicon isotopic composition, different from other circumstellar SiC grains. Its inferred initial 44Ti/Si and 44Ti/48Ti ratios are 1.6 x 10(-4) and 0.37. In addition, it contains radiogenic magnesium-26; the inferred initial 26Al/27Al ratio is 0.11. The isotopic and elemental data of X57 can be explained by selective mixing of matter from different zones of a typical type II supernova of 25 solar masses during its explosion. The high 44Ti/Si ratio requires contributions from the innermost nickel zone of the supernova to the SiC condensation site, as similarly suggested by astronomical observations. PMID:8662461

  20. Structural behavior of the acetylide carbides Li2C2 and CaC2 at high pressure

    Science.gov (United States)

    Nylén, Johanna; Konar, Sumit; Lazor, Peter; Benson, Daryn; Häussermann, Ulrich

    2012-12-01

    The effects of high pressure (up to 30 GPa) on the structural properties of lithium and calcium carbide, Li2C2 and CaC2, were studied at room temperature by Raman spectroscopy in a diamond anvil cell. Both carbides consist of C2 dumbbells which are coordinated by metal atoms. At standard pressure and temperature two forms of CaC2 co-exist. Monoclinic CaC2-II is not stable at pressures above 2 GPa and tetragonal CaC2-I possibly undergoes a minor structural change between 10 and 12 GPa. Orthorhombic Li2C2 transforms to a new structure type at around 15 GPa. At pressures above 18 GPa (CaC2) and 25 GPa (Li2C2) Raman spectra become featureless, and remain featureless upon decompression which suggests an irreversible amorphization of the acetylide carbides. First principles calculations were used to analyze the pressure dependence of Raman mode frequencies and structural stability of Li2C2 and CaC2. A structure model for the high pressure phase of Li2C2 was searched by applying an evolutionary algorithm.

  1. Ultrasmall Carbide Nanospheres - Formation and Electronic Properties

    Science.gov (United States)

    Reinke, Petra; Monazami, Ehsan; McClimon, John

    2015-03-01

    Metallic nanoparticles are highly coveted but are subject to rapid Ostwald ripening even at moderate temperatures limiting study of their properties. Ultrasmall transition metal carbide ``nanospheres'' are synthesized by a solid-state reaction between fullerene as carbon scaffold, and a W surface. This produces nanospheres with a narrow size distribution below 2.5 nm diameter. The nanosphere shape is defined by the scaffold and densely packed arrays can be achieved. The metal-fullerene reaction is temperature driven and progresses through an intermediate semiconducting phase until the fully metallic nanospheres are created at about 350 C. The reaction sequence is observed with STM, and STS maps yield the local density of states. The reaction presumably progresses by stepwise introduction of W-atoms in the carbon scaffold. The results of high resolution STM/STS in combination with DFT calculations are used to unravel the reaction mechanism. We will discuss the transfer of this specific reaction mechanism to other transition metal carbides. The nanospheres are an excellent testbed for the physics and chemistry of highly curved surfaces.

  2. Radiation Damage Effects in Uranium Carbide

    International Nuclear Information System (INIS)

    This paper deals with the results of research into the irradiation behaviour of cast uranium carbide following that reported in another paper by Childs et al. The main conclusions are as follows: 1. The saturation resistivity and lattice parameter increases for hypostoichiometric specimens irradiated at 80oC vary systematically with the excess concentration of uranium present in solution in the UC phase. 2. The temperature coefficient of resistivity (measured over the range 77 - 293oK), unlike the resistivity itself, is not significantly affected by irradiation. 3. A small resistivity annealing stage, additional to those at 150 and 510oC, occurs between 1000 and 1200oC. The annealing-out of the lattice parameter change also occurs in two main stages at 150 and 510oC (5-h anneals). A careful survey of the range 400 - 800oC has failed to reveal the stage postulated by other workers to occur at about 710oC. The significance of the results in determining the defect structure of irradiated uranium carbide is discussed. (author)

  3. Sol–gel processing of carbidic glasses

    Indian Academy of Sciences (India)

    L M Manocha; E Yasuda; Y Tanabe; S Manocha; D Vashistha

    2000-02-01

    Carbon incorporation into the silicate network results in the formation of rigid carbidic glasses with improved physical, mechanical and thermal properties. This generated great interest in the development of these heteroatom structured materials through different processing routes. In the present studies, sol–gel processing has been used to prepare silicon based glasses, especially oxycarbides through organic–inorganic hybrid gels by hydrolysis–condensation reactions in silicon alkoxides, 1,4-butanediol and furfuryl alcohol with an aim to introduce Si–C linkages in the precursors at sol level. The incorporation of these linkages has been studied using IR and NMR spectroscopy. These bonds, so introduced, are maintained throughout the processing, especially during pyrolysis to high temperatures. In FFA–TEOS system, copolymerization with optimized mol ratio of the two results in resinous mass. This precursor on pyrolysis to 1000°C results in Si–O–C type amorphous solid black mass. XRD studies on the materials heated to 1400°C exhibit presence of crystalline Si–C and cristobalites in amorphous Si–O–C mass. In organic–inorganic gel system, the pyrolysed mass exhibits phase stability up to much higher temperatures. The carbidic materials so produced have been found to exhibit good resistance against oxidation at 1000°C.

  4. Pressureless sintering of beta silicon carbide nanoparticles

    International Nuclear Information System (INIS)

    This study reports the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Green blended compounds made of SiC nano-sized powder, a fugitive binder and a sintering agent (boron carbide, B4C), have been prepared. The binder is removed at low temperature (e.g. 800 degrees C) and the pressureless sintering studied between 1900 and 2100 degrees C. The nearly theoretical density (98% relative density) was obtained after 30 min at 2100 degrees C. The structural and microstructural evolutions during the heat treatment were characterised. The high temperatures needed for the sintering result in the β-SiC to α-SiC transformation which is revealed by the change of the composite microstructure. From 1900 degrees C, dense samples are composed of β-SiC grains surrounding α-SiC platelets in a well-defined orientation. TEM investigations and calculation of the activation energy of the sintering provided insight to the densification mechanism. (authors)

  5. ELECTROCHEMICAL MACHINING OF CARBIDES AND BORIDES

    Energy Technology Data Exchange (ETDEWEB)

    Dissaux, Bernard Antoine; Muller, Rolf H.; Tobias, Charles W.

    1978-07-01

    The use of high rate anodic dissolution (electrochemical machining) for shaping titanium carbide, zirconium carbide, titanium boride and zirconium boride has been investigated in 2N potassium nitrate and 3N sodium chloride under current densities ranging from 20 to 120 A/cm{sup 2} (corresponding to cutting rates of 0.3 to 1.8 mm/min). The dissolution stoichiometry for all these materials is independent of the current density in the range 20 to 120 A/cm{sup 2}. Both titanium and zirconium appear to dissolve in the +4 state, boron in the +3 state and the weight loss measurements indicate that carbon is oxidized to CO and CO{sub 2}. The current voltage curves permit to establish that, over the entire current density and flow range investigated, dissolution occurs in the transpassive state. The surface roughness obtained on TiC and ZrC is within 3-5 {micro}m and is independent of current density, applied voltage or flow rate.

  6. Dynamic compaction of tungsten carbide powder.

    Energy Technology Data Exchange (ETDEWEB)

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  7. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  8. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  9. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  10. Effect of strong carbide forming elements in hardfacing weld metal

    Institute of Scientific and Technical Information of China (English)

    Yuanbin Zhang; Dengyi Ren

    2004-01-01

    To achieve high carbon hard-facing weld metals with both high hardness and crack resistance, strong carbide forming elements Ti, Nb and V were alloyed into the weld metals, and their effect on the formation of carbides and the matrix microstructure were studied. Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy(EDS) and Transmission Electron Microscopy(TEM) were adopted to investigate the microstructure, then thermodynamics of the formation of carbides was calculated and their effect on the matrix was further discussed. It is revealed that Nb, Ti and V influence strongly the distribution and existing state of carbon, inducing precipitation of carbides accompanying with the depletion of carbon in matrix. But when only V are alloyed as carbide forming element, the carbides are scarce and distributed along grain boundaries, and the hard-facing alloy is too hard, while the using of only Nb or Ti could not reinforce the weld metals effectively. The hard-facing alloy reinforced with Nb, V and Ti can form dispersive fine carbides and low carbon martensite matrix.

  11. Salt flux synthesis of single and bimetallic carbide nanowires

    Science.gov (United States)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  12. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  13. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free calciu

  14. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  15. Hugoniot equation of state and dynamic strength of boron carbide

    Science.gov (United States)

    Grady, Dennis E.

    2015-04-01

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic

  16. Hugoniot equation of state and dynamic strength of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)

    2015-04-28

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable

  17. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  18. Plasma metallurgical production of nanocrystalline borides and carbides

    Science.gov (United States)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  19. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  20. Material properties of silicon and silicon carbide foams

    Science.gov (United States)

    Jacoby, Marc T.; Goodman, William A.

    2005-08-01

    Silicon and silicon carbide foams provide the lightweighting element for Schafer Corporation's silicon and silicon carbide lightweight mirror systems (SLMSTM and SiC-SLMSTM). SLMSTM and SiC-SLMSTM provide the enabling technology for manufacturing lightweight, athermal optical sub-assemblies and instruments. Silicon and silicon carbide foam samples were manufactured and tested under a Schafer-funded Internal Research and Development program in various configurations to obtain mechanical and thermal property data. The results of the mechanical tests that are reported in this paper include Young's modulus, compression strength, tensile strength, Poisson's ratio and vibrational damping. The results of the thermal tests include thermal conductivity and coefficient of thermal expansion.

  1. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross......-metallic inclusions and the crack initiation. Surprisingly, no differences were found between the carbide size distributions of the micro-clean and conventional grades.Also, the distribution of the fractured carbides was found to be the same regardless of steel type, manufacturing method or location on the specimen....

  2. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  3. Reaction Kinetics of Nanostructured Silicon Carbide

    Science.gov (United States)

    Wallis, Kendra; Zerda, T. W.

    2006-10-01

    Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder (melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

  4. Thermal Conductivity of Uranium Nitride and Carbide

    Directory of Open Access Journals (Sweden)

    B. Szpunar

    2014-01-01

    Full Text Available We investigate the electronic thermal conductivity of alternative fuels like uranium nitride and uranium carbide. We evaluate the electronic contribution to the thermal conductivity, by combining first-principles quantum-mechanical calculations with semiclassical correlations. The electronic structure of UN and UC was calculated using Quantum Espresso code. The spin polarized calculations were performed for a ferromagnetic and antiferromagnetic ordering of magnetic moments on uranium lattice and magnetic moment in UC was lower than in UN due to stronger hybridization between 2p electrons of carbon and 5f electrons of uranium. The nonmagnetic electronic structure calculations were used as an input to BolzTrap code that was used to evaluate the electronic thermal conductivity. It is predicted that the thermal conductivity should increase with the temperature increase, but to get a quantitative agreement with the experiment at higher temperatures the interaction of electrons with phonons (and electron-electron scattering needs to be included.

  5. Radiation damage of transition metal carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, G.

    1991-01-01

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC[sub 0.88] in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V[sub 8]C[sub 7] superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  6. Carboloy grade 370 (sintered cemented carbide)

    International Nuclear Information System (INIS)

    Carboloy Grade 370 containing 72.0 WC, 8.0 TiC, 11.5 TaC, 8.5 Co is a tough, wear-resistant grade of cemented carbide for heavy duty roughing cuts of steels, ferrous castings, stainless steels, and some high-temperature alloys. It successfully withstands those high temperatures encountered in heavy duty machining. It is used as the as-sintered condition, without further heat treatment. It cannot be machined, but can be ground to final size by use of SiC and diamonds as abrasives. Carbology 370 is rarely applied where corrosive environments exist. Safety note is given to ensure protection for personnel and equipment from flying fragments and sharp edges when working with these materials, and an adequate ventilation in grinding operation to avoid pulmonary problems. Microstructure and hardness vs. temperature curves for Carboloy 370 are presented and its physical and mechanical properties are tabulated

  7. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  8. Gas emission from ultradispersed carbide powders

    International Nuclear Information System (INIS)

    The process of gas emission from the ultra-dispersed carbides (B4C, SiC, TiC) powders formed by pulsed plasma synthesis technology (condensator discharge) in the environment of corresponding chlorides and methan with the additions of H2 and Ar was investigated. The emitted gases consisted of CH4, H2O, Co(N2), CO2. Calculated heats of gas emission processes (less than 200 kJ/mol) for different components show their adsorption nature up to 700 deg C. The emission of components having mass numbers 28 and 44 raises at higher temperatures that can be considered as a consequence of high temperature reactions between oxygen and carbon containing phases in synthesized powders

  9. Microwave hybrid synthesis of silicon carbide nanopowders

    International Nuclear Information System (INIS)

    Nanosized silicon carbide powders were synthesised from a mixture of silica gel and carbon through both the conventional and microwave heating methods. Reaction kinetics of SiC formation were found to exhibit notable differences for the samples heated in microwave field and furnace. In the conventional method SiC nanopowders can be synthesised after 105 min heating at 1500 deg. C in a coke-bed using an electrical tube furnace. Electron microscopy studies of these powders showed the existence of equiaxed SiC nanopowders with an average particle size of 8.2 nm. In the microwave heating process, SiC powders formed after 60 min; the powder consisted of a mixture of SiC nanopowders (with two average particle sizes of 13.6 and 58.2 nm) and particles in the shape of long strands (with an average diameter of 330 nm)

  10. Thermal Oxidation of Silicon Carbide Substrates

    Institute of Scientific and Technical Information of China (English)

    Xiufang Chen; Li'na Ning; Yingmin Wang; Juan Li; Xiangang Xu; Xiaobo Hu; Minhua Jiang

    2009-01-01

    Thermal oxidation was used to remove the subsurface damage of silicon carbide (SiC) surfaces. The anisotrow of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observed on the surface after the removal of the oxide layers, which were detrimental to the growth of high quality epitaxial layers. The thickness and composition of the oxide layers were characterized by Rutherford backscat-tering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), respectively. Epitaxial growth was performed in a metal organic chemical vapor deposition (MOCVD) system. The substrate surface morphol-ogy after removing the oxide layer and gallium nitride (GaN) epilayer surface were observed by atomic force microscopy (AFM). The results showed that the GaN epilayer grown on the oxidized substrates was superior to that on the unoxidized substrates.

  11. Preparation of Silicon Carbide with High Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to prepare silicon carbide with high properties, three kinds of SiC powders A, B, and C with different composition and two kinds of additives, which were Y2O3-Al2O3 system and Y2O3-La2O3 system, were used in this experiment. The properties of hot-pressed SiC ceramics were measured. With the same additives, different SiC powder resulted in different properties. On the other hand, with the same SiC powder, increasing the amount of the additive Y2O3-Al2O3 improved properties of SiC ceramics at room temperature, and increasing the amount of the additive Y2O3-La2O3 improved property SiC ceramics at elevated temperature. In addition, the microstructure of SiC ceramics was studied by scanning electron microscopy.

  12. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 1025 n/m2. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  13. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  14. Chemical Mechanical Polishing of Silicon Carbide

    Science.gov (United States)

    Powell, J. Anthony; Pirouz

    1999-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) as an enabling electronic technology for many aerospace applications. The Lewis team is focusing on the chemical vapor deposition of the thin, single-crystal SiC films from which devices are fabricated. These films, which are deposited (i.e., epitaxially "grown") on commercial wafers, must consist of a single crystal with very few structural defects so that the derived devices perform satisfactorily and reliably. Working in collaboration (NASA grant) with Professor Pirouz of Case Western Reserve University, we developed a chemical-mechanical polishing (CMP) technique for removing the subsurface polishing damage prior to epitaxial growth of the single-crystal SiC films.

  15. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  16. Status of advanced carbide fuels: Past, present, and future

    Science.gov (United States)

    Anghaie, Samim; Knight, Travis

    2002-01-01

    Solid solution, mixed uranium/refractory metal carbide fuels such as (U, Zr, Nb)C, so called ternary carbide or tri-carbide fuels have great potential for applications in next generation advanced nuclear power reactors. Because of their high melting points, high thermal conductivity, improved resistance to hot hydrogen corrosion, and good fission product retention, these advanced nuclear fuels have great potential for high performance reactors with increased safety margins. Despite these many benefits, some concerns regarding carbide fuels include compatibility issues with coolant and/or cladding materials and their endurance under the extreme conditions associated with nuclear thermal propulsion. The status of these fuels is reviewed to characterize their performance for space nuclear power applications. Results of current investigations are presented and as well as future directions of study for these advanced nuclear fuels. .

  17. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  18. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-01

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  19. Microwave synthesis of phase-pure, fine silicon carbide powder

    International Nuclear Information System (INIS)

    Fine, monophasic silicon carbide powder has been synthesized by direct solid-state reaction of its constituents namely silicon and carbon in a 2.45 GHz microwave field. Optimum parameters for the silicon carbide phase formation have been determined by varying reaction time and reaction temperature. The powders have been characterized for their particle size, surface area, phase composition (X-ray diffraction) and morphology (scanning electron microscope). Formation of phase-pure silicon carbide can be achieved at 1300 deg. C in less than 5 min of microwave exposure, resulting in sub-micron-sized particles. The free energy values for Si + C → SiC reaction were calculated for different temperatures and by comparing them with the experimental results, it was determined that phase-pure silicon carbide can be achieved at around 1135 deg. C

  20. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca;

    2013-01-01

    supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...... carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide...... clusters. Unpromoted, active carbon supported Mo2C exhibits a high activity for CO conversion with hydrocarbons as the dominant products. The K2CO3 promoter plays an essential role in directing the selectivity to alcohols rather than to hydrocarbons. The optimum selectivity toward higher alcohols and total...

  1. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  2. Process for preparing fine grain silicon carbide powder

    Science.gov (United States)

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  3. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  4. Dynamic compaction of boron carbide by a shock wave

    Science.gov (United States)

    Buzyurkin, Andrey E.; Kraus, Eugeny I.; Lukyanov, Yaroslav L.

    2016-10-01

    This paper presents experiments on explosive compaction of boron carbide powder and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the boron carbide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  5. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovskii, Alexander L [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2009-04-30

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  6. Impact of pressure on Sintering of Cemented Carbides

    OpenAIRE

    Owais, Tariq Muhammad

    2013-01-01

    In this Master Thesis work, the effect of pressure on sintering of cemented carbides is investigated. Special focus hasbeen given to the residual porosity after sintering. It is well known that sintering shrinkage depends on binder phasecontent, grain size, temperature and pressure. Thus 4 different cemented carbides grades were selected. The gradeswere pressed into standard products and TRS (Tensile Rupture Strength) rods with two different shrinkage factors.These were then sintered at diffe...

  7. ADHERENCE AND PROPERTIES OF SILICON CARBIDE BASED FILMS ON STEEL

    OpenAIRE

    Lelogeais, M.; Ducarroir, M.; Berjoan, R.

    1991-01-01

    Coatings of silicon carbide with various compositions have been obtained in a r.f plasma assisted process using tetramethylsilane and argon as input gases. Some properties against mechanical applications of such deposits on steel have been investigated. Residual stresses and hardness are reported and discussed in relation with plasma parameters and deposit composition. By scratch testing, it was shown that the silicon carbide films on steel denote a good adherence when compared with previous ...

