WorldWideScience

Sample records for calcium binding protein

  1. Information flow through calcium binding proteins

    Science.gov (United States)

    Bak, Ji Hyun; Bialek, William

    2013-03-01

    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  2. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...... discusses the current knowledge on the structure and potential function of this protein. Several putative binding partners of ALG-2 have been identified hinting to functions of ALG-2 in apoptosis and possibly also in proliferation, endocytosis and transcriptional regulation during development. Gene deletion...

  3. Calcium binding proteins and calcium signaling in prokaryotes.

    Science.gov (United States)

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  4. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  5. The Effect of Calcium on the Binding of Calmodulin to Calcium/Calmodulin Protein Kinase II.

    Science.gov (United States)

    Porta, Angela R.

    2000-01-01

    Introduces a follow-up laboratory experiment demonstrating the formation change when calcium binds to calmodulin. This conformation change allows this complex to bind to a target protein. Presents the necessary information to conduct the experiment and discusses the results. (YDS)

  6. Calcium-binding ability of soy protein hydrolysates

    Institute of Scientific and Technical Information of China (English)

    Xiao Lan Bao; Mei Song; Jing Zhang; Yang Chen; Shun Tang Guo

    2007-01-01

    This present study investigated the ability of various soy protein hydrolysates (SPHs) in binding calcium. It was demonstrated that the amount of Ca-bound depended greatly on the SPHs obtained using different proteases, which included: neutrase,flavourzyme, protease M and pepsin. The maximum level of Ca-bound (66.9 mg/g) occurred when protease M was used to hydrolyze soy protein. Peptide fragments exhibiting high Ca-binding capacity had molecular weights of either 14.4 or 8-9 kDa. The level of Ca-bound increased linearly with the increment of carboxyl content in SPHs, and further deamidation on SPHs from protease M improved Ca-binding of the hydrolysate.

  7. Mycobacterial PE_PGRS Proteins Contain Calcium-Binding Motifs with Parallel β-roll Folds

    Institute of Scientific and Technical Information of China (English)

    Nandita; Bachhawat; Balvinder; Singh

    2007-01-01

    The PE_PGRS family of proteins unique to mycobacteria is demonstrated to con- rain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel/3-roll or parallel β-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE_PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE_PGRS proteins in the Ught of macrophage-pathogen interaction and pathogenesis is presented.

  8. Aging-related changes in calcium binding proteins in rat perirhinal cortex

    OpenAIRE

    Moyer, James R.; Furtak, Sharon C.; McGann, John P.; Brown, Thomas H.

    2009-01-01

    Dysregulation of intracellular calcium homeostasis has been linked to neuropathological symptoms observed in aging and age-related disease. Alterations in the distribution and relative frequency of calcium-binding proteins (CaBPs), which are important in regulating intracellular calcium levels, may contribute to disruption of calcium homeostasis. Here we examined the laminar distribution of three CaBPs in rat perirhinal cortex (PR) as a function of aging. Calbindin-D28k (CB), parvalbumin (PV)...

  9. Neutrophils and the calcium-binding protein MRP-14 mediate carrageenan-induced antinociception in mice

    Directory of Open Access Journals (Sweden)

    Rosana L. Pagano

    2002-01-01

    Full Text Available Background: We have previously shown that the calcium-binding protein MRP-14 secreted by neutrophils mediates the antinociceptive response in an acute inflammatory model induced by the intraperitoneal injection of glycogen in mice.

  10. Calmodulin-binding domains in Alzheimer's disease proteins: extending the calcium hypothesis.

    Science.gov (United States)

    O'Day, Danton H; Myre, Michael A

    2004-08-01

    The calcium hypothesis of Alzheimer's disease (AD) invokes the disruption of calcium signaling as the underlying cause of neuronal dysfunction and ultimately apoptosis. As a primary calcium signal transducer, calmodulin (CaM) responds to cytosolic calcium fluxes by binding to and regulating the activity of target CaM-binding proteins (CaMBPs). Ca(2+)-dependent CaMBPs primarily contain domains (CaMBDs) that can be classified into motifs based upon variations on the basic amphiphilic alpha-helix domain involving conserved hydrophobic residues at positions 1-10, 1-14 or 1-16. In contrast, an IQ or IQ-like domain often mediates Ca(2+)-independent CaM-binding. Based on these attributes, a search for CaMBDs reveals that many of the proteins intimately linked to AD may be calmodulin-binding proteins, opening new avenues for research on this devastating disease. PMID:15249195

  11. Characterization of EhCaBP, a calcium-binding protein of Entamoeba histolytica and its binding proteins.

    Science.gov (United States)

    Yadava, N; Chandok, M R; Prasad, J; Bhattacharya, S; Sopory, S K; Bhattacharya, A

    1997-01-01

    A novel calcium-binding protein (EhCaBP) has been recently identified and characterized from the protozoan parasite Entamoeba histolytica. In order to decipher the function of this protein, a few basic properties were investigated and compared with the ubiquitous Ca(2+)-signal transducing protein calmodulin (CaM). Indirect immunofluorescence and immunoprecipitation analyses using specific antibodies against EhCaBP suggest that it is a soluble cytoplasmic protein with no major post-translational modification. EhCaBP did not stimulate cAMP-phosphodiesterase activity, differentiating it from all known CaMs. Affinity chromatography of [35S]methionine-labelled proteins of E. histolytica trophozoites using EhCaBP-sepharose column showed Ca(2+)-dependent binding of a group of proteins. Radiolabelled proteins from the same extract also bound to CaM-sepharose. However, the proteins bound to the two columns were different as revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At least one of the EhCaBP-binding proteins became phosphorylated as revealed by in vivo phosphorylation analysis. The binding-proteins could not be detected in E. invadens (a species that is pathogenic in reptiles) and E. moshkovskii (which is found in the human gut but is not pathogenic), two species in which EhCaBP-like protein has not been found. Two distinct Ca(2+)-dependent protein kinases, which get activated by EhCaBP and CaM respectively, were detected in E. histolytica. These kinases require different levels of Ca2+ for their maximal activities. Affinity chromatography also showed the binding of protein kinase(s) to EhCaBP in a Ca(2+)-dependent manner. Our data suggest that there may be novel Ca(2+)-signal transduction pathway in E. histolytica mediated by EhCaBP.

  12. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein.

    Science.gov (United States)

    Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr

    2015-10-27

    Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins. PMID:26445027

  13. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    Science.gov (United States)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  14. Binding of fluorescent lanthanides to rat liver mitochondrial membranes and calcium ion-binding proteins.

    Science.gov (United States)

    Mikkelsen, R B; Wallach, D F

    1976-05-21

    (1) Tb3+ binding to mitochondrial membranes can be monitored by enhanced ion fluorescence at 545 nm with excitation at 285 nm. At low protein concentrations (less than 30 mug/ml) no inner filter effects are observed. (2) This binding is localized at the external surface of the inner membrane and is unaffected by inhibitors of respiration or oxidative phosphorylation. (3) A soluble Ca2+ binding protein isolated according to Lehninger, A.L. ((1971) Biochem. Biophys. Res. Commun. 42, 312-317) also binds Tb3+ with enhanced ion fluorescence upon excitation at 285 nm. The excitation spectrum of the isolated protein and of the intact mitochondria are indicative of an aromatic amino acid at the cation binding site. (4) Further characterization of the Tb3+-protein interaction revealed that there is more than one binding site per protein molecule and that these sites are clustered (less than 20 A). Neuraminidase treatment or organic solvent extraction of the protein did not affect fluorescent Tb3+ binding. (5) pH dependency studies of Tb3+ binding to the isolated protein or intact mitochondria demonstrated the importance of an ionizable group of pK greater than 6. At pH less than 7.5 the amount of Tb3+ bound to the isolated protein decreased with increase in pH as monitored by Tb3+ fluorescence. With intact mitochondria the opposite occurred with a large increase in Tb3+ fluorescence at higher pH. This increase was not observed when the mitochondria were preincubated with antimycin A and rotenone. PMID:6061

  15. Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function.

    Science.gov (United States)

    Previs, Michael J; Mun, Ji Young; Michalek, Arthur J; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M; Craig, Roger

    2016-03-22

    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.

  16. The calcium binding protein ALG-2 binds and stabilizes Scotin, a p53-inducible gene product localized at the endoplasmic reticulum membrane

    DEFF Research Database (Denmark)

    Draeby, Ingrid; Woods, Yvonne L; la Cour, Jonas Marstrand;

    2007-01-01

    ALG-2 (apoptosis linked gene 2 product) is a calcium binding protein for which no clear cellular function has been established. In this study we identified Scotin as a novel ALG-2 target protein containing 6 PXY and 4 PYP repeats, earlier identified in the ALG-2 binding regions of AIP1/ALIX and T...... cells. Overexpression of ALG-2 led to accumulation of Scotin in MCF7 and H1299 cells. In vitro and in vivo binding of ALG-2 to Scotin was demonstrated to be strictly calcium dependent indicating a role of this interaction in calcium signaling pathways....

  17. Mechanism of fluorescence and conformational changes of the sarcoplasmic calcium binding protein of the sand worm Nereis diversicolor upon Ca2+ or Mg2+ binding.

    Science.gov (United States)

    Sillen, Alain; Verheyden, Stefan; Delfosse, Lotte; Braem, Tania; Robben, Johan; Volckaert, Guido; Engelborghs, Yves

    2003-09-01

    The calcium-binding protein isolated from the sarcoplasm of the muscles of the sand worm Nereis diversicolor has four EF-hands and three active binding sites for Ca(2+) or Mg(2+). Nereis diversicolor sarcoplasmic calcium-binding protein contains three tryptophan residues at positions 4, 57, and 170, respectively. The Wt protein shows a very limited fluorescence increase upon binding of Ca(2+) or Mg(2+). Single-tryptophan-containing mutants were produced and purified. The fluorescence titrations of these mutants show a limited decrease of the affinity for calcium, but no alterations of the cooperativity. Upon adding calcium, Trp170 shows a strong fluorescence increase, Trp57 an extensive fluorescence decrease, and Trp4 shows no fluorescence change. Therefore mutant W4F/W170F is ideally suited to analyze the fluorescence titrations and to study the binding mechanism. Mutations of the calcium ligands at the z-position in the three binding sites show no effect at site I and a total loss of cooperativity at sites III and IV. The quenching of Trp57 upon calcium binding is dependent on the presence of arginine R25, but this residue is not just a simple dynamic quencher. The role of the salt bridge R25-D58 is also investigated. PMID:12944301

  18. The Determination of Vitamin D-Dependent Calcium Binding Protein in Chick Intesting: An Undergraduate Biochemistry Laboratory Experiment.

    Science.gov (United States)

    Lessard, George M.

    1980-01-01

    Described is an experiment used in an undergraduate biochemistry laboratory involving inducing rickets in chicks and correlating the disease to a reduction in vitamin D-dependent calcium binding protein. Techniques involved are hormone induction, protein isolation, and radioisotope methodology. (Author/DS)

  19. Calciomics:prediction and analysis of EF-hand calcium binding proteins by protein engineering

    Institute of Scientific and Technical Information of China (English)

    YANG; Jenny; Jie

    2010-01-01

    Ca2+ plays a pivotal role in the physiology and biochemistry of prokaryotic and mammalian organisms.Viruses also utilize the universal Ca2+ signal to create a specific cellular environment to achieve coexistence with the host,and to propagate.In this paper we first describe our development of a grafting approach to understand site-specific Ca2+ binding properties of EF-hand proteins with a helix-loop-helix Ca2+ binding motif,then summarize our prediction and identification of EF-hand Ca2+ binding sites on a genome-wide scale in bacteria and virus,and next report the application of the grafting approach to probe the metal binding capability of predicted EF-hand motifs within the streptococcal hemoprotein receptor(Shr) of Streptococcus pyrogenes and the nonstructural protein 1(nsP1) of Sindbis virus.When methods such as the grafting approach are developed in conjunction with prediction algorithms we are better able to probe continuous Ca2+-binding sites that have been previously underrepresented due to the limitation of conventional methodology.

  20. Functional manipulation of a calcium-binding protein from Entamoeba histolytica guided by paramagnetic NMR.

    Science.gov (United States)

    Rout, Ashok K; Patel, Sunita; Somlata; Shukla, Manish; Saraswathi, Deepa; Bhattacharya, Alok; Chary, Kandala V R

    2013-08-01

    EhCaBP1, one of the calcium-binding proteins from Entamoeba histolytica, is a two-domain EF-hand protein. The two domains of EhCaBP1 are structurally and functionally different from each other. However, both domains are required for structural stability and a full range of functional diversity. Analysis of sequence and structure of EhCaBP1 and other CaBPs indicates that the C-terminal domain of EhCaBP1 possesses a unique structure compared with other family members. This had been attributed to the absence of a Phe-Phe interaction between highly conserved Phe residues at the -4 position in EF-hand III (F[-4]; Tyr(81)) and at the 13th position in EF-hand IV (F[+13]; Phe(129)) of the C-terminal domain. Against this backdrop, we mutated the Tyr residue at the -4th position of EF III to the Phe residue (Y81F), to bring in the Phe-Phe interaction and understand the nature of structural and functional changes in the protein by NMR spectroscopy, molecular dynamics (MD) simulation, isothermal titration calorimetry (ITC), and biological assays, such as imaging and actin binding. The Y81F mutation in EhCaBP1 resulted in a more compact structure for the C-terminal domain of the mutant as in the case of calmodulin and troponin C. The compact structure is favored by the presence of a π-π interaction between Phe(81) and Phe(129) along with several hydrophobic interactions of Phe(81), which are not seen in the wild-type protein. Furthermore, the biological assays reveal preferential membrane localization of the mutant, loss of its colocalization with actin in the phagocytic cups, whereas retaining its ability to bind G- and F-actin. PMID:23782698

  1. Localisation of calcium-binding proteins in ram spermatozoa using the immunofluorescence technique

    International Nuclear Information System (INIS)

    Localization of two calcium-binding proteins (proteins A and B) believed to be involve in membrane fusion on whole spermatozoa were carried out in two stages; before and after the acrosome reaction, the reaction being a prerequisite to fertilization. Determination of the acrosome reaction and sperm viability is carried out using fluorescent dyes i.e., FITC-conjugated Pisum sativum agglutinin (PSA) and propidium iodide (PI) respectively. Polyclonal antibodies were raised in rabbits. Ejaculated semen was diluted in buffer and loaded into tubes. Acrosome reaction was induced with calcium ionophore A23187 at 390 degree C. PI was added to the sub-samples at time 0 and 45 minutes. Excess PI, ionophore and seminal plasma was filtered out with a syringe. Smears were made on slides and air-dried. The cells were pemeabilised with ethanol and rinsed in PBS. Batch 1 slides were incubated with FITC-PSA in the dark while batch H slides were incubated in 1% sheep serum. Batch II slides were then rinsed in PBS twice and incubated in both antiserum and pre-immune serum (negative control). These slides were then incubated in FITC-conjugated secondary antibody (anti-rabbit IgG) and kept in the dark. After final washing and mounted, both batches of slides were viewed immediately using fluorescence microscope. Results obtained before acrosome reaction showed localization of both antibodies to the whole sperm head, along the midpiece and tail. The acrosomes were also intact and cells were viable. After the acrosome reaction, localization of both antibodies were observed at the post-acrosomal region, midpiece, tail and the equatorial segment with no binding to the acrosome. Cells were mainly acrosome-reacted and dying. No binding was observed with pre-immune serum. Results indicate that the antigens were present in the acrosome and the change in binding suggests that the antigens have been redistributed after commencement of the acrosome reaction. The findings suggest that the proteins

  2. Biophysical characterization and functional studies on calbindin-D28K: A vitamin D-induced calcium-binding protein

    International Nuclear Information System (INIS)

    Vitamin D dependent calcium binding protein, or calbindin-D, is the principal protein induced in the intestine in response to the steroid hormone 1,25(OH)2-vitamin D3. A definitive role for calbindin-D in vitamin D3 mediated biological responses remains unclear. Biophysical and functional studies on chick intestinal calbindin-D28K (CaBP) were initiated so that some insight might be gained into its relevance to the process of intestinal calcium transport. Calbindin-D belongs to a class of high affinity calcium binding proteins which includes calmodulin, parvalbumin and troponin C. The Ca 2+ binding stoichiometry and binding constants for calbindin-D28K were quantitated by Quin 2 titration analysis. The protein was found to bind 5-6 Ca 2+ ions with a KD on the order of 10-8, in agreement with the 6 domains identified from the amino acid sequence. A slow Ca 2+ exchange rate (80 s-1) as assessed by 43Ca NMR and extensive calcium dependent conformational changes in 1H NMR spectra were also observed. Functional studies on chick intestinal CaBP were carried out by two different methods. Interactions between CaBP and intestinal cellular components were assessed via photoaffinity labeling techniques. Specific calcium dependent complexes for CaBP were identified with bovine intestinal alkaline phosphatase and brush border membrane proteins of 60 and 150 kD. CaBP was also found to co-migrate with the alkaline phosphatase activity of chick intestinal brush border membranes as evaluated by gel filtration chromatography. The second procedure for evaluating CaBP functionality has involved the quantitation of CaBP association with vesicular transport components as assessed by ELISA. CaBP, immunoreactivity was observed in purified lysosomes, microsomes and microtubules

  3. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number.

    Science.gov (United States)

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number. PMID:15325281

  4. Distribution and Morphology of Calcium-Binding Proteins Immunoreactive Neurons following Chronic Tungsten Multielectrode Implants.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    Full Text Available The development of therapeutic approaches to improve the life quality of people suffering from different types of body paralysis is a current major medical challenge. Brain-machine interface (BMI can potentially help reestablishing lost sensory and motor functions, allowing patients to use their own brain activity to restore sensorimotor control of paralyzed body parts. Chronic implants of multielectrodes, employed to record neural activity directly from the brain parenchyma, constitute the fundamental component of a BMI. However, before this technique may be effectively available to human clinical trials, it is essential to characterize its long-term impact on the nervous tissue in animal models. In the present study we evaluated how chronic implanted tungsten microelectrode arrays impact the distribution and morphology of interneurons reactive to calcium-binding proteins calbindin (CB, calretinin (CR and parvalbumin (PV across the rat's motor cortex. Our results revealed that chronic microelectrode arrays were well tolerated by the nervous tissue, with recordings remaining viable for up to 6 months after implantation. Furthermore, neither the morphology nor the distribution of inhibitory neurons were broadly impacted. Moreover, restricted microglial activation was observed on the implanted sites. On the whole, our results confirm and expand the notion that tungsten multielectrodes can be deemed as a feasible candidate to future human BMI studies.

  5. Characterization of Calflagin, a Flagellar Calcium-Binding Protein from Trypanosoma congolense

    Science.gov (United States)

    Eyford, Brett A.; Kaufman, Laura; Salama-Alber, Orly; Loveless, Bianca; Pope, Matthew E.; Burke, Robert D.; Matovu, Enock; Boulanger, Martin J.; Pearson, Terry W.

    2016-01-01

    Background Identification of species-specific trypanosome molecules is important for laboratory- and field-based research into epidemiology and disease diagnosis. Although Trypanosoma congolense is the most important trypanosome pathogen of cattle in Africa, no species-specific molecules found in infective bloodstream forms (BSF) of the parasites have been identified, thus limiting development of diagnostic tests. Methods Immuno-mass spectrometric methods were used to identify a protein that is recognized by a T. congolense-specific monoclonal antibody (mAb) Tc6/42.6.4. The identified molecule was expressed as a recombinant protein in E. coli and was tested in several immunoassays for its ability to interact with the mAb. The three dimensional structure of the protein was modeled and compared to crystal- and NMR-structures of the homologous proteins from T. cruzi and T. brucei respectively, in order to examine structural differences leading to the different immunoreactivity of the T. congolense molecule. Enzyme-linked immunosorbent assays (ELISA) were used to measure antibodies produced by trypanosome-infected African cattle in order to assess the potential for use of T. congolense calflagin in a serodiagnostic assay. Results The antigen recognized by the T. congolense-specific mAb Tc6/42.6.4 was identified as a flagellar calcium-binding protein, calflagin. The recombinant molecule showed immunoreactivity with the T. congolense-specific mAb confirming that it is the cognate antigen. Immunofluorescence experiments revealed that Ca2+ modulated the localization of the calflagin molecule in trypanosomes. Structural modelling and comparison with calflagin homologues from other trypanosomatids revealed four non-conserved regions on the surface of the T. congolense molecule that due to differences in surface chemistry and structural topography may form species-specific epitopes. ELISAs using the recombinant calflagin as antigen to detect antibodies in trypanosome

  6. CALCIUM-INDUCED LIPID PEROXIDATION IS MEDIATED BY RHODNIUS HEME-BINDING PROTEIN (RHBP) AND PREVENTED BY VITELLIN.

    Science.gov (United States)

    Paes, Marcia C; Silveira, Alan B; Ventura-Martins, Guilherme; Luciano, Monalisa; Coelho, Marsen G P; Todeschini, Adriane R; Bianconi, M Lucia; Atella, Georgia C; Silva-Neto, Mário A C

    2015-10-01

    Lipid peroxidation is promoted by the quasi-lipoxygenase (QL) activity of heme proteins and enhanced by the presence of free calcium. Unlike mammalian plasma, the hemolymph of Rhodnius prolixus, a vector of Chagas disease, contains both a free heme-binding protein (RHBP) and circulating lipoproteins. RHBP binds and prevents the heme groups of the proteins from participating in lipid peroxidation reactions. Herein, we show that despite being bound to RHBP, heme groups promote lipid peroxidation through a calcium-dependent QL reaction. This reaction is readily inhibited by the presence of ethylene glycol tetraacetic acid (EGTA), the antioxidant butylated hydroxytoluene or micromolar levels of the main yolk phosphoprotein vitellin (Vt). The inhibition of lipid peroxidation is eliminated by the in vitro dephosphorylation of Vt, indicating that this reaction depends on the interaction of free calcium ions with negatively charged phosphoamino acids. Our results demonstrate that calcium chelation mediated by phosphoproteins occurs via an antioxidant mechanism that protects living organisms from lipid peroxidation. PMID:26111116

  7. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  8. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases

    International Nuclear Information System (INIS)

    The present studies establish that there are specific, significant decreases in the neuronal calcium-binding protein (28-kDa calbindin-D) gene expression in aging and in neurodegenerative diseases. The specificity of the changes observed in calbindin mRNA levels was tested by reprobing blots with calmodulin, cyclophilin, and B-actin cDNAs. Gross brain regions of the aging rat exhibited specific, significant decreases in calbindin·mRNA and protein levels in the cerebellum, corpus striatum, and brain-stem region but not in the cerebral cortex or hippocampus. Discrete areas of the aging human brain exhibited significant decreases in calbindin protein and mRNA in the cerebellum, corpus striatum, and nucleus basalis but not in the neocortex, hippocampus, amygdala, locus ceruleus, or nucleus raphe dorsalis. Comparison of diseased human brain tissue with age- and sex-matched controls yielded significant decreases calbindin protein and mRNA in the substantia nigra (Parkinson disease), in the corpus striatum (Huntington disease), in the nucleus basalis (Alzheimer disease), and in the hippocampus and nucleus raphe dorsalis (Parkinson, Huntington, and Alzheimer diseases) but not in the cerebellum, neocortex, amygdala, or locus ceruleus. These findings suggest that decreased calbindin gene expression may lead to a failure of calcium buffering or intraneuronal calcium homeostasis, which contributes to calcium-mediated cytotoxic events during aging and in the pathogenesis of neurodegenerative diseases

  9. Vitamin D-dependent rat renal calcium-binding protein: development of a radioimmunoassay, tissue distribution, and immunologic identification

    International Nuclear Information System (INIS)

    A sensitive double antibody RIA has been developed for the 28,000 mol wt rat renal vitamin D-dependent calcium-binding protein. Using this assay, concentrations of calcium-binding protein (CaBP) as low as 30 ng can be measured. The assay is precise (intraassay variability, 5.0%) and reproductible (interassay variability, 8.2%). Measurements of renal CaBP by RIA showed a good correlation with measurements of CaBP by the chelex resin assay and by polyacrylamide gel analysis by densitometric tracing using a purified CaBP marker. The concentration of CaBP in the vitamin D-replete rat kidney is 7.3 +/- 1.0 (mean +/- SEM) micrograms/mg protein. In vitamin D-deficient rats the level of renal CaBP is 2.6 +/- 0.3 micrograms/mg protein. Tissue distribution of immunoreactive rat renal CaBP showed the highest concentration of CaBP in the rat cerebellum (38.3 +/- 5.1 micrograms/mg protein). Lower concentrations of immunoreactive CaBP were detected in several other rat tissues. No immunoreactive CaBP was detected in rat or human serum. In necropsy human kidney and cerebellum, high levels of immunoreactive CaBP were also detected (1.5 +/- 0.1 and 27.3 +/- 2.1 micrograms/mg protein, respectively). When extracts of rat kidney and brain and human cerebellum and kidney were assayed at several dilutions, immunodisplacement curves parallel to that of pure renal CaBP were observed, indicating immunochemical similarity. Fractionation of extracts of rat cerebellum, human kidney, and human cerebellum on Sephadex G-100 revealed immunoreactivity and calcium-binding activity in the 28,000 mol wt region similar to rat kidney

  10. Calcium-binding proteins in skeletal muscles of the mdx mice: potential role in the pathogenesis of Duchenne muscular dystrophy.

    Science.gov (United States)

    Pertille, Adriana; de Carvalho, Candida Luiza Tonizza; Matsumura, Cintia Yuri; Neto, Humberto Santo; Marques, Maria Julia

    2010-02-01

    Duchenne muscular dystrophy is one of the most common hereditary diseases. Abnormal ion handling renders dystrophic muscle fibers more susceptible to necrosis and a rise in intracellular calcium is an important initiating event in dystrophic muscle pathogenesis. In the mdx mice, muscles are affected with different intensities and some muscles are spared. We investigated the levels of the calcium-binding proteins calsequestrin and calmodulin in the non-spared axial (sternomastoid and diaphragm), limb (tibialis anterior and soleus), cardiac and in the spared extraocular muscles (EOM) of control and mdx mice. Immunoblotting analysis showed a significant increase of the proteins in the spared mdx EOM and a significant decrease in the most affected diaphragm. Both proteins were comparable to the cardiac muscle controls. In limb and sternomastoid muscles, calmodulin and calsequestrin were affected differently. These results suggest that differential levels of the calcium-handling proteins may be involved in the pathogenesis of myonecrosis in mdx muscles. Understanding the signaling mechanisms involving Ca(2+)-calmodulin activation and calsequestrin expression may be a valuable way to develop new therapeutic approaches to the dystrophinopaties.

  11. Molecular cloning of the apoptosis-related calcium-binding protein AsALG-2 in Avena sativa.

    Science.gov (United States)

    Hoat, Trinh Xuan; Nakayashiki, Hitoshi; Yang, Qian; Tosa, Yukio; Mayama, Shigeyuki

    2013-04-01

    Victorin, the host-selective toxin produced by the fungus Cochliobolus victoriae, induces programmed cell death (PCD) in victorin-sensitive oat lines with characteristic features of animal apoptosis, such as mitochondrial permeability transition, chromatin condensation, nuclear DNA laddering and rRNA/mRNA degradation. In this study, we characterized a calcium-binding protein, namely AsALG-2, which might have a role in the victorin-induced PCD. AsALG-2 is homologous to the Apoptosis-Linked Gene ALG-2 identified in mammalian cells. Northern blot analysis revealed that the accumulation of AsALG-2 transcripts increased during victorin-induced PCD, but not during necrotic cell death. Salicylic acid, chitosan and chitin strongly activated the expression of general defence response genes, such as PR-10; however, neither induced cell death nor the accumulation of AsALG-2 mRNA. Pharmacological studies indicated that victorin-induced DNA laddering and AsALG-2 expression were regulated through similar pathways. The calcium channel blocker, nifedipine, moderately inhibited the accumulation of AsALG-2 mRNA during cell death. Trifluoperazine (calmodulin antagonist) and K252a (serine-threonine kinase inhibitor) reduced the victorin-induced phytoalexin accumulation, but did not prevent the victorin-induced DNA laddering or accumulation of AsALG-2 mRNA. Taken together, our investigations suggest that there is a calcium-mediated signalling pathway in animal and plant PCD in common.

  12. Purification of Regucalcin from the Seminal Vesicular Fluid: A Calcium Binding Multi-Functional Protein.

    Science.gov (United States)

    Harikrishna, P; Shende, A M; Reena, K K; Thomas, Jobin; Bhure, S K

    2016-08-01

    Regucalcin is a multi-functional protein having roles in calcium homeostasis as well as in anti-apoptotic, anti-prolific and anti-oxidative functions. Recently, it has been reported from the male reproductive tract, but its role in male reproduction needs further investigation; for which the native regucalcin of reproductive origin will be more appropriate. The gel exclusion chromatography followed by diethyl aminoethane cellulose chromatography and two-dimentional cellulose acetate membrane electrophoresis used for its purification are time consuming and less specific. Here, the regucalcin gene from buffalo testis has been cloned, expressed and purified in recombinant form, and subsequently used for raising hyper-immune serum. The Western blot of seminal vesicular fluid probed with anti-regucalcin polyclonal and monoclonal antibodies showed the presence of 28 and 34 kDa bands specific to regucalcin. Further, an affinity matrix has been prepared using anti-regucalcin polyclonal antibodies. An immuno-affinity chromatography method has been standardized to isolate regucalcin from seminal vesicular fluid. The initial complexity of the protein mixture in the seminal vesicular fluid has been reduced by a heat coagulation step. The purified protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band at 68 kDa that has been further confirmed as regucalcin by Liquid chromatography-mass spectrometry/mass spectrometry. The RGN purified from seminal vesicular fluid will be more appropriate for studying its possible role in male reproduction, especially sperm cell capacitation, hyperactivation, acrosome reaction and cryopreservation. The study can be applied in purifying regucalcin from different tissues or species with minor modifications in the methodology. PMID:27460579

  13. Quantitative immunobinding assay for vitamin D-dependent calcium-binding protein (calbindin-D28k) using nitrocellulose filters

    International Nuclear Information System (INIS)

    A sensitive dot immunobinding assay has been developed for the quantitative determination of vitamin D-dependent calcium-binding protein (calbindin-D28k; CaBP) in rat and human kidney and brain. Protein samples are spotted onto nitrocellulose sheets, fixed, and then rinsed with Tris-buffered saline. The remaining protein binding sites are blocked with bovine serum albumin, gelatin, or nonfat dry milk protein and the filters are then incubated sequentially with antiserum to calbindin-D28k (1:500 dilution) and 125I-protein A (200,000 cpm/ml). After washing, the radioactivity bound to each sample is quantitated by counting in a gamma counter. The sensitivity of the assay is such that 10 ng calbindin-D28k can be accurately quantitated. The highest levels of CaBP were detected in kidney (7.8 +/- 0.5 micrograms/mg protein) and cerebellum (22.1 +/- 1.4 micrograms/mg protein). Ten micrograms calmodulin, lactalbumin, or parvalbumin and 100 micrograms liver extract showed no reactivity in the assay. The assay is precise (intraassay variability, 4.0%) and reproducible (interassay variability, 8.8%). There was good agreement between the data in this assay and the data we obtained using radioimmunoassay (RIA). The assay has several advantages over the RIA. Iodination of pure antigen is not required and it is possible to detect membrane-bound and insoluble antigens using this assay. Also, the antiserum and 125I-protein A solutions can be saved and reused. This assay represents a major modification of the original immunobinding assays which used the less sensitive peroxidase stain. It is also an improvement over previous 125I immunobinding assays which were not quantitative but were used as antigen spot tests or which required iodination of the antibody

  14. Structural Insights into Membrane Targeting by the Flagellar Calcium-binding Protein (FCaBP) a Myristoylated and Palmitoylated Calcium Sensor in Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    J Wingard; J Ladner; M Vanarotti; A Fisher; H Robinson; K Buchanan; D Engman; J Ames

    2011-12-31

    The flagellar calcium-binding protein (FCaBP) of the protozoan Trypanosoma cruzi is targeted to the flagellar membrane where it regulates flagellar function and assembly. As a first step toward understanding the Ca{sup 2+}-induced conformational changes important for membrane-targeting, we report here the x-ray crystal structure of FCaBP in the Ca{sup 2+}-free state determined at 2.2{angstrom} resolution. The first 17 residues from the N terminus appear unstructured and solvent-exposed. Residues implicated in membrane targeting (Lys-19, Lys-22, and Lys-25) are flanked by an exposed N-terminal helix (residues 26-37), forming a patch of positive charge on the protein surface that may interact electrostatically with flagellar membrane targets. The four EF-hands in FCaBP each adopt a 'closed conformation' similar to that seen in Ca{sup 2+}-free calmodulin. The overall fold of FCaBP is closest to that of grancalcin and other members of the penta EF-hand superfamily. Unlike the dimeric penta EF-hand proteins, FCaBP lacks a fifth EF-hand and is monomeric. The unstructured N-terminal region of FCaBP suggests that its covalently attached myristoyl group at the N terminus may be solvent-exposed, in contrast to the highly sequestered myristoyl group seen in recoverin and GCAP1. NMR analysis demonstrates that the myristoyl group attached to FCaBP is indeed solvent-exposed in both the Ca{sup 2+}-free and Ca{sup 2+}-bound states, and myristoylation has no effect on protein structure and folding stability. We propose that exposed acyl groups at the N terminus may anchor FCaBP to the flagellar membrane and that Ca{sup 2+}-induced conformational changes may control its binding to membrane-bound protein targets..

  15. Flexibility of EF-hand motifs: structural and thermodynamic studies of Calcium Binding Protein-1 from Entamoeba histolytica with Pb2+, Ba2+, and Sr2+

    Directory of Open Access Journals (Sweden)

    Kumar Shivesh

    2012-08-01

    Full Text Available Abstract Background EF-hand proteins can be activated by the binding of various heavy metals other than calcium, and such complexes can disturb the calcium-signaling pathway and cause toxicity and disease causing state. So far, no comprehensive study has been done to understand different heavy metals binding to calcium signaling proteins. Results In this work, the flexibility of the EF-hand motifs are examined by crystallographic and thermodynamic studies of binding of Pb2+, Ba2+ and Sr2+ to Calcium Binding Protein-1 from Entamoeba histolytica (EhCaBP1. The structures of the EhCaBP1- heavy metal complexes are found to be overall similar, nevertheless specific differences in metal coordination, and small differences in the coordination distances between the metal and the ligands in the metal binding loop. The largest such distances occur for the Ba2+- EhCaBP1 complex, where two bariums are bound with partial occupancy at the EF2 motif. Thermodynamic studies confirm that EhCaBP1 has five binding sites for Ba2+ compared to four binding sites for the other metals. These structures and thermodynamic studies reveal that the EF-hand motifs can accommodate several heavy atoms with similar binding affinities. The binding of Ca2+ to the 1st, 2nd and 4th sites and the binding of Ba2+ to the 1st, 2nd, 4th and 5th sites are both enthalpically and entropically driven, whereas the binding of Sr2+ to the 1st, 2nd and 4th sites are simply enthalpy driven, interestingly in agreement with ITC data, Sr2+ do not coordinate with water in this structure. For all the metals, binding to the 3rd site is only entropy driven. Conclusion Energetically, Ca2+ is preferred in three sites, while in one site Ba2+ has better binding energy. The Sr2+-coordination in the EF hand motifs is similar to that of the native Ca2+ bound structure, except for the lack of water coordination. Sr2+ coordination seems to be a pre-formed in nature since all seven coordinating atoms are from the

  16. The calcium-binding protein complex S100A8/A9 has a crucial role in controlling macrophage-mediated renal repair following ischemia/reperfusion

    NARCIS (Netherlands)

    Dessing, M.C.; Tammaro, A.; Pulskens, W.P.C.; Teske, G.J.; Butter, L.M.; Claessen, N.; Eijk, M. van; Poll, T. van der; Vogl, T.; Roth, J.; Florquin, S.; Leemans, J.C.

    2015-01-01

    Upon ischemia/reperfusion (I/R)-induced injury, several damage-associated molecular patterns are expressed including the calcium-binding protein S100A8/A9 complex. S100A8/A9 can be recognized by Toll-like receptor-4 and its activation is known to deleteriously contribute to renal I/R-induced injury.

  17. Ectopic expression of the calcium-binding protein parvalbumin in mouse liver endothelial cells

    DEFF Research Database (Denmark)

    Castillo, M B; Berchtold, M W; Rülicke, T;

    1997-01-01

    vasoconstriction via calcium signalling, were investigated in the mouse liver perfused in situ. Vasoconstriction, thought to be mediated by the Ito cell, was not affected in the transgenic animals, whereas microvascular exchange, probed with the multiple indicator dilution technique, was markedly decreased...

  18. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    Directory of Open Access Journals (Sweden)

    Dhiraj Maskey

    2013-01-01

    Full Text Available Calcium binding proteins (CaBPs such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus.

  19. Crystallization and preliminary crystallographic analysis of calcium-binding protein-2 from Entamoeba histolytica and its complexes with strontium and the IQ1 motif of myosin V

    International Nuclear Information System (INIS)

    Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Two domains with four canonical EF-hand-containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though they have very high sequence similarity, these bind to different target proteins in a Ca2+-dependent manner, leading to different functional pathways. Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. The crystals belong to space group P21, with unit-cell parameters a = 111.74, b = 68.83, c = 113.25 Å, β = 116.7°. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. The crystals belong to space group P21, with unit-cell parameters a = 69.18, b = 112.03, c = 93.42 Å, β = 92.8°. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. This complex was crystallized with MPD and ethanol as precipitating agents. These crystals belong to space group P21, with unit-cell parameters a = 60.5, b = 69.86, c = 86.5 Å, β = 97.9°

  20. Crystallization and preliminary crystallographic analysis of calcium-binding protein-2 from Entamoeba histolytica and its complexes with strontium and the IQ1 motif of myosin V

    Energy Technology Data Exchange (ETDEWEB)

    Gourinath, S., E-mail: sgourinath@mail.jnu.ac.in; Padhan, Narendra; Alam, Neelima; Bhattacharya, Alok [School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2005-04-01

    Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Two domains with four canonical EF-hand-containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though they have very high sequence similarity, these bind to different target proteins in a Ca{sup 2+}-dependent manner, leading to different functional pathways. Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 111.74, b = 68.83, c = 113.25 Å, β = 116.7°. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 69.18, b = 112.03, c = 93.42 Å, β = 92.8°. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. This complex was crystallized with MPD and ethanol as precipitating agents. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 60.5, b = 69.86, c = 86.5 Å, β = 97.9°.

  1. FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains.

    Science.gov (United States)

    Thomas, Charlotte M; Timson, David J

    2015-09-01

    FhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles. PMID:26152524

  2. FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains.

    Science.gov (United States)

    Thomas, Charlotte M; Timson, David J

    2015-09-01

    FhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles.

  3. COOH-terminal association of human smooth muscle calcium channel Ca(v)1.2b with Src kinase protein binding domains: effect of nitrotyrosylation.

