WorldWideScience

Sample records for calcium carbides

  1. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO2 restrains HCl removal of cycled carbide slag. • CO2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO2, presence of O2, cycle number and CO2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO2 decreases the chlorination conversions of the cycled carbide slag and the presence of O2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO2 concentration in the

  2. CALCIUM CARBIDE: AN EFFICIENT ALTERNATIVE TO THE USE OF ALUMINUM

    Directory of Open Access Journals (Sweden)

    Amilton Carlos Pinheiro Cardoso Filho

    2013-03-01

    Full Text Available The steel demand for fine applications have increased considerably in the last years, and the criteria for its production are even stricter, mainly in relation to the residual elements content and cleanness required. In relation to the steel cleanness, the main problem faced is the control of the amount and morphology of alumina inclusions, generated in the steel deoxidation with aluminum. Besides harming the products quality, the presence of non metallic inclusions can originate nozzle clogging, and consequently interruptions in the process flux. Aiming to improve the steel cleanness and to minimize nozzle clogging, this study is developed to evaluate the partial substitution of aluminum by calcium carbide in the steel deoxidation. Along the operational procedures, the calcium carbide was applied to 397 heats, through what the improvement in steel cleanness is confirmed, with consequent reduction in the nozzle clogging occurrence.

  3. Calcium Carbide: A Unique Reagent for Organic Synthesis and Nanotechnology.

    Science.gov (United States)

    Rodygin, Konstantin S; Werner, Georg; Kucherov, Fedor A; Ananikov, Valentine P

    2016-04-01

    Acetylene, HC≡CH, is one of the primary building blocks in synthetic organic and industrial chemistry. Several highly valuable processes have been developed based on this simplest alkyne and the development of acetylene chemistry has had a paramount impact on chemical science over the last few decades. However, in spite of numerous useful possible reactions, the application of gaseous acetylene in everyday research practice is rather limited. Moreover, the practical implementation of high-pressure acetylene chemistry can be very challenging, owing to the risk of explosion and the requirement for complex equipment; special safety precautions need to be taken to store and handle acetylene under high pressure, which limit its routine use in a standard laboratory setup. Amazingly, recent studies have revealed that calcium carbide, CaC2 , can be used as an easy-to-handle and efficient source of acetylene for in situ chemical transformations. Thus, calcium carbide is a stable and inexpensive acetylene precursor that is available on the ton scale and it can be handled with standard laboratory equipment. The application of calcium carbide in organic synthesis will bring a new dimension to the powerful acetylene chemistry. PMID:26898248

  4. Physico-chemical properties and toxic effect of fruit-ripening agent calcium carbide

    Directory of Open Access Journals (Sweden)

    Mohammad Asif

    2012-01-01

    Full Text Available Ripening is the final stage of the maturation process, when the fruit changes color, softens and develops the flavor, texture and aroma that constitute optimum eating quality. This study was conducted to discuss the use of unsatisfactory calcium carbide to ripen fruits for domestic markets as well as their toxic effects on human health. The commonly used ripening agents are calcium carbide, acetylene, ethylene, propylene, ethrel (2-chloroethyl phosphonic acid, glycol, ethanol and some other agents. The calcium carbide is one of the most commonly used ripening agent for fruits, while other calcium salts like calcium ammonium nitrate, calcium chloride and calcium sulfate are used to delay fruit ripening agents for local fruit industries. The use of calcium carbide is being discouraged worldwide, due to associated health hazards. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous, and once dissolved in water, it produces acetylene gas. Arsenic, phosphorous and acetylene gas may affect the different body organs and causes various health problems like headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema, seizures and prolonged hypoxia.

  5. Effects of Different Calcium Carbide Doses on Some Quality Criteria of Kiwifruit (Actinidia deliciosa

    Directory of Open Access Journals (Sweden)

    E. Bal

    2006-05-01

    Full Text Available This research was performed to determine effects of calcium carbide treatments at different doses onripening physiology of cv. Hayward. For this aim, calcium carbide doses of 0, 0.3, 0.5 and 0.7 g were usedand characteristics such as fruit firmness, soluble solids content, titratable acidity, pH of fruit juice, vitamin Ccontent and sensory evaluation, comprising fruit quality were examined with daily during 7 days at roomtemperature (22±0.50C conditions. At the end of the study, increase in softening and sensory evaluationvalues was detected based on the calcium carbide dose and ripening time. During the ripening of kiwifruits, itwas observed that titratable acidity and vitamin C content reduced and pH of fruit juice and soluble solids inwater increased, generally. At the end of 7th day, higher edible fruit quality was determined in fruits treatedwith 0.7 g. calcium carbide and 0.5g and 0.3 g calcium carbide treatments followed it. At the end of theperiod, there was no evidence about edible quality of control fruits.

  6. Reduction of chromium oxides with calcium carbide during thestainless steelmaking process

    Directory of Open Access Journals (Sweden)

    B. Arh

    2015-04-01

    Full Text Available An efficient reduction of chromium from slag requires an appropriate reduction agent for the given steelmaking technology. The usual slag reduction praxis consists of carbon injections and additions of ferrosilicon and aluminum.Reduction of chromium containing slags with calcium carbide is an appealing alternative. Calcium carbide is a strong reduction agent that unlike ferrosilicon and aluminum also provides the possibility of foaming slag formation.Experimental work regarding chromium slag reduction with calcium carbide towards usual slag reduction praxis is described in this work. The results show that higher reduction rates in the stage of refining period of the melt and higher level of overall chromium reduction from slag can be reached with the blowing of CaC2.

  7. 40 CFR 424.40 - Applicability; description of the covered calcium carbide furnaces with wet air pollution control...

    Science.gov (United States)

    2010-07-01

    ... covered calcium carbide furnaces with wet air pollution control devices subcategory. 424.40 Section 424.40... FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution... with wet air pollution control devices subcategory. The provisions of this subpart are applicable...

  8. The use of calcium carbide in one-pot synthesis of symmetric diaryl ethynes.

    Science.gov (United States)

    Zhang, Weiwei; Wu, Huayue; Liu, Zhiqing; Zhong, Ping; Zhang, Lin; Huang, Xiaobo; Cheng, Jiang

    2006-12-14

    An efficient Pd-catalyzed copper and amine free coupling reaction of acetylene and aryl bromides was achieved with calcium carbide as an acetylene source, using inorganic base and easily prepared, air-stable aminophosphine ligand in common organic solvents, providing symmetric diaryl ethynes in one-pot with yields ranged from moderate to excellent. PMID:17345742

  9. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    OpenAIRE

    Hongfang Sun; Zishanshan Li; Jing Bai; Shazim Ali Memon; Biqin Dong; Yuan Fang; Weiting Xu; Feng Xing

    2015-01-01

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (...

  10. Modelling of a plasma reactor for the synthesis of calcium carbide

    International Nuclear Information System (INIS)

    Plasma synthesis of calcium carbide was investigated using calcium oxide and graphite powders. A semi-batch spout-fluid bed reactor with a DC plasma torch was used for the study. Argon was used to initiate the plasma and hydrogen gas was then added to increase power and raise the plasma jet enthalpy. Experimental results showed that the reactor consisted of two different zones: a high temperature reaction zone and a well minded isothermal bed zone. The size of the reaction zone and the particle flow rate into the jet depended on the net plasma power. The reaction rate was correlated by a shrinking core, reaction control model and showed excellent fit for conditions where hydrogen was present in the plasma gas and heat transfer limitations were negligible. The apparent activation energy of the reaction was determined to be 377 kJ/mol (90 kcal/mol). Extrapolatin of the reaction model and the experimental results indicated that a plasma fluid bed process could be a technically viable and a more efficient alternative for the production of calcium carbide

  11. Effect of polyethylene coated calcium carbide on physiology, photosynthesis, growth and yield of sweet pepper

    International Nuclear Information System (INIS)

    Polyethylene coated calcium carbide (PCC) is a potent and continuous slowly releasing source of acetylene and ethylene. It potentially improves plant growth by affecting physiology of plant. A pot study was conducted to investigate comparative effects of different rates of PCC on growth and yield attributes of sweet pepper. PCC performed better when applied with soil applied fertilizers. Results revealed that hormonal properties of calcium carbide significantly influenced physiological nutrient use efficiency and vegetative growth by affecting photosynthetic and physiological parameters of sweet pepper. Application of 20 mg PCC kg/sup -1/ soil with soil applied recommended dose of NPK fertilizers significantly improved the net photosynthetic rate by 32%, stomatal conductance by 11%, transpiration rate by 14%, carboxylation efficiency by 47%, physiological water use efficiency by 13%, physiological nitrogen use efficiency by 29% over the control treatment. This improvement in physiological attributes resulted in increase in leaf area by 20%, leaf area index by 78%, total plant dry weight by 35%, flower and fruits by 29% and fruit yield by 24% compared to the treatment of alone recommended dose of NPK fertilizers. Present study suggests that application of PCC particularly at the rate of 20mg PCC kg/sup -1/ soil plus recommended dose of NPK fertilizers improved about 25% sweet pepper production compared to its production in the alone recommended fertilizer treatment. (author)

  12. 电石法生产PVC的降耗措施%Discussion on measures of consumption reducing in PVC production by calcium carbide

    Institute of Scientific and Technical Information of China (English)

    张凯鹏; 贾亮; 党斌

    2012-01-01

    介绍了湿法电石生产PVC的原理,分别从电石贮存、乙炔发生、合成气转化和尾气回收等方面分析了降低电石消耗的措施。%The principle of PVC production with wet calcium carbide was introduced,and measures of reducing the consumption of calcium carbide from calcium carbide storage, acetylene generator, conversion of synthesis gas, tail gas recovery were analyzed.

  13. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  14. The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon

    Science.gov (United States)

    Wu, Hao; Wang, Xianyou; Jiang, Lanlan; Wu, Chun; Zhao, Qinglan; Liu, Xue; Hu, Ben'an; Yi, Lanhua

    2013-03-01

    Porous calcium carbide-derived carbon (CCDC) has been prepared by one-step route from CaC2 in a freshly prepared chlorine environment at lower temperature, and following activated by ZnCl2 to get activated CCDC. The performances of the supercapacitors based on activated CCDC as electrode active material in aqueous KOH, K2SO4, KCl and KNO3 electrolytes are studied by cyclic voltammetry, constant current charged/discharged, cyclic life and electrochemical impedance spectroscopy. It has been found that the supercapacitor using 6 M KOH as electrolyte shows an energy density of 8.3 Wh kg-1 and a power density of 1992 W kg-1 based on the total weight of the electrode active materials with a voltage range 0 V-1 V. Meanwhile, the specific capacitance of the supercapacitor in 6 M KOH electrolyte is 68 F g-1 at the scan rate of 1 mV s-1 in the voltage range of 0 V-1 V, the charge-transfer resistance is extremely low and the relaxation time is the least of all. The supercapacitor also exhibits a good cycling performance and keeps 95% of initial capacity over 5000 cycles.

  15. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liping; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie [School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, Xiangtan University, Hunan 411105 (China); Wang, Ying; Guo, Jia [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei 430073 (China)

    2010-03-15

    Calcium carbide (CaC{sub 2})-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N{sub 2} sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g{sup -1} measured by cyclic voltammetry at 1 mV s{sup -1}. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles. (author)

  16. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    Science.gov (United States)

    Zheng, Liping; Wang, Ying; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie; Guo, Jia

    Calcium carbide (CaC 2)-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N 2 sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g -1 measured by cyclic voltammetry at 1 mV s -1. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles.

  17. Ripening of fruits of 'Dwarf Prata' banana (Musa acuminata x Musa balbisiana, AAB group)irradiated and treated with calcium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Martineli, Maristella [Instituto de Quimica. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Coneglian, Regina C.C.; Vasconcellos, Marco A.S.; Silva, Eduardo, E-mail: rccconeg@ufrrj.br, E-mail: masv@ufrrj.br [Departamento de Fitotecnia. Instituto de Agronomia. Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Vital, Helio C., E-mail: vital@ctex.eb.br [Secao de Defesa Nuclear. Divisao de Defesa Quimica, Biologica e Nuclear. Centro Tecnologico do Exercito (CTEx), Guaratiba, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The competing effects resulting from the exposure of fruits of 'warf prata' banana (Musa acuminata x Musa balbisiana, AAB group) to gamma radiation and to calcium carbide have been investigated in this work. The fruits were harvested in a pre-climateric stage (green colored though physiologically developed) in the city of Jaiba, state of Minas Gerais, and gamma irradiated with doses of 0.25 or 0.50 kGy in a research irradiating facility at the Brazilian Army Technology Center (CTEx) in the city of Rio de Janeiro. Some samples were also exposed to calcium carbide for 32 hours in order to accelerate ripening. Quantitative estimates of peel color, disease index and fresh mass loss were performed for 9 days while the fruits were kept at an average temperature of 23 deg C. The analyses were performed in the Federal Rural University of Rio de Janeiro, located in the city of Seropedica. The following treatments or combination of processes have been tested: untreated (control); treated only with irradiation with doses of 0.25 kGy or 0.50 kGy; treated with irradiation with doses of 0.25 kGy or 0.50 kGy and then exposed to calcium carbide. The fruits treated solely with irradiation with 0.25 kGy exhibited a better response during the first days of storage, although their initial green coloration vanished with time. In addition, the fungi Colletotrichum musae and Lasidioplodia theobroma were detected in samples submitted to the combination of both processes. In contrast, such fungi were not observed in fruits that had only been exposed to 0.25 kGy and exhibited low disease indices. Also, 1-2 cm lesions were detected on fruits.(author)

  18. 环氧丙烷装置皂化电石渣处理方案%Feasibility scheme of epoxy propane saponification calcium carbide slag produce autoclaved fly ash brick

    Institute of Scientific and Technical Information of China (English)

    林盛海; 吴学亮

    2012-01-01

    本文介绍了皂化废电石渣用于生产蒸压粉煤灰砖的可行性。%The feasibility scheme of epoxy propane saponification Calcium carbide slag produce autoclaved fly ash brick was introduced.

  19. A new approach of comprehensively utilizing calcium carbide slags and SiCI4%电石渣与四氯化硅综合利用新途径

    Institute of Scientific and Technical Information of China (English)

    凌少青; 廖军

    2012-01-01

    The common methods of utilizing calcium carbide slags and SiCI4 separately were introduced. A new approach of comprehensively utilizing calcium carbide slags and SIC14 was de-scribed, i.e. reacting calcium carbide slags, SIC14 and coal fly ash in a certain proportion under definite conditions, and then mixing the reactants with macadam (or gravel) in suitable ratios to form three-slag mixing materials, which could be used as a new kind of building materials.%介绍了单独回收利用电石渣和SiCI.的常见方法,阐述了电石渣和SiCl。综合利用的新途径,即利用电石渣、SiCl。及粉煤灰按一定配比在一定的条件下进行反应,再与碎石(或砾石)进行计量配比,拌和均匀成三渣拌和料,作为一种新型建筑材料。

  20. 新疆某电石厂职业病危害控制调查%Investigation on occupational hazard control in calcium carbide plant of Xinjiang

    Institute of Scientific and Technical Information of China (English)

    何华; 廖秀峰; 韩明明; 张勇

    2013-01-01

    [ Objective ] To investigate the harmful level of occupational hazards, influence on health of workers, operation status of occupational hazards control equipment and its effect in a 60 x 10 t/a calcium carbide plant of Xinjiang. [ Methods ] Through field inspection and occupational hygiene surveys, concentration (or intensity) detection of occupational hazards in workplace was conducted to analyze the occupational hazard level, and evaluate its quality and quantity. [Results] A total of 34 kinds of productive dust, physical and chemical harmful factors were detected, 7 exceeded the national standards of occupational health, involving 49 jobs, 17 trades. On-site detection showed 44 out of 76 dust detection points were qualified (58% ) , 84 out of 93 chemical toxicants detection points were qualified (90.3% ) , 35 out of 41 noise detection points were qualified (85.4% ) , 28 out of 30 heat detection points were qualified ( 93. 3% ). Intensity of ionizing radiation and power frequency electric field was qualified in all detection points. [Conclusion]The main occupational hazards are productive dust, physical and chemical hazards, coal dust, calcium carbide dust, chlorine, calcium oxide, noise, carbon monoxide in the 60 x 10 t/a calcium carbide plant of Xinjiang. Companies should take excessive operating points and their workers as the key objects of monitoring and management. By improving the production process, the protection of individual workers was strengthened, taking effective occupational hazard control measures to protect the health of workers and to promote healthy and steady development of enterprises.%目的 调查新疆某60×104 t/a电石厂职业病危害因素的危害程度、对劳动者健康的影响、职业病危害防护设施运行情况及其效果.方法 通过现场检测和职业卫生学调查,检测该作业场所职业病危害因素浓度(或强度),分析其职业病危害程度,并对其进行定性、定量评价.结果 检测生产

  1. Measures to treat and recycle waste materials containing mercury from calcium carbide method PVC production%电石法聚氯乙烯含汞废物处理与回收方法

    Institute of Scientific and Technical Information of China (English)

    王小艳; 李国栋

    2013-01-01

    Types of mercury pollution in calcium carbide method PVC production were discussed as well as measures to treat and recycle waste materials containing mercury at home and abroad.The research status and difficulties of technologies for the treatment of vapor, liquid and solid phase waste materials containing mercury were introduced, and the ideas and prospects of integratedly preventing and controlling mercury pollution were proposed.%阐述了电石法聚氯乙烯生产过程中汞污染类型及国内外含汞废物处理与回收的方法,分别介绍了气相、固相、液相含汞废物处理技术的研究现状与难点,并提出了汞污染整体防治工作思路及前景。

  2. Mudanças fisiológicas e químicas em bananas 'Nanica' e 'Pacovan' tratadas com carbureto de cálcio Physiological and chemical changes in 'Nanica' and 'Pacovan' bananas treated with calcium carbide

    Directory of Open Access Journals (Sweden)

    Dijauma Honório Nogueira

    2007-01-01

    Full Text Available O objetivo deste trabalho foi avaliar mudanças fisiológicas e químicas em bananas 'Nanica' e 'Pacovan' tratadas com elevadas doses de carbureto de cálcio (CaC2, para geração de acetileno. Os frutos foram colhidos no estádio de maturação II (verdes com leves traços amarelos. As pencas foram acondicionadas em caixas de madeira (50 x 50 x 40 cm, revestidas internamente com papel alumínio, hermeticamente fechadas e tratadas com quatro doses de CaC2 (0; 15; 30 e 45 g.m-3 e (0; 7; 15 e 30 g.m-3 para 'Nanica' e 'Pacovan', respectivamente. Foi utilizado um delineamento inteiramente casualizado, em esquema fatorial 4 x 6 (4 doses e 6 períodos de avaliação, com três repetições. As características avaliadas foram: atividade respiratória, conteúdos de amido, açúcares redutores (AR e clorofila total, e evolução da coloração do fruto (escala de 1-7. O acetileno liberado do CaC2 resultou em aumento da taxa respiratória, degradação do amido e elevação dos teores de AR, degradação da clorofila e intensificação da coloração amarela, uniformizando o amadurecimento, sobretudo para a cultivar Pacovan.The aim of this work was to evaluate physiological changes in 'Nanica' and 'Pacovan' bananas treated with high doses of calcium carbide (CaC2 as a generator of acetylene. Fruits were harvested in the maturity stage II (green fruit with light yellow stains. Hands were placed into wood boxes (50 x 50 x 40 cm internally covered with foil paper, hermetically closed, and treated with 4 doses of calcium carbide (0, 15, 30 and 45 g. m-3 and (0, 7, 15 and 30 g. m-3 for 'Nanica' and 'Pacovan', respectively. It was utilized a completely randomized experimental design, 4 x 6 factorial scheme (4 doses and 6 evaluation periods. The characteristics evaluated were: respiratory activity, starch and reducing sugars (RS, total chlorophyll, and color evolution (1-7 scale. The acetylene released from CaC2 resulted in an increase of respiratory rate

  3. 密闭电石炉余热锅炉工艺优化操作及改进%Process Optimization of Operation and Improvement in Waste Heat Boiler of Closed Calcium Carbide Furnace

    Institute of Scientific and Technical Information of China (English)

    杨海宁; 孙波

    2012-01-01

    叙述了25.5 MVA密闭电石炉的余热锅炉经利用电石炉壁热空气代替余锅燃烧所需冷空气、锅炉除盐水预热、加强引风机清灰管理、优化运行过程中清灰操作、加强除尘器管理等方面进行的优化操作及改进后,中压蒸汽产量明显提高、低压蒸汽耗明显下降,达到工艺优化、节能的目的。%To describe process optimization of operation and improvement in waste heat boiler of 25.5 MVA closed calcium carbide furnace in terms of hot air utilization,desalted water preheating,induced draft fan cleaning,optimize the cleaning operation,and strengthening the dust management,etc.The output of medium pressure steam is increased and consume of low pressure steam is decreased apparently.The process optimization and energy saving and realized after making improvements.

  4. CO2 capture by carbonated carbide slag seriflux after drying in calcium looping cycles%湿法碳酸化电石渣干燥后在钙循环中的 CO2捕集

    Institute of Scientific and Technical Information of China (English)

    何梓睿; 李英杰; 刘长天

    2015-01-01

    A new carbide slag (CS)seriflux utilization was proposed.The flue gas from a coal-fired plant was first bubbled into CS seriflux for CO2 capture. The obtained carbonated carbide slag seriflux (CCSS)was dried and utilized as a CO2 sorbent in the calcium looping cycles.The CO2 capture behavior of the dried CCSS and the raw CS was investigated in a dual fixed-bed reactor and a thermo-gravimetric analyzer. The effects of carbonation time, calcination temperature and carbonation temperature on CO2 capture performance of CCSS in the multiple carbonation/calcination cycles were studied.The results show that the CO2 capture capacity of CCSS was higher than that of CS. Calcined at 950 ℃,CCSS shows better carbonation reactivity than CS,which benefits CO2 capture under severe calcination conditions.In the range of 700 to 725 ℃ for the carbonation, CCSS shows the optimal CO2 capture performance. The calcined CCSS shows better porous microstructure than the calcined CS.The calcined CCSS exhibits a larger surface area and pore volume in the cycles,which favors a higher CO2 capture capacity in the multiple cycles.%提出一种电石渣资源化利用的新方法.首先,将燃煤电站烟气通入电石渣浆液捕集 CO2.碳酸化后的电石渣浆液(CCSS)干燥后在钙循环中作为吸收剂捕集 CO2.在双固定床反应器和热重仪上研究了 CCSS和电石渣的 CO2捕集特性,包括碳酸化时间、煅烧温度和碳酸化温度对 CCSS 循环碳酸化特性的影响.结果表明 CCSS 的 CO2捕集性能和碳酸化速率均高于电石渣.煅烧温度为950℃时,CCSS 比电石渣具有更好反应活性,这有利于在恶劣煅烧条件下捕集 CO2.在700~725℃,CCSS 表现出了最佳的碳酸化性能.煅烧CCSS 比电石渣孔隙结构更好,具有更大比表面积和比孔容,这有利于循环捕集 CO2.

  5. 湿法碳酸化电石渣干燥后在钙循环中的 CO2捕集%CO2 capture by carbonated carbide slag seriflux after drying in calcium looping cycles

    Institute of Scientific and Technical Information of China (English)

    何梓睿; 李英杰; 刘长天

    2015-01-01

    提出一种电石渣资源化利用的新方法.首先,将燃煤电站烟气通入电石渣浆液捕集 CO2.碳酸化后的电石渣浆液(CCSS)干燥后在钙循环中作为吸收剂捕集 CO2.在双固定床反应器和热重仪上研究了 CCSS和电石渣的 CO2捕集特性,包括碳酸化时间、煅烧温度和碳酸化温度对 CCSS 循环碳酸化特性的影响.结果表明 CCSS 的 CO2捕集性能和碳酸化速率均高于电石渣.煅烧温度为950℃时,CCSS 比电石渣具有更好反应活性,这有利于在恶劣煅烧条件下捕集 CO2.在700~725℃,CCSS 表现出了最佳的碳酸化性能.煅烧CCSS 比电石渣孔隙结构更好,具有更大比表面积和比孔容,这有利于循环捕集 CO2.%A new carbide slag (CS)seriflux utilization was proposed.The flue gas from a coal-fired plant was first bubbled into CS seriflux for CO2 capture. The obtained carbonated carbide slag seriflux (CCSS)was dried and utilized as a CO2 sorbent in the calcium looping cycles.The CO2 capture behavior of the dried CCSS and the raw CS was investigated in a dual fixed-bed reactor and a thermo-gravimetric analyzer. The effects of carbonation time, calcination temperature and carbonation temperature on CO2 capture performance of CCSS in the multiple carbonation/calcination cycles were studied.The results show that the CO2 capture capacity of CCSS was higher than that of CS. Calcined at 950 ℃,CCSS shows better carbonation reactivity than CS,which benefits CO2 capture under severe calcination conditions.In the range of 700 to 725 ℃ for the carbonation, CCSS shows the optimal CO2 capture performance. The calcined CCSS shows better porous microstructure than the calcined CS.The calcined CCSS exhibits a larger surface area and pore volume in the cycles,which favors a higher CO2 capture capacity in the multiple cycles.

  6. 电石渣改良过湿黏土的物理力学试验研究%Experimental study on physical and mechanical properties of over-wet clayey soils stabilized by calcium carbide residues

    Institute of Scientific and Technical Information of China (English)

    覃小纲; 杜延军; 刘松玉; 魏明俐; 张莹莹

    2013-01-01

    将工业废料电石渣用于高速公路路基的过湿黏土填料改良.通过含水率、颗分、击实、无侧限抗压强度、回弹模量和干湿循环等室内试验,研究了不同掺量及龄期下,电石渣改良土的基本物理力学性质和水稳性,并与生石灰改良土进行对比.结果表明:电石渣较生石灰比表面积更大、pH更高,在相同掺量和养护条件下,电石渣改良土较生石灰改良土的物理性能改善更明显,粗颗粒含量、最大干密度和最佳含水率都更高,塑性指数更小;电石渣改良土的路用强度指标包括无侧限抗压强度、CBR、回弹模量均优于生石灰改良土.电石渣改良土的水稳定性随掺量的增加而提高,耐干湿性能明显优于生石灰改良土;养护龄期对耐久性的影响不显著.%The calcium carbide residue (CCR) is utilized to improve the over-wet clayey soils,which is used as subgrade materials in highway construction.A series of laboratory tests on moisture content,particle distribution,compaction,unconfined compression strength,modulus of resilience and wetting-drying cycle are carried out to study the mechanical properties of CCR-stabilized soils and lime-stabilized soils.The binder dosages are 4%,6%,8%,and 4%,6% for CCR and lime respectively.The results indicate that the CCR has higher specific surface area,pH and fine particle content.Accordingly,the CCR-stabilized soils have greater physical performance than the lime-stabilized soils in terms of particle size distribution,plasticity index,the maximum dry density and the optimum moisture content.Additionally,the mechanical performance of CCR-stabilized soils is greater than that of the lime-stabilized soils,including the unconfined compressive strength,CBR,modulus of resilience and water durability.

  7. Analysis of the Mercury Flow Direction and Processing Technique in the Production of Polyvinyl Chloride by Calcium Carbide Method%电石法生产聚氯乙烯过程中汞的流向及处理技术分析

    Institute of Scientific and Technical Information of China (English)

    轩卫华; 王银亮

    2013-01-01

    Mercury is a heavy metal which is highly sensitive to the environment; mercury pollution has become a global issue of concerning highly. Mercury resources is fewer in our country, it is a huge barrier for the development of the PVC industry by calcium carbide method in which the mercury is excessively consumed to lead the serious pollution. The source and flow direction of the mercury in the industrial production of polyvinyl chloride ( PVC) by calcium carbide method was analyzed and the corresponding processing technique was puts forward in this paper. It provides ideas for preventing and controlling mercury pollution in PVC industry.%汞是对环境有高度敏感性的重金属,汞污染已经成为全球高度关注的敏感议题.我国汞资源相对匮乏,对汞资源的过度消耗和汞污染是电石法生产聚氯乙烯(PVC)行业发展的巨大障碍.本文针对电石法生产PVC中的严重汞污染问题,分析了生产过程中汞的来源、流向,并且提出对应的处理技术,为电石法生产PVC中的汞污染防治提供思路.

  8. Silicon carbide bodies

    International Nuclear Information System (INIS)

    A self-bonded silicon carbide body produced by siliconising a preformed mixture of particles (shaped by means other than slip-casting) of carbon and silicon carbide in the beta form has a mean grain size in the range of 0.1 to 5 microns. Such a body may be produced using silicon carbide particles having a mean surface area in the range 0.5 to 20 square metres per gram. The silicon carbide particles may be produced by heating a mixture of silica and silicon to generate silicon monoxide vapour and passing the vapour through a bed of particulate carbon. (author)

  9. Amadurecimento de manga 'Ubá' com etileno e carbureto de cálcio na pós-colheita Ripening of 'Ubá' mango using ethylene and calcium carbide

    Directory of Open Access Journals (Sweden)

    Danielle Fabíola Pereira da Silva

    2012-02-01

    Full Text Available Mangas 'Ubá' fisiologicamente maduras foram tratadas com etileno ou carbureto de cálcio (CaC2 visando à antecipação e à uniformização do amadurecimento. Frutos com massa média de 133,8±1,9g foram expostos às doses de 0, 20, 40, 80 e 160g de CaC2 m-3 de câmara ou 0, 50, 100, 200 e 400mL de etileno m-3 de câmara durante 24h, em câmaras a 18,1±0,7°C e 90±3% de UR. Após o tratamento, os frutos permaneceram sob as mesmas condições de temperatura e UR, e foram avaliados aos 0, 1, 3, 6, 9, 12 e 15 dias de armazenamento. O etileno e o CaC2 acentuaram a perda de massa das mangas. Nos frutos tratados com CaC2, o pico climatérico respiratório ocorreu aos 3, 6, 9, 9 e 12 dias de armazenamento para as doses 160, 80, 40, 20 e 0g/m³, respectivamente. Nos frutos tratados com etileno, este pico foi registrado aos 3, 3, 6, 6 e 12 dias de armazenamento para as doses 400, 200, 100, 50 e 0mL m-3, respectivamente. Todas as doses de CaC2 e de etileno aceleraram a perda de firmeza, o aumento do teor de sólidos solúveis e de carotenóides, a redução da acidez e a mudança de cor da casca e da polpa dos frutos. Por outro lado, esses produtos também acentuaram a perda de eletrólitos celulares e de ácido ascórbico. Nos frutos tratados com etileno, a queda da firmeza foi mais brusca em relação aos tratados com CaC2. No entanto, o extravasamento de solutos foi maior para frutos tratados com CaC2. O aumento no teor de sólidos solúveis foi proporcional ao aumento das doses de CaC2 e de etileno. Doses de 20g de CaC2 e 50mL de etileno por m³ de câmara foram suficientes para antecipar e uniformizar o amadurecimento de manga 'Ubá'.Physiologically mature 'Ubá' mangoes were treated with ethylene or calcium carbide (CaC2 aiming to accelerate and standardize fruit ripening. Fruits with mean weight of 133.8±1.9g were treated with concentrations of 0, 20, 40, 80 and 160g CaC2 chamber m-3 and 0, 50, 100, 200 and 400mL of ethylene/chamber m³, in

  10. Zirconium carbide recrystallization

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, A.G.; Erin, O.N.; Sul' Yanov, S.N.; Turchin, V.N.

    1986-02-01

    This paper studies the primary recrystallization process of the sintered polycrystalline zirconium carbide with a composition of ZrC /SUB 0.98/ . The properties of zirconium carbide samples deformed under compression are presented; the selected degree of deformation ensures a lower scatter of grain sizes at relative error of +/- 5% in the final deformation measurement. The established mechanisms of structural changes in zirconium carbide during plastic deformation and subsequent high temperature treatment indicate the possibility of using thermomechanical methods for the direct control of the structure of these mechanical methods for the direct control of the structure of these and obviously othe group IV and V carbides obtained by powder metallurgical methods.

  11. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    OpenAIRE

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  12. Calcium - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003603.htm Calcium - urine To use the sharing features on this ... enable JavaScript. This test measures the amount of calcium in urine. All cells need calcium in order ...

  13. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  14. Silicon carbide thyristor

    Science.gov (United States)

    Edmond, John A. (Inventor); Palmour, John W. (Inventor)

    1996-01-01

    The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.

  15. Calcium Oscillations

    OpenAIRE

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlyin...