  8. Rapid Wolff–Kishner reductions in a silicon carbide microreactor

    OpenAIRE

    Newman, Stephen G.; Gu, Lei; Lesniak, Christoph; Victor, Georg; Meschke, Frank; Abahmane, Lahbib; Jensen, Klavs F.

    2013-01-01

    Wolff–Kishner reductions are performed in a novel silicon carbide microreactor. Greatly reduced reaction times and safer operation are achieved, giving high yields without requiring a large excess of hydrazine. The corrosion resistance of silicon carbide avoids the problematic reactor compatibility issues that arise when Wolff–Kishner reductions are done in glass or stainless steel reactors. With only nitrogen gas and water as by-products, this opens the possibility of performing selective, l...

  9. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  10. Process for preparing fine-grain metal carbide powder

    Science.gov (United States)

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  11. Synthesis of carbides of metals by electrodischarge method

    OpenAIRE

    Tsolin, Pavlo L.; Terekhov, Anatolii Yu.; Kuskova, Nataliia I.

    2014-01-01

    Initiation by electric discharge of plasma-chemical reaction which is accompanied by the erosion of electrodes material and by synthesis corresponding carbides is discussed. The object of the research is to establish possibility of synthesis of metal carbides during electrodischarge treatment of hydrocarbon liquid. Electrical discharge in the liquid hydrocarbons is studied experimentally using various materials of electrodes (titanium, aluminum, copper, niobium) as a method of synthesis of me...

  12. Superplastic behavior and cavitation for WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, H.; Shimojima, K. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology (AIST) (Japan); Kawakami, M.; Terada, O. [Fuji Die Co. Ltd., Hadano, Kanagawa (Japan); Sano, S. [Fuji Die Co. Ltd., Tokyo (Japan); Mabuchi, M. [Dept. of Energy Science and Technology, Kyoto Univ. (Japan)

    2005-07-01

    Superplastic behavior and cavitation were investigated for WC-15 mass% Co cemented carbides with the WC grain sizes of 0.7 {mu}m (A) and 5.2 {mu}m (B), WC-10 mass% Co cemented carbide with the WC grain size of 1.5 {mu}m (C) and WC-5 mass% Co cemented carbides with the WC grain sizes of 0.5 {mu}m (D) and 2.5 {mu}m (E) by tensile tests at 1473 K. WC contiguity were 0.51, 0.31, 0.27, 0.56 and 0.49, respectively. The large elongations about 200% were obtained for the B and the C having smaller values of WC contiguity compared to the other cemented carbides. The values of cavity volume fraction for them were less for the other cemented carbides, furthermore, cavities formed at WC/WC interfaces. Therefore, it is noted that the distribution of the Co phase is important for superplasticity of the cemented carbides. (orig.)

  13. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    A control blade design, incorporating boron-carbide (B4C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author)

  14. Development and Evaluation of Mixed Uranium-Refractory Carbide/Refractory Carbide Cer-Cer Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal a new carbide-based fuel is introduced with outstanding potential to eliminate the loss of uranium, minimizes the loss of uranium, and retains...

  15. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  16. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine;

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone...... and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport...

  17. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  18. Understanding the Irradiation Behavior of Zirconium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  19. Solid-state formation of titanium carbide and molybdenum carbide as contacts for carbon-containing semiconductors

    Science.gov (United States)

    Leroy, W. P.; Detavernier, C.; van Meirhaeghe, R. L.; Kellock, A. J.; Lavoie, C.

    2006-03-01

    Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin Ti or Mo films and C substrates. Titanium carbide (TiC) was previously reported as a contact material to diamond and carbon nanotubes. However, the present study shows two disadvantages for the solid-state reaction of Ti and C. First, because Ti reacts readily with oxygen, a capping layer should be included to enable carbide formation. Second, the TiC phase can exist over a wide range of composition (about 10%, i.e., from Ti0.5C0.5 to Ti0.6C0.4), leading to significant variations in the properties of the material formed. The study of the Mo-C system suggests that molybdenum carbide (Mo2C) is a promising alternative, since the phase shows a lower resistivity (about 45% lower than for TiC), the carbide forms below 900 °C, and its formation is less sensitive to oxidation as compared with the Ti-C system. The measured resistivity for Mo2C is ρ=59 μΩ cm, and from kinetic studies an activation energy for Mo2C formation of Ea=3.15+/-0.15 eV was obtained.

  20. Production and characterization of nanostructured silicon carbide

    Science.gov (United States)

    Wallis, Kendra Lee

    Nanostructured materials continue to attract attention because of their new and interesting properties, which are very different from their macrostructured equivalents. Since the size of grain and surface differs, a better understanding of the microstructure, the mechanism of formation, and methods of controlling surface properties is necessary. In this study, nanostructured silicon carbide has been produced from the solid-solid reaction of a mixture of silicon nanopowder and carbon multiwalled nanotubes (MWNT) sintered by induction. A study of the reaction rate at different temperatures has yielded a value for the activation energy of 254 +/- 36 kJ/mol, and has led to the conclusion that the reaction is diffusion-controlled. A second method produced pure silicon carbide nanowires using a procedure which kept the solid reactants, silicon powder and MWNT, separated while sintering at a constant temperature of 1200°C. Silicon in the vapor-phase reacted at the surface of the MWNTs followed by diffusion of both precursors through the product phase boundary. The reaction time was varied, and a morphological study has been done describing changes in shape and size as a function of time. The initial reaction produced a layer of SiC providing the outer shell of coaxial structures with carbon nanotubes inside. As Si and C diffused through the product phase to react at the interface, the tube became filled with SiC to form solid SiC nanowires, and the outer diameter of the nanowires grew continuously as reaction time increased. After long sintering times, growth continued in two dimensions, fusing nanowires together into planar structures. In addition, the precursor form of carbon was varied, and nanowires produced by two different types of nanotubes have been studied. The produced SiC nanowires show cubic crystal structure. After a few hours of sintering, stacking faults began to occur inside the wires, and the frequency of occurrence of the stacking faults increased as

  1. Nanostructured carbide catalysts for the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Ram Seshadri, Susannah Scott, Juergen Eckert

    2008-07-21

    The above quote, taken from the executive summary of the Report from the US DOE Basic Energy Sciences Workshop held August 6–8, 2007,[1] places in context the research carried out at the University of California, Santa Barbara, which is reported in this document. The enormous impact of heterogeneous catalysis is exemplified by the Haber process for the synthesis of ammonia, which consumes a few % of the world’s energy supply and natural gas, and feeds as many as a third of the world’s population. While there have been numerous advances in understanding the process,[2] culminating in the awarding of the Nobel Prize to Gerhard Ertl in 2007, it is interesting to note that the catalysts themselves have changed very little since they were discovered heuristically in the the early part of the 20th century. The thesis of this report is that modern materials chemistry, with all the empirical knowledge of solid state chemistry, combined with cutting edge structural tools, can help develop and better heterogeneous catalysis. The first part of this report describes research in the area of early transition metal carbides (notably of Mo and W), potentially useful catalysts for water gas shift (WGS) and related reactions of use to the hydrogen economy. Although these carbides have been known to be catalytically useful since the 1970s,[3] further use of these relatively inexpensive materials have been plagued by issues of low surface areas and ill-defined, and often unreactive surfaces, in conjunction with deactivation. We have employed for the first time, a combination of constant-wavelength and time-of-flight neutron scattering, including a total scattering analysis of the latter data, to better understand what happens in these materials, in a manner that for the first time, reveals surface graphitic carbon in these materials in a quantitative manner. Problems of preparation, surface stability, and irreversible reactivity have become manifest in this class of materials

  2. Silicon Carbide Technology for Grid Integrated Photovoltaic Applications: Dynamic Characterization of Silicon Carbide Transistors.

    OpenAIRE

    Tiwari, Subhadra

    2011-01-01

    For the endorsement of the study of potential utilization of the emerging silicon carbide (SiC) devices, three SiC active switches, namely SJEP120R063 (1200V, 63 mohm) SiC JFET manufactured by Semisouth, BT1206AC-P1 (1200V, 125 mohm) SiC BJT by TranSiC and CMF20120 (1200V, 80 mohm, 33A) SiC MOSFET by Cree have been investigated systematically in this thesis work.The four layer PCB board with the smart layouts like the drain and gate traces are either perpendicular to each other or run into di...

  3. Thermal properties of wood-derived silicon carbide and copper-silicon carbide composites

    Science.gov (United States)

    Pappecena, Kristen E.

    Wood-derived ceramics and composites have been of interest in recent years due to their unique microstructures, which lead to tailorable properties. The porosity and pore size distribution of each wood type is different, which yields variations in properties in the resultant materials. The thermal properties of silicon carbide ceramics and copper-silicon carbide composites derived from wood were studied as a function of their pore structures. Wood was pyrolyzed at temperatures ranging from 300-2400°C to yield porous carbon. The progression toward long-range order was studied as a function of pyrolyzation temperature. Biomorphic silicon carbide (bioSiC) is a porous ceramic material resulting from silicon melt infiltration of these porous carbon materials. BioSiC has potential applicability in many high temperature environments, particularly those in which rapid temperature changes occur. To understand the behavior of bioSiC at elevated temperatures, the thermal and thermo-mechanical properties were studied. The thermal conductivity of bioSiC from five precursors was determined using flash diffusivity at temperatures up to 1100°C. Thermal conductivity results varied with porosity, temperature and orientation, and decreased from 42-13 W/mK for porosities of 43-69%, respectively, at room temperature. The results were compared with to object-oriented finite-element analysis (OOF). OOF was also used to model and understand the heat-flow paths through the complex bioSiC microstructures. The thermal shock resistance of bioSiC was also studied, and no bioSiC sample was found to fail catastrophically after up to five thermal shock cycles from 1400°C to room temperature oil. Copper-silicon carbide composites have potential uses in thermal management applications due to the high thermal conductivity of each phase. Cu-bioSiC composites were created by electrodeposition of copper into bioSiC pores. The detrimental Cu-SiC reaction was avoided by using this room temperature

  4. Crystal structural and diffusion property in titanium carbides: A molecular dynamics study

    Science.gov (United States)

    Lv, Yanan; Gao, Weimin

    2016-09-01

    Titanium carbides were studied via molecular dynamics simulation to characterize TiCx structures with respect to the carbon diffusion properties in this study. The effect of carbon concentration on atomic structures of titanium carbides was investigated through discussing the structure variation and the radial distribution functions of carbon atoms in titanium carbides. The carbon diffusion in titanium carbides was also analyzed, focusing on the dependence on carbon concentration and carbide structure. Carbon diffusivity with different carbon concentrations was determined by molecular dynamics (MD) calculations and compared with the available experimental data. The simulation results showed an atomic exchange mechanism for carbon diffusion in titanium carbide.

  5. Yarlongite:A New Metallic Carbide Mineral

    Institute of Scientific and Technical Information of China (English)

    SHI Nicheng; BAI Wenji; LI Guowu; XIONG Ming; FANG Qingsong; YANG Jingsui; MA Zhesheng; RONG He

    2009-01-01

    Yarlongite occurs in ophiolitic chromitite at the Luobusha mine(29°5'N 92°,5'E,about 200 km ESE of Lhasa),Qusum County,Shannan Prefecture,Tibet Autonomous Region,People'S Republic of China.Associated minerals are:diamond,moissanite,wiistite,iridium("osmiridium"), osmium("iridosmine"),periclase,chromite,native irun,native nickel,native chromium,forsterite. Cr-rich diopside,intermetallic compounds Ni-Fe-Cr,Ni-Cr,Cr-C,etc.Yariongite and its associated minerals were handpicked from a large heavy mineral sample of chromitite.The metallic carbides associated with yarlongite are cohenite,tongbaite,khamrabaevite and qusongite(IMA2007.034). Yarlongite occurs as irregular grains,with a size between 0.02 and 0.06 mm,steel-grey colour,H Mohs:5 1/2-6.Tenacity:brittle.Cleavage:{0 0 1}perfect.Fracture:conchoidal.Chemical formula: (Cr4Fe4Ni)∑9C4,or(Cr,Fe,Ni)∑9C4,Crystal system:Hexagonal,Space Group:P63/mc,a=18.839(2)A,C =4.4960(9)A,V=745.7(2)A3,Z=6,Density(calc.)=7.19 g/cm3(with simplified formula).Yarlongite has been approved as a new mineral by the CNMNC(IMA2007-035).Holotype material is deposited at the Geological Museum of China(No.M11650).

  6. Bright Single Photon Emitter in Silicon Carbide

    Science.gov (United States)

    Lienhard, Benjamin; Schroeder, Tim; Mouradian, Sara; Dolde, Florian; Trong Tran, Toan; Aharonovich, Igor; Englund, Dirk

    Efficient, on-demand, and robust single photon emitters are of central importance to many areas of quantum information processing. Over the past 10 years, color centers in solids have emerged as excellent single photon emitters. Color centers in diamond are among the most intensively studied single photon emitters, but recently silicon carbide (SiC) has also been demonstrated to be an excellent host material. In contrast to diamond, SiC is a technologically important material that is widely used in optoelectronics, high power electronics, and microelectromechanical systems. It is commercially available in sizes up to 6 inches and processes for device engineering are well developed. We report on a visible-spectrum single photon emitter in 4H-SiC. The emitter is photostable at both room and low temperatures, and it enables 2 million photons/second from unpatterned bulk SiC. We observe two classes of orthogonally polarized emitters, each of which has parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line with linewidth < 0.1 nm that accounts for more than 30% of the total photoluminescence spectrum. To our knowledge, this SiC color emitter is the brightest stable room-temperature single photon emitter ever observed.

  7. Palladium Implanted Silicon Carbide for Hydrogen Sensing

    Science.gov (United States)

    Muntele, C. I.; Ila, D.; Zimmerman, R. L.; Muntele, L.; Poker, D. B.; Hensley, D. K.; Larkin, David (Technical Monitor)

    2001-01-01

    Silicon carbide is intended for use in fabrication of high-temperature, efficient hydrogen sensors. Traditionally, when a palladium coating is applied on the exposed surface of SiC, the chemical reaction between palladium and hydrogen produces a detectable change in the surface chemical potential. We have produced both a palladium coated SiC as well as a palladium, ion implanted SiC sensor. The palladium implantation was done at 500 C into the Si face of 6H, N-type SiC at various energies, and at various fluences. Then, we measured the hydrogen sensitivity response of each fabricated sensor by exposing them to hydrogen while monitoring the current flow across the p-n junction(s), with respect to time. The sensitivity of each sensor was measured at temperatures between 27 and 300 C. The response of the SiC sensors produced by Pd implantation has revealed a completely different behaviour than the SiC sensors produced by Pd deposition. In the Pd-deposited SiC sensors as well as in the ones reported in the literature, the current rises in the presence of hydrogen at room temperature as well as at elevated temperatures. In the case of Pd-implanted SiC sensors, the current decreases in the presence of hydrogen whenever the temperature is raised above 100 C. We will present the details and conclusions from the results obtained during this meeting.

  8. Oxidation of vanadium carbide in air

    International Nuclear Information System (INIS)

    It was studied the samples oxidation of vanadium carbide (V8C7), synterized and in powder, in order to know the temperature influence and the aggregation state in the kinetics and the oxidation products. The assays were realized in static air, at temperature between 600 y 750 Centigrade, between 6 and 24 hours periods. The gaseous products were analyzed through gas chromatography while the condensates ones were analyzed through optical microscopy and scanning electron microscopy, X-ray diffraction and chemical analysis by X-ray fluorescence analysis. It was found that in the V8C7 oxidation occurs two basic processes: the gaseous oxides production which results of the carbon oxidation, fundamentally CO2, and the vanadium condensate oxides production, fundamentally V2O5. In the synterized samples assayed under 650 Centigrade, the kinetics is lineal with loss of mass, suggesting a control by the formation of gaseous products in the sample surface, while in the synterized samples assayed over 650 Centigrade, it occurs a neat gain of mass, which is attributed to vanadium pentoxide fusion. These processes produce stratified layers of V2O5 although at higher temperatures also it was detected V2O4. The superficial area effect is revealed in what the powder samples always experiment a mass neat increase in all essay temperatures, being the condensate oxidation products, fundamentally V2O5 and V6O13. (Author)

  9. Improved silicon carbide for advanced heat engines

    Science.gov (United States)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  10. Casimir forces from conductive silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  11. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  12. Thermal equation of state of silicon carbide

    Science.gov (United States)

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; Collins, Sean Andrew; Zhang, Jianzhong; Wang, Liping; Zhao, Yusheng

    2016-02-01

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure-volume-temperature data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as the ambient bulk modulus KTo = 237(2) GPa, temperature derivative of the bulk modulus at a constant pressure (∂K/∂T)P = -0.037(4) GPa K-1, volumetric thermal expansivity α(0, T) = a + bT with a = 5.77(1) × 10-6 K-1 and b = 1.36(2) × 10-8 K-2, and pressure derivative of the thermal expansion at a constant temperature (∂α/∂P)T = 6.53 ± 0.64 × 10-7 K-1 GPa-1. Furthermore, we found the temperature derivative of the bulk modulus at a constant volume, (∂KT/∂T)V, equal to -0.028(4) GPa K-1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. The computed results generally agree well with the experimentally determined values.

  13. In situ ion irradiation of zirconium carbide

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  14. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics. PMID:26394207

  15. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  16. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  17. Structural Evolution of Molybdenum Carbides in Hot Aqueous Environments and Impact on Low-Temperature Hydroprocessing of Acetic Acid

    OpenAIRE

    Jae-Soon Choi; Viviane Schwartz; Eduardo Santillan-Jimenez; Mark Crocker; Samuel A. Lewis; Michael J. Lance; Meyer, Harry M.; More, Karren L.

    2015-01-01

    We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore...

  18. Converting a carbon preform object to a silicon carbide object

    Science.gov (United States)

    Levin, Harry (Inventor)

    1990-01-01

    A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.

  19. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Science.gov (United States)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  20. A sensor for calcium uptake

    OpenAIRE

    Collins, Sean; Meyer, Tobias

    2010-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified.

  1. Children's Bone Health and Calcium

    Science.gov (United States)

    ... Trials Resources and Publications Children's Bone Health and Calcium: Condition Information Skip sharing on social media links ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  2. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  3. Investigation on the Effects of Titanium Diboride Particle Size on Radiation Shielding Properties of Titanium Diboride Reinforced Boron Carbide-Silicon Carbide Composites

    Directory of Open Access Journals (Sweden)

    A.O. Addemir

    2012-03-01

    Full Text Available Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion

  4. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt;

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures....... spectroscopy were applied for determining the carburization temperature and evaluating the composition of the carbide clusters of different samples through determinations of the Mo-C and Mo-Mo coordination numbers....

  5. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  6. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  7. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  8. APT analysis of WC-Co based cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Weidow, Jonathan, E-mail: jonathan.weidow@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Andren, Hans-Olof [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2011-05-15

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: {yields} We develop a method for producing specimens from WC-Co based cemented carbides. {yields} Measure segregated atoms to an interface between phases with different field evaporation field. {yields} The interface chemistry in cemented carbides. {yields} The transition metal solubility in WC.