    Science.gov (United States)

    Kang, Minho; Ross, Gracious R; Akbarali, Hamid I

    2007-12-01

    The carboxyl terminus of the calcium channel plays an important role in the regulation of calcium entry, signal transduction, and gene expression. Potential protein-protein interaction sites within the COOH terminus of the L-type calcium channel include those for the SH3 and SH2 binding domains of c-Src kinase that regulates calcium currents in smooth muscle. In this study, we examined the binding sites involved in Src kinase-mediated phosphorylation of the human voltage-gated calcium channel (Ca(v)) 1.2b (hCav1.2b) and the effect of nitrotyrosylation. Cotransfection of human embryonic kidney (HEK)-293 cells with hCa(v)1.2b and c-Src resulted in tyrosine phosphorylation of the calcium channel, which was prevented by nitration of tyrosine residues by peroxynitrite. Whole cell calcium currents were reduced by 58 + 5% by the Src kinase inhibitor PP2 and 64 + 6% by peroxynitrite. Nitrotyrosylation prevented Src-mediated regulation of the currents. Glutathione S-transferase fusion protein of the distal COOH terminus of hCa(v)1.2b (1809-2138) bound to SH2 domain of Src following tyrosine phosphorylation, while binding to SH3 required the presence of the proline-rich motif. Site-directed mutation of Y(2134) prevented SH2 binding and resulted in reduced phosphorylation of hCa(v)1.2b. Within the distal COOH terminus, single, double, or triple mutations of Y(1837), Y(1861), and Y(2134) were constructed and expressed in HEK-293 cells. The inhibitory effects of PP2 and peroxynitrite on calcium currents were significantly reduced in the double mutant Y(1837-2134F). These data demonstrate that the COOH terminus of hCa(v)1.2b contains sites for the SH2 and SH3 binding of Src kinase. Nitrotyrosylation of these sites prevents Src kinase regulation and may be importantly involved in calcium influx regulation during inflammation.

  4. Reduction of rat hippocampal calcium-binding protein following commissural, amygdala, septal, perforant path, and olfactory bulb kindling.

    Science.gov (United States)

    Baimbridge, K G; Mody, I; Miller, J J

    1985-01-01

    The calcium-binding protein (CaBP) content of the hippocampal formation was determined by radioimmunoassay in control and kindled rats. Kindling of a number of different sites resulted in a reduction in the CaBP content of the hippocampal formation, which was shown immunohistochemically to be restricted to the dentate granule cells and their processes. The maximum decline in CaBP varied with the different kindling sites: perforant path, 33%; commissural path, 32%; septum, 30%; amygdala, 18%; and olfactory bulbs, 15%. There were no changes in the CaBP content of the stimulated areas themselves. In cases where the kindling stimulus was delivered unilaterally (perforant path and amygdala), the maximum decrease in hippocampal CaBP was observed ipsilateral to the site of stimulation when the criterion for full kindling was established (six consecutive stage 5 motor seizures). Further kindling trials were required to produce a similar magnitude decrease in the CaBP content of the contralateral hippocampus. These observations are discussed both in relation to the possible role of CaBP in the establishment of a seizure response to kindling and also as a potential compensatory mechanism that may serve to overcome the epileptogenic effects of kindling.

  5. Subdivisions of the auditory midbrain (n. mesencephalicus lateralis, pars dorsalis in zebra finches using calcium-binding protein immunocytochemistry.

    Directory of Open Access Journals (Sweden)

    Priscilla Logerot

    Full Text Available The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I and outer (MLd.O. MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches.

  6. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  7. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice.

    Science.gov (United States)

    Jing, Pei; Zou, Juanzi; Kong, Lin; Hu, Shiqi; Wang, Biying; Yang, Jun; Xie, Guosheng

    2016-06-01

    Calcium-binding proteins play key roles in the signal transduction in the growth and stress response in eukaryotes. However, a subfamily of proteins with one EF-hand motif has not been fully studied in higher plants. Here, a novel small calcium-binding protein with a C-terminal centrin-like domain (CCD1) in rice, OsCCD1, was characterized to show high similarity with a TaCCD1 in wheat. As a result, OsCCD1 can bind Ca(2+) in the in vitro EMSA and the fluorescence staining calcium-binding assays. Transient expression of green fluorescent protein (GFP)-tagged OsCCD1 in rice protoplasts showed that OsCCD1 was localized in the nucleus and cytosol of rice cells. OsCCD1 transcript levels were transiently induced by osmotic stress and salt stress through the calcium-mediated ABA signal. The rice seedlings of T-DNA mutant lines showed significantly less tolerance to osmotic and salt stresses than wild type plants (p<0.01). Conversely, its overexpressors can significantly enhance the tolerance to osmotic and salt stresses than wild type plants (p<0.05). Semi-quantitative RT-PCR analysis revealed that, OsDREB2B, OsAPX1 and OsP5CS genes are involved in the rice tolerance to osmotic and salt stresses. In sum, OsCCD1 gene probably affects the DREB2B and its downstream genes to positively regulate osmotic and salt tolerance in rice seedlings. PMID:27095404

  8. Calcium-binding Protein Calretinin Immunoreactivity in the Dog Superior Colliculus

    International Nuclear Information System (INIS)

    We studied calretinin-immunoreactive (IR) fibers and cells in the canine superior colliculus (SC) and studied the distribution and effect of enucleation on the distribution of this protein. Localization of calretinin was immunocytochemically observed. A dense plexus of anti-calretinin-IR fibers was found within the upper part of the superficial gray layer (SGL). Almost all of the labeled fibers were small in diameter with few varicosities. The intermediate and deep layers contained many calretinin-IR neurons. Labeled neurons within the intermediate gray layer (IGL) formed clusters in many sections. By contrast, labeled neurons in the deep gray layer (DGL) did not form clusters. Calretinin-IR neurons in the IGL and DGL varied in morphology and included round/oval, vertical fusiform, stellate, and horizontal neurons. Neurons with varicose dendrites were also labeled in the IGL. Most of the labeled neurons were small to medium in size. Monocular enucleation produced an almost complete reduction of calretinin-IR fibers in the SC contralateral to the enucleation. However, many calretinin-IR cells appeared in the contralateral superficial SC. Enucleation appeared to have no effect on the distribution of calretinin-IR neurons in the contralateral intermediate and deep layers of the SC. The calretinin-IR neurons in the superficial dog SC were heterogeneous small- to medium-sized neurons including round/oval, vertical fusiform, stellate, pyriform, and horizontal in shape. Two-color immunofluorescence revealed that no cells in the dog SC expressed both calretinin and GABA. Many horseradish peroxidase (HRP)-labeled retinal ganglion cells were seen after injections into the superficial layers. The vast majority of the double-labeled cells (HRP and calretinin) were small cells. The present results indicate that antibody to calretinin labels subpopulations of neurons in the dog SC, which do not express GABA. The results also suggest that the calretinin-IR afferents in the

  9. Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: Evidence for low-affinity sites and for the involvement of G proteins

    International Nuclear Information System (INIS)

    Detailed kinetic studies of the binding of the calcium channel antagonist (+)-[3H]PN200-110 to membrane preparations form rabbit skeletal muscle have demonstrated that, in addition to the high-affinity sites that are readily measured in equilibrium and kinetic experiments, there are also dihydropyridine binding sites with much lower affinities. These sites were detected by the ability of micromolar concentrations of several dihydropyridines to accelerate the rate of dissociation of (+)-[3H]PN200-110 from its high-affinity sites. The observed increase in rate was dependent on the concentration of competing ligand, and half-maximal effects occurred at approximately 10 μM for the agonist (±)-Bay K8644 and for the antagonists nifedipine, (±)-nitrendipine, and (+)-PN200-110. The low-affinity sites appear to be stereospecific since (-)-PN200-110 (1-200 μM) did not affect the dissociation rate. The possible involvement of guanine nucleotide binding proteins in dihydropyridine binding has been investigated by studying the effects of guanosine 5'-O-(3-thiotriphosphate) (GTPγS) and guanosine 5'-O-(2-thiodiphosphate) (GDPβS) on binding parameters. GTPγS did increase the ability of (±)-[3H]PN200-110. These results suggest that skeletal muscle dihydropyridine receptors have low-affinity binding sites that may be involved in the regulation of calcium channel function and that activation of a guanine nucleotide binding protein may modulate the binding of agonists but not of antagonists to these sites

  10. Comparative distribution of relaxin-3 inputs and calcium-binding protein-positive neurons in rat amygdala

    Directory of Open Access Journals (Sweden)

    Fabio N Santos

    2016-04-01

    Full Text Available The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or ‘hubs’ within these key circuits. One such input arises from the nucleus incertus (NI in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin, calretinin and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST and in the endopiriform

  11. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala.

    Science.gov (United States)

    Santos, Fabio N; Pereira, Celia W; Sánchez-Pérez, Ana M; Otero-García, Marcos; Ma, Sherie; Gundlach, Andrew L; Olucha-Bordonau, Francisco E

    2016-01-01

    The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In

  12. Binding of calcium and carbonate to polyacrylates.

    Science.gov (United States)

    Tribello, Gareth A; Liew, CheeChin; Parrinello, Michele

    2009-05-21

    Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion. PMID:19400592

  13. Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll

    Indian Academy of Sciences (India)

    Girdhar K Pandey; Amita Pandey; Vanga Siva Reddy; Renu Deswal; Alok Bhattacharya; Kailash C Upadhyaya; Sudhir K Sopory

    2007-03-01

    Entamoeba histolytica contains a novel calcium-binding protein like calmodulin, which was discovered earlier, and we have reported the presence of its homologue(s) and a dependent protein kinase in plants. To understand the functions of these in plants, a cDNA encoding a calcium-binding protein isolated from Entamoeba histolytica (EhCaBP) was cloned into vector pBI121 in antisense orientation and transgenic tobacco plants were raised. These plants showed variation in several phenotypic characters, of which two distinct features, more greenness and leaf thickness, were inherited in subsequent generations. The increase in the level of total chlorophyll in different plants ranged from 60% to 70%. There was no major change in chloroplast structure and in the protein level of D1, D2, LHCP and RuBP carboxylase. These morphological changes were not seen in antisense calmodulin transgenic tobacco plants, nor was the calmodulin level altered in EhCaBP antisense plants.

  14. A novel splice variant of calcium and integrin-binding protein 1 mediates protein kinase D2-stimulated tumour growth by regulating angiogenesis.

    Science.gov (United States)

    Armacki, M; Joodi, G; Nimmagadda, S C; de Kimpe, L; Pusapati, G V; Vandoninck, S; Van Lint, J; Illing, A; Seufferlein, T

    2014-02-27

    Protein kinase D2 (PKD2) is a member of the PKD family of serine/threonine kinases, a subfamily of the CAMK super-family. PKDs have a critical role in cell motility, migration and invasion of cancer cells. Expression of PKD isoforms is deregulated in various tumours and PKDs, in particular PKD2, have been implicated in the regulation of tumour angiogenesis. In order to further elucidate the role of PKD2 in tumours, we investigated the signalling context of this kinase by performing an extensive substrate screen by in vitro expression cloning (IVEC). We identified a novel splice variant of calcium and integrin-binding protein 1, termed CIB1a, as a potential substrate of PKD2. CIB1 is a widely expressed protein that has been implicated in angiogenesis, cell migration and proliferation, all important hallmarks of cancer, and CIB1a was found to be highly expressed in various cancer cell lines. We identify Ser(118) as the major PKD2 phosphorylation site in CIB1a and show that PKD2 interacts with CIB1a via its alanine and proline-rich domain. Furthermore, we confirm that CIB1a is indeed a substrate of PKD2 also in intact cells using a phosphorylation-specific antibody against CIB1a-Ser(118). Functional analysis of PKD2-mediated CIB1a phosphorylation revealed that on phosphorylation, CIB1a mediates tumour cell invasion, tumour growth and angiogenesis by mediating PKD-induced vascular endothelial growth factor secretion by the tumour cells. Thus, CIB1a is a novel mediator of PKD2-driven carcinogenesis and a potentially interesting therapeutic target. PMID:23503467

  15. Extended N-terminal region of the essential phosphorelay signaling protein Ypd1 from Cryptococcus neoformans contributes to structural stability, phosphostability and binding of calcium ions.

    Science.gov (United States)

    Kennedy, Emily N; Menon, Smita K; West, Ann H

    2016-09-01

    Rapid response to external stimuli is crucial for survival and proliferation of microorganisms. Pathogenic fungi employ histidine-to-aspartate multistep phosphorelay systems to respond to environmental stress, progress through developmental stages and to produce virulence factors. Because these His-to-Asp phosphorelay systems are not found in humans, they are potential targets for the development of new antifungal therapies. Here we report the characterization of the histidine phosphotransfer (HPt) protein Ypd1 from the human fungal pathogen Cryptococcus neoformans Results from this study demonstrate that CnYpd1 indeed functions as a phosphorelay protein in vitro, and that H138 is confirmed as the site of phosphorylation. We found that CnYpd1 exhibits unique characteristics in comparison to other histidine phosphotransfer proteins, such as an extended N-terminal amino acid sequence, which we find contributes to structural integrity, a longer phosphorylated life time and the ability to bind calcium ions. PMID:27549628

  16. Membrane binding of Neuronal Calcium Sensor-1 (NCS1).

    Science.gov (United States)

    Lemire, Samuel; Jeromin, Andreas; Boisselier, Élodie

    2016-03-01

    Neuronal Calcium Sensor-1 (NCS1) belongs to the family of Neuronal Calcium Sensor (NCS) proteins. NCS1 is composed of four EF-hand motifs and an N-terminal myristoylation. However, the presence of a calcium-myristoyl switch in NCS1 and its role in the membrane binding are controversial. The model of Langmuir lipid monolayers is thus used to mimic the cell membrane in order to characterize the membrane interactions of NCS1. Two binding parameters are calculated from monolayer measurements: the maximum insertion pressure, up to which protein binding is energetically favorable, and the synergy, reporting attractive or repulsive interactions with the lipid monolayers. Binding membrane measurements performed in the presence of myristoylated NCS1 reveal better binding interactions for phospholipids composed of phosphoethanolamine polar head groups and unsaturated fatty acyl chains. In the absence of calcium, the membrane binding measurements are drastically modified and suggest that the protein is more strongly bound to the membrane. Indeed, the binding of calcium by three EF-hand motifs of NCS1 leads to a conformation change. NCS1 arrangement at the membrane could thus be reshuffled for better interactions with its substrates. The N-terminal peptide of NCS1 is composed of two amphiphilic helices involved in the membrane interactions of NCS1. Moreover, the presence of the myristoyl group has a weak influence on the membrane binding of NCS1 suggesting the absence of a calcium-myristoyl switch mechanism in this protein. The myristoylation could thus have a structural role required in the folding/unfolding of NCS1 which is essential to its multiple biological functions.

  17. Thermodynamic study of the binding of calcium and magnesium ions with myelin basic protein using the extended solvation theory

    Institute of Scientific and Technical Information of China (English)

    G. Rezaei Behbehani; A.A. Saboury; A. Divsalar

    2008-01-01

    The interaction of myelin basic protein (MBP) from the bovine central nervous system with Ca2+ and Mg2+ ions, named as M2+, was studied by isothermal titration calorimetry at 27℃ in aqueous solution. The extended solvation model was used to reproduce the enthaipies of MBP+M2+ interactions.The solvation parameters recovered from the extended solvation model were attributed to the structural change of MBP due to the metal ion interaction. It was found that there is a set of two identical and noninteracting binding sites for Ca2+ and Mg2+ ions.

  18. Calcium binding to low molecular weight compounds and health promoting products

    DEFF Research Database (Denmark)

    Vavrusova, Martina

    absorption. Therefore, calcium as an essential nutrient should not be underestimated in our diet. Milk and dairy products are good sources of bioavailable calcium due to specific protein binding. Other sources of calcium, apart from a balanced and healthy diet, are calcium supplements and calcium fortified...... food. Therefore, an understanding of the basic chemistry of calcium binding to low molecular weight compounds can contribute to a general knowledge about calcium bioavailability and also to product improvement. Calcium precipitation with palmitate was described by a first-order reaction for conditions...... of excess calcium in neutral aqueous solutions with a stoichiometry Ca:Pal lower than 1:2. Increasing pH during aging of the precipitate and solubility product determination lead to a suggestion of an initial precipitation of calcium hydroxy palmitate as a possible precursor phase. The binding of calcium...

  19. Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a comparative study in whales, insectivores, bats, rodents, and primates.

    Science.gov (United States)

    Glezer, I I; Hof, P R; Leranth, C; Morgane, P J

    1993-01-01

    This study is focused on comparative analysis of gamma-aminobutyric acid-positive (GABAergic) neuronal populations in primary visual cortex of totally aquatic toothed whales and select terrestrial mammals with different evolutionary histories and various ecological adaptations. The distribution of neuronal populations containing the calcium-binding proteins calbindin and parvalbumin, which are recognized markers for the GABAergic neurons in cerebral cortex, is compared in five species of toothed whales and in representatives (one species each) of insectivores, bats, rodents, and primates. Computerized image analysis has shown that overall quantitative characteristics of GABAergic cortical neurons in toothed whales are similar to those in other mammalian orders. Thus, GABA-positive neurons represent 26% of the total population of cortical neurons in the visual cortex of whales. Some 97% of GABA-positive cells contain calcium-binding proteins, which is numerically similar to these parameters found in primates and other mammals. On the other hand, the typology and laminar distribution of calcium-binding protein-containing neurons in the primary visual cortex of five whale species (Delphinapterus leucas, Globicephala melaena, Phocoena phocoena, Stenella coeruleoalba, and Tursiops truncatus) differ significantly from those of primates (Macaca mulatta) and rodents (Rattus rattus) and are similar to those found in insectivorous bats (Eptesicus fuscus) and hedgehogs (Erinaceus europaeus). In whales, bats, and hedgehogs a significant concentration of calbindin-positive, vertically oriented bipolar and bitufted neurons was found in layers I, II, and IIIc/V with their axons arranged in a three-dimensional network. In primates and rodents they are distributed evenly across all cortical layers and are predominantly multipolar or bitufted neurons found in all cortical layers with their axons oriented along the vertical axis of the cortical plate. The parvalbumin-positive neurons

  20. Molecular cloning and expression of EgTCTP, encoding a calcium binding protein, enhances the growth of callus in oil palm (Elaeis guineensis, Jacq

    Directory of Open Access Journals (Sweden)

    Alisa Nakkaew

    2010-12-01

    Full Text Available The translationally controlled tumor protein (TCTP has now been identified in evolutionarily diverse organisms and isthought to play an important role in cell growth and cell division. We have identified an EgTCTP gene from Elaeis guineensisJacq. It is a putative protein of 168 amino acids with a calculated molecular mass of 19.2 kDa. EgTCTP has a high homology(84% - 91% identity at the amino acid level to other plant TCTPs from Hevea brasiliensis, Arachis hypogaea and Glycinemax. The recombinant EgTCTP protein is a calcium binding protein. Transgenic embryonic calli overexpressing EgTCTP havea faster growth rate than non-transformed and empty vector transformed calli. The results show that the enhancement ofEgTCTP gene expression in oil palm embryogenic calli may result in faster multiplication of the embryogenic calli. EgTCTPacts as another Ca2+-modulated protein that is involved in the cell cycle progression.

  1. Effects of altered gravity on the expression of Calcium -binding and matrix proteins in the inner ear of developing fish following ∆g-expositions.

    Science.gov (United States)

    Hilbig, Reinhard; Hendrik Anken, Ralf; Weigele, Jochen

    The results of the Foton-M3 mission (OmegaHab) give evidence that the otoliths of the fish form OmegaHab were larger as compared to the ground control. Additionally the shape (raphe) and morphology especially the mode of crystallization of the otoliths were affected during growth in weightlessness. The reason for these changes is assumed to originate from changes in the composition of the otolith matrix and Ca-binding proteins (OMP). The OMPs play an important role in controlling the crystallization process and additionally the morphology of crystals, determining the crystallpolymorph and the strength of the crystals. The matrix of otoliths is a complex functional structure containing several calcium-binding proteins, structural proteins and protease inhibitors. Furthermore it is composed of otolith matrix protein-1, Otolin, Otoconin, SPARC and Neuroserpin, which is a specific expression in the otolth matrix for chichlid fish. During embryonic development of the fish inner ear, these proteins show a spacial and temporal expression pattern. The formation of the inner ear -including otoliths and sensory cells -starting from the otocyst-anlage -can be subdivided in several major developmental stages e.g. the forming of the otic cavity (stage 7/8), the tetha cell or seeding stage (stage 8, 9), the development of the semicircular channels (stage 12), the transition to further daily growth (post stage15) and the development of the third otolith, asteriscus (stage 23). These developmental phases contain different constitutions or involvements of matrix proteins. We investigated the matrixprotein composition of the chichlid fish Oreochromis mossambicus and found that the otolith matrix differentiate between other fishes. In this case some matrix proteins seem to be uniform in fishes, other known matrix proteins are lacking and we have also references to new candidates for matrix proteins chichlids. In this case we investigated the expression of the matrix proteins otolith

  2. Calmodulin Binding Proteins and Alzheimer's Disease.

    Science.gov (United States)

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  3. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  4. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2.

    Science.gov (United States)

    Qiao, Bei; Zhang, Qian; Liu, Dongliang; Wang, Haiqi; Yin, Jingya; Wang, Rui; He, Mengli; Cui, Meng; Shang, Zhonglin; Wang, Dekai; Zhu, Zhengge

    2015-09-01

    OsANN1 is a member of the annexin protein family in rice. The function of this protein and the mechanisms of its involvement in stress responses and stress tolerance are largely unknown. Here it is reported that OsANN1 confers abiotic stress tolerance by modulating antioxidant accumulation under abiotic stress. OsANN1-knockdown [RNA interference (RNAi)] plants were more sensitive to heat and drought stresses, whereas OsANN1-overexpression (OE) lines showed improved growth with higher expression of OsANN1 under abiotic stress. Overexpression of OsANN1 promoted SOD (superoxide dismutase) and CAT (catalase) activities, which regulate H2O2 content and redox homeostasis, suggesting the existence of a feedback mechanism between OsANN1 and H2O2 production under abiotic stress. Higher expression of OsANN1 can provide overall cellular protection against abiotic stress-induced damage, and a significant accumulation of OsANN1-green fluorescent protein (GFP) signals was found in the cytosol after heat shock treatment. OsANN1 also has calcium-binding and ATPase activities in vitro, indicating that OsANN1 has multiple functions in rice growth. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays demonstrated that OsANN1 interacts with OsCDPK24. This cross-talk may provide additional layers of regulation in the abiotic stress response. PMID:26085678

  5. Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32.

    Science.gov (United States)

    Morel, Anne; Loup, Fabienne; Magnin, Michel; Jeanmonod, Daniel

    2002-01-28

    The distribution of the calcium-binding proteins calbindin-D28K (CB), parvalbumin (PV) and calretinin (CR), and of the nonphosphorylated neurofilament protein (with SMI-32) was investigated in the human basal ganglia to identify anatomofunctional territories. In the striatum, gradients of neuropil immunostaining define four major territories: The first (T1) includes all but the rostroventral half of the putamen and is characterized by enhanced matriceal PV and SMI-32 immunoreactivity (-ir). The second territory (T2) encompasses most part of the caudate nucleus (Cd) and rostral putamen (PuT), which show enhanced matriceal CB-ir. The third and fourth territories (T3 and T4) comprise rostroventral parts of Cd and PuT characterized by complementary patch/matrix distributions of CB- and CR-ir, and the accumbens nucleus (Acb), respectively. The latter is separated into lateral (prominently enhanced in CB-ir) and medial (prominently enhanced in CR-ir) subdivisions. In the pallidum, parallel gradients also delimit four territories, T1 in the caudal half of external (GPe) and internal (GPi) divisions, characterized by enhanced PV- and SMI-32-ir; T2 in their rostral half, characterized by enhanced CB-ir; and T3 and T4 in their rostroventral pole and in the subpallidal area, respectively, both expressing CB- and CR-ir but with different intensities. The subthalamic nucleus (STh) shows contrasting patterns of dense PV-ir (sparing only the most medial part) and low CB-ir. Expression of CR-ir is relatively low, except in the medial, low PV-ir, part of the nucleus, whereas SMI-32-ir is moderate across the whole nucleus. The substantia nigra is characterized by complementary patterns of high neuropil CB- and SMI-32-ir in pars reticulata (SNr) and high CR-ir in pars compacta (SNc) and in the ventral tegmental area (VTA). The compartmentalization of calcium-binding proteins and SMI-32 in the human basal ganglia, in particular in the striatum and pallidum, delimits anatomofunctional

  6. Characterization, Evolution and Tissue-specific Expression of AmphiCalbin, a Novel Gene Encoding EF-hand Calcium-binding Protein in Amphioxus Branchiostoma belcheri

    Institute of Scientific and Technical Information of China (English)

    Jing LUAN; Shicui ZHANG; Zhenhui LIU; Chunxin FAN; Guangdong JI; Lei LI

    2007-01-01

    An amphioxus full-length cDNA, AmphiCalbin, encoding a novel EF-hand calcium-binding protein (EFCaBP), was isolated from the gut cDNA library of amphioxus Branchiostoma belcheri. It consists of 1321 bp with a 636 bp open reading frame encoding a protein of 211 amino acids with a molecular mass of approximately 24.5 kDa. The phylogenetic analysis offers two interesting inferences. First, AmphiCalbin clusters with a group of unnamed EFCaBPs that are differentiated from other identified EFCaBPs. Second,AmphiCalbin falls at the base of the vertebrate unnamed EFCaBPs clade, probably representing their prototype.This is also corroborated by the fact that AmphiCalbin has an exon-intron organization identical to that of vertebrate unnamed EFCaBP genes. Both tissue-section in situ hybridization and whole-mount in situ hybridization prove a tissue-specific expression pattern of AmphiCalbin, with high levels of expression in the digestive system and gonads. It is proposed that AmphiCalbin might play a role in the digestive system and gonads. These observations lay the foundation for further understanding of the function of the unnamed EFCaBPs.

  7. Studies on the mode of action of calciferol. XIII. Development of a radioimmunoassay for vitamin D-dependent chick intestinal calcium-binding protein and tissue distribution

    International Nuclear Information System (INIS)

    A RIA for chick intestinal calcium-binding protein (CaBP) has been developed with a sensitivity of 1 ng. The antiserum was generated in rabbits injected with highly purified vitamin D-dependent chick intestinal CaBP. The assay employs the double antibody technique, and 125I-labeled CaBP was prepared using chloramine T. Low molecular weight peptide hormones and normal rabbit, rat, and human serum proteins show no cross-reactivity in the assay. Measurements of chick intestinal and kidney CaBP by RIA showed a good correlation with measurements of CaBP by the radial immunodiffusion method. The assay is reproducible (interassay variability, 16.3%) and precise (intraassay variability, 4.0%). The concentration of immunoreactive CaBP (iCaBP) in chick serum (2.7 ng/ml serum) can now be measured as early as 8 h after the administration of 6.5 nmol 1,25-dihydroxyvitamin D3; a maximum of 11 ng/ml is reached at 20 h. The level of CaBP in chick serum was found to be dependent on the dose of vitamin D3 or 1,25-dihydroxyvitamin D3 administered to the animal

  8. Studies on the mode of action of calciferol. XIII. Development of a radioimmunoassay for vitamin D-dependent chick intestinal calcium-binding protein and tissue distribution

    Energy Technology Data Exchange (ETDEWEB)

    Christakos, S.; Friedlander, E.J.; Frandsen, B.R.; Norman, A.W.

    1979-05-01

    A RIA for chick intestinal calcium-binding protein (CaBP) has been developed with a sensitivity of 1 ng. The antiserum was generated in rabbits injected with highly purified vitamin D-dependent chick intestinal CaBP. The assay employs the double antibody technique, and /sup 125/I-labeled CaBP was prepared using chloramine T. Low molecular weight peptide hormones and normal rabbit, rat, and human serum proteins show no cross-reactivity in the assay. Measurements of chick intestinal and kidney CaBP by RIA showed a good correlation with measurements of CaBP by the radial immunodiffusion method. The assay is reproducible (interassay variability, 16.3%) and precise (intraassay variability, 4.0%). The concentration of immunoreactive CaBP (iCaBP) in chick serum (2.7 ng/ml serum) can now be measured as early as 8 h after the administration of 6.5 nmol 1,25-dihydroxyvitamin D/sub 3/; a maximum of 11 ng/ml is reached at 20 h. The level of CaBP in chick serum was found to be dependent on the dose of vitamin D/sub 3/ or 1,25-dihydroxyvitamin D/sub 3/ administered to the animal.

  9. Calcium absorption and calcium binding protein synthesis in the chick: evidence for a 1,25-dihydroxycholecalciferol-like factor in solanum malacoxylon

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R.H.; Bar, A.; Corradino, R.A.; Taylor, A.N.; Peterlik, M.

    1974-01-01

    Some properties of the vitamin D dependent CaBP have been briefly summarized. In addition to providing possible insight into the molecular basis of vitamin D action, the measurement of intestinal CaBP in animals subjected to different conditions and treatments has proven useful in assessing the effective vitamin D status of that animal. Using measurements of both the degree of intestinal /sup 47/Ca absorption in situ and duodenal CaBP levels, some aspects of the vitamin D-like factor in the South American plant Solanum malacoxylon were investigated. A vitamin D assay based on CaBP as end point indicated that the plant contains about 1.3 x 10/sup 5/ IU vitamin D/sub 3/ equivalents per kg. The Solanum factor, together with an adequate calcium intake, are necessary conditions for the product of gross toxic symptoms in the chick. Using experimental conditions that inhibit the conversion of 25-(OH)D/sub 3/ to 1,25-(OH)/sub 2/D/sub 3/ by the kidney enzyme system (i.e., a high stable strontium diet), it was shown that the Solanum factor can cause a reversal of this inhibition. This suggested that the Solanum factor mimics the action of 1,25-(OH)/sub 2/D/sub 3/, and this was confirmed by Walling and Kimberg (personal communication) since, in their hands, the administration of S. malacoxylon extract to nephrectomized rats was able to stimulate intestinal calcium transport in vitro. Similar results were brought forth at this meeting by Dr. Mautalen of Argentina. The Solanum factor was effective in an intestinal organ culture system, indicating that the factor acts directly on the gut and, if modification of the factor is needed for biological activity, the necessary enzymes are present in the intestinal tissue.

  10. Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein-Potential Crosstalk Between Sterol and Glycerophospholipid Mediators.

    Science.gov (United States)

    Chew, Wee-Siong; Ong, Wei-Yi

    2016-01-01

    Calcium-independent phospholipase A2 (iPLA2) is an 85-kDa enzyme that releases docosahexaenoic acid (DHA) from glycerophospholipids. DHA can be metabolized to resolvins and neuroprotectins that have anti-inflammatory properties and effects on neural plasticity. Recent studies show an important role of prefrontal cortical iPLA2 in hippocampo-prefrontal cortical LTP and antidepressant-like effect of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline. In this study, we elucidated the cellular mechanisms through which stimulation of adrenergic receptors could lead to increased iPLA2 expression. Treatment of SH-SY5Y neuroblastoma cells with maprotiline, another tricyclic antidepressant with noradrenaline reuptake inhibiting properties, nortriptyline, and the adrenergic receptor agonist, phenylephrine, resulted in increased iPLA2β mRNA expression. This increase was blocked by inhibitors to alpha-1 adrenergic receptor, mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK) 1/2, and sterol regulatory element-binding protein (SREBP). Maprotiline and phenylephrine induced binding of SREBP-2 to sterol regulatory element (SRE) region on the iPLA2 promoter, as determined by electrophoretic mobility shift assay (EMSA). Together, results indicate that stimulation of adrenoreceptors causes increased iPLA2 expression via MAP kinase/ERK 1/2 and SREBP, and suggest a possible mechanism for effect of CNS noradrenaline on neural plasticity and crosstalk between sterol and glycerophospholipid mediators, that may play a role in physiological or pathophysiological processes in the brain and other organs.

  11. Novel Insights into the Distribution and Functional Aspects of the Calcium Binding Protein Secretagogin from Studies on Rat Brain and Primary Neuronal Cell Culture

    Science.gov (United States)

    Maj, Magdalena; Milenkovic, Ivan; Bauer, Jan; Berggård, Tord; Veit, Martina; Ilhan-Mutlu, Aysegül; Wagner, Ludwig; Tretter, Verena

    2012-01-01

    Secretagogin is a calcium binding protein (CBP) highly expressed in neuroendocrine cells. It has been shown to be involved in insulin secretion from pancreatic beta cells and is a strong candidate as a biomarker for endocrine tumors, stroke, and eventually psychiatric conditions. Secretagogin has been hypothesized to exert a neuroprotective role in neurodegenerative diseases like Alzheimer’s disease. The expression pattern of Secretagogin is not conserved from rodents to humans. We used brain tissue and primary neuronal cell cultures from rat to further characterize this CBP in rodents and to perform a few functional assays in vitro. Immunohistochemistry on rat brain slices revealed a high density of Secretagogin-positive cells in distinct brain regions. Secretagogin was found in the cytosol or associated with subcellular compartments. We tested primary neuronal cultures for their suitability as model systems to further investigate functional properties of Secretagogin. These cultures can easily be manipulated by treatment with drugs or by transfection with test constructs interfering with signaling cascades that might be linked to the cellular function of Secretagogin. We show that, like in pancreatic beta cells and insulinoma cell lines, also in neurons the expression level of Secretagogin is dependent on extracellular insulin and glucose. Further, we show also for rat brain neuronal tissue that Secretagogin interacts with the microtubule-associated protein Tau and that this interaction is dependent on Ca2+. Future studies should aim to study in further detail the molecular properties and function of Secretagogin in individual neuronal cell types, in particular the subcellular localization and trafficking of this protein and a possible active secretion by neurons. PMID:22888312

  12. Distribution of NADPH-diaphorase in the superior colliculus of Cebus monkeys, and co-localization with calcium-binding proteins.

    Science.gov (United States)

    Soares, J G M; Mendez-Otero, R; Gattass, Ricardo

    2003-08-01

    We examined the distribution of the enzyme dihydronicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the superior colliculus (SC) of the New World monkey Cebus apella, and the co-localization of this enzyme with the calcium-binding proteins (CaBPs) calbindin-D28K, parvalbumin and calretinin. Despite the intensely labeled neuropil, rare NADPH-d-positive cells were observed in the stratum griseum superficiale (SGS). Most of the labeled cells in the SC were found in the intermediate layers, with a great number also in the deeper layers. This pattern is very similar to that described in the opossum (Didelphis marsupialis) and in the cat, and different from the pattern found in the rat, which shows labeled cells mainly in the SGS. Cells doubly stained for NADPH-d and CaBPs were observed throughout the SC, although in a small number. Of the NADPH-d-positive cells, 20.3% were doubly labeled for NADPH-d and parvalbumin, 10.2% revealed co-localization with calretinin, and 5.6% with calbindin. The low number of double-stained cells for NADPH-d and the CaBPs indicates that these molecules must participate in different functional circuits within the SC. PMID:12871769

  13. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D

    1990-08-21

    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  14. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kumar

    Full Text Available Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD varieties. We establish (a that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT, resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.

  15. Preparation and identification of water-soluble calcium-binding protein from grape (Vitis vinifera L.) seeds%葡萄籽中水溶性钙结合蛋白的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    吕晨艳; 赵广华

    2015-01-01

    Calcium is an essential nutrient required for critical biological functions such as nerve conduction, muscle contraction, mitosis, blood coagulation, and structural support of the skeleton.Dietary calcium intake is of general interest for human beings, particularly for infants and young children, when growth is accelerated. Milk and milk products as effective calcium supplements are generally accepted by human race with their high bioavailability. However, less consumption of milk in industrialized countries leads to inadequate calcium intake. Therefore, it is important to explore an alternate source for calcium supplement. On the other hand, dried grape seeds are likewise rich in lipids (22.07%), carbohydrates (12.51%) and proteins (11.94%) (w/w) and grape seeds as by-product during juice production can be an alternative source of protein. Meanwhile, this study demonstrates that grape seeds are rich in calcium ((5.62±0.01) g/kg for embryonic cells and (6.32± 0.01) g/kg for intact grape seeds), which was identified by ICP-AES. The calcium was mainly distributed in the stroma of the amyloplasts and around the starch granules, which was observed under TEM (Transmission Electron Microscope). Further study indicates that water-soluble protein from grape (Vitis viniferaL.) seeds (WSPG) contained two major components, one of which was 11S globulin-like protein mainly responsible for the binding of calcium in WSPG and the other was a novel protein (Protein A). The calcium contents of protein isolate from each step were identified by ICP-AES as well. When a traditional alkali extraction and acid precipitation method was used for isolation of WSPG, many binding calcium ions were lost. It is worth noting that the protein composition of grape seed protein obtained by both 30%-50% (NH4)2SO4 sediment and the alkali extraction and acid precipitation method was nearly identical, which consisted of protein A and protein B at a ratio of 2 to 3, but the content of calcium in the

  16. Immunoselection of cDNAs to avian intestinal calcium binding protein 28K and a novel calmodulin-like protein: assessment of mRNA regulation by the Vitamin D hormone

    International Nuclear Information System (INIS)

    Calcium's role in a variety of cellular processes has been well documented. The storage, distribution, and delivery of calcium are regulated by a family of binding proteins including troponin C, calmodulin, parvalbumin, and vitamin D dependent calcium binding protein (CaBP-28), all of which have evolved from a common ancestral gene. To evaluate vitamin D regulation of gene transcription, a CaBP-28 cDNA (767 base pairs) was isolated from a chicken intestine λgt11 library utilizing a polyvalent CaBP-28 antibody as a probe. Coincident with the identification of the CaBP-28 cDNA, a group of cDNAs also was isolated (with the anti-CaBP-28 antibody) that demonstrated 84% nucleotide homology and 99% deduced amino acid homology with chicken brain calmodulin (CaM). This new CaM-like cDNA was named neoCaM. There is little nucleotide homology between the CaBP-28 cDNA and neoCaM. The CaBP-28 cDNA hybridizes with three transcripts of 2000, 2900, and 3300 bases which are dramatically induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], while the neoCaM cDNA recognizes three distinct (from CaBP-28) transcripts. Two of these mRNAs are 1400 and 1800 bases as described for brain CaM, but another large 4000-base transcript is detected with neoCaM. Neither the CaM nor the neoCaM transcript reveals any modulation by 1,25(OH)2D3. Herein, the authors discuss the possible significance of not only the isolation of both cDNAs with a single antibody but also the relation of neoCaM to other well-characterized CaM cDNAs

  17. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family

    OpenAIRE

    Di Sole, Francesca; Vadnagara, Komal; MOE, ORSON W.; Babich, Victor

    2012-01-01

    The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca2+-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca2+-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, a...

  18. Expression of calcium-binding proteins and selected neuropeptides in the human, chimpanzee, and crab-eating macaque claustrum

    Directory of Open Access Journals (Sweden)

    Andrea ePirone

    2014-05-01

    Full Text Available The claustrum is present in all mammalian species examined so far and its morphology, chemoarchitecture, physiology, phylogenesis and ontogenesis are still a matter of debate. Several morphologically distinct types of immunostained cells were described in different mammalian species. To date, a comparative study on the neurochemical organization of the human and non-human primates claustrum has not been fully described yet, partially due to technical reasons linked to the postmortem sampling interval. The present study analyzes the localization and morphology of neurons expressing parvalbumin (PV, calretinin (CR, NPY, and somatostatin (SOM in the claustrum of man (# 5, chimpanzee (# 1 and crab-eating monkey (#3. Immunoreactivity for the used markers was observed in neuronal cell bodies and processes distributed throughout the anterior-posterior extent of human, chimpanzee and macaque claustrum. Both CR- and PV-immunoreactive (ir neurons were mostly localized in the central and ventral region of the claustrum of the three species while SOM- and NPY-ir neurons seemed to be equally distributed throughout the ventral-dorsal extent. In the chimpanzee claustrum SOM-ir elements were not observed. No co-localization of PV with CR was found, thus suggesting the existence of two non-overlapping populations of PV and CR-ir interneurons. The expression of most proteins (CR, PV, NPY, was similar in all species. The only exception was the absence of SOM-ir elements in the claustrum of the chimpanzee, likely due to species specific variability. Our data suggest a possible common structural organization shared with the adjacent insular region, a further element that emphasizes a possible common ontogeny of the claustrum and the neocortex.