  16. Recrystallization of zirconium carbide

    International Nuclear Information System (INIS)

    Temperature and deformation rate are studied for their effect on the structure and mechanical properties of polycrystalline sintered zirconium carbide. A decrease of the deformation rate from 10-2 to 5x10-4 s-1 and an increase of the deformation temperature from 0.5 Tsub(melt.) to 0.65 Tsub(melt.) are shown to activate a formation of integranular cavities and to decrease a degree of the structure distortion due to the diminishing intragranular deformation. Kinetics of the initial recrystallization in zirconium carbide is studied after plastic deformation and subsequent high-temperature annealing beginning from 0.72 Tsub(melt.)

  17. Hafnium carbide cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Dong-Ik, Ch.; Eun-Pyo, K.

    Praha: Czechoslovak association for crystal growth, 2008 - (Nitsch, K.; Rodová, M.), s. 8-9 ISBN 978-80-254-0864-3. [Development of Materials Science in Research and Education/18th./. Hnanice (CZ), 02.09.2008-05.09.2008] Institutional research plan: CEZ:AV0Z20430508 Keywords : Hafnium carbide * tungsten * cermets * plasma spraying * hot pressing, Subject RIV: BL - Plasma and Gas Discharge Physics

  18. Sintered silicon carbide

    International Nuclear Information System (INIS)

    A sintered silicon carbide body having a predominantly equiaxed microstructure consists of 91 to 99.85% by weight of silicon carbide at least 95% of which is the alpha phase, up to 5.0% by weight carbonized organic material, 0.15 to 3.0% of boron, and up to 1.0% by weight additional carbon. A mixture of 91 to 99.85 parts by weight silicon carbide having a surface area of 1 to 100 m2/g, 0.67 to 20 parts of a carbonizable organic binder with a carbon content of at least 33% by weight, 0.15 to 5 parts of a boron source containing 0.15 to 3.0 parts by weight boron and up to 15 parts by weight of a temporary binder is mixed with a solvent, the mixture is then dried, shaped to give a body with a density of at least 1.60 g/cc and fired at 1900 to 22500C to obtain an equiaxed microstructure. (author)

  19. Process for microwave sintering boron carbide

    International Nuclear Information System (INIS)

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy

  20. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  1. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  2. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  3. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties. PMID:19687534

  4. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could be...... delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  5. Sliding wear of cemented carbides

    International Nuclear Information System (INIS)

    Cemented carbides are known to be very hard and wear resistant and are therefor often used in applications involving surface damage and wear. The wear rate of cemented carbides is often measured in abrasion. In such tests it has been shown that the wear rate is inversely dependent on the material hardness. The sliding wear is even more of a surface phenomenon than a abrasion, making it difficult to predict friction and wear from bulk properties. This paper concentrates on the sliding wear of cemented carbides and elucidates some wear mechanisms. It is especially shown that a fragmenting wear mechanism of WC is very important for the description of wear of cemented carbides. (author)

  6. Wettability of boron carbide

    International Nuclear Information System (INIS)

    The wettability of boron carbide has been examined by means of the sessile drop method, using the following candidate alloys: (96wt%AG-4wt%Ti), (Ag-26.5wt%Cu-3wt%Ti), (Sn-10wt%Ag-4wt%Ti), Sn(99.95wt%) and Al(99.99wt%). The results show that B4C is completely wetted by the Ag-based alloys. Sn-10wt%Ag-4wt%Ti alloy and pure Al partly wet the B4C surface, while pure Sn does not wet B4C at all. For all the alloys used, except pure Sn, a reaction layer was observed at the interface between the ceramic part and the metal drop. Although the spreading kinetics of the Al-drop was much slower compared with the Ti-containing alloys, the reaction rate was considerably higher in the former case. This suggests that aluminium is an attractive candidate material for brazing of B4C. Formation of the low melting B2O3 at the B4C surface may cause oxidation of the filler metal during joining, which, in turn, leads to a low bond strength

  7. Palladium interaction with silicon carbide

    International Nuclear Information System (INIS)

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation

  8. Palladium interaction with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, M., E-mail: Marialuisa.Gentile@manchester.ac.uk [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Abram, T. [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-07-15

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd{sub 3}Si and SiO{sub 2} phases, while the second peak and the third peak are correlated with the formation of Pd{sub 2}Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO{sub 2} phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiC{sub x}O{sub y} phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  9. Palladium interaction with silicon carbide

    Science.gov (United States)

    Gentile, M.; Xiao, P.; Abram, T.

    2015-07-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC-5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  10. CALCIUM CARBIDE: AN EFFICIENT ALTERNATIVE TO THE USE OF ALUMINUM

    OpenAIRE

    Amilton Carlos Pinheiro Cardoso Filho; Carlos Alberto Souza; João Domingos Guimarães de Athayde Júnior; Prudêncio Aparecido de Freitas; Sergio Henrique Rocha; Gilson Alves Menezes; Helio Gabriel de Souza

    2013-01-01

    The steel demand for fine applications have increased considerably in the last years, and the criteria for its production are even stricter, mainly in relation to the residual elements content and cleanness required. In relation to the steel cleanness, the main problem faced is the control of the amount and morphology of alumina inclusions, generated in the steel deoxidation with aluminum. Besides harming the products quality, the presence of non metallic inclusions can originate ...

  11. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  12. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p<0.0001) or...

  13. Calcium Calculator

    Science.gov (United States)

    ... Latvia - Lebanon - Libya - Lithuania - Luxembourg - Macedonia, Republic of - Malaysia - Malta - Mexico - Moldova - Morocco - Netherlands - New Zealand - Nigeria - ... and Statistics Popular content Calcium content of common foods What is Osteoporosis? The Board Introduction to Bone ...

  14. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  15. Solid oxide membrane-assisted controllable electrolytic fabrication of metal carbides in molten salt.

    Science.gov (United States)

    Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu

    2016-08-15

    Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications. PMID:27195950

  16. The ternary iron aluminum carbides

    International Nuclear Information System (INIS)

    Research highlights: → Carbides present in ternary Fe-Al-C were investigated. → Presence of carbides Fe3C, M23C6, and/or κ-Fe3AlC depends on the Al and C concentration. → The existence of M23C6 ternary carbide in the Fe-Al-C system is recognized for first time. → Solubility of Al in M23C6 is low and negligible in the cementite. - Abstract: Carbides present in ternary Fe-Al-C were investigated by the combined utilization of an X-ray diffractometer and a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. The alloys were prepared by arc melting and the microstructure was homogenised by a solution annealing treatment in the temperature range 950-1050 deg. C for 15 min. The diffraction patterns of resulting materials were analysed using a multiphase Rietveld refinement. The steel is composed of a ferritic matrix with carbides Fe3C, M23C6, and/or κ-Fe3AlC depending on the Al and C concentration. It is the first time that the existence of M23C6 ternary carbide in the Fe-Al-C system is recognized. Microprobe analyses performed revealed that the solubility of Al in M23C6 is low, with an Fe/Al ratio (in at.%) higher than 15. On the other hand, the amount of Al in the cementite is negligible and hence its lattice parameters do not depend on the Al concentration of the alloy.

  17. Transition metal carbide and boride abrasive particles

    International Nuclear Information System (INIS)

    Abrasive particles and their preparation are discussed. The particles consist essentially of a matrix of titanium carbide and zirconium carbide, at least partially in solid solution form, and grains of crystalline titanium diboride dispersed throughout the carbide matrix. These abrasive particles are particularly useful as components of grinding wheels for abrading steel. 1 figure, 6 tables

  18. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu;

    Silicon carbide is emerging as a novel material for a range of energy and environmental technologies. Previously, silicon carbide was considered as a material mainly for transistor applications. We have initiated the use of silicon carbide material towards optoelectronics in general lighting and...

  19. Palladium interaction with silicon carbide

    OpenAIRE

    M. Gentile, P. Xiao, T. Abram

    2015-01-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide...

  20. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  1. Calcium pyrophosphate arthritis

    Science.gov (United States)

    Calcium pyrophosphate dihydrate deposition disease; CPPD disease; Acute CPPD arthritis; Pseudogout ... Calcium pyrophosphate arthritis is caused by the collection of salt called calcium pyrophosphate dihydrate (CPPD). The buildup ...

  2. 电石渣稳定过湿黏土路基填料路用性能现场试验研究%Field investigations on performance of calcium carbide residues stabilized over-wet clayey soils used as highway subgrade materials

    Institute of Scientific and Technical Information of China (English)

    杜延军; 刘松玉; 覃小纲; 魏明俐; 吴继峰

    2014-01-01

    A comparison of the physico-chemical properties of calcium carbide residues (CCR)and quicklime suggests that over-wet clayey soils stabilized by CCR is potentially used as highway sub-grade materials.A field investigation on the mechanical performance of the CCR stabilized over-wet clayey soils is conducted.The effects of the curing time on the California bearing ratio (CBR),the resilient modulus (Mr ),the penetration resistance (Rs ),and the dynamic cone penetration index (DCPI)of the CCR and quicklime stabilized soils are discussed.The results show that the CCR ex-hibit larger specific surface area and higher fine-particle content than the quicklime,which is more in favor of the evolution of pozzolanic reactions between the binder (i.e.,CCR or quicklime)and soils.Compared with the quicklime stabilized soils,the CCR stabilized soils have greater perform-ance in terms of higher CBR,greater resilient modulus and penetration resistance,and higher degree of correlation between DCPI and CBR and that between DCPI and Mr.In addition,CCR has evident benefits in terms of its cost-effectiveness,no dust pollution and little CO2 emission during the con-struction.It is concluded that CCR is a viable,economical,and environmental-friendly binder in stabilizing over-wet clayey soils,which are used as subgrade materials.%通过对比电石渣和生石灰物理化学特征的异同,提出采用电石渣稳定过湿黏土作为路基填料。通过改良填料路用承载性能的现场试验,对比研究2种改良填料的土基CBR、回弹模量(Mr)、贯入阻力(Rs)和动力锥贯入指数(DCPI)等力学指标在养护龄期内的变化规律。试验结果表明:电石渣相对生石灰比表面积大、细粒含量高,在相同掺量和养护条件下更利于填料中改良反应的进行,可以更有效地改善过湿黏土填料的路用力学性能;电石渣改良填料的DCPI与其CBR和Mr的相关性更高;同时,电石渣较石灰具有明

  3. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  4. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  5. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  6. Ultrasonic characterization of microwave joined silicon carbide/silicon carbide

    International Nuclear Information System (INIS)

    High frequency (50--150 MHz), ultrasonic immersion testing has been used to characterize the surface and interfacial joint conditions of microwave bonded, monolithic silicon carbide (SiC) materials. The high resolution ultrasonic C-scan images point to damage accumulation after thermal cycling. Image processing was used to study the effects of the thermal cycling on waveform shape, amplitude and distribution. Such information is useful for concurrently engineering material fabrication processes and suitable nondestructive test procedures

  7. Preparation and application of cellular and nanoporous carbides.

    Science.gov (United States)

    Borchardt, Lars; Hoffmann, Claudia; Oschatz, Martin; Mammitzsch, Lars; Petasch, Uwe; Herrmann, Mathias; Kaskel, Stefan

    2012-08-01

    A tutorial review on cellular as well as nanoporous carbides covering their structure, synthesis and potential applications. Especially new carbide materials with a hierarchical pore structure are in focus. As a central theme silicon carbide based materials are picked out, but also titanium, tungsten and boron carbides, as well as carbide-derived carbons, are part of this review. PMID:22344324

  8. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  9. Laser micromachining of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Sciti, D.; Bellosi, A. [CNR-IRTEC, Faenza (Italy). Research Inst. for Ceramics Technology

    2002-07-01

    Two different laser processing procedures on silicon carbide are studied: i) surface treatment through a pulsed KrF excimer laser, with the aim of evaluating the surface microstructure modifications and variation the surface roughness in function of the processing parameters. In all the cases, the presence of a thin scale due to melting and solidification, crack formation and surface pores closure were observed. ii) A pulsed CO{sub 2} laser was used to form a micro-holes texture on the surface of silicon carbide. Holes dimensions in the range 80-100 {mu}m were obtained using a laser power of 0.5 kW and pulse duration of 1 ms. The possibility of producing a regular array of microholes was demonstrated. (orig.)

  10. Thermally Sprayed Silicon Carbide Coating

    OpenAIRE

    Mubarok, Fahmi

    2014-01-01

    Thermal spraying of silicon carbide (SiC) material is a challenging task since SiC tends to decompose during elevated temperature atmospheric spraying process. The addition of metal or ceramic binders as a matrix phase is necessary to facilitate the bonding of SiC particles, allowing SiC coatings to be deposited. In the conventional procedure, the matrix phase is added through mechanical mixing or mechanical alloying of the powder constituents, making it difficult to achieve homogeneous distr...

  11. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  12. Sintering behavior of boron carbide

    International Nuclear Information System (INIS)

    Pressureless sintering behavior of boron carbide (B4C) in argon was studied, with change in time and temperature, using carbon as sintering aid. Carbon was added via fenolic resin, acting also as a binder. After isostatic pressing the specimens were sintered in a graphite furnace at 19600C/1h, 21600C/15 minutes and 1h and 22000C/1h. The achieved density was 97% of the theoretical. Some mechanical properties and microstructural aspects have been evaluated. (author)

  13. Microwave sintering of boron carbide composites

    International Nuclear Information System (INIS)

    Boron carbide is an important ceramic material because of its high hardness and low specific gravity. it is used for applications involving impact and wear resistance. The disadvantages of boron carbide materials are difficulty in fabrication and sensitivity to brittle fracture. These problems are significantly reduced by production of cermets based on boron carbide and aluminum or aluminum alloys. Microwave heating of boron carbide materials results in ultrarapid heating and high temperatures. Therefore, a finer microstructure is obtained. The objective of this work was to define a technology that would allow the manufacture of boron carbide ceramics having mechanical properties similar to those exhibited by hot-pressed specimens. microwave heating would be used for the densification step. Mixtures of boron carbide and aluminum were considered for this research because aluminum simultaneously acts as a sintering aid and introduces phases that contribute to toughness enhancement

  14. Method to manufacture tungsten carbide

    International Nuclear Information System (INIS)

    The patent deals with an improved method of manufacturing tungsten carbide. An oxide is preferably used as initial product whose particle size and effective surface approximately corresponds to that of the endproduct. The known methods for preparing the oxide are briefly given. Carbon monoxide is passed over the thus obtained oxide particles whereby the reaction mixture is heated to a temperature at which tungsten oxide and carbon monoxide react and tungsten carbide is formed, however, below that temperature at which the tungsten-containing materials are caked or sintered together. According to the method the reaction temperature is about below 9000C. The tungsten carbide produced has a particle size of under approximately 100 A and an active surface of about 20 m2/g. It has sofar not been possible with the usual methods to obtain such finely divided material with such a large surface. These particles may be converted back to the oxide by heating in air at low temperature without changing particle size and effective surface. One thus obtains a tungsten oxide with smaller particle size and larger effective surface than the initial product. (IHOE)

  15. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution. PMID:22945740

  16. Silicon carbide as platform for energy applications

    OpenAIRE

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Løvvik, Ole Martin; Ou, Haiyan; Wellmann, Peter

    2015-01-01

    Silicon carbide is emerging as a novel material for a range of energy and environmental technologies. Previously, silicon carbide was considered as a material mainly for transistor applications. We have initiated the use of silicon carbide material towards optoelectronics in general lighting and solar cells, and further pursue concepts in materials for thermoelectrics, biofuel cells and supercapacitor research proposals. In fact, there are a number of energy applications which can be based on...

  17. Crystallization of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper a crystallization process of nodular cast iron with carbides having a different chemical composition have been presented. It have been found, that an increase of molybdenum above 0,30% causes the ledeburutic carbides crystallization after (γ+ graphite eutectic phase crystallization. When Mo content is lower, these carbides crystallize as a pre-eutectic phase. In this article causes of this effect have been given.

  18. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  19. Shock-wave strength properties of boron carbide and silicon carbide

    International Nuclear Information System (INIS)

    Time-resolved velocity interferometry measurements have been made on boron carbide and silicon carbide ceramics to assess dynamic equation-of-state and strength properties of these materials. Hugoniot precursor characteristics, and post-yield shock and release wave properties, indicated markedly different dynamic strength and flow behavior for the two carbides. (orig.)

  20. Methods for producing silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  1. Polytype distribution in circumstellar silicon carbide.

    Science.gov (United States)

    Daulton, T L; Bernatowicz, T J; Lewis, R S; Messenger, S; Stadermann, F J; Amari, S

    2002-06-01

    The inferred crystallographic class of circumstellar silicon carbide based on astronomical infrared spectra is controversial. We have directly determined the polytype distribution of circumstellar SiC from transmission electron microscopy of presolar silicon carbide from the Murchison carbonaceous meteorite. Only two polytypes (of a possible several hundred) were observed: cubic 3C and hexagonal 2H silicon carbide and their intergrowths. We conclude that this structural simplicity is a direct consequence of the low pressures in circumstellar outflows and the corresponding low silicon carbide condensation temperatures. PMID:12052956

  2. CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis

    International Nuclear Information System (INIS)

    Highlights: • Carbide slag as material is used to prepare CO2 sorbent by combustion synthesis. • Glycerol addition in preparation of synthetic sorbent improves its CO2 uptake. • The feasible combustion synthesis temperature for sorbent preparation is 800 °C. • Synthetic sorbent (mass ratio of CaO:Ca3Al2O6 = 73:27) shows higher CO2 uptake. • Synthetic sorbent possesses much higher sintering resistance than carbide slag. - Abstract: A new CO2 sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by combustion synthesis method. The effects of the sorbent preparation conditions (glycerol addition, combustion synthesis temperature, ratio of carbide slag to aluminum nitrate hydrate) and carbonation/calcination conditions (temperature, atmosphere and time) on CO2 capture performance of the synthetic sorbent were investigated in the calcium looping cycles. The addition of glycerol during the sorbent preparation exhibits an improvement on the cyclic CO2 capture capacity. It was also found that the optimal combustion synthesis temperature for the synthetic sorbent was in the range of 750–800 °C. The synthetic sorbent contained the mass ratio of CaO derived from carbide slag to Al2O3 derived from aluminum nitrate hydrate = 90:10 exhibited higher CO2 capture capacity (0.38 g CO2/g sorbent after 50 cycles). X-ray diffraction analysis showed that the main compounds of the synthetic sorbent were CaO and Ca3Al2O6 by X-ray diffraction analysis. The synthetic sorbent showed higher CO2 capture capacity than the carbide slag under severe calcination conditions (950 °C, CO2) and at short carbonation time (<5 min). From the present investigation, it shows that a high active synthetic CO2 sorbent could be obtained using the carbide slag in the calcium looping technology

  3. An optimization study on transesterification catalyzed by the activated carbide slag through the response surface methodology

    International Nuclear Information System (INIS)

    Highlights: • New catalyst material for biodiesel production. • New utilization approach of waste carbide slag. • Detailed characterization of carbide slag used as transesterification catalyst. • Optimal parameters for biodiesel production obtained by response surface methodology. • Effect of impurities on catalytic activity of carbide slag in transesterification. - Abstract: After activated at 850 °C under air condition, calcium hydroxide and calcium carbonate in carbide slag are transformed into calcium oxide. The prepared transesterification catalyst, labeled as CS-850, gains surface area of 8.00 m2 g−1, functional groups of vanishing O−C−O and O−H bonds, surface morphology of tenuous branch and porous structure and basic strength of 9.8 < H– < 15.0. From aspects of the molar ratio of methanol to oil (γ), the catalyst added amount (ζ) and the reaction temperature (Tr), transesterification catalyzed by CS-850 is optimized through the Box–Behnken design of the response surface methodology (BBD–RSM). A quadratic polynomial model is preferred for transesterification efficiency prediction with coefficient of determination (R2) of 0.9815. The optimal parameters are predicted to be γ = 13.8, ζ = 6.7% and Tr = 60 °C with the efficiency of 94.70% and validated by experimental value of 93.83%. Meanwhile, γ is demonstrated to be the most significant variable for the minimum p-value. Besides, CS-850 performs acceptable reusability and for the fifth time reusage, efficiency of 82.61% could still be supplied. Aluminium oxide is proved to have the greatest effect on the catalytic activity of CS-850 among other small quality oxides. Physicochemical properties of the purified biodiesel meet American Society for Testing and Material (ASTM) standard

  4. Dispersion of boron carbide in a tungsten carbide/cobalt matrix

    International Nuclear Information System (INIS)

    Particles of boron carbide (105-125 microns) were coated with a layer (10-12 microns) of titanium carbide in a fluidized bed. These coated particles have been successfully incorporated in a tungsten carbide--cobalt matrix by hot pressing at 1 tonf/in2, (15.44 MN/m2) at 13500C. Attempts to produce a similar material by a cold pressing and sintering technique were unsuccessful because of penetration of the titanium carbide layer by liquid cobalt. Hot-pressed material containing boron carbide had a static strength in bend of approximately 175,000 lbf/in2, (1206MN/m2) which compares favorably with the strength of conventionally produced tungsten carbide/cobalt. The impact strength of the material containing boron carbide was however considerably lower than tungsten carbide/cobalt. In rock drilling tests on Darley Dale sandstone at low speeds and low loads, the material containing boron carbide drilled almost ten times as far without seizure as tungsten carbide/cobalt. In higher speed and higher load rotary drilling tests conducted by the National Coal Board, the material containing boron carbide chipped badly compared with normal NCB hardgrade material

  5. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  6. Coronary Calcium Scan

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  7. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  8. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  9. Calcium in diet

    Science.gov (United States)

    Diet - calcium ... Calcium is one of the most important minerals for the human body. It helps form and maintain healthy teeth and bones. A proper level of calcium in the body over a lifetime can help ...

  10. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  11. Microstructural characterisation of silicon nitride-bonded silicon carbide

    International Nuclear Information System (INIS)

    The microstructure of a commercial silicon nitride-bonded silicon carbide ceramic composite, formed via the nitridation of Si powder-SiC preforms, has been characterised by transmission electron microscopy. A mechanism combining reaction bonding and liquid-phase sintering is proposed to describe the development and observed morphology of the microstructure of the bonding matrix, which comprises predominantly phases based on Si2N2O and β-Si3N4 and an amorphous phase. Qualitative microanalysis of amorphous matrix regions has revealed significant concentrations of oxygen, aluminium and calcium, with Al also being detected in both of the surrounding cyrstalline phases. It is thus suggested that the principal constituents of the matrix are in fact O' and β' sialons. (orig.)

  12. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  13. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.; Bendix, Jesper

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  14. An investigation on gamma attenuation behaviour of titanium diboride reinforced boron carbide-silicon carbide composites

    Science.gov (United States)

    Buyuk, Bulent; Beril Tugrul, A.

    2014-04-01

    In this study, titanium diboride (TiB2) reinforced boron carbide-silicon carbide composites were investigated against Cs-137 and Co-60 gamma radioisotope sources. The composite materials include 70% boron carbide (B4C) and 30% silicon carbide (SiC) by volume. Titanium diboride was reinforced to boron carbide-silicon carbide composites as additive 2% and 4% by volume. Average particle sizes were 3.851 µm and 170 nm for titanium diboride which were reinforced to the boron carbide silicon carbide composites. In the experiments the gamma transmission technique was used to investigate the gamma attenuation properties of the composite materials. Linear and mass attenuation coefficients of the samples were determined. Theoretical mass attenuation coefficients were calculated from XCOM computer code. The experimental results and theoretical results were compared and evaluated with each other. It could be said that increasing the titanium diboride ratio causes higher linear attenuation values against Cs-137 and Co-60 gamma radioisotope sources. In addition decreasing the titanium diboride particle size also increases the linear and mass attenuation properties of the titanium diboride reinforced boron carbide-silicon carbide composites.

  15. Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C

    Science.gov (United States)

    Dellacorte, Christopher

    1987-01-01

    A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.

  16. Calcium and Vitamin D

    Science.gov (United States)

    ... Home › Patients › Treatment › Calcium/Vitamin D Calcium/Vitamin D Getting enough calcium and vitamin D is essential ... counter medications and calcium supplements. What is Vitamin D and What Does it Do? Vitamin D plays ...

  17. Importance of Calcium

    OpenAIRE

    TANDOĞAN, Berivan; ULUSU, N. Nuray

    2005-01-01

    Calcium is the most abundant mineral in the body. Calcium regulates many cellular processes and has important structural roles in living organisms. Skeletal muscle structure and function, polymerisation of fibrin and the conduction of impulses in the nervous system are regulated by calcium. Calcium is an important intracellular messenger in protozoa, plants, and animals. Calcium-transporting systems which are located in the plasma membrane and in the organelles, regulate the ionic concentrati...

  18. Thermal Expansion of Hafnium Carbide

    Science.gov (United States)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  19. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  20. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 oC. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  1. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping. PMID:25427850

  2. Electroextraction of boron from boron carbide scrap

    International Nuclear Information System (INIS)

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron (10B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of 10B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron

  3. Ni doping of semiconducting boron carbide

    International Nuclear Information System (INIS)

    The wide band gap, temperature stability, high resistivity, and robustness of semiconducting boron carbide make it an attractive material for device applications. Undoped boron carbide is p type; Ni acts as a n-type dopant. Here we present the results of controlled doping of boron carbide with Ni on thin film samples grown using plasma enhanced chemical vapor deposition. The change in the dopant concentration within the thin film as a function of the dopant flow rate in the precursor gas mixture was confirmed by x-ray photoelectron spectroscopy measurements; with increasing dopant concentration, current-voltage (I-V) curves clearly establish the trend from p-type to n-type boron carbide.

  4. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  5. Stabilization of boron carbide via silicon doping

    Science.gov (United States)

    Proctor, J. E.; Bhakhri, V.; Hao, R.; Prior, T. J.; Scheler, T.; Gregoryanz, E.; Chhowalla, M.; Giulani, F.

    2015-01-01

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  6. Modelling Precipitation of Carbides in Martensitic Steels

    OpenAIRE

    Yamasaki, Shingo

    2004-01-01

    The purpose of this work was to model carbide precipitation in steels of a quaternary system which includes two substitutional elements. The work focuses on secondary hardening steels which are used for high-strength components, where hydrogen embrittlement is one of the major factors responsible for failure. It is believed that carbide particles can act as hydrogen trapping sites, thus reducing the risk of embrittlement. The thesis begins with a review of the physical metallurgy of secondary...

  7. Ultrarapid microwave synthesis of superconducting refractory carbides

    International Nuclear Information System (INIS)

    Nb1-xTaxC Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; Tc correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Growth Simulation of Spheroidized Carbide in the Carbide-Dispersed Carburizing Process

    Science.gov (United States)

    Tanaka, Kouji; Ikehata, Hideaki; Nakanishi, Koukichi; Nishikawa, Tomoaki

    2008-06-01

    A simulation method that combines one-dimensional (1-D) diffusion models has been proposed for predicting the behaviors of carbide particles dispersed in the carburizing layer of high-carbon chromium steels. The first simulation was set for the heating stage prior to carburizing, using a microscopic model of a spherical carbide and surrounding austenite matrix. This revealed the undissolved status of the carbide even at carburizing temperatures, which was stored as the starting condition of the second simulation. Separately, in a planar model, the macroscopic carbon diffusion during the isothermal carburizing stage was calculated, and time functions of carbon activity were evaluated at the depth of interest. The change in activities was assumed to represent the boundary conditions of the local carbide/austenite region, and thus input to the restored spherical model to do the second simulation of carburizing stage. The simulation method linking these double-scale diffusion calculations has first been implemented using the DICTRA package, and applied to the carbide in multicomponent model steels. The carbide radius as well as volume fraction were successfully predicted for all stages in the carbide-dispersed carburizing (CDC) process. However, minor corrections were necessary because of the decrease in the number density of carbide particles and the discontinuity in carbon activity caused by the use of two different models.

  9. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64. ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  10. Plasma Spraying of Zirconium Carbide – Hafnium Carbide – Tungsten Cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    Vol. 3. Reutte: PlanseeGroup, 2009, s. 1-3. (GT49). ISBN N. [Plansee Seminar on High Performance PM Materials /17th./. Reutte (AT), 25.05.2009-29.05.2009] Institutional research plan: CEZ:AV0Z20430508 Keywords : Hafnium carbide * zirconium carbide * tungsten cermets * plasma spraying * water stabilized plasma Subject RIV: BL - Plasma and Gas Discharge Physics

  11. Compatibility studies of irradiated carbide fuel pins

    International Nuclear Information System (INIS)

    When the free energies of formation of mixed (U, Pu) monocarbide and sesquicarbide, the phases present in as-manufactured carbide fuel, are plotted on an Ellingham type diagram along with the free energies of formation of the carbides of the three main constituent elements of austenitic stainless steel, that is nickel, iron and chromium, it can readily be seen that chromium forms the most stable carbide. Mixed (U,Pu) carbides, therefore, are thermodynamically unstable in contact with stainless steel. In consequence, when mixed (U,Pu) carbides are heated in contact with stainless steel, carbon transfer from the fuel to the clad should occur at a rate dependent upon the kinetics of the actual mechanism of carbon transfer. The rate of carbon transfer increases in the presence of a medium such as a sodium bond, which can act as a transfer agent. In this instance the wetting of the steel surface provides a greater area of contact compared to the condition prevailing in the absence of such a bond and may explain the effectiveness of the transfer agent. The mixed (U,Pu) carbide as currently manufactured is less pure, is less well characterised and much less stable than oxide fuel. It is possible, therefore, to control stoichiometry only within broad limits and the method of manufacture, by carbon reduction of oxide, leaves an appreciable amount of residual oxygen in the lattice or as discrete particles of oxide. During fuel preparation, localised reaction between oxide (or oxygen) and carbide may lead to the appearance of free (U,Pu) metal which could in a fuel pin react with the clad. It has further been postulated that similar reactions occur in mixed (U, Pu) carbide pins of high centre temperature in the reactor and that although the free (U,Pu) metal so formed is mainly concentrated at the 1200 deg. C fuel isotherm, some of the free metal together with the carbon monoxide produced in the reaction migrates to the clad surface and reacts. The occurrence of these two

  12. Influence of Rare Earth on Carbide in Weld Metal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Bin; REN Deng-Yi

    2003-01-01

    The influence of rare earths (RE) on carbides in high carbon steel weld metal was studied by transmission electron microscope (TEM) and energy dispersive X-ray microanalysis (EDX). It is found that rare earth markedly affects the quantity, morphology and distribution of carbides. The precipitating mechanism of carbides was proposed in which rare earth compounds with high surface energy serve as the nucleation sites for carbides in superheated liquid metal and the induced carbides are precipitated extensively and distributed evenly. The preferential precipitation of carbides decreases the carbon content in matrix, which is transformed into low carbon lath martensite after welds are chilled to room temperature.

  13. Calcium in diet

    Science.gov (United States)

    ... best source. Milk and dairy products such as yogurt, cheeses, and buttermilk contain a form of calcium ... the amount of calcium in a dairy product. Yogurt, most cheeses, and buttermilk are excellent sources of ...

  14. Fenoprofen calcium overdose

    Science.gov (United States)

    Fenoprofen calcium is a type of medicine called a nonsteroidal anti-inflammatory drug. It is a prescription pain medicine used to relieve symptoms of arthritis . Fenoprofen calcium overdose occurs when someone takes more than the ...

  15. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  16. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  17. Calcium and magnesium disorders.