  9. APT analysis of WC-Co based cemented carbides

    International Nuclear Information System (INIS)

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: → We develop a method for producing specimens from WC-Co based cemented carbides. → Measure segregated atoms to an interface between phases with different field evaporation field. → The interface chemistry in cemented carbides. → The transition metal solubility in WC.

  10. Optimum Design of Lightweight Silicon Carbide Mirror Assembly

    Institute of Scientific and Technical Information of China (English)

    HAN Yuanyuan; ZHANG Yumin; HAN Jiecai; ZHANG Jianhan; YAO Wang; ZHOU Yufeng

    2008-01-01

    According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.

  11. Fabrication of Tungsten Carbide Nanoparticles from Refluxing Derived Precursor

    Institute of Scientific and Technical Information of China (English)

    WEN Jiqiu; LI Yongdi; MENG Xiaopeng; YIN Guangfu; YAO Yadong

    2015-01-01

    Tungsten carbide (WC) nanoparticles were fabricated from a novel refluxing-derived precursor. The precursor was prepared by acid hydrolysis of Na2WO4 with concentrated HCl in water followed by refluxing with ethanol and n-Dedocane, respectively. Then it was heat-treated to 1 200℃for 2 h in vacuum to obtain WC nanoparticles. X-ray studies reveal the formation of hexagonal tungsten carbide and the grain size of 24.3 nm. SEM image shows WC nanoparticles with particle size of 20-60 nm. Long time refluxing results in alkane dehydrogenation and coke formation. The coke is the carbon source in the carbothermal reduction reaction. The novel route of two-stage refluxing is quite general and can be applied in the synthesis of similar carbides.

  12. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  13. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about...

  14. Calcium aluminate in alumina

    Science.gov (United States)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  15. Formation of mesostructure in WC-Co cemented carbides: A review

    OpenAIRE

    Lisovsky A.F.

    2011-01-01

    The author considers potential lines in the formation of mesostructures in cemented carbides, analyzes the existing technologies of the formation thereof, describes physical and mechanical properties of cemented carbides with mesostructure and shows the efficiency of such cemented carbides in metal working and rock destruction tools.

  16. Formation of mesostructure in WC-Co cemented carbides: A review

    Directory of Open Access Journals (Sweden)

    Lisovsky A.F.

    2011-01-01

    Full Text Available The author considers potential lines in the formation of mesostructures in cemented carbides, analyzes the existing technologies of the formation thereof, describes physical and mechanical properties of cemented carbides with mesostructure and shows the efficiency of such cemented carbides in metal working and rock destruction tools.

  17. Monolayer Iron Carbide Films on Au(111) as a Fischer–Tropsch Model Catalyst

    DEFF Research Database (Denmark)

    Mannie, Gilbère; Lammich, Lutz; Li, Yong-Wang;

    2014-01-01

    Using scanning tunneling microscopy (STM), we characterize the atomic-scale details of ultrathin films of iron carbide (FexCy) on Au(111) synthesized as a potential model system for the active iron carbide phase in iron Fischer–Tropsch synthesis (FTS) catalysts. The experiments show that room...... carbide surfaces present under FTS conditions....

  18. Evolution of carbides in cold-work tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hoyoung [Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Kang, Jun-Yun, E-mail: firice@kims.re.kr [Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Son, Dongmin [Seah Changwon Special Steel, 147 Jeokhyeon-ro, Seongsan-gu, Changwon, Gyeongnam 642-370 (Korea, Republic of); Lee, Tae-Ho [Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Cho, Kyung-Mox, E-mail: chokm@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2015-09-15

    This study aimed to present the complete history of carbide evolution in a cold-work tool steel along its full processing route for fabrication and application. A sequence of processes from cast to final hardening heat treatment was conducted on an 8% Cr-steel to reproduce a typical commercial processing route in a small scale. The carbides found at each process step were then identified by electron diffraction with energy dispersive spectroscopy in a scanning or transmission electron microscope. After solidification, MC, M{sub 7}C{sub 3} and M{sub 2}C carbides were identified and the last one dissolved during hot compression at 1180 °C. In a subsequent annealing at 870 °C followed by slow cooling, M{sub 6}C and M{sub 23}C{sub 6} were added, while they were dissolved in the following austenitization at 1030 °C. After the final tempering at 520 °C, fine M{sub 23}C{sub 6} precipitated again, thus the final microstructure was the tempered martensite with MC, M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbide. The transient M{sub 2}C and M{sub 6}C originated from the segregation of Mo and finally disappeared due to attenuated segregation and the consequent thermodynamic instability. - Highlights: • The full processing route of a cold-work tool steel was simulated in a small scale. • The carbides in the tool steel were identified by chemical–crystallographic analyses. • MC, M{sub 7}C{sub 3}, M{sub 2}C, M{sub 6}C and M{sub 23}C{sub 6} carbides were found during the processing of the steel. • M{sub 2}C and M{sub 6}C finally disappeared due to thermodynamic instability.

  19. Shock-induced localized amorphization in boron carbide.

    Science.gov (United States)

    Chen, Mingwei; McCauley, James W; Hemker, Kevin J

    2003-03-01

    High-resolution electron microscope observations of shock-loaded boron carbide have revealed the formation of nanoscale intragranular amorphous bands that occur parallel to specific crystallographic planes and contiguously with apparent cleaved fracture surfaces. This damage mechanism explains the measured, but not previously understood, decrease in the ballistic performance of boron carbide at high impact rates and pressures. The formation of these amorphous bands is also an example of how shock loading can result in the synthesis of novel structures and materials with substantially altered properties.

  20. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 16000C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  1. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Abel, P.B.

    1987-08-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  2. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  3. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  4. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...

  5. Carbothermic synthesis of carbides of uranium and plutonium

    International Nuclear Information System (INIS)

    Partial pressures of carbon monoxide, uranium and plutonium over different phase regions relevant to the carbothermic synthesis of carbides of uranium and plutonium are calculated using recent models and thermodynamic data for the compounds in U-C-O and Pu-C-O systems. The experimental parameters for the preparation of uranium carbides and a two step synthesis involving carbothermic reduction of the oxide to the dicarbide followed by hydrogen stripping of carbon to produce uranium monocarbide are discussed. (author). 31 refs., 9 figs., 6 tabs

  6. Calcium signaling in taste cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  7. Fruit Calcium: Transport and Physiology

    Directory of Open Access Journals (Sweden)

    Bradleigh eHocking

    2016-04-01

    Full Text Available Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact fruit development, physical traits and disease susceptibility through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to ripening and the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g. blossom end rot in tomatoes or bitter pit in apples. This review works towards an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved

  8. DISTILLATION OF CALCIUM

    Science.gov (United States)

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  9. Simultaneous Modification of Alumina and MgO·Al2O3 Inclusions by Calcium Treatment During Electroslag Remelting of Stainless Tool Steel

    Science.gov (United States)

    Shi, Cheng-Bin; Yu, Wen-Tao; Wang, Hao; Li, Jing; Jiang, Min

    2016-08-01

    Calcium modification of both alumina and MgO·Al2O3 inclusions during protective gas electroslag remelting (P-ESR) of 8Cr17MoV stainless steel and its effect on nitrides and primary carbides were studied by analyzing the transient evolution of oxide and sulfide inclusions in the P-ESR process. The oxide inclusions that were not removed during P-ESR without calcium treatment were found to retain their original state until in as-cast ingot. Calcium treatment modified all MgO·Al2O3 and alumina inclusions that had not been removed in the P-ESR process to liquid/partially liquid CaO-Al2O3-(MgO) with uniformly distributed elements, in addition to a small proportion of partially modified inclusions of a CaO-MgO-Al2O3 core surrounded by a liquid CaO-Al2O3. The modification of low-MgO-containing MgO·Al2O3 inclusions involves the preferential reduction of MgO from the MgO·Al2O3 inclusion by calcium and the reaction of calcium with Al2O3 in the inclusion. It is the incomplete/complete reduction of MgO from the spinel by calcium that contributes to the modification of spinels. Alumina inclusions were liquefied by direct reaction with calcium. Calcium treatment during P-ESR refining also provided an effective approach to prevent the formation of nitrides and primary carbides in stainless steel through modifying their preferred nucleation sites (alumina and MgO·Al2O3 inclusions) to calcium aluminates, which made no contribution to improving the steel cleanliness.

  10. Friction and wear behavior of chromium carbide coatings

    International Nuclear Information System (INIS)

    Chromium carbides, tungsten carbide, and chromium oxide have been tested and evaluated as coatings to protect high-temperature gas-cooled reactor (HTGR) steam generator and other HTGR components from adhesion, galling associated with sliding wear or from fretting. Tests were performed in commercially-pure helium and in helium doped with various gaseous impurities (H2, H2O, CH4, CO) to simulate the primary coolant of an HTGR. Several types of chromium carbide coatings including Cr3C2, Cr7C3, and Cr23C6, were tested for wear resistance and resistance to long-term spalling. Tungsten carbide and chromium oxide coatings were tested in sliding wear tests. Cr23C6-NiCr coatings showed the best performance (from 400 to 8160C) whether they were applied by detonation gun or plasma gun spraying methods. The presence of the Cr23C6-NiCr coatings did not affect the creep rupture properties of Alloy 800H substrates at temperatures up to 7600C. Low-cycle fatigue life of similar specimens at 5930C was reduced to 10 to 20% when tested in the 1 to 0.6% strain range

  11. Porosity of detonation coatings on the base of chromium carbide

    International Nuclear Information System (INIS)

    Porosity of detonation coatings on the base of chromium carbide is estimated by the hydrostatic weighing. The open porosity value dependence on the distance of spraying, depth of the charge, ratio and volume of the detonator barrie filing with gas components is established. Pore distribution in the cross section of a specimen tested for porosity is studied by the methods of metallographic analysis

  12. Dynamic strength of reaction-sintered boron carbide ceramic

    Science.gov (United States)

    Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Rumyantsev, V. I.

    2015-06-01

    The shock compression wave profiles in three modifications of boron carbide ceramic are studied in the compressive stress range 3-19 GPa. The Hugoniot elastic limit and the spall strength of the materials are determined. It is confirmed that the spall strength of high-hardness ceramic changes nonmonotonically with the compressive stress in a shock wave.

  13. Standard specification for nuclear-Grade boron carbide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This specification applies to boron carbide pellets for use as a control material in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  14. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  15. Influence of nanometric silicon carbide on phenolic resin composites properties

    Indian Academy of Sciences (India)

    GEORGE PELIN; CRISTINA-ELISABETA PELIN; ADRIANA STEFAN; ION DINC\\u{A}; ANTON FICAI; ECATERINA ANDRONESCU; ROXANA TRUSC\\u{A}

    2016-06-01

    This paper presents a preliminary study on obtaining and characterization of phenolic resin-based composites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ensure uniform dispersion of the nanopowder, followed by heat curing of the phenolic-based materials at controlled temperature profile up to 120$^{\\circ}$C. The obtained nanocomposites were characterized by FTIR spectroscopy and scanning electron microscopy analysis and evaluated in terms of mechanical, tribological and thermal stability under load. The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric silicon carbide content. The results indicate that these materials could be effectively used to obtain ablative or carbon–carbon composites in future studies.

  16. Method of making metallic oxide or carbide particles

    International Nuclear Information System (INIS)

    A method is claimed of making metallic oxide or carbide particles of uranium, which comprises fuels or breeder materials for nuclear reactors. An aqueous solution of uranyl nitrate or chloride and, if necessary, colloidal carbon is added dropwise into an organic ketone or ketone mixture phase which is located above an aqueous ammonia solution. The thereupon formed particles are sintered

  17. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Science.gov (United States)

    Rodenbücher, C.; Hildebrandt, E.; Szot, K.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Breuer, U.; Waser, R.; Alff, L.

    2016-06-01

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2-x) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2 thin films prepared and measured under identical conditions, the formation of HfCx was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  18. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  19. Modification of optical surfaces employing CVD boron carbide coatings

    International Nuclear Information System (INIS)

    Non-reflective or high emissivity optical surfaces require materials with given roughness or surface characteristics wherein interaction with incident radiation results in the absorption and dissipation of a specific spectrum of radiation. Coatings have been used to alter optical properties, however, extreme service environments, such as experienced by satellite systems and other spacecraft, necessitate the use of materials with unique combinations of physical, chemical, and mechanical properties. Thus, ceramics such as boron carbide are leading candidates for these applications. Boron carbide was examined as a coating for optical baffle surfaces. Boron carbide coatings were deposited on graphite substrates from BCl3, CH4, and H2 gases employing chemical vapor deposition (CVD) techniques. Parameters including temperature, reactant gas compositions and flows, and pressure were explored. The structures of the coatings were characterized using electron microscopy and compositions were determined using x-ray diffraction. The optical properties of the boron carbide coatings were measured, and relationships between processing conditions, deposit morphology, and optical properties were determined

  20. Fluorescent silicon carbide materials for white LEDs and photovoltaics

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Ou, Haiyan; Wellmann, Peter

    in cubic silicon carbide. The impurity photovoltaic effect could lead to devices with efficiencies comparable to those of tandem systems, and could open a new road for very-high-efficiency solar cells. Such high performance can be reached only if the host material has a large energy gap, like cubic silicon...

  1. Metallographic studies of eutectics carbides in high niobium microalloyed steels

    International Nuclear Information System (INIS)

    The quantity, distribution and effectiveness of eutectic carbides was studied in high niobium microalloyed steels. The particles showed extremely inhomogenuous distributions and seemed to be ineffective in promoting refinement of either an austenitic, ferritic or perlitic microstructure. There is a definite need for better quantitative data about the fraction of Nb 'lost' to eutectic particles in these steels. (Author)

  2. Growth of Vanadium Carbide by Halide-Activated Pack Diffusion

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Dahl, Kristian Vinter;

    The present work investigates growth of vanadium carbide (VC) layers by the pack diffusion method on a Vanadis 6 tool steel. The VC layers were produced by pack diffusion at 1000°C for 1, 4 and 16 hours. The VC layers were characterized with optical and electron microscopy, Vickers hardness tests...

  3. Protective infrared antireflection coating based on sputtered germanium carbide

    Science.gov (United States)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  4. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy

    Science.gov (United States)

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-09-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process.

  5. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy.

    Science.gov (United States)

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process. PMID:27596718

  6. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  7. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jannotti, Phillip; Subhash, Ghatu, E-mail: subhash@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zheng, James Q.; Halls, Virginia [Program Executive Office—Soldier Protection and Individual Equipment, US Army, Fort Belvoir, Virginia 22060 (United States); Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K. [M-Cubed Technologies, Inc., Newark, Delaware 19711 (United States)

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  8. The valve effect of the carbide interlayer of an electric resistance plug

    International Nuclear Information System (INIS)

    The welded electric resistance plug (ERP) usually contains a carbide interlayer at the plug-carbon material interface. The interlayer forms during welding the contact metallic alloy with the carbon material when the oxide films of the alloy are reduced on the interface surface by carbon to the formation of carbides and the surface layer of the plug material dissolves carbon to saturation. Subsequently, during solidification of the plug material it forms carbides with the alloy components. The structural composition of the carbide interlayer is determined by the chemical composition of the contact alloy. In alloys developed by the author and his colleagues the carbide forming elements are represented in most cases by silicon and titanium and, less frequently, by chromium and manganese. Therefore, the carbide interlayers in the ERP consisted mainly of silicon and titanium carbides

  9. Mullite Coating on Recrytallized Silicon Carbide and Its Cycling Oxidation Behavior

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mullite coating on recrystallized silicon carbide was successfully prepared by the sol-gel route. The cycling oxidation of coated recrystallized silicon carbide was performed at 1500℃. For comparison, the oxidation of uncoated recrystallized silicon carbide was also carried out at the same condition. The results indicated that a layer of compact, adhesive and crack free mullite coating was found on the recrystallized silicon carbide. After oxidation, the new coatings exhibit adherence and crack resistance under thermal cycling between room temperature and 1500℃, therefore the oxidation resistance capability of silicon carbide was enhanced. With the increase of the dipping frequencies, namely, the increase of the thickness of mullite coating, the oxidation resistance of silicon carbide would be further improved. The formation mechanism of mullite coating was analyzed and discussed and the oxidation dynamics model of coatedmullite silicon carbide has been also proposed.

  10. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  11. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. PMID:27524006

  12. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application.

  13. Coarsening of carbides during different heat treatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Kai, E-mail: miaok21@126.com; He, Yanlin, E-mail: ylhe@staff.shu.edu.cn; Zhu, Naqiong; Wang, Jingjing; Lu, Xiaogang; Li, Lin

    2015-02-15

    Highlights: • Coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides was quantitatively described in detail. • Cooling mode is a key factor to the simulation for the coarsening of carbides. • Coarsening of above spherical carbides can be calculated by Ostwald ripening model. • The interfacial energy between the γ matrix with M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides are 0.7 J/m{sup 2}. - Abstract: Coarsening of carbides in 1# Fe-5.96Cr-0.35C (wt.%) alloy and 2# Fe-0.5V-0.53C (wt.%) alloy during different heat treatment conditions was investigated by carbon replica, high-resolution transmission electron microscopy (HRTEM) , X-ray diffraction (XRD) and SEM techniques. The equilibrium phases at 850 °C constitute of austenitic matrix (γ) + M{sub 7}C{sub 3} and austenite matrix (γ) + V{sub 4}C{sub 3} for 1# and 2# alloy respectively. Morphology of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides was mainly determined by cooling mode due to the different nucleation sites and growth mechanisms. Under directly aging condition, most carbides nucleate in the grain boundaries and grow into rod-shaped or flake-shaped particles by discontinuous growth mechanism. These particles turn out to be excluded during coarsening simulation using Oswald ripening model to give a more reasonable result. In addition, interfacial energy between M{sub 7}C{sub 3}/γ and V{sub 4}C{sub 3}/γ for the coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} during aging at 850 °C is evaluated by fitting experimental data using thermodynamic and kinetic calculations. The interfacial energy is determined to be 0.7 J/m{sup 2} for the coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} in austenitic matrix.