  19. Calcium modulates promoter occupancy by the Entamoeba histolytica Ca2+-binding transcription factor URE3-BP.

    Science.gov (United States)

    Gilchrist, Carol A; Leo, Megan; Line, C Genghis; Mann, Barbara J; Petri, William A

    2003-02-14

    The Entamoeba histolytica upstream regulatory element 3-binding protein (URE3-BP) binds to the URE3 sequence of the Gal/GalNAc-inhibitable lectin hgl5 and ferredoxin 1 (fdx) gene promoters. This binding can be inhibited in vitro by addition of calcium. Two EF-hand motifs, which are associated with the ability to bind calcium, are present in the amino acid sequence of URE3-BP. Mutation of the second EF-hand motif in URE3-BP resulted in the loss of calcium inhibition of DNA binding as monitored by electrophoretic mobility shift assay. Chromatin immunoprecipitation assays revealed that URE3-BP was physically bound to the hgl5 and fdx promoters in vivo. Parasite intracellular calcium concentrations were altered by changes in extracellular calcium. Promoter occupancy was lost when intracellular calcium levels were increased by coordinate increases in extracellular calcium. Increased intracellular calcium also resulted in decreased levels of URE3-BP mRNA. Together these results demonstrate that changes in extracellular calcium result in changes in URE3-BP mRNA and in the ability of URE3-BP to bind to URE3-containing promoters. Modulation of URE3-BP by calcium may represent an important mechanism of control of gene expression in E. histolytica.

  20. Cellulose binding domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc (Davis, CA); Doi, Roy (Davis, CA)

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  1. Analytical models of calcium binding in a calcium channel

    International Nuclear Information System (INIS)

    The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions of the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na+ and Ca2+ for [CaCl2] ranging from 10−8 to 10−2 M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant

  2. S100 calcium binding protein B as a biomarker of delirium duration in the intensive care unit – an exploratory analysis

    Directory of Open Access Journals (Sweden)

    Khan BA

    2013-12-01

    Full Text Available Babar A Khan,1–3 Mark O Farber,1 Noll Campbell,2–5 Anthony Perkins,2,3 Nagendra K Prasad,6 Siu L Hui,1–3 Douglas K Miller,1–3 Enrique Calvo-Ayala,1 John D Buckley,1 Ruxandra Ionescu,1 Anantha Shekhar,1 E Wesley Ely,7,8 Malaz A Boustani1–3 1Indiana University School of Medicine, 2Indiana University Center for Aging Research, 3Regenstrief Institute, Inc., 4Wishard Health Services, Indianapolis, 5Department of Pharmacy Practice, Purdue University College of Pharmacy, West Lafayette, 6Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 7Vanderbilt University School of Medicine, 8VA Tennessee Valley Geriatric Research Education Clinical Center (GRECC, Nashville, TN, USA Background: Currently, there are no valid and reliable biomarkers to identify delirious patients predisposed to longer delirium duration. We investigated the hypothesis that elevated S100 calcium binding protein B (S100β levels will be associated with longer delirium duration in critically ill patients. Methods: A prospective observational cohort study was performed in the medical, surgical, and progressive intensive care units (ICUs of a tertiary care, university affiliated, and urban hospital. Sixty-three delirious patients were selected for the analysis, with two samples of S100β collected on days 1 and 8 of enrollment. The main outcome measure was delirium duration. Using the cutoff of <0.1 ng/mL and $0.1 ng/mL as normal and abnormal levels of S100β, respectively, on day 1 and day 8, four exposure groups were created: Group A, normal S100β levels on day 1 and day 8; Group B, normal S100β level on day 1 and abnormal S100β level on day 8; Group C, abnormal S100β level on day 1 and normal on day 8; and Group D, abnormal S100β levels on both day 1 and day 8. Results: Patients with abnormal levels of S100β showed a trend towards higher delirium duration (P=0.076; Group B (standard deviation (7.0 [3.2] days, Group C (5.5 [6.3] days, and Group D

  3. Increased absolute calcium binding to albumin in hypoalbuminaemia.

    OpenAIRE

    Besarab, A; Caro, J F

    1981-01-01

    The amount of calcium bound to protein was measured in 30 patients with differing diseases and varying degrees of hypoalbuminaemia. Total serum calcium increased directly with both serum albumin and ultrafilterable calcium concentrations. The estimated amount of calcium bound per gram of albumin varied inversely with the albumin concentration, decreasing from 2.1 to 1.0 mg calcium/g albumin as albumin concentration increased from 1.7 to 3.1 g/dl. Circulating parathyroid hormone (PTH) concentr...

  4. Dysferlin Binds SNAREs (Soluble N-Ethylmaleimide-sensitive Factor (NSF) Attachment Protein Receptors) and Stimulates Membrane Fusion in a Calcium-sensitive Manner.

    Science.gov (United States)

    Codding, Sara J; Marty, Naomi; Abdullah, Nazish; Johnson, Colin P

    2016-07-01

    Resealing of tears in the sarcolemma of myofibers is a necessary step in the repair of muscle tissue. Recent work suggests a critical role for dysferlin in the membrane repair process and that mutations in dysferlin are responsible for limb girdle muscular dystrophy 2B and Miyoshi myopathy. Beyond membrane repair, dysferlin has been linked to SNARE-mediated exocytotic events including cytokine release and acid sphingomyelinase secretion. However, it is unclear whether dysferlin regulates SNARE-mediated membrane fusion. In this study we demonstrate a direct interaction between dysferlin and the SNARE proteins syntaxin 4 and SNAP-23. In addition, analysis of FRET and in vitro reconstituted lipid mixing assays indicate that dysferlin accelerates syntaxin 4/SNAP-23 heterodimer formation and SNARE-mediated lipid mixing in a calcium-sensitive manner. These results support a function for dysferlin as a calcium-sensing SNARE effector for membrane fusion events. PMID:27226605

  5. Melittin binding causes a large calcium-dependent conformational change in calmodulin.

    OpenAIRE

    Kataoka, M.(LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France); Head, J F; Seaton, B A; Engelman, D M

    1989-01-01

    The interaction between calmodulin and its target protein is a key step in many calcium-regulated cellular functions. Melittin binds tightly to calmodulin in the presence of calcium and is a competitive inhibitor of calmodulin function. Using melittin as a model for the target peptide of calmodulin, we have found a large Ca2+-dependent conformational change of calmodulin in solution induced by peptide binding. Mg2+ does not substitute for Ca2+ in producing the conformation change. Small-angle...

  6. Neuronal Calcium Sensor 1 Has Two Variants with Distinct Calcium Binding Characteristics

    Science.gov (United States)

    Wang, Baisheng; Boeckel, Göran R.; Huynh, Larry; Nguyen, Lien; Cao, Wenxiang; De La Cruz, Enrique M.; Kaftan, Edward J.

    2016-01-01

    Neuronal calcium sensor-1 (NCS-1 Var1) is a calcium-binding protein expressed in most tissues. We examined a poorly characterized variant of NCS-1 (Var2), identified only in humans where the N-terminal 22 amino acid residues of native NCS-1(MGKSNSKLKPEVVEELTRKTY) were replaced with 4 different residues (MATI). Because alterations in the level of expression of NCS-1 Var1 and the expression of NCS-1 variants have been correlated with several neurological diseases, the relative expression and functional role of NCS-1 Var2 was examined. We found that NCS-1 Var2 mRNA levels are not found in mouse tissues and are expressed at levels ~1000-fold lower than NCS-1 Var1 in three different human cell lines (SHSY5Y, HEK293, MB231). Protein expression of both variants was only identified in cell lines overexpressing exogenous NCS-1 Var2. The calcium binding affinity is ~100 times weaker in purified NCS-1 Var2 than NCS-1 Var1. Because truncation of NCS-1 Var1 has been linked to functional changes in neurons, we determined whether the differing properties of the NCS-1 variants could potentially contribute to the altered cell function. In contrast to previous reports showing that overexpression of NCS-1 Var1 increases calcium-dependent processes, functional differences in cells overexpressing NCS-1 Var2 were undetectable in assays for cell growth, cell death and drug (paclitaxel) potency. Our results suggest that NCS-1 Var1 is the primary functional version of NCS-1. PMID:27575489

  7. Neuronal Calcium Sensor 1 Has Two Variants with Distinct Calcium Binding Characteristics.

    Science.gov (United States)

    Wang, Baisheng; Boeckel, Göran R; Huynh, Larry; Nguyen, Lien; Cao, Wenxiang; De La Cruz, Enrique M; Kaftan, Edward J; Ehrlich, Barbara E

    2016-01-01

    Neuronal calcium sensor-1 (NCS-1 Var1) is a calcium-binding protein expressed in most tissues. We examined a poorly characterized variant of NCS-1 (Var2), identified only in humans where the N-terminal 22 amino acid residues of native NCS-1(MGKSNSKLKPEVVEELTRKTY) were replaced with 4 different residues (MATI). Because alterations in the level of expression of NCS-1 Var1 and the expression of NCS-1 variants have been correlated with several neurological diseases, the relative expression and functional role of NCS-1 Var2 was examined. We found that NCS-1 Var2 mRNA levels are not found in mouse tissues and are expressed at levels ~1000-fold lower than NCS-1 Var1 in three different human cell lines (SHSY5Y, HEK293, MB231). Protein expression of both variants was only identified in cell lines overexpressing exogenous NCS-1 Var2. The calcium binding affinity is ~100 times weaker in purified NCS-1 Var2 than NCS-1 Var1. Because truncation of NCS-1 Var1 has been linked to functional changes in neurons, we determined whether the differing properties of the NCS-1 variants could potentially contribute to the altered cell function. In contrast to previous reports showing that overexpression of NCS-1 Var1 increases calcium-dependent processes, functional differences in cells overexpressing NCS-1 Var2 were undetectable in assays for cell growth, cell death and drug (paclitaxel) potency. Our results suggest that NCS-1 Var1 is the primary functional version of NCS-1. PMID:27575489

  8. Cloning, characterization, and heterologous expression of the Saccharopolyspora erythraea (Streptomyces erythraeus) gene encoding an EF-hand calcium-binding protein.

    OpenAIRE

    Swan, D G; Cortes, J; Hale, R S; Leadlay, P F

    1989-01-01

    The regulatory effects of Ca2+ in eucaryotic cells are mostly mediated by a superfamily of Ca2+-binding proteins (CABs) that contain one or more characteristic Ca2+-binding structural motifs, referred to as EF hands. We have cloned and sequenced the structural gene for an authentic EF-hand CAB from the spore-forming gram-positive bacterium Saccharopolyspora erythraea (formerly Streptomyces erythraeus). When the gene was introduced into Streptomyces lividans on the high-copy plasmid vector pIJ...

  9. Binding of [125I]iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    International Nuclear Information System (INIS)

    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with [125I] iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for [125I] iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited [125I] iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes

  10. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    Science.gov (United States)

    Gresswell, Carolyn Gayle

    Understanding how organisms are capable of forming (synthesize, crystallize, and organize) solid minerals into complex architectures has been a fundamental question of biomimetic materials chemistry and biomineralization for decades. This study utilizes short peptides selected using a cell surface display library for the specific polymorphs of calcium carbonate, i.e., aragonite and calcite, to identify two sets of sequences which can then be used to examine their effects in the formation, crystal structure, morphology of the CaCO3 minerals. A procedure of counter selection, along with fluorescence microscopy (FM) characterization, was adapted to insure that the sequences on the cells were specific to their respective substrate, i.e., aragonite or calcite. From the resulting two sets of sequences selected, five distinct strong binders were identified with a variety of biochemical characteristics and synthesized for further study. Protein derived peptides, using the known sequences of the proteins that are associated with calcite or aragonite, were also designed using a bioinformatics-based similarity analysis of the two sets of binders. In particular, an aragonite binding protein segment, AP7, a protein found in nacre, was chosen for this design and the resulting effects of the designed peptides and the AP7 were examined. Specifically, the binding affinities of the selected and the protein derived peptides off the cells were then tested using FM; these studies resulted in different binding characteristics of the synthesized and cellular bound peptides. Two of the peptides that displayed strong binding on the cells bound to neither of the CaCO 3 substrates and both the high and low similarity protein-derived peptides bound to both polymorphs. However, two of the peptides were found to only bind to their respective polymorph showing; these results are significant in that with this study it is demonstrated that the designed peptides based on experimental library

  11. Calmodulin Binding Proteins and Alzheimer’s Disease

    Science.gov (United States)

    O’Day, Danton H.; Eshak, Kristeen; Myre, Michael A.

    2015-01-01

    Abstract The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer’s disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer’s disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer’s disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  12. Calcium binding to cardiac myocytes protected from proteolytic enzyme activity.

    Science.gov (United States)

    Bailey, L E; Fawzi, A B

    1985-04-17

    Excitation-contraction coupling in cardiac muscle is dependent on extracellular calcium and calcium bound to the surface of the myocardial cell. In this study, we examined the physical characteristics of calcium binding to adult guinea pig ventricular myocytes disaggregated mechanically in oxygenated tissue culture medium containing a proteinase inhibitor (aprotinin), and separated from cellular debris by Cytodex beads. Cells prepared in this manner excluded Trypan blue and showed no evidence of spontaneous contraction or contracture. Scatchard plots of calcium binding determined by continuous flow equilibrium dialysis revealed a high-affinity, low-capacity pool, Ka = 65 X 10(3) M-1 and Bt = 1.3 nmol X mg-1 and a low-affinity, high-capacity pool, Ka = 141 M-1 and Bt = 138 nmol X mg-1. The low-affinity pool was not detectable after lanthanum, trypsin or collagenase treatment or in cells prepared without aprotinin in the isolation medium. Both neuraminidase and phospholipase C reduced Bt of the low-affinity pool by one half, but only neuraminidase affected the affinity constant of this pool. Ka was increased to 516.7 M-1, similar to the apparent affinity constant for calcium binding estimated from dP/dtmax measured at several extracellular calcium concentrations (470 M-1). The results suggest that calcium bound to sarcolemmal phospholipids represents the superficial calcium involved in excitation-contraction coupling in the heart.

  13. Identification of calcium/calmodulin-binding receptor-like kinase GsCBRLK-interactive proteins using yeast two-hybrid system%酵母双杂交筛选与GsCBRLK相互作用的蛋白质

    Institute of Scientific and Technical Information of China (English)

    杨姗姗; 孙晓丽; 于洋; 才华; 纪巍; 柏锡; 朱延明

    2013-01-01

    GsCBRLK(calcium/calmodulin-binding receptor-like kinase from Glycine soja)在ABA及盐胁迫诱导的钙离子信号通路中起到关键的调节作用.为深入研究GsCBRLK蛋白的作用机制,文章采用膜酵母双杂交系统,以GsCBRLK为诱饵蛋白,筛选与其相互作用的蛋白质.通过构建野生大豆盐胁迫条件下的cDNA文库、膜酵母双杂交系统筛选、复筛、回转验证、生物信息学分析以及酵母体内互作验证等手段,最终获得2个(SNARE和14-3-3蛋白)与GsCBRLK诱饵蛋白相互作用的蛋白质.%GsCBRLK (calcium/calmodulin-binding receptor-like kinase from Glycine soja) links ABA (abscisic acid)-and salt-induced calcium/calmodulin signal in plant cells. In order to study the molecular mechanismes of GsCBLRK, the salt-treated Glycine soja cDNA library was screened with pB73-STE-CBRLK as bait plasmid using yeast two hybrid system. Two positive clones (SNARE and 14-3-3 protein) were identified by constructing cDNA library of wild soybean under salt treatment, membrane system yeast two hybrid screening, multiple screen, rotary validation, bioinformatic analysis and interaction identification in yeast.

  14. Effect of albumin and free calcium concentrations on calcium binding in vitro.

    OpenAIRE

    Besarab, A; DeGuzman, A; Swanson, J W

    1981-01-01

    In vivo equilibrium dialysis studies were performed to define further the characteristics of calcium binding to bovine albumin. The concentration range for albumin (1 to 9 g/dl) as well as ultrafilterable calcium (0.5 to 2.5 mM) studied encompassed those that might be ordinarily encountered in most clinical situations. Major differences in the regressions of total calcium on ultrafilterable calcium occurred at albumin concentrations of 1, 2, and 9 g/dl but only small differences at albumin co...

  15. BINDING ISOTHERMS SURFACTANT-PROTEINS

    OpenAIRE

    Elena Irina Moater; Cristiana Radulescu; Ionica Ionita

    2011-01-01

    The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ...

  16. Changes in parathyroid hormone receptor binding affinity during egg laying: implications for calcium homeostasis in chicken.

    Science.gov (United States)

    Yasuoka, T; Kawashima, M; Takahashi, T; Iwata, A; Oka, N; Tanaka, K

    1996-12-01

    Parathyroid hormone (PTH) receptor bindings were examined in the membrane fraction of the calvaria and the kidney of the hen by the use of [125I]PTH-related protein (PTHrP) binding assays. The binding specificity, reversibility, and saturation of the receptor were demonstrated. The equilibrium dissociation constant (Kd) and the maximum binding capacity (Bmax) were obtained by Scatchard analyses. In both calvaria and kidney, Kd and Bmax values decreased at 3 h before oviposition in egg-laying hens, but not in nonlaying hens. Administration of 17 beta-estradiol or progesterone in vivo caused a decrease in the Kd and Bmax values. Ionized calcium concentrations in the blood plasma showed a decrease at 13 h before oviposition. The results suggest that the PTH receptor binding in the calvaria and the kidney is affected by ovarian steroid hormones and may play a role in maintaining the calcium homeostasis in the egg-laying hen. PMID:8970893

  17. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  18. Absence of the calcium-binding protein calretinin, not of calbindin D-28k, causes a permanent impairment of murine adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Kiran eTodkar

    2012-04-01

    Full Text Available Calretinin (CR and calbindin D-28k (CB are cytosolic EF-hand Ca2+-binding proteins and function as Ca2+ buffers affecting the spatiotemporal aspects of Ca2+ transients and possibly also as Ca2+ sensors modulating signaling cascades. In the adult hippocampal circuitry, CR and CB are expressed in specific principal neurons and subsets of interneurons. In addition, CR is transiently expressed within the neurogenic dentate gyrus (DG niche. CR and CB expression during adult neurogenesis mark critical transition stages, onset of differentiation for CR and the switch to adult-like connectivity for CB. Absence of either protein during these stages in null-mutant mice may have functional consequences and contribute to some aspects of the identified phenotypes. We report the impact of CR- and CB-deficiency on the proliferation and differentiation of progenitor cells within the subgranular zone (SGZ neurogenic niche of the DG. Effects were evaluated I 2 and 4 weeks postnatally, during the transition period of the proliferative matrix to the adult state, and II in adult animals (3 months to trace possible permanent changes in adult neurogenesis. The absence of CB from differentiated DG granule cells has no retrograde effect on the proliferative activity of progenitor cells, nor affects survival or migration/differentiation of newborn neurons in the adult DG including the SGZ. On the contrary, lack of CR from immature early postmitotic granule cells causes an early loss in proliferative capacity of the SGZ that is maintained into adult age, when it has a further impact on the migration/survival of newborn granule cells. The transient CR expression at the onset of adult neurogenesis differentiation may thus have two functions: I to serve as a self-maintenance signal for the pool of cells at the same stage of neurogenesis contributing to their survival/differentiation, and II it may contribute to retrograde signaling required for maintenance of the progenitor

  19. Structural studies of sugar binding proteins

    OpenAIRE

    Sooriyaarachchi, Sanjeewani

    2010-01-01

    Binding proteins, which are themselves non-enzymatic, play an important role in enzymatic reactions as well as non-enzymatic processes by providing a binding platform for the specific recognition of particular molecules. For example, periplasmic binding proteins play a vital role in nutrient uptake in Gram-negative bacteria. In the present study, three sugar binding proteins, including two periplasmic binding proteins and a β-glucan binding protein, are described. The glucose/galactose bindin...

  20. Calcium binding protects E-cadherin from cleavage by Helicobacter pylori HtrA

    OpenAIRE

    Schmidt, Thomas P.; Goetz, Camilla; Huemer, Markus; Schneider, Gisbert; Wessler, Silja

    2016-01-01

    Background The cell adhesion and tumor suppressor protein E-cadherin is an important factor in the establishment and maintenance of epithelial integrity. E-cadherin is a single transmembrane protein, which consists of an intracellular domain (IC), a transmembrane domain (TD), and five extracellular domains (EC). EC domains form homophilic interactions in cis and trans that require calcium binding to the linker region between the EC domains. In our previous studies, we identified the serine pr...

  1. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baowei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lowry, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayer, M. Uljana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Squier, Thomas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H-15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH. Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M-1 sec-1 to 370 M-1 sec-1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces

  2. Protein Adsorption of Calcium Phosphate Ceramics in vitro

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to provide valuable information for the design of new calcium phosphate bone repair materials, bone tissue engineering scaffold materials, and other clinical application, the interaction between calcium phosphate materials and proteins were investigated. The adsorption of the calcium phosphate ceramic to the protein was investigated by using FT- IR, XPS, SEM, and SDS- PAGE. As the results shown, the proteins were strongly adsorbed by the CPC, and a shift of the feature peak of the protein and also a chemical shift in the Ca2p and O1s bind energy of CPC was observed. This indicated that the acidic amino-group and alkaline amino- residue on the proteins' surface bonded to the Ca2 + in the β- TCP crystal by ionic bond and the proteins' alkaline amino groups to the oxygen in PO3-4 by hydrogen bond and electrostatic attraction. The adsorption mechanism of the protein in the CPC can be described as three ndsorption layers: irreversible chemical adsorption layer, physical adsorption layer and biomineralized adsorption layer.

  3. High-capacity calcium-binding chitinase III from pomegranate seeds (Punica granatum Linn.) is located in amyloplasts

    OpenAIRE

    Lv, Chenyan; Masuda, Taro; Yang, Haixia; Sun, Lei; Zhao, Guanghua

    2011-01-01

    We have recently identified a new class III chitinase from pomegranate seeds (PSC). Interestingly, this new chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a Ca-storage protein. Analysis of the amino acid sequence showed that this enzyme is rich in acidic amino acid residues, especially Asp, which are responsible for calcium binding. Different from other known chitinases, PSC is located in the stroma of amyloplasts in pomegranate seeds. Trans...

  4. Structure of the plasminogen kringle 4 binding calcium-free form of the C-type lectin-like domain of tetranectin

    DEFF Research Database (Denmark)

    Nielbo, Steen; Thomsen, Jens K; Graversen, Jonas Heilskov;

    2004-01-01

    Tetranectin is a homotrimeric protein containing a C-type lectin-like domain. This domain (TN3) can bind calcium, but in the absence of calcium, the domain binds a number of kringle-type protein ligands. Two of the calcium-coordinating residues are also critical for binding plasminogen kringle 4 (K...... no such flexibility is observed in holoTN3. In the 20 best nuclear magnetic resonance structures of apoTN3, the residues critical for K4 binding span a large conformational space. Together with the relaxation data, this indicates that the K4-ligand-binding site in apoTN3 is not preformed....

  5. All three Ca[superscript 2+]-binding loops of photoproteins bind calcium ions: The crystal structures of calcium-loaded apo-aequorin and apo-obelin

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lu; Vysotski, Eugene S.; Markova, Svetlana V.; Liu, Zhi-Jie; Lee, John; Rose, John; Wang, Bi-Cheng (Georgia)

    2010-07-13

    The crystal structures of calcium-loaded apoaequorin and apo-obelin have been determined at resolutions 1.7 {angstrom} and 2.2 {angstrom}, respectively. A calcium ion is observed in each of the three EF-hand loops that have the canonical calcium-binding sequence, and each is coordinated in the characteristic pentagonal bipyramidal configuration. The calcium-loaded apo-proteins retain the same compact scaffold and overall fold as the unreacted photoproteins containing the bound substrate, 2-hydroperoxycoelenterazine, and also the same as the Ca{sup 2+}-discharged obelin bound with the product, coelenteramide. Nevertheless, there are easily discerned shifts in both helix and loop regions, and the shifts are not the same between the two proteins. It is suggested that these subtle shifts are the basis of the ability of these photoproteins to sense Ca{sup 2+} concentration transients and to produce their bioluminescence response on the millisecond timescale. A mechanism of intrastructural transmission of the calcium signal is proposed.

  6. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen;

    2012-01-01

    profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides...... around the phosphorylated residue are important for the binding affinity of ILKAP. We conclude that solid-phase affinity pull-down of proteins from complex mixtures can be applied in phosphoproteomics and systems biology.......Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...

  7. Binding of calcium in the EF-hand of Escherichia coli lytic transglycosylase Slt35 is important for stability

    NARCIS (Netherlands)

    Asselt, Erik J. van; Dijkstra, Bauke W.

    1999-01-01

    The Escherichia coli lytic transglycosylase Slt35 contains a single metal ion-binding site that resembles EF-hand calcium-binding sites. The Slt35 EF-hand is only the second observation of such a domain in a prokaryotic protein. Two crystal structures at 2.1 Å resolution show that both Ca2+ ions and

  8. Protein intake and calcium absorption – Potential role of the calcium sensor receptor

    Science.gov (United States)

    Dietary protein induces calcium excretion but the source of this calcium is unclear. Evidence from short-term studies indicates that protein promotes bone resorption, but many epidemiologic studies do not corroborate this. Evidence is also mixed on weather protein promotes calcium absorption. Stud...

  9. Mutation of the Conserved Calcium-Binding Motif in Neisseria gonorrhoeae PilC1 Impacts Adhesion but Not Piliation

    Science.gov (United States)

    Cheng, Yuan; Johnson, Michael D. L.; Burillo-Kirch, Christine; Mocny, Jeffrey C.; Anderson, James E.; Garrett, Christopher K.; Redinbo, Matthew R.

    2013-01-01

    Neisseria gonorrhoeae PilC1 is a member of the PilC family of type IV pilus-associated adhesins found in Neisseria species and other type IV pilus-producing genera. Previously, a calcium-binding domain was described in the C-terminal domains of PilY1 of Pseudomonas aeruginosa and in PilC1 and PilC2 of Kingella kingae. Genetic analysis of N. gonorrhoeae revealed a similar calcium-binding motif in PilC1. To evaluate the potential significance of this calcium-binding region in N. gonorrhoeae, we produced recombinant full-length PilC1 and a PilC1 C-terminal domain fragment. We show that, while alterations of the calcium-binding motif disrupted the ability of PilC1 to bind calcium, they did not grossly affect the secondary structure of the protein. Furthermore, we demonstrate that both full-length wild-type PilC1 and full-length calcium-binding-deficient PilC1 inhibited gonococcal adherence to cultured human cervical epithelial cells, unlike the truncated PilC1 C-terminal domain. Similar to PilC1 in K. kingae, but in contrast to the calcium-binding mutant of P. aeruginosa PilY1, an equivalent mutation in N. gonorrhoeae PilC1 produced normal amounts of pili. However, the N. gonorrhoeae PilC1 calcium-binding mutant still had partial defects in gonococcal adhesion to ME180 cells and genetic transformation, which are both essential virulence factors in this human pathogen. Thus, we conclude that calcium binding to PilC1 plays a critical role in pilus function in N. gonorrhoeae. PMID:24002068

  10. Cellulose binding domain fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  11. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX.

    Science.gov (United States)

    Bissig, Christin; Lenoir, Marc; Velluz, Marie-Claire; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael; Gruenberg, Jean

    2013-05-28

    ALIX plays a role in nucleocapsid release during viral infection, as does lysobisphosphatidic acid (LBPA). However, the mechanism remains unclear. Here we report that LBPA is recognized within an exposed site in ALIX Bro1 domain predicted by MODA, an algorithm for discovering membrane-docking areas in proteins. LBPA interactions revealed a strict requirement for a structural calcium tightly bound near the lipid interaction site. Unlike other calcium- and phospholipid-binding proteins, the all-helical triangle-shaped fold of the Bro1 domain confers selectivity for LBPA via a pair of hydrophobic residues in a flexible loop, which undergoes a conformational change upon membrane association. Both LBPA and calcium binding are necessary for endosome association and virus infection, as are ALIX ESCRT binding and dimerization capacity. We conclude that LBPA recruits ALIX onto late endosomes via the calcium-bound Bro1 domain, triggering a conformational change in ALIX to mediate the delivery of viral nucleocapsids to the cytosol during infection. PMID:23664863

  12. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B;

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  13. Protein-specific localization of a rhodamine-based calcium-sensor in living cells.

    Science.gov (United States)

    Best, Marcel; Porth, Isabel; Hauke, Sebastian; Braun, Felix; Herten, Dirk-Peter; Wombacher, Richard

    2016-06-28

    A small synthetic calcium sensor that can be site-specifically coupled to proteins in living cells by utilizing the bio-orthogonal HaloTag labeling strategy is presented. We synthesized an iodo-derivatized BAPTA chelator with a tetramethyl rhodamine fluorophore that allows further modification by Sonogashira cross-coupling. The presented calcium sensitive dye shows a 200-fold increase in fluorescence upon calcium binding. The derivatization with an aliphatic linker bearing a terminal haloalkane-function by Sonogashira cross-coupling allows the localization of the calcium sensor to Halo fusion proteins which we successfully demonstrate in in vitro and in vivo experiments. The herein reported highly sensitive tetramethyl rhodamine based calcium indicator, which can be selectively localized to proteins, is a powerful tool to determine changes in calcium levels inside living cells with spatiotemporal resolution. PMID:27072883

  14. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    Science.gov (United States)

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures. PMID:27159329

  15. Protein binding assay for hyaluronate

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  16. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    Science.gov (United States)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  17. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...... to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...

  18. The TRPV5/6 calcium channels contain multiple calmodulin binding sites with differential binding properties.

    NARCIS (Netherlands)

    Kovalevskaya, N.V.; Bokhovchuk, F.M.; Vuister, G.W.

    2012-01-01

    The epithelial Ca(2+) channels TRPV5/6 (transient receptor potential vanilloid 5/6) are thoroughly regulated in order to fine-tune the amount of Ca(2+) reabsorption. Calmodulin has been shown to be involved into calcium-dependent inactivation of TRPV5/6 channels by binding directly to the distal C-t

  19. Erythropoietin binding protein from mammalian serum

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  20. Erythropoietin binding protein from mammalian serum

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, Gisela K. (Berkeley, CA)

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  1. MICU1 motifs define mitochondrial calcium uniporter binding and activity.

    Science.gov (United States)

    Hoffman, Nicholas E; Chandramoorthy, Harish C; Shamugapriya, Santhanam; Zhang, Xueqian; Rajan, Sudarsan; Mallilankaraman, Karthik; Gandhirajan, Rajesh Kumar; Vagnozzi, Ronald J; Ferrer, Lucas M; Sreekrishnanilayam, Krishnalatha; Natarajaseenivasan, Kalimuthusamy; Vallem, Sandhya; Force, Thomas; Choi, Eric T; Cheung, Joseph Y; Madesh, Muniswamy

    2013-12-26

    Resting mitochondrial matrix Ca(2+) is maintained through a mitochondrial calcium uptake 1 (MICU1)-established threshold inhibition of mitochondrial calcium uniporter (MCU) activity. It is not known how MICU1 interacts with MCU to establish this Ca(2+) threshold for mitochondrial Ca(2+) uptake and MCU activity. Here, we show that MICU1 localizes to the mitochondrial matrix side of the inner mitochondrial membrane and MICU1/MCU binding is determined by a MICU1 N-terminal polybasic domain and two interacting coiled-coil domains of MCU. Further investigation reveals that MICU1 forms homo-oligomers, and this oligomerization is independent of the polybasic region. However, the polybasic region confers MICU1 oligomeric binding to MCU and controls mitochondrial Ca(2+) current (IMCU). Moreover, MICU1 EF hands regulate MCU channel activity, but do not determine MCU binding. Loss of MICU1 promotes MCU activation leading to oxidative burden and a halt to cell migration. These studies establish a molecular mechanism for MICU1 control of MCU-mediated mitochondrial Ca(2+) accumulation, and dysregulation of this mechanism probably enhances vascular dysfunction.

  2. Assembly and Calcium Binding Properties of Quantum Dot-Calmodulin Calcium Sensor.

    Science.gov (United States)

    Eun, Su-yong; Nguyen-ta, Kim; Yoo, Hoon; Silva, Gabriel A; Kim, Soon-jong

    2016-02-01

    We have developed the first nanoengineered quantum dot molecular complex designed to measure changes of calcium ion (Ca2+) concentration at high spatial and temporal resolutions in real time. The sensor is ratiometric and composed of three components: a quantum dot (QD) emitting at 620 nm as a fluorescence donor, an organic dye (Alexa Fluor 647) as a fluorescence acceptor, and a calmodulin-M13 (CaM-M13) protein part as a calcium sensing component. In this work, we have determined the maximal number of CaM-M13 required for saturating a single QD particle to be approximately 16. The dissociation constant, Kd of the QD-based calcium ion sensor was also estimated to be around 30 microM. PMID:27433729

  3. Calcium-binding capacity of centrin2 is required for linear POC5 assembly but not for nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Tiago J Dantas

    Full Text Available Centrosomes, the principal microtubule-organising centres in animal cells, contain centrins, small, conserved calcium-binding proteins unique to eukaryotes. Centrin2 binds to xeroderma pigmentosum group C protein (XPC, stabilising it, and its presence slightly increases nucleotide excision repair (NER activity in vitro. In previous work, we deleted all three centrin isoforms present in chicken DT40 cells and observed delayed repair of UV-induced DNA lesions, but no centrosome abnormalities. Here, we explore how centrin2 controls NER. In the centrin null cells, we expressed centrin2 mutants that cannot bind calcium or that lack sites for phosphorylation by regulatory kinases. Expression of any of these mutants restored the UV sensitivity of centrin null cells to normal as effectively as expression of wild-type centrin. However, calcium-binding-deficient and T118A mutants showed greatly compromised localisation to centrosomes. XPC recruitment to laser-induced UV-like lesions was only slightly slower in centrin-deficient cells than in controls, and levels of XPC and its partner HRAD23B were unaffected by centrin deficiency. Interestingly, we found that overexpression of the centrin interactor POC5 leads to the assembly of linear, centrin-dependent structures that recruit other centrosomal proteins such as PCM-1 and NEDD1. Together, these observations suggest that assembly of centrins into complex structures requires calcium binding capacity, but that such assembly is not required for centrin activity in NER.

  4. RGS12 interacts with the SNARE-binding region of the Cav2.2 calcium channel.

    Science.gov (United States)

    Richman, Ryan W; Strock, Jesse; Hains, Melinda D; Cabanilla, Nory Jun; Lau, King-Kei; Siderovski, David P; Diversé-Pierluissi, María

    2005-01-14

    Activation of GABAB receptors in chick dorsal root ganglion (DRG) neurons inhibits the Cav2.2 calcium channel in both a voltage-dependent and voltage-independent manner. The voltage-independent inhibition requires activation of a tyrosine kinase that phosphorylates the alpha1 subunit of the channel and thereby recruits RGS12, a member of the "regulator of G protein signaling" (RGS) proteins. Here we report that RGS12 binds to the SNARE-binding or "synprint" region (amino acids 726-985) in loop II-III of the calcium channel alpha1 subunit. A recombinant protein encompassing the N-terminal PTB domain of RGS12 binds to the synprint region in protein overlay and surface plasmon resonance binding assays; this interaction is dependent on tyrosine phosphorylation and yet is within a sequence that differs from the canonical NPXY motif targeted by other PTB domains. In electrophysiological experiments, microinjection of DRG neurons with synprint-derived peptides containing the tyrosine residue Tyr-804 altered the rate of desensitization of neurotransmitter-mediated inhibition of the Cav2.2 calcium channel, whereas peptides centered about a second tyrosine residue, Tyr-815, were without effect. RGS12 from a DRG neuron lysate was precipitated using synprint peptides containing phosphorylated Tyr-804. The high degree of conservation of Tyr-804 in the SNARE-binding region of Cav2.1 and Cav2.2 calcium channels suggests that this region, in addition to the binding of SNARE proteins, is also important for determining the time course of the modulation of calcium current via tyrosine phosphorylation.

  5. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: More evidence for oxidative stress in vitiligo

    International Nuclear Information System (INIS)

    Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10-3 M H2O2. One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10-3M H2O2 oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H2O2 utilising 45calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activities were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H2O2-mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo

  6. Advances on Plant Pathogenic Mycotoxin Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    WANG Chao-hua; DONG Jin-gao

    2002-01-01

    Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Helminthosporium ,Alternaria ,Fusicoccum ,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus.

  7. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  8. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis

    DEFF Research Database (Denmark)

    Bro, S; Rasmussen, R A; Handberg, J;

    1998-01-01

    into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium carbonate (US$6.00/d v US$0.65/d). Calcium ketoglutarate may be an effective and safe alternative to treatment with aluminum......The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main...... outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate...

  9. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  10. Penicillin-Binding Protein Imaging Probes

    OpenAIRE

    Kocaoglu, Ozden; Carlson, Erin E.

    2013-01-01

    Penicillin-binding proteins (PBPs) are membrane-associated proteins involved in the biosynthesis of peptidoglycan (PG), the main component of bacterial cell walls. These proteins were discovered and named for their affinity to bind the β-lactam antibiotic penicillin. The importance of the PBPs has long been appreciated; however, the apparent functional redundancy of the ~5–15 proteins that most bacteria possess makes determination of their individual roles difficult. Existing techniques to st...

  11. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    Science.gov (United States)

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  12. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein.

    Science.gov (United States)

    Chang, Szu-Wei; Tsao, Yeou-Ping; Lin, Chia-Yi; Chen, Show-Li

    2011-07-01

    Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression. PMID:21543494

  13. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  14. Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Lindblom, Karin;

    2009-01-01

    The interactions of the ECM (extracellular matrix) protein asporin with ECM components have previously not been investigated. Here, we show that asporin binds collagen type I. This binding is inhibited by recombinant asporin fragment LRR (leucine-rich repeat) 10-12 and by full-length decorin, but...... biomineralization activity. We also show that asporin can be expressed in Escherichia coli (Rosetta-gami) with correctly positioned cysteine bridges, and a similar system can possibly be used for the expression of other SLRPs (small LRR proteoglycans/proteins)....

  15. Diagnostic and Predictive Levels of Calcium-binding Protein A8 and Tumor Necrosis Factor Receptor-associated Factor 6 in Sepsis-associated Encephalopathy: A Prospective Observational Study

    Institute of Scientific and Technical Information of China (English)

    Li-Na Zhang; Xiao-Hong Wang; Long Wu; Li Huang; Chun-Guang Zhao; Qian-Yi Peng; Yu-Hang Ai

    2016-01-01

    Background:Despite its high prevalence,morbidity,and mortality,sepsis-associated encephalopathy (SAE) is still poorly understood.The aim of this prospective and observational study was to investigate the clinical significance of calcium-binding protein A8 (S100A8) in serum and tumor necrosis factor receptor-associated factor 6 (TRAF6) in peripheral blood mononuclear cells (PBMCs) in diagnosing SAE and predicting its prognosis.Methods:Data of septic patients were collected within 24 h after Intensive Care Unit admission from July 2014 to March 2015.Healthy medical personnel served as the control group.SAE was defined as cerebral dysfunction in the presence of sepsis that fulfilled the exclusion criteria.The biochemical indicators,Glasgow Coma Scale,Acute Physiology and Chronic Health Evaluation score Ⅱ,TRAF6 in PBMC,serum S 100A8,S 100β,and neuron-specific enolase were evaluated in SAE patients afresh.TRAF6 and S 100A8 were also measured in the control group.Results:Of the 57 enrolled patients,29 were diagnosed with SAE.The S 100A8 and TRAF6 concentrations in SAE patients were both significantly higher than that in no-encephalopathy (NE) patients,and higher in NE than that in controls (3.74 ± 3.13 vs.1.08 ± 0.75 vs.0.37 ± 0.14 ng/ml,P < 0.01;3.18 ± 1.55 vs.1.02 ± 0.63 vs.0.47 ± 0.10,P < 0.01).S 100A8 levels of 1.93 ng/ml were diagnostic of SAE with 92.90% specificity and 69.00% sensitivity in the receiver operating characteristic (ROC) curve,and the area under the curve was 0.86 (95% confidence interval [CI]:0.76-0.95).TRAF6-relative levels of 1.44 were diagnostic of SAE with 85.70% specificity and 86.20% sensitivity,and the area under the curve was 0.94 (95% CI:0.88-0.99).In addition,S 100A8 levels of 2.41 ng/ml predicted 28-day mortality of SAE with 90.00% specificity and 73.70% sensitivity in the ROC curve,and the area under the curve was 0.88.TRAF6 relative levels of 2.94 predicted 28-day mortality of SAE with 80.00% specificity

  16. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    OpenAIRE

    Nichols, Grant S.; DeBello, William M.