    Science.gov (United States)

    Goff, Jesse P

    2014-07-01

    Hypocalcemia is a clinical disorder that can be life threatening to the cow (milk fever) and predisposes the animal to various other metabolic and infectious disorders. Calcium homeostasis is mediated primarily by parathyroid hormone, which stimulates bone calcium resorption and renal calcium reabsorption. Parathyroid hormone stimulates the production of 1,25-dihydroxyvitamin D to enhance diet calcium absorption. High dietary cation-anion difference interferes with tissue sensitivity to parathyroid hormone. Hypomagnesemia reduces tissue response to parathyroid hormone. PMID:24980727

  18. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  19. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of cardiop

  20. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300degC a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250degC. The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  1. Wear and wear transition in silicon carbide ceramics during sliding

    International Nuclear Information System (INIS)

    Wear and wear transition in silicon carbide ceramics during sliding have been investigated. Three different microstructures, i.e., solid-state-sintered silicon carbide, liquid-phase-sintered silicon carbide, and a liquid-phase-sintered SiC-TiB2 composite, were produced by hot pressing. Wear data and examinations of worn surfaces showed that the wear behavior of these silicon carbide ceramics was significantly different. In the solid-state-sintered silicon carbide, the wear occurred by a grooving process. In the liquid-phase-sintered silicon carbide and composite, on the other hand, an abrupt transition in the wear mechanism from an initial grooving process to a grain pullout process occurred during the test. The transition occurred significantly earlier in the composite than in the carbide. The different wear behavior in these silicon carbide ceramics is discussed in relation to the grain or interphase boundary strength

  2. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  3. Boron carbide whisker and platelet reinforced ceramic matrix composites

    International Nuclear Information System (INIS)

    Boron carbide whisker and platelet-reinforced alumina and boron-carbide-whisker-reinforced silicon carbide composites were prepared by hot-pressing. The mechanical properties of hot-pressed boron carbide platelet and whisker-reinforced composites are better than the inherent ceramic matrix. A maximum fracture toughness, K(lc), of 9.5 MPa sq rt m is achieved for alumina/boron carbide whisker composites, 8.6 MPa sq rt m is achieved for alumina/boron carbide platelet composites, and 3.8 MPa sq rt m is achieved for silicon carbide/boron carbide whisker composites. The fracture toughness is dependent on the volume fraction of the platelets and whiskers. 12 refs

  4. Joining of silicon carbide using interlayer with matching coefficient of thermal expansion

    International Nuclear Information System (INIS)

    The primary objective of this study is to develop a technique for joining a commercially available Silicon Carbide that gives good room temperature strength and the potential for good high temperature strength. One secondary objective is that the joining technique be adaptable to SiCf/SiC composites and/or Nickel based superalloys, and another secondary objective is that the materials provide good neutron irradiation resistance and low activation for potential application inside nuclear fusion reactors. The joining techniques studied here are: (1) reaction bonding with Al-Si/Si/SiC/C; (2) reaction/infiltration with calcium aluminum silicate; (3) ion exchange mechanism to form calcium hexaluminate (a refractory cement); and (4) oxide frit brazing with cordierite

  5. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  6. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  7. CALPHAD study of cubic carbide systems with Cr

    OpenAIRE

    He, Zhangting

    2015-01-01

    Cubic carbides (titanium, tantalum, niobium, and zirconium carbides) can constitute a significant proportion of so-called cubic and cermet grades, where it is added to substitute a portion of tungsten carbide. It is thus critical to understand and be able to thermodynamically model the cubic carbide systems. In order to do this, the thermodynamic descriptions of lower order systems, such as the Ti-Cr-C system, need to be well studied. To approach this goal, an extensive literature survey of t...

  8. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  9. Anomalous electronic transport in boron carbides

    Science.gov (United States)

    Emin, D.; Samara, G. A.; Wood, C.

    The boron carbides are composed of icosahedral units, B12 and B11C1, linked together by strong intericosahedral bonds. With such distributions of icosahedral and intericosahedral compositions, boron carbides, B/sub 1-x/C/sub x/, are single phase over 0.1 less than or equal to x less than or equal to 0.2. The electronic transport properties of the boron carbides were examined within this single-phase region. Results are inconsistent with conventional analyses of both itinerant and hopping transport. Most striking are Seebeck coefficients which are both large and rapidly increasing functions of temperature despite thermally activated dc conductivities. These results manifest the hopping of small bipolaronic holes between carbon-containing icosahedral that are inequivalent in energy and electron-lattice coupling strength. Under hydrostatic pressures up to approx. 25 kbar, the dc conductivities increase with pressure. This anomalous behavior for hopping conduction reflects the distinctive structure and bonding of these materials.

  10. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  11. Tool steel for cold worck niobium carbides

    International Nuclear Information System (INIS)

    A tool steel was designed so as to have a microstructure with the matrix similar a cold work tool steel of D series, containing a dispersion of Niobium carbides, with no intention of putting Niobium in solution on the matrix. The alloy was cast, forged and heat treated. The alloy was easily forged; the primary carbide morfology, after forging, was faceted, tending to equiaxed. The hardness obtained was equivalent to the maximum hardness of a D-3 sttel when quenched from any temperature between 9500C, and 12000, showing a very small sensitivy to the quenching temperature. (Author)

  12. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  13. Sintering of boron carbide (B4C)

    International Nuclear Information System (INIS)

    Boron carbide (B4C) is used as a control element in different types of reactors due to the high fast and thermal neutron absorption cross-section of B-10. Requirements of the Advanced Reactor Division of the Bariloche Atomic Center triggered the study of the possibilities of fabricating B4C pellets by cold-pressing and sintering. The results of essays of sinterability of two different commercial boron carbide powders, sintered at temperatures between 1200 and 2200 deg C, are given. Characterizations of the samples were made to determine the evolution of density, porosity, microstructure and boron content as a function of sintering temperature. (Author)

  14. Thermal conductivity behavior of boron carbides

    Science.gov (United States)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  15. Ultrarapid microwave synthesis of superconducting refractory carbides

    Energy Technology Data Exchange (ETDEWEB)

    Vallance, Simon R. [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); School of Chemistry, University Nottingham (United Kingdom); Round, David M. [School of Chemistry, University Nottingham (United Kingdom); Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Cussen, Edmund J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow (United Kingdom); Kingman, Sam [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); Gregory, Duncan H. [WestCHEM, Department of Chemistry, University of Glasgow (United Kingdom)

    2009-11-26

    Nb{sub 1-x}Ta{sub x}C Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; T{sub c} correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  17. EXERCISE ENHANCING CALCIUM ABSORPTION MECHANISM

    OpenAIRE

    Muliani

    2013-01-01

    Calcium has important role in many biological processes therefore calcium homeostasis should be maintained. Imbalance in calcium homeostasis would affects the bone metabolism, neuromuscular function, blood coagulation, cell proliferation and signal transduction. Homeostasis of calcium is maintained by three major organs: gastrointestinal tract, bone and kidney. Intestinal calcium absorption is the sole mechanism to supply calcium to the body. Calcium absorption controlled by calcitropic hormo...

  18. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  19. Boron carbide-based ceramics via polymer route synthesis

    International Nuclear Information System (INIS)

    Boron carbide is a ceramic material with excellent high temperature physical properties. As compared to conventional techniques, the preparation of boron carbide from polymeric precursors is attractive as this technique offers a number of unique advantages. In this paper, the screening of polymeric precursors to boron carbide will be discussed. Two promising boron carbide, carborane containing polymeric precursors have resulted in 60-70 wt.% ceramic yields. The chemistry of polymer synthesis and the transformations from the polymer to amorphous and crystalline boron carbide were investigated with infrared spectroscopy, NMR spectroscopy, thermal analysis, and x-ray diffraction

  20. Determination of carbon and sulphur in boron carbide

    International Nuclear Information System (INIS)

    Boron carbide is used in control rods of nuclear power reactors. The chemical specification for carbon in boron carbide ranges between 15 - 24 wt.% depending upon the grade of boron carbide. Hence carbon in boron carbide is to be determined accurately to find out the stoichiometry. Sulphur, which is present in trace quantities, is also to be determined to find out the purity of boron carbide. Carbon is determined by combustion followed by (i) thermal conductivity detection and (ii) infrared detection. Sulphur is determined by (i) combustion followed by infrared detection and (ii) vacuum combustion extraction - quadrupole mass spectrometry. The results are compared. (author)

  1. Casimir forces from conductive silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-01-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of fr

  2. Composites of titanium carbide with scandium matrix

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Pala, Zdeněk; Vilémová, Monika; Kubatík, Tomáš František; Mušálek, Radek; Nevrlá, Barbara; Mastný, L.

    Ostrava: Tanger Ltd, 2014, s. 1181-1186. ISBN 978-80-87294-54-3. [METAL 2014,International Conference on Metallurgy and Materials/23./. Brno (CZ), 21.05.2014-23.05.2014] Institutional support: RVO:61389021 Keywords : hard compounds * titanium carbide * scandium oxycarbide * spark plasma sintering Subject RIV: CA - Inorganic Chemistry www.metal.2014.com

  3. Evidence of hydrogen embrittlement of tungsten carbide.

    Science.gov (United States)

    Kennedy, G C

    1978-02-01

    Tungsten carbide vessels containing materials at high temperature and high pressure are used in many laboratories. We note that any oils at medium to high temperature which can break down and liberate hydrogen cause rapid failure of the pressure vessel, whereas perfluorated kerosenes used as lubricants inside a pressure vessel give sharply increased life of the vessel. PMID:18699072

  4. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  5. Direct plasmadynamic synthesis of ultradisperse silicon carbide

    Science.gov (United States)

    Sivkov, A. A.; Nikitin, D. S.; Pak, A. Ya.; Rakhmatullin, I. A.

    2013-01-01

    Ultradisperse cubic silicon carbide (β-SiC) has been obtained by direct plasmadynamic synthesis in pulsed supersonic carbon-silicon plasma jet incident on a copper obstacle in argon atmosphere. The powdered product has a high content of β-SiC in the form of single crystals with average size of about 100 nm and nearly perfect crystallographic habit.

  6. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  7. Boron carbide synthesis at plasma spray process

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, Vlastimil; Hofman, R.

    Bari : Department of Chemistry, University of Bari, 2003 - (d'Agostino, R.; Favia, P.; Fracassi, F.; Palumbo, F.). s. 631 [International Symposium on Plasma Chemistry/16th./. 22.06.2003-27.06.2003, Taormina] Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide , plasma spray process Subject RIV: BL - Plasma and Gas Discharge Physics

  8. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  9. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  10. The manufacturing method of boron carbide

    International Nuclear Information System (INIS)

    The new method for manufacturing of boron carbide as powder with controlled purity and surface development has been described. The suspension of boric acid aqueous solution and carbon black in alcohol has been homogenized mechanically. Water and alcohol are then evaporated during mixing. After drying homogenous mixture is heated in temperature range of 1270-1870 C during one hour

  11. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe3C, and BCx having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  12. Micromachining of Silicon Carbide using femtosecond lasers

    Energy Technology Data Exchange (ETDEWEB)

    Farsari, M [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, PO Box 1527, 71110 Heraklion, Crete (Greece); Filippidis, G [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, PO Box 1527, 71110 Heraklion, Crete (Greece); Zoppel, S [Vienna University of Technology, Photonics Institute, Gusshausstr. 27-29/387, 1040 Vienna (Austria); Reider, G A [Vienna University of Technology, Photonics Institute, Gusshausstr. 27-29/387, 1040 Vienna (Austria); Fotakis, C [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, PO Box 1527, 71110 Heraklion, Crete (Greece)

    2007-04-15

    We have demonstrated micromachining of bulk 3C silicon carbide (3C- SiC) wafers by employing 1028nm wavelength femtosecond laser pulses of energy less than 10 nJ directly from a femtosecond laser oscillator, thus eliminating the need for an amplified system and increasing the micromachining speed by more than four orders of magnitude.

  13. Micromachining of Silicon Carbide using femtosecond lasers

    International Nuclear Information System (INIS)

    We have demonstrated micromachining of bulk 3C silicon carbide (3C- SiC) wafers by employing 1028nm wavelength femtosecond laser pulses of energy less than 10 nJ directly from a femtosecond laser oscillator, thus eliminating the need for an amplified system and increasing the micromachining speed by more than four orders of magnitude

  14. Dengue and Calcium

    OpenAIRE

    Shivanthan, Mitrakrishnan C; Rajapakse, Senaka

    2014-01-01

    Dengue is potentially fatal unless managed appropriately. No specific treatment is available and the mainstay of treatment is fluid management with careful monitoring, organ support, and correction of metabolic derangement. Evidence with regards to the role of calcium homeostasis in dengue is limited. Low blood calcium levels have been demonstrated in dengue infection and hypocalcemia maybe more pronounced in more severe forms. The cause of hypocalcemia is likely to be multifactorial. Calcium...

  15. Measurements of intracellular calcium

    International Nuclear Information System (INIS)

    Intracellular calcium concentration ([Ca2+]i) has been measured in cultured cells by using Fura-2 load cells and a computer-controlled Perkin Elmer LS-5B spectrofluorometer. Increased [Ca2+]i in cells exposed to extracellular bilirubin was observed both with and without extracellular calcium. However, the increase was considerable larger with extracellular calcium. The enhancement of [Ca2+]i became smaller with decreasing bilirubin/BSA (bovine serum albumine) ratio. 5 refs., 5 figs

  16. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  17. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  18. Influence of Hydrothermal Temperature on Phosphorus Recovery Efficiency of Porous Calcium Silicate Hydrate

    OpenAIRE

    Wei Guan; Fangying Ji; Qingkong Chen; Peng Yan; Weiwei Zhou

    2013-01-01

    Porous calcium silicate hydrate (PCSH) was synthesized by carbide residue and white carbon black. The influence of hydrothermal temperature on phosphorus recovery efficiency was investigated by Field Emission Scanning Electron Microscopy (FESEM), Brunauer-Emmett-Teller (BET), and X-Ray Diffraction (XRD). Hydrothermal temperature exerted significant influence on phosphorus recovery performance of PCSH. Hydrothermal temperature 170°C for PCSH was more proper to recover phosphorus. PCSH could re...

  19. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    Science.gov (United States)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  20. Serum Calcium Level in Hypertension

    OpenAIRE

    Hazari, Mohammed Abdul Hannan; Arifuddin, Mehnaaz Sameera; Muzzakar, Syed; Reddy, Vontela Devender

    2012-01-01

    Background: The alterations in extracellular calcium level may influence intracellular calcium level and possibly play a role in the pathogenesis of essential hypertension. Aim: The purpose was to find out the association between serum calcium levels and hypertension; and to compare the serum calcium levels between normotensive controls, hypertensive subjects on calcium channel blockers, and hypertensive subjects on antihypertensive medication other than calcium channel blockers. Materials an...

  1. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free calciu

  2. Sliding wear behavior of carbide coatings

    International Nuclear Information System (INIS)

    The wear rates of sliding surfaces under starved lubrication conditions are frequently controlled by the onset of scuffing or adhesive transfer resulting in scratching or galling damage mechanisms. Thermally sprayed coatings containing a high volume fraction of hard phases, such as carbides, generally exhibit good abrasion resistance. However, during sliding contact with ferrous materials, the onset of adhesive transfer can occur at relatively low combinations of temperature, sliding speed and contact pressure. Improvements may be obtained when appropriate additions of solid lubricating phases are distributed within the coating. These additions are usually accompanied by an increase in the coating porosity which may itself alter the sliding wear behavior by modifying the distribution of lubricating oil. This paper describes an investigation of the influence of coating porosity on the sliding wear behavior of two conventional carbide coatings

  3. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH3)2Si][CH3Si]. The polysilane contains from 0 to 60 mole percent (CH3)2Si units and from 40 to 100 mole percent CH3Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 1500C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  4. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author)

  5. Sputtering behavior of boron and boron carbide

    International Nuclear Information System (INIS)

    Sputtering yields of boron were measured with D+ and B+ ions for normal and oblique angles of incidence. Self-sputtering data of boron carbide were simulated in the experiment by using Ne+ ions. The energies of the impinging ions were between 20 eV and 10 keV. The measured data are compared with computer simulated values calculated with the TRIMSP program. The boron data for normal ion impact are higher than the calculated values, whereas those for oblique ion incidence are smaller than the calculation predicts. This discrepancy is explained by the surface roughness and supported by SEM micrographs. The comparison of the boron carbide data with TRIMSP calculations shows much better agreement than the boron data. In this case the target surface was much smoother. (orig.)

  6. Reliable Breakdown Obtained in Silicon Carbide Rectifiers

    Science.gov (United States)

    Neudeck, Philip G.

    1997-01-01

    The High Temperature Integrated Electronics and Sensor (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high-power, and/or high-radiation conditions will enable significant improvements to a far-ranging variety of applications and systems. These range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensor and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

  7. Behavior of Disordered Boron Carbide under Stress

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W.; Chhowalla, Manish

    2006-07-01

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6GPa≈P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2 3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  8. Free electron laser annealing of silicon carbide

    International Nuclear Information System (INIS)

    We have studied the application of FEL for the semiconductor processing on the practical device fabrication. FEL annealing at a variety of wavelengths (10.0-13.0 μm) have been performed under room temperature for amorphous silicon carbide (a-SiC) and Nitrogen implanted cubic silicon carbide (3C-SiC) films. Infrared absorption spectroscopy indicated that the annealing at 12.6 μm, corresponding to the absorption peak of Si-C stretch mode, was effective for recrystallization. On the other hand, Hall effect measurements showed the increase of carrier density for N-implanted 3C-SiC films at around 10.4 μm, whereas the absorption was weak at this wavelength. The present results demonstrated that the direct excitation of the lattice vibration with FEL can induce the reconstruction of disordered atoms and activating dopants even at room temperature. (author)

  9. Hydrolysis of hafnium nitrides and carbides

    International Nuclear Information System (INIS)

    Hydrolysis of Hafnium Nitrides and Carbides. The hydrolytic behavior of Hafnium mononitride and monocarbide has been studied and compared with that of Titanium and Zirconium nitrides and carbides. In the case of hydrolysis of HfN the gaseous products were H2, N2 and a small amount of NO, and the liquid product was NH3, as in the case of TiN and ZrN. In isothermal hydrolysis the principal product was NH3 at temperatures lower than 8000C, which was replaced by N2 at temperatures higher than 9000C. In this respect HfN was similar to ZrN, but not to TiN which produced mainly N2 even by hydrolysis at 8000C. The products of hydrolysis of HfC were found to be CO, CO2, H2 and a small amount of CH4 also as in the case of TiC and ZrC. In the isothermal hydrolysis of HfC it was observed that a large amount of H2 evolved at the early stage of the hydrolysis while CO2 continued to evolve with some amount of H2 even after the ceasing of CO evolution. From analysis of the hydrolytic behavior the solid residue after the hydrolysis of HfC was considered to contain some waxes (Csub(n)Hsub(m)). It was suggested that the carbide of the element of smaller atomic number (Ti) would tend to form oxygen compounds (CO, CO2) while the carbide of the element of larger atomic number (Zr, Hf) hydrogen compounds(Csub(n)Hsub(m)), since ThC and UC formed only hydrocarbons and H2 by hydrolysis. This suggestion was also valid to nitride. (auth.)

  10. Interaction of energetic tritium with silicon carbide

    International Nuclear Information System (INIS)

    In order to investigate the physical and chemical interactions of energetic hydrogen isotope species with silicon carbide, recoil tritium from the 3He(n,p)T reaction has been allowed to react with K-T silicon carbide and silicon carbide powder. The results show that if the silicon carbide has been degassed and annealed at 14000C prior to tritium bombardment, a considerable fraction of the tritium (ca. 40%) is released as HTO from the SiC upon heating to 13500C under vacuum conditions. Most of the remaining tritium is retained in SiC, e.g., the retention of the tritium in the K-T SiC was found to be 62 and 22% upon heating to 600 and 13500C, respectively. This is in direct contrast to graphite samples in which the tritium is not released to any significant extent even when heated to 13500C. Samples which were exposed to H2O and H2 prior to tritium bombardment were heated to 6000C after the irradiation. The results obtained indicate that a total of 38.7 and 2.49% of the tritium is released in the form of HT and CH3T in the case of H2 or H2O exposure, respectively. Treatment of degassed samples after tritium bombardment with H2O and H2 at temperatures up to 10000C leads to the release of up to 44.9% of the tritium as HT and CH3T. 42 references, 2 figures, 2 tables

  11. Boron carbide synthesis by plasma spray process

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, Vlastimil; Hofman, R.

    Bari : Department of Chemistry, University of Bari, 2003 - (d'Agostino, R.; Favia, P.; Fracassi, F.; Palumbo, F.), s. - [International Symposium on Plasma Chemistry/16th./. Taormina (IT), 22.06.2003-27.06.2003] R&D Projects: GA ČR GA104/01/0149 Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide , plasma spray, synthesis Subject RIV: BL - Plasma and Gas Discharge Physics

  12. Plasma Spray Deposition of Boron Carbide

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Hofman, R.; Ctibor, Pavel; Hrabovský, Milan

    Praha : MAXDORF, s.r.o., 2002 - (Nitsch, K.; Rodová, M.). s. 11-12 [Development of Materials Science in Research and Education.. 10.09.2002-12.09.2002, Ostravice] R&D Projects: GA ČR GA104/01/0149; GA ČR GA202/01/1563 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spray, boron carbide Subject RIV: BL - Plasma and Gas Discharge Physics

  13. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  14. Magnetism of hydrogen-irradiated silicon carbide

    International Nuclear Information System (INIS)

    Spin-polarized density functional theory is used to study two-hydrogen defect complexes in silicon carbide. We find that the magnetism depends on the distances of the two hydrogen atoms. Magnetism appears when the two hydrogen defects are distant from each other, and magnetism cancels out if they are close to each other. The critical distance between the two hydrogen defects is determined.

  15. Compressive creep of hot pressed silicon carbide

    International Nuclear Information System (INIS)

    Silicon carbide has a good match of chemical, mechanical and thermal properties and therefore is considered an excellent structural ceramic for high temperature applications. The aim of the present work is compressive creep evaluation of liquid phase sintered silicon carbide with aluminum and rare earth oxide as sintering aids. Rare earth oxides are possible additives considering their highly refractory remnant grain-boundary phase and lower synthesis costs compared to high purity rare earth. Samples were prepared with silicon carbide powder (90 wt%) and aluminum oxide (5 wt%) plus rare earth oxide (5 wt%) additions. Powders were mixed, milled and hot pressed at 1800 deg. C in argon atmosphere. Compressive creep tests were carried out under stress from 150 to 300 MPa and temperatures from 1300 to 1400 deg. C. At lower creep test temperatures, the obtained stress exponent values were correlated to mechanisms based on diffusion. At intermediate temperatures, grain-boundary sliding becomes operative, accommodated by diffusion. At higher temperatures cavities are discernible. Oxidation reactions and ionic diffusion result on surface oxidized layer, grain-boundary amorphous and intergranular crystalline Al6Si2O13, δ-Y2Si2O7 and YAG phases. In this case cavitation and amorphous phases redistribution enhance grain-boundary sliding, not accommodated by diffusion. Coalescence occurs at triple point and multigrain-junctions, with subsequent strain rate acceleration and cavitational creep.

  16. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  17. Nuclear fuel management and boron carbide coating

    International Nuclear Information System (INIS)

    In recent years one way of introducing burnable absorber is to coat the fuel pellets by a thin layer of burnable absorber so called integral fuel burnable absorber (IFBA). In this method the fuel is coated with boron nitride or boron carbide. Boron has low absorption cross-section and when it exists on the surface of the fuel, it interacts with thermalized neutron. B4C is a boron compound, which can be used for coating the nuclear fuel. It has high thermal stability and withstands high pressure and temperatures. High technology product of boron carbide has different ratio of B: C. But in nuclear reactor when boron carbide is used, it must be rich with boron. In this research chemical vapor decomposition (CVD) has been using boron trichloride and carbon tetra chloride for reactant materials. The experiments were carried out at high temperatures (1050 degree Celsius, 1225 degree Celsius and 1325 degree Celsius). The coated samples were analyzed using X-Ray diffractometer (XRD), scanning electron microscopy (SEM) and will be presented in this paper. It was seen that decreasing the reaction temperature caused an increase on the quality and thickness of the coating

  18. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  19. Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; CHEN Shu; WANG Yuan-jie; YU Xian-wang; XIONG Xiang-jun

    2008-01-01

    A fine and platelet tungsten carbide patterned structure with fine yttrium containing dispersed phase was observed in liquid phase sintered WC-20%Co-1%Y2O3 cemented carbide with ultrafine tungsten carbide and nano yttrium oxide as starting materials. By comparing the microstructures of the alloy prepared by hot-press at the temperature below the eutectic melting temperature and by conventional liquid phase sintering, it is shown that hexagonal and truncated trigonal plate-like WC grains are formed through the mechanism of dissolution-precipitation (recrystallization) at the stage of liquid phase sintering. Yttrium in the addition form of oxide exhibits good ability in inhibiting the discontinuous or inhomogeneous WC grain growth in the alloy at the stage of solid phase sintering.

  20. Sintering of nano crystalline silicon carbide by doping with boron carbide

    Indian Academy of Sciences (India)

    M S Datta; A K Bandyopadhyay; B Chaudhuri

    2002-06-01

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by scanning electron microscopy and transmission electron microscopy. This study shows that the mechanism is a solid-state sintering process. Polytype transformation from 6H to 4H was observed.

  1. Silicon carbide for chemical application prepared by SPS method

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Kubatík, Tomáš František; Vilémová, Monika; Mušálek, Radek; Mastný, L.

    Prague: Czech Society of Industrial Chemistry, 2014 - (Kalenda, P.; Lubojacký, J.), s. 129-134 ISBN 978-80-86238-64-7. [Mezinárodní chemicko-technologická konference/2./. Mikulov (CZ), 07.04.2014-09.04.2014] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : silicon carbide * spark plasma sintering * silicon carbide corrosion * impurities in silicon carbide Subject RIV: JG - Metallurgy www.icct.cz

  2. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  3. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  4. Microstructural and Mechanical characterization of WC-Co cemented carbides

    OpenAIRE

    Zakia, Rizki

    2013-01-01

    WC-Co cemented carbides are ceramic-metal composite materials made of carbides embedded in a metal phase that acts as a binder. They exhibit an exceptional combination of strength, toughness and wear resistance as a result of the extremely different properties of their two constitutive phases. Consequently, cemented carbides have been positioned as suitable options when selecting materials for tribomechanical applications, and their implementation continues to gain a place in t...

  5. Stereology of carbide phase in modified hypereutectic chromium cast iron

    OpenAIRE

    J. Suchoń; A. Studnicki; M. Przybył

    2010-01-01

    In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C), ferroniobium (FeNb) and mixture of ferroniobium and rare-earth (RE). The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  6. Silicon Carbide Corrugated Mirrors for Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  7. Transformations of Carbides During Tempering of D3 Tool Steel

    Science.gov (United States)

    Nykiel, Tadeusz; Hryniewicz, Tadeusz

    2014-06-01

    The studies were performed on D3 tool steel hardened after austenitizing at 1050 °C during 30 min and tempering at 200-700 °C. Based on the diffraction studies performed from the extraction replicas, using electron microscopy, it was found that after 120-min tempering in the consecutive temperatures, the following types of carbides occur: Apart from higher mentioned carbides, there are also big primary carbides and fine secondary M7C3 carbides occurring, which did not dissolve during austenitizing.

  8. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  9. Thermodynamic and kinetic study of uranium carbide pyrophoricity

    International Nuclear Information System (INIS)

    This research thesis concerns the development of nuclear reactors of fourth generation, and more particularly the use of carbide fuels instead of oxide fuels. An experimental part allows the investigation of mechanisms resulting in the pyrophoric reaction of a powder of uranium carbide, and addresses the determination of kinetic parameters intrinsic to the oxidation of powdered uranium carbide. Experimental results are then used to develop models of oxidation of powders of carbide uranium which are applied to a simplified mono-dispersed powder, and then introduced in a computation code. Simulation results are compared with experimental results

  10. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  11. Neuronal calcium sparks and intracellular calcium “noise”

    OpenAIRE

    Melamed-Book, Naomi; Kachalsky, Sylvia G.; Kaiserman, Igor; Rahamimoff, Rami

    1999-01-01

    Intracellular calcium ions are involved in many forms of cellular function. To accommodate so many control functions, a complex spatiotemporal organization of calcium signaling has developed. In both excitable and nonexcitable cells, calcium signaling was found to fluctuate. Sudden localized increases in the intracellular calcium concentration—or calcium sparks—were found in heart, striated and smooth muscle, Xenopus Laevis oocytes, and HeLa and P12 cells. In the nervous system, intracellular...

  12. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk;

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... calcium binds silicon primarily as calcium silicates and less as potassium calcium silicates....

  13. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  14. Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite

    International Nuclear Information System (INIS)

    Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: → Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. → Activity is related to the structure, crystal phase and chemical component of the nanocomposite. → The property of electrolyte affects the electrocatalytic activity. → A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide and titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.

  15. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  16. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  17. Type II Supernova Matter in a Silicon Carbide Grain from the Murchison Meteorite

    Science.gov (United States)

    Hoppe; Strebel; Eberhardt; Amari; Lewis

    1996-05-31

    The circumstellar silicon carbide (SiC) grain X57 from the Murchison meteorite contains large amounts of radiogenic calcium-44 (20 times its solar system abundance) and has an anomalous silicon isotopic composition, different from other circumstellar SiC grains. Its inferred initial 44Ti/Si and 44Ti/48Ti ratios are 1.6 x 10(-4) and 0.37. In addition, it contains radiogenic magnesium-26; the inferred initial 26Al/27Al ratio is 0.11. The isotopic and elemental data of X57 can be explained by selective mixing of matter from different zones of a typical type II supernova of 25 solar masses during its explosion. The high 44Ti/Si ratio requires contributions from the innermost nickel zone of the supernova to the SiC condensation site, as similarly suggested by astronomical observations. PMID:8662461

  18. Preparation of niobium carbide powder by electrochemical reduction in molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qiushi [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); Xu, Qian, E-mail: qianxu201@mail.neu.edu.cn [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Meng, Jingchun; Lou, Taiping; Ning, Zhiqiang [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); Qi, Yang [College of Science, Northeastern University, Shenyang 110819 (China); Yu, Kai [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-10-25

    The niobium carbide powder was prepared via electrochemical reduction of the mixture of Nb{sub 2}O{sub 5} and carbon in molten CaCl{sub 2}–NaCl. The reaction pathway from the sintered precursor to the final product has been investigated. The effect of the working temperature on the reduction of the Nb{sub 2}O{sub 5}/C composite precursor was considered. The role of carbon during the electrochemical reduction of the composite pellet was discussed. The samples were analysed by XRD and SEM. The results indicated that the NbC powder was approximately 200 nm after the reduction. Nb{sub 2}O{sub 5} was gradually reduced to Nb, and NbC was subsequently obtained by the reaction of carbon with Nb metal. In addition, Nb{sub 2}O{sub 5} could spontaneously react with CaO in the melt to form a serious of calcium niobates. The participation of carbon was available for the efficiency of electro-reduction of Nb{sub 2}O{sub 5}. - Graphical abstract: Niobium carbide powder was electrochemically prepared in molten salt, and the reduction pathway was illustrated schematically. - Highlights: • NbC powder was prepared electrochemically in molten salt. • The working temperature was lower than that of carbothermic reduction. • The reduction pathway was discussed compared to direct electro-deoxidation of Nb{sub 2}O{sub 5}.

  19. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C

    Science.gov (United States)

    Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.

    1988-01-01

    Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants, respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.

  20. Preparation of niobium carbide powder by electrochemical reduction in molten salt

    International Nuclear Information System (INIS)

    The niobium carbide powder was prepared via electrochemical reduction of the mixture of Nb2O5 and carbon in molten CaCl2–NaCl. The reaction pathway from the sintered precursor to the final product has been investigated. The effect of the working temperature on the reduction of the Nb2O5/C composite precursor was considered. The role of carbon during the electrochemical reduction of the composite pellet was discussed. The samples were analysed by XRD and SEM. The results indicated that the NbC powder was approximately 200 nm after the reduction. Nb2O5 was gradually reduced to Nb, and NbC was subsequently obtained by the reaction of carbon with Nb metal. In addition, Nb2O5 could spontaneously react with CaO in the melt to form a serious of calcium niobates. The participation of carbon was available for the efficiency of electro-reduction of Nb2O5. - Graphical abstract: Niobium carbide powder was electrochemically prepared in molten salt, and the reduction pathway was illustrated schematically. - Highlights: • NbC powder was prepared electrochemically in molten salt. • The working temperature was lower than that of carbothermic reduction. • The reduction pathway was discussed compared to direct electro-deoxidation of Nb2O5

  1. Critically coupled surface phonon-polariton excitation in silicon carbide.

    Science.gov (United States)

    Neuner, Burton; Korobkin, Dmitriy; Fietz, Chris; Carole, Davy; Ferro, Gabriel; Shvets, Gennady

    2009-09-01

    We observe critical coupling to surface phonon-polaritons in silicon carbide by attenuated total reflection of mid-IR radiation. Reflectance measurements demonstrate critical coupling by a double scan of wavelength and incidence angle. Critical coupling occurs when prism coupling loss is equal to losses in silicon carbide and the substrate, resulting in maximal electric field enhancement. PMID:19724526

  2. Brazed boron-silicon carbide/aluminum structural panels

    Science.gov (United States)

    Arnold, W. E., Jr.; Bales, T. T.; Brooks, T. G.; Lawson, A. G.; Mitchell, P. D.; Royster, D. M.; Wiant, R.

    1978-01-01

    Fluxless brazing process minimizes degradation of mechanical properties composite material of silicon carbide coated boron fibers in an aluminum matrix. Process is being used to fabricate full-scale Boron-Silicon Carbide/Aluminum-Titanium honeycomb core panels for flight testing and ground testing.