  14. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  15. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  16. Spark plasma sintering of tantalum carbide and graphene reinforced tantalum carbide composites

    Science.gov (United States)

    Kalluri, Ajith Kumar

    Tantalum carbide (TaC), an ultra-high temperature ceramic (UHTC), is well known for its exceptional properties such as high hardness (15-19 GPa), melting point (3950 °C), elastic modulus (537 GPa), chemical resistance, and thermal shock resistance. To make TaC to be the future material for hypersonic vehicles, it is required to improve its thermal conductivity, strength, and fracture toughness. Researchers have previously reinforced TaC ceramic with carbides of silicon and boron as well as carbon nanotubes (CNTs), however, these reinforcements either undergo chemical changes or induce defects in the matrix during processing. In addition, these reinforcements exhibit a very minimal improvement in the properties. In the present work, we attempted to improve TaC fracture toughness by reinforcing with graphene nano-platelets (GNPs) and processing through spark plasma sintering at high temperature of 2000 °C, pressure of 70 MPa, and soaking time of 10 min. In addition, we investigated the active densification mechanism during SPS of TaC powder and the effect of ball milling time on mechanical properties of sintered TaC. A relative density of >96% was achieved using SPS of monolithic TaC (<3 μm). Ball milling improved the sintering kinetics and improved the mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness). Activation energy (100 kJ/mol) and stress exponent (1.2) were obtained using the analytical model developed for power-law creep. Grain boundary sliding is proposed as active densification mechanism based on these calculations. Reinforcing GNPs (2-6 vol.% ) in the TaC matrix improved relative density (99.8% for TaC-6 vol.% GNP). Also ˜150% and ˜180% increase in flexural strength and fracture toughness, respectively, was observed for TaC-6 vol.% GNP composite. The significant improvement in these properties is attributed to improved densification and toughening mechanisms such as sheet pull-out and crack

  17. Selective-area laser deposition (SALD) Joining of silicon carbide with silicon carbide filler

    Science.gov (United States)

    Harrison, Shay Llewellyn

    Selective Area Laser Deposition (SALD) is a gas-phase, solid freeform fabrication (SFF) process that utilizes a laser-driven, pyrolytic gas reaction to form a desired solid product. This solid product only forms in the heated zone of the laser beam and thus can be selectively deposited by control of the laser position. SALD Joining employs the SALD method to accomplish 'welding' of ceramic structures together. The solid reaction product serves as a filler material to bond the two parts. The challenges involved with ceramic joining center around the lack of a liquid phase, little plastic deformation and diffusivity and poor surface wetting for many ceramic materials. Due to these properties, traditional metal welding procedures cannot be applied to ceramics. Most alternative ceramic welding techniques use some form of a metal addition to overcome these material limitations. However, the metal possesses a lower ultimate use temperature than the ceramic substrate and therefore it decreases the temperature range over which the joined part can be safely used. SALD Joining enjoys several advantages over these ceramic welding procedures. The solid filler material chemistry can be tailored to match the type of ceramic substrate and therefore fabricate monolithic joints. The SALD filler material bonds directly to the substrate and the joined structure is made in a one step process, without any post-processing. The research documented in this dissertation focused on SALD Joining of silicon carbide structures with silicon carbide filler material. A historical progression of gas-phase SFF research and a literature review of the most prominent ceramic joining techniques are provided. A variety of SiC substrates were examined, as were various conditions of gas precursor pressures and mixtures, laser beam scan speed and joint configuration. The SALD material was characterized for composition and structure by x-ray diffraction, transmission electron microscopy and nuclear magnetic

  18. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  19. Calcium – how and why?

    Indian Academy of Sciences (India)

    J K Jaiswal

    2001-09-01

    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears that during the origin and early evolution of life the Ca2+ ion was given a unique opportunity to be used in several biological processes because of its unusual physical and chemical properties.

  20. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  1. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid

    2013-07-01

    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  2. Calcium measurement methods

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-09-01

    Full Text Available Rightly stressed by prof. Wolfgang Walz in the Preface to the series Neuromethods series, the “careful application of methods is probably the most important step in the process of scientific inquiry”. Thus, I strongly suggest to all those interested in calcium signaling and especially to the new-comers in the hot topic of neuroscience (which has so much space even in science-society debate for its implications in legal issues and in the judge-decision process to take profit from this so well edited book. I am saying this since prof. Verkhratsky and prof. Petersen......

  3. 21 CFR 573.240 - Calcium periodate.

    Science.gov (United States)

    2010-04-01

    ... with calcium hydroxide or calcium oxide to form a substance consisting of not less than 60 percent by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food... Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used...

  4. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  5. Electric Heating Property from Butyl Rubber-Loaded Boron Carbide Composites

    Institute of Scientific and Technical Information of China (English)

    MENG Dechuan; WANG Ninghui; LI Guofeng

    2014-01-01

    We researched the electric heating property from butyl rubber-loaded boron carbide composite. The effects of boron carbide content on bulk resistivity, voltage-current characteristic, thermal conductivity and thermal stability of boron carbide/butyl rubber (IIR) polymer composite were introduced. The analysis results indicated that the bulk resistivity decreased greatly with increasing boron carbide content, and when boron carbide content reached to 60%, the bulk resistivity achieved the minimum. Accordingly, electric heating behavior of the composite is strongly dependent on boron carbide content as well as applied voltage. The content of boron carbide was found to be effective in achieving high thermal conductivity in composite systems. The thermal conductivity of the composite material with added boron carbide was improved nearly 20 times than that of the pure IIR. The thermal stability test showed that, compared with pure IIR, the thermal stable time of composites was markedly extended, which indicated that the boron carbide can significantly improve the thermal stability of boron carbide/IIR composite.

  6. Development and Processing of Nickel Aluminide-Carbide Alloys

    Science.gov (United States)

    Newport, Timothy Scott

    1996-01-01

    With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system

  7. A Study of the High Temperature on Chromium Carbide

    International Nuclear Information System (INIS)

    The oxidation rates of chromium carbide have been measured at 900 to 1300 .deg. C and oxygen pressures between 2x10-2 8 x 10-2 Pa using thermogravimetric analysis method. Oxidation behavior of chromium carbide appeared to change very sensitively with both temperature and oxygen pressure. In case with the oxygen pressure lower than 8 x 10-2 Pa, the weight gain in the specimen due to the formation of chromium oxide occurred linearly with time at the every temperature studied, but when the oxygen pressure was increased up to 8 x 10-2Pa, the weight gain behavior versus time showed entirely different tendency. That is, in the temperature range of 900 .deg. C to 1000 .deg. C weight gain occurred, however in the range of 1000 .deg. C to 1300 .deg. C weight lost was observed. The reason for the observed linear kinetics could be inferred as follows. As the oxidation of carbide proceeded carbon monoxide would build up at the interface of the chromium oxide and carbide. If the equilibrium pressure of carbon monoxide at the interface exceeds the gas pressure at the outer specimen surface, the oxide scale formed on it might be cracked exposing new carbide sites on which oxidation could occur successively. Through a thermodynamic consideration it was judged that the above deduction was reasonable. On the other hand, the weight lost mentioned above was explained that it could occur mainly due to the further oxidation of Cr2O3 to the volatile CrO3 at the corresponding experimental conditions. Weight loss phenomenon mentioned before which was observed in the oxidation of chromium carbide was also clearified by X-ray diffraction method and SEM. That is, at 900 .deg. C stable oxide of chromium, (Cr2O3) was identified easily on the specimen surface. However, at 1300 .deg. C, only a few amount of this stable oxide could be found on to specimen surface, indicating Cr2O3 had been evaporated to CrO3 gas

  8. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  9. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  10. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  11. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  12. Evaporation behaviour of the ternary uranium plutonium carbides

    International Nuclear Information System (INIS)

    The evaporation behaviour of uranium plutonium carbides (Usub(0.80)Psub(0.20)Csub(1+-x) was studied by a combined application of mass spectrometry, using the uranium isotope U-233, and the Knudsen effusion target collection technique in the temperature range from 15000C to the liquids temperature measured at 24580C and the composition range from C/M = 0.95 to 1.4. High temperature compatibility tests were made with W-cells, carburized Ta and TaC-liners up to 25000C. The influence of oxygen and nitrogen impurities on vapour pressure, and composition changes in continued evaporation of the the mixed carbides were investigated. The effects of plutonium depletion and segregation were studied. (Auth.)

  13. Determination of thorium in plutonium-thorium oxides and carbides

    International Nuclear Information System (INIS)

    Thorium is determined in (PuTh)C and (PuTh)O2 by complexometric titration with ethylenediaminetetraacetic acid (EDTA) following separation on anion-exchange resin. Carbides are first oxidized by ignition in air at about 8000C. Oxide or oxidized carbide samples are dissolved in acids by the sealed-reflux technique or by heating in beakers. The plutonium is selectively sorbed from the 12M hydrochloric acid solution of the fuel on a Bio-Rad AG1-X2 anion-exchange resin column, and the eluted thorium is titrated with EDTA using xylenol orange as the indicator. The average recovery of thorium in 20 samples is 99.98% with a relative standard deviation of 0.07%

  14. Process for coating an object with silicon carbide

    Science.gov (United States)

    Levin, Harry (Inventor)

    1989-01-01

    A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.

  15. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  16. Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide

    Science.gov (United States)

    Xie, Kelvin Y.; An, Qi; Toksoy, M. Fatih; McCauley, James W.; Haber, Richard A.; Goddard, William A.; Hemker, Kevin J.

    2015-10-01

    Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B4C (i.e., B12C3 ) but not in B13C2 . TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B4C is B11C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B13C2 because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.

  17. Single crystalline boron carbide nanobelts:synthesis and characterization

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    This paper reports that the large-scale single crystalline boron carbide nanobelts have been fabricated through a simple carbothermal reduction method with B/B203/C/Fe powder as precursors at ll00~C.Transmission electron microscopy and selected area electron diffraction characterizations show that the boron carbide nanobelt has a B4C rhomb-centred hexagonal structure with good crystallization.Electron energy loss spectroscopy analysis indicates that the nanobelt contains only B and C,and the atomic ratio of B to C is close to 4:1.High resolution transmission electron microscopy results show that the preferential growth direction of the nanobelt is [101].A possible growth mechanism is also discussed.

  18. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  19. Thermal boundary conductance between refractory metal carbides and diamond

    International Nuclear Information System (INIS)

    The thermal boundary conductance (TBC) between thin films of Cr, Mo, Nb and W and diamond substrates has been measured using time domain thermoreflectance before and after a high-vacuum heat treatment at 800 °C for 2 h. While no signs of carbide formation could be detected in as-deposited layers by scanning transmission electron microscopy energy dispersive X-ray spectroscopy elemental analysis, the heat treatment led to partial (W, Mo) or full conversion (Cr, Nb) of the film into carbide. The measured TBC values on as-deposited samples of 315, 220, 220 and 205 MW m-2K-1 measured for, respectively, the Cr, Mo, Nb and W samples, were found to not be significantly altered by the heat treatment

  20. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  1. Carbon-rich icosahedral boron carbide designed from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Jay, Antoine; Vast, Nathalie; Sjakste, Jelena; Duparc, Olivier Hardouin [Ecole Polytechnique, Laboratoire des Solides Irradiés, CEA-DSM-IRAMIS, CNRS UMR 7642, F-91120 Palaiseau (France)

    2014-07-21

    The carbon-rich boron-carbide (B{sub 11}C)C-C has been designed from first principles within the density functional theory. With respect to the most common boron carbide at 20% carbon concentration B{sub 4}C, the structural modification consists in removing boron atoms from the chains linking (B{sub 11}C) icosahedra. With C-C instead of C-B-C chains, the formation of vacancies is shown to be hindered, leading to enhanced mechanical strength with respect to B{sub 4}C. The phonon frequencies and elastic constants turn out to prove the stability of the carbon-rich phase, and important fingerprints for its characterization have been identified.

  2. Effect of hydrogen on the microstructure of silicon carbide

    International Nuclear Information System (INIS)

    The effect of hydrogenation on the microstructure of a pressureless sintered silicon carbide was studied. Samples which were annealed in a 40:60 mole % H2:Ar atmosphere at 14000C for 50 hours were microstructurally compared with unannealed samples and samples that had been annealed in a similar manner but using an argon atmosphere. The results were also compared with microstructural results obtained from in situ studies using both hydrogen and argon atmospheres. These results were compared with a thermodynamic model which was constructed using a free energy minimization technique. The observed effects of hydrogenation were surface decarburization and amorphization throughout the silicon carbide material. Other observations include the thermally induced growth of microcrystalline silicon and accelerated amorphization around the silicon microcrystals in samples used in hydrogen in situ studies. An analysis of the microstructure of the reference material was also performed

  3. Amorphous silicon carbide coatings for extreme ultraviolet optics

    Science.gov (United States)

    Kortright, J. B.; Windt, David L.

    1988-01-01

    Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

  4. Preparation and electrocatalytic properties of tungsten carbide electrocatalysts

    Institute of Scientific and Technical Information of China (English)

    马淳安; 张文魁; 成旦红; 周邦新

    2002-01-01

    The tungsten carbide(WC) electrocatalysts with definite phase components and high specific surface area were prepared by gas-solid reduction method. The crystal structure, phase components and electrochemical properties of the as-prepared materials were characterized by XRD, BET(Brunauer Emmett and Teller Procedure) and electrochemical test techniques. It is shown that the tungsten carbide catalysts with definite phase components can be obtained by controlling the carburizing conditions including temperature, gas flowing rate and duration time. The electrocatalysts with the major phase of W2C show higher electrocatalytic activity for the hydrogen evolution reaction. The electrocatalysts with the major phase of WC are suitable to be used as the anodic electrocatalyst for hydrogen anodic oxidation, which exhibit higher hydrogen anodic oxidation electrocatalytic properties in HCl solutions.

  5. Preparation of tantalum carbide from an organometallic precursor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.P. [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Geoquimica. Lab. de Termodinamica e Reatores]. E-mail: carlson at ufrnet.ufrn.br; Favotto, C.; Satre, P.; L' Honore, A.; Roubin, M. [Universite du Toulon et de Var B.P. (France). Equipe der Materiaux a Finalite Specifique. Lab. de Physicochimie du Materiaux et du Milieu Marin]. E-mail: roubin at univ-tln.fr

    1999-03-01

    In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta{sub 2} O{sub 5} nH{sub 2}O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, Ta C, in the powder form at 1000 deg C. The natural sintering of Ta C powder in an inert atmosphere at 1400 deg C during 10 hours, under inert atmosphere made it possible to density the carbide to 96% of the theoretical value. (author)

  6. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  7. Synthesis of titanium carbide by induction plasma reactive spray

    Institute of Scientific and Technical Information of China (English)

    JIANG Xian-Liang(蒋显亮); M.Boulos

    2004-01-01

    A novel method capable of sufficient mixing of titanium powder and methane of carbon source was developed in the synthesis of titanium carbide by induction plasma reactive spray. X-ray diffraction analysis, optical microscopy, scanning electron microscopy, and microhardness test were used to characterize the spray-formed deposit.The experimental results show that both primary carburization of the titanium particles inside the plasma flame and secondary carburization of the growing deposit on high temperature substrate contribute to the forming of titanium carbide. The transitional phase of TiC1-x has the same crystal structure as TiC, but has a slightly low lattice constant. The deposit consists of fine grain structure and large grain structure. The fine grain structure, harder than large grain structure, shows grain boundary fracture.

  8. Pressureless sintered silicon carbide tailored with aluminium nitride sintering agent

    International Nuclear Information System (INIS)

    This study reports the influence of aluminium nitride on the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Pressureless sintering was achieved at 2000 degrees C for 5 min with the additions of boron carbide together with carbon of 1 wt% and 6 wt%, respectively, and a content of aluminium nitride between 0 and 10 wt%. Sintered samples present relative densities higher than 92%. The sintered microstructure was found to be greatly modified by the introduction of aluminium nitride, which reflects the influence of nitrogen on the β-SiC to α-SiC transformation. The toughness of sintered sample was not modified by AlN incorporation and is relatively low (around 2.5 MPa m1/2). Materials exhibited transgranular fracture mode, indicating a strong bonding between SiC grains. (authors)

  9. Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics

    Indian Academy of Sciences (India)

    A K Mukhopadhyay

    2001-04-01

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker’s microhardness tester at various loads in the range 1–20 N. Subsequently, the gradual evolution of the damage was characterized using an optical microscope in conjunction with the image analysing technique. The materials were classified in the order of the decreasing resistance against repeated indentation fatigue at the highest applied load of 20 N. It was further shown that there was a strong influence of grain size on the development of resistance against repeated indentation fatigue on the same spot. Finally, the poor performance of the sintered silicon carbide was found out to be linked to its previous thermal history.

  10. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  11. Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide.

    Science.gov (United States)

    Xie, Kelvin Y; An, Qi; Toksoy, M Fatih; McCauley, James W; Haber, Richard A; Goddard, William A; Hemker, Kevin J

    2015-10-23

    Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B(4)C (i.e., B(12)C(3)) but not in B(13)C(2). TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B(4)C is B(11)C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B(13)C(2) because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.

  12. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  13. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000490.htm Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D Do I Need? Amounts of calcium are ...

  14. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download PDFs ... helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin D ...

  15. Cubic Silicon Carbide: a promising material for automotive application

    OpenAIRE

    Attolini, Giovanni; Bosi, Matteo; Rossi, Francesca; Watts, Bernard Enrico; Salviati, Giancarlo

    2008-01-01

    carbide is a material that possesses properties that make it desirable in electronic, structural and sensor applications. As a wide band gap semiconductor it can be used in high power, high temperature electronics and harsh environments. Its hardness, wear resistance, chemical inertness, and thermal conductivity find uses ranging from disc brakes to micron scale sensors and actuators. The automotive industry faces some important challenges since it has obligations to manufacture safe, clean, ...

  16. Final design review of boron carbide safety rod

    International Nuclear Information System (INIS)

    The object of this paper discusses the design review of the boron carbide safety rod for the Westinghouse Savannah River Company. This paper reviewed information presented by personnel of the Savannah River Laboratory (SRL) Equipment Engineering Section, SRL Materials Technology Section and Reactor Materials Engineering and Technology. From this report, views, opinions and recommendations were made on the safety rod from materials testing to production

  17. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-01

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  18. Silicon Carbide Technologies for High Temperature Motor Drives

    OpenAIRE

    Snefjellå, Øyvind Holm

    2011-01-01

    Many applications benefit from using converters which can operate at high temperatures among them; down-hole drilling, hybrid vehicles and space craft. The theoretical performance of transistors made of Silicon Carbide (SiC) is investigated in this work. It is shown that their properties at high temperatures are superior compared to Silicon (Si) devices. Two half-bridge converters, using SiC normally-off Junction Field Effect Transistors (JFET) and SiC Bipolar Junction Transistors (BJT), are ...

  19. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    International Nuclear Information System (INIS)

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement

  20. Disorder and defects are not intrinsic to boron carbide

    OpenAIRE

    Swastik Mondal; Elena Bykova; Somnath Dey; Sk. Imran Ali; Natalia Dubrovinskaia; Leonid Dubrovinsky; Gleb Parakhonskiy; Sander van Smaalen

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichio...

  1. Refractory ceramics to silicon carbide. 5. tot. rev. ed

    Energy Technology Data Exchange (ETDEWEB)

    Elvers, B. (ed.); Hawkins, S. (ed.); Russey, W. (ed.); Schulz, G. (ed.)

    1993-01-01

    This volume contains 28 contributions to the following topics: Refractory Ceramics, Reinforced Plastics; Release Agents; Resins, Natural; Resins, Synthetic; Resorcinol; Resources of Oil and Gas; Rhenium and Rhenium Compounds; Rodenticides; Rubber (1. Survey, 2. Natural, 3. Synthetic, 4. Chemicals, 5. Technology, 6. Testing); Rubidium and Rubidium Compounds; Salicylic Acid; Saponins; Sealing Materials; Seasonings; Sedatives; Selenium and Selenium Compounds; Semiconductors; Shoe Polishes; Silica; Silicates; Silicon; Silicon Carbide. (orig.)

  2. Simulation in Amorphous Silicon and Amorphous Silicon Carbide Pin Diodes

    OpenAIRE

    Gonçalves, Dora; Fernandes, Miguel; Louro, Paula; Fantoni, Alessandro; Vieira, Manuela

    2014-01-01

    Part 21: Electronics: Devices International audience Photodiodes are devices used as image sensors, reactive to polychromatic light and subsequently color detecting, and they are also used in optical communication applications. To improve these devices performance it is essential to study and control their characteristics, in fact their capacitance and spectral and transient responses. This study considers two types of diodes, an amorphous silicon pin and an amorphous silicon carbide pi...