    2015-01-01

    Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII e...

  17. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins

    DEFF Research Database (Denmark)

    Hsu, Yu-Juei; Dimke, Henrik Anthony; Schoeber, Joost P H;

    2010-01-01

    Although gender differences in the renal handling of calcium have been reported, the overall contribution of androgens to these differences remains uncertain. We determined here whether testosterone affects active renal calcium reabsorption by regulating calcium transport proteins. Male mice had....... Androgen deficiency increased the abundance of the renal mRNA and protein of both the luminal transient receptor potential vanilloid-subtype 5 (TRPV5) and intracellular calbindin-D(28K) transporters, which in turn were suppressed by testosterone treatment. There were no significant differences in serum...

  18. Alcohol Binding to the Odorant Binding Protein LUSH: Multiple Factors Affecting Binding Affinities

    OpenAIRE

    Ader, Lauren; Jones, David N. M.; Lin, Hai

    2010-01-01

    Density function theory (DFT) calculations have been carried out to investigate the binding of alcohols to the odorant binding protein LUSH from Drosophila melanogaster. LUSH is one of the few proteins known to bind to ethanol at physiologically relevant concentrations and where high-resolution structural information is available for the protein bound to alcohol at these concentrations. The structures of the LUSH–alcohol complexes identify a set of specific hydrogen-bonding interactions as cr...

  19. Inhibition of Voltage-Gated Calcium Channels by RGK Proteins.

    Science.gov (United States)

    Buraei, Zafir; Yang, Jian

    2015-01-01

    Due to their essential biological roles, voltage-gated calcium channels (VGCCs) are regulated by a myriad of molecules and mechanisms. Fifteen years ago, RGK proteins were discovered to bind the VGCC β subunit (Cavβ) and potently inhibit high-voltage activated Ca(2+) channels. RGKs (Rad, Rem, Rem2 and Gem/Kir) are a family of monomeric small GTPases belonging to the superfamily of Ras GTPases. They exert dual inhibitory effects on VGCCs, decreasing surface expression and suppressing surface channels through immobilization of the voltage sensor or reduction of channel open probability. While Cavβ is required for all forms of RGK inhibition, not all inhibition is mediated by the RGK-Cavβ interaction. Some RGK proteins also interact directly with the pore-forming α1 subunit of some types of VGCCs (Cavα1). Importantly, RGK proteins tonically inhibit VGCCs in native cells, regulating cardiac and neural functions. This minireview summarizes the mechanisms, molecular determinants, and physiological impact of RGK inhibition of VGCCs. PMID:25966691

  20. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis.

    Science.gov (United States)

    Bro, S; Rasmussen, R A; Handberg, J; Olgaard, K; Feldt-Rasmussen, B

    1998-02-01

    The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main outcome measurements were plasma ionized calcium levels, plasma phosphate levels, plasma intact parathyroid hormone (PTH) levels, requirements for supplemental aluminum-aminoacetate therapy, patient tolerance, and cost of therapy. Nineteen patients on chronic hemodialysis were treated with a dialysate calcium concentration of 1.25 mmol/L and a fixed alfacalcidol dose for at least 2 months. All had previously tolerated therapy with calcium carbonate. Of the 19 patients included, 10 completed both treatment arms. After 12 weeks of therapy, the mean (+/-SEM) plasma ionized calcium level was significantly lower in the ketoglutarate arm compared with the calcium carbonate arm (4.8+/-0.1 mg/dL v 5.2+/-0.1 mg/dL; P = 0.004), whereas the mean plasma phosphate (4.5+/-0.3 mg/dL v 5.1+/-0.1 mg/dL) and PTH levels (266+/-125 pg/mL v 301+/-148 pg/mL) did not differ significantly between the two treatment arms. Supplemental aluminum-aminoacetate was not required during calcium ketoglutarate treatment, while two patients needed this supplement when treated with calcium carbonate. Five of 17 (29%) patients were withdrawn from calcium ketoglutarate therapy within 1 to 2 weeks due to intolerance (anorexia, vomiting, diarrhea, general uneasiness), whereas the remaining 12 patients did not experience any side effects at all. The five patients with calcium ketoglutarate intolerance all had pre-existing gastrointestinal symptoms; four of them had received treatment with cimetidine or omeprazol before inclusion into the study. Calculations based on median doses after 12 weeks showed that the cost of the therapy in Denmark was 10 times higher for calcium ketoglutarate compared with calcium

  1. The calcium-binding protein Mtsl/S100A4 in normal, degenerating and demyelinated spinal cord of the adult mouse%The calcium-binding protein Mtsl/S100A4 in normal,degenerating and demyelinated spinal cord of the adult mouse

    Institute of Scientific and Technical Information of China (English)

    FANG Zhengyu; XIONG Liang; HUANG Xiaolin; ZHOU Ning; Kozlova-Aldskogius Elena

    2008-01-01

    目的:研究止常、退行性病变以及脱髓鞘小鼠脊髓内Mtsl/S100A4蛋白的表达模式,及其对胶质细胞反应的影响.方法:以野生型和Mtsl/S100A4基因敲除型小鼠为试验动物,采用背根损伤、坐骨神经损伤、溴乙啶局部微量注射的方法复制退行性病变及脱髓鞘脊髓动物模型,应用免疫荧光技术,检测S100A4、GFAP、NG2、Mac1的表达情况.结果:野生型小鼠脊髓内,仅白质星型胶质细胞表达S100A4蛋白,且主要分布于Lissauer束:背根或坐骨神经损伤后,白质星形胶质细胞内的S100A4及GFAP表达上调.野生型与S100A4基因敲除小鼠GFAP表达量无显著差异;溴乙啶注射7d后,野生型小鼠脊髓脱髓鞘区域内她S100A4呈云雾状分布,胶质细胞反应局限于注射侧,并且形成清晰的胶质瘢痕,而S100A4基凶敲除小鼠则未见上述病理变化.结论:S100A4蛋白在小鼠脊髓内的表达模式与大鼠相似;退行性变的脊髓内,细胞内上调的S100A4蛋白并不影响胶质细胞的反应;脱髓鞘脊髓内,细胞外的S100A4蛋白明显影响胶质细胞反应,包括胶质瘢痕的形成.%Objective:To investigate the expression pattern of Mtsl/S100A4 in mouse spinal cord;to investigate the effects of Mtsl/S100A4 on glial cell responses.Method:The study was carried out on Mtsl/S100A4 wild type and knock-out mice.The degenerative spinal cord model was established by dorsal root or sciatic nerve injury.The de-myelinated spinal cord model was established by ethidium bromide injections.Then the expressions of S100A4,GFA P,NG2 and Mael were measured.Result:The expressions of Mtsl/S100A4 in mice spinal cord were similar to that in rats.In WT mice this protein expressed in a thin layer of fiber bundles in the tract of Lissauer,and in white matter astrocytes.There was intracellular up-regulation of Mtsl/S100A4 in white matter astrocytes of WT mice after dorsal root or sciatic nerve injury,with no difference in glial cell response

  2. Acyl-coenzyme A binding protein (ACBP)

    DEFF Research Database (Denmark)

    Kragelund, B B; Knudsen, J; Poulsen, F M

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four alpha-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located...... at the helix-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  3. Acyl-coenzyme A binding protein, ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Knudsen, J.; Poulsen, Flemming

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four a-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located at the helix......-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  4. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  5. Lipid Binding Proteins from Parasitic Platyhelmithes

    Directory of Open Access Journals (Sweden)

    Gabriela eAlvite

    2012-09-01

    Full Text Available Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs and fatty acid binding proteins (FABPs. Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesise their own lipids, these lipid-binding proteins are important molecules in these organisms.HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates.Despite that the knowledge of their function is scarce, the differences in their molecular organisation, ligand preferences, intra/extracellular localisation, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  6. The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release*

    Science.gov (United States)

    Hedgepeth, Serena C.; Garcia, M. Iveth; Wagner, Larry E.; Rodriguez, Ana M.; Chintapalli, Sree V.; Snyder, Russell R.; Hankins, Gary D. V.; Henderson, Beric R.; Brodie, Kirsty M.; Yule, David I.; van Rossum, Damian B.; Boehning, Darren

    2015-01-01

    The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. PMID:25645916

  7. Biophysical studies on calcium and carbohydrate binding to carbohydrate recognition domain of Gal/GalNAc lectin from Entamoeba histolytica: insights into host cell adhesion.

    Science.gov (United States)

    Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando

    2016-09-01

    Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion.

  8. Biophysical studies on calcium and carbohydrate binding to carbohydrate recognition domain of Gal/GalNAc lectin from Entamoeba histolytica: insights into host cell adhesion.

    Science.gov (United States)

    Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando

    2016-09-01

    Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion. PMID:27008865

  9. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2010-08-01

    Full Text Available Abstract Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR, which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.

  10. Haptenation: Chemical Reactivity and Protein Binding

    Directory of Open Access Journals (Sweden)

    Itai Chipinda

    2011-01-01

    Full Text Available Low molecular weight chemical (LMW allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed.

  11. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    Science.gov (United States)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  12. Effects of beta-amyloid protein on M1 and M2 subtypes of muscarinic acetylcholine receptors in the medial septum-diagonal band complex of the rat: relationship with cholinergic, GABAergic, and calcium-binding protein perikarya.

    Science.gov (United States)

    González, Iván; Arévalo-Serrano, Juan; Sanz-Anquela, José Miguel; Gonzalo-Ruiz, Alicia

    2007-06-01

    Cortical cholinergic dysfunction has been correlated with the expression and processing of beta-amyloid precursor protein. However, it remains unclear as to how cholinergic dysfunction and beta-amyloid (Abeta) formation and deposition might be related to one another. Since the M1- and M2 subtypes of muscarinic acetylcholine receptors (mAChRs) are considered key molecules that transduce the cholinergic message, the purpose of the present study was to assess the effects of the injected Abeta peptide on the number of M1mAchR- and M2mAChR-immunoreactive cells in the medial septum-diagonal band (MS-nDBB) complex of the rat. Injections of Abeta protein into the retrosplenial cortex resulted in a decrease in M1mAChR and M2mAChR immunoreactivity in the MS-nDBB complex. Quantitative analysis revealed a significant reduction in the number of M1mAChR- and M2mAChR-immunoreactive cells in the medial septum nucleus (MS) and in the horizontal nucleus of the diagonal band of Broca (HDB) as compared to the corresponding hemisphere in control animals and with that seen in the contralateral hemisphere, which corresponds to the PBS-injected side. Co-localization studies showed that the M1mAChR protein is localized in GABA-immunoreactive cells of the MS-nDBB complex, in particular those of the MS nucleus, while M2mAChR protein is localized in both the cholinergic and GABAergic cells. Moreover, GABAergic cells containing M2mAChR are mainly localized in the MS nucleus, while cholinergic cells containing M2mAChR are localized in the MS and the HDB nuclei. Our findings suggest that Abeta induces a reduction in M1mAChR- and M2mAChR-containing cells, which may contribute to impairments of cholinergic and GABAergic transmission in the MS-nDBB complex.

  13. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    Science.gov (United States)

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  14. Liver Fatty Acid Binding Protein and Obesity

    OpenAIRE

    Atshaves, B.P.; Martin, G G; Hostetler, H.A.; McIntosh, A.L.; Kier, A B; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them f...

  15. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    Science.gov (United States)

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  16. Co-localization of putative calcium channels (phenylalkylamine-binding sites) on oil bodies in protoplasts from dark-grown sunflower seedling cotyledons.

    Science.gov (United States)

    Vandana, Shweta; Bhatla, Satish C

    2009-07-01

    Oil bodies are spherical entities containing a triacylglycerol (TAG) matrix encased by a phospholipid monolayer, which is stabilized by oil body-specific proteins, principally oleosins. Biochemical investigations in the recent past have also demonstrated the expression of calcium-binding proteins, called caleosins, as a component of oil body membranes during seed germination. Using DM-Bodipy-phenylalkylamine (PAA; a fluorescent derivative of phenylalkylamine)-a fluorescent probe known to bind L-type calcium channel proteins, present investigations provide the first report on the localization and preferential accumulation of putative calcium channel proteins on/around oil bodies during peak lipolytic phase in protoplasts derived from dark-grown sunflower (Helianthus annuus L. cv Morden) seedling cotyledons. Specificity of DM-Bodipy-PAA labeling was confirmed by using bepridil, a non-fluorescent competitor of PAA while non-specific dye accumulation has been ruled out by using Bodipy-FL as control. Co-localization of fluorescence from DM-Bodipy-PAA binding sites (ex: 504 nm; em: 511 nm) and nile red fluorescing oil bodies (ex: 552 nm; em: 636 nm) has been undertaken by epifluorescence and confocal laser scanning microscopy (CLSM). It revealed the affinity of PAA-sensitive ion channels for the oil body surface. Findings from the current investigations highlight the significance of calcium and calcium channel proteins during oil body mobilization in sunflower.

  17. Dengue virus utilizes calcium modulating cyclophilin-binding ligand to subvert apoptosis.

    Science.gov (United States)

    Li, Jianling; Huang, Rongjie; Liao, Weiyong; Chen, Zhaoni; Zhang, Shijun; Huang, Renbin

    2012-02-24

    Dengue virus (DENV) capsid (C) proteins are the major structural component of virus particles. This study aimed to identify the host interacting partners of DENV C protein that could contribute to viral pathogenesis. DENV C protein was screened against human liver cDNA yeast two-hybrid library. We identified calcium modulating cyclophilin-binding ligand (CAML) as a novel interacting partner of DENV C protein. We report for the first time that CAML influenced DENV production. DENV production was significantly attenuated in CAML knock-down cells at 36h post-infection. CAML did not influence DENV entry, genome uncoating, viral transcription, viral translation and virus secretion. Our study pinpointed that CAML influenced the process of apoptosis by altering mitochondrial membrane potential and caspase-3 activation from 36h post-infection. Over-expression of CAML protected Huh7 cells from apoptosis and knock down of CAML favoured apoptosis following infection with DENV. We also showed that CAML expression was up-regulated during DENV infection. Increased CAML levels protected DENV-infected cells from undergoing apoptosis by preventing mitochondrial damage and caspase-3 activation which in turn favoured DENV production from 36h post-infection. Overall, this study demonstrated that DENV manipulated the levels of CAML to subvert the apoptotic process which in turn favoured efficient virus production. PMID:22281498

  18. Ice-Binding Proteins and Their Function.

    Science.gov (United States)

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  19. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity.

    Science.gov (United States)

    Beccia, Maria Rosa; Sauge-Merle, Sandrine; Lemaire, David; Brémond, Nicolas; Pardoux, Romain; Blangy, Stéphanie; Guilbaud, Philippe; Berthomieu, Catherine

    2015-07-01

    Calmodulin (CaM) is an essential Ca(II)-dependent regulator of cell physiology. To understand its interaction with Ca(II) at a molecular level, it is essential to examine Ca(II) binding at each site of the protein, even if it is challenging to estimate the site-specific binding properties of the interdependent CaM-binding sites. In this study, we evaluated the site-specific Ca(II)-binding affinity of sites I and II of the N-terminal domain by combining site-directed mutagenesis and spectrofluorimetry. The mutations had very low impact on the protein structure and stability. We used these binding constants to evaluate the inter-site cooperativity energy and compared it with its lower limit value usually reported in the literature. We found that site I affinity for Ca(II) was 1.5 times that of site II and that cooperativity induced an approximately tenfold higher affinity for the second Ca(II)-binding event, as compared to the first one. We further showed that insertion of a tryptophan at position 7 of site II binding loop significantly increased site II affinity for Ca(II) and the intra-domain cooperativity. ΔH and ΔS parameters were studied by isothermal titration calorimetry for Ca(II) binding to site I, site II and to the entire N-terminal domain. They showed that calcium binding is mainly entropy driven for the first and second binding events. These findings provide molecular information on the structure-affinity relationship of the individual sites of the CaM N-terminal domain and new perspectives for the optimization of metal ion binding by mutating the EF-hand loops sequences.

  20. Signal transduction by guanine nucleotide binding proteins.

    Science.gov (United States)

    Spiegel, A M

    1987-01-01

    High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Subsets of this family include cytosolic initiation and elongation factors involved in protein synthesis, and cytoskeletal proteins such as tubulin (Hughes, S.M. (1983) FEBS Lett. 164, 1-8). A distinct subset of guanine nucleotide binding proteins is membrane-associated; members of this subset include the ras gene products (Ellis, R.W. et al. (1981) Nature 292, 506-511) and the heterotrimeric G-proteins (also termed N-proteins) (Gilman, A.G. (1984) Cell 36, 577-579). Substantial evidence indicates that G-proteins act as signal transducers by coupling receptors (R) to effectors (E). A similar function has been suggested but not proven for the ras gene products. Known G-proteins include Gs and Gi, the G-proteins associated with stimulation and inhibition, respectively, of adenylate cyclase; transducin (TD), the G-protein coupling rhodopsin to cGMP phosphodiesterase in rod photoreceptors (Bitensky, M.W. et al. (1981) Curr. Top. Membr. Transp. 15, 237-271; Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119), and Go, a G-protein of unknown function that is highly abundant in brain (Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 13806-13813; Neer, E.J. et al. (1984) J. Biol. Chem. 259, 14222-14229). G-proteins also participate in other signal transduction pathways, notably that involving phosphoinositide breakdown. In this review, I highlight recent progress in our understanding of the structure, function, and diversity of G-proteins. PMID:2435586

  1. Differential expression of calcium-related genes in gastric cancer cells transfected with cellular prion protein.

    Science.gov (United States)

    Liang, Jie; Luo, Guanhong; Ning, Xiaoxuan; Shi, Yongquan; Zhai, Huihong; Sun, Shiren; Jin, Haifeng; Liu, Zhenxiong; Zhang, Faming; Lu, Yuanyuan; Zhao, Yunping; Chen, Xiong; Zhang, Hongbo; Guo, Xuegang; Wu, Kaichun; Fan, Daiming

    2007-06-01

    The prion protein (PrPC) has a primary role in the pathogenesis of transmissible spongiform encephalopathies, which causes prion disorders partially due to Ca2+ dysregulation. In our previous work, we found that overexpressed PrPC in gastric cancer was involved in apoptosis, cell proliferation, and metastasis of gastric cancer. To better understand how PrPC acts in gastric cancer, a human microarray was performed to select differentially regulated genes that correlate with the biological function of PrPC. The microarray data were analyzed and revealed 3798 genes whose expression increased at least 2-fold in gastric cancer cells transfected with PrPC. These genes encode proteins involved in several aspects of cell biology, among which, we specially detected molecules related to calcium, especially the S100 calcium-binding proteins, and found that PrPC upregulates S100A1, S100A6, S100B, and S100P but downregulates CacyBP in gastric cancer cells. We also found that intracellular Ca2+ levels in cells transfected with PrPC increased, whereas these levels decreased in knockdowns of these cells. Taken together, PrPC might increase intracellular Ca2+, partially through calcium-binding proteins, or PrPC might upregulate the expression of S100 proteins, partially through stimulating the intracellular calcium level in gastric cancer. Though the underlying mechanisms need further exploration, this study provides a new insight into the role of PrPC in gastric cancer and enriches our knowledge of prion protein. PMID:17612632

  2. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  3. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul;

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate......-binding activity and was dependent on glycosylation of gp120. Native dodecameric SP-D bound to HIV gp120 more strongly than native trimeric SP-D. Since one common polymorphic form of SP-D is predominantly expressed as trimers and associated with lower blood levels, these individuals may have less effective innate...

  4. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response calmodulin-binding transcription factor AtSR1/CAMTA3

    Science.gov (United States)

    Calcium/calmodulin (Ca2+/CaM) has long been considered a crucial component in wound signaling pathway. However, no functional significance of Ca2+/CaM-binding proteins has been identified in plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca2+/CaM-bindi...

  5. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  6. Presence of calcium-binding motifs in PilY1 homologs correlates with Ca-mediated twitching motility and evolutionary history across diverse bacteria.

    Science.gov (United States)

    Parker, Jennifer K; Cruz, Luisa F; Evans, Michael R; De La Fuente, Leonardo

    2015-02-01

    Twitching motility, involving type IV pili, is essential for host colonization and virulence of many pathogenic bacteria. Studies of PilY1, a tip-associated type IV pili protein, indicate that PilY1 functions as a switch between pilus extension and retraction, resulting in twitching motility. Recent work detected a calcium-binding motif in PilY1 of some animal bacterial pathogens and demonstrated that binding of calcium to PilY1 with this motif regulates twitching. Though studies of PilY1 in non-animal pathogens are limited, our group demonstrated that twitching motility in the plant pathogen Xylella fastidiosa, which contains three PilY1 homologs, is increased by calcium supplementation. A study was conducted to investigate the phylogenetic relationship between multiple PilY1 homologs, the presence of calcium-binding motifs therein, and calcium-mediated twitching motility across diverse bacteria. Strains analyzed contained one to three PilY1 homologs, but phylogenetic analyses indicated that PilY1 homologs containing the calcium-binding motif Dx[DN]xDGxxD are phylogenetically divergent from other PilY1 homologs. Plant-associated bacteria included in these analyses were then examined for a calcium-mediated twitching response. Results indicate that bacteria must have at least one PilY1 homolog containing the Dx[DN]xDGxxD motif to display a calcium-mediated increase in twitching motility, which likely reflects an adaption to environmental calcium concentrations. PMID:25688068

  7. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45Ca2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45Ca2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd2+, Ni2+, and Mg2+. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  8. Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing.

    Science.gov (United States)

    Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin

    2016-04-01

    Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands. PMID

  9. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Directory of Open Access Journals (Sweden)

    Masahiro Kawahara

    2011-01-01

    Full Text Available Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP play crucial roles in the pathogenesis of Alzheimer's disease (AD. Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”, and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.

  10. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert; Rydström, Jan

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  11. Structural investigations of calcium binding and its role in activity and activation of outer membrane phospholipase A from Escherichia coli

    NARCIS (Netherlands)

    Snijder, H.J.; Kingma, R.L.; Kalk, K.H.; Egmond, M.R.; Dijkstra, B.W.

    2001-01-01

    Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that catalyses the hydrolysis of phospholipids. Enzymatic activity is regulated by reversible dimerisation and calcium-binding. We have investigated the role of calcium by X-ray crystallography. In monomeric OMPLA, one calcium ion

  12. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    OpenAIRE

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesi...

  13. Where metal ions bind in proteins.

    OpenAIRE

    Yamashita, M M; Wesson, L.; Eisenman, G.; Eisenberg, D.

    1990-01-01

    The environments of metal ions (Li+, Na+, K+, Ag+, Cs+, Mg2+, Ca2+, Mn2+, Cu2+, Zn2+) in proteins and other metal-host molecules have been examined. Regardless of the metal and its precise pattern of ligation to the protein, there is a common qualitative feature to the binding site: the metal is ligated by a shell of hydrophilic atomic groups (containing oxygen, nitrogen, or sulfur atoms) and this hydrophilic shell is embedded within a larger shell of hydrophobic atomic groups (containing car...

  14. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  15. Water-mediated interactions influence the binding of thapsigargin to sarco/endoplasmic reticulum calcium adenosinetriphosphatase

    DEFF Research Database (Denmark)

    Paulsen, Eleonora S.; Villadsen, Jesper; Tenori, Eleonora;

    2013-01-01

    A crystal structure suggests four water molecules are present in the binding cavity of thapsigargin in sarco/endoplasmic reticulum calcium ATPase (SERCA). Computational chemistry indicates that three of these water molecules mediate an extensive hydrogen-bonding network between thapsigargin...

  16. Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture

    NARCIS (Netherlands)

    C.F. Verkoelen; B.G. van der Boom (Burt); A.B. Houtsmuller (Adriaan); F.H. Schröder (Fritz); J.C. Romijn (Johannes)

    1998-01-01

    textabstractThe retention of crystals in the kidney is considered to be a crucial step in the development of a renal stone. This study demonstrates the time-dependent alterations in the extent of calcium oxalate (CaOx) monohydrate (COM) crystal binding to Madin-Darby ca

  17. Structural Studies of Soybean Calmodulin Isoform 4 Bound to the Calmodulin-binding Domain of Tobacco Mitogen-activated Protein Kinase Phosphatase-1 Provide Insights into a Sequential Target Binding Mode*

    OpenAIRE

    Ishida, Hiroaki; Rainaldi, Mario; Vogel, Hans J.

    2009-01-01

    The calcium regulatory protein calmodulin (CaM) binds in a calcium-dependent manner to numerous target proteins. The calmodulin-binding domain (CaMBD) region of Nicotiana tabacum MAPK phosphatase has an amino acid sequence that does not resemble the CaMBD of any other known Ca2+-CaM-binding proteins. Using a unique fusion protein strategy, we have been able to obtain a high resolution solution structure of the complex of soybean Ca2+-CaM4 (SCaM4) and this CaMBD. Complete isotope labeling of b...

  18. DNA and RNA Quadruplex-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Václav Brázda

    2014-09-01

    Full Text Available Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc., the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGGn, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2 and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.

  19. Cobalamin and its binding protein in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1989-01-01

    Cobalamin and its binding protein, haptocorrin, are present in rat milk throughout the lactation period. The concentration of cobalamin is approximately 0.3-times the concentration of the unsaturated binding protein. The concentration of the unsaturated cobalamin-binding protein varies between 18...... nmol l-1 and 16 nmol l-1. The binding protein has a Stokes radius of 2.49 nm when saturated with cobalamin and 2.61 nm when unsaturated. It binds cobalamin over a broad range of pH and is able to bind cobinamide also. With immunohistochemistry, we find haptocorrin immunoreactivity in the mammary glands...

  20. Protein and ligand adaptation in a retinoic acid binding protein.

    OpenAIRE

    Pattanayek, R.; Newcomer, M E

    1999-01-01

    A retinoic acid binding protein isolated from the lumen of the rat epididymis (ERABP) is a member of the lipocalin superfamily. ERABP binds both the all-trans and 9-cis isomers of retinoic acid, as well as the synthetic retinoid (E)-4-[2-(5,6,7,8)-tetrahydro-5,5,8,8-tetramethyl-2 napthalenyl-1 propenyl]-benzoic acid (TTNPB), a structural analog of all-trans retinoic acid. The structure of ERABP with a mixture of all-trans and 9-cis retinoic acid has previously been reported. To elucidate any ...

  1. Calcium-Dependent Protein Kinase CPK21 Functions in Abiotic Stress Response in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Sandra Franz; Britta Ehlert; Anja Liese; Joachim Kurth; Anne-Claire Cazalé; Tina Romeis

    2011-01-01

    Calcium-dependent protein kinases(CDPKs)comprise a family of plant serine/threonine protein kinases in which the calcium sensing domain and the kinase effector domain are combined within one molecule.So far,a biological function in abiotic stress signaling has only been reported for few CDPK isoforms,whereas the underlying biochemical mechanism for these CDPKs is still mainly unknown.Here,we show that CPK21 from Arabidopsis thaliana is biochemically activated in vivo in response to hyperosmotic stress.Loss-of-function seedlings of cpk21 are more tolerant to hyperosmotic stress and mutant plants show increased stress responses with respect to marker gene expression and metabolite accumulation.In transgenic Arabidopsis complementation lines in the cpk21 mutant background,in which either CPK21 wildtype,or a full-length enzyme variant carrying an amino-acid substitution were stably expressed,stress responsitivity was restored by CPK21 but not with the kinase inactive variant.The biochemical characterization of in planta synthesized and purified CPK21 protein revealed that within the calcium-binding domain,N-terminal EF1- and EF2-motifs compared to C-terminal EF3- and EF4-motifs differ in their contribution to calcium-regulated kinase activity,suggesting a crucial role for the N-terminal EF-hand pair.Our data provide evidence for CPK21 contributing in abiotic stress signaling and suggest that the N-terminal EF-hand pair is a calcium-sensing determinant controlling specificity of CPK21 function.

  2. Mechanical unfolding of ribose binding protein and its comparison with other periplasmic binding proteins.

    Science.gov (United States)

    Kotamarthi, Hema Chandra; Narayan, Satya; Ainavarapu, Sri Rama Koti

    2014-10-01

    Folding and unfolding studies on large, multidomain proteins are still rare despite their high abundance in genomes of prokaryotes and eukaryotes. Here, we investigate the unfolding properties of a 271 residue, two-domain ribose binding protein (RBP) from the bacterial periplasm using single-molecule force spectroscopy. We observe that RBP predominately unfolds via a two-state pathway with an unfolding force of ∼80 pN and an unfolding contour length of ∼95 nm. Only a small population (∼15%) of RBP follows three-state pathways. The ligand binding neither increases the mechanical stability nor influences the unfolding flux of RBP through different pathways. The kinetic partitioning between two-state and three-state pathways, which has been reported earlier for other periplasmic proteins, is also observed in RBP, albeit to a lesser extent. These results provide important insights into the mechanical stability and unfolding processes of large two-domain proteins and highlight the contrasting features upon ligand binding. Protein structural topology diagrams are used to explain the differences in the mechanical unfolding behavior of RBP with other periplasmic binding proteins.

  3. Dissection of the Critical Binding Determinants of Cellular Retinoic Acid Binding Protein II by Mutagenesis and Fluorescence Binding Assay

    OpenAIRE

    Vasileiou, Chrysoula; Lee, Kin Sing Stephen; Crist, Rachael M.; Vaezeslami, Soheila; Goins, Sarah M.; Geiger, James H.; Borhan, Babak

    2009-01-01

    The binding of retinoic acid to mutants of Cellular Retinoic Acid Binding Protein II (CRABPII) was evaluated to better understand the importance of the direct protein/ligand interactions. The important role of Arg111 for the correct structure and function of the protein was verified and other residues that directly affect retinoic acid binding have been identified. Furthermore, retinoic acid binding to CRABPII mutants that lack all previously identified interacting amino acids was rescued by ...

  4. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling

    OpenAIRE

    Kornélia Szebényi; András Füredi; Orsolya Kolacsek; Enikő Pergel; Zsuzsanna Bősze; Balázs Bender; Péter Vajdovich; József Tóvári; László Homolya; Gergely Szakács; László Héja; Ágnes Enyedi; Balázs Sarkadi; Ágota Apáti; Orbán, Tamás I.

    2015-01-01

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, an...

  5. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  6. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  7. Computational Design of DNA-Binding Proteins.

    Science.gov (United States)

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering. PMID:27094297

  8. Influence of acid-soluble proteins from bivalve Siliqua radiata ligaments on calcium carbonate crystal growth

    Science.gov (United States)

    Huang, Zeng-Qiong; Zhang, Gang-Sheng

    2016-08-01

    In vitro biomimetic synthesis of calcium carbonate (CaCO3) in the presence of shell proteins is a heavily researched topic in biomineralization. However, little is known regarding the function of bivalve ligament proteins in the growth of CaCO3 crystals. In this study, using fibrous protein K58 from Siliqua radiata ligaments or coverslips as substrates, we report the results of our study of CaCO3 precipitation in the presence or absence of acid-soluble proteins (ASP) from inner ligament layers. ASP can disturb the controlling function of K58 or a coverslip on the crystalline phase, resulting in the formation of aragonite, calcite, and vaterite. In addition, we identified the following four primary components from ASP by mass spectroscopy: alkaline phosphatase (ALP), ABC transporter, keratin type II cytoskeletal 1 (KRT 1), and phosphate ABC transporter, phosphate-binding protein (PstS). Further analysis revealed that the first three proteins and especially ALP, which is important in bone mineralisation, could affect the polymorphism and morphology of CaCO3 crystals by trapping calcium ions in their domains. Our results indicate that ALP may play an important role in the formation of aragonite in S. radiata ligaments. This paper may facilitate our understanding of the biomineralization process.

  9. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  10. Alternative polyadenylation and RNA-binding proteins.

    Science.gov (United States)

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  11. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    Science.gov (United States)

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  12. Mutation of the Conserved Calcium-Binding Motif in Neisseria gonorrhoeae PilC1 Impacts Adhesion but Not Piliation

    OpenAIRE

    CHENG, Yuan; Johnson, Michael D. L.; Burillo-Kirch, Christine; Mocny, Jeffrey C.; Anderson, James E.; Garrett, Christopher K.; Redinbo, Matthew R.; Thomas, Christopher E.

    2013-01-01

    Neisseria gonorrhoeae PilC1 is a member of the PilC family of type IV pilus-associated adhesins found in Neisseria species and other type IV pilus-producing genera. Previously, a calcium-binding domain was described in the C-terminal domains of PilY1 of Pseudomonas aeruginosa and in PilC1 and PilC2 of Kingella kingae. Genetic analysis of N. gonorrhoeae revealed a similar calcium-binding motif in PilC1. To evaluate the potential significance of this calcium-binding region in N. gonorrhoeae, we...

  13. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  14. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    Energy Technology Data Exchange (ETDEWEB)

    Magno, Aaron L. [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ingley, Evan [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Brown, Suzanne J. [Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Conigrave, Arthur D. [School of Molecular Bioscience, University of Sydney, New South Wales 2000 (Australia); Ratajczak, Thomas [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ward, Bryan K., E-mail: bryanw@cyllene.uwa.edu.au [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia)

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  15. Isolation of a Thiamine-binding Protein from Rice Germ and Distribution of Similar Proteins.

    Science.gov (United States)

    Shimizu, M; Yoshida, T; Toda, T; Iwashima, A; Mitsunaga, T

    1996-01-01

    A thiamine-binding protein was purified from rice germ (Oryza sativa L.) by extraction, salting-out with ammonium sulfate, and column chromatography. From the results of molecular mass, Kd and Bmax values for thiamine-binding, binding specificity for thiamine phosphates and analog, the protein was suggested to be identical to the thiamine-binding protein in rice bran. The thiamine-binding protein w as more efficiently purified from rice germ than from rice bran. The protein was rich in glutamic acid (and/or glutamine) and glycine. The protein did not show immunological similarity to thiamine-binding proteins in buckwheat and sesame seeds. However proteins similar to the thiamine-binding protein from rice germ existed in gramineous seeds. They were suggested to have thiamine-binding activity and to be of the same molecular mass as the thiamine-binding protein. PMID:27299548

  16. A proteomic approach to identification of plutonium-binding proteins in mammalian cells.

    Science.gov (United States)

    Aryal, Baikuntha P; Paunesku, Tatjana; Woloschak, Gayle E; He, Chuan; Jensen, Mark P

    2012-02-16

    Plutonium can enter the body through different routes and remains there for decades; however its specific biochemical interactions are poorly defined. We, for the first time, have studied plutonium-binding proteins using a metalloproteomic approach with rat PC12 cells. A combination of immobilized metal ion chromatography, 2D gel electrophoresis, and mass spectrometry was employed to analyze potential plutonium-binding proteins. Our results show that several proteins from PC12 cells show affinity towards Pu(4+)-NTA (plutonium bound to nitrilotriacetic acid). Proteins from seven different spots in the 2D gel were identified. In contrast to the previously known plutonium-binding proteins transferrin and ferritin, which bind ferric ions, most identified proteins in our experiment are known to bind calcium, magnesium, or divalent transition metal ions. The identified plutonium interacting proteins also have functional roles in downregulation of apoptosis and other pro-proliferative processes. MetaCore™ analysis based on this group of proteins produced a pathway with a statistically significant association with development of neoplastic diseases.

  17. An explicitly solvated full atomistic model of the cardiac thin filament and application on the calcium binding affinity effects from familial hypertrophic cardiomyopathy linked mutations

    Science.gov (United States)

    Williams, Michael; Schwartz, Steven

    2015-03-01

    The previous version of our cardiac thin filament (CTF) model consisted of the troponin complex (cTn), two coiled-coil dimers of tropomyosin (Tm), and 29 actin units. We now present the newest revision of the model to include explicit solvation. The model was developed to continue our study of genetic mutations in the CTF proteins which are linked to familial hypertrophic cardiomyopathies. Binding of calcium to the cTnC subunit causes subtle conformational changes to propagate through the cTnC to the cTnI subunit which then detaches from actin. Conformational changes propagate through to the cTnT subunit, which allows Tm to move into the open position along actin, leading to muscle contraction. Calcium disassociation allows for the reverse to occur, which results in muscle relaxation. The inclusion of explicit TIP3 water solvation allows for the model to get better individual local solvent to protein interactions; which are important when observing the N-lobe calcium binding pocket of the cTnC. We are able to compare in silica and in vitro experimental results to better understand the physiological effects from mutants, such as the R92L/W and F110V/I of the cTnT, on the calcium binding affinity compared to the wild type.

  18. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    Science.gov (United States)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  19. Calcium binding by the PKD1 domain regulates interdomain flexibility in Vibrio cholerae metalloprotease PrtV.

    Science.gov (United States)

    Edwin, Aaron; Rompikuntal, Pramod; Björn, Erik; Stier, Gunter; Wai, Sun N; Sauer-Eriksson, A Elisabeth

    2013-01-01

    Vibrio cholerae, the causative agent of cholera, releases several virulence factors including secreted proteases when it infects its host. These factors attack host cell proteins and break down tissue barriers and cellular matrix components such as collagen, laminin, fibronectin, keratin, elastin, and they induce necrotic tissue damage. The secreted protease PrtV constitutes one virulence factors of V. cholerae. It is a metalloprotease belonging to the M6 peptidase family. The protein is expressed as an inactive, multidomain, 102 kDa pre-pro-protein that undergoes several N- and C-terminal modifications after which it is secreted as an intermediate variant of 81 kDa. After secretion from the bacteria, additional proteolytic steps occur to produce the 55 kDa active M6 metalloprotease. The domain arrangement of PrtV is likely to play an important role in these maturation steps, which are known to be regulated by calcium. However, the molecular mechanism by which calcium controls proteolysis is unknown. In this study, we report the atomic resolution crystal structure of the PKD1 domain from V. cholera PrtV (residues 755-838) determined at 1.1 Å. The structure reveals a previously uncharacterized Ca(2+)-binding site located near linker regions between domains. Conformational changes in the Ca(2+)-free and Ca(2+)-bound forms suggest that Ca(2+)-binding at the PKD1 domain controls domain linker flexibility, and plays an important structural role, providing stability to the PrtV protein.

  20. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  1. Methyl-CpG binding proteins in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Guoping FAN; Leah HUTNICK

    2005-01-01

    Classical methyl-CpG binding proteins contain the conserved DNA binding motif methyl-cytosine binding domain (MBD), which preferentially binds to methylated CpG dinucleotides. These proteins serve as transcriptional repressors,mediating gene silencing via DNA cytosine methylation. Mutations in methyl-CpG binding protein 2 (MeCP2) have been linked to the human mental retardation disorder Rett syndrome, suggesting an important role for methyl-CpG binding proteins in brain development and function. This mini-review summarizes the recent advances in studying the diverse functions of MeCP2 as a prototype for other methyl-CpG binding proteins in the development and function of the vertebrate nervous system.

  2. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    Science.gov (United States)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  3. The cytoskeletal protein α-catenin unfurls upon binding to vinculin.