  3. Mass spectrometric determination of boron isotope in boron carbide

    International Nuclear Information System (INIS)

    Boron isotopes in boron carbide are measured by thermionic ionization mass spectrometry with no prior chemical separation. Boron is converted to sodium borate by fusion of the boron carbide with sodium hydroxide (or sodium carbonate) directly on the rhenium filament. The boron isotopic ratios are measured by using the Na2BO2+ ion

  4. Combustion synthesis of boron carbide - a spectroscopic studies

    International Nuclear Information System (INIS)

    Boron Carbide is one of the hardest materials known, ranking third behind diamond and cubic boron nitride. It is the hardest material produced in tonnage quantities. Boron carbide (BxCx) enriched in the 10B isotope is used as a control rod material in the nuclear industry due to its high neutron absorption cross section and other favorable physico-chemical properties. Conventional methods of preparation of boron carbide are energy intensive processes accompanied by huge loss of boron. Attempts were made at IGCAR Kalpakkam to develop energy efficient and cost effective methods to prepare boron carbide. Nuclear applications of boron carbide include shielding, control rod and shut down pellets. Within control rods, boron carbide is often powdered, to increase its surface area. The products of the gel combustion and microwave synthesis experiments were characterized for phase purity by X-ray diffraction (XRD). The carbide formation was ascertained using finger-print spectroscopy of Fourier transform infrared (FTIR). Samples of pyrolized/microwave heated powder were characterized for surface morphology using electron microscope (SEM). The present work shows the recent advances in understanding of structural and chemical variation in boron carbide and their influence on morphology, optical and vibrational property result discussed in details. (author)

  5. Determination of boron and silicon in boron carbide

    International Nuclear Information System (INIS)

    A sodium carbonate fusion technique for the dissolution of boron carbide followed by the determination of boron by alkalimetric titration and silicon impurity by spectrophotometry is described. The elemental boron content in the commercially available boron carbide ranged from 77.2 to 77.60 % and the silicon in the range 1170 to 2500 ppm. (author)

  6. Preliminary fabrication studies of alternative LMFBR carbide fuels

    International Nuclear Information System (INIS)

    Preliminary fabrication studies were made of various compositions of thorium-uranium carbide and thorium-plutonium carbide fuel pellets that were prepared using the carbothermic reduction process. Temperatures of 1750 and 20000C were used during the reduction cycle. Sintering temperatures of 1800 and 20000C were used to prepare fuel pellets of low (87%) and high (> 94%) theoretical densities

  7. Properties of titanium carbide and vanadium carbide mixtures as first wall coatings

    Science.gov (United States)

    Shikama, T.; Sakai, Y.; Fukutomi, M.; Okada, M.

    1985-08-01

    Mixtures of titanium carbide(TiC) and vanadium carbide(VC) were deposited onto molybdenum at 870 K by a planar magnetron sputtering method. Molybdenum coated with the mixtures of (Ti 1-xV x) 0.6C 0.4(0 ≲ x $ˇ0.7) was tensile-deformed to rupture at a strain rate of 7×10 -4 s -1 at 300 K. During the deformation of the molybdenum substrate, crack formation and exfoliation of the deposited film of the mixture were monitored by acoustic emission (AE) and by optical observation. The mixtures of titanium carbide and vanadium carbide have larger fracture strengths than their parent carbides. Mixtures in the composition range, (Ti 0.6V 0.4) 0.6C 0.4-(Ti 0.5V 0.5) 0.6C 0.4 had the largest fracture strengths. The larger fracture strength of the film of the mixture decreased the resistance of the film to exfoliation. However, film in the composition ranges. (Ti 0.95V 0.05) 0.6C 0.4-(Ti 0.8V 0.2) 0.6C 0.4 and (Ti 0.4V 0.6) 0.6C 0.4-(Ti 0.3V 0.7) 0.6C 0.4 showed good resistance against exfoliation. The detection of AE from the deposits suggested that these films might have the ability to deform plastically to a small extent.

  8. Mechanical properties of Silicon Carbide Nanowires

    Science.gov (United States)

    Alkhateeb, Abdullah; Zhang, Daqing; McIlroy, David; Aston, David Eric

    2004-05-01

    Silicon carbide nanowires could be potentially useful for high strength materials which lead to the interest in understanding their mechanical properties. In this report we use the digital pulse force microscopy to analyze the mechanical properties of SiC nanowires .Stiffness and adhesion images of SiC nanowires on silicon grating were obtained and calibrated force-distance curves were plotted along the wire which spans on a 1.5 micron trench. Moreover, spring constant and Young's modules have been calculated from the linear part of the force-distance curves.

  9. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    S Mandal; A Seal; S K Dalui; A K Dey; S Ghatak; A K Mukhopadhyay

    2001-04-01

    The present work deals with the sintering of SiC with a low melting additive by microwave technique. The mechanical characteristics of the products were compared with that of conventionally sintered products. The failure stress of the microwave sintered products, in biaxial flexure, was superior to that of the products made by conventional sintering route in ambient condition. In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  10. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 16000C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH3)2Si units and from 40 to 100 mole percent of CH3Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  11. Deep reactive ion etching of silicon carbide

    OpenAIRE

    Tanaka, S.; Rajanna, K.; Abe, T.(High Energy Accelerator Research Organization (KEK), 305-0801, Tsukuba, Japan); Esashi, M

    2001-01-01

    In this article, we describe more than 100-\\mu m-deep reactive ion etching (RIE) of silicon carbide (SiC) in oxygen-added sulfur hexafluoride (SF6) plasma. We used a homemade magnetically enhanced, inductively coupled plasma reactive ion etcher (ME-ICP-RIE) and electroplated nickel masks. First, 5 h etching experiments using etching gases with 0%, 5%, 10% and 20% oxygen were performed by supplying rf power of 150 and 130 W to an ICP antenna and a sample stage, respectively. They demonstrated ...

  12. Nitride and carbide preforms for infiltration process

    OpenAIRE

    A. Twardowska; Nowak, R; P. Kurtyka; B. Smuk; M. Podsiadło; L. Jaworska; N. Sobczak

    2007-01-01

    Purpose: Infiltration of molten metals into porous ceramic preforms is the only technique suitable for the fabrication of high volume fraction of ceramic materials in MMCs. The most popular material for porous preforms is Al2O3 because of its low cost. Infiltration process generates thermal stresses in the Al2O3 preforms. The thermal shock resistance of Al2O3 is lower than for Si3N4 or Al2O3/TiC+TiN materials. The aim of this study is to obtain the nitride and carbide base preforms material f...

  13. Structural relaxation of amorphous silicon carbide

    International Nuclear Information System (INIS)

    We have examined amorphous structures of silicon carbide (SiC) using both transmission electron microscopy and a molecular-dynamics approach. Radial distribution functions revealed that amorphous SiC contains not only heteronuclear (Si-C) bonds but also homonuclear (Si-Si and C-C) bonds. The ratio of heteronuclear to homonuclear bonds was found to change upon annealing, suggesting that structural relaxation of the amorphous SiC occurred. Good agreement was obtained between the simulated and experimentally measured radial distribution functions

  14. Structural relaxation of amorphous silicon carbide.

    Science.gov (United States)

    Ishimaru, Manabu; Bae, In-Tae; Hirotsu, Yoshihiko; Matsumura, Syo; Sickafus, Kurt E

    2002-07-29

    We have examined amorphous structures of silicon carbide (SiC) using both transmission electron microscopy and a molecular-dynamics approach. Radial distribution functions revealed that amorphous SiC contains not only heteronuclear (Si-C) bonds but also homonuclear (Si-Si and C-C) bonds. The ratio of heteronuclear to homonuclear bonds was found to change upon annealing, suggesting that structural relaxation of the amorphous SiC occurred. Good agreement was obtained between the simulated and experimentally measured radial distribution functions. PMID:12144449

  15. Analysis of tungsten carbides by X-ray fluorescence spectrometry.

    Science.gov (United States)

    Kinson, K; Knott, A C; Belcher, C B

    Five sample presentation techniques were examined for the X-ray fluorescence spectrometric analysis of tungsten carbide alloys in powder and cemented forms. Powder samples may be oxidized by air at 600 degrees before fusion (I), or preferably by lithium nitrate during fusion (II); the fusion is effected with lithium-lanthanum tetraborate followed by briquetting with graphite. Powder samples may also be blended with wax and briquetted (III). Cemented carbides are surface-prepared with silicon carbide before analysis (V). Briquettes prepared by blending carbide powder, lithium-lanthanum tetraborate and graphite (IV), give poor reproducibility, however, owing to micro-absorption effects the technique is not recommended. The determination of eight common elements in tungsten carbide is discussed and the relative standard deviations are 0.002-0.004 for major and 0.008-0.01 for minor elements. PMID:18961988

  16. Synthesis and photoluminescence property of boron carbide nanowires

    International Nuclear Information System (INIS)

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100°C. The boron carbide nanowires are 5–10 μm in length and 80–100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm. (condensed matter: structure, thermal and mechanical properties)

  17. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca;

    2013-01-01

    carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide......Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...

  18. Electrocatalysis using transition metal carbide and oxide nanocrystals

    Science.gov (United States)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  19. Silicon Carbide: The Problem with Laboratory Spectra

    Science.gov (United States)

    Speck, A. K.; Hofmeister, A. M.; Barlow, M. J.

    2000-03-01

    The interpretation of astronomical observations of infrared (IR) silicon carbide (SiC) features in the spectra of carbon stars have revealed discrepancies between the work of astronomers and that of meteoriticists. The silicon carbide observed around carbon stars has been attributed to one type of SiC (α) while meteoritic samples believed to have formed around such stars are of another type of SiC (β). The key to solving this problem has been to understand the sources of laboratory data used by astronomers in order to interpret the IR spectra. Through comparison of thin film IR absorption spectra and spectra taken using finely ground samples dispersed in potassium bromide (KBr) pellets we show that the previously invoked ``KBr matrix-correction'' is unnecessary for powder dispersions obtained from very fine grain sizes of SiC. Comparison of our data and previous measurements show that dust around carbon stars is β-SiC, consistent with laboratory studies of presolar grains in meteorites. The implications of these findings affect twenty years of work. The IR spectroscopic laboratory data used by astronomers to identify dust species in space must be carefully scrutinized to ensure that the KBr correction is not responsible for further misattributions of minerals in astronomical dust features.

  20. Ultrasmall Carbide Nanospheres - Formation and Electronic Properties

    Science.gov (United States)

    Reinke, Petra; Monazami, Ehsan; McClimon, John

    2015-03-01

    Metallic nanoparticles are highly coveted but are subject to rapid Ostwald ripening even at moderate temperatures limiting study of their properties. Ultrasmall transition metal carbide ``nanospheres'' are synthesized by a solid-state reaction between fullerene as carbon scaffold, and a W surface. This produces nanospheres with a narrow size distribution below 2.5 nm diameter. The nanosphere shape is defined by the scaffold and densely packed arrays can be achieved. The metal-fullerene reaction is temperature driven and progresses through an intermediate semiconducting phase until the fully metallic nanospheres are created at about 350 C. The reaction sequence is observed with STM, and STS maps yield the local density of states. The reaction presumably progresses by stepwise introduction of W-atoms in the carbon scaffold. The results of high resolution STM/STS in combination with DFT calculations are used to unravel the reaction mechanism. We will discuss the transfer of this specific reaction mechanism to other transition metal carbides. The nanospheres are an excellent testbed for the physics and chemistry of highly curved surfaces.

  1. Electronic properties of disordered silicon carbides

    International Nuclear Information System (INIS)

    The disorder effects on the electronic properties of silicon carbide were studied at the atomic or micro-structural scale. We have investigated a great variety of materials: silicon carbide fibers, carbonated amorphous silicon films, single crystals and amorphous or crystalline SiC powders. The DC and AC conductivity measurements on the SiC fibers point out the major role of their micro-structure at the nanometric scale, which leads to large dielectric constants. Hopping of polaronic carriers is the dominant conduction mechanism. An electrons spin resonance study of all the materials was performed: sp2 hybridized carbon is always present, in diluted form in the amorphous systems or as free carbon in the crystalline one. Some irradiation defects of SiC were identified: silicon or carbon vacancy and carbon complexes with sp2 hybridization. Such a carbon is responsible of the low paramagnetic stability of the silicon dangling bonds. It is believed to induce the polaronic behavior of the localized carriers. (Author). refs., figs., tabs

  2. ELECTROCHEMICAL MACHINING OF CARBIDES AND BORIDES

    Energy Technology Data Exchange (ETDEWEB)

    Dissaux, Bernard Antoine; Muller, Rolf H.; Tobias, Charles W.

    1978-07-01

    The use of high rate anodic dissolution (electrochemical machining) for shaping titanium carbide, zirconium carbide, titanium boride and zirconium boride has been investigated in 2N potassium nitrate and 3N sodium chloride under current densities ranging from 20 to 120 A/cm{sup 2} (corresponding to cutting rates of 0.3 to 1.8 mm/min). The dissolution stoichiometry for all these materials is independent of the current density in the range 20 to 120 A/cm{sup 2}. Both titanium and zirconium appear to dissolve in the +4 state, boron in the +3 state and the weight loss measurements indicate that carbon is oxidized to CO and CO{sub 2}. The current voltage curves permit to establish that, over the entire current density and flow range investigated, dissolution occurs in the transpassive state. The surface roughness obtained on TiC and ZrC is within 3-5 {micro}m and is independent of current density, applied voltage or flow rate.

  3. High temperature intermetallic binders for HVOF carbides

    International Nuclear Information System (INIS)

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr3C2-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr3C2 cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr3C2-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders

  4. Pressureless sintering of beta silicon carbide nanoparticles

    International Nuclear Information System (INIS)

    This study reports the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Green blended compounds made of SiC nano-sized powder, a fugitive binder and a sintering agent (boron carbide, B4C), have been prepared. The binder is removed at low temperature (e.g. 800 degrees C) and the pressureless sintering studied between 1900 and 2100 degrees C. The nearly theoretical density (98% relative density) was obtained after 30 min at 2100 degrees C. The structural and microstructural evolutions during the heat treatment were characterised. The high temperatures needed for the sintering result in the β-SiC to α-SiC transformation which is revealed by the change of the composite microstructure. From 1900 degrees C, dense samples are composed of β-SiC grains surrounding α-SiC platelets in a well-defined orientation. TEM investigations and calculation of the activation energy of the sintering provided insight to the densification mechanism. (authors)

  5. Dynamic compaction of tungsten carbide powder.

    Energy Technology Data Exchange (ETDEWEB)

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  6. Dominant factors in carbide fuel swelling

    International Nuclear Information System (INIS)

    Identification of the dominant factors involved in carbide fuel fission gas swelling and release behaviour has been attempted by comparison between experimental data and the results predicted by means of a physical model. The model assumes that fission gas release occurs entirely through gas atom migration in the matrix solid and that fission gas bubbles, intra and intergranular, grow as the net result of gas atom precipitation into the bubbles and gas atom re-solution from the bubbles. Further, it is assumed that local gas atom redistribution process in the immediate neighbourhood of a bubble is so rapid that the bubble size always corresponds to the equilibrium size that maintains exact balance between the rate of resolution and that of precipitation. Computation runs performed with the model using carefully chosen combination of physical parameters have successfully reproduced the spread of experimental gas release and swelling data. Comparisons between the predicted results and the experimental data readily identify the grain size, and not the temperature, as the dominant factor affecting fission gas behaviour. The effect of other fuel design parameters such as fission rate density, hydrostatic pressure, etc. is generally shown to be minor. Further study, however, indicates that the external fuel dimensional changes resulting from fuel cracking very often overshadow that from fission gas swelling alone. It is concluded that efforts to control carbide fuel swelling should be directed towards the control of fuel microstructure rather than the control of fuel porosity as has been generally practiced so far. (author)

  7. Sol–gel processing of carbidic glasses

    Indian Academy of Sciences (India)

    L M Manocha; E Yasuda; Y Tanabe; S Manocha; D Vashistha

    2000-02-01

    Carbon incorporation into the silicate network results in the formation of rigid carbidic glasses with improved physical, mechanical and thermal properties. This generated great interest in the development of these heteroatom structured materials through different processing routes. In the present studies, sol–gel processing has been used to prepare silicon based glasses, especially oxycarbides through organic–inorganic hybrid gels by hydrolysis–condensation reactions in silicon alkoxides, 1,4-butanediol and furfuryl alcohol with an aim to introduce Si–C linkages in the precursors at sol level. The incorporation of these linkages has been studied using IR and NMR spectroscopy. These bonds, so introduced, are maintained throughout the processing, especially during pyrolysis to high temperatures. In FFA–TEOS system, copolymerization with optimized mol ratio of the two results in resinous mass. This precursor on pyrolysis to 1000°C results in Si–O–C type amorphous solid black mass. XRD studies on the materials heated to 1400°C exhibit presence of crystalline Si–C and cristobalites in amorphous Si–O–C mass. In organic–inorganic gel system, the pyrolysed mass exhibits phase stability up to much higher temperatures. The carbidic materials so produced have been found to exhibit good resistance against oxidation at 1000°C.

  8. Radiation Damage Effects in Uranium Carbide

    International Nuclear Information System (INIS)

    This paper deals with the results of research into the irradiation behaviour of cast uranium carbide following that reported in another paper by Childs et al. The main conclusions are as follows: 1. The saturation resistivity and lattice parameter increases for hypostoichiometric specimens irradiated at 80oC vary systematically with the excess concentration of uranium present in solution in the UC phase. 2. The temperature coefficient of resistivity (measured over the range 77 - 293oK), unlike the resistivity itself, is not significantly affected by irradiation. 3. A small resistivity annealing stage, additional to those at 150 and 510oC, occurs between 1000 and 1200oC. The annealing-out of the lattice parameter change also occurs in two main stages at 150 and 510oC (5-h anneals). A careful survey of the range 400 - 800oC has failed to reveal the stage postulated by other workers to occur at about 710oC. The significance of the results in determining the defect structure of irradiated uranium carbide is discussed. (author)

  9. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    Science.gov (United States)

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  10. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  11. CALCIUM SOAP LUBRICANTS

    OpenAIRE

    Alaz, Izer; Tugce, Nefise; Devrim, Balköse

    2014-01-01

    The article studies the properties of calcium stearate (CaSt2) and lubricants produced on its basis. These lubricants were prepared using sodium stearate and calcium chloride by subsidence from aqueous solutions. The CaSt2 and the light fraction of crude oil were mixed together to obtain lubricating substances. The article shows that CaSt2 had the melting temperature of 142.8 C that is higher than the melting temperature of crude oil (128 C). The compositions of obtained lubricants were stu...

  12. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Science.gov (United States)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  13. A sensor for calcium uptake

    OpenAIRE

    Collins, Sean; Meyer, Tobias

    2010-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified.

  14. Children's Bone Health and Calcium

    Science.gov (United States)

    ... Trials Resources and Publications Children's Bone Health and Calcium: Condition Information Skip sharing on social media links ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  15. Preparation and Fatigue Properties of Functionally Graded Cemented Carbides

    International Nuclear Information System (INIS)

    Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered η-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit (∼100 MPa) than the conventional ones under the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides

  16. Effect of strong carbide forming elements in hardfacing weld metal

    Institute of Scientific and Technical Information of China (English)

    Yuanbin Zhang; Dengyi Ren

    2004-01-01

    To achieve high carbon hard-facing weld metals with both high hardness and crack resistance, strong carbide forming elements Ti, Nb and V were alloyed into the weld metals, and their effect on the formation of carbides and the matrix microstructure were studied. Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy(EDS) and Transmission Electron Microscopy(TEM) were adopted to investigate the microstructure, then thermodynamics of the formation of carbides was calculated and their effect on the matrix was further discussed. It is revealed that Nb, Ti and V influence strongly the distribution and existing state of carbon, inducing precipitation of carbides accompanying with the depletion of carbon in matrix. But when only V are alloyed as carbide forming element, the carbides are scarce and distributed along grain boundaries, and the hard-facing alloy is too hard, while the using of only Nb or Ti could not reinforce the weld metals effectively. The hard-facing alloy reinforced with Nb, V and Ti can form dispersive fine carbides and low carbon martensite matrix.

  17. Uranium-plutonium carbide as an LMFBR advanced fuel

    International Nuclear Information System (INIS)

    Uranium-plutonium carbide offers an improved fuel system for advanced breeder reactors. The high thermal conductivity and density of carbide fuels permit superior breeding performance and high specific power operation. These advantages combine to increase plutonium production, reduce fuel cycle and power costs, and lower plant capital costs. The carbide advantages are obtained at conservative fuel sytem design and operating conditions. Carbide fabrication technology has been demonstrated by the production of quality-assured fuel elements for irradiation testing. The carbide irradiation test program has demonstrated that high burnup can be achieved with several designs and that the consequences of postulated off-normal operating events are benign. Design bases to support helium- and sodium-bonded carbide fuel pin test irradiations in the Fast Flux Test Facility have been developed in the Experimental Breeder Reactor-II and the Transient Reactor irradiation experiments. Important issues regarding safety, reprocessing, and commercial-scale fabrication remain to be addressed in the continuing development of carbide fuels. Fiscal and historical circumstances have combined to preclude this development. This report reviews these circumstances and the state of the technology in general and advances a rationale for why development should be continued

  18. Boron carbide/carbon composite material and production process therefor

    International Nuclear Information System (INIS)

    The boron carbide/carbon composite material of the present invention comprises from 15 to 40% by volume of graphite and the balance of two kinds of powdery boron carbides X and Y having different average grain sizes. The average grain size of the powdery boron carbide X is less than 1/2 of the average grain size of the boron carbide Y, and the composite material comprises more than 10% by volume of the powdery boron carbide X and more than 30% by volume of the powdery boron carbide Y. They are press-molded under heating at a temperature range of 480 to 600degC, followed by sintering. A binder pitch of less evaporation ingredient melting upon heating is used as a binder. Since the pitch of satisfactory melting property is used, there is no worry that binding property lacks to reduce the lowering of the strength even if a great amount of powdery boron carbide is added. Further, since a carbonization yield is improved due to less evaporation content, density and strength of the composite material can be increased. (T.M.)

  19. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  20. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  1. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about...

  2. The atomic configuration of graphene/vanadium carbide interfaces in vanadium carbide-encapsulating carbon nanocapsules.

    Science.gov (United States)

    Yazaki, Gaku; Matsuura, Daisuke; Kizuka, Tokushi

    2014-03-01

    Carbon nanocapsules (CNCs) encapsulating vanadium carbide (VC) nanocrystals with a NaCI structure were synthesized by a gas-evaporation method using arc-discharge heating. The CNCs were observed by high-resolution transmission electron microscopy. The VC nanocrystals within the nanospaces of CNCs were truncated by low-index facets and were coated with several graphene layers, forming graphene/VC interfaces. The atomic configuration and interlayer spacings at the interfaces were found. PMID:24745251

  3. Exposure to Fibres, Crystalline Silica, Silicon Carbide and Sulphur Dioxide in the Norwegian Silicon Carbide Industry

    OpenAIRE

    Føreland, S.; Bye, E; Bakke, B.; Eduard, W

    2008-01-01

    Objectives: The aim of this study was to assess personal exposure to fibres, crystalline silica, silicon carbide (SiC) and sulphur dioxide in the Norwegian SiC industry. Methods: Approximately 720 fibre samples, 720 respirable dust samples and 1400 total dust samples were collected from randomly chosen workers from the furnace, processing and maintenance departments in all three Norwegian SiC plants. The respirable dust samples were analysed for quartz, cristobalite and non-fibrous SiC conten...

  4. Impregnating Coal With Calcium Carbonate

    Science.gov (United States)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  5. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine;

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and...... renal tubule and then discuss why not all gene defects that cause renal tubular acidosis are associated with hypercalciuria and nephrocalcinosis....

  6. Strength degradation of cemented carbides due to thermal shock

    OpenAIRE

    Tarragó Cifre, Jose María; Dorvlo, Selassie; Al-Dawery, Ihsan; Llanes Pitarch, Luis Miguel

    2015-01-01

    Despite the recognition of thermal shock and thermal fatigue as common failure modes in cemented carbide applications, the information on the influence of the microstructure on the resistance of hardmetals to abrupt temperature changes is rather scarce. In this paper, the strength behaviour of cemented carbides after severe thermal shock damage is investigated. In doing so, cemented carbides were subjected to thermal shock at two temperature ranges (¿T of 400ºC and 550ºC) and their retained s...

  7. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  8. Material properties of silicon and silicon carbide foams

    Science.gov (United States)

    Jacoby, Marc T.; Goodman, William A.

    2005-08-01

    Silicon and silicon carbide foams provide the lightweighting element for Schafer Corporation's silicon and silicon carbide lightweight mirror systems (SLMSTM and SiC-SLMSTM). SLMSTM and SiC-SLMSTM provide the enabling technology for manufacturing lightweight, athermal optical sub-assemblies and instruments. Silicon and silicon carbide foam samples were manufactured and tested under a Schafer-funded Internal Research and Development program in various configurations to obtain mechanical and thermal property data. The results of the mechanical tests that are reported in this paper include Young's modulus, compression strength, tensile strength, Poisson's ratio and vibrational damping. The results of the thermal tests include thermal conductivity and coefficient of thermal expansion.

  9. Hugoniot equation of state and dynamic strength of boron carbide

    International Nuclear Information System (INIS)

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable

  10. Hugoniot equation of state and dynamic strength of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)

    2015-04-28

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable

  11. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    International Nuclear Information System (INIS)

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  12. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  13. Radiation damage of transition metal carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, G.

    1991-01-01

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC[sub 0.88] in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V[sub 8]C[sub 7] superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  14. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 1025 n/m2. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  15. Understanding the sintering of cemented carbide

    International Nuclear Information System (INIS)

    The solidification structures of the Co--W--C system are discussed; the work was undertaken to clarify cooling reactions in cobalt-bonded tungsten carbide alloys. Alloys were prepared by induction melting Co, C, W, and WC in an alumina crucible and cooling at the rate of 100 C per minute. Liquidus surfaces for the primary precipitation of (Co,W)6C, fcc-Co, and the mu phase, Co7W6, were established. The phase diagram presented shows the basal projection of the liquidus surface in the Co-rich part of the Co--W--C system. The diagram indicates three tested alloys, five eutectics, and five peritectic reactions. The solidification of the alloys is discussed. 5 figures

  16. Nanoporous Silicon Carbide for Nanoelectromechanical Systems Applications

    Science.gov (United States)

    Hossain, T.; Khan, F.; Adesida, I.; Bohn, P.; Rittenhouse, T.; Lienhard, Michael (Technical Monitor)

    2003-01-01

    A major goal of this project is to produce porous silicon carbide (PSiC) via an electroless process for eventual utilization in nanoscale sensing platforms. Results in the literature have shown a variety of porous morphologies in SiC produced in anodic cells. Therefore, predictability and reproducibility of porous structures are initial concerns. This work has concentrated on producing morphologies of known porosity, with particular attention paid toward producing the extremely high surface areas required for a porous flow sensor. We have conducted a parametric study of electroless etching conditions and characteristics of the resulting physical nanostructure and also investigated the relationship between morphology and materials properties. Further, we have investigated bulk etching of SiC using both photo-electrochemical etching and inductively-coupled-plasma reactive ion etching techniques.

  17. Gas emission from ultradispersed carbide powders

    International Nuclear Information System (INIS)

    The process of gas emission from the ultra-dispersed carbides (B4C, SiC, TiC) powders formed by pulsed plasma synthesis technology (condensator discharge) in the environment of corresponding chlorides and methan with the additions of H2 and Ar was investigated. The emitted gases consisted of CH4, H2O, Co(N2), CO2. Calculated heats of gas emission processes (less than 200 kJ/mol) for different components show their adsorption nature up to 700 deg C. The emission of components having mass numbers 28 and 44 raises at higher temperatures that can be considered as a consequence of high temperature reactions between oxygen and carbon containing phases in synthesized powders

  18. Microwave hybrid synthesis of silicon carbide nanopowders

    International Nuclear Information System (INIS)

    Nanosized silicon carbide powders were synthesised from a mixture of silica gel and carbon through both the conventional and microwave heating methods. Reaction kinetics of SiC formation were found to exhibit notable differences for the samples heated in microwave field and furnace. In the conventional method SiC nanopowders can be synthesised after 105 min heating at 1500 deg. C in a coke-bed using an electrical tube furnace. Electron microscopy studies of these powders showed the existence of equiaxed SiC nanopowders with an average particle size of 8.2 nm. In the microwave heating process, SiC powders formed after 60 min; the powder consisted of a mixture of SiC nanopowders (with two average particle sizes of 13.6 and 58.2 nm) and particles in the shape of long strands (with an average diameter of 330 nm)

  19. Mechanic-chemistry of tungsten carbide

    International Nuclear Information System (INIS)

    In the current work results on tungsten carbide nanocrystalline structure generation study under high-energy deformation and W-C with Ni mechanical alloying are presented. Mechanical alloying of W and C was worked out in planetary ball mill with water cooling in argon environment. X-ray diffraction examination of these samples were carried out in diffractometer DRON-3.0 with application of CoKα- and CuKα- radiations. With help of X-ray phase analysis in the examined time range of mechanical activation (1-10 min) of powder mixtures with content (W-C)-70 mass. % Ni the WC phase does not found. The observed broadening of W reflexes on diffract-grams in the course of activation time is explaining by reagents' grain size decrease, micro-tensions accumulation under deformations, concentration heterogeneousness generation

  20. Preparation of Silicon Carbide with High Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to prepare silicon carbide with high properties, three kinds of SiC powders A, B, and C with different composition and two kinds of additives, which were Y2O3-Al2O3 system and Y2O3-La2O3 system, were used in this experiment. The properties of hot-pressed SiC ceramics were measured. With the same additives, different SiC powder resulted in different properties. On the other hand, with the same SiC powder, increasing the amount of the additive Y2O3-Al2O3 improved properties of SiC ceramics at room temperature, and increasing the amount of the additive Y2O3-La2O3 improved property SiC ceramics at elevated temperature. In addition, the microstructure of SiC ceramics was studied by scanning electron microscopy.

  1. Chemical Mechanical Polishing of Silicon Carbide

    Science.gov (United States)

    Powell, J. Anthony; Pirouz

    1999-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) as an enabling electronic technology for many aerospace applications. The Lewis team is focusing on the chemical vapor deposition of the thin, single-crystal SiC films from which devices are fabricated. These films, which are deposited (i.e., epitaxially "grown") on commercial wafers, must consist of a single crystal with very few structural defects so that the derived devices perform satisfactorily and reliably. Working in collaboration (NASA grant) with Professor Pirouz of Case Western Reserve University, we developed a chemical-mechanical polishing (CMP) technique for removing the subsurface polishing damage prior to epitaxial growth of the single-crystal SiC films.

  2. Production of titanium carbide from ilmenite

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2008-03-01

    Full Text Available The production of titanium carbide (TiC powders from ilmenite ore (FeTiO3 powder by means of carbothermal reduction synthesis coupled with hydrochloric acid (HCl leaching process was investigated. A mixture of FeTiO3 and carbon powders was reacted at 1500oC for 1 hr under flowing argon gas. Subsequently, synthesized product of Fe-TiC powders were leached by 10% HCl solutions for 24 hrs to get final product of TiC powders. The powders were characterized using X-ray diffraction, scanning electron and transmission electron microscopy. The product particles were agglomerated in the stage after the leaching process, and the size of this agglomerate was 12.8 μm with a crystallite size of 28.8 nm..

  3. Carboloy grade 370 (sintered cemented carbide)

    International Nuclear Information System (INIS)

    Carboloy Grade 370 containing 72.0 WC, 8.0 TiC, 11.5 TaC, 8.5 Co is a tough, wear-resistant grade of cemented carbide for heavy duty roughing cuts of steels, ferrous castings, stainless steels, and some high-temperature alloys. It successfully withstands those high temperatures encountered in heavy duty machining. It is used as the as-sintered condition, without further heat treatment. It cannot be machined, but can be ground to final size by use of SiC and diamonds as abrasives. Carbology 370 is rarely applied where corrosive environments exist. Safety note is given to ensure protection for personnel and equipment from flying fragments and sharp edges when working with these materials, and an adequate ventilation in grinding operation to avoid pulmonary problems. Microstructure and hardness vs. temperature curves for Carboloy 370 are presented and its physical and mechanical properties are tabulated

  4. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold. PMID:23876200

  5. Thermal Conductivity of Uranium Nitride and Carbide

    Directory of Open Access Journals (Sweden)

    B. Szpunar

    2014-01-01

    Full Text Available We investigate the electronic thermal conductivity of alternative fuels like uranium nitride and uranium carbide. We evaluate the electronic contribution to the thermal conductivity, by combining first-principles quantum-mechanical calculations with semiclassical correlations. The electronic structure of UN and UC was calculated using Quantum Espresso code. The spin polarized calculations were performed for a ferromagnetic and antiferromagnetic ordering of magnetic moments on uranium lattice and magnetic moment in UC was lower than in UN due to stronger hybridization between 2p electrons of carbon and 5f electrons of uranium. The nonmagnetic electronic structure calculations were used as an input to BolzTrap code that was used to evaluate the electronic thermal conductivity. It is predicted that the thermal conductivity should increase with the temperature increase, but to get a quantitative agreement with the experiment at higher temperatures the interaction of electrons with phonons (and electron-electron scattering needs to be included.