  3. Chromium carbide coatings obtained by the hybrid PVD methods

    Directory of Open Access Journals (Sweden)

    M. Richert

    2010-11-01

    Full Text Available Purpose: With the use of the Arc-PVD and Arc-EB PVD hybrid method, the chromium carbide coatings were deposited on steel substrate. Two kinds of coatings were obtained. The nanostructure coatings were formed by deposition of chromium carbide films by Arc PVD evaporation technique. The multilayer coatings were produced by Arc-EB PVD hybrid technology. In the second case the amorphous phase in majority was found in samples, identified by X-ray investigations.Design/methodology/approach: The Arc PVD and combination Arc-EB PVD methods were used for carbide coatings deposition. The special hybrid multisource device, produced in the Institute for Sustainable Technologies – National Research Institute (ITeE –PIB in Radom, was used for sample deposition. The microstructures of coatings were investigated by JEM 20101 ARP transmission electron microscopy (TEM, TESLA BS500 scanning electron microscopy (SEM and Olympus GX50 optical microscopy (MO. The X-ray diffraction was utilized to identify phase configuration in coatingsFindings: The microstructure of deposited coatings differs depending on the deposition method used. The Arc PVD deposition produced nanometric coatings with the Cr3C2, Cr23C6, Cr7C3 and CrC carbides built from nanometric in size clusters. In the case of the Arc-EB PVD hybrid technology in majority of cases the amorphous microstructure of coatings was found. The hybrid coatings consist of alternating layers of Ni/Cr-Cr3C2.Practical implications: The performed investigations provide information, which could be useful in the industrial practice for the production of wear resistant coatings on different equipments and tools.Originality/value: It was assumed that by using different kinds of PVD methods the different microstructures of coatings could be formed.

  4. An electrochemical process for the recycling of tungsten carbide scrap

    International Nuclear Information System (INIS)

    An account is given of the development of a number of designs for electrochemical cells, and the subsequent construction and operation of a vibrating-plate cell capable of oxidizing 15 kilograms of tungsten carbide a day to a crude tungstic acid precipitate, with similtaneous recovery of cobalt metal on the cathode. The effects on the process of the reagent concentration, temperature, current density, and cathode material are discussed

  5. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2013-06-15

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  6. Rheology of silicon carbide/vinyl ester nanocomposites

    OpenAIRE

    Yong, Virginia; Hahn, H. Thomas

    2006-01-01

    Silicon carbide (SiC) nanoparticles with no surface treatment raise the viscosity of a vinyl ester resin much more intensely than micrometer-size SiC particles. An effective dispersant generally causes a reduction in the resin viscosity attributed to its surface-active properties and thereby increases the maximum fraction of particles that can be introduced. This article assesses the rheological behavior of SiC-nanoparticle-filled vinyl ester resin systems with the Bingham, power-law, Hersche...

  7. First principle study of hydrogen behavior in hexagonal tungsten carbide

    OpenAIRE

    Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Q. F. Fang; Chen, Jun-Ling; Luo, G.-N.

    2010-01-01

    Understanding the behavior of hydrogen in hexagonal tungsten carbide (WC) is of particular interest for fusion reactor design due to the presence of WC in the divertor of fusion reactors. Therefore, we use first-principles calculations to study the hydrogen behavior in WC. The most stable interstitial site for the hydrogen atom is the projection of the octahedral interstitial site on tungsten basal plane, followed by the site near the projection of the octahedral interstitial site on carbon b...

  8. Anodic etching of p-type cubic silicon carbide

    Science.gov (United States)

    Harris, G. L.; Fekade, K.; Wongchotigul, K.

    1992-01-01

    p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.

  9. Effect of carbides on erosion resistance of 23-8-N steel

    Indian Academy of Sciences (India)

    Aniruddha A Gadhikar; Ashok Sharma; D B Goel; C P Sharma

    2014-04-01

    Microstructure is one of the most important parameters influencing erosion behaviour of materials. The role of carbides in the matrix is very complicated in controlling the erosion rate of the materials. Conflicting results have been reported in the literature about the effect of carbides on erosion resistance. Carbides are of great importance especially as obstacles against the penetration of erosive particles into the material surface. However, they are susceptible to cracking and causing matrix decohesion which may increase the overall erosion rate. In 23-8-N nitronic steel, carbides present in the form of bands are observed to accelerate the erosion rate. Coarse carbides cause depletion of carbon in the austenite matrix which adversely affects the strain hardening tendency thus causing deterioration in erosion resistance of the bulk material. The dissolution of carbides in the austenitic matrix after solution annealing is observed to improve the erosion resistance of 23-8-N nitronic steel.

  10. Effect of Cement Replacement with Carbide Waste on the Strength of Stabilized Clay Subgrade

    Directory of Open Access Journals (Sweden)

    Muntohar A.S.

    2016-03-01

    Full Text Available Cement is commonly used for soil stabilization and many other ground improvement techniques. Cement is believed to be very good to improve the compressive and split-tensile strength of clay subgrades. In some application cement could be partly or fully replaced with carbide waste. This research is to study the effectiveness of the cement replacement and to find the maximum carbide waste content to be allowed for a clay subgrade. The quantities of cement replaced with the carbide waste were 30, 50, 70, 90, and 100% by its mass. The results show that replacing the cement with carbide waste decreased both the compressive and split tensile strength. Replacing cement content with carbide waste reduced its ability for stabilization. The carbide waste content should be less than 70% of the cement to provide a sufficient stabilizing effect on a clay subgrade.

  11. Investigation on the Performance of Supported Molybdenum Carbide for the Partial Oxidation of Methane

    Institute of Scientific and Technical Information of China (English)

    Quanli Zhu; Jian Yang; Jiaxin Wang; Shengfu Ji; Hanqing Wang

    2003-01-01

    The performance of supported and unsupported molybdenum carbide for the partial oxida-tion of methane (POM) to syngas was investigated. An evaluation of the catalysts indicates that bulkmolybdenum carbide has a higher methane conversion during the initial stage but a lower selectivity toCO and H2/CO ratio in the products. The rapid deactivation of the catalyst is also a significant problem.However, the supported molybdenum carbide catalyst shows a much higher methane conversion, increasedselectivity and significantly improved catalytic stability. The characterization by XRD and BET specificarea measurements depict an improved dispersion of molybdenum carbide when using alumina as a carrier.The bulk or the supported molybdenum carbide exists in the β-Mo2C phase, while it is transformed intomolybdenum dioxide postcatalysis which is an important cause of molybdenum carbide deactivation.

  12. Disorder and defects are not intrinsic to boron carbide

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure–high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C–B–C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  13. Predicted boron-carbide compounds: a first-principles study.

    Science.gov (United States)

    Wang, De Yu; Yan, Qian; Wang, Bing; Wang, Yuan Xu; Yang, Jueming; Yang, Gui

    2014-06-14

    By using developed particle swarm optimization algorithm on crystal structural prediction, we have explored the possible crystal structures of B-C system. Their structures, stability, elastic properties, electronic structure, and chemical bonding have been investigated by first-principles calculations with density functional theory. The results show that all the predicted structures are mechanically and dynamically stable. An analysis of calculated enthalpy with pressure indicates that increasing of boron content will increase the stability of boron carbides under low pressure. Moreover, the boron carbides with rich carbon content become more stable under high pressure. The negative formation energy of predicted B5C indicates its high stability. The density of states of B5C show that it is p-type semiconducting. The calculated theoretical Vickers hardnesses of B-C exceed 40 GPa except B4C, BC, and BC4, indicating they are potential superhard materials. An analysis of Debye temperature and electronic localization function provides further understanding chemical and physical properties of boron carbide.

  14. Characterization of a boron carbide-based polymer neutron sensor

    Science.gov (United States)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  15. Disorder and defects are not intrinsic to boron carbide.

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials. PMID:26777140

  16. Bonding and Integration Technologies for Silicon Carbide Based Injector Components

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  17. Novel silicon carbide/polypyrrole composites; preparation and physicochemical properties

    International Nuclear Information System (INIS)

    Novel silicon carbide/polypyrrole (SiC/PPy) conducting composites were prepared using silicon carbide as inorganic substrate. The surface modification of SiC was performed in aqueous solution by oxidative polymerization of pyrrole using ferric chloride as oxidant. Elemental analysis was used to determine the mass loading of polypyrrole in the SiC/PPy composites. Scanning electron microscopy showed the surface modification of SiC by PPy. PPy in composites was confirmed by the presence of PPy bands in the infrared spectra of SiC/PPy containing various amounts of conducting polymer. The conductivity of SiC/PPy composites depends on PPy content on the surface. The composite containing 35 wt.% PPy showed conductivity about 2 S cm-1, which is in the same range as the conductivity of pure polypyrrole powder prepared under the same conditions using the same oxidant. PPy in the composites was clearly detected by X-ray photoelectron spectroscopy (XPS) measurements by its N1s and Cl2p peaks. High resolution scans of the C1s regions distinguished between silicon carbide and polypyrrole carbons. The fraction of polypyrrole at the composite surface was estimated from the silicon and nitrogen levels. The combination of XPS and conductivity measurements suggests that the surface of the SiC/PPy composites is polypyrrole-rich for a conducting polymer mass loading of at least 12.6 wt.%

  18. Carbide-Derived Carbon Films for Integrated Electrochemical Energy Storage

    Science.gov (United States)

    Heon, Min

    Active RFID tags, which can communicate over tens or even hundreds of meters, MEMS devices of several microns in size, which are designed for the medical and pharmaceutical purposes, and sensors working in wireless monitoring systems, require microscale power sources that are able to provide enough energy and to satisfy the peak power demands in those applications. Supercapacitors have not been an attractive candidate for micro-scale energy storage, since most nanoporous carbon electrode materials are not compatible with micro-fabrication techniques and have failed to meet the requirements of high volumetric energy density and small form factor for power supplies for integrated circuits or microelectronic devices or sensors. However, supercapacitors can provide high power density, because of fast charging/discharging, which can enable self-sustaining micro-modules when combined with energy-harvesting devices, such as solar cell, piezoelectric or thermoelectric micro-generators. In this study, carbide-derived carbon (CDC) films were synthesized via vacuum decomposition of carbide substrates and gas etching of sputtered carbide thin films. This approach allowed manufacturing of porous carbon films on SiC and silicon substrates. CDC films were studied for micro-supercapacitor electrodes, and showed good double layer capacitance. Since the gas etching technique is compatible with conventional micro-device fabrication processes, it can be implemented to manufacture integrated on-chip supercapacitors on silicon wafers.

  19. Predicted boron-carbide compounds: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, De Yu; Yan, Qian; Wang, Bing; Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn; Yang, Jueming; Yang, Gui [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2014-06-14

    By using developed particle swarm optimization algorithm on crystal structural prediction, we have explored the possible crystal structures of B-C system. Their structures, stability, elastic properties, electronic structure, and chemical bonding have been investigated by first-principles calculations with density functional theory. The results show that all the predicted structures are mechanically and dynamically stable. An analysis of calculated enthalpy with pressure indicates that increasing of boron content will increase the stability of boron carbides under low pressure. Moreover, the boron carbides with rich carbon content become more stable under high pressure. The negative formation energy of predicted B{sub 5}C indicates its high stability. The density of states of B{sub 5}C show that it is p-type semiconducting. The calculated theoretical Vickers hardnesses of B-C exceed 40 GPa except B{sub 4}C, BC, and BC{sub 4}, indicating they are potential superhard materials. An analysis of Debye temperature and electronic localization function provides further understanding chemical and physical properties of boron carbide.

  20. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    Science.gov (United States)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  1. Disorder and defects are not intrinsic to boron carbide.

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-18

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  2. Barrier properties of nano silicon carbide designed chitosan nanocomposites.

    Science.gov (United States)

    Pradhan, Gopal C; Dash, Satyabrata; Swain, Sarat K

    2015-12-10

    Nano silicon carbide (SiC) designed chitosan nanocomposites were prepared by solution technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used for studying structural interaction of nano silicon carbide (SiC) with chitosan. The morphology of chitosan/SiC nanocomposites was investigated by field emission scanning electron microscope (FESEM), and high resolution transmission electron microscope (HRTEM). The thermal stability of chitosan was substantially increased due to incorporation of stable silicon carbide nanopowder. The oxygen permeability of chitosan/SiC nanocomposites was reduced by three folds as compared to the virgin chitosan. The chemical resistance properties of chitosan were enhanced due to the incorporation of nano SiC. The biodegradability was investigated using sludge water. The tensile strength of chitosan/SiC nanocomposites was increased with increasing percentage of SiC. The substantial reduction in oxygen barrier properties in combination with increased thermal stability, tensile strength and chemical resistance properties; the synthesized nanocomposite may be suitable for packaging applications.

  3. The Development of Silicon Carbide Based Hydrogen and Hydrocarbon Sensors

    Science.gov (United States)

    Liu, Chung-Chiun

    1994-01-01

    Silicon carbide is a high temperature electronic material. Its potential for development of chemical sensors in a high temperature environment has not been explored. The objective of this study is to use silicon carbide as the substrate material for the construction of chemical sensors for high temperature applications. Sensors for the detection of hydrogen and hydrocarbon are developed in this program under the auspices of Lewis Research Center, NASA. Metal-semiconductor or metal-insulator-semiconductor structures are used in this development. Specifically, using palladium-silicon carbide Schottky diodes as gas sensors in the temperature range of 100 to 400 C are designed, fabricated and assessed. The effect of heat treatment on the Pd-SiC Schottky diode is examined. Operation of the sensors at 400 C demonstrate sensitivity of the sensor to hydrogen and hydrocarbons. Substantial progress has been made in this study and we believe that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures. However, the long term stability and operational life of the sensor need to be assessed. This aspect is an important part of our future continuing investigation.

  4. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    OpenAIRE

    Choksi Krishna; Shenoy Ashoka M; A. R. Shabharaya; Lala Minaxi

    2011-01-01

    The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg) and calcium gluconate (5 mg/kg) were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg) to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate cou...

  5. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk;

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... in the char conversion process. Comprehensive global equilibrium calculations predicted important characteristics of the inorganic ash residue. Equilibrium calculations predict the formation of liquid salt if sufficient amounts of Ca are added and according to experiments as well as calculations calcium binds...

  6. Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica

    OpenAIRE

    Luo Xiaogang; Ma Wenhui; Zhou Yang; Liu Dachun; Yang Bin; Dai Yongnian

    2009-01-01

    Abstract Silicon carbide nanowires have been synthesized at 1400 °C by carbothermic reduction of silica with bamboo carbon under normal atmosphere pressure without metallic catalyst. X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy and Fourier transformed infrared spectroscopy were used to characterize the silicon carbide nanowires. The results show that the silicon carbide nanowires have a core–shell structure and gr...

  7. A Study of Current Chopping Characteristics in Metal-Carbide Composite Contact Materials

    Science.gov (United States)

    Yamamoto, Atsushi; Kusano, Takashi; Okutomi, Tsutomu; Yokokura, Kunio; Homma, Mitsutaka

    To clarify the effect of carbides on current chopping characteristics chopping current was evaluated for various metalcarbide contact materials. As a result, it was found that the chopping current of metal-carbide contacts was related to the vapor pressure of metals and the work function of carbides. It was also found that the chopping current was reduced by the heat treatment when the melting point of contacts is lower than the temperature of heat teatment.

  8. Influence of Eta-Phase on Wear Behavior of WC-Co Carbides

    OpenAIRE

    A. Formisano; Capece Minutolo, F.; Caraviello, A.; Carrino, L.; DURANTE, M.; Langella, A.

    2016-01-01

    Cemented carbides, also known as Widia, are hard metals produced by sintering process and widely used in mechanical machining. They show high cutting capacity and good wear resistance; consequently, they result to be excellent materials for manufacturing cutting tools and sandblast nozzles. In this work, the wear resistance of WC-Co carbides containing Eta-phase, a secondary phase present in the hard metals when a carbon content deficiency occurs, is analyzed. Different mixtures of carbide ar...

  9. Nanosized Borides and Carbides for Electroplating. Metal-Matrix Coatings: Specifications, Performance Evaluation

    Science.gov (United States)

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Il’yashchenko, D. P.; Kartsev, D. S.

    2016-04-01

    This paper summarizes experience of application of nano-sized carbides and borides of titanium and chromium, silicon carbide as components of electro-depositable coating compositions based on nickel, zinc, and chromium. Basic physical and mechanical properties of the coatings are determined. Technological and economic evaluation is completed; practicability of high-cost nano-diamonds substitution for nano-sized borides and carbides is justified.

  10. Electrophysical properties and structure of niobium and tantalum carbide coatings on graphite

    International Nuclear Information System (INIS)

    Variation of electric resistance and thermoelectromotive force of tantalum and niobium carbides depending on composition and temperature is studied. Electric resistance of carbides is shown to grow with increase of carbon deficit, while thermoelectromotive force - accepts more negative values. Electro- and thermophysical properties are determined to be closely interrelated with electron structure of carbide coatings. In particular, results of X-ray photoelectron spectroscopy prove the fact

  11. Mechanical properties and structure of niobium and tantalum carbide coatings on graphite

    International Nuclear Information System (INIS)

    Peculiarities of preparation of niobium and tantalum nonstoichiometric carbides have been studied by the method of gas-phase - diffusion crystallization. Mechanical properties of nonstoichiometric carbides are mainly determined by the concentration of carbon in them. Strength characteristics increase with carbon deficiency and reach the maximum at the ratios C:Me=0.8-0.85. However, futher increase in carbon vacancies in carbon sublattice causes a sharp decrease in mechanical properties of carbide coatings

  12. Steam Reforming on Transition-metal Carbides from Density-functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vojvodic, Aleksandra

    2012-05-11

    A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

  13. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    Science.gov (United States)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  14. High Carbon Alloy Steels with Multiple Types of Ultra-fine Carbides and Their Characteristics

    Institute of Scientific and Technical Information of China (English)

    MA Yong-qing; GAO Hong-tao; QI Yu-hong; ZHANG Zhan-ping; DAI Yu-mei; LIU Yan-xia

    2004-01-01

    Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7C3, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength,flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.

  15. Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique

    International Nuclear Information System (INIS)

    There are a lot of technologically interesting characteristics of niobium carbide coating deposited by pack method which is the production of hard, wear-resistant, oxidation and corrosion resistant coating layer on the steel substrates. In the present study, the growth kinetics of niobium carbide layer deposited by thermo-reactive diffusion techniques in a solid medium on steel samples was reported. Niobium carbide coating treatment was performed on AISI 1040 steels in the powder mixture consisting of ferro-niobium, ammonium chloride and alumina at 1073, 1173 and 1273 K for 1-4 h. The presence of NbC and Nb2C phases formed on the surface of the steel substrates was confirmed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analyses. Niobium carbide layer thickness ranges from 3.42±0.52 to 11.78±2.29 μm depending upon the treatment time and temperature. Layer growth kinetics was analyzed by measuring the depth of niobium carbide layer as a function of time and temperature. The kinetics of niobium carbide coating by pack method shows a parabolic relationship between carbide layer thickness and treatment time, and the activation energy for the process is estimated to be 91.257 kJ mol-1. Moreover, an attempt was made to investigate the possibility of predicting the contour diagram of niobium carbide layer variation and to establish some empirical relationships between process parameters and niobium carbide layer thickness

  16. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  17. Sensitivity to calcium intake in calcium stone forming patients.