    Science.gov (United States)

    Rangarajan, Erumbi S; Izard, Tina

    2012-05-25

    Adherens junctions (AJs) are essential for cell-cell contacts, morphogenesis, and the development of all higher eukaryotes. AJs are formed by calcium-dependent homotypic interactions of the ectodomains of single membrane-pass cadherin family receptors. These homotypic interactions in turn promote binding of the intracellular cytoplasmic tail domains of cadherin receptors with β-catenin, a multifunctional protein that plays roles in both transcription and AJs. The cadherin receptor-β-catenin complex binds to the cytoskeletal protein α-catenin, which is essential for both the formation and the stabilization of these junctions. Precisely how α-catenin contributes to the formation and stabilization of AJs is hotly debated, although the latter is thought to involve its interactions with the cytoskeletal protein vinculin. Here we report the crystal structure of the vinculin binding domain (VBD) of α-catenin in complex with the vinculin head domain (Vh1). This structure reveals that α-catenin is in a unique unfurled mode allowing dimer formation when bound to vinculin. Finally, binding studies suggest that vinculin must be in an activated state to bind to α-catenin and that this interaction is stabilized by the formation of a ternary α-catenin-vinculin-F-actin complex, which can be formed via the F-actin binding domain of either protein. We propose a feed-forward model whereby α-catenin-vinculin interactions promote their binding to the actin cytoskeleton to stabilize AJs. PMID:22493458

  4. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  5. Protein function annotation by local binding site surface similarity.

    Science.gov (United States)

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  6. ANDROGEN REGULATION OF PROSTATIC STEROID BINDING PROTEIN GENE TRANSCRIPTION

    Institute of Scientific and Technical Information of China (English)

    ZHANGYong-Lian; ZHOUZong-Xun; ZHANGYou-Duan; PARKERMalcolmG

    1989-01-01

    Prostatic steroid binding protein (PSBP) is a major protein secreted in the rat ventral prostate (V.P.) and also one of the components in seminal fluid, The potential importance of this protein in male fertility emerged from its ability of binding cholesterol which might modulate the proportion of phospholipids and cholesterol in sperm making it suitable

  7. Structure and calcium binding activity of LipL32, the major surface antigen of pathogenic Leptospira sp

    Energy Technology Data Exchange (ETDEWEB)

    Hauk, Pricila; Roman-Ramos, Henrique; Ho, Paulo Lee [Instituto Butantan, Sao Paulo, SP (Brazil). Centro de Biotecnologia; Guzzo, Cristiane R.; Farah, Chuck S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica

    2009-07-01

    Leptospirosis, caused by the spirochaete Leptospira is an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospira. It is highly immunogenic and has been shown to bind to host extracellular matrix components, including collagens, fibronectin and laminin. In this work we crystallized recombinant LipL32 protein and determined its structure to 2.25 A resolution. Initial phases were determined using the multi-wavelength anomalous dispersion technique with data collected from selenomethionine-containing crystals at the MX2 beamline at the LNLS. The LipL32 monomer is made of a jelly-roll fold core from which protrude several peripheral secondary structures. Some structural features suggested that LipL32 could bind Ca{sup 2+} ions and indeed, spectroscopic data (circular (dichroism. intrinsic tryptophan fluorescence and extrinsic 1-amino-2-anaphthol-4-sulfonic acid fluorescence) confirmed the calcium binding properties of LipL32. (author)

  8. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  9. Identification of (L)-fucose-binding proteins from the Nile tilapia (Oreochromis niloticus L.) serum.

    Science.gov (United States)

    Argayosa, Anacleto M; Lee, Yuan C

    2009-09-01

    Lectins are carbohydrate-binding proteins with many biological functions including cellular recognition and innate immunity. In this study, a major l-fucose-binding lectin from the serum of Nile tilapia (Oreochromis niloticus L.), designated as TFBP, was isolated by l-fucose-BSA Sepharose CL6B affinity chromatography. The SDS-PAGE (10%) analysis of TFBP revealed a major band of approximately 23 kDa with an N-terminal amino acid sequence of DQTETAGQQSXPQDIHAVLREL which did not give significant similarities to the protein databases using BLASTp searches. Ruthenium red staining indicate positive calcium-binding property of TFBP. The purified TFBP agglutinated human type O erythrocytes but not the type A and B fresh erythrocytes. Live Aeromonas hydrophila and Enterococcus faecalis cells were also agglutinated by the lectin. The fucose-binding proteins were detected in the soluble protein extracts from the gills, gut, head kidneys, liver, serum and spleen using a fucose-binding protein probe (l-fucose-BSA-horseradish peroxidase). The binding of TFBP with the l-fucose-BSA probe was inhibited by l-fucose but not by alpha-methyl-d-mannose.

  10. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    Science.gov (United States)

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  11. Minimalistic predictor of protein binding energy: contribution of solvation factor to protein binding.

    Science.gov (United States)

    Choi, Jeong-Mo; Serohijos, Adrian W R; Murphy, Sean; Lucarelli, Dennis; Lofranco, Leo L; Feldman, Andrew; Shakhnovich, Eugene I

    2015-02-17

    It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types. Even without structural optimization, our minimalistic model demonstrates a predictive power comparable to more complex methods, making the proposed approach the basis for high throughput applications. Application of the model to a proteomic database shows that receptor-substrate complexes involved in signaling have lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemical compositions on interfaces. Also, we found that protein complexes with components that come from the same genes generally have lower affinities than complexes formed by proteins from different genes, but in this case the difference originates from different interface areas. The model was implemented in the software PYTHON, and the source code can be found on the Shakhnovich group webpage: http://faculty.chemistry.harvard.edu/shakhnovich/software. PMID:25692584

  12. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    OpenAIRE

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  13. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  14. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    Science.gov (United States)

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  15. Inhibition of tristetraprolin deadenylation by poly(A) binding protein

    OpenAIRE

    Rowlett, Robert M.; Chrestensen, Carol A.; Schroeder, Melanie J.; Harp, Mary G.; Pelo, Jared W.; Shabanowitz, Jeffery; DeRose, Robert; Hunt, Donald F.; Sturgill, Thomas W.; Worthington, Mark T.

    2008-01-01

    Tristetraprolin (TTP) is the prototype for a family of RNA binding proteins that bind the tumor necrosis factor (TNF) messenger RNA AU-rich element (ARE), causing deadenylation of the TNF poly(A) tail, RNA decay, and silencing of TNF protein production. Using mass spectrometry sequencing we identified poly(A) binding proteins-1 and -4 (PABP1 and PABP4) in high abundance and good protein coverage from TTP immunoprecipitates. PABP1 significantly enhanced TNF ARE binding by RNA EMSA and prevente...

  16. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    Science.gov (United States)

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  17. Conformational and thermodynamic properties of peptide binding to the human S100P protein

    OpenAIRE

    Gribenko, Alexey V.; Guzmán-Casado, Mercedes; Lopez, Maria M.; Makhatadze, George I.

    2002-01-01

    S100P is a member of the S100 subfamily of calcium-binding proteins that are believed to be associated with various diseases, and in particular deregulation of S100P expression has been documented for prostate and breast cancer. Previously, we characterized the effects of metal binding on the conformational properties of S100P and proposed that S100P could function as a Ca2+ conformational switch. In this study we used fluorescence and CD spectroscopies and isothermal titration calorimetry to...

  18. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  19. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  20. Topological Analyses of Protein-Ligand Binding: a Network Approach.

    Science.gov (United States)

    Costanzi, Stefano

    2016-01-01

    Proteins can be conveniently represented as networks of interacting residues, thus allowing the study of several network parameters that can shed light onto several of their structural and functional aspects. With respect to the binding of ligands, which are central for the function of many proteins, network analysis may constitute a possible route to assist the identification of binding sites. As the bulk of this review illustrates, this has generally been easier for enzymes than for non-enzyme proteins, perhaps due to the different topological nature of the binding sites of the former over those of the latter. The article also illustrates how network representations of binding sites can be used to search PDB structures in order to identify proteins that bind similar molecules and, lastly, how codifying proteins as networks can assist the analysis of the conformational changes consequent to ligand binding.

  1. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove;

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  2. Rapid determination of thyroxine binding proteins of human serum

    Directory of Open Access Journals (Sweden)

    Arima,Terukatsu

    1976-02-01

    Full Text Available A simple method is described for determing thyroxine binding proteins in human serum by electrophoresis at pH 8.6, using cellulose acetate membrane as the supporting medium. The procedure had high reliability in sera of normal subjects, pregnant women and patients with decreased thyroxine binding capacity of thyroxine binding globulin.

  3. Solution structure and backbone dynamics of the defunct domain of calcium vector protein.

    Science.gov (United States)

    Théret, I; Baladi, S; Cox, J A; Gallay, J; Sakamoto, H; Craescu, C T

    2001-11-20

    CaVP (calcium vector protein) is a Ca(2+) sensor of the EF-hand protein family which is highly abundant in the muscle of Amphioxus. Its three-dimensional structure is not known, but according to the sequence analysis, the protein is composed of two domains, each containing a pair of EF-hand motifs. We determined recently the solution structure of the C-terminal domain (Trp81-Ser161) and characterized the large conformational and dynamic changes induced by Ca(2+) binding. In contrast, the N-terminal domain (Ala1-Asp86) has lost the capacity to bind the metal ion due to critical mutations and insertions in the two calcium loops. In this paper, we report the solution structure of the N-terminal domain and its backbone dynamics based on NMR spectroscopy, nuclear relaxation, and molecular modeling. The well-resolved three-dimensional structure is typical of a pair of EF-hand motifs, joined together by a short antiparallel beta-sheet. The tertiary arrangement of the two EF-hands results in a closed-type conformation, with near-antiparallel alpha-helices, similar to other EF-hand pairs in the absence of calcium ions. To characterize the internal dynamics of the protein, we measured the (15)N nuclear relaxation rates and the heteronuclear NOE effect in (15)N-labeled N-CaVP at a magnetic field of 11.74 T and 298 K. The domain is mainly monomeric in solution and undergoes an isotropic Brownian rotational diffusion with a correlation time of 7.1 ns, in good agreement with the fluorescence anisotropy decay measurements. Data analysis using a model-free procedure showed that the amide backbone groups in the alpha-helices and beta-strands undergo highly restricted movements on a picosecond to nanosecond time scale. The amide groups in Ca(2+) binding loops and in the linker fragment also display rapid fluctuations with slightly increased amplitudes. PMID:11705378

  4. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B;

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  5. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.

    Science.gov (United States)

    Shaykhalishahi, Hamed; Mirecka, Ewa A; Gauhar, Aziz; Grüning, Clara S R; Willbold, Dieter; Härd, Torleif; Stoldt, Matthias; Hoyer, Wolfgang

    2015-02-01

    Amyloidogenic proteins share a propensity to convert to the β-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered β-hairpin-binding protein, the β-wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-β peptide, α-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents.

  6. Phosphorylation of synaptosomal cytoplasmic proteins: Inhibition of calcium-activated, phospholipid-dependent protein kinase (protein kinase c) by bay k 8644.

    Science.gov (United States)

    Robinson, P J; Lovenberg, W

    1988-01-01

    The phosphorylation of specific substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was examined in striatal synaptosomal cytoplasm. The phosphoprotein substrata were termed group C phosphoprotems and were divided into two subgroups: group C(1) phosphoproteins (P83, P45A, P21 and P18) were found in both cytoplasm and synaptosomal membranes and, although stimulated by phosphatidylserine, only required exogamous calcium for their labeling; group C(2) phosphoproteins (P120, P96, P21.5, P18.5 and P16) were found predominantly in the cytoplasm and were absolutely dependent upon exogenous calcium and phosphatidylserme for their labeling. Several criteria were used to identify these proteins as specific protein kinase C substrates: (a) their phosphorylation was stimulated to a greater extent by Ca(2+) /phosphatidylserine/diolein than by Ca(2+) alone or Cal(2+) /calmodulin (group C(1)) or was completely dependent upon Ca(2+) /phosphatdylserine/diolein (group C(2)); (b) supermaximal concentrations of the cAMP-dependent protein kinase inhibitor were without effect; (c) their phosphorylation was stimulated by oleic acid, which selectively activates protein kinase C in the absence of Ca(2+); (d) NaCl, which inhibited cAMP- and Ca(2+)/calmodulindependent phosphorylation, slightly increased phosphorylation of group C(1) and slightly decreased phosphorylation of group C(2) phosphoproteins. Maximal phosphorylation of P96 and other group C phosphoproteins occurred within 60 s and was followed by a slow decay rate while substrata of calmodulin-dependent protein kinase were maximally labeled within 20-30 s and rapidly dephosphorylated. The phosphorylation of all group C phosphoproteins was inhibited by the calcium channel agomst BAY K 8644, however, group C(2) phosphoproteins were considerably more sensitive. The IC(50) for inhibition of P96 labeling was 19 ?M. but for P83 was 190 ?M. Group B phosphoproteins were also slightly inhibited, and the

  7. Differential distribution of calcium stores in paramecium cells. Occurrence of a subplasmalemmal store with a calsequestrin-like protein.

    Science.gov (United States)

    Plattner, H; Habermann, A; Kissmehl, R; Klauke, N; Majoul, I; Söling, H D

    1997-04-01

    We have analyzed in Paramecium cells the occurrence and intracellular distribution of the high capacity/low affinity calcium-binding proteins, calsequestrin (CS) and calreticulin (CR) using antibodies against CS from rat skeletal muscle and against CR from rat liver, respectively. As revealed by Western blots, a CS-like protein isolated by affinity chromatography from Paramecium cells comigrated with CS isolated from rat skeletal muscle. The immunoreactivity of this 53 kDa protein band was blocked when the antibodies had been preadsorbed with purified rat CS. A band of identical molecular size was shown to bind 45Ca in overlays. By immunofluorescence and immunogold labeling this CS-like protein was localized selectively to the extended subplasmalemmal calcium stores, the "alveolar sacs", which cover almost the entire cell surface. Concomitantly the 53 kDa 45Ca-binding band became increasingly intense in overlays as we increasingly enriched alveolar sacs. Antibodies against rat CR react with a 61 kDa band but do not cross-react with CS-like protein in Paramecium. These antibodies selectively stained intracellular reticular structures, identified bona fide as endoplasmic reticulum.

  8. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  9. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties

    Directory of Open Access Journals (Sweden)

    Christine Dorothee Schmeitz

    2013-09-01

    Full Text Available Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic or initiates apoptosis depends on extracellular triggers and intracellular signalling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modelling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.

  10. Quantitative analysis of pheromone-binding protein specificity

    OpenAIRE

    Katti, S.; Lokhande, N.; D González; Cassill, A.; Renthal, R

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-p...

  11. Characterization of the DNA binding properties of polyomavirus capsid protein

    Science.gov (United States)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  12. Clinical relevance of drug binding to plasma proteins

    Science.gov (United States)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  13. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    OpenAIRE

    Selvaraj S; Jayaram B; Saranya N; Gromiha M; Fukui Kazuhiko

    2011-01-01

    Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such...

  14. Structural Changes in the Lectin Domain of CD23, the Low-Affinity IgE Receptor, upon Calcium Binding

    Energy Technology Data Exchange (ETDEWEB)

    Wurzburg, Beth A.; Tarchevskaya, Svetlana S.; Jardetzky, Theodore S. (NWU)

    2010-03-08

    CD23, the low-affinity receptor for IgE (Fc{var_epsilon}RII), regulates IgE synthesis and also mediates IgE-dependent antigen transport and processing. CD23 is a unique Fc receptor belonging to the C-type lectin-like domain superfamily and binds IgE in an unusual, non-lectin-like manner, requiring calcium but not carbohydrate. We have solved the high-resolution crystal structures of the human CD23 lectin domain in the presence and absence of Ca{sup 2+}. The crystal structures differ significantly from a previously determined NMR structure and show that calcium binding occurs at the principal binding site, but not at an auxiliary site that appears to be absent in human CD23. Conformational differences between the apo and Ca{sup 2+} bound structures suggest how IgE-Fc binding can be both calcium-dependent and carbohydrate-independent.

  15. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    Science.gov (United States)

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.

  16. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

    Directory of Open Access Journals (Sweden)

    MyeongWon eOh

    2014-10-01

    Full Text Available Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress.

  17. The actin binding protein adseverin regulates osteoclastogenesis.

    Science.gov (United States)

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W P; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  18. The actin binding protein adseverin regulates osteoclastogenesis.

    Directory of Open Access Journals (Sweden)

    Siavash Hassanpour

    Full Text Available Adseverin (Ads, a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG. Ads is induced during OCG downstream of RANK-ligand (RANKL stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion.

  19. Concentration-dependent Cu(II) binding to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  20. Cooperative binding modes of Cu(II) in prion protein

    Science.gov (United States)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  1. The clinical significance of fatty acid binding proteins

    OpenAIRE

    Barbara Choromańska; Piotr Myśliwiec; Jacek Dadan; Hady Razak Hady; Adrian Chabowski

    2011-01-01

    Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs) that bind long-chain fatty acids (LCFA), and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum). So far, nine types of these proteins have been described, and their name refers to the place in which they were first ...

  2. Stereoselective binding of chiral drugs to plasma proteins

    Institute of Scientific and Technical Information of China (English)

    Qi SHEN; Lu WANG; Hui ZHOU; Hui-di JIANG; Lu-shan YU; Su ZENG

    2013-01-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body.The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity,which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles.In this review,the stereoselective binding of chiral drugs to human serum albumin (HSA),α1-acid glycoprotein (AGP)and lipoprotein,three most important proteins in human plasma,are detailed.Furthermore,the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed.Apart from the stereoselectivity of enantiomer-protein binding,enantiomer-enantiomer interactions that may induce allosteric effects are also described.Additionally,the techniques and methods used to determine drug-protein binding parameters are briefly reviewed.

  3. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Directory of Open Access Journals (Sweden)

    Selvaraj S

    2011-10-01

    Full Text Available Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching. Results We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. Conclusions The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.

  4. Computational design of a PAK1 binding protein.

    Science.gov (United States)

    Jha, Ramesh K; Leaver-Fay, Andrew; Yin, Shuangye; Wu, Yibing; Butterfoss, Glenn L; Szyperski, Thomas; Dokholyan, Nikolay V; Kuhlman, Brian

    2010-07-01

    We describe a computational protocol, called DDMI, for redesigning scaffold proteins to bind to a specified region on a target protein. The DDMI protocol is implemented within the Rosetta molecular modeling program and uses rigid-body docking, sequence design, and gradient-based minimization of backbone and side-chain torsion angles to design low-energy interfaces between the scaffold and target protein. Iterative rounds of sequence design and conformational optimization were needed to produce models that have calculated binding energies that are similar to binding energies calculated for native complexes. We also show that additional conformation sampling with molecular dynamics can be iterated with sequence design to further lower the computed energy of the designed complexes. To experimentally test the DDMI protocol, we redesigned the human hyperplastic discs protein to bind to the kinase domain of p21-activated kinase 1 (PAK1). Six designs were experimentally characterized. Two of the designs aggregated and were not characterized further. Of the remaining four designs, three bound to the PAK1 with affinities tighter than 350 muM. The tightest binding design, named Spider Roll, bound with an affinity of 100 muM. NMR-based structure prediction of Spider Roll based on backbone and (13)C(beta) chemical shifts using the program CS-ROSETTA indicated that the architecture of human hyperplastic discs protein is preserved. Mutagenesis studies confirmed that Spider Roll binds the target patch on PAK1. Additionally, Spider Roll binds to full-length PAK1 in its activated state but does not bind PAK1 when it forms an auto-inhibited conformation that blocks the Spider Roll target site. Subsequent NMR characterization of the binding of Spider Roll to PAK1 revealed a comparably small binding 'on-rate' constant (design the site of novel protein-protein interactions is an important step towards creating new proteins that are useful as therapeutics or molecular probes.

  5. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  6. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity.

    Science.gov (United States)

    Cohen, B E; Lee, G; Arispe, N; Pollard, H B

    1995-12-27

    The annexin (Anx) gene family comprises a set of calcium-dependent membrane binding proteins, which have been implicated in a wide variety of cellular processes including membrane fusion and calcium channel activity. We report here that cAMP activates Ca(2+)-dependent aggregation of both phosphatidylserine (PS) liposomes and bovine chromaffin granules driven by [des 1-12]annexin I (lipocortin I, Anx1). The mechanism of cAMP action involves an increase in AnxI-dependent cooperativity on the rate of such a reaction without affecting the corresponding k1/2 values. Cyclic AMP causes the values of the Hill coefficient (nH) for AnxI to change from 3 to 6 in both PS liposomes and chromaffin granules. By contrast, ATP inhibits the rate of aggregation activity without affecting the cooperativity or the extent of aggregation process. We were also able to photolabel Anx1 specifically with an 8-azido analogue of cAMP by a calcium-independent process. Such a process is saturable, yielding a Kd = 0.8 microM by Scatchard analysis. Specific displacement occurs in the presence of cAMP and ATP. Finally, we found that cAMP alters the conductance of calcium channels formed by AnxI in planar lipid bilayers. We interpret these data to indicate that AnxI binds both calcium and cAMP independently, and that both actions have functional consequences. This is the first report of a nucleotide binding function for a member of the annexin gene family.

  7. Structural and biochemical characterization reveals LysGH15 as an unprecedented "EF-hand-like" calcium-binding phage lysin.

    Directory of Open Access Journals (Sweden)

    Jingmin Gu

    2014-05-01

    Full Text Available The lysin LysGH15, which is derived from the staphylococcal phage GH15, demonstrates a wide lytic spectrum and strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA. Here, we find that the lytic activity of the full-length LysGH15 and its CHAP domain is dependent on calcium ions. To elucidate the molecular mechanism, the structures of three individual domains of LysGH15 were determined. Unexpectedly, the crystal structure of the LysGH15 CHAP domain reveals an "EF-hand-like" calcium-binding site near the Cys-His-Glu-Asn quartet active site groove. To date, the calcium-binding site in the LysGH15 CHAP domain is unique among homologous proteins, and it represents the first reported calcium-binding site in the CHAP family. More importantly, the calcium ion plays an important role as a switch that modulates the CHAP domain between the active and inactive states. Structure-guided mutagenesis of the amidase-2 domain reveals that both the zinc ion and E282 are required in catalysis and enable us to propose a catalytic mechanism. Nuclear magnetic resonance (NMR spectroscopy and titration-guided mutagenesis identify residues (e.g., N404, Y406, G407, and T408 in the SH3b domain that are involved in the interactions with the substrate. To the best of our knowledge, our results constitute the first structural information on the biochemical features of a staphylococcal phage lysin and represent a pivotal step forward in understanding this type of lysin.

  8. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    OpenAIRE

    Frick, I M; Wikström, M.; Forsén, S.; Drakenberg, T; Gomi, H.; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide,...

  9. Identification of AOSC-binding proteins in neurons

    Institute of Scientific and Technical Information of China (English)

    LIU Ming; NIE Qin; XIN Xianliang; GENG Meiyu

    2008-01-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer's Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  10. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  11. Interaction of SR 33557 with skeletal muscle calcium channel blocker receptors in the baboon: characterization of its binding sites

    International Nuclear Information System (INIS)

    A procedure for the isolation of primate skeletal microsomal membranes was initiated. Membranes exhibited specific enzymatic markers such as 5'-nucleotidase, Ca2+,Mg(2+)-adenosine triphosphatase and an ATP-dependent calcium uptake. Baboon skeletal microsomes bound specifically with high-affinity potent Ca2+ channel blockers such as dihydropyridine, phenylalkylamine and benzothiazepine derivatives. Scatchard analysis of equilibrium binding assays with [3H](+)-PN 200-110, [3H](-)-desmethoxyverapamil [( 3H](-)-D888) and [3H]-d-cis-dilitiazem were consistent with a single class of binding sites for the three radioligands. The pharmacological profile of SR 33557, an original compound with calcium antagonist properties, was investigated using radioligand binding studies. SR 33557 totally inhibited the specific binding of the three main classes of Ca2+ channel effectors and interacted allosterically with them. In addition, SR 33557 bound with high affinity to a homogeneous population of binding sites in baboon skeletal muscle

  12. Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories

    Science.gov (United States)

    Nakayama, S.; Moncrief, N. D.; Kretsinger, R. H.

    1992-01-01

    In the first report in this series we described the relationships and evolution of 152 individual proteins of the EF-hand subfamilies. Here we add 66 additional proteins and define eight (CDC, TPNV, CLNB, LPS, DGK, 1F8, VIS, TCBP) new subfamilies and seven (CAL, SQUD, CDPK, EFH5, TPP, LAV, CRGP) new unique proteins, which we assume represent new subfamilies. The main focus of this study is the classification of individual EF-hand domains. Five subfamilies--calmodulin, troponin C, essential light chain, regulatory light chain, CDC31/caltractin--and three uniques--call, squidulin, and calcium-dependent protein kinase--are congruent in that all evolved from a common four-domain precursor. In contrast calpain and sarcoplasmic calcium-binding protein (SARC) each evolved from its own one-domain precursor. The remaining 19 subfamilies and uniques appear to have evolved by translocation and splicing of genes encoding the EF-hand domains that were precursors to the congruent eight and to calpain and to SARC. The rates of evolution of the EF-hand domains are slower following formation of the subfamilies and establishment of their functions. Subfamilies are not readily classified by patterns of calcium coordination, interdomain linker stability, and glycine and proline distribution. There are many homoplasies indicating that similar variants of the EF-hand evolved by independent pathways.

  13. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    Science.gov (United States)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  14. Characterization of granulations of calcium and apatite in serum as pleomorphic mineralo-protein complexes and as precursors of putative nanobacteria.

    Directory of Open Access Journals (Sweden)

    John D Young

    Full Text Available Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most

  15. Helical propensity in an intrinsically disordered protein accelerates ligand binding

    DEFF Research Database (Denmark)

    Iesmantavicius, Vytautas; Dogan, Jakob; Jemth, Per;

    2014-01-01

    Many intrinsically disordered proteins fold upon binding to other macromolecules. The secondary structure present in the well-ordered complex is often formed transiently in the unbound state. The consequence of such transient structure for the binding process is, however, not clear. The activation...... domain of the activator for thyroid hormone and retinoid receptors (ACTR) is intrinsically disordered and folds upon binding to the nuclear coactivator binding domain (NCBD) of the CREB binding protein. A number of mutants was designed that selectively perturbs the amount of secondary structure...... in unbound ACTR without interfering with the intermolecular interactions between ACTR and NCBD. Using NMR spectroscopy and fluorescence-monitored stopped-flow kinetic measurements we show that the secondary structure content in helix 1 of ACTR indeed influences the binding kinetics. The results thus support...

  16. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    Directory of Open Access Journals (Sweden)

    Yanbo Shi

    2010-01-01

    Full Text Available Ferric ion binding proteins (Fbps transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.

  17. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.

    Science.gov (United States)

    Chou, Shan-Ho; Galperin, Michael Y

    2016-01-01

    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.

  18. Cell-Binding Assays for Determining the Affinity of Protein-Protein Interactions: Technologies and Considerations.

    Science.gov (United States)

    Hunter, S A; Cochran, J R

    2016-01-01

    Determining the equilibrium-binding affinity (Kd) of two interacting proteins is essential not only for the biochemical study of protein signaling and function but also for the engineering of improved protein and enzyme variants. One common technique for measuring protein-binding affinities uses flow cytometry to analyze ligand binding to proteins presented on the surface of a cell. However, cell-binding assays require specific considerations to accurately quantify the binding affinity of a protein-protein interaction. Here we will cover the basic assumptions in designing a cell-based binding assay, including the relevant equations and theory behind determining binding affinities. Further, two major considerations in measuring binding affinities-time to equilibrium and ligand depletion-will be discussed. As these conditions have the potential to greatly alter the Kd, methods through which to avoid or minimize them will be provided. We then outline detailed protocols for performing direct- and competitive-binding assays against proteins displayed on the surface of yeast or mammalian cells that can be used to derive accurate Kd values. Finally, a comparison of cell-based binding assays to other types of binding assays will be presented. PMID:27586327

  19. Studies of the silencing of Baculovirus DNA binding protein

    NARCIS (Netherlands)

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.

    2007-01-01

    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovir

  20. Conformational thermodynamics of metal-ion binding to a protein

    Science.gov (United States)

    Das, Amit; Chakrabarti, J.; Ghosh, Mahua

    2013-08-01

    Conformational changes in proteins induced by metal-ions play extremely important role in various cellular processes and technological applications. Dihedral angles are suitable conformational variables to describe microscopic conformations of a biomacromolecule. Here, we use the histograms of the dihedral angles to study the thermodynamics of conformational changes of a protein upon metal-ion binding. Our method applied to Ca2+ ion binding to an important metalloprotein, Calmodulin, reveals different thermodynamic changes in different metal-binding sites. The ligands coordinating to Ca2+ ions also play different roles in stabilizing the metal-ion coordinated protein-structure. Metal-ion binding induce remarkable thermodynamic changes in distant part of the protein via modification of secondary structural elements.

  1. PTPBR7 Binding Proteins in Myelinating Neurons of the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Irene M. Chesini, Griet Debyser, Huib Croes, Gerdy B. ten Dam, Bart Devreese, Andrew W. Stoker, Wiljan J.A.J. Hendriks

    2011-01-01

    Full Text Available Mouse protein tyrosine phosphatase PTPBR7 is a receptor-like, transmembrane protein that is localized on the surface of neuronal cells. Its protein phosphatase activity is reduced upon multimerization, and PTPBR7-deficient mice display motor coordination defects. Extracellular molecules that may influence PTPBR7 activity, however, remain to be determined. We here show that the PTPBR7 extracellular domain binds to highly myelinated regions in mouse brain, in particular the white matter tracks in cerebellum. PTPBR7 deficiency does not alter this binding pattern, as witnessed by RAP in situ staining of Ptprr-/- mouse brain sections. Additional in situ and in vitro experiments also suggest that sugar moieties of heparan sulphate and chondroitin sulphate glycosaminoglycans are not critical for PTPBR7 binding. Candidate binding proteins were affinity-purified exploiting the PTPBR7 extracellular domain and identified by mass spectrometric means. Results support the suggested link between PTPRR isoforms and cerebellar calcium ion homeostasis, and suggest an additional role in the process of cell-cell adhesion.

  2. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    Science.gov (United States)

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  3. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.;

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology...

  4. Autoinhibition of Mint1 adaptor protein regulates amyloid precursor protein binding and processing

    OpenAIRE

    Matos, Maria F.; Xu, Yibin; Dulubova, Irina; Otwinowski, Zbyszek; Richardson, John M.; Tomchick, Diana R.; Rizo, Josep; Ho, Angela

    2012-01-01

    Mint adaptor proteins bind to the amyloid precursor protein (APP) and regulate APP processing associated with Alzheimer’s disease; however, the molecular mechanisms underlying Mint regulation in APP binding and processing remain unclear. Biochemical, biophysical, and cellular experiments now show that the Mint1 phosphotyrosine binding (PTB) domain that binds to APP is intramolecularly inhibited by the adjacent C-terminal linker region. The crystal structure of a C-terminally extended Mint1 PT...

  5. Expected and unexpected features of protein-binding RNA aptamers

    DEFF Research Database (Denmark)

    Bjerregaard, Nils; Andreasen, Peter A; Dupont, Daniel M

    2016-01-01

    RNA molecules with high affinity to specific proteins can be isolated from libraries of up to 10(16) different RNA sequences by systematic evolution of ligands by exponential enrichment (SELEX). These so-called protein-binding RNA aptamers are often interesting, e.g., as modulators of protein...... function for therapeutic use, for probing the conformations of proteins, for studies of basic aspects of nucleic acid-protein interactions, etc. Studies on the interactions between RNA aptamers and proteins display a number of expected and unexpected features, including the chemical nature of the...... interacting RNA-protein surfaces, the conformation of protein-bound aptamer versus free aptamer, the conformation of aptamer-bound protein versus free protein, and the effects of aptamers on protein function. Here, we review current insights into the details of RNA aptamer-protein interactions. For further...

  6. Calcium phosphate–gold nanoparticles nanocomposite for protein adsorption and mediator-free H2O2 biosensor construction

    International Nuclear Information System (INIS)

    This work reports a new method for the preparation and application of a kind of biocompatible calcium phosphate–gold nanoparticles (Ca3(PO4)2–AuNPs) nanocomposite. UV–vis spectroscopy and transmittance electron microscopy (TEM) have been used to monitor the formation process of the nanocomposite and to examine the interaction between calcium phosphate and gold nanoparticles (AuNPs). The nanocomposite has multiple sites and improved conductivity which make it suitable for the binding of proteins to construct electrochemical sensors. Myoglobin (Mb) adsorbed on the nanocomposite retained its native structure which was proved by Fourier transform infrared spectroscopy (FTIR). Direct electron transfer between the adsorbed Mb and the electrode was observed. Further results demonstrated that the adsorbed Mb has good electrocatalytic activity towards the reduction of H2O2 in the absence of any mediator. Highlights: ► Using gelatin modified gold nanoparticles to prepare needle-like calcium phosphate. ► Calcium phosphate provides multiple sites for protein adsorption. ► Gold nanoparticles act as electron tunneling. ► Myoglobin adsorbed on the material showed direct electrochemistry and good catalysis.

  7. Identification of lectin-binding proteins in Chlamydia species.

    OpenAIRE

    Swanson, A F; Kuo, C. C.

    1990-01-01

    Lectin-binding proteins of chlamydiae were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. All three Chlamydia species tested expressed two proteins when whole-elementary-body lysates were reacted with the biotinylated lectin Dolichos biflorus agglutinin. The protein with a molecular mass of 18 kilodaltons (kDa) responded strongly compared with a higher-molecular-mass protein that varied from 27 to 32 kDa with each chlamydia strain tested. Among six l...

  8. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  9. DSCG binding protein and process for preparing same

    Energy Technology Data Exchange (ETDEWEB)

    Pecht, I.; Mazurek, N.

    1987-07-28

    An essentially pure protein is described consisting essentially of the protein, (CBP), present in nature in membranes of basophile cells and in mast cells, having a molecular weight of about 60,000 +- 2,000 determined by SDS polyacrylamide electrophoresis an isoelectric point of about 3.9 and an amino acid composition of about 4 units of asparagine, 3 units of threonine and serine, 3 units glycine, 2 units alanine, 2 units proline, 1 unit cysteine, 2 units valine, 1 unit methionine, 1 unit isoleucine, 2 units leucine, 1 unit tyrosine, 1 unit phenylalanine, 2 units histamine, 2 units lysine and 1 unit arginine. The protein is able to build calcium and having a calcium dependent affinity to the disodium salt of 1,2 bis(-2 carboxychromon-5-yloxy)-2-hydroxy propane (DSCG).

  10. The Cobalamin-binding Protein in Zebrafish is an Intermediate Between the Three Cobalamin-binding Proteins in Human

    DEFF Research Database (Denmark)

    Greibe, Eva Holm; Fedosov, Sergey; Nexø, Ebba

    2012-01-01

    In humans, three soluble extracellular cobalamin-binding proteins; transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are involved in the uptake and transport of cobalamin. In this study, we investigate a cobalamin-binding protein from zebrafish (Danio rerio) and summarize current...... knowledge concerning the phylogenetic evolution of kindred proteins. We identified a cobalamin binding capacity in zebrafish protein extracts (8.2 pmol/fish) and ambient water (13.5 pmol/fish) associated with a single protein. The protein showed resistance toward degradation by trypsin and chymotrypsin...... (like human IF, but unlike human HC and TC). The cobalamin analogue, cobinamide, bound weaker to the zebrafish cobalamin binder than to human HC, but stronger than to human TC and IF. Affinity for another analogue, adenosyl-pseudo-cobalamin was low compared with human HC and TC, but high compared...

  11. PRELIMINARY STUDY OF EXTRACTABLE PROTEIN BINDING USING MALEIC ANHYDRIDE COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Thirawan Nipithakul; Ladawan Watthanachote; Nanticha Kalapat

    2012-01-01

    A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 μtg/cm2,although the film had low anhydride content (3%) on the surface.

  12. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F;

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... spectrometry. The determined molecular masses are often sufficient for identification. If not, the proteins are subjected to mass spectrometric peptide mapping followed by database searches. Apart from protein identification, the protocol also yields information on posttranslational modifications. The protocol...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  13. Characterization of cap binding proteins associated with the nucleus

    International Nuclear Information System (INIS)

    Eucaryotic mRNAs a carry 7-methylguanosine triphosphate residue (called cap structure) at their 5' terminus. The cap plays an important role in RNA recognition. Cap binding proteins (CBP) of HeLa cells were identified by photoaffinity labelling using the cap analogue γ-(32P)-(4-(benzoyl-phenyl)methylamido)-7-methylguanosine-5'-triphosphate (BP-m7GTP). Photoreaction of this cap analogue with HeLa cell initiation factors resulted in specific labelling of two polypeptides of Msub(r) 37000 and 26000. The latter was also labelled in crude initiation factors prepared from reticulocytes and is identical to the cap binding protein CBP I previously identified. These cap binding proteins were also affinity labelled in poliovirus infected cell extracts. Photoaffinity reaction with BP-m7GTP of whole HeLa cell homogenate showed three additional polypeptides with Msub(r) 120000, 89000 and 80000. These cap binding proteins were found to be associated with the nucleus and are therefore referred to as nuclear cap binding proteins, i.e. NCBP 1, NCBP 2 and NCBP 3. They were also present in splicing extracts. Photoaffinity labelling in these nuclear extracts was differentially inhibited by various cap analogues and capped mRNAs. Affinity chromatography on immobilized globin mRNA led to a partial separation of the three nuclear cap binding proteins. Chromatography on m7GTP-Sepharose resulted in a specific binding of NCBP 3. The different behaviour of the cap binding proteins suggests that they are functionally distinct and that they might be involved in different processes requiring cap recognition. (Author)

  14. Intake of protein, calcium and sodium in public child day care centers

    Directory of Open Access Journals (Sweden)

    Giovana Longo-Silva

    2014-06-01

    Full Text Available OBJECTIVE:To assess calcium, protein and sodium intake, of children that attend public day-care centers and to compare it with the recommended one.METHODS:Cross-sectional descriptive study in seven public day care centers of São Paulo city, Southeast Brazil, which enrolled 366 children between 12 and 36 months of age. The data collection occurred between September and December 2010. Each day care center was evaluated for three non-consecutive days, totaling 42 days and 210 meals. Dietary intake was assessed by a direct food weighing method. For the nutritional calculation, DietWin(r Profissional 2.0 was used, and the adequacy was calculated according to the recommendations of the National School Feeding Program for energy, protein, calcium and sodium. The calcium/protein relation was also calculated, as well as calcium density (mg/1,000kcal.RESULTS: The energy (406.4kcal, protein (18.2g and calcium (207.6mg consumption did not reach the recommended values ​​in all the evaluated day care centers. Sodium intake exceeded up to three times the recommendation. The calcium/protein ratio of 11.7mg/g was less than the adequate one (20mg/g.CONCLUSIONS: There was inadequacy of calcium, protein and sodium dietary intake, in children attending public day-care centers.

  15. High-Fidelity DNA Sensing by Protein Binding Fluctuations

    CERN Document Server

    Tlusty, Tsvi; Libchaber, Albert; 10.1103/PhysRevLett.93.258103

    2010-01-01

    One of the major functions of RecA protein in the cell is to bind single-stranded DNA exposed upon damage, thereby triggering the SOS repair response.We present fluorescence anisotropy measurements at the binding onset, showing enhanced DNA length discrimination induced by adenosine triphosphate consumption. Our model explains the observed DNA length sensing as an outcome of out-of equilibrium binding fluctuations, reminiscent of microtubule dynamic instability. The cascade architecture of the binding fluctuations is a generalization of the kinetic proofreading mechanism. Enhancement of precision by an irreversible multistage pathway is a possible design principle in the noisy biological environment.