  6. Thermal Oxidation of Silicon Carbide Substrates

    Institute of Scientific and Technical Information of China (English)

    Xiufang Chen; Li'na Ning; Yingmin Wang; Juan Li; Xiangang Xu; Xiaobo Hu; Minhua Jiang

    2009-01-01

    Thermal oxidation was used to remove the subsurface damage of silicon carbide (SiC) surfaces. The anisotrow of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observed on the surface after the removal of the oxide layers, which were detrimental to the growth of high quality epitaxial layers. The thickness and composition of the oxide layers were characterized by Rutherford backscat-tering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), respectively. Epitaxial growth was performed in a metal organic chemical vapor deposition (MOCVD) system. The substrate surface morphol-ogy after removing the oxide layer and gallium nitride (GaN) epilayer surface were observed by atomic force microscopy (AFM). The results showed that the GaN epilayer grown on the oxidized substrates was superior to that on the unoxidized substrates.

  7. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  8. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  9. On the singularity of high temperature carbidization of niobium

    International Nuclear Information System (INIS)

    The results of specific behavior of niobium carbidization process at high temperature non-isothermal conditions depending of heating rates of samples are presented. Experiments were carried out by High Speed Scanning Electrothermography method in a wide temperature range (1000-2300 oC) using gaseous methane as a source of carbon. It was established that at heating rates of samples more than 10,000 oC/s and T ≥ 2200 oC sharp increase of carbidization rate occurs which were registered by three independent methods: by weight gain, carbide layers growth and heat release rate. Based on SEM examinations of reacted samples the abnormal dependence of carbidization rate vs. heating rate was caused by the formation of non-equilibrium liquid phase at temperatures noticeably lower than the melting point of the lowest eutectic in Nb-C system.

  10. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  11. Microwave synthesis of phase-pure, fine silicon carbide powder

    International Nuclear Information System (INIS)

    Fine, monophasic silicon carbide powder has been synthesized by direct solid-state reaction of its constituents namely silicon and carbon in a 2.45 GHz microwave field. Optimum parameters for the silicon carbide phase formation have been determined by varying reaction time and reaction temperature. The powders have been characterized for their particle size, surface area, phase composition (X-ray diffraction) and morphology (scanning electron microscope). Formation of phase-pure silicon carbide can be achieved at 1300 deg. C in less than 5 min of microwave exposure, resulting in sub-micron-sized particles. The free energy values for Si + C → SiC reaction were calculated for different temperatures and by comparing them with the experimental results, it was determined that phase-pure silicon carbide can be achieved at around 1135 deg. C

  12. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-01

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications. PMID:21386312

  13. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  14. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  15. Chemical vapour deposition: Transition metal carbides go 2D

    Science.gov (United States)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  16. Fruit Calcium: Transport and Physiology

    Science.gov (United States)

    Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  17. Fruit Calcium: Transport and Physiology.

    Science.gov (United States)

    Hocking, Bradleigh; Tyerman, Stephen D; Burton, Rachel A; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  18. Synthesis of high quality superfine structural powders of silicium carbide

    International Nuclear Information System (INIS)

    We have synthesized and studied the experimental samples of silicium carbide, which were produced of mechanically activized elemental fine-disperse silicium and pyrolitical soot according to the technology developed by the authors. We have shown that, as a result of synthesis, it is possible to produce the powder of silicium carbide (α- and β-phases) with high purity, nanodimensional fractional composition, and silicium dioxide content not more then 1- 2 mass %

  19. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  20. Impact of pressure on Sintering of Cemented Carbides

    OpenAIRE

    Owais, Tariq Muhammad

    2013-01-01

    In this Master Thesis work, the effect of pressure on sintering of cemented carbides is investigated. Special focus hasbeen given to the residual porosity after sintering. It is well known that sintering shrinkage depends on binder phasecontent, grain size, temperature and pressure. Thus 4 different cemented carbides grades were selected. The gradeswere pressed into standard products and TRS (Tensile Rupture Strength) rods with two different shrinkage factors.These were then sintered at diffe...

  1. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  2. ADHERENCE AND PROPERTIES OF SILICON CARBIDE BASED FILMS ON STEEL

    OpenAIRE

    Lelogeais, M.; Ducarroir, M.; Berjoan, R.

    1991-01-01

    Coatings of silicon carbide with various compositions have been obtained in a r.f plasma assisted process using tetramethylsilane and argon as input gases. Some properties against mechanical applications of such deposits on steel have been investigated. Residual stresses and hardness are reported and discussed in relation with plasma parameters and deposit composition. By scratch testing, it was shown that the silicon carbide films on steel denote a good adherence when compared with previous ...

  3. Synthesis of carbides of metals by electrodischarge method

    OpenAIRE

    Tsolin, Pavlo L.; Terekhov, Anatolii Yu.; Kuskova, Nataliia I.

    2014-01-01

    Initiation by electric discharge of plasma-chemical reaction which is accompanied by the erosion of electrodes material and by synthesis corresponding carbides is discussed. The object of the research is to establish possibility of synthesis of metal carbides during electrodischarge treatment of hydrocarbon liquid. Electrical discharge in the liquid hydrocarbons is studied experimentally using various materials of electrodes (titanium, aluminum, copper, niobium) as a method of synthesis of me...

  4. Structure and single-phase regime of boron carbides

    Science.gov (United States)

    Emin, David

    1988-09-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B4C (the boron carbide with nominally 20% carbon) has B11C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B4C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C-->C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B13C2, subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B11C-->B12. Maxima of the free energy occur at the most ordered compositions: B4C,B13C2,B14C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides. The significant entropies associated with compositional disorder within the boron carbides, the high temperatures at which boron carbides are formed (>2000 K), and the relatively modest energies associated with replacing carbon atoms with boron atoms enable the material's entropy to be usually important in determining its composition. As a result, boron carbides are able to exist in a wide range of compositions.

  5. Rapid Wolff–Kishner reductions in a silicon carbide microreactor

    OpenAIRE

    Newman, Stephen G.; Gu, Lei; Lesniak, Christoph; Victor, Georg; Meschke, Frank; Abahmane, Lahbib; Jensen, Klavs F.

    2013-01-01

    Wolff–Kishner reductions are performed in a novel silicon carbide microreactor. Greatly reduced reaction times and safer operation are achieved, giving high yields without requiring a large excess of hydrazine. The corrosion resistance of silicon carbide avoids the problematic reactor compatibility issues that arise when Wolff–Kishner reductions are done in glass or stainless steel reactors. With only nitrogen gas and water as by-products, this opens the possibility of performing selective, l...

  6. High-Q silicon carbide photonic-crystal cavities

    Science.gov (United States)

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-01

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 104 with mode volume ˜ 0.60 ( λ / n ) 3 at wavelength 1.5 μm. A corresponding Purcell factor value of ˜104 is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  7. Synthesis and Characterization of Amorphous Carbide-based Thin Films

    OpenAIRE

    Folkenant, Matilda

    2015-01-01

    In this thesis, research on synthesis, structure and characterization of amorphous carbide-based thin films is presented. Crystalline and nanocomposite carbide films can exhibit properties such as high electrical conductivity, high hardness and low friction and wear. These properties are in many cases structure-related, and thus, within this thesis a special focus is put on how the amorphous structure influences the material properties. Thin films within the Zr-Si-C and Cr-C-based systems hav...

  8. Calcium and calcitonin responses to calcium infusion in type I diabetes mellitus.

    OpenAIRE

    Amado, J. A.; C. Gomez; Obaya, S.; Otero, M; Gonzalez-Macias, J

    1987-01-01

    We studied calcium and calcium and calcitonin responses to intravenous calcium infusion (3 mg of elemental calcium/kg of body weight in 10 minutes) in 21 type I diabetic males and 17 age-matched normal males. Baseline total calcium, parathyroid hormone and calcitonin levels were normal in the diabetic group, but ionized calcium was lowered. Cortical bone status and osteocalcin levels were normal, suggesting a normal osteoblastic function. Total calcium and ionized calcium responses to calcium...

  9. DISTILLATION OF CALCIUM

    Science.gov (United States)

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  10. Silicon nano-carbide in strengthening and ceramic technologies

    Science.gov (United States)

    Rudneva, V. V.; Galevsky, G. V.; Kozyrev, N. A.

    2015-09-01

    Technological advantages and conditions of new quality assurance of coatings and products, provided by silicon nano-carbide, have been ascertained in the course of composite electrodeposition of coatings, structural ceramics patterning, and surface hardening of steels via electro-explosive alloying. Silicon nano-carbide has been recommended to be used as a component of wear and corrosion resistant chromium carbide electrodeposited coatings, which can be operated at high temperatures and used for strengthening tools and equipment including those with a complex microrelief of functional surfaces. Silicon nano-carbide as a component of composite “silicon carbide - boron - carbon” can be applied to produce ceramic half products via solid phase sintering in argon under pressure of 0.1 MPa and temperature 2273 K. Application of silicon nano-carbide in technology of tool steel surface hardening via electroexplosive alloying ensures obtaining of a high micro-hard, wear and heat resistant shielding layer which is about 20 μm deep.

  11. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    A control blade design, incorporating boron-carbide (B4C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author)

  12. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  13. Conductivities and Seebeck coefficients of boron carbides: Softening bipolaron hopping

    Science.gov (United States)

    Aselage, T. L.; Emin, D.; McCready, S. S.

    2001-08-01

    The electrical conductivities and Seebeck coefficients of boron carbides B12+xC3-x with 0.06function of the composition x. This strong sensitivity to composition indicates that percolation effects, arising from boron carbides having carbon atoms in inequivalent locations, influence the conductivity at low temperature. With x holes per unit cell, boron carbides have very large Seebeck coefficients that depend only weakly on x. The magnitudes and temperature dependences of the Seebeck coefficients are consistent with large contributions from carrier-induced softening of local vibrations. Softening effects can be exceptionally large when singlet bipolarons are stabilized among degenerate electronic energy levels by their softening of symmetry-breaking vibrations: ``softening bipolarons.'' The boron carbide transport properties are generally consistent with those expected of softening bipolarons. Finally, two high-temperature effects are observed in the boron carbide conductivities. The conductivities of samples having high carrier densities, x~1, are suppressed above 700 K. This suppression can arise when the rapid hopping of nearby carriers disrupts the energy coincidence required for a carrier's hop. At even higher temperatures, a sharp increase in the boron carbide conductivities (σ~T4) suggests a radiation-induced excitation of mobile charge carriers.

  14. Superplastic behavior and cavitation for WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, H.; Shimojima, K. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology (AIST) (Japan); Kawakami, M.; Terada, O. [Fuji Die Co. Ltd., Hadano, Kanagawa (Japan); Sano, S. [Fuji Die Co. Ltd., Tokyo (Japan); Mabuchi, M. [Dept. of Energy Science and Technology, Kyoto Univ. (Japan)

    2005-07-01

    Superplastic behavior and cavitation were investigated for WC-15 mass% Co cemented carbides with the WC grain sizes of 0.7 {mu}m (A) and 5.2 {mu}m (B), WC-10 mass% Co cemented carbide with the WC grain size of 1.5 {mu}m (C) and WC-5 mass% Co cemented carbides with the WC grain sizes of 0.5 {mu}m (D) and 2.5 {mu}m (E) by tensile tests at 1473 K. WC contiguity were 0.51, 0.31, 0.27, 0.56 and 0.49, respectively. The large elongations about 200% were obtained for the B and the C having smaller values of WC contiguity compared to the other cemented carbides. The values of cavity volume fraction for them were less for the other cemented carbides, furthermore, cavities formed at WC/WC interfaces. Therefore, it is noted that the distribution of the Co phase is important for superplasticity of the cemented carbides. (orig.)

  15. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  16. Development and Evaluation of Mixed Uranium-Refractory Carbide/Refractory Carbide Cer-Cer Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal a new carbide-based fuel is introduced with outstanding potential to eliminate the loss of uranium, minimizes the loss of uranium, and retains...

  17. Understanding the Irradiation Behavior of Zirconium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  18. Understanding the Irradiation Behavior of Zirconium Carbide

    International Nuclear Information System (INIS)

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450ee)C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800ee)C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  19. Reverse calcium affinity purification of Fab with calcium derivatized hydroxyapatite

    OpenAIRE

    Gagnon, Pete; Cheung, Chia-wei; Yazaki, Paul J.

    2009-01-01

    This study introduces the application of calcium-derivatized hydroxyapatite for purification of Fab. Fab binds to native hydroxyapatite but fails to bind to the calcium derivatized form. IgG, Fc, and most other protein contaminants bind to the calcium form. This supports Fab purification by a simple flow-through method that achieves greater than 95% purity from papain digests and mammalian cell culture supernatants. Alternatively, Fab can be concentrated on native hydroxyapatite then eluted s...

  20. Production and characterization of nanostructured silicon carbide

    Science.gov (United States)

    Wallis, Kendra Lee

    Nanostructured materials continue to attract attention because of their new and interesting properties, which are very different from their macrostructured equivalents. Since the size of grain and surface differs, a better understanding of the microstructure, the mechanism of formation, and methods of controlling surface properties is necessary. In this study, nanostructured silicon carbide has been produced from the solid-solid reaction of a mixture of silicon nanopowder and carbon multiwalled nanotubes (MWNT) sintered by induction. A study of the reaction rate at different temperatures has yielded a value for the activation energy of 254 +/- 36 kJ/mol, and has led to the conclusion that the reaction is diffusion-controlled. A second method produced pure silicon carbide nanowires using a procedure which kept the solid reactants, silicon powder and MWNT, separated while sintering at a constant temperature of 1200°C. Silicon in the vapor-phase reacted at the surface of the MWNTs followed by diffusion of both precursors through the product phase boundary. The reaction time was varied, and a morphological study has been done describing changes in shape and size as a function of time. The initial reaction produced a layer of SiC providing the outer shell of coaxial structures with carbon nanotubes inside. As Si and C diffused through the product phase to react at the interface, the tube became filled with SiC to form solid SiC nanowires, and the outer diameter of the nanowires grew continuously as reaction time increased. After long sintering times, growth continued in two dimensions, fusing nanowires together into planar structures. In addition, the precursor form of carbon was varied, and nanowires produced by two different types of nanotubes have been studied. The produced SiC nanowires show cubic crystal structure. After a few hours of sintering, stacking faults began to occur inside the wires, and the frequency of occurrence of the stacking faults increased as

  1. The growth of cubic silicon carbide on a compliant substrate

    Science.gov (United States)

    Mitchell, Sharanda; Soward, Ida

    1995-01-01

    Research has shown that silicon carbide grown on silicon and 6H silicon carbide has problems associated with these substrates. This is because silicon and silicon carbide has a 20% lattice mismatch and cubic silicon carbide has not been successfully achieved on 6H silicon carbide. We are investigating the growth of silicon carbide on a compliant substrate in order to grow defect free silicon carbide. This compliant substrate consists of silicon/silicon dioxide with 1200 A of single crystal silicon on the top layer. We are using this compliant substrate because there is a possibility that the silicon dioxide layer and the carbonized layer will allow the silicon lattice to shrink or expand to match the lattice of the silicon carbide. This would improve the electrical properties of the film for the use of device fabrication. When trying to grow silicon carbide, we observed amorphous film. To investigate, we examined the process step by step using RHEED. RHEED data showed that each step was amorphous. We found that just by heating the substrate in the presence of hydrogen it changed the crystal structure. When heated to 1000 C for 2 minutes, RHEED showed that there was an amorphous layer on the surface. We also heated the substrate to 900 C for 2 minutes and RHEED data showed that there was a deterioration of the single crystalline structure. We assumed that the presence of oxygen was coming from the sides of the silicon dioxide layer. Therefore, we evaporated 2500 A of silicon to all four edges of the wafer to try to enclose the oxygen. When heating the evaporated wafer to 900 C the RHEED data showed single crystalline structure however at 1000 C the RHEED data showed deterioration of the single crystalline structure. We conclude that the substrate itself is temperature dependent and that the oxygen was coming from the sides of the silicon dioxide layer. We propose to evaporate more silicon on the edges of the wafer to eliminate the escape of oxygen. this will allow

  2. Silicon Carbide Technology for Grid Integrated Photovoltaic Applications: Dynamic Characterization of Silicon Carbide Transistors.

    OpenAIRE

    Tiwari, Subhadra

    2011-01-01

    For the endorsement of the study of potential utilization of the emerging silicon carbide (SiC) devices, three SiC active switches, namely SJEP120R063 (1200V, 63 mohm) SiC JFET manufactured by Semisouth, BT1206AC-P1 (1200V, 125 mohm) SiC BJT by TranSiC and CMF20120 (1200V, 80 mohm, 33A) SiC MOSFET by Cree have been investigated systematically in this thesis work.The four layer PCB board with the smart layouts like the drain and gate traces are either perpendicular to each other or run into di...

  3. Glycochenodeoxycholic acid inhibits calcium phosphate precipitation in vitro by preventing the transformation of amorphous calcium phosphate to calcium hydroxyapatite.

    OpenAIRE

    Qiu, S M; Wen, G.; Hirakawa, N; Soloway, R D; Hong, N K; Crowther, R S

    1991-01-01

    Calcium hydroxyapatite can be a significant component of black pigment gallstones. Diverse molecules that bind calcium phosphate inhibit hydroxyapatite precipitation. Because glycine-conjugated bile acids, but not their taurine counterparts, bind calcium phosphate, we studied whether glycochenodeoxycholic acid inhibits calcium hydroxyapatite formation. Glycochenodeoxycholic acid (2 mM) totally inhibited transformation of amorphous calcium phosphate microprecipitates to macroscopic crystalline...

  4. Performance of FBTR mixed carbide fuel

    International Nuclear Information System (INIS)

    Mixed carbide fuel of 70% PuC content is being used as driver fuel in the Fast Breeder Test Reactor (FBTR) for the first time in the world. When it was first proposed for FBTR small core, its performance potential had to be assessed based upon extrapolated data. High Pu content of the fuel reduces the thermal conductivity and melting point. Also, small diameter of FBTR fuel results in high heat flux at fuel-clad gap. A conservative initial estimate limited the linear power to 250 W/cm and the burnup to 25,000 MWd/t. Subsequently, detailed analyses were performed with the use of measured as well as data from literature. Based on this, the linear power has been upgraded to 320 W/cm. Also analyses indicate that the fuel is capable of sustaining a peak burnup of 50,000 MWd/t. Recently, the central fuel subassembly was unloaded for post irradiation examination (PIE) after the initial target burnup of 25,000 MWd/t. Preliminary results from PIE indicate that the analysis is well supported by the results. (author)

  5. Bright Single Photon Emitter in Silicon Carbide

    Science.gov (United States)

    Lienhard, Benjamin; Schroeder, Tim; Mouradian, Sara; Dolde, Florian; Trong Tran, Toan; Aharonovich, Igor; Englund, Dirk

    Efficient, on-demand, and robust single photon emitters are of central importance to many areas of quantum information processing. Over the past 10 years, color centers in solids have emerged as excellent single photon emitters. Color centers in diamond are among the most intensively studied single photon emitters, but recently silicon carbide (SiC) has also been demonstrated to be an excellent host material. In contrast to diamond, SiC is a technologically important material that is widely used in optoelectronics, high power electronics, and microelectromechanical systems. It is commercially available in sizes up to 6 inches and processes for device engineering are well developed. We report on a visible-spectrum single photon emitter in 4H-SiC. The emitter is photostable at both room and low temperatures, and it enables 2 million photons/second from unpatterned bulk SiC. We observe two classes of orthogonally polarized emitters, each of which has parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line with linewidth < 0.1 nm that accounts for more than 30% of the total photoluminescence spectrum. To our knowledge, this SiC color emitter is the brightest stable room-temperature single photon emitter ever observed.

  6. Hafnium carbide nanocrystal chains for field emitters

    International Nuclear Information System (INIS)

    A hafnium carbide (HfC) nanostructure, i.e., HfC nanocrystal chain, was synthesized by a chemical vapor deposition (CVD) method. X-ray diffractometer, field-emission scanning electron microscope, transmission electron microscope, and energy-dispersive X-ray spectrometer were employed to characterize the product. The synthesized one-dimensional (1D) nanostructures with many faceted octahedral nanocrystals possess diameters of tens of nanometers to 500 nm and lengths of a few microns. The chain-like structures possess a single crystalline structure and preferential growth direction along the [1 0 0] crystal orientation. The growth of the chains occurred through the vapor–liquid–solid process along with a negative-feedback mechanism. The field emission (FE) properties of the HfC nanocrystal chains as the cold cathode emitters were examined. The HfC nanocrystal chains display good FE properties with a low turn-on field of about 3.9 V μm−1 and a high field enhancement factor of 2157, implying potential applications in vacuum microelectronics.

  7. Oxidation of vanadium carbide in air

    International Nuclear Information System (INIS)

    It was studied the samples oxidation of vanadium carbide (V8C7), synterized and in powder, in order to know the temperature influence and the aggregation state in the kinetics and the oxidation products. The assays were realized in static air, at temperature between 600 y 750 Centigrade, between 6 and 24 hours periods. The gaseous products were analyzed through gas chromatography while the condensates ones were analyzed through optical microscopy and scanning electron microscopy, X-ray diffraction and chemical analysis by X-ray fluorescence analysis. It was found that in the V8C7 oxidation occurs two basic processes: the gaseous oxides production which results of the carbon oxidation, fundamentally CO2, and the vanadium condensate oxides production, fundamentally V2O5. In the synterized samples assayed under 650 Centigrade, the kinetics is lineal with loss of mass, suggesting a control by the formation of gaseous products in the sample surface, while in the synterized samples assayed over 650 Centigrade, it occurs a neat gain of mass, which is attributed to vanadium pentoxide fusion. These processes produce stratified layers of V2O5 although at higher temperatures also it was detected V2O4. The superficial area effect is revealed in what the powder samples always experiment a mass neat increase in all essay temperatures, being the condensate oxidation products, fundamentally V2O5 and V6O13. (Author)

  8. Thermal equation of state of silicon carbide

    Science.gov (United States)

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; Collins, Sean Andrew; Zhang, Jianzhong; Wang, Liping; Zhao, Yusheng

    2016-02-01

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure-volume-temperature data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as the ambient bulk modulus KTo = 237(2) GPa, temperature derivative of the bulk modulus at a constant pressure (∂K/∂T)P = -0.037(4) GPa K-1, volumetric thermal expansivity α(0, T) = a + bT with a = 5.77(1) × 10-6 K-1 and b = 1.36(2) × 10-8 K-2, and pressure derivative of the thermal expansion at a constant temperature (∂α/∂P)T = 6.53 ± 0.64 × 10-7 K-1 GPa-1. Furthermore, we found the temperature derivative of the bulk modulus at a constant volume, (∂KT/∂T)V, equal to -0.028(4) GPa K-1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. The computed results generally agree well with the experimentally determined values.

  9. Improved silicon carbide for advanced heat engines

    Science.gov (United States)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  10. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  11. Casimir forces from conductive silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  12. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  13. Palladium Implanted Silicon Carbide for Hydrogen Sensing

    Science.gov (United States)

    Muntele, C. I.; Ila, D.; Zimmerman, R. L.; Muntele, L.; Poker, D. B.; Hensley, D. K.; Larkin, David (Technical Monitor)

    2001-01-01

    Silicon carbide is intended for use in fabrication of high-temperature, efficient hydrogen sensors. Traditionally, when a palladium coating is applied on the exposed surface of SiC, the chemical reaction between palladium and hydrogen produces a detectable change in the surface chemical potential. We have produced both a palladium coated SiC as well as a palladium, ion implanted SiC sensor. The palladium implantation was done at 500 C into the Si face of 6H, N-type SiC at various energies, and at various fluences. Then, we measured the hydrogen sensitivity response of each fabricated sensor by exposing them to hydrogen while monitoring the current flow across the p-n junction(s), with respect to time. The sensitivity of each sensor was measured at temperatures between 27 and 300 C. The response of the SiC sensors produced by Pd implantation has revealed a completely different behaviour than the SiC sensors produced by Pd deposition. In the Pd-deposited SiC sensors as well as in the ones reported in the literature, the current rises in the presence of hydrogen at room temperature as well as at elevated temperatures. In the case of Pd-implanted SiC sensors, the current decreases in the presence of hydrogen whenever the temperature is raised above 100 C. We will present the details and conclusions from the results obtained during this meeting.

  14. Polymeric synthesis of silicon carbide with microwaves.

    Science.gov (United States)

    Aguilar, Juan; Urueta, Luis; Valdez, Zarel

    2007-01-01

    The aim of this work is conducting polymeric synthesis with microwaves for producing beta-SiC. A polymeric precursor was prepared by means of hydrolysis and condensation reactions from pheniltrimethoxysilane, water, methanol, ammonium hydroxide and chloride acid. The precursor was placed into a quartz tube in vacuum; pyrolysis was carried out conventionally in a tube furnace, and by microwaves at 2.45 GHz in a multimode cavity. Conventional tests took place in a scheme where temperature was up to 1500 degrees C for 120 minutes. Microwave heating rate was not controlled and tests lasted 60 and 90 minutes, temperature was around 900 degrees C. Products of the pyrolysis were analyzed by means of x-ray diffraction; in the microwave case the diffraction patterns showed a strong background of either very fine particles or amorphous material, then infrared spectroscopy was also employed for confirming carbon bonds. In both processes beta-SiC was found as the only produced carbide. PMID:17645205

  15. Structural relaxation in amorphous silicon carbide

    International Nuclear Information System (INIS)

    High purity single crystal and chemically vapor deposited (CVD) silicon carbide have been amorphized under fast neutron irradiation. The gradual transition in physical properties from the as-amorphized state to a more relaxed amorphous state prior to crystallization is studied. For the three bulk properties studied: density, electrical resistivity, and thermal conductivity, large property changes occur upon annealing between the amorphization temperature and the point of crystallization. These physical property changes occur in the absence of crystallization and are attributed to short and perhaps medium range ordering during annealing. It is demonstrated that the physical properties of amorphous SiC (a-SiC) can vary greatly and are likely a function of the irradiation state producing the amorphization. The initiation of crystallization as measured using bulk density and in situ TEM is found to be ∼875 deg. C, though the kinetics of crystallization above this point are seen to depend on the technique used. It is speculated that in situ TEM and other thin-film approaches to study crystallization of amorphous SiC are flawed due to thin-film effects

  16. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics. PMID:26394207

  17. Structural Evolution of Molybdenum Carbides in Hot Aqueous Environments and Impact on Low-Temperature Hydroprocessing of Acetic Acid

    OpenAIRE

    Jae-Soon Choi; Viviane Schwartz; Eduardo Santillan-Jimenez; Mark Crocker; Samuel A. Lewis; Michael J. Lance; Meyer, Harry M.; More, Karren L.

    2015-01-01

    We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore...

  18. Calcium – how and why?

    Indian Academy of Sciences (India)

    J K Jaiswal

    2001-09-01

    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears that during the origin and early evolution of life the Ca2+ ion was given a unique opportunity to be used in several biological processes because of its unusual physical and chemical properties.

  19. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Moilanen, A.; Norby, P.; Papadakis, K.; Posselt, D.; Sørensen, L. H.

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...

  20. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  1. 21 CFR 573.240 - Calcium periodate.

    Science.gov (United States)

    2010-04-01

    ... with calcium hydroxide or calcium oxide to form a substance consisting of not less than 60 percent by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food... Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used...

  2. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  3. Calcium measurement methods

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-09-01

    Full Text Available Rightly stressed by prof. Wolfgang Walz in the Preface to the series Neuromethods series, the “careful application of methods is probably the most important step in the process of scientific inquiry”. Thus, I strongly suggest to all those interested in calcium signaling and especially to the new-comers in the hot topic of neuroscience (which has so much space even in science-society debate for its implications in legal issues and in the judge-decision process to take profit from this so well edited book. I am saying this since prof. Verkhratsky and prof. Petersen......

  4. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  5. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release.

    OpenAIRE

    Simon, S M; Llinás, R R

    1985-01-01

    Quantitative modeling indicates that, in presynaptic terminals, the intracellular calcium concentration profile during inward calcium current is characterized by discrete peaks of calcium immediately adjacent to the calcium channels. This restriction of intracellular calcium concentration suggests a remarkably well specified intracellular architecture such that calcium, as a second messenger, may regulate particular intracellular domains with a great degree of specificity.

  6. Effect of carbide on hydrogen environment embrittlement of Inconel 718

    International Nuclear Information System (INIS)

    Tensile properties of Inconel 718 Ni-base superalloy were investigated in high-pressure hydrogen and in argon at room temperature. The effect of Nb-Ti carbide on hydrogen environment embrittlement (HEE) of the superalloy was also examined. The results obtained are as follows: (1) Hydrogen decreased elongation, reduction of area and ultimate tensile strength of the superalloy. HEE increased with decreasing the strain rate. Dimple rupture was mainly observed in argon, but brittle transgranular and intergranular fracture were observed in hydrogen. The crack initiation occurred at carbides both in argon and in hydrogen. Then the crack propagated in the matrix with ductile fracture in argon and with brittle fracture in hydrogen, respectively. (2) The finite element analysis (FEA) was applied to the crack initiation of the superalloy during the monotonic tensile process with the FEA model, which contained one particle at the center surrounded by the matrix. The effect of the shape of the particle on the maximum effective stress in the particle was simulated. The maximum effective stress in the particle increased markedly with increasing the average stress above the proof stress. The increasing order of the maximum effective stress depended on the shape of the particle. It was reasonable that the maximum effective stress in the carbide is high enough to break the carbide itself. It was also expected that the control of the shape of the carbide could improve HEE of the superalloy. (author)

  7. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download PDFs ... helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin D ...

  8. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000490.htm Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D Do I Need? Amounts of calcium are ...

  9. Optical characterisation of cubic silicon carbide

    International Nuclear Information System (INIS)

    The varied properties of Silicon Carbide (SiC) are helping to launch the material into many new applications, particularly in the field of novel semiconductor devices. In this work, the cubic form of SiC is of interest as a basis for developing integrated optical components. Here, the formation of a suitable SiO2 buried cladding layer has been achieved by high dose oxygen ion implantation. This layer is necessary for the optical confinement of propagating light, and hence optical waveguide fabrication. Results have shown that optical propagation losses of the order of 20 dB/cm are obtainable. Much of this loss can be attributed to mode leakage and volume scattering. Mode leakage is a function of the effective oxide thickness, and volume scattering related to the surface layer damage. These parameters have been shown to be controllable and so suggests that further reduction in the waveguide loss is feasible. Analysis of the layer growth mechanism by RBS, XTEM and XPS proves that SiO2 is formed, and that the extent, of formation depends on implant dose and temperature. The excess carbon generated is believed to exit the oxide layer by a number of varying mechanisms. The result of this appears to be a number of stable Si-C-O intermediaries that, form regions to either depth extreme of the SiO2 layer. Early furnace tests suggest a need to anneal at, temperatures approaching the melting point of the silicon substrate, and that the quality of the virgin material is crucial in controlling the resulting oxide growth. (author)

  10. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  11. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Unidirectional 45Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (JnetCa) was secretory (serosa to mucosa). Ouabain reversed JnetCa to an absorptive flux. Amiloride reduced both fluxes such that JnetCa was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, JnetCa decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, JnetCa was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca2+-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na+-K+-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  12. An Improved Calcium Flame Test.

    Science.gov (United States)

    Pearson, Robert S.

    1985-01-01

    Indicates that the true red color of calcium can be obtained (using the procedure described by Sorm and Logowski) if the calcium ion solution is mixed with an equal volume of saturated ammonium bromide solution. Suggestions for flame tests of other elements are also noted. (JN)

  13. Investigation on the Effects of Titanium Diboride Particle Size on Radiation Shielding Properties of Titanium Diboride Reinforced Boron Carbide-Silicon Carbide Composites

    Directory of Open Access Journals (Sweden)

    A.O. Addemir

    2012-03-01

    Full Text Available Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion

  14. Reverse Flotation of Titanium Carbide from Garnet Mineral Using Cationic Surfactants

    OpenAIRE

    M.A. Abdel Khalek; B.K. Parekh

    2013-01-01

    For cutting garnet rocks Titanium carbide (TiC) blades are used, which produces a fine waste material, a mixture of garnet and a few percent of Titanium carbide. In the present study, a reverse flotation technique was developed to recover the valuable Titanium carbide as tailings from the waste mixture using cationic surfactants such as, DA-1618 (Diethyl Amine ether) or DDAB (Dioctyl Dimethyl Ammonium Bromide) and poly-propylenimine (PPI) as a depressant for Titanium carbide. The effect of co...