    Science.gov (United States)

    Heilberg, I P; Martini, L A; Draibe, S A; Ajzen, H; Ramos, O L; Schor, N

    1996-01-01

    The absorptive or renal origin of hypercalciuria can be discriminated using an acute oral calcium load test (ACLT). Of 86 patients with calcium oxalate kidney stones, 28 (23%) were found to be hypercalciuric (HCa) and 58 (67%) normocalciuric (NCa) on their customary free diet, containing 542 +/- 29 mg/day (mean +/- SE) of calcium. Since the apparently normal 24-hour calcium excretion of many calcium stone formers (CSF) may be due to a combination of high calcium absorption with moderately low calcium intake, all patients were investigated by ACLT. Of 28 HCa patients, 13 (46%) were classified as absorptive (AH) and 15 (54%) as renal hypercalciuria (RH). Of the 58 NCa patients, 38 (65%) presented features of intestinal hyperabsorption and were therefore designated as AH-like, and 20 (35%) as RH-like. To further elucidate the role of dietary calcium in these CSF, a chronic calcium load test (CCLT), consisting of 1 g/day of oral Ca for 7 days, was designed. A positive response to the CCLT was considered to occur when urinary calcium (uCa) was > or = 4 mg/ kg/24 h on the 7th day. Among NCa patients, 29% of AH-like subjects responded to the CCLT and 71% did not; 50% of RH-like subjects also responded and 50% did not. In HCa patients, 85% of AH and 67% of RH subjects maintained uCa > or = 4 mg/kg/24 h after the CCLT and 15% of AH and 23% of RH subjects did not. However, a significant additional increase in mean uCa was not observed among HCa patients. All patients were submitted to a second evaluation of fasting calciuria (Ca/Cr). A modification of this parameter was noticed in 89% of RH-like and 78% of RH patients. In conclusion, these data suggest the presence of subpopulations of patients sensitive or not to calcium intake, regardless of whether the acute response to a calcium overload test suggested AH or RH. The CCLT disclosed dietary hypercalciuria in 21/58 (36%) of previously NCa patients. In these NCa patients, the ACLT may be replaced by the CCLT. The distinction

  18. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail: julien.bizzozero@gmail.com; Scrivener, Karen L.

    2015-10-15

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  19. Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Jiang, Yehua, E-mail: jiangyehua@kmust.edu.cn; Xiao, Han; Tan, Jun

    2015-01-05

    Highlights: • The method to prepare Carbon steel/High chromium iron is totally new. • High chromium iron can achieve small plastic deformation during hot rolling process. • Carbides in high chromium irons are crushed, refined obviously and becoming isolated, which is benefit to improve the impact toughness. • The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. - Abstract: A sandwich-structured composite containing a hypereutectic high chromium cast iron (HCCI) and low carbon steel (LCS) claddings was newly fabricated by centrifugal casting, then the blank was hot-rolled into composite plate. The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. During hot rolling, significant refinement of carbides was discovered in hot-rolled HCCI specimens. The carbides were broken and partly dissolved into the austenite matrix. The results show that carbides are firstly dissolved under the action of stress. There are grooves appeared at the boundaries of the carbides. The grooves reduce the cross section of the carbide. When the cross section of the carbide reaches to the required minimum critical cross section, the carbide breaks through the tensile force. After break, carbides continue to dissolve since more interfaces between the matrix and carbides are generated. The secondary carbides precipitated due to the dissolution are index as fcc and stacking faults parallel to the {1 1 1} are observed.

  20. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  1. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness. PMID:7488645

  2. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  3. EFFECTS OF MODIFICATION OF THE CARBIDE CHARACTERISTICS THROUGH GRAIN BOUNDARY SERRATION ON CREEP-FATIGUE LIFE IN AUSTENITIC STAINLESS STEELS

    Institute of Scientific and Technical Information of China (English)

    K.J.Kim; H.U.Hong; K.S.Min; S.W.Nam

    2004-01-01

    Modification of the carbide characteristics through the grain boundary serration is investigated, using an AISI 316 and 304 stainless steels. In both steels, triangular carbides were observed at straight grain boundaries while planar carbides vere observed at the serrated grain boundaries. The serrated grain boundary energy is observed to be much lower than that of the straight one. Therefore, the carbide morphology is found to be changed from triangular to planar along the serrated boundary to reduce the interfacial energy between the carbide and the matrix. The creep-fatigue properties of these steels at 873K have been investigated. The creep-fatigue life of the sample vith planar carbide at the serrated grain boundary was found to be much longer than that with triangular carbide at the straight one. These results imply that the planar carbides with lower interfacial energy have higher cavitation resistance, resulting in the retardation of cavity nucleation and growth to increase creep-fatigue life.

  4. Variability of calcium absorption

    International Nuclear Information System (INIS)

    Variability in calcium absorption was estimated in three groups of normal subjects in whom Ca absorption was measured by standard isotopic-tracer methods at interstudy intervals ranging from 1 to 4 mo. Fifty absorption tests were performed in 22 subjects. Each was done in the morning after an overnight fast with an identical standard breakfast containing a Ca load of approximately 250 mg. Individual fractional absorption values were normalized to permit pooling of the data. The coefficient of variation (CVs) for absorption for the three groups ranged from 10.57 to 12.79% with the size of the CV increasing with interstudy duration. One other published study presenting replicate absorption values was analyzed in a similar fashion and was found to have a CV of absorption of 9.78%. From these data we estimate that when the standard double-isotope method is used to measure Ca absorption there is approximately 10% variability around any given absorption value within an individual human subject and that roughly two-thirds of this represents real biological variability in absorption

  5. Promotion of the Growth of Boron-Carbide Nanowires

    Science.gov (United States)

    Kranov, Yanko; Zhang, Daqing; McIlroy, David; Norton, Grant

    2000-03-01

    Boron carbide, is a wide bandgap semiconductor (2.1eV) with a high melting temperature in excess of 2400^circC. Initial studies indicate that nanowires of boron carbide approximately 25 ~30 μm in length and less than 100 nm in diameter can be grown by the technique of plasma enhanced chemical vapor deposition by a mode of the vapor-liquid-solid mechanism [1] at relatively low temperatures ( ~1150^circC). Through the use of boron based eutectics such as FeB, NiB and PtB nanowire growth at temperatures below 1150^circC. These metal borides have successively lower melting temperatures, respectively. In this paper we will discuss a simple technique for making submicron metal boride particles, as well as a simple means of depositing them onto a surface. In addition, the effect of droplet size on nanowire diameter and the stability of the size of the metal boride droplet during growth will be discussed. These studies demonstrate that the surface can be selectively seeded thereby controlling the location of the nanowires, i.e. select area deposition. Lastly, the techniques and materials used to grow boron carbide nanowires can easily be used to grow other types of nanowires, as well as carbon nanotubes. [1]. D. N. McIlroy, Daqing Zhang, Robert M. Cohen, J. Wharton, Yongjun Geng, M. Grant Norton, G. De Stasio, B.Gilbert, L.Perfetti, J.H.Streiff, B.Broocks and J.L. McHale, Phys. Rev. B 60 (1999) 4874

  6. Ion-beam-deposited boron carbide coatings for the extreme ultraviolet.

    Science.gov (United States)

    Blumenstock, G M; Keski-Kuha, R A

    1994-09-01

    The normal-incidence reflectance of ion-beam-deposited boron carbide thin films has been evaluated in the extreme ultraviolet (EUV) spectral region. High-reflectance coatings have been produced with reflectances greater than 30% between 67 and 121.6 nm. This high reflectance makes ion-beam-deposited boron carbide an attractive coating for EUV applications.

  7. Specific Nature of Application of Various Carbon Components for Mechanochemical Synthesis of Titanium Carbide

    Science.gov (United States)

    Reva, V. P.; Yagofarov, V. U.; Gulevskii, D. A.; Filatenkov, A. E.; Mansurov, Yu N.

    2016-08-01

    It has been established that structure of carbon modifications, obtained via pyrolysis of vegetable feed, and ash content of natural graphite are crucial factors during mechanochemical synthesis of titanium carbide under vibratory conditions. The possibility of synthesis of titanium carbide with minimal sulfur content has been shown.

  8. Carbide Transformation in Haynes 230 during Long-term Exposure at High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung; Kim, Hyunmyung; Hong, Sunghoon; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    Long-term aging behaviors of a solid solution hardened Ni-base superalloy, Haynes 230 at high temperature have not been fully investigated yet. In this study, long-term aging tests of Haynes 230 was carried out to evaluate microstructure changes especially in carbide evolution. In addition, its consequential effects on tensile property such as tensile strength and elongation were discussed. In Haynes 230, a nucleation of the secondary carbides was dominant at 800 .deg. C ageing while growth at 900 .deg. C ageing. In addition, after aging at 800 .deg. C, transition of primary W-rich M{sub 6}C carbides (break down) were observed and it showed high W content (up to 70 at.% W) compared to un-aged W-rich M{sub 6}C carbides (around 30 at.% W). Coarsened Cr- and Ni-rich phase surrounded by carbide depleted region and high W-rich M{sub 6}C carbide along the grain boundary were formed only at 900 .deg. C after long-term exposure above 10000 h. Tensile strength of aged Haynes 230 increased at 800 .deg. C while decreased at 900 .deg. C due to the formation of secondary carbide within the grains at 800 .deg. C. Decrease in elongation would be resulted from the coarsened and continuous carbides at the grain boundary as well as Cr- and Ni-rich phase along the grain boundary.

  9. Carbide Transformation in Haynes 230 during Long-term Exposure at High Temperature

    International Nuclear Information System (INIS)

    Long-term aging behaviors of a solid solution hardened Ni-base superalloy, Haynes 230 at high temperature have not been fully investigated yet. In this study, long-term aging tests of Haynes 230 was carried out to evaluate microstructure changes especially in carbide evolution. In addition, its consequential effects on tensile property such as tensile strength and elongation were discussed. In Haynes 230, a nucleation of the secondary carbides was dominant at 800 .deg. C ageing while growth at 900 .deg. C ageing. In addition, after aging at 800 .deg. C, transition of primary W-rich M6C carbides (break down) were observed and it showed high W content (up to 70 at.% W) compared to un-aged W-rich M6C carbides (around 30 at.% W). Coarsened Cr- and Ni-rich phase surrounded by carbide depleted region and high W-rich M6C carbide along the grain boundary were formed only at 900 .deg. C after long-term exposure above 10000 h. Tensile strength of aged Haynes 230 increased at 800 .deg. C while decreased at 900 .deg. C due to the formation of secondary carbide within the grains at 800 .deg. C. Decrease in elongation would be resulted from the coarsened and continuous carbides at the grain boundary as well as Cr- and Ni-rich phase along the grain boundary

  10. Fuzzy Pattern Recognition in Atlas and Images of the Unevenness of Carbide in Tool Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fuzzy pattern recognition has been employed to identify some atlas and images of the unevenness of carbide in tool steel. Three mo dels have been constructed. These models were based on fuzzy mathemati cs theory, as well as fuzzy pattern recognition method. Distribution r ule of the unevenness of eutectic carbide in ledeburite steel is propo sed in these models respectively.

  11. High temperature stability of Cr-carbides in an experimental Co-Re-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, Debashis; Klauke, Michael; Roesler, Joachim [Technische Universitaet Braunschweig (Germany). Institut fuer Werkstoffe; Strunz, Pavel [Nuclear Physics Institute and Research Center Rez (Czech Republic); Zizak, Ivo [Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung, Berlin (Germany); Schumacher, Gerhard; Wiedenmann, Albrecht [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany)

    2010-03-15

    The stability of the microstructure at high temperatures was studied in an experimental Co-Re-based alloy. The experimental alloy is mainly strengthened by Cr-carbides, particularly by those in the form of thin lamellar plates. Electron microscopic investigation on samples exposed for up to 1000 h to temperatures of 1000 and 1200 C showed that Cr{sub 23}C{sub 6} type carbides present in the alloy in different morphologies are unstable at these temperatures. It was also observed that the alloy hardness dropped after exposing the samples to elevated temperatures and much of this loss occurred within the first 100 h. In-situ diffraction measurements with synchrotron radiation showed that carbide dissolution started as early as 3 h of holding at 1000 C. Moreover, in-situ small angle neutron scattering results indicated that the carbides at the grain boundaries and the blocky carbides dissolve first and then the thin lamellar carbides. Further, the enrichment of Cr in the Co-matrix phase, which took place due to the dissolution of Cr-carbides, stabilized a Cr-Re-rich {sigma} phase. Although the dissolution of lamellar carbides results in a significant loss of strength, the formation of {sigma} phase with extremely high hardness partly compensated the for loss. The {sigma} phase is stable even at 1200 C. (orig.)

  12. Certain properties of thin-film niobium carbide coatings on carbon steels obtained in molten salts

    International Nuclear Information System (INIS)

    Niobium carbide coatings have been deposited by means of a currentless transfer of electronegative niobium metal to a more electropositive substratum made of carbon steel in molten salts containing niobium compounds. Corrosion resistance of niobium carbide coated products is studied, wear resistance and tribological characteristics of the coatings are determined

  13. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  14. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.;

    2014-01-01

    Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated ph...

  15. Heat-treatment of WC-Fe/Co/Ni cemented carbides

    International Nuclear Information System (INIS)

    The influence of heat-treatment on the properties of various WC-Fe/Co/Ni cemented carbides was studied. Though heat-treatment modifies the properties of the cemented carbides, it does not however lead to alloys superior those that show optimal properties in the as-sintered state. (orig.)

  16. Photoluminescence and Raman spectroscopy characterization of boron- and nitrogen-doped 6H silicon carbide

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Liu, Chuan;

    2011-01-01

    Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could...

  17. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  18. Carbide induced reconstruction of monatomic steps on Ni(111) - A density functional study

    DEFF Research Database (Denmark)

    Andersson, Martin; Abild-Pedersen, Frank

    2007-01-01

    sites at the step-edge. It is furthermore possible to extend the carbide with the clock reconstructed geometry onto the upper terrace with a net energy gain compared to adsorption of carbon on unreconstructed close-packed steps or terrace sites on Ni(111). Our findings explain the fact that carbide...

  19. Advanced technologies of production of cemented carbides and composite materials based on them

    International Nuclear Information System (INIS)

    The paper presents new technological processes of production of W, WC and (Ti, W)C powders, cemented carbides having a controlled carbon content, high-strength nonmagnetic nickel-bonded cemented carbides, cemented carbide-based composites having a wear-resistant antifriction working layer as well as processes of regeneration of cemented carbide waste. It is shown that these technological processes permit radical changes in the production of carbide powders and products of VK, TK, VN and KKhN cemented carbides. The processes of cemented carbide production become ecologically acceptable and free of carbon black, the use of cumbersome mixers is excluded, the power expenditure is reduced and the efficiency of labor increases. It becomes possible to control precisely the carbon content within a two-phase region -carbide-metal. A high wear resistance of parts of friction couples which are lubricated with water, benzine, kerosene, diesel fuel and other low-viscosity liquids, is ensured with increased strength and shock resistance. (author)

  20. Microstructures and Wear Performance of PTAW Deposited Ni-Based Coatings with Spherical Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Dewei Deng

    2015-10-01

    Full Text Available The Ni-based coatings with different content of spherical tungsten carbide were deposited by plasma transfer arc welding (PTAW method on 304 austenitic stainless steel sheets in this study. The microstructure and wear property of spherical tungsten carbide particle reinforced composite coatings were investigated by means of optical microscope, scanning electron microscope (SEM, X-ray diffraction (XRD, electron probe microanalysis (EPMA and sliding wear test. It is shown that the fraction of spherical tungsten carbides has an important influence on microstructure of Ni-based overlay. The Ni40 overlay consists of γ-Ni dendrites with interdendritic Ni-based eutectics, borides and carbides improving the wear resistance. In the case of composite coatings with different content of tungsten carbide, many new phases are observed, such as Ni2W4C and NiW. In addition, there are a large number of irregular structures in composite coatings, such as acicular structure and irregular stripe organization. The results of sliding wear test indicate that the mass loss of coatings is influenced by the content of tungsten carbide. The mass loss decreases with the increase of tungsten carbide fraction. At high load, the abrasive resistance of composite coating with 60 wt. % tungsten carbide is improved about 50-fold compared to that of Ni40 overlay.

  1. The influence of chosen modifiers on stereological parameters of carbides of chromium cast iron

    OpenAIRE

    A. Studnicki; J. Suchoń

    2011-01-01

    The results of investigations of stereological carbides in the modified wear resistance chromium cast iron resistant were introduced in the article. There were following elements: boron, niobium, vanadium, cerium and lanthanum (RE), nitrogen in the composition of modifiers. The influence of used modifiers on such stereological parameters of carbides as: size, perimeter, shape coefficient and volume fraction was showed in tables and on diagrams.

  2. Electrocatalytic Activity of Tungsten Trioxide Micro-spheres, Tungsten Carbide Microspheres and Multi-walled Carbon Nanotube-tungsten Carbide Composites

    Institute of Scientific and Technical Information of China (English)

    LU Hongzhi; YAN Taining

    2009-01-01

    Tungsten trioxide micropheres were prepared by spray pyrolysis, and tungsten carbidemicrospheres were produced by spray pyrolysis-low temperature reduction and carbonization technology.Multi-walled carbon nanotube-tungsten carbide composites were prepared by the continuous reductionand carbonization process using multi-walled carbon nanotubes (MWCNTs) and WO_3 precursor by mo-lecular level mixing and calcination. The morphology and structure of the samples were characterized byscanning electron microscope and transmission electron microscope. Furthermore, the crystal phase was identified by X-ray diffraction. The electrocatalytic activity of the sample was analyzed by means of me-thanol oxidation. Tungsten carbide microspheres were catalytic active for methanol oxidation reaction.Nevertheless tungsten trioxide microspheres and multi-walled carbon nanotube-tungsten carbide compos-ites were not catalytic active for methanol oxidation reaction. These results indicate that tungsten carbide micropheres are promising catalyst for methanol oxidation.

  3. Depressurization amorphization of single-crystal boron carbide.

    Science.gov (United States)

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  4. Molybdenum isotopic composition of single silicon carbides from supernovae.

    Energy Technology Data Exchange (ETDEWEB)

    Amari, S.; Clayton, R. N.; Davis, A. M.; Lewis, R. S.; Pellin, M. J.

    1999-02-03

    Presolar silicon carbide grains form in a variety of types of stars, including asymptotic giant branch red giant stars and supernovae. The dominant mechanisms of heavy element nucleosynthesis, the s-process and r-process, are thought to occur in AGB stars and supernovae, respectively. We have previously reported that mainstream SiC grains have strong enrichments in the s-process isotopes of Sr, Zr and Mo. We report here the first measurements of Mo isotopes in X-type SiC grains, which have previously been identified as having formed from supernova ejecta.

  5. Research on Diamond Enhanced Tungsten Carbide Composite Button

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    At the present, the cutters used in button bits and rock bits are mainly cobalt tungsten carbide in our country. Because of its low abrasive resistance, the bit service life and drilling efficiency was very low when the hard and extremely hard formations were being drilled. Owing to its high abrasive resistance, the diamond composite material is widely used in drilling operations. However, its toughness against impact is too low to be used in percussion drilling, only can it be used in rotary drilling. In ...