  16. Discodermolide interferes with the binding of tau protein to microtubules.

    Science.gov (United States)

    Kar, Santwana; Florence, Gordon J; Paterson, Ian; Amos, Linda A

    2003-03-27

    We investigated whether discodermolide, a novel antimitotic agent, affects the binding to microtubules of tau protein repeat motifs. Like taxol, the new drug reduces the proportion of tau that pellets with microtubules. Despite their differing structures, discodermolide, taxol and tau repeats all bind to a site on beta-tubulin that lies within the microtubule lumen and is crucial in controlling microtubule assembly. Low concentrations of tau still bind strongly to the outer surfaces of preformed microtubules when the acidic C-terminal regions of at least six tubulin dimers are available for interaction with each tau molecule; otherwise binding is very weak.

  17. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment

    Science.gov (United States)

    Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context.

  18. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment

    Science.gov (United States)

    Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context. PMID:27668217

  19. High-throughput analysis of protein-DNA binding affinity.

    Science.gov (United States)

    Franco-Zorrilla, José M; Solano, Roberto

    2014-01-01

    Sequence-specific protein-DNA interactions mediate most regulatory processes underlying gene expression, such as transcriptional regulation by transcription factors (TFs) or chromatin organization. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies that are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. The use of protein-binding microarrays (PBMs) offers a high-throughput alternative for the identification of protein-DNA specificities. PBM consists in an array of pseudorandomized DNA sequences that are optimized to include all the possible 10- or 11-mer DNA sequences, allowing the determination of binding specificities of most eukaryotic TFs. PBMs that can be synthesized by several manufacturing companies as single-stranded DNA are converted into double-stranded in a simple primer extension reaction. The protein of interest fused to an epitope tag is then incubated onto the PBM, and specific DNA-protein complexes are revealed in a series of immunological reactions coupled to a fluorophore. After scanning and quantifying PBMs, specific DNA motifs recognized by the protein are identified with ready-to-use scripts, generating comprehensive but accessible information about the DNA-binding specificity of the protein. This chapter describes detailed procedures for preparation of double-stranded PBMs, incubation with recombinant protein, and detection of protein-DNA complexes. Finally, we outline some cues for evaluating the biological role of DNA motifs obtained in vitro. PMID:24057393

  20. Structural Perspectives on the Evolutionary Expansion of Unique Protein-Protein Binding Sites.

    Science.gov (United States)

    Goncearenco, Alexander; Shaytan, Alexey K; Shoemaker, Benjamin A; Panchenko, Anna R

    2015-09-15

    Structures of protein complexes provide atomistic insights into protein interactions. Human proteins represent a quarter of all structures in the Protein Data Bank; however, available protein complexes cover less than 10% of the human proteome. Although it is theoretically possible to infer interactions in human proteins based on structures of homologous protein complexes, it is still unclear to what extent protein interactions and binding sites are conserved, and whether protein complexes from remotely related species can be used to infer interactions and binding sites. We considered biological units of protein complexes and clustered protein-protein binding sites into similarity groups based on their structure and sequence, which allowed us to identify unique binding sites. We showed that the growth rate of the number of unique binding sites in the Protein Data Bank was much slower than the growth rate of the number of structural complexes. Next, we investigated the evolutionary roots of unique binding sites and identified the major phyletic branches with the largest expansion in the number of novel binding sites. We found that many binding sites could be traced to the universal common ancestor of all cellular organisms, whereas relatively few binding sites emerged at the major evolutionary branching points. We analyzed the physicochemical properties of unique binding sites and found that the most ancient sites were the largest in size, involved many salt bridges, and were the most compact and least planar. In contrast, binding sites that appeared more recently in the evolution of eukaryotes were characterized by a larger fraction of polar and aromatic residues, and were less compact and more planar, possibly due to their more transient nature and roles in signaling processes.

  1. A Novel Kinesin-Like Protein with a Calmodulin-Binding Domain

    Science.gov (United States)

    Wang, W.; Takezawa, D.; Narasimhulu, S. B.; Reddy, A. S. N.; Poovaiah, B. W.

    1996-01-01

    Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with S-35-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca(2+)-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCKI is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca(2+)/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.

  2. Competing binding of metal ions with protein studied by microdialysis

    Institute of Scientific and Technical Information of China (English)

    郭明; 孔亮; 毛希琴; 历欣; 邹汉法

    2002-01-01

    A method has been established to study the competing binding of metal ions with protein by a combined technique of microdialysis with high performance liquid chromatography (HPLC). Ni2+, Cd2+, Zn2+, Cu2+ and human serum albumin (HSA) were chosen as model metal ions and protein. The experimental results show that Ni2+ and Cu2+ share a common primary binding site on HSA, and Zn2+ and Cd2+ share a different common primary binding site from them, but there is a common multi-metal binding site for all of those four metal ions. This method show advantages of fast sampling, easily to be operated and especially to be useful when ideal spectroscopic probes are not available for the study of interaction between protein and metal ions.

  3. A Calcium-Dependent Protein Kinase Interactswith and Activates A Calcium Channel toRequlate Pollen Tube Growth

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    ABSTRACT Calcium, as a ubiquitous second messenger, plays essential roles in tip-growing cells, such as animal neu-rons, plant pollen tubes, and root hairs. However, little is known concerning the regulatory mechanisms that code anddecode Ca2+ signals in plants. The evidence presented here indicates that a calcium-dependent protein kinase, CPK32,controls polar growth of pollen tubes. Overexpression of CPK32 disrupted the polar growth along with excessive Ca2+accumulation in the tip. A search of downstream effector molecules for CPK32 led to identification of a cyclic nucleotide-gated channel, CNGC18, as an interacting partner for CPK32. Co-expression of CPK32 and CNGC18 resulted in activationof CNGC18 in Xenopus oocytes where expression of CNGC18 alone did not exhibit significant calcium channel activity.Overexpression of CNGC18 produced a growth arrest phenotype coupled with accumulation of calcium in the tip, simi-lar to that induced by CPK32 overexpression. Co-expression of CPK32 and CNGC18 had a synergistic effect leading tomore severe depolarization of pollen tube growth. These results provide a potential feed-forward mechanism in whichcalcium-activated CPK32 activates CNGC18, further promoting calcium entry during the elevation phase of Ca2+ oscilla-tions in the polar growth of pollen tubes.

  4. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T;

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...... by a simple two step protocol combining ion exchange chromatography and gel filtration. Dissociation constants for binding of oleic acid, arachidonic acid, oleoyl-CoA, lysophosphatidic acid and the peroxisomal proliferator bezafibrate to L-FABP have been determined by titration calorimetry. All ligands were...... bound in a 2:1 stoichiometry, the dissociation constants for the first ligand bound were all in the micro molar range. Oleic acid was bound with the highest affinity and a Kd of 0.26 microM. Furthermore, binding of cholesterol to L-FABP was investigated with the Lipidex assay, a liposome binding assay...

  5. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    Science.gov (United States)

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design. PMID:27399277

  6. Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Keizo Takao

    Full Text Available Calcium-calmodulin dependent protein kinase IV (CaMKIV is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency.

  7. TALE proteins bind to both active and inactive chromatin.

    Science.gov (United States)

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  8. Theoretical studies of binding of mannose-binding protein to monosaccharides

    Science.gov (United States)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  9. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  10. Deoxyribonucleic-binding homeobox proteins are augmented in human cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Mercurio, A M; Chung, S Y;

    1990-01-01

    Homeobox genes encode sequence-specific DNA-binding proteins that are involved in the regulation of gene expression during embryonic development. In this study, we examined the expression of homeobox proteins in human cancer. Antiserum was obtained against a synthetic peptide derived from the hig...

  11. Concerted but Noncooperative Activation of Nucleotide and Actuator Domains of the Ca-ATPase Upon Calcium Binding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baowei; Mahaney, James E.; Mayer, M. Uljana; Bigelow, Diana J.; Squier, Thomas C.

    2008-11-25

    Calcium-dependent domain movements of the nucleotide (N) and actuator (A) domains of the SERCA2a isoform of the Ca-ATPase were assessed using constructs containing engineered tetracysteine binding motifs, which were expressed in insect High-Five cells and subsequently labeled with the biarsenical fluorophore 4’,5’-bis(1,3,2-dithoarsolan-2-yl)fluorescein (FlAsH-EDT2). Maximum catalytic function is retained in microsomes isolated from High-Five cells and labeled with FlAsH-EDT2. Distance measurements using the nucleotide analog TNP-ATP, which acts as a fluorescence resonance energy transfer (FRET) acceptor from FlAsH, identify a 2.4 Å increase in the spatial separation between the N- and A-domains induced by high-affinity calcium binding; this structural change is comparable to that observed in crystal structures. No significant distance changes occur across the N-domain between FlAsH and TNP-ATP, indicating that calcium activation induces rigid body domain movements rather than intradomain conformational changes. Calcium-dependent decreases in the fluorescence of FlAsH bound respectively to either the N- or A-domains indicate coordinated and noncooperative domain movements, where both N- and A-domains domains display virtually identical calcium dependencies (i.e., Kd = 4.8 ± 0.4 μM). We suggest that occupancy of a single high-affinity calcium binding site induces the rearrangement of the A- and N-domains of the Ca-ATPase to form an intermediate state, which facilitates ATP utilization upon occupancy of the second high-affinity calcium site to enhance transport efficiency.

  12. Calcium-Dependent Protein Kinase Genes in Corn Roots

    Science.gov (United States)

    Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.

    1996-01-01

    Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.

  13. Architectural repertoire of ligand-binding pockets on protein surfaces.

    Science.gov (United States)

    Weisel, Martin; Kriegl, Jan M; Schneider, Gisbert

    2010-03-01

    Knowledge of the three-dimensional structure of ligand binding sites in proteins provides valuable information for computer-assisted drug design. We present a method for the automated extraction and classification of ligand binding site topologies, in which protein surface cavities are represented as branched frameworks. The procedure employs a growing neural gas approach for pocket topology assignment and pocket framework generation. We assessed the structural diversity of 623 known ligand binding site topologies based on framework cluster analysis. At a resolution of 5 A only 23 structurally distinct topology groups were formed; this suggests an overall limited structural diversity of ligand-accommodating protein cavities. Higher resolution allowed for identification of protein-family specific pocket features. Pocket frameworks highlight potentially preferred modes of ligand-receptor interactions and will help facilitate the identification of druggable subpockets suitable for ligand affinity and selectivity optimization. PMID:20069621

  14. Detergent activation of the binding protein in the folate radioassay

    International Nuclear Information System (INIS)

    A minor cow's whey protein associated with β-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to β-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants

  15. Serum Proteins Stabilized Calcium Phosphate Nanoparticles and Its Effect on Bel-7402 Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydroxyapatite has a high affinity to biological macromolecules, especially to proteins. Bovine serum proteins were extracted to be used as stablizer to prepare calcium phosphate nanoparticles. 167.7 am and87.7 nm particles were respectively prepared by using bovine serum protein fractions at the concentration of 0.5mg/mL and 1.0 mg/mL. As the polysaccharide stabilized hydroxyapatite nanoparticles, the protein-stablized nanoparticles also inhibited the proliferation rate of Bel-7402 cells. It suggested that proteins could be applied to prepare calcium phosphate nanoparticles and it also has the anticancer effect.

  16. Protein-protein binding affinities calculated using the LIE method

    OpenAIRE

    Andberg, Tor Arne Heim

    2011-01-01

    Absolute binding free energies for the third domain of the turkey ovomucoid inhibitor in complex with Streptomyces griseus proteinase B and porcine pancreatic elastase has been calculated using the linear interaction energy method.

  17. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    Directory of Open Access Journals (Sweden)

    V Joachim Haupt

    Full Text Available Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand

  18. Role of adipocyte lipid-binding protein (ALBP) and acyl-coA binding protein (ACBP) in PPAR-mediated transactivation

    DEFF Research Database (Denmark)

    Helledie, Torben; Jørgensen, Claus; Antonius, Marianne;

    2002-01-01

    lipid binding protein (ALBP), the keratinocyte lipid binding protein (KLBP) and the acyl-CoA binding protein (ACBP) exhibit a prominent nuclear localization in differentiating 3T3-L1 adipocytes. Similarly, ectopic expression of these proteins in CV-1 cells resulted in a primarily nuclear localization...

  19. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B;

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...

  20. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  1. The Role Stress Granules and RNA Binding Proteins in Neurodegeneration

    OpenAIRE

    Vanderweyde, Tara; Youmans, Katie; Liu-Yesucevitz, Liqun; Wolozin, Benjamin

    2013-01-01

    The eukaryotic stress response involves translational suppression of non-housekeeping proteins and the sequestration of unnecessary mRNA transcripts into stress granules (SGs). This process is dependent on mRNA binding proteins (RBPs) that interact with capped mRNA transcripts through RNA recognition motifs, and exhibit reversible aggregation through hydrophobic poly-glycine domains, some of which are homologous to yeast prion proteins. The activity and aggregation of RBPs appears to be impor...

  2. Computational design of a PAK1 binding protein

    OpenAIRE

    Jha, Ramesh K; Leaver-Fay, Andrew; Yin, Shuangye; Wu, YiBing; Butterfoss, Glenn L.; Szyperski, Thomas; Dokholyan, Nikolay V.; Kuhlman, Brian

    2010-01-01

    We describe a computational protocol, called DDMI, for redesigning scaffold proteins to bind to a specified region on a target protein. The DDMI protocol is implemented within the Rosetta molecular modeling program and uses rigid-body docking, sequence design, and gradient-based minimization of backbone and side chain torsion angles to design low energy interfaces between the scaffold and target protein. Iterative rounds of sequence design and conformational optimization were needed to produc...

  3. Pentatricopeptide repeats: Modular blocks for building RNA-binding proteins

    OpenAIRE

    Filipovska, Aleksandra; Rackham, Oliver

    2013-01-01

    Pentatricopeptide repeat (PPR) proteins control diverse aspects of RNA metabolism across the eukaryotic domain. Recent computational and structural studies have provided new insights into how they recognize RNA, and show that the recognition is sequence-specific and modular. The modular code for RNA-binding by PPR proteins holds great promise for the engineering of new tools to target RNA and identifying RNAs bound by natural PPR proteins.

  4. Natural history of S-adenosylmethionine-binding proteins

    Directory of Open Access Journals (Sweden)

    Mushegian Arcady R

    2005-10-01

    Full Text Available Abstract Background S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins. Results Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins. Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor. Conclusion We have observed several novel relationships between families that were not known to be

  5. Profiling Protein Kinases and Other ATP Binding Proteins in Arabidopsis Using Acyl-ATP Probes*

    OpenAIRE

    Villamor, J. G.; Kaschani, F.; Colby, T; Oeljeklaus, J.; Zhao, D; Kaiser, M.; Patricelli, M. P.; R. A. L. van der Hoorn

    2013-01-01

    Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding prot...

  6. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/.

  7. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites

    Science.gov (United States)

    Bane, Kartik S.; Singer, Mirko; Reinig, Miriam; Klug, Dennis; Heiss, Kirsten; Baum, Jake; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. PMID:27409081

  8. Tetrapyrrole binding affinity of the murine and human p22HBP heme-binding proteins.

    Science.gov (United States)

    Micaelo, Nuno M; Macedo, Anjos L; Goodfellow, Brian J; Félix, Vítor

    2010-11-01

    We present the first systematic molecular modeling study of the binding properties of murine (mHBP) and human (hHBP) p22HBP protein (heme-binding protein) with four tetrapyrrole ring systems belonging to the heme biosynthetic pathway: iron protoporphyrin IX (HEMIN), protoporphyrin IX (PPIX), coproporphyrin III (CPIII), coproporphyrin I (CPI). The relative binding affinities predicted by our computational study were found to be similar to those observed experimentally, providing a first rational structural analysis of the molecular recognition mechanism, by p22HBP, toward a number of different tetrapyrrole ligands. To probe the structure of these p22HBP protein complexes, docking, molecular dynamics and MM-PBSA methodologies supported by experimental NMR ring current shift data have been employed. The tetrapyrroles studied were found to bind murine p22HBP with the following binding affinity order: HEMIN> PPIX> CPIII> CPI, which ranged from -22.2 to -6.1 kcal/mol. In general, the protein-tetrapyrrole complexes are stabilized by non-bonded interactions between the tetrapyrrole propionate groups and basic residues of the protein, and by the preferential solvation of the complex compared to the unbound components. PMID:20800521

  9. Heterotrimeric G protein participated in modulation of cytoplasmic calcium concentration in pollen cells

    Institute of Scientific and Technical Information of China (English)

    SHANG Zhonglin; MA Ligeng; WANG Xuechen; SUN Daye

    2003-01-01

    Cytoplasmic free calcium concentration([Ca2+]c) in pollen cells of Lilium daviddi is measured with confocal laser scanning microscopy to investigate the effect of heterotrimeric G protein (G protein) on [Ca2+]c and the possible signal transduction pathway of G protein triggering cellular calcium signal. After application, cholera toxin (CTX), an agonist of G protein, triggers a transient increase of [Ca2+]c in pollen cells, and evokes a spatial-temporal characteristic calcium dynamics; while pertussis toxin (PTX), a G protein antagonist, leads to the decrease of [Ca2+]c. Both L-type Ca2+ channel blocker verapamil and inhibitor of IP3 receptor heparin inhibit CTX-induced [Ca2+]c increase. The results show that G protein may play a role in the modulation of [Ca2+]c through enhancing the extracellular Ca2+ influx and releasing of Ca2+ from intracellular stores.

  10. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  11. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    Science.gov (United States)

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.

  12. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B;

    1999-01-01

    We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence...... spectroscopy, and their copper(I) binding properties have been determined. Structure prediction derived from far-UV CD indicates that the secondary structure is similar in the three proteins and dominated by beta-sheet. The tryptophan fluorescence maximum is blue-shifted in the constructs containing two...... and six MBDs relative to the monomer, suggesting more structurally buried tryptophan(s), compared to the single MBD construct. Copper(I) binding has been studied by equilibrium dialysis under anaerobic conditions. We show that the copper(I) binding to constructs containing two and six domains...

  13. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    Science.gov (United States)

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  14. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available BACKGROUND: Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners. METHODOLOGY: Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques. CONCLUSIONS: Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions. AVAILABILITY: We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  15. The liver fatty acid binding protein--comparison of cavity properties of intracellular lipid-binding proteins.

    Science.gov (United States)

    Thompson, J; Ory, J; Reese-Wagoner, A; Banaszak, L

    1999-02-01

    The crystal and solution structures of all of the intracellular lipid binding proteins (iLBPs) reveal a common beta-barrel framework with only small local perturbations. All existing evidence points to the binding cavity and a poorly delimited 'portal' region as defining the function of each family member. The importance of local structure within the cavity appears to be its influence on binding affinity and specificity for the lipid. The portal region appears to be involved in the regulation of ligand exchange. Within the iLBP family, liver fatty acid binding protein or LFABP, has the unique property of binding two fatty acids within its internalized binding cavity rather than the commonly observed stoichiometry of one. Furthermore, LFABP will bind hydrophobic molecules larger than the ligands which will associate with other iLBPs. The crystal structure of LFABP contains two bound oleate molecules and provides the explanation for its unusual stoichiometry. One of the bound fatty acids is completely internalized and has its carboxylate interacting with an arginine and two serines. The second oleate represents an entirely new binding mode with the carboxylate on the surface of LFABP. The two oleates also interact with each other. Because of this interaction and its inner location, it appears the first oleate must be present before the second more external molecule is bound. PMID:10331654

  16. A general approach to visualize protein binding and DNA conformation without protein labelling.

    Science.gov (United States)

    Song, Dan; Graham, Thomas G W; Loparo, Joseph J

    2016-01-01

    Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein-DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein-DNA interactions.

  17. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    Science.gov (United States)

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  18. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    Science.gov (United States)

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  19. Differential plasma protein binding to metal oxide nanoparticles

    Science.gov (United States)

    Deng, Zhou J.; Mortimer, Gysell; Schiller, Tara; Musumeci, Anthony; Martin, Darren; Minchin, Rodney F.

    2009-11-01

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO2, the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO2 and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  20. Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells

    Science.gov (United States)

    O'Callaghan, Dermott W.; Tepikin, Alexei V.; Burgoyne, Robert D.

    2003-01-01

    Hippocalcin is a neuronal calcium sensor protein that possesses a Ca2+/myristoyl switch allowing it to translocate to membranes. Translocation of hippocalcin in response to increased cytosolic [Ca2+] was examined in HeLa cells expressing hippocalcin–enhanced yellow fluorescent protein (EYFP) to determine the dynamics and Ca2+ affinity of the Ca2+/myristoyl switch in living cells. Ca2+-free hippocalcin was freely diffusible, as shown by photobleaching and use of a photoactivable GFP construct. The translocation was dependent on binding of Ca2+ by EF-hands 2 and 3. Using photolysis of NP-EGTA, the maximal kinetics of translocation was determined (t1/2 = 0.9 s), and this was consistent with a diffusion driven process. Low intensity photolysis of NP-EGTA produced a slow [Ca2+] ramp and revealed that translocation of hippocalcin–EYFP initiated at around 180 nM and was half maximal at 290 nM. Histamine induced a reversible translocation of hippocalcin–EYFP. The data show that hippocalcin is a sensitive Ca2+ sensor capable of responding to increases in intracellular Ca2+ concentration over the narrow dynamic range of 200–800 nM free Ca2+. PMID:14638856

  1. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    Directory of Open Access Journals (Sweden)

    Grant S. Nichols

    2015-01-01

    Full Text Available Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX, the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults.

  2. CALCIUM-BINDING TO THERMITASE - CRYSTALLOGRAPHIC STUDIES OF THERMITASE AT 0,5, AND 100 M-MU CALCIUM

    NARCIS (Netherlands)

    GROS, P; KALK, KH; HOL, WGJ

    1991-01-01

    The three-dimensional crystal structure of thermitase complexed with eglin-c in the presence of 100 mM calcium has been determined and refined at 2.0-angstrom resolution to a R-factor of 16.8%. This crystal structure is compared with previously determined structures of thermitase at 0 and 5 mM calci

  3. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways

    Institute of Scientific and Technical Information of China (English)

    Mary; Louisa; Holton; Michael; Emerson; Ludwig; Neyses; Angel; L; Armesilla

    2010-01-01

    Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular freecalcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulindependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.

  4. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  5. Oxypred: Prediction and Classification of Oxygen-Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    S.; Muthukrishnan; Aarti; Garg; G.P.S.; Raghava

    2007-01-01

    This study describes a method for predicting and classifying oxygen-binding pro- teins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding pro- teins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Sec- ondly, an SVM module was developed based on amino acid composition, classify- ing the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemo- cyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins(available from http://www.imtech.res.in/raghava/oxypred/).

  6. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin.

    Science.gov (United States)

    O'Day, Danton H; Poloz, Yekaterina; Myre, Michael A

    2009-02-01

    The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia. PMID:19000924

  7. Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis.

    Directory of Open Access Journals (Sweden)

    Kanu Priya Aggarwal

    Full Text Available BACKGROUND: The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal-membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. METHODS: Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin-Darby Canine Kidney (MDCK renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. RESULTS: Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. CONCLUSIONS: We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone

  8. Evolution of the acyl-CoA binding protein (ACBP)

    DEFF Research Database (Denmark)

    Burton, Mark; Rose, Timothy M; Faergeman, Nils J;

    2005-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12-C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular ac......-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling....

  9. Characterization of a calmodulin binding protein kinase from Arabidopsis thalian

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A full-length calmodulin binding protein kinase cDNA, AtCBK1, from Arabidopsis has been isolated by screening of an Arabidopsis cDNA library and by 5′-RACE. Northern blot and in situ hybridization indicated that the expression of AtCBK1 was more abundant in the vascular bundles and the meristems than in other tissues. The phylogenetic analyses reveal that AtCBK1 is different from animal CaMKs and it falls into CRK subgroup, indicating that they may come from different ancestors. The result suggests that AtCBK1 encodes a CaM-binding serine/threonine protein kinase.

  10. A calcium sensor – protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species

    Science.gov (United States)

    Beckmann, Linda; Edel, Kai H.; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca2+) signaling is a universal mechanism of signal transduction and involves Ca2+ signal formation and decoding of information by Ca2+ binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca2+ binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca2+ signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca2+ signaling specificity. PMID:27538881

  11. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species.

    Science.gov (United States)

    Beckmann, Linda; Edel, Kai H; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca(2+)) signaling is a universal mechanism of signal transduction and involves Ca(2+) signal formation and decoding of information by Ca(2+) binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca(2+) binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca(2+) signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca(2+) signaling specificity. PMID:27538881

  12. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants.

    Science.gov (United States)

    Sinha, Deepak K; Chandran, Predeesh; Timm, Alicia E; Aguirre-Rojas, Lina; Smith, C Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion.

  13. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants.

    Directory of Open Access Journals (Sweden)

    Deepak K Sinha

    Full Text Available The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion.

  14. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants.

    Science.gov (United States)

    Sinha, Deepak K; Chandran, Predeesh; Timm, Alicia E; Aguirre-Rojas, Lina; Smith, C Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857

  15. Binding-regulated click ligation for selective detection of proteins.

    Science.gov (United States)

    Cao, Ya; Han, Peng; Wang, Zhuxin; Chen, Weiwei; Shu, Yongqian; Xiang, Yang

    2016-04-15

    Herein, a binding-regulated click ligation (BRCL) strategy for endowing selective detection of proteins is developed with the incorporation of small-molecule ligand and clickable DNA probes. The fundamental principle underlying the strategy is the regulating capability of specific protein-ligand binding against the ligation between clickable DNA probes, which could efficiently combine the detection of particular protein with enormous DNA-based sensing technologies. In this work, the feasibly of the BRCL strategy is first verified through agarose gel electrophoresis and electrochemical impedance spectroscopy measurements, and then confirmed by transferring it to a nanomaterial-assisted fluorescence assay. Significantly, the BRCL strategy-based assay is able to respond to target protein with desirable selectivity, attributing to the specific recognition between small-molecule ligand and its target. Further experiments validate the general applicability of the sensing method by tailoring the ligand toward different proteins (i.e., avidin and folate receptor), and demonstrate its usability in complex biological samples. To our knowledge, this work pioneers the practice of click chemistry in probing specific small-molecule ligand-protein binding, and therefore may pave a new way for selective detection of proteins.

  16. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  17. All-Purpose Containers? Lipid-Binding Protein - Drug Interactions.

    Directory of Open Access Journals (Sweden)

    Tiziana Beringhelli

    Full Text Available The combined use of in vitro (19F-NMR and in silico (molecular docking procedures demonstrates the affinity of a number of human calycins (lipid-binding proteins from ileum, liver, heart, adipose tissue and epidermis, and retinol-binding protein from intestine for different drugs (mainly steroids and vastatins. Comparative evaluations on the complexes outline some of the features relevant for interaction (non-polar character of the drugs; amino acids and water molecules in the protein calyx most often involved in binding. Dissociation constants (Ki for drugs typically lie in the same range as Ki for natural ligands; in most instances (different proteins and docking conditions, vastatins are the strongest interactors, with atorvastatin ranking top in half of the cases. The affinity of some calycins for some of the vastatins is in the order of magnitude of the drug Cmax after systemic administration in humans. The possible biological implications of this feature are discussed in connection with drug delivery parameters (route of administration, binding to carrier proteins, distribution to, and accumulation in, human tissues.

  18. Drug-drug plasma protein binding interactions of ivacaftor.

    Science.gov (United States)

    Schneider, Elena K; Huang, Johnny X; Carbone, Vincenzo; Baker, Mark; Azad, Mohammad A K; Cooper, Matthew A; Li, Jian; Velkov, Tony

    2015-06-01

    Ivacaftor is a novel cystic fibrosis (CF) transmembrane conductance regulator (CFTR) potentiator that improves the pulmonary function for patients with CF bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs may compete for the same plasma protein binding sites and impact the free drug concentration. This, in turn, could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This biochemical study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1 -acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site-selective probes. Because of their ability to strongly compete for the ivacaftor binding sites on HSA and AGP, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole, and loratadine. The significance of these plasma protein drug-drug interactions is also interpreted in terms of molecular docking simulations. This in vitro study provides valuable insights into the plasma protein drug-drug interactions of ivacaftor with co-administered CF drugs. The data may prove useful in future clinical trials for a staggered treatment that aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor. PMID:25707701

  19. Cloning of a Calcium Binding Protein Gene from Citrus sinensis and Construction of Sense and Antisense Expression Vectors%柑桔钙离子结合蛋白基因克隆及植物表达载体构建

    Institute of Scientific and Technical Information of China (English)

    贝学军; 钟广炎

    2012-01-01

    以伏令夏橙叶片中分离的总RNA为模板,经RT-PCR扩增到一条约600 bp、含钙离子结 合蛋白基因(CsCaBP)的片段,将此片段克隆到pMD-19T中,经测序分析该片段与甜橙基因组中的对应序列完全吻合.设计2对带有限制性内切酶位点的特异性引物,以cDNA为模板扩增到2个CsCaBP片段,并连接到TA克隆载体pMD-19T上;经双酶切消化后,分别以正反2个方向插入到植物表达载体pFGC5941的查耳酮合成酶(CHSA)内含子两侧,构建成功CsCaBP的RNA干扰载体,但未获得转基因植株.将CsCaBP的正向片段定向克隆到具有CaMV35S启动子的pFGC5941表达质粒上,构建成功CsCaBP过量表达载体.将构建好的表达载体导入根癌农杆菌LBA4404菌株,转化酸橙下胚轴,经PCR检测,获得9株过量表达转基因植株,荧光定量PCR验证发现目的基因在转基因植株中有不同程度的表达.%A calcium binding protein gene (CsCaBP) was amplified by Reverse Transcription Polymerse Chain Reaction (RT-PCR)from Citrus sinensis cv. 'Valencia', and a 600 bp-long PCR product was obtained and cloned into pMD-19T plasmid. Sequence analysis showed that the nucleotide sequence of the cDNA was exactly the same as the corresponding genomic sequence. Two PCR products were re-amplified from cDNA and inserted in inverted orientations into the RNAi vector at the two sides of the intron of chalcone synthase gene. The over-expression construct was obtained by inserting the full-length CsCaBP cDNA into pF(iC5941 under the control of 35S promoter. Both constructs were verified by PCR and sequencing. The constructs were transformed into Agrobacterium tumefaciens, and the transformants were tested positive by PCR. Transformation of Citrus auantittm hypocotyledon segments by co-culturing the segments with the bacteria followed by regeneration of transgenic plants yielded only the overexpression transgenic plants but not the RNAi plant.

  20. Crystal structures of the ligand-binding region of uPARAP: effect of calcium ion binding.

    Science.gov (United States)

    Yuan, Cai; Jürgensen, Henrik J; Engelholm, Lars H; Li, Rui; Liu, Min; Jiang, Longguang; Luo, Zhipu; Behrendt, Niels; Huang, Mingdong

    2016-08-01

    The proteins of the mannose receptor (MR) family share a common domain organization and have a broad range of biological functions. Urokinase plasminogen activator receptor-associated protein (uPARAP) (or Endo180) is a member of this family and plays an important role in extracellular matrix remodelling through interaction with its ligands, including collagens and urokinase plasminogen activator receptor (uPAR). We report the crystal structures of the first four domains of uPARAP (also named the ligand-binding region, LBR) at pH 7.4 in Ca(2+)-bound and Ca(2+)-free forms. The first domain (cysteine-rich or CysR domain) folds into a new and unique conformation different from the β-trefoil fold of typical CysR domains. The so-called long loop regions (LLRs) of the C-type lectin-like domain (CTLD) 1 and 2 (the third and fourth domain) mediate the direct contacts between these domains. These LLRs undergo a Ca(2+)-dependent conformational change, and this is likely to be the key structural determinant affecting the overall conformation of uPARAP. Our results provide a molecular mechanism to support the structural flexibility of uPARAP, and shed light on the structural flexibility of other members of the MR family. PMID:27247422

  1. CK2 phosphorylation of human centrins 1 and 2 regulates their binding to the DNA repair protein XPC, the centrosomal protein Sfi1 and the phototransduction protein transducin β.

    Science.gov (United States)

    Grecu, Dora; Assairi, Liliane

    2014-01-01

    Centrins are calcium-binding proteins that can interact with several cellular targets (Sfi1, XPC, Sac3 and transducin β) through the same hydrophobic triad. However, two different orientations of the centrin-binding motif have been observed: W(1)xxL(4)xxxL(8) for XPC (xeroderma pigmentosum group C protein) and the opposite orientation L(8)xxxL(4)xxW(1) for Sfi1 (suppressor of fermentation-induced loss of stress resistance protein 1), Sac3 and transducin β. Centrins are also phosphorylated by several protein kinases, among which is CK2. The purpose of this study was to determine the binding mechanism of human centrins to three targets (transducin β, Sfi1 and XPC), and the effects of in vitro phosphorylation by CK2 of centrins 1 and 2 with regard to this binding mechanism. We identified the centrin-binding motif at the COOH extremity of transducin β. Human centrin 1 binds to transducin β only in the presence of calcium with a binding constant lower than the binding constant observed for Sfi1 and for XPC. The affinity constants of centrin 1 were 0.10 10(6) M(-1), 249 10(6) M(-1) and 52.5 10(6) M(-1) for Trd, R17-Sfi1 and P17-XPC respectively. CK2 phosphorylates human centrin 1 at residue T138 and human centrin 2 at residues T138 and S158. Consequently CK2 phosphorylation abolished the binding of centrin 1 to transducin β and reduced the binding to Sfi1 and XPC. CK2 phosphorylation of centrin 2 at T138 and S158 abolished the binding to Sfi1 as assessed using a C-HsCen2 T138D-S158D phosphomimetic form of centrin 2.

  2. CK2 phosphorylation of human centrins 1 and 2 regulates their binding to the DNA repair protein XPC, the centrosomal protein Sfi1 and the phototransduction protein transducin β

    Science.gov (United States)

    Grecu, Dora; Assairi, Liliane

    2014-01-01

    Centrins are calcium-binding proteins that can interact with several cellular targets (Sfi1, XPC, Sac3 and transducin β) through the same hydrophobic triad. However, two different orientations of the centrin-binding motif have been observed: W1xxL4xxxL8 for XPC (xeroderma pigmentosum group C protein) and the opposite orientation L8xxxL4xxW1 for Sfi1 (suppressor of fermentation-induced loss of stress resistance protein 1), Sac3 and transducin β. Centrins are also phosphorylated by several protein kinases, among which is CK2. The purpose of this study was to determine the binding mechanism of human centrins to three targets (transducin β, Sfi1 and XPC), and the effects of in vitro phosphorylation by CK2 of centrins 1 and 2 with regard to this binding mechanism. We identified the centrin-binding motif at the COOH extremity of transducin β. Human centrin 1 binds to transducin β only in the presence of calcium with a binding constant lower than the binding constant observed for Sfi1 and for XPC. The affinity constants of centrin 1 were 0.10 106 M−1, 249 106 M−1 and 52.5 106 M−1 for Trd, R17-Sfi1 and P17-XPC respectively. CK2 phosphorylates human centrin 1 at residue T138 and human centrin 2 at residues T138 and S158. Consequently CK2 phosphorylation abolished the binding of centrin 1 to transducin β and reduced the binding to Sfi1 and XPC. CK2 phosphorylation of centrin 2 at T138 and S158 abolished the binding to Sfi1 as assessed using a C-HsCen2 T138D-S158D phosphomimetic form of centrin 2. PMID:24918055

  3. CK2 phosphorylation of human centrins 1 and 2 regulates their binding to the DNA repair protein XPC, the centrosomal protein Sfi1 and the phototransduction protein transducin β

    Directory of Open Access Journals (Sweden)

    Dora Grecu

    2014-01-01

    Full Text Available Centrins are calcium-binding proteins that can interact with several cellular targets (Sfi1, XPC, Sac3 and transducin β through the same hydrophobic triad. However, two different orientations of the centrin-binding motif have been observed: W1xxL4xxxL8 for XPC (xeroderma pigmentosum group C protein and the opposite orientation L8xxxL4xxW1 for Sfi1 (suppressor of fermentation-induced loss of stress resistance protein 1, Sac3 and transducin β. Centrins are also phosphorylated by several protein kinases, among which is CK2. The purpose of this study was to determine the binding mechanism of human centrins to three targets (transducin β, Sfi1 and XPC, and the effects of in vitro phosphorylation by CK2 of centrins 1 and 2 with regard to this binding mechanism. We identified the centrin-binding motif at the COOH extremity of transducin β. Human centrin 1 binds to transducin β only in the presence of calcium with a binding constant lower than the binding constant observed for Sfi1 and for XPC. The affinity constants of centrin 1 were 0.10 106 M−1, 249 106 M−1 and 52.5 106 M−1 for Trd, R17-Sfi1 and P17-XPC respectively. CK2 phosphorylates human centrin 1 at residue T138 and human centrin 2 at residues T138 and S158. Consequently CK2 phosphorylation abolished the binding of centrin 1 to transducin β and reduced the binding to Sfi1 and XPC. CK2 phosphorylation of centrin 2 at T138 and S158 abolished the binding to Sfi1 as assessed using a C-HsCen2 T138D-S158D phosphomimetic form of centrin 2.

  4. Characterization of the binding between a 70-kDa heat shock protein, HspA1A, and phosphoinositides.

    Science.gov (United States)

    McCallister, Chelsea; Kdeiss, Brianna; Oliverio, Ryan; Nikolaidis, Nikolas

    2016-03-25

    HspA1A, a seventy-kilodalton heat shock protein, binds to specific anionic lipids and this interaction regulates important physiological phenomena like apoptosis, tumor growth, and lysosomal rescue. However, whether HspA1A binds to phosphoinositides has yet to be established and quantified. Therefore, in this study, we determined the binding affinity of HspA1A to several phosphoinositides and characterized five aspects of their molecular interaction. First, we established that HspA1A binds phosphatidylinositol monophosphates with higher affinity than di- and triphosphorylated inositides. Second, using high concentrations of potassium we found that HSPA1A embeds within the lipid bilayer of all phosphoinositides tested. However, the effects of the high salt concentrations were significantly different between the different phosphoinositides. Third, using calcium and reaction buffers equilibrated at different pH values we found that these differentially affected HspA1A-phosphoinositide binding, revealing a lipid-specific pattern of binding. Fourth, by assessing the binding properties of the two HspA1A domains, the nucleotide-binding domain and the substrate-binding domain, we determined that in most cases the full-length protein is necessary for binding to phosphoinositides. Fifth, by including in the reactions nucleotides and protein substrates we determined that they minimally and differentially affected phosphoinositide-binding. Collectively, these findings strongly suggest that the HspA1A-phosphoinositide binding is complex yet specific, is mediated by both electrostatic and hydrophobic interactions, is not related to the lipid-head charge, and depends on the physicochemical properties of the lipid.

  5. Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin-Biotin Binding System.

    Science.gov (United States)

    Kim, Min-Chul; Hong, Min-Ho; Lee, Byung-Hyun; Choi, Heon-Jin; Ko, Yeong-Mu; Lee, Yong-Keun

    2015-12-01

    Highly porous and interconnected scaffolds were fabricated using calcium phosphate glass (CPG) for bone tissue engineering. An avidin-biotin binding system was used to improve osteoblast-like cell adhesion to the scaffold. The scaffolds had open macro- and micro-scale pores, and continuous struts without cracks or defects. Scaffolds prepared using a mixture (amorphous and crystalline CPG) were stronger than amorphous group and crystalline group. Cell adhesion assays showed that more cells adhered, with increasing cell seeding efficiency to the avidin-adsorbed scaffolds, and that cell attachment to the highly porous scaffolds significantly differed between avidin-adsorbed scaffolds and other scaffolds. Proliferation was also significantly higher for avidin-adsorbed scaffolds. Osteoblastic differentiation of MG-63 cells was observed at 3 days, and MG-63 cells in direct contact with avidin-adsorbed scaffolds were positive for type I collagen, osteopontin, and alkaline phosphatase gene expression. Osteocalcin expression was observed in the avidin-adsorbed scaffolds at 7 days, indicating that cell differentiation in avidin-adsorbed scaffolds occurred faster than the other scaffolds. Thus, these CPG scaffolds have excellent biological properties suitable for use in bone tissue engineering.