  15. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  16. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    OpenAIRE

    Choksi Krishna; Shenoy Ashoka M; A. R. Shabharaya; Lala Minaxi

    2011-01-01

    The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg) and calcium gluconate (5 mg/kg) were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg) to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate cou...

  17. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, K. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)], E-mail: codl@sci.muni.cz; Stankova, A. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Haekkaenen, H.; Korppi-Tommola, J. [Department of Chemistry, University of Jyvaeskylae, P.O. BOX 35, FIN-40014 (Finland); Otruba, V.; Kanicky, V. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2007-12-15

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r{sup 2} > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r{sup 2} = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  18. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic

  19. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  20. Fabrication of Tungsten Carbide Nanoparticles from Refluxing Derived Precursor

    Institute of Scientific and Technical Information of China (English)

    WEN Jiqiu; LI Yongdi; MENG Xiaopeng; YIN Guangfu; YAO Yadong

    2015-01-01

    Tungsten carbide (WC) nanoparticles were fabricated from a novel refluxing-derived precursor. The precursor was prepared by acid hydrolysis of Na2WO4 with concentrated HCl in water followed by refluxing with ethanol and n-Dedocane, respectively. Then it was heat-treated to 1 200℃for 2 h in vacuum to obtain WC nanoparticles. X-ray studies reveal the formation of hexagonal tungsten carbide and the grain size of 24.3 nm. SEM image shows WC nanoparticles with particle size of 20-60 nm. Long time refluxing results in alkane dehydrogenation and coke formation. The coke is the carbon source in the carbothermal reduction reaction. The novel route of two-stage refluxing is quite general and can be applied in the synthesis of similar carbides.

  1. Hydrogen adsorption on zirconium carbide and its alloys with rhenium

    International Nuclear Information System (INIS)

    Hydrogen adsorption on zirconium carbide and ZrC-Re84at%, ZrC-Re21.7at% alloys was studied by the themodesorption method. Hydrogen thermodesorption curves were taken after various exposures, at the temperature increase from 300 up to 1450 K, or up to 2500 K. Determined were the initial hydrogen adhesion coefficient of S0=0.03+-0.02, and desorption temperature of 750-1000 K. The initial hydrogen coefficient of adhesion to carbides is less than to metals of their composition. Thermoemission and adsorption properties of two-phase alloys are close to those for ZrC. The soluted hydrogen deposition proceeded in zirconium carbide at 750-1500 K slower than thermodesorption

  2. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  3. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross...... sections. The specimens were made of Böhler P/M steel grade 390s and 690s in both micro-clean and conventional grades. The results show that the content of non-metallic inclusions are higher in the conventionalgrades than in the microclean grades, but there were found to be no link between non......-metallic inclusions and the crack initiation. Surprisingly, no differences were found between the carbide size distributions of the micro-clean and conventional grades.Also, the distribution of the fractured carbides was found to be the same regardless of steel type, manufacturing method or location on the specimen....

  4. Implanted bottom gate for epitaxial graphene on silicon carbide

    International Nuclear Information System (INIS)

    We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic temperature operation. Depending on implantation dose and temperature we operate in two gating regimes. In the first, the gating mechanism is similar to a MOSFET, the second is based on a tuned space charge region of the silicon carbide semiconductor. We present a detailed model that describes the two gating regimes and the transition in between. (paper)

  5. Electrical properties of vanadium carbide in the homogeneity region

    Energy Technology Data Exchange (ETDEWEB)

    Savin, V.I.; Spivak, I.I.; Topil' skij, N.D.; Rystsov, V.N.

    1983-07-01

    The results of investigations into electric, thermoelectric and galvanomagnetic properties in the region of vanadium carbide homogeneity in the 300-1500 K range are presented. The character of conductivity in the region of vanadium carbide homogeneity is not shown to be uniform: samples of VCsub(0.88), VCsub(0.84), VCsub(0.75) have metallic type of conductivity, the VCsub(0.75) sample displays semiconductor properties. Extrema conditioned by the effect of V/sub 8/C/sub 7/, V/sub 6/C/sub 5/, V/sub 4/C/sub 3/ carbide phase ordering are observed on concentration dependences of electric resistance, thermo-e. m.f., Hall constant. Temperature of order-disorder transformation by temperature dependences of electric resistance and thermo-e.m.f. makes up 1370-1420 K.

  6. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses. PMID:24052052

  7. Optimum Design of Lightweight Silicon Carbide Mirror Assembly

    Institute of Scientific and Technical Information of China (English)

    HAN Yuanyuan; ZHANG Yumin; HAN Jiecai; ZHANG Jianhan; YAO Wang; ZHOU Yufeng

    2008-01-01

    According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.

  8. A study of silicon carbide synthesis from waste serpentine.

    Science.gov (United States)

    Cheng, T W; Hsu, C W

    2006-06-01

    There are 60000 tons of serpentine wastes produced in year 2004 in Taiwan. This is due to the well-developed joints in the serpentine ore body as well as the stringent requirements of the particle size and chemical composition of serpentine by iron making company. The waste also creates considerable environmental problems. The purpose of this study is reutilization of waste serpentine to produce a high value silica powder after acid leaching. These siliceous microstructure products obtained from serpentine would be responsible for high reactivity and characteristic molecular sieving effect. In this study, the amorphous silica powder was then synthesized to silicon carbide with the C/SiO(2) molar ratio of 3. The experiment results show that silicon carbide can be synthesized in 1550 degrees C. The formed silicon carbide was whisker beta type SiC which can be used as raw materials for industry. PMID:16405956

  9. APT analysis of WC-Co based cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Weidow, Jonathan, E-mail: jonathan.weidow@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Andren, Hans-Olof [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2011-05-15

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: {yields} We develop a method for producing specimens from WC-Co based cemented carbides. {yields} Measure segregated atoms to an interface between phases with different field evaporation field. {yields} The interface chemistry in cemented carbides. {yields} The transition metal solubility in WC.

  10. APT analysis of WC-Co based cemented carbides

    International Nuclear Information System (INIS)

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: → We develop a method for producing specimens from WC-Co based cemented carbides. → Measure segregated atoms to an interface between phases with different field evaporation field. → The interface chemistry in cemented carbides. → The transition metal solubility in WC.

  11. Evolution of carbides in cold-work tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hoyoung [Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Kang, Jun-Yun, E-mail: firice@kims.re.kr [Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Son, Dongmin [Seah Changwon Special Steel, 147 Jeokhyeon-ro, Seongsan-gu, Changwon, Gyeongnam 642-370 (Korea, Republic of); Lee, Tae-Ho [Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Cho, Kyung-Mox, E-mail: chokm@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2015-09-15

    This study aimed to present the complete history of carbide evolution in a cold-work tool steel along its full processing route for fabrication and application. A sequence of processes from cast to final hardening heat treatment was conducted on an 8% Cr-steel to reproduce a typical commercial processing route in a small scale. The carbides found at each process step were then identified by electron diffraction with energy dispersive spectroscopy in a scanning or transmission electron microscope. After solidification, MC, M{sub 7}C{sub 3} and M{sub 2}C carbides were identified and the last one dissolved during hot compression at 1180 °C. In a subsequent annealing at 870 °C followed by slow cooling, M{sub 6}C and M{sub 23}C{sub 6} were added, while they were dissolved in the following austenitization at 1030 °C. After the final tempering at 520 °C, fine M{sub 23}C{sub 6} precipitated again, thus the final microstructure was the tempered martensite with MC, M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbide. The transient M{sub 2}C and M{sub 6}C originated from the segregation of Mo and finally disappeared due to attenuated segregation and the consequent thermodynamic instability. - Highlights: • The full processing route of a cold-work tool steel was simulated in a small scale. • The carbides in the tool steel were identified by chemical–crystallographic analyses. • MC, M{sub 7}C{sub 3}, M{sub 2}C, M{sub 6}C and M{sub 23}C{sub 6} carbides were found during the processing of the steel. • M{sub 2}C and M{sub 6}C finally disappeared due to thermodynamic instability.

  12. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    International Nuclear Information System (INIS)

    Highlights: • The hydrogen evolution activity (HER) on five transition metal carbides was studied in concentrated phosphoric acid at different temperatures. • Carbides of Group 6 metals (Cr, Mo, W) showed significant HER activity; the Volmer-Heyrovsky mechanism was proposed for the HER reaction on these materials. • The electrochemical stability towards oxidation was studied in concentrated phosphoric acid, with Cr, Ta and W carbides showing passivating behavior, while Nb and Mo carbides showed corrosion. - Abstract: Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated phosphoric acid were investigated in a temperature range from 80 to 170 °C. A significant dependence of the activities on temperature was observed for all five carbide samples. Through the entire temperature range Group 6 metal carbides showed higher activity than that of the Group 5 metal carbides, attributable to the different electronic structures. Tungsten carbide among the studied electrode samples exhibited the highest HER activity. Upon anodic potential scans in the presence of oxygen, chromium, tantalum and tungsten carbides displayed passivation due to the formation of stable surface layers whereas niobium and molybdenum carbides seemed to undergo corrosion

  13. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.;

    2014-01-01

    phosphoric acid were investigated in a temperature range from 80 to 170°C. A significant dependence of the activities on temperature was observed for all five carbide samples. Through the entire temperature range Group 6 metal carbides showed higher activity than that of the Group 5 metal carbides...

  14. Formation of mesostructure in WC-Co cemented carbides: A review

    OpenAIRE

    Lisovsky A.F.

    2011-01-01

    The author considers potential lines in the formation of mesostructures in cemented carbides, analyzes the existing technologies of the formation thereof, describes physical and mechanical properties of cemented carbides with mesostructure and shows the efficiency of such cemented carbides in metal working and rock destruction tools.

  15. Formation of mesostructure in WC-Co cemented carbides: A review

    Directory of Open Access Journals (Sweden)

    Lisovsky A.F.

    2011-01-01

    Full Text Available The author considers potential lines in the formation of mesostructures in cemented carbides, analyzes the existing technologies of the formation thereof, describes physical and mechanical properties of cemented carbides with mesostructure and shows the efficiency of such cemented carbides in metal working and rock destruction tools.

  16. Surface reactions of tetraneopentyl zirconium on zirconium carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Parmeter, J.E. (Department 1126, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)); Smith, D.C.; Healy, M.D. (INC-1, MS-C346, Los Alamos National Laboratory, Los Alamos, New Mexico 87105 (United States))

    1994-07-01

    Interest has arisen recently in the use of metal alkyl compounds as precursors in the chemical vapor deposition of metal carbides. This paper presents results of a study of the surface chemistry of one such precursor, tetraneopentyl zirconium (ZrNp[sub 4]), on zirconium carbide thin films. Decomposition of the precursor leads to the desorption of both methane and a larger hydrocarbon species that is tentatively identified as neopentane. The desorption of large amounts of methane may help to explain the fact that ZrC films grown to date with this precursor are not stoichiometric but rather contain excess carbon.

  17. Process for forming silicon carbide films and microcomponents

    Science.gov (United States)

    Hamza, Alex V.; Balooch, Mehdi; Moalem, Mehran

    1999-01-01

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.

  18. Determination of soluble carbon in nuclear grade boron carbide

    International Nuclear Information System (INIS)

    The present work describes two different techniques (manometric and wet chemical) for the soluble carbon determination in nuclear grade boron carbide. The techniques are based on the reaction of the boron carbide with a sulfocromic mixture, generating CO2. The techniques differ on the mode they do the measurement of CO2 produced. By wet chemical technique the CO2 is absorved in a barium hydroxide solution and is determinated by titration. In the manometric technique the CO2 gas is measured using a McLeod gauge. The gas produced by the latter technique is analysed by mass spectrometry. The details of the analytical technique and the data obtained are discussed. (author)

  19. Determination of oxygen in mixed uranium-plutonium carbide fuels

    International Nuclear Information System (INIS)

    Determination of oxygen in mixed uranium-plutonium carbide fuels is made by inert gas fusion-coulometry. To minimize oxygen contamination during sample preparation, the sample is crushed, weighted and sealed air-tight in a platinum capsule in an argon gas atmosphere glove box. The true oxygen content is estimated by subtracting the oxygen contamination from the oxygen determined. Routine analysis of 32 samples of mixed uranium-plutonium carbides is performed with a coefficient of variation of 1.6%. (author)

  20. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 16000C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  1. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    International Nuclear Information System (INIS)

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 μm in length and 20-200 nm in diameter and 0.6-1.2 μm in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process

  2. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  3. High-Q silicon carbide photonic-crystal cavities

    International Nuclear Information System (INIS)

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 104 with mode volume ∼0.60(λ/n)3 at wavelength 1.5 μm. A corresponding Purcell factor value of ∼104 is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics

  4. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Abel, P.B.

    1987-08-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  5. Magnetron sputter deposition of boron and boron carbide

    International Nuclear Information System (INIS)

    The fabrication of X-ray optical coatings with greater reflectivity required the development of sputter deposition processes for boron and boron carbide. The use of high density boron and boron carbide (B4C) and a vacuum-brazed target design was required to achieve the required sputter process stability and resistance to the thermal stress created by high rate sputtering. Our results include a description of the target fabrication procedures and sputter process parameters necessary to fabricate B4C and boron modulated thin film structures. (orig.)

  6. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  7. Optical contrast in ion-implanted amorphous silicon carbide nanostructures

    International Nuclear Information System (INIS)

    Topographic and optical contrasts formed by Ga+ ion irradiation of thin films of amorphous silicon carbide have been investigated with scanning near-field optical microscopy. The influence of ion-irradiation dose has been studied in a pattern of sub-micrometre stripes. While the film thickness decreases monotonically with ion dose, the optical contrast rapidly increases to a maximum value and then decreases gradually. The results are discussed in terms of the competition between the effects of ion implantation and surface milling by the ion beam. The observed effects are important for uses of amorphous silicon carbide thin films as permanent archives in optical data storage applications

  8. High-Q silicon carbide photonic-crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonathan Y. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  9. Hot-press fabrication and joining of boron carbide

    International Nuclear Information System (INIS)

    A method has been developed for fabricating long, cylindrical rubber-mill rolls of boron carbide for use with abrasive materials. The technique consisted of initially hot pressing the boron carbide (to 90% of the theoretical density) to short, hollow cylinders having a length-to-diameter ratio of about one. This initial hot-press operation was followed by a second hot press to join or bond, and further densify, the short sections into a final compact having a length-to-diameter ratio of three. Flexural-strength data show that the integrity of the bond is comparable to that of the base material

  10. Carbothermic synthesis of carbides of uranium and plutonium

    International Nuclear Information System (INIS)

    Partial pressures of carbon monoxide, uranium and plutonium over different phase regions relevant to the carbothermic synthesis of carbides of uranium and plutonium are calculated using recent models and thermodynamic data for the compounds in U-C-O and Pu-C-O systems. The experimental parameters for the preparation of uranium carbides and a two step synthesis involving carbothermic reduction of the oxide to the dicarbide followed by hydrogen stripping of carbon to produce uranium monocarbide are discussed. (author). 31 refs., 9 figs., 6 tabs

  11. Spark plasma sintering of tantalum carbide and graphene reinforced tantalum carbide composites

    Science.gov (United States)

    Kalluri, Ajith Kumar

    Tantalum carbide (TaC), an ultra-high temperature ceramic (UHTC), is well known for its exceptional properties such as high hardness (15-19 GPa), melting point (3950 °C), elastic modulus (537 GPa), chemical resistance, and thermal shock resistance. To make TaC to be the future material for hypersonic vehicles, it is required to improve its thermal conductivity, strength, and fracture toughness. Researchers have previously reinforced TaC ceramic with carbides of silicon and boron as well as carbon nanotubes (CNTs), however, these reinforcements either undergo chemical changes or induce defects in the matrix during processing. In addition, these reinforcements exhibit a very minimal improvement in the properties. In the present work, we attempted to improve TaC fracture toughness by reinforcing with graphene nano-platelets (GNPs) and processing through spark plasma sintering at high temperature of 2000 °C, pressure of 70 MPa, and soaking time of 10 min. In addition, we investigated the active densification mechanism during SPS of TaC powder and the effect of ball milling time on mechanical properties of sintered TaC. A relative density of >96% was achieved using SPS of monolithic TaC (Grain boundary sliding is proposed as active densification mechanism based on these calculations. Reinforcing GNPs (2-6 vol.% ) in the TaC matrix improved relative density (99.8% for TaC-6 vol.% GNP). Also ˜150% and ˜180% increase in flexural strength and fracture toughness, respectively, was observed for TaC-6 vol.% GNP composite. The significant improvement in these properties is attributed to improved densification and toughening mechanisms such as sheet pull-out and crack deflection due to reinforcement of graphene. Uniform dispersion of GNPs in the TaC matrix is observed from microstructural analysis. Raman spectroscopy analysis also indicated that GNPs are successfully retained in sintered TaC-GNP composites without any damage.

  12. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    International Nuclear Information System (INIS)

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction

  13. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. PMID:27524006

  14. Nitride and carbide preforms for infiltration process

    Directory of Open Access Journals (Sweden)

    A. Twardowska

    2007-11-01

    Full Text Available Purpose: Infiltration of molten metals into porous ceramic preforms is the only technique suitable for the fabrication of high volume fraction of ceramic materials in MMCs. The most popular material for porous preforms is Al2O3 because of its low cost. Infiltration process generates thermal stresses in the Al2O3 preforms. The thermal shock resistance of Al2O3 is lower than for Si3N4 or Al2O3/TiC+TiN materials. The aim of this study is to obtain the nitride and carbide base preforms material for the infiltration process of molten aluminium alloys.Design/methodology/approach: The method of obtaining the silicon nitride and oxide-carbonitride porous preform for the infiltration process is the free sintering process. Some of selected properties of this material are presented. The preforms were produced by the mixing of ceramic powders with organic binders, followed by forming, drying and firing. Ceramic preforms of 65% porosity were produced. Microscopic investigations revealed good joints between the ceramic particles.Findings: The material consist of the base component (90 wt.% of α-Si3N4, 5 wt.% of Al2O3, 5 wt.% of Y2O3, which were mixed with 40 wt.% of polyethylene glycol 6000 (mixed in Turbula porosity is 25.7 %. The higher value of porosity 66.6% was obtained for material with 20 wt.% tylose. The grain size of Si3N4 and method of the mixtures preparing (mixing with or without milling have the significant influence on compacts’ porosity. For 68 wt.% Al2O3, 2 wt.% ZrO2 and 30 wt.% Ti(C,N with addition of glycol 6000, the value of porosity is 67%. α-Si3N4 material produced shows strong bonding with aluminium and AlSi11 aluminium alloy.Practical implications: Pressureless infiltration of molten metals into ceramics is the most cost-effective approach to liquid-metal processing of MMCs. Metal matrix composites are applied widely in aircraft production technologies and defence technology.Originality/value: Compared to widely used alumina

  15. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  16. Calcium carbonate and calcium sulfate in Martian meteorite EETA79001

    Science.gov (United States)

    Gooding, J. L.; Wentworth, S. J.

    1987-01-01

    Chips of glassy Lithology C of EETA79001 were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy to determine the mineralogy and petrogenesis of the glass that was shown by others to contain trapped Mars-like gases. Calcium carbonite was identified as massive to acicular crystals for which Ca, C, and O were the major elements. Calcium sulfate was identified as prismatic-acicular crystals with Ca and S as the major elements.

  17. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  18. Growth of Vanadium Carbide by Halide-Activated Pack Diffusion

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Dahl, Kristian Vinter;

    The present work investigates growth of vanadium carbide (VC) layers by the pack diffusion method on a Vanadis 6 tool steel. The VC layers were produced by pack diffusion at 1000°C for 1, 4 and 16 hours. The VC layers were characterized with optical and electron microscopy, Vickers hardness tests...

  19. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  20. Influence of nanometric silicon carbide on phenolic resin composites properties

    Indian Academy of Sciences (India)

    GEORGE PELIN; CRISTINA-ELISABETA PELIN; ADRIANA STEFAN; ION DINC\\u{A}; ANTON FICAI; ECATERINA ANDRONESCU; ROXANA TRUSC\\u{A}

    2016-06-01

    This paper presents a preliminary study on obtaining and characterization of phenolic resin-based composites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ensure uniform dispersion of the nanopowder, followed by heat curing of the phenolic-based materials at controlled temperature profile up to 120$^{\\circ}$C. The obtained nanocomposites were characterized by FTIR spectroscopy and scanning electron microscopy analysis and evaluated in terms of mechanical, tribological and thermal stability under load. The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric silicon carbide content. The results indicate that these materials could be effectively used to obtain ablative or carbon–carbon composites in future studies.

  1. Modification of optical surfaces employing CVD boron carbide coatings

    International Nuclear Information System (INIS)

    Non-reflective or high emissivity optical surfaces require materials with given roughness or surface characteristics wherein interaction with incident radiation results in the absorption and dissipation of a specific spectrum of radiation. Coatings have been used to alter optical properties, however, extreme service environments, such as experienced by satellite systems and other spacecraft, necessitate the use of materials with unique combinations of physical, chemical, and mechanical properties. Thus, ceramics such as boron carbide are leading candidates for these applications. Boron carbide was examined as a coating for optical baffle surfaces. Boron carbide coatings were deposited on graphite substrates from BCl3, CH4, and H2 gases employing chemical vapor deposition (CVD) techniques. Parameters including temperature, reactant gas compositions and flows, and pressure were explored. The structures of the coatings were characterized using electron microscopy and compositions were determined using x-ray diffraction. The optical properties of the boron carbide coatings were measured, and relationships between processing conditions, deposit morphology, and optical properties were determined

  2. Behavior of tungsten carbide in water stabilized plasma

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Matějíček, Jiří; Neufuss, Karel

    2007-01-01

    Roč. 7, č. 4 (2007), s. 213-220. ISSN 1335-8987 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : water stabilized plasma * tungsten carbide * tungsten hemicarbide * decarburization Subject RIV: BL - Plasma and Gas Discharge Physics

  3. Method of making metallic oxide or carbide particles

    International Nuclear Information System (INIS)

    A method is claimed of making metallic oxide or carbide particles of uranium, which comprises fuels or breeder materials for nuclear reactors. An aqueous solution of uranyl nitrate or chloride and, if necessary, colloidal carbon is added dropwise into an organic ketone or ketone mixture phase which is located above an aqueous ammonia solution. The thereupon formed particles are sintered

  4. The synthesis of titanium carbide-reinforced carbon nanofibers

    Science.gov (United States)

    Zhu, Pinwen; Hong, Youliang; Liu, Bingbing; Zou, Guangtian

    2009-06-01

    Tailoring hard materials into nanoscale building blocks can greatly extend the applications of hard materials and, at the same time, also represents a significant challenge in the field of nanoscale science. This work reports a novel process for the preparation of carbon-based one-dimensional hard nanomaterials. The titanium carbide-carbon composite nanofibers with an average diameter of 90 nm are prepared by an electrospinning technique and a high temperature pyrolysis process. A composite solution containing polyacrylonitrile and titanium sources is first electrospun into the composite nanofibers, which are subsequently pyrolyzed to produce the desired products. The x-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The Raman analyses show that the composite nanofibers have low graphite clusters in comparison with the pure carbon nanofibers originating from the electrospun polyacrylonitrile nanofibers. The mechanical property tests demonstrate that the titanium carbide-carbon nanofiber membranes have four times higher tensile strength than the carbon nanofiber membranes, and the Young's modulus of the titanium carbide-carbon nanofiber membranes increases in direct proportion to the titanium quantity.

  5. The synthesis of titanium carbide-reinforced carbon nanofibers

    International Nuclear Information System (INIS)

    Tailoring hard materials into nanoscale building blocks can greatly extend the applications of hard materials and, at the same time, also represents a significant challenge in the field of nanoscale science. This work reports a novel process for the preparation of carbon-based one-dimensional hard nanomaterials. The titanium carbide-carbon composite nanofibers with an average diameter of 90 nm are prepared by an electrospinning technique and a high temperature pyrolysis process. A composite solution containing polyacrylonitrile and titanium sources is first electrospun into the composite nanofibers, which are subsequently pyrolyzed to produce the desired products. The x-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The Raman analyses show that the composite nanofibers have low graphite clusters in comparison with the pure carbon nanofibers originating from the electrospun polyacrylonitrile nanofibers. The mechanical property tests demonstrate that the titanium carbide-carbon nanofiber membranes have four times higher tensile strength than the carbon nanofiber membranes, and the Young's modulus of the titanium carbide-carbon nanofiber membranes increases in direct proportion to the titanium quantity.

  6. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Science.gov (United States)

    Rodenbücher, C.; Hildebrandt, E.; Szot, K.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Breuer, U.; Waser, R.; Alff, L.

    2016-06-01

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2-x) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2 thin films prepared and measured under identical conditions, the formation of HfCx was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  7. Standard specification for nuclear-Grade boron carbide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This specification applies to boron carbide pellets for use as a control material in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  8. Protective infrared antireflection coating based on sputtered germanium carbide

    Science.gov (United States)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  9. Multifunctional composites containing molybdenum carbides as potential electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weigert, Erich C. [Center for Catalytic Science and Technology, Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); South, Joseph [Army Research Laboratory, Building 4600, Aberdeen Proving Ground, MD 21005 (United States); Rykov, Sergey A.; Chen, Jingguang G. [Center for Catalytic Science and Technology, Department of Chemical Engineering, University of Delaware, Newark, DE 19716 (United States)

    2005-01-30

    The aim of the current study is to determine the feasibility of introducing fuel cell functionality on the surfaces of carbon-based composite materials. This can potentially be achieved by the synthesis of molybdenum carbides on the surfaces of carbon foam, which is a light and rigid material that can be used as structural components in aircrafts and vehicles. The current study employed physical vapor deposition (PVD) to deposit molybdenum on the carbon foam substrate. The ratio of surface molybdenum and surface carbon was determined using X-ray photoelectron spectroscopy (XPS). The combination of PVD and in situ XPS allowed for the synthesis of molybdenum-coated carbon foam samples with desirable and reproducible Mo/C ratios. The coated films were then heated in vacuum to promote the reaction between molybdenum and carbon foam to produce surface molybdenum carbides. The carbide-coated samples were further characterized using XPS, near-edge X-ray absorption fine structure (NEXAFS), and scanning electron microscopy (SEM). Platinum metal was also deposited via PVD on carbon foam, both with and without the presence of molybdenum carbide on the foam surface. The electrochemical stability of Pt-coated foams was evaluated using cyclic voltammetry (CV)

  10. Metallographic studies of eutectics carbides in high niobium microalloyed steels

    International Nuclear Information System (INIS)

    The quantity, distribution and effectiveness of eutectic carbides was studied in high niobium microalloyed steels. The particles showed extremely inhomogenuous distributions and seemed to be ineffective in promoting refinement of either an austenitic, ferritic or perlitic microstructure. There is a definite need for better quantitative data about the fraction of Nb 'lost' to eutectic particles in these steels. (Author)

  11. Anticorrosion surface alloying of ferrous metal by carbide formers

    International Nuclear Information System (INIS)

    It is shown theoretically and experimentally that in cases of surface chromizing and titanizing of ferrous metal, proper carbon of the latter plays an important positive role, providing the formation of exclusively dense surface carbide layers with high and durable corrosion and mechanic stability. In the future surface alloying must become a more effective method of anticorrosion alloying

  12. Friction and wear behavior of chromium carbide coatings

    International Nuclear Information System (INIS)

    Chromium carbides, tungsten carbide, and chromium oxide have been tested and evaluated as coatings to protect high-temperature gas-cooled reactor (HTGR) steam generator and other HTGR components from adhesion, galling associated with sliding wear or from fretting. Tests were performed in commercially-pure helium and in helium doped with various gaseous impurities (H2, H2O, CH4, CO) to simulate the primary coolant of an HTGR. Several types of chromium carbide coatings including Cr3C2, Cr7C3, and Cr23C6, were tested for wear resistance and resistance to long-term spalling. Tungsten carbide and chromium oxide coatings were tested in sliding wear tests. Cr23C6-NiCr coatings showed the best performance (from 400 to 8160C) whether they were applied by detonation gun or plasma gun spraying methods. The presence of the Cr23C6-NiCr coatings did not affect the creep rupture properties of Alloy 800H substrates at temperatures up to 7600C. Low-cycle fatigue life of similar specimens at 5930C was reduced to 10 to 20% when tested in the 1 to 0.6% strain range

  13. Porosity of detonation coatings on the base of chromium carbide

    International Nuclear Information System (INIS)

    Porosity of detonation coatings on the base of chromium carbide is estimated by the hydrostatic weighing. The open porosity value dependence on the distance of spraying, depth of the charge, ratio and volume of the detonator barrie filing with gas components is established. Pore distribution in the cross section of a specimen tested for porosity is studied by the methods of metallographic analysis

  14. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy.

    Science.gov (United States)

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process. PMID:27596718

  15. The valve effect of the carbide interlayer of an electric resistance plug

    International Nuclear Information System (INIS)

    The welded electric resistance plug (ERP) usually contains a carbide interlayer at the plug-carbon material interface. The interlayer forms during welding the contact metallic alloy with the carbon material when the oxide films of the alloy are reduced on the interface surface by carbon to the formation of carbides and the surface layer of the plug material dissolves carbon to saturation. Subsequently, during solidification of the plug material it forms carbides with the alloy components. The structural composition of the carbide interlayer is determined by the chemical composition of the contact alloy. In alloys developed by the author and his colleagues the carbide forming elements are represented in most cases by silicon and titanium and, less frequently, by chromium and manganese. Therefore, the carbide interlayers in the ERP consisted mainly of silicon and titanium carbides

  16. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    International Nuclear Information System (INIS)

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice

  17. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    Science.gov (United States)

    Jannotti, Phillip; Subhash, Ghatu; Zheng, James Q.; Halls, Virginia; Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K.

    2015-01-01

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  18. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jannotti, Phillip; Subhash, Ghatu, E-mail: subhash@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zheng, James Q.; Halls, Virginia [Program Executive Office—Soldier Protection and Individual Equipment, US Army, Fort Belvoir, Virginia 22060 (United States); Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K. [M-Cubed Technologies, Inc., Newark, Delaware 19711 (United States)

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  19. Coarsening of carbides during different heat treatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Kai, E-mail: miaok21@126.com; He, Yanlin, E-mail: ylhe@staff.shu.edu.cn; Zhu, Naqiong; Wang, Jingjing; Lu, Xiaogang; Li, Lin

    2015-02-15

    Highlights: • Coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides was quantitatively described in detail. • Cooling mode is a key factor to the simulation for the coarsening of carbides. • Coarsening of above spherical carbides can be calculated by Ostwald ripening model. • The interfacial energy between the γ matrix with M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides are 0.7 J/m{sup 2}. - Abstract: Coarsening of carbides in 1# Fe-5.96Cr-0.35C (wt.%) alloy and 2# Fe-0.5V-0.53C (wt.%) alloy during different heat treatment conditions was investigated by carbon replica, high-resolution transmission electron microscopy (HRTEM) , X-ray diffraction (XRD) and SEM techniques. The equilibrium phases at 850 °C constitute of austenitic matrix (γ) + M{sub 7}C{sub 3} and austenite matrix (γ) + V{sub 4}C{sub 3} for 1# and 2# alloy respectively. Morphology of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides was mainly determined by cooling mode due to the different nucleation sites and growth mechanisms. Under directly aging condition, most carbides nucleate in the grain boundaries and grow into rod-shaped or flake-shaped particles by discontinuous growth mechanism. These particles turn out to be excluded during coarsening simulation using Oswald ripening model to give a more reasonable result. In addition, interfacial energy between M{sub 7}C{sub 3}/γ and V{sub 4}C{sub 3}/γ for the coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} during aging at 850 °C is evaluated by fitting experimental data using thermodynamic and kinetic calculations. The interfacial energy is determined to be 0.7 J/m{sup 2} for the coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} in austenitic matrix.

  20. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    OpenAIRE

    Samigullin, Dmitry; Fatikhov, Nijaz; Khaziev, Eduard; Skorinkin, Andrey; Nikolsky, Eugeny; Bukharaeva, Ellya

    2015-01-01

    At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dy...