  6. APT analysis of WC-Co based cemented carbides.

    Science.gov (United States)

    Weidow, Jonathan; Andrén, Hans-Olof

    2011-05-01

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. PMID:21664543

  7. Electronic properties of finite-length silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Alfieri, G. [Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto (Japan); Kimoto, T. [Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto (Japan); Photonics and Electronics Science and Engineering Center (PESEC), Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto (Japan)

    2009-02-15

    The electronic properties of silicon carbide nanotubes (SiCNT) as a function of length, were investigated by means of density functional theory (DFT). We found that the increasing nanotube length yields a higher localization of the lowest unoccupied and highest occupied molecular orbitals (LUMO and HOMO), thus affecting the behavior of the band gap and chemical reactivity of the SiCNTs. It is also found that structural stability increases for longer and larger nanotubes. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Planar carbon defect in the structure of cubic silicon carbide

    International Nuclear Information System (INIS)

    Two phases of silicon carbide characterized by close lattice parameters are distinguished in the solid solution of carbon in β-SiC by high-resolution XRD. They transformed into one phase after high-pressure sintering. 29Si NMR data on the initial SiC-C solid solution powder and that sintered at high pressure confirmed the high-resolution XRD data completely. The inhomogeneous structure of the SiC-C solid solution characterized by the existence of thin diamond layers inside β-SiC crystals is established by transmission electron microscopy

  9. Effect of Constituents of Silicon Carbide Composites on Oxidation Behaviour

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) composites consist with SiC fibers, SiC matrix and fiber/matrix interphase. SiC composites and monolithic SiC ceramics which are the reference materials for the SiC composite matrices were exposed in air or steam environment up to 1400°C. Significant degradation was observed for the composites with C interphase after exposure in air or steam. Oxidation behaviour was also affected by impurities in SiC. (author)

  10. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  11. Hydrogen storage in pillared Li-dispersed boron carbide nanotubes

    OpenAIRE

    Wu, Xiaojun; Gao, Yi; Zeng, Xiao Cheng

    2007-01-01

    Ab initio density-functional theory study suggests that pillared Li-dispersed boron carbide nanotubes is capable of storing hydrogen with a mass density higher than 6.0 weight% and a volumetric density higher than 45 g/L. The boron substitution in carbon nanotube greatly enhances the binding energy of Li atom to the nanotube, and this binding energy (~ 2.7 eV) is greater than the cohesive energy of lithium metal (~1.7 eV), preventing lithium from aggregation (or segregation) at high lithium d...

  12. Decoding the message from meteoritic stardust silicon carbide grains

    OpenAIRE

    Lewis, Karen M.; Lugaro, Maria; Gibson, Brad K.; Pilkington, Kate

    2013-01-01

    Micron-sized stardust grains that originated in ancient stars are recovered from meteorites and analysed using high-resolution mass spectrometry. The most widely studied type of stardust is silicon carbide (SiC). Thousands of these grains have been analysed with high precision for their Si isotopic composition. Here we show that the distribution of the Si isotopic composition of the vast majority of stardust SiC grains carry the imprints of a spread in the age-metallicity distribution of thei...

  13. Band Anticrossing in Dilute Germanium Carbides Using Hybrid Functionals

    CERN Document Server

    Stephenson, Chad A; Qi, Meng; Penninger, Michael; Schneider, William; Wistey, Mark A

    2014-01-01

    Dilute germanium carbides (Ge1-xCx) offer a direct bandgap for compact silicon photonics, but widely varying results have been reported. This work uses ab initio simulations with HSE06 hybrid functionals and spin-orbit coupling to study the band structure behavior in the absence of defects. Contrary to Vegard's law, the conduction band minimum at k=0 is consistently found to decrease with increasing C content, while L and X valleys remain nearly unchanged. A vanishing bandgap was observed for all alloys with x>0.017. Conduction bands deviate from a constant-potential band anticrossing model except near the center of the Brillouin zone.

  14. Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica

    Directory of Open Access Journals (Sweden)

    Luo Xiaogang

    2009-01-01

    Full Text Available Abstract Silicon carbide nanowires have been synthesized at 1400 °C by carbothermic reduction of silica with bamboo carbon under normal atmosphere pressure without metallic catalyst. X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy and Fourier transformed infrared spectroscopy were used to characterize the silicon carbide nanowires. The results show that the silicon carbide nanowires have a core–shell structure and grow along <111> direction. The diameter of silicon carbide nanowires is about 50–200 nm and the length from tens to hundreds of micrometers. The vapor–solid mechanism is proposed to elucidate the growth process. The photoluminescence of the synthesized silicon carbide nanowires shows significant blueshifts, which is resulted from the existence of oxygen defects in amorphous layer and the special rough core–shell interface.

  15. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  16. Development of refractory armored silicon carbide by infrared transient liquid phase processing

    Science.gov (United States)

    Hinoki, Tatsuya; Snead, Lance L.; Blue, Craig A.

    2005-12-01

    Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m 2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m 2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing.

  17. Development of refractory armored silicon carbide by infrared transient liquid phase processing

    International Nuclear Information System (INIS)

    Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing

  18. Frequency mixing in boron carbide laser ablation plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; Nalda, R. de, E-mail: r.nalda@iqfr.csic.es; Castillejo, M.

    2015-05-01

    Graphical abstract: - Highlights: • Two-color frequency mixing has been studied in a laser ablation boron carbide plasma. • A space- and time-resolved study mapped the nonlinear optical species in the plasma. • The nonlinear process maximizes when charge recombination is expected to be completed. • Neutral atoms and small molecules are the main nonlinear species in this medium. • Evidence points to six-wave mixing as the most likely process. - Abstract: Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B{sub 4}C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  19. Genesis Silicon Carbide Concentrator Target 60003 Preliminary Ellipsometry Mapping Results

    Science.gov (United States)

    Calaway, M. J.; Rodriquez, M. C.; Stansbery, E. K.

    2007-01-01

    The Genesis concentrator was custom designed to focus solar wind ions primarily for terrestrial isotopic analysis of O-17/O-16 and O-18/O-16 to +/-1%, N-15/N-14 to +/-1%, and secondarily to conduct elemental and isotopic analysis of Li, Be, and B. The circular 6.2 cm diameter concentrator target holder was comprised of four quadrants of highly pure semiconductor materials that included one amorphous diamond-like carbon, one C-13 diamond, and two silicon carbide (SiC). The amorphous diamond-like carbon quadrant was fractured upon impact at Utah Test and Training Range (UTTR), but the remaining three quadrants survived fully intact and all four quadrants hold an important collection of solar wind. The quadrants were removed from the target holder at NASA Johnso n Space Center Genesis Curation Laboratory in April 2005, and have been housed in stainless steel containers under continual nitrogen purge since time of disintegration. In preparation for allocation of a silicon carbide target for oxygen isotope analyses at UCLA, the two SiC targets were photographed for preliminary inspection of macro particle contamination from the hard non-nominal landing as well as characterized by spectroscopic ellipsometry to evaluate thin film contamination. This report is focused on Genesis SiC target sample number 60003.

  20. Cobalt exposure in a carbide tip grinding process.

    Science.gov (United States)

    Stebbins, A I; Horstman, S W; Daniell, W E; Atallah, R

    1992-03-01

    Reports relating hard metal disease or nonspecific respiratory symptoms to tungsten or cobalt exposure have been published in the past 20 yr. This report discusses a work site investigation of a small company, employing approximately 50 workers, producing carbide tip saw blades for the woodworking industry. Cobalt exposure was characterized by ambient air monitoring (area and personnel), particle size determination, and biological monitoring. Area sampling for cadmium, cobalt, and tungsten indicated low ambient air levels in all manufacturing areas except the grinding department, which had cobalt air levels approaching the threshold limit value of 0.05 mg/m3. Area airborne cobalt exposure levels measured over six shifts in the grinding department ranged from 0.017 to 0.12 mg/m3 for the total collection method and 0.002 to 0.028 mg/m3 for the method collecting respirable particles. Cobalt content in the total and respirable fractions was similar. Urine monitoring indicated production workers have elevated cobalt levels, and the grinders' levels were higher than other production workers. The grinding coolant was found to have elevated cobalt concentrations. A survey of coolants from nine carbide grinding shops indicated the elevated cobalt concentrations may be common.

  1. High capacitance of coarse-grained carbide derived carbon electrodes

    Science.gov (United States)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  2. Structure and properties of phosphorus-carbide thin solid films

    International Nuclear Information System (INIS)

    Phosphorus-carbide (CPx) thin solid films have been deposited by unbalanced reactive magnetron sputtering from a compound C-P target and investigated by transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, elastic recoil detection analysis, Raman scattering spectroscopy, nanoindentation, and four-point electrical probe techniques. CPx films with x = 0.1 deposited at 300 °C exhibit a structure with elements of short-range ordering in the form of curved and inter-locked fullerene-like fragments. The films have a hardness of 34.4 GPa, elastic recovery of 72% and surface roughness of 0.5 nm. Higher deposition temperatures yield CPx films with an increasingly amorphous structure, and reduced hardness. - Highlights: • Phosphorus-carbide (CPx) thin solid films have been deposited by magnetron sputtering. • Structural and chemical bonding properties were investigated. • CPx thin solid films show high mechanical resiliency. • Low temperature favors fullerene-like structural properties

  3. Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Duchstein, Linus Daniel Leonhard; Wagner, Jakob Birkedal;

    2012-01-01

    This work investigates the use of the bulk carbides Mo2C, WC, and NbC as catalysts for the conversion of syngas into higher alcohols. K2CO3/WC produces mainly CH3OH and CH4 with a low activity. NbC has a very low activity in CO hydrogenation. K2CO3/Mo2C produces mixed alcohols with a reasonable...... activity and selectivity. In a 94 h test the activity and the specific surface area of the K2CO3/Mo2C catalyst decreased significantly, but X-ray diffraction and transmission electron microscopy did not indicate a strong sintering of the carbide. A likely cause for the deactivation is the formation...... of carbonaceous deposits on the catalyst. At the same general activity level Li, K, and Cs provide similar promotional effects for Mo2C, although K at a loading level of alkali metal/Mo = 0.164 mol/mol provides the better behavior at equal conditions. The effect of further additives on the K2CO3/Mo2C system...

  4. Fatigue behavior of continuous fiber silicon-carbide-aluminum composites

    Science.gov (United States)

    Johnson, W. S.; Wallis, R. R.

    1984-01-01

    Four lay-ups of continuous fiber silicon carbide (SCS2) fiber/aluminum matrix composites were tested to assess fatigue mechanisms including stiffness loss when cycled below their respective fatigue limits. The lay-ups were 0 (sub 8), 0(sub 2)/ + or - 45 (sub 2s), 0/90 (sub 2s),and 0/ + or 45/90 (subs). The data were compared with predictions from the author's previously published shakedown model which predicts fatigue-induced stiffness loss in metal matrix composites. A fifth lay-up, + or - 45 (sub 2s), was tested to compare shakedown and fatigue limits. The particular batch of silicon-carbide fibers tested in this program had a somewhat lower modulus (340 GPa) than expected and displayed poor bonding to the aluminum matrix. Good agreement was obtained between the stiffness loss model and the test data. The fatigue damage below the fatigue limit was primarily in the form of matrix cracking. The fatigue limit corresponded to the laminate shakedown for the + or - 45 (sub 2s) laminate.

  5. Development of the SOFIA silicon carbide secondary mirror

    Science.gov (United States)

    Fruit, Michel; Antoine, Pascal; Varin, Jean-Luc; Bittner, Hermann; Erdmann, Matthias

    2003-02-01

    The SOFIA telescope is ajoint NASA-DLR project for a 2.5 m airborne Stratospheric Observatory for IR Astronomy to be flown in a specially adapted Boeing 747 SP plane, Kayser-Threde being resopinsible for the development of the Telescope Optics. The φ 352 mm Secondary Mirror is mounted ona chopping mechanism to allow avoidance of background noise during IR observations. Stiffness associated to lightness is a major demand for such a mirror to achieve high frequency chopping. This leads to select SIlicon Carbide for the mirror blank. Its development has been run by the ASTRIUM/BOOSTEC joint venture SiCSPACE, taking full benefit of the instrinsic properties of the BOOSTEC SiC-100 sintered material, associated to qualified processes specifically developed for space borne mirrors by ASTRIUM. Achieved performances include a low mass of 1.97 kg, a very high stiffness with a first resonant frequency of 1865 Hz and a measured optical surface accuracy of 39 nm rms, using Ion Beam Figuring. It is proposed here to present the major design features of the SOFIA Secondary Mirror, highlighting the main advantages of using Silicon Carbide, the main steps of its development and the achieved optomechanical performances of the developed mirror.

  6. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 17000C was an important technical part of this work

  7. Pressure cycling induced modification of a cemented carbide

    International Nuclear Information System (INIS)

    The wear of cemented carbide rock drill buttons is due to a complex mixture of mechanisms. One important of such mechanism is the surface fatigue that occurs due to the percussive conditions of rock drilling. To isolate the effects of this mechanism, a mechanical pressure cycling test has been performed on a cemented carbide with 11 % Co and 2 μm WC grain size. The test was ended after 60000 pressure cycles. No signs of fatigue crack nucleation were found. The changes in hardness, fracture toughness, erosion resistance, magnetical coercivity and thermal shock resistance were measured. The microstructure of the sample was investigated with x-ray diffraction, plus scanning and transmission electron microscopy. The fracture toughness decreased 14 % due to the pressure cycling while the hardness did not change. In addition, the thermal shock resistance and the erosion resistance decreased. The magnetical coercivity increased 90 % indicating significant phase transformations or high defect density in the Co binder phase. The TEM revealed no deformation of the WC phase, but important alterations of the Co phase. The Co phase was transformed from fcc into a new unidentified phase, characterized by atomic inter planar distance present in fcc and hcp plus an unfamiliar distance of 2.35 Aa. This phase is suggested to be due to a more complex stacking sequence of the close-packed planes than in hcp or fcc. (author)

  8. Boron carbide neutron screen for GRR-1 neutron spectrum tailoring

    International Nuclear Information System (INIS)

    The presence of fast neutron spectra in new reactor concepts (such as Gas Cooled Fast Reactor, new generation Sodium Cooled Fast Reactor, Lead Fast Reactor, Accelerator Driven System and nuclear Fusion Reactors) is expected to induce a strong impact on the contained materials, including structural materials (e.g. steels), nuclear fuels, neutron reflecting materials (e.g. beryllium) and tritium breeding materials (for fusion reactors). Therefore, effective operation of these reactors will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Depending on the material, the requirements of a test irradiation can vary. In this work preliminary studies were performed to observe the behavior of the neutron spectrum within a boron carbide neutron screen inserted in a hypothetical reflector test hole of the Greek Research Reactor. Four different screen configurations were simulated with Monte Carlo code TRIPOLI-4. The obtained data showed that the insertion of boron carbide caused not only elimination of the thermal (E < 1 eV) component of the neutron energy spectrum but also absorption of a considerable proportion of the intermediate energy neutrons (1x10-6 MeV < E < 1 MeV). (author)

  9. Cavity-Enhanced Measurements of Defect Spins in Silicon Carbide

    Science.gov (United States)

    Calusine, Greg; Politi, Alberto; Awschalom, David D.

    2016-07-01

    The identification of new solid-state defect-qubit candidates in widely used semiconductors has the potential to enable the use of nanofabricated devices for enhanced qubit measurement and control operations. In particular, the recent discovery of optically active spin states in silicon carbide thin films offers a scalable route for incorporating defect qubits into on-chip photonic devices. Here, we demonstrate the use of 3C silicon carbide photonic crystal cavities for enhanced excitation of color-center defect spin ensembles in order to increase measured photoluminescence signal count rates, optically detected magnetic-resonance signal intensities, and optical spin initialization rates. We observe an up to a factor of 30 increase in the photoluminescence and optically detected magnetic-resonance signals from Ky5 color centers excited by cavity-resonant excitation and increase the rate of ground-state spin initialization by approximately a factor of 2. Furthermore, we show that the 705-fold reduction in excitation mode volume and enhanced excitation and collection efficiencies provided by the structures can be used to overcome inhomogenous broadening in order to facilitate the study of defect-qubit subensemble properties. These results highlight some of the benefits that nanofabricated devices offer for engineering the local photonic environment of color-center defect qubits to enable applications in quantum information and sensing.

  10. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  11. Determination of Abundance of Boron in Boron Carbide Samples with MC-ICP-MS%电感耦合等离子体质谱法测定碳化硼中的硼同位素丰度

    Institute of Scientific and Technical Information of China (English)

    朱留超; 赵永刚; 鹿捷; 张燕; 李力力; 徐常昆; 赵兴红; 王同兴; 姜小燕

    2015-01-01

    以碳酸钙为熔剂高温分解,硝酸浸取、硫酸沉淀的方法处理碳化硼样品,稀释后直接进行多接收电感耦合等离子体质谱分析,对碳化硼中的硼同位素丰度进行测定。扫描电镜分析结果表明,碳化硼颗粒形状不规则,尺寸小于50μm。利用建立的方法处理样品,可实现碳化硼样品的完全溶解,回收率接近100%。对样品中10B丰度进行分析,相对标准偏差为0.023%~0.035%(n=6),测量结果与参考值在不确定度范围内保持一致,证明实验方法可行。所建立的碳化硼样品测量方法样品处理步骤简便,分析速度快,测量精度高,可作为碳化硼中硼同位素丰度的常规分析方法。%A method was developed for the abundance analysis of boron in boron carbide samples by multi-collector inductively coupled plasma mass spectrometry(MC–ICP–MS). The samples were melted with calcium carbonate in muffle furnace, and then dissolved in nitric acid,finally sulfuric acid was added to precipitate the calcium. The particle of boron carbide was analysized by scan electron microscope(SEM). The results showed that the particle shape of boron carbide particle distributed anomaly and the size was less than 50μm. By this method, the boron carbide samples were dissolved entirely and the recovery of whole procedure was approached to 100%. The measurement results of10B abundance obtained were in good accordance with reference value within their expanded uncertainty, which proved the feasibility of the experiment method. The relative standard deviations were 0.023%–0.035%(n=6). The method developed can be applied for the abundance analysis of boron in boron carbide, which have the advantage of simple pretreatment of sample, fast analysis and high measurement precision.