  6. Calcium binding-mediated sustained release of minocycline from hydrophilic multilayer coatings targeting infection and inflammation.

    Directory of Open Access Journals (Sweden)

    Zhiling Zhang

    Full Text Available Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca(2+ is less stable at acidic pH, enabling 'smart' drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca(2+ concentration, and Ca(2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca(2+ binding affinity, enabling its use in a variety of biomedical applications.

  7. Use of native gels to measure protein binding to SSB.

    Science.gov (United States)

    Inoue, Jin; Mikawa, Tsutomu

    2012-01-01

    We describe a procedure to detect protein binding to SSB by polyacrylamide gel electrophoresis under non-denaturing conditions. As an example, we show the interaction of Thermus thermophilus (Tth) SSB with its cognate RecO protein. The interaction is detected as decay of the band corresponding to SSB by addition of RecO. We also demonstrate analysis of the RecO-RecR interaction as another example of this method. PMID:22976186

  8. Carboxyethylester-polyrotaxanes as a new calcium chelating polymer: synthesis, calcium binding and mechanism of trypsin inhibition.

    Science.gov (United States)

    Ooya, Tooru; Eguchi, Masaru; Ozaki, Atsushi; Yui, Nobuhiko

    2002-08-21

    A carboxyethylester-polyrotaxane was synthesized as a novel calcium chelating polymer in the field of oral drug delivery and characterized in terms of mechanism of trypsin inhibition. Here, carboxyethylester (CEE) groups are introduced to all the primary hydroxyl groups in alpha-cyclodextrins (alpha-CDs), which are threaded onto a poly(ethylene glycol) chain capped with bulky end-groups (polyrotaxane). The solubility of the CEE-polyrotaxane in physiological conditions increased with pH, indicating ionization-related solubility similar to conventional polyacrylates. The ability of calcium (Ca2+) chelation was found to increase in the order of poly(acrylic acid) (PAA)>CEE-polyrotaxanez.Gt;CEE-alpha-CD, suggesting that the increased density of carboxyl groups enhances the Ca2+ chelating ability. The activity of trypsin was inhibited by these compounds in the same order of the calcium chelation. However, the inhibitory effect of CEE-polyrotaxane was reduced by adding excess Ca2+ without precipitation that was observed in the presence of PAA. Such the reduced inhibition and precipitation by CEE-alpha-CD was not observed. Therefore, the inhibitory effect of CEE-polyrotaxane is due to Ca2+ chelation from trypsin without non-specific interaction. PMID:12176224

  9. Fast kinetics of calcium signaling and sensor design.

    Science.gov (United States)

    Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J

    2015-08-01

    Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change.

  10. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    Science.gov (United States)

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  11. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins.

    Science.gov (United States)

    Quinn, Colette F; Carpenter, Margaret C; Croteau, Molly L; Wilcox, Dean E

    2016-01-01

    ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ΔHITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ΔG(o), ΔH, ΔS, and ΔCP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein.

  12. Flexibility of PCNA-protein interface accommodates differential binding partners.

    Directory of Open Access Journals (Sweden)

    Anthony M Pedley

    Full Text Available The expanding roles of PCNA in functional assembly of DNA replication and repair complexes motivated investigation of the structural and dynamic properties guiding specificity of PCNA-protein interactions. A series of biochemical and computational analyses were combined to evaluate the PIP Box recognition features impacting complex formation. The results indicate subtle differences in topological and molecular descriptors distinguishing both affinity and stoichiometry of binding among PCNA-peptide complexes through cooperative effects. These features were validated using peptide mimics of p85α and Akt, two previously unreported PCNA binding partners. This study characterizes for the first time a reverse PIP Box interaction with PCNA. Small molecule ligand binding at the PIP Box interaction site confirmed the adaptive nature of the protein in dictating overall shape and implicates allosterism in transmitting biological effects.

  13. Methods of use of cellulose binding domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    Science.gov (United States)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  15. RNA-protein binding kinetics in an automated microfluidic reactor.

    Science.gov (United States)

    Ridgeway, William K; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R

    2009-11-01

    Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA-protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic 'Riboreactor' has been designed and constructed to facilitate the study of kinetics of RNA-protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA-protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome.

  16. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation

    OpenAIRE

    Gao, Mu; Skolnick, Jeffrey

    2012-01-01

    Protein-protein and protein-ligand interactions are ubiquitous in a biological cell. Here, we report a comprehensive study of the distribution of protein-ligand interaction sites, namely ligand-binding pockets, around protein-protein interfaces where protein-protein interactions occur. We inspected a representative set of 1,611 representative protein-protein complexes and identified pockets with a potential for binding small molecule ligands. The majority of these pockets are within a 6 Å dis...

  17. Characterization of [125I]omega-conotoxin binding to brain N calcium channels and (-)[3H] desmethoxyverapamil binding to novel calcium channels in osteoblast-like osteosarcoma cells

    International Nuclear Information System (INIS)

    This dissertation provides molecular evidence for a diversity of Ca2+ channels in neuronal and non-neuronal tissues. First, I demonstrated specific, reversible, saturable binding sites for omega [125I]conotoxin GVIA (omega[125I]CTX) in rat brain and rabbit sympathetic ganglion. Omega [125I]CTX binding has a unique pharmacology, ion selectivity, and anatomical distribution in rat brain. Omega [125I]CTX binding was solubilized, retaining an appropriate pharmacology and ion selectivity. Omega[125I]CTX binding may be associated with a Ca2+ channel because the K/sub D/ of omega [125I]CTX is similar to the IC50 of inhibition of depolarization-induced 45Ca2+ flux into rat brain synaptosomes. Specific (-)[3H]desmethoxyverapamil ((-)[3H]DMV) binding sites were demonstrated on osteoblast-like osteosarcoma cell membranes

  18. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted. PMID:26028028

  19. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  20. Synthesis and structural characterization of a calcium coordination polymer based on a 3-bridging tetradentate binding mode of glycine

    Indian Academy of Sciences (India)

    Subramanian Natarajan; Bikshandarkoil R Srinivasan; J Kalyana Sundar; K Ravikumar; R V Krishnakumar; J Suresh

    2012-07-01

    A new coordination polymer namely [[Ca6(H-gly)12(H2O)18]Cl12·6H2O] (1) (H-gly = glycine) has been isolated from the calcium chloride-glycine-water system and structurally characterized. Each Ca(II) in 1 is eight-coordinated and is bonded to eight oxygen atoms three of which are from terminal water molecules and five oxygen atoms from four symmetry related zwitterionic glycine ligands. The H-gly ligands exhibit two different binding modes viz. a monodentate carboxylate ligation and a 3-tetradentate bridging carboxylate binding mode, which results in the formation of a one-dimensional coordination polymer. In the infinite chain the Ca(II) atoms are organized in a zigzag fashion. A comparative study reveals a rich and diverse structural chemistry of calcium halide-glycine compounds.

  1. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3.

    Science.gov (United States)

    Qiu, Yongjian; Xi, Jing; Du, Liqun; Suttle, Jeffrey C; Poovaiah, B W

    2012-05-01

    Calcium/calmodulin (Ca(2+)/CaM) has long been considered a crucial component in wound signaling pathway. However, very few Ca(2+)/CaM-binding proteins have been identified which regulate plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca(2+)/CaM-binding transcription factors designated as AtSRs (also known as AtCAMTAs) can respond differentially to wounding stress. Further studies revealed that AtSR1/CAMTA3 is a negative regulator of plant defense, and Ca(2+)/CaM-binding to AtSR1 is indispensable for the suppression of salicylic acid (SA) accumulation and disease resistance. Here we report that Ca(2+)/CaM-binding is also critical for AtSR1-mediated herbivore-induced wound response. Interestingly, atsr1 mutant plants are more susceptible to herbivore attack than wild-type plants. Complementation of atsr1 mutant plants by overexpressing wild-type AtSR1 protein can effectively restore plant resistance to herbivore attack. However, when mutants of AtSR1 with impaired CaM-binding ability were overexpressed in atsr1 mutant plants, plant resistance to herbivore attack was not restored, suggesting a key role for Ca(2+)/CaM-binding in wound signaling. Furthermore, it was observed that elevated SA levels in atsr1 mutant plants have a negative impact on both basal and induced biosynthesis of jasmonates (JA). These results revealed that Ca(2+)/CaM-mediated signaling regulates plant response to herbivore attack/wounding by modulating the SA-JA crosstalk through AtSR1. PMID:22371088

  2. Regulation of Intestinal Epithelial Calcium Transport Proteins by Stanniocalcin-1 in Caco2 Cells.

    Science.gov (United States)

    Xiang, Jinmei; Guo, Rui; Wan, Chunyun; Wu, Liming; Yang, Shijin; Guo, Dingzong

    2016-01-01

    Stanniocalcin-1 (STC1) is a calcium and phosphate regulatory hormone. However, the exact molecular mechanisms underlying how STC1 affects Ca(2+) uptake remain unclear. Here, the expression levels of the calcium transport proteins involved in transcellular transport in Caco2 cells were examined following over-expression or inhibition of STC1. These proteins include the transient receptor potential vanilloid members (TRPV) 5 and 6, the plasma membrane calcium ATPase 1b (PMCA1b), the sodium/calcium exchanger (NCX1), and the vitamin D receptor (VDR). Both gene and protein expressions of TRPV5 and TRPV6 were attenuated in response to over-expression of STC1, and the opposite trend was observed in cells treated with siRNASTC1. To further investigate the ability of STC1 to influence TRPV6 expression, cells were treated with 100 ng/mL of recombinant human STC1 (rhSTC1) for 4 h following pre-transfection with siRNASTC1 for 48 h. Intriguingly, the increase in the expression of TRPV6 resulting from siRNASTC1 was reversed by rhSTC1. No significant effect of STC1 on the expression of PMCA1b, NCX1 or VDR was observed in this study. In conclusion, the effect of STC1 on calcium transport in intestinal epithelia is due to, at least in part, its negative regulation of the epithelial channels TRPV5/6 that mediate calcium influx. PMID:27409607

  3. Regulation of Intestinal Epithelial Calcium Transport Proteins by Stanniocalcin-1 in Caco2 Cells

    Directory of Open Access Journals (Sweden)

    Jinmei Xiang

    2016-07-01

    Full Text Available Stanniocalcin-1 (STC1 is a calcium and phosphate regulatory hormone. However, the exact molecular mechanisms underlying how STC1 affects Ca2+ uptake remain unclear. Here, the expression levels of the calcium transport proteins involved in transcellular transport in Caco2 cells were examined following over-expression or inhibition of STC1. These proteins include the transient receptor potential vanilloid members (TRPV 5 and 6, the plasma membrane calcium ATPase 1b (PMCA1b, the sodium/calcium exchanger (NCX1, and the vitamin D receptor (VDR. Both gene and protein expressions of TRPV5 and TRPV6 were attenuated in response to over-expression of STC1, and the opposite trend was observed in cells treated with siRNASTC1. To further investigate the ability of STC1 to influence TRPV6 expression, cells were treated with 100 ng/mL of recombinant human STC1 (rhSTC1 for 4 h following pre-transfection with siRNASTC1 for 48 h. Intriguingly, the increase in the expression of TRPV6 resulting from siRNASTC1 was reversed by rhSTC1. No significant effect of STC1 on the expression of PMCA1b, NCX1 or VDR was observed in this study. In conclusion, the effect of STC1 on calcium transport in intestinal epithelia is due to, at least in part, its negative regulation of the epithelial channels TRPV5/6 that mediate calcium influx.

  4. Engineering periplasmic ligand binding proteins as glucose nanosensors

    Directory of Open Access Journals (Sweden)

    Constance J. Jeffery

    2011-01-01

    Full Text Available Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.

  5. Characterization of DNA-binding proteins from pea mitochondria

    DEFF Research Database (Denmark)

    Hatzack, F.A.; Dombrowski, S.; Brennicke, A.;

    1998-01-01

    unknown. Proteins binding to double-stranded oligonucleotides representing different parts of the pea (Pisum sativum) mitochondrial atp9 were analyzed by denaturation-renaturation chromatography and mobility-shift experiments. Two DNA-protein complexes were detected, which appeared to be sequence specific...... in competition experiments. Purification by hydroxyapatite, phosphocellulose, and reversed-phase high-pressure liquid chromatography separated two polypeptides with apparent molecular masses of 32 and 44 kD. Both proteins bound to conserved structures of the pea atp9 and the heterologous Oenothera berteriana atp...

  6. Binding of Streptococcus mutans SR protein to human monocytes: production of tumor necrosis factor, interleukin 1, and interleukin 6.

    Science.gov (United States)

    Soell, M; Holveck, F; Schöller, M; Wachsmann, R D; Klein, J P

    1994-05-01

    To examine the possible implication of protein SR, an I/II-related antigen from Streptococcus mutans OMZ 175 (serotype f), in inflammatory reactions, we tested the immunomodulatory effects of protein SR on human monocytes. Using biotinylated protein, we provide evidence that protein SR binds to human monocytes in dose-, time-, and calcium-dependent manners through specific interactions. These results were confirmed by competition experiments using either soluble human monocyte extract or anti-SR immunoglobulin G. Binding occurred through lectin-like interactions between SR and carbohydrate portions of monocyte membrane glycoproteins, since binding could be inhibited by several sugars, especially fucose and N-acetylneuraminic acid (NANA), which were confirmed by ligand blotting to be the primer ligands recognized by SR on human monocyte extracts. The ability of protein SR to stimulate the production of cytokines by human circulating monocytes was then examined. The release of tumor necrosis factor alpha (TNF-alpha), interleukin 1 beta, and interleukin 6 is time and dose dependent and not affected by the addition of polymyxin B. Activation of monocytes resulted from specific binding of SR to NANA and fucose present on cell surface glycoproteins since TNF-alpha release could be inhibited by sialidase and pronase treatment of monocytes and by NANA and fucose. These results confirm that sialic acid and fucose present on cell surface macromolecules and especially glycoproteins are needed for the binding of SR to monocytes and for the release of TNF-alpha. PMID:8168943

  7. Predicting protein ligand binding motions with the conformation explorer

    Directory of Open Access Journals (Sweden)

    Flores Samuel C

    2011-10-01

    Full Text Available Abstract Background Knowledge of the structure of proteins bound to known or potential ligands is crucial for biological understanding and drug design. Often the 3D structure of the protein is available in some conformation, but binding the ligand of interest may involve a large scale conformational change which is difficult to predict with existing methods. Results We describe how to generate ligand binding conformations of proteins that move by hinge bending, the largest class of motions. First, we predict the location of the hinge between domains. Second, we apply an Euler rotation to one of the domains about the hinge point. Third, we compute a short-time dynamical trajectory using Molecular Dynamics to equilibrate the protein and ligand and correct unnatural atomic positions. Fourth, we score the generated structures using a novel fitness function which favors closed or holo structures. By iterating the second through fourth steps we systematically minimize the fitness function, thus predicting the conformational change required for small ligand binding for five well studied proteins. Conclusions We demonstrate that the method in most cases successfully predicts the holo conformation given only an apo structure.

  8. Treponema pallidum receptor binding proteins interact with fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Baseman, J.B.; Alderete, J.F.

    1983-06-01

    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or /sup 35/S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition.

  9. Isolation, characterization, and bioinformatic analysis of calmodulin-binding protein cmbB reveals a novel tandem IP22 repeat common to many Dictyostelium and Mimivirus proteins.

    Science.gov (United States)

    O'Day, Danton H; Suhre, Karsten; Myre, Michael A; Chatterjee-Chakraborty, Munmun; Chavez, Sara E

    2006-08-01

    A novel calmodulin-binding protein cmbB from Dictyostelium discoideum is encoded in a single gene. Northern analysis reveals two cmbB transcripts first detectable at 4 h during multicellular development. Western blotting detects an approximately 46.6 kDa protein. Sequence analysis and calmodulin-agarose binding studies identified a "classic" calcium-dependent calmodulin-binding domain (179IPKSLRSLFLGKGYNQPLEF198) but structural analyses suggest binding may not involve classic alpha-helical calmodulin-binding. The cmbB protein is comprised of tandem repeats of a newly identified IP22 motif ([I,L]Pxxhxxhxhxxxhxxxhxxxx; where h = any hydrophobic amino acid) that is highly conserved and a more precise representation of the FNIP repeat. At least eight Acanthamoeba polyphaga Mimivirus proteins and over 100 Dictyostelium proteins contain tandem arrays of the IP22 motif and its variants. cmbB also shares structural homology to YopM, from the plague bacterium Yersenia pestis. PMID:16777069

  10. Goodpasture Antigen-binding Protein (GPBP) Directs Myofibril Formation

    Science.gov (United States)

    Revert-Ros, Francisco; López-Pascual, Ernesto; Granero-Moltó, Froilán; Macías, Jesús; Breyer, Richard; Zent, Roy; Hudson, Billy G.; Saadeddin, Anas; Revert, Fernando; Blasco, Raül; Navarro, Carmen; Burks, Deborah; Saus, Juan

    2011-01-01

    Goodpasture antigen-binding protein-1 (GPBP-1) is an exportable non-conventional Ser/Thr kinase that regulates glomerular basement membrane collagen organization. Here we provide evidence that GPBP-1 accumulates in the cytoplasm of differentiating mouse myoblasts prior to myosin synthesis. Myoblasts deficient in GPBP-1 display defective myofibril formation, whereas myofibrils assemble with enhanced efficiency in those overexpressing GPBP-1. We also show that GPBP-1 targets the previously unidentified GIP130 (GPBP-interacting protein of 130 kDa), which binds to myosin and promotes its myofibrillar assembly. This report reveals that GPBP-1 directs myofibril formation, an observation that expands its reported role in supramolecular organization of structural proteins to the intracellular compartment. PMID:21832087

  11. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that f

  12. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    Science.gov (United States)

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins.

  13. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    Science.gov (United States)

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. PMID:27451201

  14. Streptococcal IgA-binding proteins bind in the Calpha 2-Calpha 3 interdomain region and inhibit binding of IgA to human CD89.

    Science.gov (United States)

    Pleass, R J; Areschoug, T; Lindahl, G; Woof, J M

    2001-03-16

    Certain pathogenic bacteria express surface proteins that bind to the Fc part of human IgA or IgG. These bacterial proteins are important as immunochemical tools and model systems, but their biological function is still unclear. Here, we describe studies of three streptococcal proteins that bind IgA: the Sir22 and Arp4 proteins of Streptococcus pyogenes and the unrelated beta protein of group B streptococcus. Analysis of IgA domain swap and point mutants indicated that two loops at the Calpha2/Calpha3 domain interface are critical for binding of the streptococcal proteins. This region is also used in binding the human IgA receptor CD89, an important mediator of IgA effector function. In agreement with this finding, the three IgA-binding proteins and a 50-residue IgA-binding peptide derived from Sir22 blocked the ability of IgA to bind CD89. Further, the Arp4 protein inhibited the ability of IgA to trigger a neutrophil respiratory burst via CD89. Thus, we have identified residues on IgA-Fc that play a key role in binding of different streptococcal IgA-binding proteins, and we have identified a mechanism by which a bacterial IgA-binding protein may interfere with IgA effector function. PMID:11096107

  15. Comparative study of methyl-CpG-binding domain proteins

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2003-01-01

    Full Text Available Abstract Background Methylation at CpG dinucleotides in genomic DNA is a fundamental epigenetic mechanism of gene expression control in vertebrates. Proteins with a methyl-CpG-binding domain (MBD can bind to single methylated CpGs and most of them are involved in transcription control. So far, five vertebrate MBD proteins have been described as MBD family members: MBD1, MBD2, MBD3, MBD4 and MECP2. Results We performed database searches for new proteins containing an MBD and identified six amino acid sequences which are different from the previously described ones. Here we present a comparison of their MBD sequences, additional protein motifs and the expression of the encoding genes. A calculated unrooted dendrogram indicates the existence of at least four different groups of MBDs within these proteins. Two of these polypeptides, KIAA1461 and KIAA1887, were only present as predicted amino acid sequences based on a partial human cDNA. We investigated their expression by Northern blot analysis and found transcripts of ~8 kb and ~5 kb respectively, in all eight normal tissues studied. Conclusions Eleven polypeptides with a MBD could be identified in mouse and man. The analysis of protein domains suggests a role in transcriptional regulation for most of them. The knowledge of additional existing MBD proteins and their expression pattern is important in the context of Rett syndrome.

  16. Polyamine binding to proteins in oat and Petunia protoplasts

    Science.gov (United States)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  17. Insulin-like growth factor binding proteins: a structural perspective

    Directory of Open Access Journals (Sweden)

    Briony eForbes

    2012-03-01

    Full Text Available Insulin-like growth factor binding proteins (IGFBP-1 to -6 bind insulin-like growth factors-I and -II (IGF-I and IGF-II with high affinity. These binding proteins maintain IGFs in the circulation and direct them to target tissues, where they promote cell growth, proliferation, differentiation and survival via the type 1 IGF receptor (IGF-1R. IGFBPs also interact with many other molecules, which not only influence their modulation of IGF action but also mediate IGF-independent activities that influence processes such as cell migration and apoptosis by influencing gene transcription.IGFBPs-1 to -6 are structurally similar proteins consisting of three distinct domains, N-terminal, Linker and C-terminal. There have been major advances in our understanding of IGFBP structure in the last decade and a half. While there is still no structure of an intact IGFBP to date, several structures of individual N- and C-domains have been solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing a detailed picture of the structural features of the IGF binding site and the mechanism of binding. Structural studies have also identified features important for interaction with extracellular matrix components and integrins. This review summarises structural studies reported so far and highlights features important for binding not only IGF but also other partners. It also highlights future directions in which structural studies will add to our knowledge of the role played by the IGFBP family in normal growth and development, as well as in disease.

  18. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar

    2012-07-01

    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  19. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Poovaiah, B. W.

    2002-01-01

    Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.

  20. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5[prime] end

    Energy Technology Data Exchange (ETDEWEB)

    Corson, G.M.; Chalberg, S.C.; Charbonneau, N.L.; Sakai, L.Y. (Oregon Health Sciences Univ., Portland (United States)); Dietz, H.C. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1993-08-01

    Fibrillin is an important structural protein of the extracellular matrix. It is a large cysteine-rich glycoprotein with extensive intrachain disulfide bonds, likely contributed by multiple EGF-like repeats. The authors have previously published 6.9 kb of FBN1 cDNA sequence. FBN1 cDNA clones that extend the sequence 3089 bp in the 5[prime] direction are described in this report. The deduced primary structure suggests that fibrillin in composed of multiple domains. The most predominant features the presence of 43 calcium binding EGF-like repeats. They demonstrate here that fibrillin molecules bind calcium. In addition, three alternatively spliced exons at the 5[prime] end are described. Analysis of 5.8 kb of surrounding genomic sequence revealed a 1.8-kb CpG island spanning the alternatively spliced exons and the next downstream exon. Since FBN1 is the gene responsible for Marfan syndrome, the information presented here will be useful in identifying new mutations and in understanding the function of fibrillin in the pathogenesis of the disease. 42 refs., 7 figs.

  1. Photoaffinity labelling of high affinity dopamine binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-03-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-)N'-4-azidobenzamidol)-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using (/sup 3/H)-SCH 23390 (a D/sub 1/ specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked (/sup 3/H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of (/sup 3/H)-SCH 23390 binding. Compounds which compete for D/sub 1/ receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D/sub 1/ (adenylate cyclase linked) dopamine receptor.

  2. Calcium-dependent and calcium-independent signals in the conglutinin-binding assay (KgBa) for immune complexes. Influence of anti-collagen-antibodies

    DEFF Research Database (Denmark)

    Holmskov, U; Haas, Henning de; Teisner, B;

    1992-01-01

    A solid phase ELISA conglutinin-binding assay (KgBa) was evaluated for the detection of circulating immune complexes. ELISA wells were coated with purified bovine conglutinin and incubated with test sera. Bound IgG was detected with enzyme labelled anti-immunoglobulin. Heat aggregated IgG which had...... been "solubilized" (i.e., complement treated by incubation with serum) was employed as a reference. The binding of the complement-reacted IgG to solid phase conglutinin was found to be calcium-dependent and inhibitable with N-acetyl-D-glucosamine (GlcNAc). Prolonged incubation (4 days) of aggregated Ig......G with serum at 37 degrees C abolished the binding to conglutinin, a finding consistent with the complete degradation of deposited C3b to C3c and C3d. The solubilized IgG that bound to solid phase conglutinin was found by gel chromatography to be of high molecular weight (greater than 600 kDa). Binding of Ig...

  3. Crystal Structure of Human Retinoblastoma Binding Protein 9

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.

    2009-01-01

    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN (http://nmr.cabm.rutgers.edu/hcpin). NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  4. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri.

    Science.gov (United States)

    Martínez-Castillo, Moisés; Ramírez-Rico, Gerardo; Serrano-Luna, Jesús; Shibayama, Mineko

    2015-01-01

    Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.

  5. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri

    Directory of Open Access Journals (Sweden)

    Moisés Martínez-Castillo

    2015-01-01

    Full Text Available Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C employing conditioned medium (CM and total crude extracts (TCEs of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.

  6. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism

    Science.gov (United States)

    Lu, Y. T.; Hidaka, H.; Feldman, L. J.

    1996-01-01

    Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 microM KN-93, but binding is not affected by 5 microM KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 microM KN-93, but not by 5 microM KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.

  7. The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp

    OpenAIRE

    Lei Benfang; Liu Mengyao; Zhu Hui

    2008-01-01

    Abstract Background The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established. Results The objective of this study was to determine whether Shr binds heme and is a heme source of Shp. To achieve the objective, ...

  8. Predicting the Impact of Missense Mutations on Protein-Protein Binding Affinity.

    Science.gov (United States)

    Li, Minghui; Petukh, Marharyta; Alexov, Emil; Panchenko, Anna R

    2014-04-01

    The crucial prerequisite for proper biological function is the protein's ability to establish highly selective interactions with macromolecular partners. A missense mutation that alters the protein binding affinity may cause significant perturbations or complete abolishment of the function, potentially leading to diseases. The availability of computational methods to evaluate the impact of mutations on protein-protein binding is critical for a wide range of biomedical applications. Here, we report an efficient computational approach for predicting the effect of single and multiple missense mutations on protein-protein binding affinity. It is based on a well-tested simulation protocol for structure minimization, modified MM-PBSA and statistical scoring energy functions with parameters optimized on experimental sets of several thousands of mutations. Our simulation protocol yields very good agreement between predicted and experimental values with Pearson correlation coefficients of 0.69 and 0.63 and root-mean-square errors of 1.20 and 1.90 kcal mol(-1) for single and multiple mutations, respectively. Compared with other available methods, our approach achieves high speed and prediction accuracy and can be applied to large datasets generated by modern genomics initiatives. In addition, we report a crucial role of water model and the polar solvation energy in estimating the changes in binding affinity. Our analysis also reveals that prediction accuracy and effect of mutations on binding strongly depends on the type of mutation and its location in a protein complex. PMID:24803870

  9. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  10. Pyruvate kinase M2 is a phosphotyrosine-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Christofk, H.R.; Vander Heiden, M.G.; Wu, N.; Asara, J.M.; Cantley, L.C. (Harvard-Med)

    2008-06-03

    Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.

  11. Vibrational Softening of a Protein on Ligand Binding

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Erica [Semmelweis University, Budapest, Hungary; Perahia, David [Ecole Normale Superieure de Cachan, Cachan, France; Smith, Jeremy C [ORNL; Merzel, Franci [National Institute of Chemistry, Solvenia

    2011-01-01

    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  12. A novel chitin binding crayfish molar tooth protein with elasticity properties.

    Directory of Open Access Journals (Sweden)

    Jenny Tynyakov

    Full Text Available The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate. This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties.

  13. Are odorant-binding proteins involved in odorant discrimination?

    Science.gov (United States)

    Steinbrecht, R A

    1996-12-01

    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination.

  14. Are odorant-binding proteins involved in odorant discrimination?

    Science.gov (United States)

    Steinbrecht, R A

    1996-12-01

    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination. PMID:8985600

  15. Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/ enhancer-binding protein beta binding sites

    Science.gov (United States)

    Savic, Daniel; Roberts, Brian S.; Carleton, Julia B.; Partridge, E. Christopher; White, Michael A.; Cohen, Barak A.; Cooper, Gregory M.; Gertz, Jason; Myers, Richard M.

    2015-01-01

    Transcription factors (TFs) bind to thousands of DNA sequences in mammalian genomes, but most of these binding events appear to have no direct effect on gene expression. It is unclear why only a subset of TF bound sites are actively involved in transcriptional regulation. Moreover, the key genomic features that accurately discriminate between active and inactive TF binding events remain ambiguous. Recent studies have identified promoter-distal RNA polymerase II (RNAP2) binding at enhancer elements, suggesting that these interactions may serve as a marker for active regulatory sequences. Despite these correlative analyses, a thorough functional validation of these genomic co-occupancies is still lacking. To characterize the gene regulatory activity of DNA sequences underlying promoter-distal TF binding events that co-occur with RNAP2 and TF sites devoid of RNAP2 occupancy using a functional reporter assay, we performed cis-regulatory element sequencing (CRE-seq). We tested more than 1000 promoter-distal CCAAT/enhancer-binding protein beta (CEBPB)-bound sites in HepG2 and K562 cells, and found that CEBPB-bound sites co-occurring with RNAP2 were more likely to exhibit enhancer activity. CEBPB-bound sites further maintained substantial cell-type specificity, indicating that local DNA sequence can accurately convey cell-type–specific regulatory information. By comparing our CRE-seq results to a comprehensive set of genome annotations, we identified a variety of genomic features that are strong predictors of regulatory element activity and cell-type–specific activity. Collectively, our functional assay results indicate that RNAP2 occupancy can be used as a key genomic marker that can distinguish active from inactive TF bound sites. PMID:26486725

  16. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian;

    2006-01-01

    Haptoglobin-related protein (Hpr) is a primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL) particles shown to be a part of the innate immune defense. Despite the assumption hitherto that Hpr does not bind to hemoglobin, the present...

  17. SiteComp: a server for ligand binding site analysis in protein structures

    OpenAIRE

    Lin, Yingjie; Yoo, Seungyeul; Sanchez, Roberto

    2012-01-01

    Motivation: Computational characterization of ligand-binding sites in proteins provides preliminary information for functional annotation, protein design and ligand optimization. SiteComp implements binding site analysis for comparison of binding sites, evaluation of residue contribution to binding sites and identification of sub-sites with distinct molecular interaction properties.

  18. Development of computational methods for the prediction of protein structure, protein binding, and mutational effects using free energy calculations.

    OpenAIRE

    Becker, Caroline

    2014-01-01

    A molecular understanding of protein-protein or protein-ligand binding is of crucial importance for the design of proteins or ligands with defined binding characteristics. The comprehensive analysis of biomolecular binding and the coupled rational in silico design of protein-ligand interfaces requires both, accurate and computationally fast methods for the prediction of free energies. Accurate free energy methods usually involve atomistic molecular dynamics simulations that are computationall...

  19. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    Science.gov (United States)

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands. PMID:27528752

  20. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis

    Science.gov (United States)

    Hannan, Fadil M; Babinsky, Valerie N

    2016-01-01

    The extracellular calcium (Ca2+o)-sensing receptor (CaSR) is a family C G protein-coupled receptor, which detects alterations in Ca2+o concentrations and modulates parathyroid hormone secretion and urinary calcium excretion. The central role of the CaSR in Ca2+o homeostasis has been highlighted by the identification of mutations affecting the CASR gene on chromosome 3q21.1. Loss-of-function CASR mutations cause familial hypocalciuric hypercalcaemia (FHH), whereas gain-of-function mutations lead to autosomal dominant hypocalcaemia (ADH). However, CASR mutations are only detected in ≤70% of FHH and ADH cases, referred to as FHH type 1 and ADH type 1, respectively, and studies in other FHH and ADH kindreds have revealed these disorders to be genetically heterogeneous. Thus, loss- and gain-of-function mutations of the GNA11 gene on chromosome 19p13.3, which encodes the G-protein α-11 (Gα11) subunit, lead to FHH type 2 and ADH type 2, respectively; whilst loss-of-function mutations of AP2S1 on chromosome 19q13.3, which encodes the adaptor-related protein complex 2 sigma (AP2σ) subunit, cause FHH type 3. These studies have demonstrated Gα11 to be a key mediator of downstream CaSR signal transduction, and also revealed a role for AP2σ, which is involved in clathrin-mediated endocytosis, in CaSR signalling and trafficking. Moreover, FHH type 3 has been demonstrated to represent a more severe FHH variant that may lead to symptomatic hypercalcaemia, low bone mineral density and cognitive dysfunction. In addition, calcimimetic and calcilytic drugs, which are positive and negative CaSR allosteric modulators, respectively, have been shown to be of potential benefit for these FHH and ADH disorders. PMID:27647839

  1. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  2. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  3. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    Science.gov (United States)

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome. PMID:23934110

  4. Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition.

    NARCIS (Netherlands)

    Allen, N.E.; Key, T.J.; Appleby, P.N.; Travis, R.C.; Roddam, A.W.; Tjonneland, A.; Johnsen, N.F.; Overvad, K.; Linseisen, J.; Rohrmann, S.; Boeing, H.; Pischon, T.; Bueno-De-Mesquita, H.B.; Kiemeney, L.; Tagliabue, G.; Palli, D.; Vineis, P.; Tumino, R.; Trichopoulou, A.; Kassapa, C.; Trichopoulos, D.; Ardanaz, E.; Larranaga, N.; Tormo, M.J.; Gonzalez, C.A.; Quiros, J.R.; Sanchez, M.J.; Bingham, S.; Khaw, K.T.; Manjer, J.; Berglund, G.; Stattin, P.; Hallmans, G.; Slimani, N.; Ferrari, P.; Rinaldi, S.; Riboli, E.

    2008-01-01

    We examined consumption of animal foods, protein and calcium in relation to risk of prostate cancer among 142 251 men in the European Prospective Investigation into Cancer and Nutrition. Associations were examined using Cox regression, stratified by recruitment centre and adjusted for height, weight

  5. Animal foods, protein, calcium and prostate cancer risk : the European Prospective Investigation into Cancer and Nutrition

    NARCIS (Netherlands)

    Allen, N. E.; Key, T. J.; Appleby, P. N.; Travis, R. C.; Roddam, A. W.; Tjonneland, A.; Johnsen, N. F.; Overvad, K.; Linseisen, J.; Rohrmann, S.; Boeing, H.; Pischon, T.; Bueno-de-Mesquita, H. B.; Kiemeney, L.; Tagliabue, G.; Palli, D.; Vineis, P.; Tumino, R.; Trichopoulou, A.; Kassapa, C.; Trichopoulos, D.; Ardanaz, E.; Larranaga, N.; Tormo, M-J; Gonzalez, C. A.; Quiros, J. R.; Sanchez, M-J; Bingham, S.; Khaw, K-T; Manjer, J.; Berglund, G.; Stattin, P.; Hallmans, G.; Slimani, N.; Ferrari, P.; Rinaldi, S.; Riboli, E.

    2008-01-01

    We examined consumption of animal foods, protein and calcium in relation to risk of prostate cancer among 142 251 men in the European Prospective Investigation into Cancer and Nutrition. Associations were examined using Cox regression, stratified by recruitment centre and adjusted for height, weight

  6. Animal products, calcium and protein and prostate cancer risk in the Netherlands Cohort Study

    NARCIS (Netherlands)

    Schuurman, A.G.; Brandt, P.A. van den; Dorant, E.; Goldbohm, R.A.

    1999-01-01

    Prostate cancer risk in relation to consumption of animal products, and intake of calcium and protein was investigated in the Netherlands Cohort Study. At baseline in 1986, 58,279 men aged 55-69 years completed a self-administered 150-item food frequency questionnaire and a questionnaire on other ri

  7. Spermidine-Induced Improvement of Reconsolidation of Memory Involves Calcium-Dependent Protein Kinase in Rats

    Science.gov (United States)

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus.…

  8. Calmodulin-dependent protein kinases mediate calcium-induced slow motility of mammalian outer hair cells.

    Science.gov (United States)

    Puschner, B; Schacht, J

    1997-08-01

    Cochlear outer hair cells in vitro respond to elevation of intracellular calcium with slow shape changes over seconds to minutes ('slow motility'). This process is blocked by general calmodulin antagonists suggesting the participation of calcium/calmodulin-dependent enzymatic reactions. The present study proposes a mechanism for these reactions. Length changes of outer hair cells isolated from the guinea pig cochlea were induced by exposure to the calcium ionophore ionomycin. ATP levels remained unaffected by this treatment ruling out depletion of ATP (by activation of calcium-dependent ATPases) as a cause of the observed shape changes. Involvement of protein kinases was suggested by the inhibition of shape changes by K252a, a broad-spectrum inhibitor of protein kinase activity. Furthermore, the inhibitors ML-7 and ML-9 blocked the shape changes at concentrations compatible with inhibition of myosin light chain kinase (MLCK). KN-62, an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), also attenuated the length changes. Inhibitors with selectivity for cyclic nucleotide-dependent protein kinases (H-89, staurosporine) were tested to assess potential additional contributions by such enzymes. The dose dependence of their action supported the notion that the most likely mechanism of slow motility involves phosphorylation reactions catalyzed by MLCK or CaMKII or both. PMID:9282907

  9. Prediction of Protein-DNA binding by Monte Carlo method

    Science.gov (United States)

    Deng, Yuefan; Eisenberg, Moises; Korobka, Alex

    1997-08-01

    We present an analysis and prediction of protein-DNA binding specificity based on the hydrogen bonding between DNA, protein, and auxillary clusters of water molecules. Zif268, glucocorticoid receptor, λ-repressor mutant, HIN-recombinase, and tramtrack protein-DNA complexes are studied. Hydrogen bonds are approximated by the Lennard-Jones potential with a cutoff distance between the hydrogen and the acceptor atoms set to 3.2 Åand an angular component based on a dipole-dipole interaction. We use a three-stage docking algorithm: geometric hashing that matches pairs of hydrogen bonding sites; (2) least-squares minimization of pairwise distances to filter out insignificant matches; and (3) Monte Carlo stochastic search to minimize the energy of the system. More information can be obtained from our first paper on this subject [Y.Deng et all, J.Computational Chemistry (1995)]. Results show that the biologically correct base pair is selected preferentially when there are two or more strong hydrogen bonds (with LJ potential lower than -0.20) that bind it to the protein. Predicted sequences are less stable in the case of weaker bonding sites. In general the inclusion of water bridges does increase the number of base pairs for which correct specificity is predicted.

  10. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    Science.gov (United States)

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  11. Buffer Interference with Protein Dynamics: A Case Study on Human Liver Fatty Acid Binding Protein

    OpenAIRE

    Long, Dong; Yang, Daiwen

    2009-01-01

    Selection of suitable buffer types is often a crucial step for generating appropriate protein samples for NMR and x-ray crystallographic studies. Although the possible interaction between MES buffer (2-(N-morpholino)ethanesulfonic acid) and proteins has been discussed previously, the interaction is usually thought to have no significant effects on the structures of proteins. In this study, we demonstrate the direct, albeit weak, interaction between MES and human liver fatty acid binding prote...