  1. Variability of calcium absorption

    International Nuclear Information System (INIS)

    Variability in calcium absorption was estimated in three groups of normal subjects in whom Ca absorption was measured by standard isotopic-tracer methods at interstudy intervals ranging from 1 to 4 mo. Fifty absorption tests were performed in 22 subjects. Each was done in the morning after an overnight fast with an identical standard breakfast containing a Ca load of approximately 250 mg. Individual fractional absorption values were normalized to permit pooling of the data. The coefficient of variation (CVs) for absorption for the three groups ranged from 10.57 to 12.79% with the size of the CV increasing with interstudy duration. One other published study presenting replicate absorption values was analyzed in a similar fashion and was found to have a CV of absorption of 9.78%. From these data we estimate that when the standard double-isotope method is used to measure Ca absorption there is approximately 10% variability around any given absorption value within an individual human subject and that roughly two-thirds of this represents real biological variability in absorption

  2. Fabrication and properties of silicon carbide nanowires

    Science.gov (United States)

    Shim, Hyun Woo

    2008-12-01

    Silicon carbide (SiC), with excellent electrical, thermal, and mechanical properties, is a promising material candidate for future devices such as high-temperature electronics and super-strong lightweight structures. Combined with superior intrinsic properties, the nanomaterials of SiC show further advantages thanks to nanoscale effects. This thesis reports the growth mechanism, the self-integration, and the friction of SiC nanowires. The study involves nanowires fabrication using thermal evaporation, structure characterization using electron microscopy, friction measurement, and theoretical modeling. The study on nanowire growth mechanism requires understanding of the surfaces and interfaces of nanowire crystal. The catalyzed growth of SiC nanowires involves interfaces between source vapor, catalytic liquid, and nanowire solid. Our experimental observation includes the periodical twinning in a faceted SiC nanowire and three stage structure transitions during the growth. The proposed theoretical model shows that such phenomenon is the result of surface energy minimization process during the catalytic growth. Surface interactions also exist between nanowires, leading to their self-integration. Our parametric growth study reveals novel self-integration of SiC-SiO 2 core-shell nanowires as a result of SiO2 joining. Attraction between nanowires through van der Waals force and enhanced SiO2 diffusion at high temperature transform individual nanowires to the integrated nanojunctions, nanocables, and finally nanowebs. We also show that such joining process becomes effective either during growth or by annealing. The solid friction is a result of the interaction between two solid surfaces, and it depends on the adhesion and the deformation of two contacting solids among other factors. Having strong adhesion as shown from gecko foot-hairs, nanostructured materials should also have strong friction; this study is the first to investigate friction of nanostructures under

  3. Calcium-sensitive immunoaffinity chromatography

    DEFF Research Database (Denmark)

    Henriksen, Maiken L; Lindhardt Madsen, Kirstine; Skjoedt, Karsten;

    2014-01-01

    homogeneity may be impossible due to contamination with abundant antigens. In this study, we purified the scarce, complement-associated plasma protein complex, collectin LK (CL-LK, complex of collectin liver 1 and kidney 1), by immunoaffinity chromatography using a calcium-sensitive anti-collectin-kidney-1 m......Ab. This antibody was characterized by binding to CL-LK at hypo- and physiological calcium concentrations and dissociated from CK-LK at hyperphysiological concentrations of calcium. We purified CL-LK from plasma to a purity of 41% and a yield of 38%, resulting in a purification factor of more than 88......,000 in a single step. To evaluate the efficiency of this new purification scheme, we purified CL-LK using the same calcium-sensitive mAb in combination with acidic elution buffer and by using calcium-dependent anti-CL-K1 mAbs in combination with EDTA elution buffer. We found that calcium...

  4. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  5. Selective-area laser deposition (SALD) Joining of silicon carbide with silicon carbide filler

    Science.gov (United States)

    Harrison, Shay Llewellyn

    Selective Area Laser Deposition (SALD) is a gas-phase, solid freeform fabrication (SFF) process that utilizes a laser-driven, pyrolytic gas reaction to form a desired solid product. This solid product only forms in the heated zone of the laser beam and thus can be selectively deposited by control of the laser position. SALD Joining employs the SALD method to accomplish 'welding' of ceramic structures together. The solid reaction product serves as a filler material to bond the two parts. The challenges involved with ceramic joining center around the lack of a liquid phase, little plastic deformation and diffusivity and poor surface wetting for many ceramic materials. Due to these properties, traditional metal welding procedures cannot be applied to ceramics. Most alternative ceramic welding techniques use some form of a metal addition to overcome these material limitations. However, the metal possesses a lower ultimate use temperature than the ceramic substrate and therefore it decreases the temperature range over which the joined part can be safely used. SALD Joining enjoys several advantages over these ceramic welding procedures. The solid filler material chemistry can be tailored to match the type of ceramic substrate and therefore fabricate monolithic joints. The SALD filler material bonds directly to the substrate and the joined structure is made in a one step process, without any post-processing. The research documented in this dissertation focused on SALD Joining of silicon carbide structures with silicon carbide filler material. A historical progression of gas-phase SFF research and a literature review of the most prominent ceramic joining techniques are provided. A variety of SiC substrates were examined, as were various conditions of gas precursor pressures and mixtures, laser beam scan speed and joint configuration. The SALD material was characterized for composition and structure by x-ray diffraction, transmission electron microscopy and nuclear magnetic

  6. Carbide and nitride fuels for advanced burner reactor

    International Nuclear Information System (INIS)

    Full text: Under the U.S. fast reactor program, reference and alternative 1000 MWth Advanced Burner Reactor (ABR) core concepts were developed using ternary metallic (U-TRU-Zr) and mixed oxide (UO2+TRUO2) fuels. Recently, mixed carbide and nitride fuels have been considered as fast reactor fuels on the basis of their high density, compatibility with coolant, high melting temperature, and excellent thermal conductivity although they are ceramic fuel like a mixed oxide fuel. Thus, the performance of the ABR core loaded with carbide and nitride fuels was evaluated in this study with an expectation that the carbide and nitride fuels can mitigate disadvantages of both metallic and oxide fuels in the ABR: favorable passive safety features in a severe accident compared to the oxide core, a higher discharge burnup compared to the metallic core, and a potential to increase thermal efficiency. All calculations performed in this study were focused on the neutronics characteristics, although the fabrication and irradiation experiences for carbide and nitride fuels are limited and some problems were observed in the reprocessing and irradiation of these fuels. The mixed monocarbide and mixed mononitride fuels were selected as the alternative fuel forms and the ABR core concepts with these fuels were developed based on the reference 1000 MWth ABR core concepts. For consistency, the potential design goals used in the reference ABR core concepts were also employed in this study: a 1000 MWth power rating, medium TRU conversion ratio of ∼0.75, a compact core, one-year operational cycle length at least with a capacity factor of 90%, sufficient shutdown margin with a limited maximum single control assembly fault, and possible use of either metallic or any ceramic fuels in the same core layout. The core layout and outer assembly dimensions of the reference 1000 MWth ABR core were kept, but the intra assembly design parameters were varied to maximize the discharge burnup within the

  7. Photoluminescent properties of silicon carbide and porous silicon carbide after annealing

    International Nuclear Information System (INIS)

    Photoluminescent (PL) p-type 6H porous silicon carbides (PSCs), which showed a strong blue-green photoluminescence band centered at approximately 490 nm, were annealed in Ar and vacuum conditions. The morphological, optical, and chemical states after annealing are reported on electrochemically etched SiC semiconductors. The thermal treatments in the Ar and vacuum environments showed different trends in the PL spectra of the PSC. In particular, in the case of annealing in a vacuum, the PL spectra showed both a weak red PL peak near 630 nm and a relatively intense PL peak at around 430 nm in the violet region. SEM images showed that the etched surface had spherical nanostructures, mesostructures, and islands. With increasing annealing temperature it changes all spherical nanostructures. The average pore size observed at the surface of the PSC before annealing was of the order of approximately 10 nm. In order to investigate the surface of a series of samples in detail, both the detection of a particular chemical species and the electronic environments at the surface are examined using X-ray photoelectron spectroscopy (XPS). The chemical states from each XPS spectrum depend differently before and after annealing the surface at various temperatures. From these results, the PL spectra could be attributed not only to the quantum size effects but also to the oxide state.

  8. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  9. Deformation site-specific nature of transgranular carbide precipitation in 304 stainless steels

    International Nuclear Information System (INIS)

    This research was developed to identify the nature of transgranular carbide precipitation and chromium-depletion in heavily deformed 304 SS, and to examine the correlation between carbide precipitation and strain-induced martensite in the SS. Observations have indicated that: (1) Transgranular carbides form on twin-fault intersections in 304 SS. This causes linear-TG attack within the SS. (2) There was no observed correlation between strain-induced martensite and TG carbides in this work, except that both form at micro-shear band intersections, but not at the same intersection. (3) Lath martensite and fine-austenite form during heat treatment of deformed, 304 SS. (4) Transgranular carbides precipitate on martensite lath/fine-austenite boundaries in 304 SS, and produce extensive, random TG attack in the SS. (5) Lattice imaging of carbides has shown the presence of dislocations within the carbides and at the carbide-matrix interface, and changes in the carbide lattice orientation across a boundary, which may be indicators of key mechanisms of carbide nucleation on grain boundaries in SS

  10. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  11. A Study of the High Temperature on Chromium Carbide

    International Nuclear Information System (INIS)

    The oxidation rates of chromium carbide have been measured at 900 to 1300 .deg. C and oxygen pressures between 2x10-2 8 x 10-2 Pa using thermogravimetric analysis method. Oxidation behavior of chromium carbide appeared to change very sensitively with both temperature and oxygen pressure. In case with the oxygen pressure lower than 8 x 10-2 Pa, the weight gain in the specimen due to the formation of chromium oxide occurred linearly with time at the every temperature studied, but when the oxygen pressure was increased up to 8 x 10-2Pa, the weight gain behavior versus time showed entirely different tendency. That is, in the temperature range of 900 .deg. C to 1000 .deg. C weight gain occurred, however in the range of 1000 .deg. C to 1300 .deg. C weight lost was observed. The reason for the observed linear kinetics could be inferred as follows. As the oxidation of carbide proceeded carbon monoxide would build up at the interface of the chromium oxide and carbide. If the equilibrium pressure of carbon monoxide at the interface exceeds the gas pressure at the outer specimen surface, the oxide scale formed on it might be cracked exposing new carbide sites on which oxidation could occur successively. Through a thermodynamic consideration it was judged that the above deduction was reasonable. On the other hand, the weight lost mentioned above was explained that it could occur mainly due to the further oxidation of Cr2O3 to the volatile CrO3 at the corresponding experimental conditions. Weight loss phenomenon mentioned before which was observed in the oxidation of chromium carbide was also clearified by X-ray diffraction method and SEM. That is, at 900 .deg. C stable oxide of chromium, (Cr2O3) was identified easily on the specimen surface. However, at 1300 .deg. C, only a few amount of this stable oxide could be found on to specimen surface, indicating Cr2O3 had been evaporated to CrO3 gas

  12. "Caged calcium" in Aplysia pacemaker neurons. Characterization of calcium-activated potassium and nonspecific cation currents

    OpenAIRE

    1989-01-01

    We have studied calcium-activated potassium current, IK(Ca), and calcium-activated nonspecific cation current, INS(Ca), in Aplysia bursting pacemaker neurons, using photolysis of a calcium chelator (nitr-5 or nitr-7) to release "caged calcium" intracellularly. A computer model of nitr photolysis, multiple buffer equilibration, and active calcium extrusion was developed to predict volume-average and front-surface calcium concentration transients. Changes in arsenazo III absorbance were used to...

  13. Effect of Preharvest Calcium Treatments on Sweet Cherry Fruit Quality

    OpenAIRE

    Deniz EROGUL

    2014-01-01

    In this study, the effects of different foliar calcium compounds on fruit cracking and quality of sweet cherry variety ‘0900 Ziraat’ were investigated. Calcium caseinate, calcium chloride, calcium hydroxide and calcium nitrate were used as foliar sprays. Calcium applications reduced the cracking index 38% to 66% compared to cherries that did not receive foliar treatment. The most efficient applications for decreasing cracking were calcium hydroxide and calcium chloride. Calcium chloride and c...

  14. Stochastic Simulation of Cardiac Ventricular Myocyte Calcium Dynamics and Waves

    OpenAIRE

    Tuan, Hoang-Trong Minh; Williams, George S.B.; Chikando, Aristide C.; Sobie, Eric A.; Lederer, W. Jonathan; Jafri, M. Saleet

    2011-01-01

    A three dimensional model of calcium dynamics in the rat ventricular myocyte was developed to study the mechanism of calcium homeostasis and pathological calcium dynamics during calcium overload. The model contains 20,000 calcium release units (CRUs) each containing 49 ryanodine receptors. The model simulates calcium sparks with a realistic spontaneous calcium spark rate. It suggests that in addition to the calcium spark-based leak, there is an invisible calcium leak caused by the stochastic ...

  15. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  16. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  17. Aging and calcium as an environmental factor.

    Science.gov (United States)

    Fujita, T

    1985-12-01

    Calcium deficiency is a constant menace to land-abiding animals, including mammals. Humans enjoying exceptional longevity on earth are especially susceptible to calcium deficiency in old age. Low calcium and vitamin D intake, short solar exposure, decreased intestinal absorption, and falling renal function with insufficient 1,25(OH)2 vitamin D biosynthesis all contribute to calcium deficiency, secondary hyperparathyroidism, bone loss and possibly calcium shift from the bone to soft tissue, and from the extracellular to the intracellular compartment, blunting the sharp concentration gap between these compartments. The consequences of calcium deficiency might thus include not only osteoporosis, but also arteriosclerosis and hypertension due to the increase of calcium in the vascular wall, amyotrophic lateral sclerosis and senile dementia due to calcium deposition in the central nervous system, and a decrease in cellular function, because of blunting of the difference in extracellular-intracellular calcium, leading to diabetes mellitus, immune deficiency and others (Fig. 6). PMID:2943880

  18. Transport of Calcium Ions into Mitochondria.

    Science.gov (United States)

    Xu, Zhaolong; Zhang, Dayong; He, Xiaolan; Huang, Yihong; Shao, Hongbo

    2016-06-01

    To uptake calcium ions of mitochondria is of significant functional connotation for cells, because calcium ions in mitochondria are involved in energy production, regulatory signals transfer, and mitochondrial permeability transition pore opening and even programmed cell death of apoptosis, further playing more roles in plant productivity and quality. Cytoplasmic calcium ions access into outer mitochondrial membrane (OMM) from voltage dependent anion-selective channel (VDAC) and were absorbed into inner mitochondrial membrane (IMM) by mitochondrial calcium uniporter (MCU), rapid mitochondrial calcium uptake (RaM) or mitochondrial ryanodine receptor (mRyR). Although both mitochondria and the mechanisms of calcium transport have been extensively studied, but there are still long-standing or even new challenges. Here we review the history and recent discoveries of the mitochondria calcium ions channel complex involved calcium assimilation, and discuss the role of calcium ions into mitochondria. PMID:27252588

  19. Optimizing calcium selective fluorimetric nanospheres.

    Science.gov (United States)

    Kisiel, Anna; Kłucińska, Katarzyna; Gniadek, Marianna; Maksymiuk, Krzysztof; Michalska, Agata

    2015-11-01

    Recently it was shown that optical nanosensors based on alternating polymers e.g. poly(maleic anhydride-alt-1-octadecene) were characterized by a linear dependence of emission intensity on logarithm of concentration over a few of orders of magnitude range. In this work we focus on the material used to prepare calcium selective nanosensors. It is shown that alternating polymer nanosensors offer competitive performance in the absence of calcium ionophore, due to interaction of the nanospheres building blocks with analyte ions. The emission increase corresponds to increase of calcium ions contents in the sample within the range from 10(-4) to 10(-1) M. Further improvement in sensitivity (from 10(-6) to 10(-1) M) and selectivity can be achieved by incorporating calcium ionophore in the nanospheres. The optimal results were obtained for core-shell nanospheres, where the core was prepared from poly(styrene-co-maleic anhydride) and the outer layer from poly(maleic anhydride-alt-1-octadecene). Thus obtained chemosensors were showing linear dependence of emission on logarithm of calcium ions concentration within the range from 10(-7) to 10(-1) M. PMID:26452839

  20. Isomorfic Substitutions of Calcium by Strontium in Calcium Hydroxyapatite

    International Nuclear Information System (INIS)

    By means of homogeneous precipitation it has been possible to synthesize crystalline solid solutions of calcium strontium hydroxyapatite from aqueous solutions. The lattice constants for the solid solutions were measured in the range Ca9Sr(PO4)6(OH)2 - CaSr9(PO4)6(OH)2. The investigations show that the discrimination of strontium against calcium is considerably smaller than reported elsewhere (1). Strontium is preferentially built into the c-axis direction of the apatite lattice

  1. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics

    OpenAIRE

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intes...

  2. Boron carbide (B4C) coating. Deposition and testing

    International Nuclear Information System (INIS)

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed

  3. Determination of thorium in plutonium-thorium oxides and carbides

    International Nuclear Information System (INIS)

    Thorium is determined in (PuTh)C and (PuTh)O2 by complexometric titration with ethylenediaminetetraacetic acid (EDTA) following separation on anion-exchange resin. Carbides are first oxidized by ignition in air at about 8000C. Oxide or oxidized carbide samples are dissolved in acids by the sealed-reflux technique or by heating in beakers. The plutonium is selectively sorbed from the 12M hydrochloric acid solution of the fuel on a Bio-Rad AG1-X2 anion-exchange resin column, and the eluted thorium is titrated with EDTA using xylenol orange as the indicator. The average recovery of thorium in 20 samples is 99.98% with a relative standard deviation of 0.07%

  4. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  5. Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics

    Indian Academy of Sciences (India)

    A K Mukhopadhyay

    2001-04-01

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker’s microhardness tester at various loads in the range 1–20 N. Subsequently, the gradual evolution of the damage was characterized using an optical microscope in conjunction with the image analysing technique. The materials were classified in the order of the decreasing resistance against repeated indentation fatigue at the highest applied load of 20 N. It was further shown that there was a strong influence of grain size on the development of resistance against repeated indentation fatigue on the same spot. Finally, the poor performance of the sintered silicon carbide was found out to be linked to its previous thermal history.

  6. Thermal boundary conductance between refractory metal carbides and diamond

    International Nuclear Information System (INIS)

    The thermal boundary conductance (TBC) between thin films of Cr, Mo, Nb and W and diamond substrates has been measured using time domain thermoreflectance before and after a high-vacuum heat treatment at 800 °C for 2 h. While no signs of carbide formation could be detected in as-deposited layers by scanning transmission electron microscopy energy dispersive X-ray spectroscopy elemental analysis, the heat treatment led to partial (W, Mo) or full conversion (Cr, Nb) of the film into carbide. The measured TBC values on as-deposited samples of 315, 220, 220 and 205 MW m-2K-1 measured for, respectively, the Cr, Mo, Nb and W samples, were found to not be significantly altered by the heat treatment

  7. Combinatorial optimization of carbide-free bainitic nanostructures

    International Nuclear Information System (INIS)

    Thermodynamic calculations in combination with a neural network model are employed to predict the conditions under which nanostructured carbide-free bainite can be formed. The method recovers well the conditions under which the alloys reported in the literature display such features. Aluminium and silicon are shown to be equally effective in suppressing cementite. Manganese reduction appears to be the most effective means to accelerate bainite formation at low temperatures. A new low-manganese high-chromium steel grade capable of transforming into a nanostructured carbide-free structure is proposed, in which thermokinetic calculation and experiment show that low-temperature bainite forms faster and displays greater hardness than the alloys previously reported in the literature

  8. Experimental study of vanadium carbide and carbonitride coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chicco, B.; Summerville, E. (CSIRO Manufacturing Science and Technology, Woodville (Australia). Adelaide Lab.); Borbidge, W.E. (CSIRO Manufacturing Science and Technology, Melbourne Laboratory, Private Bag 33, Rosebank MDC, Clayton, Victoria, 3169 (Australia))

    1999-06-30

    Previous authors have established that prior nitriding or nitrocarburising will enhance the thickness of the vanadised coating formed on tool steels by the thermal diffusion (TD) process. However, whereas the single TD treatment produces a uniform surface layer of vanadium carbide, the combined treatments result in a complex vanadium carbonitride coating. Such a coating can be expected to exhibit a hardness that is lower overall and decreases away from the surface with increasing nitrogen to carbon ratio. An experimental study was undertaken to assess the relative merits of nitriding, nitrocarburising and carburising prior to TD vanadising on the steel AISI H13. The study demonstrates the specific advantages of carburising, previously untried as a pre-treatment. It produces the thickest coating (about twice as thick as that due to vanadising alone) and, perhaps more importantly, the coating is essentially vanadium carbide and exhibits a uniform high hardness across its entire span. (orig.) 30 refs.

  9. Effect of hydrogen on the microstructure of silicon carbide

    International Nuclear Information System (INIS)

    The effect of hydrogenation on the microstructure of a pressureless sintered silicon carbide was studied. Samples which were annealed in a 40:60 mole % H2:Ar atmosphere at 14000C for 50 hours were microstructurally compared with unannealed samples and samples that had been annealed in a similar manner but using an argon atmosphere. The results were also compared with microstructural results obtained from in situ studies using both hydrogen and argon atmospheres. These results were compared with a thermodynamic model which was constructed using a free energy minimization technique. The observed effects of hydrogenation were surface decarburization and amorphization throughout the silicon carbide material. Other observations include the thermally induced growth of microcrystalline silicon and accelerated amorphization around the silicon microcrystals in samples used in hydrogen in situ studies. An analysis of the microstructure of the reference material was also performed

  10. Amorphous silicon carbide coatings for extreme ultraviolet optics

    Science.gov (United States)

    Kortright, J. B.; Windt, David L.

    1988-01-01

    Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

  11. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.; Hansen, T.; Jensen, M. R.; Gundersen, Hans Jørgen Gottlieb; Bjørnholm, T.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with...... boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy....

  12. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  13. Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide

    Science.gov (United States)

    Xie, Kelvin Y.; An, Qi; Toksoy, M. Fatih; McCauley, James W.; Haber, Richard A.; Goddard, William A.; Hemker, Kevin J.

    2015-10-01

    Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B4C (i.e., B12C3 ) but not in B13C2 . TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B4C is B11C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B13C2 because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.

  14. Effect of alumina on silicon carbide bodies with clay bonding

    International Nuclear Information System (INIS)

    Components made of silicon carbide are very important ceramic products due to their good resistance against thermal shocks. Home made of such products having silicate bonding usually have various defects in their structures. In this research effects of alumina addition on the components made of silicon carbide with clay bonding have been investigated, in order to see its effects on mechanical and structural properties such as blistering. Addition of up to 15 weights %. Al2O3 improved thermal shock resistance and increased bending strength from 25 MPa to 32 MPa due to Al2O3 transformation to mullite. However, when the amounts of alumina exceed 15 weights % mechanical strength as well as resistance to thermal shock reduced due to reman ing of Al2O3 in the components after sintering

  15. Pressureless sintered silicon carbide tailored with aluminium nitride sintering agent

    International Nuclear Information System (INIS)

    This study reports the influence of aluminium nitride on the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Pressureless sintering was achieved at 2000 degrees C for 5 min with the additions of boron carbide together with carbon of 1 wt% and 6 wt%, respectively, and a content of aluminium nitride between 0 and 10 wt%. Sintered samples present relative densities higher than 92%. The sintered microstructure was found to be greatly modified by the introduction of aluminium nitride, which reflects the influence of nitrogen on the β-SiC to α-SiC transformation. The toughness of sintered sample was not modified by AlN incorporation and is relatively low (around 2.5 MPa m1/2). Materials exhibited transgranular fracture mode, indicating a strong bonding between SiC grains. (authors)

  16. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    SOUZA C. P.

    1999-01-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  17. Preparation of tantalum carbide from an organometallic precursor

    International Nuclear Information System (INIS)

    In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2 O5 nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, Ta C, in the powder form at 1000 deg C. The natural sintering of Ta C powder in an inert atmosphere at 1400 deg C during 10 hours, under inert atmosphere made it possible to density the carbide to 96% of the theoretical value. (author)

  18. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    The atomic structure and the lattice dynamics of α boron and of B4C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B4C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  19. Carbon-rich icosahedral boron carbide designed from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Jay, Antoine; Vast, Nathalie; Sjakste, Jelena; Duparc, Olivier Hardouin [Ecole Polytechnique, Laboratoire des Solides Irradiés, CEA-DSM-IRAMIS, CNRS UMR 7642, F-91120 Palaiseau (France)

    2014-07-21

    The carbon-rich boron-carbide (B{sub 11}C)C-C has been designed from first principles within the density functional theory. With respect to the most common boron carbide at 20% carbon concentration B{sub 4}C, the structural modification consists in removing boron atoms from the chains linking (B{sub 11}C) icosahedra. With C-C instead of C-B-C chains, the formation of vacancies is shown to be hindered, leading to enhanced mechanical strength with respect to B{sub 4}C. The phonon frequencies and elastic constants turn out to prove the stability of the carbon-rich phase, and important fingerprints for its characterization have been identified.

  20. Evaporation behaviour of the ternary uranium plutonium carbides

    International Nuclear Information System (INIS)

    The evaporation behaviour of uranium plutonium carbides (Usub(0.80)Psub(0.20)Csub(1+-x) was studied by a combined application of mass spectrometry, using the uranium isotope U-233, and the Knudsen effusion target collection technique in the temperature range from 15000C to the liquids temperature measured at 24580C and the composition range from C/M = 0.95 to 1.4. High temperature compatibility tests were made with W-cells, carburized Ta and TaC-liners up to 25000C. The influence of oxygen and nitrogen impurities on vapour pressure, and composition changes in continued evaporation of the the mixed carbides were investigated. The effects of plutonium depletion and segregation were studied. (Auth.)

  1. Preparation and electrocatalytic properties of tungsten carbide electrocatalysts

    Institute of Scientific and Technical Information of China (English)

    马淳安; 张文魁; 成旦红; 周邦新

    2002-01-01

    The tungsten carbide(WC) electrocatalysts with definite phase components and high specific surface area were prepared by gas-solid reduction method. The crystal structure, phase components and electrochemical properties of the as-prepared materials were characterized by XRD, BET(Brunauer Emmett and Teller Procedure) and electrochemical test techniques. It is shown that the tungsten carbide catalysts with definite phase components can be obtained by controlling the carburizing conditions including temperature, gas flowing rate and duration time. The electrocatalysts with the major phase of W2C show higher electrocatalytic activity for the hydrogen evolution reaction. The electrocatalysts with the major phase of WC are suitable to be used as the anodic electrocatalyst for hydrogen anodic oxidation, which exhibit higher hydrogen anodic oxidation electrocatalytic properties in HCl solutions.

  2. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  3. Calcium release-activated calcium current in rat mast cells.

    Science.gov (United States)

    Hoth, M; Penner, R

    1993-06-01

    1. Whole-cell patch clamp recordings of membrane currents and fura-2 measurements of free intracellular calcium concentration ([Ca2+]i) were used to study the biophysical properties of a calcium current activated by depletion of intracellular calcium stores in rat peritoneal mast cells. 2. Calcium influx through an inward calcium release-activated calcium current (ICRAC) was induced by three independent mechanisms that result in store depletion: intracellular infusion of inositol 1,4,5-trisphosphate (InsP3) or extracellular application of ionomycin (active depletion), and intracellular infusion of calcium chelators (ethylene glycol bis-N,N,N',N'-tetraacetic acid (EGTA) or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)) to prevent reuptake of leaked-out calcium into the stores (passive depletion). 3. The activation of ICRAC induced by active store depletion has a short delay (4-14 s) following intracellular infusion of InsP3 or extracellular application of ionomycin. It has a monoexponential time course with a time constant of 20-30 s and, depending on the complementary Ca2+ buffer, a mean normalized amplitude (at 0 mV) of 0.6 pA pF-1 (with EGTA) and 1.1 pA pF-1 (with BAPTA). 4. After full activation of ICRAC by InsP3 in the presence of EGTA (10 mM), hyperpolarizing pulses to -100 mV induced an instantaneous inward current that decayed by 64% within 50 ms. This inactivation is probably mediated by [Ca2+]i, since the decrease of inward current in the presence of the fast Ca2+ buffer BAPTA (10 mM) was only 30%. 5. The amplitude of ICRAC was dependent on the extracellular Ca2+ concentration with an apparent dissociation constant (KD) of 3.3 mM. Inward currents were nonsaturating up to -200 mV. 6. The selectivity of ICRAC for Ca2+ was assessed by using fura-2 as the dominant intracellular buffer (at a concentration of 2 mM) and relating the absolute changes in the calcium-sensitive fluorescence (390 nm excitation) with the calcium current integral

  4. Progress in Studies on Carbon and Silicon Carbide Nanocomposite Materials

    International Nuclear Information System (INIS)

    Silicon carbide nanofiber and carbon nanotubes are introduced. The structure and application of nanotubers (nanofibers) in carbon/carbon composites are emphatically presented. Due to the unique structure of nanotubers (nanofibers), they can modify the microstructure of pyrocarbon and induce the deposition of pyrocarbon with high text in carbon/carbon composites. So the carbon/carbon composites modified by CNT/CNF have more excellent properties.

  5. Silicon Carbide Technologies for High Temperature Motor Drives

    OpenAIRE

    Snefjellå, Øyvind Holm

    2011-01-01

    Many applications benefit from using converters which can operate at high temperatures among them; down-hole drilling, hybrid vehicles and space craft. The theoretical performance of transistors made of Silicon Carbide (SiC) is investigated in this work. It is shown that their properties at high temperatures are superior compared to Silicon (Si) devices. Two half-bridge converters, using SiC normally-off Junction Field Effect Transistors (JFET) and SiC Bipolar Junction Transistors (BJT), are ...

  6. Chromium carbide coatings obtained by the hybrid PVD methods

    Directory of Open Access Journals (Sweden)

    M. Richert

    2010-11-01

    Full Text Available Purpose: With the use of the Arc-PVD and Arc-EB PVD hybrid method, the chromium carbide coatings were deposited on steel substrate. Two kinds of coatings were obtained. The nanostructure coatings were formed by deposition of chromium carbide films by Arc PVD evaporation technique. The multilayer coatings were produced by Arc-EB PVD hybrid technology. In the second case the amorphous phase in majority was found in samples, identified by X-ray investigations.Design/methodology/approach: The Arc PVD and combination Arc-EB PVD methods were used for carbide coatings deposition. The special hybrid multisource device, produced in the Institute for Sustainable Technologies – National Research Institute (ITeE –PIB in Radom, was used for sample deposition. The microstructures of coatings were investigated by JEM 20101 ARP transmission electron microscopy (TEM, TESLA BS500 scanning electron microscopy (SEM and Olympus GX50 optical microscopy (MO. The X-ray diffraction was utilized to identify phase configuration in coatingsFindings: The microstructure of deposited coatings differs depending on the deposition method used. The Arc PVD deposition produced nanometric coatings with the Cr3C2, Cr23C6, Cr7C3 and CrC carbides built from nanometric in size clusters. In the case of the Arc-EB PVD hybrid technology in majority of cases the amorphous microstructure of coatings was found. The hybrid coatings consist of alternating layers of Ni/Cr-Cr3C2.Practical implications: The performed investigations provide information, which could be useful in the industrial practice for the production of wear resistant coatings on different equipments and tools.Originality/value: It was assumed that by using different kinds of PVD methods the different microstructures of coatings could be formed.

  7. Anisotropic electronic conduction in stacked two-dimensional titanium carbide

    OpenAIRE

    Tao Hu; Hui Zhang; Jiemin Wang; Zhaojin Li; Minmin Hu; Jun Tan; Pengxiang Hou; Feng Li; Xiaohui Wang

    2015-01-01

    Stacked two-dimensional titanium carbide is an emerging conductive material for electrochemical energy storage which requires an understanding of the intrinsic electronic conduction. Here we report the electronic conduction properties of stacked Ti3C2 T 2 (T = OH, O, F) with two distinct stacking sequences (Bernal and simple hexagonal). On the basis of first-principles calculations and energy band theory analysis, both stacking sequences give rise to metallic conduction with Ti 3d electrons c...

  8. Ballistic behaviour of explosively shattered alumina and silicon carbide targets

    OpenAIRE

    Nanda, H.; Appleby-Thomas, G. J.; Wood, D.C.; Hazell, P. J.

    2011-01-01

    The resistance offered by three ceramic materials of varying strength that have been subjected to explosive loading has been investigated by depth-of- penetration testing. Each material was completely penetrated by a tungsten carbide cored projectile and the residual penetration into a ductile aluminium alloy backing material was measured. The resulting ballistic performance of each damaged ceramic was found to be similar implying that the resistance offered to the projectil...

  9. Refractory ceramics to silicon carbide. 5. tot. rev. ed

    Energy Technology Data Exchange (ETDEWEB)

    Elvers, B. (ed.); Hawkins, S. (ed.); Russey, W. (ed.); Schulz, G. (ed.)