  12. Aging and calcium as an environmental factor.

    Science.gov (United States)

    Fujita, T

    1985-12-01

    Calcium deficiency is a constant menace to land-abiding animals, including mammals. Humans enjoying exceptional longevity on earth are especially susceptible to calcium deficiency in old age. Low calcium and vitamin D intake, short solar exposure, decreased intestinal absorption, and falling renal function with insufficient 1,25(OH)2 vitamin D biosynthesis all contribute to calcium deficiency, secondary hyperparathyroidism, bone loss and possibly calcium shift from the bone to soft tissue, and from the extracellular to the intracellular compartment, blunting the sharp concentration gap between these compartments. The consequences of calcium deficiency might thus include not only osteoporosis, but also arteriosclerosis and hypertension due to the increase of calcium in the vascular wall, amyotrophic lateral sclerosis and senile dementia due to calcium deposition in the central nervous system, and a decrease in cellular function, because of blunting of the difference in extracellular-intracellular calcium, leading to diabetes mellitus, immune deficiency and others (Fig. 6). PMID:2943880

  13. Optimizing calcium selective fluorimetric nanospheres.

    Science.gov (United States)

    Kisiel, Anna; Kłucińska, Katarzyna; Gniadek, Marianna; Maksymiuk, Krzysztof; Michalska, Agata

    2015-11-01

    Recently it was shown that optical nanosensors based on alternating polymers e.g. poly(maleic anhydride-alt-1-octadecene) were characterized by a linear dependence of emission intensity on logarithm of concentration over a few of orders of magnitude range. In this work we focus on the material used to prepare calcium selective nanosensors. It is shown that alternating polymer nanosensors offer competitive performance in the absence of calcium ionophore, due to interaction of the nanospheres building blocks with analyte ions. The emission increase corresponds to increase of calcium ions contents in the sample within the range from 10(-4) to 10(-1) M. Further improvement in sensitivity (from 10(-6) to 10(-1) M) and selectivity can be achieved by incorporating calcium ionophore in the nanospheres. The optimal results were obtained for core-shell nanospheres, where the core was prepared from poly(styrene-co-maleic anhydride) and the outer layer from poly(maleic anhydride-alt-1-octadecene). Thus obtained chemosensors were showing linear dependence of emission on logarithm of calcium ions concentration within the range from 10(-7) to 10(-1) M. PMID:26452839

  14. Calcium release-activated calcium current in rat mast cells.

    Science.gov (United States)

    Hoth, M; Penner, R

    1993-06-01

    1. Whole-cell patch clamp recordings of membrane currents and fura-2 measurements of free intracellular calcium concentration ([Ca2+]i) were used to study the biophysical properties of a calcium current activated by depletion of intracellular calcium stores in rat peritoneal mast cells. 2. Calcium influx through an inward calcium release-activated calcium current (ICRAC) was induced by three independent mechanisms that result in store depletion: intracellular infusion of inositol 1,4,5-trisphosphate (InsP3) or extracellular application of ionomycin (active depletion), and intracellular infusion of calcium chelators (ethylene glycol bis-N,N,N',N'-tetraacetic acid (EGTA) or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)) to prevent reuptake of leaked-out calcium into the stores (passive depletion). 3. The activation of ICRAC induced by active store depletion has a short delay (4-14 s) following intracellular infusion of InsP3 or extracellular application of ionomycin. It has a monoexponential time course with a time constant of 20-30 s and, depending on the complementary Ca2+ buffer, a mean normalized amplitude (at 0 mV) of 0.6 pA pF-1 (with EGTA) and 1.1 pA pF-1 (with BAPTA). 4. After full activation of ICRAC by InsP3 in the presence of EGTA (10 mM), hyperpolarizing pulses to -100 mV induced an instantaneous inward current that decayed by 64% within 50 ms. This inactivation is probably mediated by [Ca2+]i, since the decrease of inward current in the presence of the fast Ca2+ buffer BAPTA (10 mM) was only 30%. 5. The amplitude of ICRAC was dependent on the extracellular Ca2+ concentration with an apparent dissociation constant (KD) of 3.3 mM. Inward currents were nonsaturating up to -200 mV. 6. The selectivity of ICRAC for Ca2+ was assessed by using fura-2 as the dominant intracellular buffer (at a concentration of 2 mM) and relating the absolute changes in the calcium-sensitive fluorescence (390 nm excitation) with the calcium current integral

  15. Semiconducting boron carbides with better charge extraction through the addition of pyridine moieties

    Science.gov (United States)

    Echeverria, Elena; Dong, Bin; Peterson, George; Silva, Joseph P.; Wilson, Ethiyal R.; Sky Driver, M.; Jun, Young-Si; Stucky, Galen D.; Knight, Sean; Hofmann, Tino; Han, Zhong-Kang; Shao, Nan; Gao, Yi; Mei, Wai-Ning; Nastasi, Michael; Dowben, Peter A.; Kelber, Jeffry A.

    2016-09-01

    The plasma-enhanced chemical vapor (PECVD) co-deposition of pyridine and 1,2 dicarbadodecaborane, 1,2-B10C2H12 (orthocarborane) results in semiconducting boron carbide composite films with a significantly better charge extraction than plasma-enhanced chemical vapor deposited semiconducting boron carbide synthesized from orthocarborane alone. The PECVD pyridine/orthocarborane based semiconducting boron carbide composites, with pyridine/orthocarborane ratios ~3:1 or 9:1 exhibit indirect band gaps of 1.8 eV or 1.6 eV, respectively. These energies are less than the corresponding exciton energies of 2.0 eV-2.1 eV. The capacitance/voltage and current/voltage measurements indicate the hole carrier lifetimes for PECVD pyridine/orthocarborane based semiconducting boron carbide composites (3:1) films of ~350 µs compared to values of  ⩽35 µs for the PECVD semiconducting boron carbide films fabricated without pyridine. The hole carrier lifetime values are significantly longer than the initial exciton decay times in the region of ~0.05 ns and 0.27 ns for PECVD semiconducting boron carbide films with and without pyridine, respectively, as suggested by the time-resolved photoluminescence. These data indicate enhanced electron-hole separation and charge carrier lifetimes in PECVD pyridine/orthocarborane based semiconducting boron carbide and are consistent with the results of zero bias neutron voltaic measurements indicating significantly enhanced charge collection efficiency.

  16. XPS, AES and friction studies of single-crystal silicon carbide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The surface chemistry and friction behavior of a single crystal silicon carbide surface parallel to the 0001 plane in sliding contact with iron at various temperatures to 1500 C in a vacuum of 3 x 10 nPa are investigated using X-ray photoelectron and Auger electron spectroscopy. Results show that graphite and carbide-type carbon are seen primarily on the silicon carbide surface in addition to silicon at temperatures to 800 C by both types of spectroscopy. The coefficients of friction for iron sliding against a silicon carbide surface parallel to the 0001 plane surface are found to be high at temperatures up to 800 C, with the silicon and carbide-type carbon at maximum intensity in the X-ray photoelectron spectroscopy at 800 C. The concentration of the graphite increases rapidly on the surface as the temperature is increased above 800 C, while the concentrations of the carbide-type carbon and silicon decrease rapidly and this presence of graphite is accompanied by a significant decrease in friction. Preheating the surfaces to 1500 C also gives dramatically lower coefficients of friction when reheating in the sliding temperature range of from room temperature to 1200 C, with this reduction in friction due to the graphite layer on the silicon carbide surface.

  17. An investigation on gamma attenuation behaviour of titanium diboride reinforced boron carbide–silicon carbide composites

    International Nuclear Information System (INIS)

    In this study, titanium diboride (TiB2) reinforced boron carbide–silicon carbide composites were investigated against Cs-137 and Co-60 gamma radioisotope sources. The composite materials include 70% boron carbide (B4C) and 30% silicon carbide (SiC) by volume. Titanium diboride was reinforced to boron carbide–silicon carbide composites as additive 2% and 4% by volume. Average particle sizes were 3.851 µm and 170 nm for titanium diboride which were reinforced to the boron carbide silicon carbide composites. In the experiments the gamma transmission technique was used to investigate the gamma attenuation properties of the composite materials. Linear and mass attenuation coefficients of the samples were determined. Theoretical mass attenuation coefficients were calculated from XCOM computer code. The experimental results and theoretical results were compared and evaluated with each other. It could be said that increasing the titanium diboride ratio causes higher linear attenuation values against Cs-137 and Co-60 gamma radioisotope sources. In addition decreasing the titanium diboride particle size also increases the linear and mass attenuation properties of the titanium diboride reinforced boron carbide–silicon carbide composites. - Highlights: • Linear and mass attenuation coefficients of B4C–SiC composites were investigated. • Reinforcing titanium diboride causes higher linear attenuation coefficients. • Decreasing titanium diboride particle size increases linear and mass attenuation coefficients. • Nano particle sized samples much closer to the theoretical results than micro sized ones

  18. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  19. SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION

    Science.gov (United States)

    Panda, Binayak; Hickman, Robert R.; Shah, Sandeep

    2005-01-01

    Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.

  20. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    Science.gov (United States)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  1. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    Energy Technology Data Exchange (ETDEWEB)

    De Bremaecker, A., E-mail: adbremae@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), NMS, Mol (Belgium); Ayrault, L., E-mail: laurent.ayrault@cea.fr [Institut de Radio-Protection et Sûreté Nucléaire/DPAM/SEMIC, Bât 702, CEN de Cadarache BP3, F-13115 Saint-Paul-lez-Durance (France); Clément, B. [Institut de Radio-Protection et Sûreté Nucléaire/DPAM/SEMIC, Bât 702, CEN de Cadarache BP3, F-13115 Saint-Paul-lez-Durance (France)

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B{sub 2}O{sub 3}): either tests under steam between 1230° and 1700 °C with B{sub 4}C alone or B{sub 4}C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO{sub 3} and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO{sub 2} or as inert matrix for Am-transmutation.

  2. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    Science.gov (United States)

    De Bremaecker, A.; Ayrault, L.; Clément, B.

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B2O3): either tests under steam between 1230° and 1700 °C with B4C alone or B4C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO3 and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO2 or as inert matrix for Am-transmutation.

  3. Ca2LiC3H: a new complex carbide hydride phase grown in metal flux.

    Science.gov (United States)

    Lang, David A; Zaikina, Julia V; Lovingood, Derek D; Gedris, Thomas E; Latturner, Susan E

    2010-12-15

    The reaction of carbon and CaH2 in a calcium/lithium flux mixture produces crystals of the new compound Ca2LiC3H. This phase forms with a new structure type in tetragonal space group P4/mbm (a = 6.8236(1) Å, c = 3.7518(1) Å, Z = 2, R1 = 0.0151). This is a stuffed variant of the Cs2(NH2)N3 structure, containing hydride anions in octahedral sites; the structure determination by single-crystal X-ray diffraction surprisingly allowed the hydrogen to be detected. The Ca2LiC3H structure also features the rarely seen C3(4-) carbide anion; the protolysis reaction of this compound with ammonium chloride produces C3H4. The electronic properties of Ca2LiC3H were studied by quantum-chemical calculations including band structure and electron localization function (ELF) analysis; the phase is a charge-balanced semiconductor with a calculated band gap of 0.48 eV. This is in agreement with (7)Li, (13)C, and (1)H MAS NMR data, which show resonances in the ionic region instead of the Knight shifted region. ELF analysis of the theoretical nonhydrided Ca2LiC3 structure confirms the ability of these calculations to properly locate hydrides and supports the structural model based on X-ray diffraction data.

  4. Effect of boron carbide on primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-04-01

    Full Text Available In the paper results of the influence of boron carbide (B4C as inoculant of abrasion-resisting chromium cast iron (about 2,8% carbon and 18% chromium on primary crystallization researches are presented. Boron carbide dispersion was introduced at the bottom of pouring ladle before tap of liquid cast iron. In this investigations were used three different quantities of inoculant in amounts 0,1%; 0,2% and 0,3% with relation to bath weight. It has been demonstrated that such small additions of boron carbide change primary crystallization parameters, particularly temperature characteristic of process, their time and kinetics.

  5. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    Science.gov (United States)

    Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.

    2015-09-01

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.

  6. Production of iron carbide using the metastable Fe-C-H-O system

    Energy Technology Data Exchange (ETDEWEB)

    Conejo, A.N.; Estrada, R.S.; Rodriguez, R.A. [Instituto Tecnologico Morelia (Mexico)

    2003-04-01

    The production of iron carbide without the formation of free carbon was explored using a metastable thermodynamic approach. Phase stability diagrams, at constant pressure and constant temperature, indicating the phase fields for the condensed phases in total equilibrium with a reactant gas phase were employed as the initial point analysis of the present study. With the aid of this information it was possible to identify the phase fields corresponding to metastable iron carbide in a ternary diagram (C-H-O). Experimental evidence confirms the validity of this information. The metastable diagrams are proposed to be used as a method to control the production of iron carbide in the industrial practice. (orig.)

  7. Effect of process parameters on induction plasma reactive deposition of tungsten carbide from tungsten metal powder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tungsten carbide deposit was made directly from tungsten metal powder through the reaction with methane in radio frequency induction plasma. Effect of major process parameters on the induction plasma reactive deposition of tungsten carbide was studied by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, water displacement method, and microhardness test. The results show that methane flow rate, powder feed rate, particle size, reaction chamber pressure and deposition distance have significant influences on the phase composition, density, and microhardness of the deposit. Extra carbon is necessary to ensure the complete conversion of tungsten metal into the carbide.

  8. Effect of the Carbides and Matrix on the Wear Resistance of Nodular Cast Iron

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2013-07-01

    Full Text Available This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.

  9. Note on thermodynamic instability of M4C3-type carbides of gallium group metals

    International Nuclear Information System (INIS)

    The paper deals with thermodynamic stability of hypothetical solid binary M4C3 carbides of gallium, indium and thallium. Heats of formation whose contribution to the stability of these compounds is dominant, were estimated by two independent methods: semiempirical theory of Miedema and empirical trends in the heats of formation of nitrides and carbides of Group III elements. Entropies were calculated with the use of the Cantor equation. The estimated values suggest that M4C3 carbides of gallium, indium and thallium are thermodynamically unstable with regard to their decomposition of elements. (Author)

  10. Synthesis and characterization of transition metal carbides and their catalytic applications

    Science.gov (United States)

    Wan, Cheng

    Transition metal (both monometallic and bimetallic) carbides have been synthesized by an amine-metal oxide composite (AMOC) method. The composite reduces the diffusion distances among each element and allows the formation of carbides to take place as low as 610°C, which is significantly lower than traditional carbide synthesis methods (above 1500°C). Additionally, amines act not only as carbon sources and reducing agents, but also morphological templates which helps to make uniform transition metal carbide (TMC) nanocrystals with various shapes. Beyond morphology control, AMOC method can also help to synthesize multiple phases of monometallic carbides, which includes four phases of molybdenum carbides (alpha-MoC1-x, beta-Mo2C, eta-MoC, and gamma-MoC), two phases of tungsten carbides (W2C and WC), and three phases of chromium carbides (Cr3C2-x, Cr7C3, and Cr3C2). Molybdenum carbide has been proposed as a possible alternative to platinum for catalyzing the hydrogen evolution reaction (HER). Previous studies were limited to only one phase, which is beta-Mo2C with an Fe 2N structure. Here, four molybdenum carbide materials including gamma-MoC with a WC type structure which was stabilized for the first time as a phase pure nanomaterial. Moreover, a wide range of magnetic iron-doped molybdenum carbide (Mo2-xFexC) nanomaterials were also synthesized, which exhibits a better HER activity to non-doped beta-Mo2C. A group of (CrxFe1-x)7C3 (0.2< x<1) solid solutions have also been synthesized for the first time as nanomaterials via AMOC method, which demonstrate excellent catalytic activities for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Other carbides/nitrides made from AMOCs include WN1-x, Fe3C, Fe3-xN, Fe3Mo3C, N 2Mo3C, Ni3Mo3C, Ni6Mo 6C, and Mo0.5W0.5C.

  11. Role of silicon dangling bonds in the electronic properties of epitaxial graphene on silicon carbide.

    Science.gov (United States)

    Ridene, Mohamed; Kha, Calvin S; Flipse, Cees F J

    2016-03-29

    In this paper, we study the electronic properties of epitaxial graphene (EG) on silicon carbide by means of ab initio calculations based on the local spin density approximation + U method taking into account the Coulomb interaction between Si localized electrons. We show that this interaction is not completely suppressed but is screened by carbon layers grown on-top of silicon carbide. This finding leads to a good qualitative understanding of the experimental results reported on EG on silicon carbide. Our results highlight the presence of the Si localized states and might explain the anomalous Hanle curve and the high values of spin relaxation time in EG.

  12. Undercooling, nodule count and carbides in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Ductile cast iron has been cast in plate thicknesses between 2 to 8 mm. The temperature has been measured during the solidification and the graphite nodule count and size distribution together with the type and amount of carbides have been analysed afterwards. Low nodule count gives higher...... undercooling and primary carbides will then be formed in the first part of the solidification. Inverse chill carbides are formed at the final part of the solidification if the undercooling is too high at that point. A high number of graphite nodules nucleated in the last part of the solidification process...

  13. Broadband antireflective silicon carbide surface produced by cost-effective method

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Ou, Haiyan

    2013-01-01

    A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching...... conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence...... of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°)....

  14. The effect of calcium gluconate and other calcium supplements as a dietary calcium source on magnesium absorption in rats.

    Science.gov (United States)

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M

    1997-01-01

    The effects of commercially available calcium supplements (calcium carbonate, calcium gluconate, oyster shell preparation and bovine bone preparation) and gluconic acid on the absorption of calcium and magnesium were evaluated for 30 days in male Wistar rats. There were no differences in the apparent absorption ratio of calcium among rats fed each calcium supplement; however, the rats fed the calcium gluconate diet had a higher apparent absorption ratio of magnesium than the rats fed the other calcium supplements. Dietary gluconic acid also more markedly stimulated magnesium absorption than the calcium carbonate diet, and the bone (femur and tibia) magnesium contents of rats fed the gluconic acid diet were significantly higher than those of the rats fed the calcium carbonate diet. Furthermore, the weight of cecal tissue and the concentrations of acetic acid and butyric acid in cecal digesta of rats fed the calcium gluconate diet or the gluconic acid diet were significantly increased. We speculate that the stimulation of magnesium absorption in rats fed the calcium gluconate diet is a result of the gluconic acid component and the effect of gluconic acid on magnesium absorption probably results from cecal hypertrophy, magnesium solubility in the large intestine and the effects of volatile fatty acids on magnesium absorption.

  15. Decalcification of calcium polycarbophil in rats.

    Science.gov (United States)

    Yamada, T; Saito, T; Takahara, E; Nagata, O; Tamai, I; Tsuji, A

    1997-03-01

    The in vivo decalcification of calcium polycarbophil was examined. The decalcification ratio of [45Ca]calcium polycarbophil in the stomach after oral dosing to rats was more than 70% at each designated time and quite closely followed in the in vitro decalcification curve, indicating that the greater part of the calcium ion is released from calcium polycarbophil under normal gastric acidic conditions. The residual radioactivity in rat gastrointestine was nearly equal to that after oral administration of either [45Ca]calcium chloride + polycarbophil. The serum level of radioactivity was nearly equal to that after oral dosing of [45Ca]calcium lactate. These results indicate that the greater part of orally administered calcium polycarbophil released calcium ions to produce polycarbophil in vivo.

  16. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim

    2014-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...

  17. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... can break easily, even without an obvious injury. Vitamin D helps your body absorb calcium. Eat foods that provide the right amounts of calcium, vitamin D, and protein. This kind of diet will give ...

  18. Dairy Dilemma: Are You Getting Enough Calcium?

    Science.gov (United States)

    ... Dairy Dilemma Dairy Dilemma Are You Getting Enough Calcium? You may be avoiding dairy products because of ... But dairy products are a major source of calcium, vitamin D and other nutrients that are important ...

  19. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Devkanya Dutta

    2000-12-01

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.

  20. High surface area silicon carbide-coated carbon aerogel

    Science.gov (United States)

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.