    1993-01-01

    This volume contains 28 contributions to the following topics: Refractory Ceramics, Reinforced Plastics; Release Agents; Resins, Natural; Resins, Synthetic; Resorcinol; Resources of Oil and Gas; Rhenium and Rhenium Compounds; Rodenticides; Rubber (1. Survey, 2. Natural, 3. Synthetic, 4. Chemicals, 5. Technology, 6. Testing); Rubidium and Rubidium Compounds; Salicylic Acid; Saponins; Sealing Materials; Seasonings; Sedatives; Selenium and Selenium Compounds; Semiconductors; Shoe Polishes; Silica; Silicates; Silicon; Silicon Carbide. (orig.)

  10. An electrochemical process for the recycling of tungsten carbide scrap

    International Nuclear Information System (INIS)

    An account is given of the development of a number of designs for electrochemical cells, and the subsequent construction and operation of a vibrating-plate cell capable of oxidizing 15 kilograms of tungsten carbide a day to a crude tungstic acid precipitate, with similtaneous recovery of cobalt metal on the cathode. The effects on the process of the reagent concentration, temperature, current density, and cathode material are discussed

  11. Cubic Silicon Carbide: a promising material for automotive application

    OpenAIRE

    Attolini, Giovanni; Bosi, Matteo; Rossi, Francesca; Watts, Bernard Enrico; Salviati, Giancarlo

    2008-01-01

    carbide is a material that possesses properties that make it desirable in electronic, structural and sensor applications. As a wide band gap semiconductor it can be used in high power, high temperature electronics and harsh environments. Its hardness, wear resistance, chemical inertness, and thermal conductivity find uses ranging from disc brakes to micron scale sensors and actuators. The automotive industry faces some important challenges since it has obligations to manufacture safe, clean, ...

  12. Final design review of boron carbide safety rod

    International Nuclear Information System (INIS)

    The object of this paper discusses the design review of the boron carbide safety rod for the Westinghouse Savannah River Company. This paper reviewed information presented by personnel of the Savannah River Laboratory (SRL) Equipment Engineering Section, SRL Materials Technology Section and Reactor Materials Engineering and Technology. From this report, views, opinions and recommendations were made on the safety rod from materials testing to production

  13. Simulation in Amorphous Silicon and Amorphous Silicon Carbide Pin Diodes

    OpenAIRE

    Gonçalves, Dora; Fernandes, Miguel; Louro, Paula; Fantoni, Alessandro; Vieira, Manuela

    2014-01-01

    Part 21: Electronics: Devices International audience Photodiodes are devices used as image sensors, reactive to polychromatic light and subsequently color detecting, and they are also used in optical communication applications. To improve these devices performance it is essential to study and control their characteristics, in fact their capacitance and spectral and transient responses. This study considers two types of diodes, an amorphous silicon pin and an amorphous silicon carbide pi...

  14. Rheology of silicon carbide/vinyl ester nanocomposites

    OpenAIRE

    Yong, Virginia; Hahn, H. Thomas

    2006-01-01

    Silicon carbide (SiC) nanoparticles with no surface treatment raise the viscosity of a vinyl ester resin much more intensely than micrometer-size SiC particles. An effective dispersant generally causes a reduction in the resin viscosity attributed to its surface-active properties and thereby increases the maximum fraction of particles that can be introduced. This article assesses the rheological behavior of SiC-nanoparticle-filled vinyl ester resin systems with the Bingham, power-law, Hersche...

  15. Nanoindentation testing of boron carbide thin film at elevated temperature

    Czech Academy of Sciences Publication Activity Database

    Čtvrtlík, Radim; Stranyánek, Martin; Boháč, Petr

    Leoben : Montanuniversität, 2009 - (Eichlseder, W.), s. 29-30 ISBN 978-3-902544-02-5. [Danubia-Adria Symposium on Advances in Experimental Mechanics /26/. Leoben (AT), 23.09.2009-26.09.2009] R&D Projects: GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100522 Keywords : boron carbide * nanoindentation testing * elastic modulus Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Micro-homogeneity studies of boron carbide powders

    International Nuclear Information System (INIS)

    We have studied the micro-homogeneity of boron carbide powders by inductively coupled plasma optical emission spectrometry (ICP-OES) and total reflection X-ray fluorescence spectrometry (TXRF) using slurry sampling. To get information on the particle size distributions of the powders, the stabilized slurries of boron carbide powders were nebulized, the aerosols were transported into a Batelle impactor and the droplets were collected on the impactor stages bearing TXRF sample holders. In a first series of measurements, parameters of the impaction like the duration of the impaction and the use of glutinous substance on the sample holders were optimized. The different mass size fractions for industrial boron carbide powders were determined by weight measurements of the fractions collected on the different stages. The established particle size distributions were in the range of 0.5 to >16 μm and found similar to those determined by laser diffraction reported elsewhere. Analyses of the mass fractions by slurry sampling TXRF showed that Ca, Ti, Cr, Mn, Fe, Ni and Cu within the measurements errors were homogeneously distributed over the mass fractions between 0.5 and 4 μm and that their concentrations agreed with the bulk composition, as determined with ICP-OES subsequent to digestion. However, light underestimates were found at the 5 (Mn) up to 150 μg g-1 (Fe) level. Finally, boron carbide powders were washed out with nitric acid with different concentrations and leaching solutions and the residues were analyzed by ICP-OES and TXRF respectively. It is shown that up to 60% of the residual trace impurities in the powder studied can be removed by leaching with 34% (v/v) of nitric acid. (author)

  17. First principle study of hydrogen behavior in hexagonal tungsten carbide

    OpenAIRE

    Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Q. F. Fang; Chen, Jun-Ling; Luo, G.-N.

    2010-01-01

    Understanding the behavior of hydrogen in hexagonal tungsten carbide (WC) is of particular interest for fusion reactor design due to the presence of WC in the divertor of fusion reactors. Therefore, we use first-principles calculations to study the hydrogen behavior in WC. The most stable interstitial site for the hydrogen atom is the projection of the octahedral interstitial site on tungsten basal plane, followed by the site near the projection of the octahedral interstitial site on carbon b...

  18. Anodic etching of p-type cubic silicon carbide

    Science.gov (United States)

    Harris, G. L.; Fekade, K.; Wongchotigul, K.

    1992-01-01

    p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.

  19. Silicon carbide materials for LWR application: current status and issues

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) is a very attractive engineering ceramic in particular for high-temperature use and nuclear application due to its high-temperature strength, oxygen resistance, chemical stability, low activation, radiation resistance, etc. Silicon carbide composites have pseudo ductile behaviour by de-bonding and sliding at fiber/matrix interphase. Fundamental mechanical properties of highly crystalline nuclear grade SiC composites are stable following neutron irradiation. Silicon carbide composites are promising materials for accident-tolerant fuel. The sophistication of the technology infrastructure for safety has been requested by the Ministry of Economy, Trade and Industry (METI) in Japan. The research and development of fuel such as SiC cladding are expected to be described in a new road map by METI. Silicon carbide is a promising material for LWR application in terms of excellent stability of dimension and strength under neutron irradiation and excellent resistance to high-temperature steam. Fundamental fabrication technique and joining technique have been established. Current SiC/SiC composites have C interphase and environmental coating is required to prevent oxidation. Novel porous SiC/SiC composites do not have C interphase and have excellent oxidation resistance, although hermetic coating is required. The issues of SiC composite development for LWR application are as follows: The SiC/SiC composites have impurities depending on fabrication methods. It is important to understand the effect of impurities on the resistance to high-temperature water under normal operation and the resistance to high-temperature steam in the case of severe accident. The synergetic effect of irradiation and high-temperature water is also important. The reaction with fuel under neutron irradiation needs to be clarified. As for material development, coating, joining technique and large scale fabrication should be considered as important issues. Material cost should be

  20. Co-TiC CEMENTED CARBIDES. STRUCTURAL ASPECT

    OpenAIRE

    Volikova, A.; National Aviation University, Kyiv

    2012-01-01

     To increase wear resistance of turbine blades top shrouds plates made of different cast alloys are used. For this task current paper proposes Co-TiC cemented carbides. To evaluate prospective of their use in gas turbines it is necessary analize their microstructure and compare it with other alloys, particularly with industrial cast eutectic alloy XTH-62 and alloy P-69 [1].

  1. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    International Nuclear Information System (INIS)

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement

  2. Disorder and defects are not intrinsic to boron carbide

    OpenAIRE

    Swastik Mondal; Elena Bykova; Somnath Dey; Sk. Imran Ali; Natalia Dubrovinskaia; Leonid Dubrovinsky; Gleb Parakhonskiy; Sander van Smaalen

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichio...

  3. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    OpenAIRE

    Dong Chen; Fei Gao; Bo Liu

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C in...

  4. Progress in Studies on Carbon and Silicon Carbide Nanocomposite Materials

    OpenAIRE

    Peng Xiao; Jie Chen; Xian-feng Xu

    2010-01-01

    Silicon carbide nanofiber and carbon nanotubes are introduced. The structure and application of nanotubers (nanofibers) in carbon/carbon composites are emphatically presented. Due to the unique structure of nanotubers (nanofibers), they can modify the microstructure of pyrocarbon and induce the deposition of pyrocarbon with high text in carbon/carbon composites. So the carbon/carbon composites modified by CNT/CNF have more excellent properties.

  5. WSP-Sprayed Boron Carbide Coatings for Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Neufuss, Karel; Ctibor, Pavel; Rohan, Pavel; Dubský, Jiří; Chráska, Pavel; Brožek, Vlastimil

    Düsseldorf: DVS, 2002 - (Lugscheider, E.; Berndt, C.), s. 1-5 ISBN 3-87155-783-8. [International Thermal Spray Conference.. Essen (DE), 04.03.2002-06.03.2002] R&D Projects: GA ČR GA104/01/0149 Institutional research plan: CEZ:AV0Z2043910 Keywords : thermal spray coatings, boron carbide, fusion reactor materials Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  6. Calcium phosphate in catheter encrustation.

    Science.gov (United States)

    Cox, A J; Harries, J E; Hukins, D W; Kennedy, A P; Sutton, T M

    1987-02-01

    Encrusted catheters from nine female patients were the source of samples of deposits which were examined by X-ray diffraction, atomic absorption spectroscopy, infra-red spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. In eight samples the only crystalline phase which could be clearly distinguished by X-ray diffraction was ammonium magnesium orthophosphate hexahydrate, NH4MgPO4 X 6H2O, which occurs naturally as the mineral struvite. However, atomic absorption spectroscopy revealed an appreciable concentration of calcium in all samples. Calcium phosphates have previously been detected in catheter deposits. Infra-red and EXAFS spectra were consistent with the calcium phosphate being present as a poorly crystalline hydroxyapatite. Thus the deposits appear to consist of a mixture of crystalline struvite and a form of hydroxyapatite which is not fully crystalline. PMID:3030487

  7. Investigation on the Performance of Supported Molybdenum Carbide for the Partial Oxidation of Methane

    Institute of Scientific and Technical Information of China (English)

    Quanli Zhu; Jian Yang; Jiaxin Wang; Shengfu Ji; Hanqing Wang

    2003-01-01

    The performance of supported and unsupported molybdenum carbide for the partial oxida-tion of methane (POM) to syngas was investigated. An evaluation of the catalysts indicates that bulkmolybdenum carbide has a higher methane conversion during the initial stage but a lower selectivity toCO and H2/CO ratio in the products. The rapid deactivation of the catalyst is also a significant problem.However, the supported molybdenum carbide catalyst shows a much higher methane conversion, increasedselectivity and significantly improved catalytic stability. The characterization by XRD and BET specificarea measurements depict an improved dispersion of molybdenum carbide when using alumina as a carrier.The bulk or the supported molybdenum carbide exists in the β-Mo2C phase, while it is transformed intomolybdenum dioxide postcatalysis which is an important cause of molybdenum carbide deactivation.

  8. Effect of carbides on erosion resistance of 23-8-N steel

    Indian Academy of Sciences (India)

    Aniruddha A Gadhikar; Ashok Sharma; D B Goel; C P Sharma

    2014-04-01

    Microstructure is one of the most important parameters influencing erosion behaviour of materials. The role of carbides in the matrix is very complicated in controlling the erosion rate of the materials. Conflicting results have been reported in the literature about the effect of carbides on erosion resistance. Carbides are of great importance especially as obstacles against the penetration of erosive particles into the material surface. However, they are susceptible to cracking and causing matrix decohesion which may increase the overall erosion rate. In 23-8-N nitronic steel, carbides present in the form of bands are observed to accelerate the erosion rate. Coarse carbides cause depletion of carbon in the austenite matrix which adversely affects the strain hardening tendency thus causing deterioration in erosion resistance of the bulk material. The dissolution of carbides in the austenitic matrix after solution annealing is observed to improve the erosion resistance of 23-8-N nitronic steel.

  9. Recent advances in the production of mixed, single-phase sintered carbides (U-Pu)C

    International Nuclear Information System (INIS)

    The carbides sintered with nickel as a sintering aid are dense but contain around 10 per cent M2C3. The carbides sintered without nickel are less dense but contain nearly no M2C3. For dense carbides, it is known that the existence of M2C3 is linked to the oxygen and nitrogen content of the carbides. For less dense carbides, M2C3 is eliminated through the reaction: 2M2C3 + MO → 5MC + CO. CO can escape due to the presence of the porosities, The difference between the two types of carbides is due to the fact that the accelerated densification observed when nickel is used as a sintering aid does not allow CO to escape. (authors)

  10. Friction and surface chemistry of implantation-modified metal-carbide composites

    International Nuclear Information System (INIS)

    Dry sliding friction measurements were performed on model carbide-metal composite samples containing 24-42 vol.% carbide. Wear debris, located preferentially on the carbides, were analyzed using scanning electron microscopy-energy dispersive X-ray analysis and Auger scanning microscopy. The friction and wear of the composite samples were found to be influenced by the compatibility (degree of mutual solubility) of the carbides with the steel counterface, as well as by local inhomogeneities in the carbide distribution. Friction tests were also made on the samples following high fluence titanium implantation. Implantation resulted in increased friction and wear, possibly owing to an implantation-induced softening or degradation of the carbides. (orig.)

  11. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  12. Disorder and defects are not intrinsic to boron carbide

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  13. Carbide and Nitride Fuels for Advanced Burner Reactor

    International Nuclear Information System (INIS)

    The impacts of the mixed carbide and nitride fuels on the core performances and passive safety features of TRU burner were assessed and comapred with the metallic and oxide fuels. Targeting the potential design goals adopted in the Advanced Burner Reactor core concepts, the alternative TRU burner concepts were developed by loading carbide and nitride fuels. The neutron spectrum is softer than that of the metal core, but harder than that of the oxide core, and the core performance parameters such as fuel residence time, discharge burnup, flux level, etc are generally between the values of the metal and oxide cores. The margin to fuel melt was significantly increased because of the high thermal conductivity and high melting temperature, and hence there is an additional room to improve the thermal efficiency by increasing the operating temperature. The changed fuel composition affected the kinetics parameters and reactivity feedback coefficients, but the variations were minimal. The reduced core height decreases the sodium void worth, and the high thermal conductivity decreases the fuel temperature and Doppler constant. As a result, both carbide and nitride cores have favorable passive safety features without additional design fixes that are required in the oxide core concepts. (author)

  14. Reaction of uranium and plutonium carbides with austenitic steels

    International Nuclear Information System (INIS)

    The reaction of uranium and plutonium carbides with austenitic steels has been studied between 650 and 1050 deg. C using UC, steel and (UPu)C, steel diffusion couples. The steels are of the type CN 18.10 with or without addition of molybdenum. The carbides used are hyper-stoichiometric. Tests were also carried out with UCTi, UCMo, UPuCTi and UPuCMo. Up to 800 deg. C no marked diffusion of carbon into stainless steel is observed. Between 800 and 900 deg. C the carbon produced by the decomposition of the higher carbides diffuses into the steel. Above 900 deg. C, decomposition of the monocarbide occurs according to a reaction which can be written schematically as: (U,PuC) + (Fe,Ni,Cr) → (U,Pu) Fe2 + Cr23C6. Above 950 deg. C the behaviour of UPuCMo and that of the titanium (CN 18.12) and nickel (NC 38. 18) steels is observed to be very satisfactory. (author)

  15. Predicted boron-carbide compounds: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, De Yu; Yan, Qian; Wang, Bing; Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn; Yang, Jueming; Yang, Gui [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2014-06-14

    By using developed particle swarm optimization algorithm on crystal structural prediction, we have explored the possible crystal structures of B-C system. Their structures, stability, elastic properties, electronic structure, and chemical bonding have been investigated by first-principles calculations with density functional theory. The results show that all the predicted structures are mechanically and dynamically stable. An analysis of calculated enthalpy with pressure indicates that increasing of boron content will increase the stability of boron carbides under low pressure. Moreover, the boron carbides with rich carbon content become more stable under high pressure. The negative formation energy of predicted B{sub 5}C indicates its high stability. The density of states of B{sub 5}C show that it is p-type semiconducting. The calculated theoretical Vickers hardnesses of B-C exceed 40 GPa except B{sub 4}C, BC, and BC{sub 4}, indicating they are potential superhard materials. An analysis of Debye temperature and electronic localization function provides further understanding chemical and physical properties of boron carbide.

  16. Bonding and Integration Technologies for Silicon Carbide Based Injector Components

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  17. Method for the production of a silicon carbide body

    International Nuclear Information System (INIS)

    For an improved method of producing silicon carbide elements of complex shape (gas turbine engines), selected fractions of silicon carbide particles (65 to 75% by weight particle size 40 to 0C to 4550C in an atmosphere with 10 to 30vol.% of oxygen removes the excess carbon at the surface of the body and provides it with an open pore structue. Silication is started by heating to at least 15400C in an oxygen-free atmosphere which consits mostly of nitrogen and 0 to 10vol% hydrogen. The hydrogen is active in removing enough carbon and, possibly, graphite from the body to obtain a sufficiently free volume for the subsequent conversion of the residual carbon into silicon carbide. The nitrogen converts oxidic impurities of the initial material into silicon nitride. After removing the nitrogen-hydrogen atmosphere, the body is kept in a vacuum lower than the steam pressure of silicon at silication temperature, with nitrogen being removed from the silicon nitride and transferred into silicon metal. The thus cleaned formed piece, which is now highly porous, is then silicated at temperatures between 14250C and 17650C in a nitrogen-charged environment. (IHOE)

  18. Novel silicon carbide/polypyrrole composites; preparation and physicochemical properties

    International Nuclear Information System (INIS)

    Novel silicon carbide/polypyrrole (SiC/PPy) conducting composites were prepared using silicon carbide as inorganic substrate. The surface modification of SiC was performed in aqueous solution by oxidative polymerization of pyrrole using ferric chloride as oxidant. Elemental analysis was used to determine the mass loading of polypyrrole in the SiC/PPy composites. Scanning electron microscopy showed the surface modification of SiC by PPy. PPy in composites was confirmed by the presence of PPy bands in the infrared spectra of SiC/PPy containing various amounts of conducting polymer. The conductivity of SiC/PPy composites depends on PPy content on the surface. The composite containing 35 wt.% PPy showed conductivity about 2 S cm-1, which is in the same range as the conductivity of pure polypyrrole powder prepared under the same conditions using the same oxidant. PPy in the composites was clearly detected by X-ray photoelectron spectroscopy (XPS) measurements by its N1s and Cl2p peaks. High resolution scans of the C1s regions distinguished between silicon carbide and polypyrrole carbons. The fraction of polypyrrole at the composite surface was estimated from the silicon and nitrogen levels. The combination of XPS and conductivity measurements suggests that the surface of the SiC/PPy composites is polypyrrole-rich for a conducting polymer mass loading of at least 12.6 wt.%

  19. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    Science.gov (United States)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  20. Characterization of a boron carbide-based polymer neutron sensor

    Science.gov (United States)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  1. Predicted boron-carbide compounds: a first-principles study.

    Science.gov (United States)

    Wang, De Yu; Yan, Qian; Wang, Bing; Wang, Yuan Xu; Yang, Jueming; Yang, Gui

    2014-06-14

    By using developed particle swarm optimization algorithm on crystal structural prediction, we have explored the possible crystal structures of B-C system. Their structures, stability, elastic properties, electronic structure, and chemical bonding have been investigated by first-principles calculations with density functional theory. The results show that all the predicted structures are mechanically and dynamically stable. An analysis of calculated enthalpy with pressure indicates that increasing of boron content will increase the stability of boron carbides under low pressure. Moreover, the boron carbides with rich carbon content become more stable under high pressure. The negative formation energy of predicted B5C indicates its high stability. The density of states of B5C show that it is p-type semiconducting. The calculated theoretical Vickers hardnesses of B-C exceed 40 GPa except B4C, BC, and BC4, indicating they are potential superhard materials. An analysis of Debye temperature and electronic localization function provides further understanding chemical and physical properties of boron carbide. PMID:24929411

  2. Predicted boron-carbide compounds: A first-principles study

    International Nuclear Information System (INIS)

    By using developed particle swarm optimization algorithm on crystal structural prediction, we have explored the possible crystal structures of B-C system. Their structures, stability, elastic properties, electronic structure, and chemical bonding have been investigated by first-principles calculations with density functional theory. The results show that all the predicted structures are mechanically and dynamically stable. An analysis of calculated enthalpy with pressure indicates that increasing of boron content will increase the stability of boron carbides under low pressure. Moreover, the boron carbides with rich carbon content become more stable under high pressure. The negative formation energy of predicted B5C indicates its high stability. The density of states of B5C show that it is p-type semiconducting. The calculated theoretical Vickers hardnesses of B-C exceed 40 GPa except B4C, BC, and BC4, indicating they are potential superhard materials. An analysis of Debye temperature and electronic localization function provides further understanding chemical and physical properties of boron carbide

  3. The Development of Silicon Carbide Based Hydrogen and Hydrocarbon Sensors

    Science.gov (United States)

    Liu, Chung-Chiun

    1994-01-01

    Silicon carbide is a high temperature electronic material. Its potential for development of chemical sensors in a high temperature environment has not been explored. The objective of this study is to use silicon carbide as the substrate material for the construction of chemical sensors for high temperature applications. Sensors for the detection of hydrogen and hydrocarbon are developed in this program under the auspices of Lewis Research Center, NASA. Metal-semiconductor or metal-insulator-semiconductor structures are used in this development. Specifically, using palladium-silicon carbide Schottky diodes as gas sensors in the temperature range of 100 to 400 C are designed, fabricated and assessed. The effect of heat treatment on the Pd-SiC Schottky diode is examined. Operation of the sensors at 400 C demonstrate sensitivity of the sensor to hydrogen and hydrocarbons. Substantial progress has been made in this study and we believe that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures. However, the long term stability and operational life of the sensor need to be assessed. This aspect is an important part of our future continuing investigation.

  4. Boron carbide nitride derived from amine-boranes

    International Nuclear Information System (INIS)

    This paper reports that amine-boranes such as pyridine- or piperazine-borane can be converted into infusible polymers by thermal crosslinking at temperatures up to 420 degrees C. Further rise of the temperature up to 1050 degrees C in argon results in transformation of the polymers into black residues. Microstructural (TEM/EELS, ESCA) and chemical investigations indicate the presence of single phase boron carbide nitrides which exhibit a graphite-like, turbostratic structure with a homogeneous distribution of the elements B, N, and C. Subsequent annealing at 2200 degrees C in argon gives rise to crystallization of the pyrolytic material generating the thermodynamically stable phases BN, C, and B4C. The semiconducting properties of the X-ray amorphous boron carbide nitride synthesized at 1050 degrees C depend on the B/N/C-ratio which can be influenced by the type of amine-borane-precursor and by the applied atmosphere (Ar or NH3) during pyrolysis. The amine-boranes can be converted into boron carbide nitride- and BN-monoliths at 1050 degrees C under argon or reactive gas (NH3), respectively. The monoliths are transformed into composites with 91% rel. density containing BN, C, and B4C when heated up to 2200 degrees C

  5. Gravimetric determination of carbon in uranium-plutonium carbide materials

    International Nuclear Information System (INIS)

    A gravimetric method for determining carbon in uranium-plutonium carbide materials was developed to analyze six samples simultaneously. The samples are burned slowly in an oxygen atmosphere at approximately 9000C, and the gases generated are passed through Schuetze's oxidizing reagent (iodine pentoxide on silica gel) to assure quantitative oxidation of the CO to CO2. The CO2 is collected on Ascarite and weighed. This method was tested using a tungsten carbide reference material (NBS-SRM-276) and a (U,Pu)C sample. For 42 analyses of the tungsten carbide, which has a certified carbon content of 6.09%, an average value of 6.09% was obtained with a standard deviation of 0.017% or a relative standard deviation of 0.28%. For 17 analyses of the (U,Pu)C sample, an average carbon content of 4.97% was found with a standard deviation of 0.012% or a relative standard deviation of 0.24%

  6. Silicon Carbide Mounts for Fabry-Perot Interferometers

    Science.gov (United States)

    Lindemann, Scott

    2011-01-01

    Etalon mounts for tunable Fabry- Perot interferometers can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot interferometers or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot interferometer structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such interferometers are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot interferometer of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the interferometer as thus modified are similar to those of the interferometer as originally designed, but the mass of the modified interferometer is significantly less than the mass of the original version.

  7. Disorder and defects are not intrinsic to boron carbide.

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials. PMID:26777140

  8. Properties of boron-carbide based nanotubular structures

    International Nuclear Information System (INIS)

    Full text: One of the most important areas of search for a new generation of superconductors is amongst layered A1B2-type systems. One such structure, LiBC, which is isovalent with, and structurally similar to, the superconductor MgB2, has recently attracted attention due to the nature of its electronic structure. It was found by Rosner et al., that the character of the Fermi surface of hole-doped LiBC is very similar to the features which lead to superconductivity in MgB2 at TC ∼ 40 K. Exploration of the novel properties of tubular analogues of layered and crystalline structures is another promising trend in the search for novel superconductors. Carbon nanotubes, for example, have been found tp have a superconducting transition temperature, TC, of approximately 0.55 K. A number of interesting attempts to model the properties of hypothetical nanotubular modifications of layered A1B2 and A1B2 - type ternary suicides have also been performed recently. We have proposed a new class of charged Boron-Carbide nanotubes (BC(-)) which correspond to a charged backbone structure for the hypothetical LiBC nanotubes. In the present work we discuss the energetics and electronic structure of these charged Boron-Carbide nanotubes, and the effects of hole-doping of these structures. We also present some preliminary results of calculations of the vibrational properties of charged and hole-doped Boron-Carbide nanotubes

  9. Visible-blind ultraviolet photodetectors on porous silicon carbide substrates

    International Nuclear Information System (INIS)

    Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. The optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation

  10. Tumoral calcium pyrophosphate deposition disease

    International Nuclear Information System (INIS)

    A report of two patients in which a soft tissue mass, initially regarded as a malignant tumor, was shown to be the result of calcium pyrophosphate deposition disease. The first case, a woman aged 71 years, presented with a mass involving the right fifth finger. In the second case, also a women aged 71 years, the lesion involved the tissues adjacent to the right hip. Each lesion consisted of a mass of highly cellular tissue containing deposits of calcium pyrophosphate dihydrate crystals. The clinical, radiological, and pathological features of the two cases are compared with those of seven similar cases reported in the literature. (orig.)

  11. Determination of carbides generation parameters in corium ant its effect on meltdown removing

    International Nuclear Information System (INIS)

    Object of examination in the work is chemical reactions velocities of uranium dioxide with graphite under high temperatures. The method of study is conducting of calculations complex by numerical techniques and comparison its results with experimental data. Result of this study is mathematical model of uranium carbides and zirconium carbides formation in accidental processes courses. Results of study are allowing to create conditions for development or prevention of carbides formation reactions, so this methodics is suitable for ensuring of nuclear reaction safety

  12. Nanosized Borides and Carbides for Electroplating. Metal-Matrix Coatings: Specifications, Performance Evaluation

    Science.gov (United States)

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Il’yashchenko, D. P.; Kartsev, D. S.

    2016-04-01

    This paper summarizes experience of application of nano-sized carbides and borides of titanium and chromium, silicon carbide as components of electro-depositable coating compositions based on nickel, zinc, and chromium. Basic physical and mechanical properties of the coatings are determined. Technological and economic evaluation is completed; practicability of high-cost nano-diamonds substitution for nano-sized borides and carbides is justified.

  13. Electrophysical properties and structure of niobium and tantalum carbide coatings on graphite

    International Nuclear Information System (INIS)

    Variation of electric resistance and thermoelectromotive force of tantalum and niobium carbides depending on composition and temperature is studied. Electric resistance of carbides is shown to grow with increase of carbon deficit, while thermoelectromotive force - accepts more negative values. Electro- and thermophysical properties are determined to be closely interrelated with electron structure of carbide coatings. In particular, results of X-ray photoelectron spectroscopy prove the fact

  14. Mechanical properties and structure of niobium and tantalum carbide coatings on graphite

    International Nuclear Information System (INIS)

    Peculiarities of preparation of niobium and tantalum nonstoichiometric carbides have been studied by the method of gas-phase - diffusion crystallization. Mechanical properties of nonstoichiometric carbides are mainly determined by the concentration of carbon in them. Strength characteristics increase with carbon deficiency and reach the maximum at the ratios C:Me=0.8-0.85. However, futher increase in carbon vacancies in carbon sublattice causes a sharp decrease in mechanical properties of carbide coatings

  15. Influence of Eta-Phase on Wear Behavior of WC-Co Carbides

    OpenAIRE

    A. Formisano; Capece Minutolo, F.; Caraviello, A.; Carrino, L.; DURANTE, M.; Langella, A.

    2016-01-01

    Cemented carbides, also known as Widia, are hard metals produced by sintering process and widely used in mechanical machining. They show high cutting capacity and good wear resistance; consequently, they result to be excellent materials for manufacturing cutting tools and sandblast nozzles. In this work, the wear resistance of WC-Co carbides containing Eta-phase, a secondary phase present in the hard metals when a carbon content deficiency occurs, is analyzed. Different mixtures of carbide ar...

  16. Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica

    OpenAIRE

    Luo Xiaogang; Ma Wenhui; Zhou Yang; Liu Dachun; Yang Bin; Dai Yongnian

    2009-01-01

    Abstract Silicon carbide nanowires have been synthesized at 1400 °C by carbothermic reduction of silica with bamboo carbon under normal atmosphere pressure without metallic catalyst. X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy and Fourier transformed infrared spectroscopy were used to characterize the silicon carbide nanowires. The results show that the silicon carbide nanowires have a core–shell structure and gr...

  17. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    Science.gov (United States)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  18. Formation Energies and Electronic Properties of Vanadium Carbides Found in High Strength Steel Alloys

    Science.gov (United States)

    Limmer, Krista; Medvedeva, Julia

    2013-03-01

    Carbide formation and stabilization in steels is of great interest owing to its effect on the microstructure and properties of the Fe-based alloys. The appearance of carbides with different metal/C ratios strongly depends on the carbon concentration, alloy composition as well as the heat treatment. Strong carbide-forming elements such as Ti, V, and Nb have been used in microalloyed steels; with VC showing an increased solubility in the iron matrix as compared with TiC and NbC. This allows for dissolution of the VC into the steel during heating and fine precipitation during cooling. In addition to VC, the primary vanadium carbide with cubic structure, a wide range of non-stoichiometric compositions VCy with y varying from 0.72 to 0.88, has been observed. This range includes two ordered compounds, V8C7 and V6C5. In this study, first-principles density functional theory (DFT) is employed to examine the stability of the binary carbides by calculating their formation energies. We compare the local structures (atomic coordination, bond distances and angles) and the density of states in optimized geometries of the carbides. Further, the effect of alloying additions, such as niobium and titanium, on the carbide stabilization is investigated. We determine the energetically preferable substitutional atom location in each carbide and study the impurity distribution as well as its role in the carbide formation energy and electronic structure.

  19. High Carbon Alloy Steels with Multiple Types of Ultra-fine Carbides and Their Characteristics

    Institute of Scientific and Technical Information of China (English)

    MA Yong-qing; GAO Hong-tao; QI Yu-hong; ZHANG Zhan-ping; DAI Yu-mei; LIU Yan-xia

    2004-01-01

    Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7C3, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength,flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives.

  20. Phase stability of chrome-carbide Ni--Cr coatings in low-oxygen environments

    International Nuclear Information System (INIS)

    The thermal stability of the phases in chrome-carbide-based, wear-resistant coatings, applied by plasma and detonation gun (D-gun) devices, was investigated for applications in low-oxygen environments. It was found that current coatings using the Cr3C2 carbide in a Ni--Cr binder decomposed to lower carbides, and consumed Cr from the binder upon long-term exposure at elevated temperature. Two new coatings based on the Cr23C6 carbide were found to have excellent thermal stability, as well as excellent wear properties