  12. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    Science.gov (United States)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-03-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp (Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  13. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol.

    Science.gov (United States)

    Lagakos, William S; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E; Storch, Judith

    2013-07-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  14. Liver Fatty Acid-binding Protein Binds Monoacylglycerol in Vitro and in Mouse Liver Cytosol*

    Science.gov (United States)

    Lagakos, William S.; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E.; Storch, Judith

    2013-01-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  15. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  16. MARCKS protein is phosphorylated and regulates calcium mobilization during human acrosomal exocytosis.

    Directory of Open Access Journals (Sweden)

    Marcelo J Rodriguez Peña

    Full Text Available Acrosomal exocytosis is a calcium-regulated exocytosis that can be triggered by PKC activators. The involvement of PKC in acrosomal exocytosis has not been fully elucidated, and it is unknown if MARCKS, the major substrate for PKC, participates in this exocytosis. Here, we report that MARCKS is expressed in human spermatozoa and localizes to the sperm head and the tail. Calcium- and phorbol ester-triggered acrosomal exocytosis in permeabilized sperm was abrogated by different anti-MARCKS antibodies raised against two different domains, indicating that the protein participates in acrosomal exocytosis. Interestingly, an anti-phosphorylated MARCKS antibody was not able to inhibit secretion. Similar results were obtained using recombinant proteins and phospho-mutants of MARCKS effector domain (ED, indicating that phosphorylation regulates MARCKS function in acrosomal exocytosis. It is known that unphosphorylated MARCKS sequesters PIP2. This phospholipid is the precursor for IP3, which in turn triggers release of calcium from the acrosome during acrosomal exocytosis. We found that PIP2 and adenophostin, a potent IP3-receptor agonist, rescued MARCKS inhibition in permeabilized sperm, suggesting that MARCKS inhibits acrosomal exocytosis by sequestering PIP2 and, indirectly, MARCKS regulates the intracellular calcium mobilization. In non-permeabilized sperm, a permeable peptide of MARCKS ED also inhibited acrosomal exocytosis when stimulated by a natural agonist such as progesterone, and pharmacological inducers such as calcium ionophore and phorbol ester. The preincubation of human sperm with the permeable MARCKS ED abolished the increase in calcium levels caused by progesterone, demonstrating that MARCKS regulates calcium mobilization. In addition, the phosphorylation of MARCKS increased during acrosomal exocytosis stimulated by the same activators. Altogether, these results show that MARCKS is a negative modulator of the acrosomal exocytosis

  17. SLOB, a SLOWPOKE channel binding protein, regulates insulin pathway signaling and metabolism in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amanda L Sheldon

    Full Text Available There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO undergoes modulation via its binding partner SLO-binding protein (SLOB. Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs in the pars intercerebralis (PI region of the brain; these cells also express and secrete Drosophila insulin like peptides (dILPs. Previously, we found that flies lacking SLOB exhibit increased resistance to starvation, and we reasoned that SLOB may regulate aspects of insulin signaling and metabolism. Here we investigate the role of SLOB in metabolism and find that slob null flies exhibit changes in energy storage and insulin pathway signaling. In addition, slob null flies have decreased levels of dilp3 and increased levels of takeout, a gene known to be involved in feeding and metabolism. Targeted expression of SLOB to mNSCs rescues these alterations in gene expression, as well as the metabolic phenotypes. Analysis of fly lines mutant for both slob and slo indicate that the effect of SLOB on metabolism and gene expression is via SLO. We propose that modulation of SLO by SLOB regulates neurotransmission in mNSCs, influencing downstream insulin pathway signaling and metabolism.

  18. Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an alpha-helical coiled coil

    DEFF Research Database (Denmark)

    Nielsen, B B; Kastrup, J S; Rasmussen, H;

    1997-01-01

    Tetranectin is a plasminogen kringle 4-binding protein. The crystal structure has been determined at 2.8 A resolution using molecular replacement. Human tetranectin is a homotrimer forming a triple alpha-helical coiled coil. Each monomer consists of a carbohydrate recognition domain (CRD) connected...... the third is present only in long-form CRDs. Tetranectin represents the first structure of a long-form CRD with intact calcium-binding sites. In tetranectin, the third disulfide bridge tethers the CRD to the long helix in the coiled coil. The trimerization of tetranectin as well as the fixation of the CRDs...... relative to the helices in the coiled coil indicate a demand for high specificity in the recognition and binding of ligands....

  19. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi.

    Science.gov (United States)

    Martín, Juan F

    2014-01-01

    Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of

  20. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.;

    2015-01-01

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...... be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds...... strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification....

  1. Interplay between binding affinity and kinetics in protein-protein interactions.

    Science.gov (United States)

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc.

  2. Interplay between binding affinity and kinetics in protein-protein interactions.

    Science.gov (United States)

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. PMID:27018856

  3. Imaging the recruitment and loss of proteins and lipids at single sites of calcium-triggered exocytosis.

    Science.gov (United States)

    Trexler, Adam J; Sochacki, Kem A; Taraska, Justin W

    2016-08-01

    How and when the dozens of molecules that control exocytosis assemble in living cells to regulate the fusion of a vesicle with the plasma membrane is unknown. Here we image with two-color total internal reflection fluorescence microscopy the local changes of 27 proteins at single dense-core vesicles undergoing calcium-triggered fusion. We identify two broad dynamic behaviors of exocytic molecules. First, proteins enriched at exocytic sites are associated with DCVs long before exocytosis, and near the time of membrane fusion, they diffuse away. These proteins include Rab3 and Rab27, rabphilin3a, munc18a, tomosyn, and CAPS. Second, we observe a group of classical endocytic proteins and lipids, including dynamins, amphiphysin, syndapin, endophilin, and PIP2, which are rapidly and transiently recruited to the exocytic site near the time of membrane fusion. Dynamin mutants unable to bind amphiphysin were not recruited, indicating that amphiphysin is involved in localizing dynamin to the fusion site. Expression of mutant dynamins and knockdown of endogenous dynamin altered the rate of cargo release from single vesicles. Our data reveal the dynamics of many key proteins involved in exocytosis and identify a rapidly recruited dynamin/PIP2/BAR assembly that regulates the exocytic fusion pore of dense-core vesicles in cultured endocrine beta cells. PMID:27307587

  4. The clinical significance of fatty acid binding proteins

    Directory of Open Access Journals (Sweden)

    Barbara Choromańska

    2011-11-01

    Full Text Available Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs that bind long-chain fatty acids (LCFA, and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum. So far, nine types of these proteins have been described, and their name refers to the place in which they were first identified or where they can be found in the greatest concentration. The most important FABPs were isolated from the liver (L-FABP, heart (H-FABP, intestine (I-FABP, brain (B-FABP, epidermis (E-FABP and adipocytes (A-FABP. Determination of H-FABP is used in the diagnosis of myocardial infarction, and L-FABP in kidney lesions of different etiologies. It is postulated that FABPs play an important role in the pathogenesis of metabolic diseases. Elevated levels of A-FABP have been found in the pericardial fat tissue and were associated with cardiac dysfunction in obese people. A rise in A-FABP has been observed in patients with type II diabetes. I-FABP is known as a marker of cell damage in the small intestine. Increased concentration of B-FABP has been associated with human brain tumors such as glioblastoma and astrocytoma, as well as with neurodegenerative diseases (Alzheimer’s, Parkinson’s and other disorders of cognitive function. The aim of this work was to present current data on the clinical significance of fatty acid binding proteins.

  5. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  6. Retinoic acid binding protein in normal and neopolastic rat prostate.

    Science.gov (United States)

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  7. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  8. Isolation and characterization of Dictyostelium thymidine kinase 1 as a calmodulin-binding protein.

    Science.gov (United States)

    O'Day, Danton H; Chatterjee-Chakraborty, Munmun; Wagler, Stephanie; Myre, Michael A

    2005-06-17

    Probing of a cDNA expression library from multicellular development of Dictyostelium discoideum using a recombinant radiolabelled calmodulin probe (35S-VU1-CaM) led to the isolation of a cDNA encoding a putative CaM-binding protein (CaMBP). The cDNA contained an open reading frame of 951 bp encoding a 227aa polypeptide (25.5 kDa). Sequence comparisons led to highly significant matches with cytosolic thymidine kinases (TK1; EC 2.7.1.21) from a diverse number of species including humans (7e-56; 59% Identities; 75% Positives) indicating that the encoded protein is D. discoideum TK1 (DdTK1; ThyB). DdTK1 has not been previously characterized in this organism. In keeping with its sequence similarity with DdTK1, antibodies against humanTK1 recognize DdTK1, which is expressed during growth but decreases in amount after starvation. A CaM-binding domain (CaMBD; 20GKTTELIRRIKRFNFANKKC30) was identified and wild type DdTK1 plus two constructs (DdTK deltaC36, DdTK deltaC75) possessing the domain were shown to bind CaM in vitro but only in the presence of calcium while a construct (DdTK deltaN72) lacking the region failed to bind to CaM. Thus, DdTK1 is a Ca2+-dependent CaMBP. Sequence alignments against TK1 from vertebrates to viruses show that CaM-binding region is highly conserved. The identified CaMBD overlaps the ATP-binding (P-loop) domain suggesting CaM might affect the activity of this kinase. Recombinant DdTK is enzymatically active and showed stimulation by CaM (113+/-0.5%) an in vitro enhancement that was prevented by co-addition of the CaM antagonists W7 (91.2+/-0.8%) and W13 (96.6+/-0.6%). The discovery that TK1 from D. discoideum, and possibly other species including humans and a large number of human viruses, is a Ca2+-dependent CaMBP opens up new avenues for research on this medically relevant protein. PMID:15883042

  9. Gβγ Binds to the Extreme C Terminus of SNAP25 to Mediate the Action of Gi/o-Coupled G Protein-Coupled Receptors.

    Science.gov (United States)

    Zurawski, Zack; Rodriguez, Shelagh; Hyde, Karren; Alford, Simon; Hamm, Heidi E

    2016-01-01

    Gi/o-coupled G protein-coupled receptors can exert an inhibitory effect on vesicle release through several G protein-driven mechanisms, more than one of which may be concurrently present in individual presynaptic terminals. The synaptosomal-associated protein of 25 kDa (SNAP25) is a key downstream effector of Gβγ subunits. It has previously been shown that proteolytic cleavage of SNAP25 by botulinum toxin A reduces the ability of Gβγ to compete with the calcium sensor synaptotagmin 1 (Syt1) for binding to SNAP25 in a calcium-dependent manner. These truncated SNAP25 proteins sustain a low level of exocytosis but are unable to support serotonin-mediated inhibition of exocytosis in lamprey spinal neurons. Here, we generate a SNAP25 extreme C-terminal mutant that is deficient in its ability to bind Gβγ while retaining normal calcium-dependent Syt1 binding to soluble N-ethylmaleimide attachment protein receptor (SNARE) and vesicle release. The SNAP25Δ3 mutant, in which residue G204 is replaced by a stop codon, features a partial reduction in Gβ1γ2 binding in vitro as well as a partial reduction in the ability of the lamprey 5-hydroxytryptamine1b-type serotonin receptor to reduce excitatory postsynaptic current amplitudes, an effect previously shown to be mediated through the interaction of Gβγ with SNAP25. Syt1 calcium-dependent binding to SNAP25Δ3 was reduced by a small extent compared with the wild type. We conclude that the extreme C terminus of SNAP25 is a critical region for the Gβγ-SNARE interaction.

  10. Calcium Sulfate with Stearic Acid as an Encouraging Carrier for Reindeer Bone Protein Extract

    Directory of Open Access Journals (Sweden)

    Pekka Jalovaara

    2011-07-01

    Full Text Available Various bone proteins and growth factors in specific concentrations are required for bone formation. If the body cannot produce sufficient quantities of these factors, bone trauma can be healed with an implant that includes the required factors in a carrier. This study was designed to evaluate various calcium salt candidates that can be used as carrier with reindeer bone protein extract to induce ectopic bone formation in the muscle pouch model of mouse. The bone protein extract was either impregnated into the disc form of carrier or mixed with carrier powder before implantation. The radiographic analysis indicated increased bone formation in all of the active groups containing the bone protein extract compared to the controls within 21 days follow-up. The highest bone formation was seen in the group with calcium sulfate with stearic acid where new bone and calcified cartilage were clearly visible. The greatest bone formation occurred in the groups that had bone protein extract readily available. This indicates that the bone forming factors in sufficient concentrations are required at the early stage of bone formation. The calcium sulfate with stearic acid was the most suitable and effective carrier for reindeer bone protein extract.

  11. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E

    2006-02-01

    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  12. The Movable Type Method Applied to Protein-Ligand Binding

    Science.gov (United States)

    Zheng, Zheng; Ucisik, Melek N.; Merz, Kenneth M.

    2013-01-01

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term “movable type”. Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the

  13. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding

  14. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication.

    Science.gov (United States)

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3'-5' exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the

  15. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove;

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy....... Binding of these proteins to SAP was demonstrated when SAP was immobilized using F(ab')2 anti-SAP, but not when SAP reacted with these proteins in liquid phase; thus the binding to human SAP was markedly phase state dependent. Presaturation of solid phase SAP with heparin, which binds SAP with high...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  16. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods.

    Science.gov (United States)

    Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James

    2015-12-15

    Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  17. The MTA family proteins as novel histone H3 binding proteins

    Directory of Open Access Journals (Sweden)

    Wu Meng

    2013-01-01

    Full Text Available Abstract Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  18. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4.

    Science.gov (United States)

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V

    2010-04-01

    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.

  19. DnaT is a PriC-binding protein.

    Science.gov (United States)

    Huang, Chien-Chih; Huang, Cheng-Yang

    2016-09-01

    DnaT and PriC are replication restart primosomal proteins required for re-initiating chromosomal DNA replication. DnaT is a component of the PriA-dependent primosome, while PriC belongs to the PriC-dependent primosome. Whether DnaT can interact with PriC is still unknown. In this study, we define a direct interaction between PriC, a key initiator protein in PriC-mediated DNA replication restart, and DnaT, a DnaB/C complex loader protein, from Klebsiella pneumoniae. In fluorescence titrations, PriC bound to single-stranded DNA with a binding-site size of approximately 9 nt. Gold nanoparticle assay showed that the solution of DnaT-PriC changed from red to purple, which indicated the protein-protein interactions due to gold nanoparticle aggregate. In addition, this DnaT-PriC complex could be co-purified by the heparin HP column. Surface plasmon resonance analysis showed that the Kd value of DnaT bound to PriC was 2.9 × 10(-8) M. These results constitute a pioneering study of the DnaT-PriC interaction and present a putative link between the two independent replication restart pathways, namely, PriA- and PriC-dependent primosome assemblies. Further research can directly focus on determining how DnaT binds to the PriC-SSB-DNA tricomplex and regulates the PriC-dependent replication restart. PMID:27387236

  20. DnaT is a PriC-binding protein.

    Science.gov (United States)

    Huang, Chien-Chih; Huang, Cheng-Yang

    2016-09-01

    DnaT and PriC are replication restart primosomal proteins required for re-initiating chromosomal DNA replication. DnaT is a component of the PriA-dependent primosome, while PriC belongs to the PriC-dependent primosome. Whether DnaT can interact with PriC is still unknown. In this study, we define a direct interaction between PriC, a key initiator protein in PriC-mediated DNA replication restart, and DnaT, a DnaB/C complex loader protein, from Klebsiella pneumoniae. In fluorescence titrations, PriC bound to single-stranded DNA with a binding-site size of approximately 9 nt. Gold nanoparticle assay showed that the solution of DnaT-PriC changed from red to purple, which indicated the protein-protein interactions due to gold nanoparticle aggregate. In addition, this DnaT-PriC complex could be co-purified by the heparin HP column. Surface plasmon resonance analysis showed that the Kd value of DnaT bound to PriC was 2.9 × 10(-8) M. These results constitute a pioneering study of the DnaT-PriC interaction and present a putative link between the two independent replication restart pathways, namely, PriA- and PriC-dependent primosome assemblies. Further research can directly focus on determining how DnaT binds to the PriC-SSB-DNA tricomplex and regulates the PriC-dependent replication restart.

  1. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl

    2004-01-01

    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  2. Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein.

    Directory of Open Access Journals (Sweden)

    Ilse Jongerius

    Full Text Available Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH, a negative regulator of the complement system, to its surface via fH binding protein (fHbp, providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups.

  3. Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein.

    Science.gov (United States)

    Jongerius, Ilse; Lavender, Hayley; Tan, Lionel; Ruivo, Nicola; Exley, Rachel M; Caesar, Joseph J E; Lea, Susan M; Johnson, Steven; Tang, Christoph M

    2013-01-01

    Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups. PMID:23935503

  4. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  5. Structural and binding properties of two paralogous fatty acid binding proteins of Taenia solium metacestode.

    Directory of Open Access Journals (Sweden)

    Seon-Hee Kim

    Full Text Available BACKGROUND: Fatty acid (FA binding proteins (FABPs of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs of Taenia solium metacestode (TsM, a causative agent of neurocysticercosis (NC, shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2, which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15-95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1 and 8.4 (TsMFABP2. Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]aminoundecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions

  6. A short introduction to the new principle of binding ration calcium with sodium zeolite

    DEFF Research Database (Denmark)

    Jørgensen, R J; Bjerrum, M J; Classen, H;

    2003-01-01

    . Synthetic sodium zeolite was selected as a first choice among the many calcium binders available commercially, such as polyphosphates, citrate, EDTA and it derivatives. Testing was done on non-pregnant rumen fistulated cows in the first place, followed by cows in late lactation. Encouraged by the tendencies...... seen in these animals, the final proof of concept was done on pregnant dry cows fed a supplement of synthetic sodium zeolite A from 4 weeks before expected calving until calving. By analysis of blood calcium levels, this supplementation was shown to have a stabilizing effect during the critical period...

  7. Unusual Heme Binding in the Bacterial Iron Response Regulator Protein (Irr): Spectral Characterization of Heme Binding to Heme Regulatory Motif

    OpenAIRE

    Ishikawa, Haruto; Nakagaki, Megumi; Bamba, Ai; Uchida, Takeshi; Hori, Hiroshi; O'Brian, Mark R.; Iwai, Kazuhiro; Ishimori, Koichiro

    2011-01-01

    We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single “heme-regulatory motif”, HRM, and plays a key role in the iron homeostasis of a nitrogen fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where 29Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside...

  8. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter.

    Science.gov (United States)

    Chandravanshi, Monika; Gogoi, Prerana; Kanaujia, Shankar Prasad

    2016-11-01

    For the de novo biosynthesis of phospholipids, byproducts such as sn-glycerol-3-phosphate (G3P) and glycerophosphocholine (GPC) of glycerophospholipid metabolic pathway are imported inside the cell by an ATP-binding cassette (ABC) transporter known as UgpABCE. Of which, UgpA and UgpE constitutes the transmembrane domains (TMDs), UgpC forms the dimer of ATP-hydrolyzing component and UgpB is the periplasmic substrate binding protein. Structurally, UgpABCE transporter displays similarity to the maltose ABC transporter of Escherichia coli; thus, has been grouped into the CUT1 (Carbohydrate Uptake Transporter-1) family of bacterial ABC transporters. Being a member of CUT1 family, several Ugp (Uptake glycerol phosphate) protein sequences in biological database(s) exhibit sequence and structure similarity to sugar ABC transporters and have been annotated as sugar binding proteins; one of such proteins is TTHA0379 from Thermus thermophilus HB8. Here, in this study, we used computational method(s) to distinguish UgpB and sugar binding proteins based on their primary and tertiary structure features. A comprehensive analysis of these proteins indicates that they are evolutionarily related to each other having common conserved features at their primary and tertiary structure levels. However, they display differences at their active sites owing to the dissimilarity in their ligand preferences. In addition, phylogenetic analysis of TTHA0379 along with UgpB and sugar binding proteins reveals that both the groups of proteins forms two distinct clades and TTHA0379 groups with UgpB proteins. Furthermore, analysis of the ligand binding pocket shows that all the essential features of glycerophosphocholine binding protein i.e. UgpB, are conserved in TTHA0379 as well. Combining these features, here, we designate TTHA0379 to be a GPC binding protein.

  9. Roles of RNA-Binding Proteins in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai

    2016-02-01

    Full Text Available Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR, and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP with low complexity domains, called intrinsically disordered proteins (IDPs, and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs in a poly(ADP-ribose (PAR-dependent manner (unpublished data. DNA-dependent PARP1 (poly-(ADP ribose polymerase 1 makes key contributions in the DNA damage response (DDR network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as

  10. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins.

    Science.gov (United States)

    Ardi, Veronica C; Alexander, Leslie D; Johnson, Victoria A; McAlpine, Shelli R

    2011-12-16

    Heat shock protein 90 (Hsp90) accounts for 1-2% of the total proteins in normal cells and functions as a molecular chaperone that folds, assembles, and stabilizes client proteins. Hsp90 is overexpressed (3- to 6-fold increase) in stressed cells, including cancer cells, and regulates over 200 client and co-chaperone proteins. Hsp90 client proteins are involved in a plethora of cellular signaling events including numerous growth and apoptotic pathways. Since pathway-specific inhibitors can be problematic in drug-resistant cancers, shutting down multiple pathways at once is a promising approach when developing new therapeutics. Hsp90's ability to modulate many growth and signaling pathways simultaneously makes this protein an attractive target in the field of cancer therapeutics. Herein we present evidence that a small molecule modulates Hsp90 via binding between the N and middle domain and allosterically inhibiting the binding interaction between Hsp90 and four C-terminal binding client proteins: IP6K2, FKBP38, FKBP52, and HOP. These last three clients contain a tetratricopeptide-repeat (TPR) region, which is known to interact with the MEEVD sequence on the C-terminus of Hsp90. Thus, this small molecule modulates the activity between co-chaperones that contain TPR motifs and Hsp90's MEEVD region. This mechanism of action is unique from that of all Hsp90 inhibitors currently in clinical trials where these molecules have no effect on proteins that bind to the C-terminus of Hsp90. Further, our small molecule induces a Caspase-3 dependent apoptotic event. Thus, we describe the mechanism of a novel scaffold that is a useful tool for studying cell-signaling events that result when blocking the MEEVD-TPR interaction between Hsp90 and co-chaperone proteins.

  11. Binding of Y-box proteins to RNA: involvement of different protein domains.

    Science.gov (United States)

    Ladomery, M; Sommerville, J

    1994-01-01

    Eukaryotic Y-box proteins are reported to interact with a wide variety of nucleic acid structures to act as transcription factors and mRNA masking proteins. The modular structure of Y-box proteins includes a highly conserved N-terminal cold-shock domain (CSD, equivalent to the bacterial cold-shock proteins) plus four basic C-terminal domains containing arginine clusters and aromatic residues. In addition, the basic domains are separated by acidic regions which contain several potential sites for serine/threonine phosphorylation. The interaction of Y-box proteins, isolated from Xenopus oocytes (FRGY2 type), with RNA molecules has been studied by UV crosslinking and protein fragmentation. We have identified two distinct binding activities. The CSD interacts preferentially with the polypurines poly(A,G) and poly(G) but not poly(A), this activity being sensitive to 5 mM MgCl2 but not to 5 mM spermidine. In the presence of 1 mM MgCl2 or 1 mM spermidine, the basic domains interact preferentially with poly(C,U), this activity being sensitive to 0.5 M NaCl. Binding of the basic domains is also sensitive to low concentrations of heparin. The basic domains can be crosslinked individually to labelled RNA. These results are discussed with reference to the various specificities noted in the binding of Y-box proteins to RNA and DNA. Images PMID:7530842

  12. Protein-protein binding before and after photo-modification of albumin

    Science.gov (United States)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  13. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and remarkable similarity of binding to calcium and lead

    CERN Document Server

    Ropo, Matti; Baldauf, Carsten

    2016-01-01

    We derive structural and binding energy trends for twenty amino acids, their dipeptides, and their interactions with the divalent cations Ca$^{2+}$, Ba$^{2+}$, Sr$^{2+}$, Cd$^{2+}$, Pb$^{2+}$, and Hg$^{2+}$. The underlying data set consists of 45,892 first-principles predicted conformers with relative energies up to about 4 eV (about 400kJ/mol). We show that only very few distinct backbone structures of isolated amino acids and their dipeptides emerge as lowest-energy conformers. The isolated amino acids predominantly adopt structures that involve an acidic proton shared between the carboxy and amino function. Dipeptides adopt one of two intramolecular-hydrogen bonded conformations C$_5$ or equatorial C$_7$. Upon complexation with a divalent cation, the accessible conformational space shrinks and intramolecular hydrogen bonding is prevented due to strong electrostatic interaction of backbone and side chain functional groups with cations. Clear correlations emerge from the binding energies of the six divalent ...

  14. The Role of Microtubule End Binding (EB) Proteins in Ciliogenesis

    DEFF Research Database (Denmark)

    Schrøder, Jacob Morville

    EB1 is a small microtubule (MT)-binding protein that associates preferentially with MT plus ends. EB1 plays a role in regulating MT dynamics, localizing other MT-associated proteins to the plus end, and in regulating interactions of MTs with the cell cortex, mitotic kinetochores and different...... cellular organelles (Lansbergen and Akhmanova, 2006). EB1 also localizes to centrosomes and is required for centrosomal MT anchoring and organization of the MT network (Askham et al., 2002). Further, EB1 has been shown to localize to the flagellar tip and proximal region of the basal bodies......, are required for assembly of primary cilia in cultured human cells. The EB3 - siRNA ciliary phenotype could be rescued by GFP-EB1 expression, and GFP-EB3 over expression resulted in elongated cilia. Transmission electron microscopy (TEM) revealed that EB3-depleted cells possess stumpy cilia, a disorganized...

  15. Interaction of ice binding proteins with ice, water and ions.

    Science.gov (United States)

    Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K

    2016-03-01

    Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms. PMID:26787386

  16. Light-activated DNA binding in a designed allosteric protein

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Devin; Moffat, Keith; Sosnick, Tobin R. (UC)

    2008-09-03

    An understanding of how allostery, the conformational coupling of distant functional sites, arises in highly evolvable systems is of considerable interest in areas ranging from cell biology to protein design and signaling networks. We reasoned that the rigidity and defined geometry of an {alpha}-helical domain linker would make it effective as a conduit for allosteric signals. To test this idea, we rationally designed 12 fusions between the naturally photoactive LOV2 domain from Avena sativa phototropin 1 and the Escherichia coli trp repressor. When illuminated, one of the fusions selectively binds operator DNA and protects it from nuclease digestion. The ready success of our rational design strategy suggests that the helical 'allosteric lever arm' is a general scheme for coupling the function of two proteins.

  17. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  18. Suilysin Stimulates the Release of Heparin Binding Protein from Neutrophils and Increases Vascular Permeability in Mice.

    Science.gov (United States)

    Chen, Shaolong; Xie, Wenlong; Wu, Kai; Li, Ping; Ren, Zhiqiang; Li, Lin; Yuan, Yuan; Zhang, Chunmao; Zheng, Yuling; Lv, Qingyu; Jiang, Hua; Jiang, Yongqiang

    2016-01-01

    Most of the deaths that occurred during two large outbreaks of Streptococcus suis infections in 1998 and 2005 in China were caused by streptococcal toxic shock syndrome (STSS), which is characterized by increased vascular permeability. Heparin-binding protein (HBP) is thought to mediate the vascular leakage. The purpose of this study was to investigate the detailed mechanism underlying the release of HBP and the vascular leakage induced by S. suis. Significantly higher serum levels of HBP were detected in Chinese patients with STSS than in patients with meningitis or healthy controls. Suilysin (SLY) is an exotoxin secreted by the highly virulent strain 05ZYH33, and it stimulated the release of HBP from the polymorphonuclear neutrophils and mediated vascular leakage in mice. The release of HBP induced by SLY was caused by a calcium influx-dependent degranulation. Analyses using a pharmacological approach revealed that the release of HBP induced by SLY was related to Toll-like receptor 4, p38 mitogen-activated protein kinase, and the 1-phosphatidylinositol 3-kinase pathway. It was also dependent on a G protein-coupled seven-membrane spanning receptor. The results of this study provide new insights into the vascular leakage in STSS associated with non-Group A streptococci, which could lead to the discovery of potential therapeutic targets for STSS associated with S. suis. PMID:27617009

  19. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes.

    Science.gov (United States)

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J

    2016-01-01

    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  20. Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story

    Directory of Open Access Journals (Sweden)

    Sabato D'Auria

    2013-02-01

    Full Text Available Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design of a biosensor for arginine. It is important to investigate the stability of proteins when they are used for biotechnological applications. In this article, we review the structural and functional features of an arginine-binding protein from the extremophile Thermotoga maritima with a particular eye on its potential biotechnological applications.

  1. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  2. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1.

    Science.gov (United States)

    Nelson, Cara H; Peng, Chi-Chi; Lutz, Justin D; Yeung, Catherine K; Zelter, Alex; Isoherranen, Nina

    2016-08-01

    Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.

  3. Isolation and functional characterization of CE1 binding proteins

    Directory of Open Access Journals (Sweden)

    Yu Ji-hyun

    2010-12-01

    Full Text Available Abstract Background Abscisic acid (ABA is a plant hormone that controls seed germination, protective responses to various abiotic stresses and seed maturation. The ABA-dependent processes entail changes in gene expression. Numerous genes are regulated by ABA, and promoter analyses of the genes revealed that cis-elements sharing the ACGTGGC consensus sequence are ubiquitous among ABA-regulated gene promoters. The importance of the core sequence, which is generally known as ABA response element (ABRE, has been demonstrated by various experiments, and its cognate transcription factors known as ABFs/AREBs have been identified. Although necessary, ABRE alone is not sufficient, and another cis-element known as "coupling element (CE" is required for full range ABA-regulation of gene expression. Several CEs are known. However, despite their importance, the cognate transcription factors mediating ABA response via CEs have not been reported to date. Here, we report the isolation of transcription factors that bind one of the coupling elements, CE1. Results To isolate CE1 binding proteins, we carried out yeast one-hybrid screens. Reporter genes containing a trimer of the CE1 element were prepared and introduced into a yeast strain. The yeast was transformed with library DNA that represents RNA isolated from ABA-treated Arabidopsis seedlings. From the screen of 3.6 million yeast transformants, we isolated 78 positive clones. Analysis of the clones revealed that a group of AP2/ERF domain proteins binds the CE1 element. We investigated their expression patterns and analyzed their overexpression lines to investigate the in vivo functions of the CE element binding factors (CEBFs. Here, we show that one of the CEBFs, AtERF13, confers ABA hypersensitivity in Arabidopsis, whereas two other CEBFs enhance sugar sensitivity. Conclusions Our results indicate that a group of AP2/ERF superfamily proteins interacts with CE1. Several CEBFs are known to mediate defense or

  4. Application of Hydration Thermodynamics to the Evaluation of Protein Structures and Protein-Ligand Binding

    Directory of Open Access Journals (Sweden)

    Yuichi Harano

    2012-08-01

    Full Text Available Discovering the mechanism that controls the three-dimensional structures of proteins, which are closely related to their biological functions, remains a challenge in modern biological science, even for small proteins. From a thermodynamic viewpoint, the native structure of a protein can be understood as the global minimum of the free energy landscape of the protein-water system. However, it is still difficult to describe the energetics of protein stability in an effective manner. Recently, our group developed a free energy function with an all-atomic description for a protein that focuses on hydration thermodynamics. The validity of the function was examined using structural decoy sets that provide numerous misfolded “non-native” structures. For all targeted sets, the function was able to identify the experimentally determined native structure as the best structure. The energy function can also be used to calculate the binding free energy of a protein with ligands. I review the physicochemical theories employed in the development of the free energy function and recent studies evaluating protein structure stability and protein-ligand binding affinities that use this function.

  5. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis

    Science.gov (United States)

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)

    2003-01-01

    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  6. A Comprehensive Analysis of Plasmodium Circumsporozoite Protein Binding to Hepatocytes.

    Science.gov (United States)

    Zhao, Jinghua; Bhanot, Purnima; Hu, Junjie; Wang, Qian

    2016-01-01

    Circumsporozoite protein (CSP) is the dominant protein on the surface of Plasmodium sporozoites and plays a critical role in the invasion by sporozoites of hepatocytes. Contacts between CSP and heparin sulfate proteoglycans (HSPGs) lead to the attachment of sporozoites to hepatocytes and trigger signaling events in the parasite that promote invasion of hepatocytes. The precise sequence elements in CSP that bind HSPGs have not been identified. We performed a systematic in vitro analysis to dissect the association between Plasmodium falciparum CSP (PfCSP) and hepatocytes. We demonstrate that interactions between PfCSP and heparin or a cultured hepatoma cell line, HepG2, are mediated primarily by a lysine-rich site in the amino terminus of PfCSP. Importantly, the carboxyl terminus of PfCSP facilitates heparin-binding by the amino-terminus but does not interact directly with heparin. These findings provide insights into how CSP recognizes hepatocytes and useful information for further functional studies of CSP. PMID:27560376

  7. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Knudsen, Jens; Færgeman, Nils J.

    2002-01-01

    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show...... that depletion of ACBP in mammalian cells results in lethality, suggesting that ACBP is an essential protein....

  8. Protein interactions and ligand binding: From protein subfamilies to functional specificity

    OpenAIRE

    Rausell, A.; de Juan, D.; Pazos, F; Valencia, A.

    2010-01-01

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as “specificity determining positions” (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating sign...

  9. Metabolomic changes in fatty liver can be modified by dietary protein and calcium during energy restriction

    Institute of Scientific and Technical Information of China (English)

    Taru K Pilvi; Tuulikki Sepp(a)nen-Laakso; Helena Simolin; Piet Finckenberg; Anne Huotari; Karl-Heinz Herzig; Riitta Korpela; Matej Ore(s)i(c); Eero M Mervaala

    2008-01-01

    AIM: To characterise the effect of energy restriction (ER) on liver lipid and primary metabolite profile by using metabolomic approach. We also investigated whether the effect of energy restriction can be further enhanced by modification of dietary protein source and calcium.METHODS: Liver metabolomic profile of lean and obese C57BI/6] mice (n = 10/group) were compared with two groups of weight-reduced mice. ER was performed on control diet and whey protein-based high-calcium diet (whey + Ca). The metabolomic an alyses were performed using the UPLC/MS based lipidomic platform and the HPLC/MS/MS based primary metabolite platform.RESULTS: ER on both diets significantly reduced hepatic lipid accumulation and lipid droplet size, while only whey + Ca diet significantly decreased blood glucose (P 0.05, vs lean). These changes were accompanied with up-regulated TCA cycle and pentose phosphate pathway metabolites.CONCLUSION: ER-induced changes on hepatic metabolomic profile can be significantly affected by dietary protein source. The therapeutic potential of whey protein and calcium should be further studied.

  10. Protein kinase A binds and activates heat shock factor 1.

    Directory of Open Access Journals (Sweden)

    Ayesha Murshid

    Full Text Available BACKGROUND: Many inducible transcription factors are regulated through batteries of posttranslational modifications that couple their activity to inducing stimuli. We have studied such regulation of Heat Shock Factor 1 (HSF1, a key protein in control of the heat shock response, and a participant in carcinogenisis, neurological health and aging. As the mechanisms involved in the intracellular regulation of HSF1 in good health and its dysregulation in disease are still incomplete we are investigating the role of posttranslational modifications in such regulation. METHODOLOGY/PRINCIPAL FINDINGS: In a proteomic study of HSF1 binding partners, we have discovered its association with the pleiotropic protein kinase A (PKA. HSF1 binds avidly to the catalytic subunit of PKA, (PKAcα and becomes phosphorylated on a novel serine phosphorylation site within its central regulatory domain (serine 320 or S320, both in vitro and in vivo. Intracellular PKAcα levels and phosphorylation of HSF1 at S320 were both required for HSF1 to be localized to the nucleus, bind to response elements in the promoter of an HSF1 target gene (hsp70.1 and activate hsp70.1 after stress. Reduction in PKAcα levels by small hairpin RNA led to HSF1 exclusion from the nucleus, its exodus from the hsp70.1 promoter and decreased hsp70.1 transcription. Likewise, null mutation of HSF1 at S320 by alanine substitution for serine led to an HSF1 species excluded from the nucleus and deficient in hsp70.1 activation. CONCLUSIONS: These findings of PKA regulation of HSF1 through S320 phosphorylation add to our knowledge of the signaling networks converging on this factor and may contribute to elucidating its complex roles in the stress response and understanding HSF1 dysregulation in disease.

  11. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  12. XAS and Pulsed EPR Studies of the Copper Binding Site in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith,S.; Bencze, K.; Wasiukanis, K.; Benore-Parsons, T.; Stemmler, T.

    2008-01-01

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 Angstroms, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a CuO3N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  13. Localization of Cellular Retinol-Binding Protein and Retinol-Binding Protein in Cells Comprising the Blood-Brain Barrier of Rat and Human

    Science.gov (United States)

    MacDonald, Paul N.; Bok, Dean; Ong, David E.

    1990-06-01

    Brain is not generally recognized as an organ that requiries vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the endothelial cells of the brain microvasculature and within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur.

  14. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    Science.gov (United States)

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears.

  15. Isolation and characterizations of oxalate-binding proteins in the kidney.

    Science.gov (United States)

    Roop-ngam, Piyachat; Chaiyarit, Sakdithep; Pongsakul, Nutkridta; Thongboonkerd, Visith

    2012-08-01

    Oxalate-binding proteins are thought to serve as potential modulators of kidney stone formation. However, only few oxalate-binding proteins have been identified from previous studies. Our present study, therefore, aimed for large-scale identification of oxalate-binding proteins in porcine kidney using an oxalate-affinity column containing oxalate-conjugated EAH Sepharose 4B beads for purification followed by two-dimensional gel electrophoresis (2-DE) to resolve the recovered proteins. Comparing with those obtained from the controlled column containing uncoupled EAH-Sepharose 4B (to subtract the background of non-specific bindings), a total of 38 protein spots were defined as oxalate-binding proteins. These protein spots were successfully identified by quadrupole time-of-flight mass spectrometry (MS) and/or tandem MS (MS/MS) as 26 unique proteins, including several nuclear proteins, mitochondrial proteins, oxidative stress regulatory proteins, metabolic enzymes and others. Identification of oxalate-binding domain using the PRATT tool revealed "L-x(3,5)-R-x(2)-[AGILPV]" as a functional domain responsible for oxalate-binding in 25 of 26 (96%) unique identified proteins. We report herein, for the first time, large-scale identification and characterizations of oxalate-binding proteins in the kidney. The presence of positively charged arginine residue in the middle of this functional domain suggested its significance for binding to the negatively charged oxalate. These data will enhance future stone research, particularly on stone modulators. PMID:22796524

  16. OB protein binds specifically to the choroid plexus of mice and rats.

    Science.gov (United States)

    Devos, R; Richards, J G; Campfield, L A; Tartaglia, L A; Guisez, Y; van der Heyden, J; Travernier, J; Plaetinck, G; Burn, P

    1996-05-28

    Binding studies were conducted to identify the anatomical location of brain target sites for OB protein, the ob gene product. 125I-labeled recombinant mouse OB protein or alkaline phosphatase-OB fusion proteins were used for in vitro and in vivo binding studies. Coronal brain sections or fresh tissue from lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats were probed to identify potential central OB protein-binding sites. We report here that recombinant OB protein binds specifically to the choroid plexus. The binding of OB protein (either radiolabeled or the alkaline phosphatase-OB fusion protein) and its displacement by unlabeled OB protein was similar in lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats. These findings suggest that OB protein binds with high affinity to a specific receptor in the choroid plexus. After binding to the choroid plexus receptor, OB protein may then be transported across the blood-brain barrier into the cerebrospinal fluid. Alternatively, binding of OB protein to a specific receptor in the choroid plexus may activate afferent neural inputs to the neural network that regulates feeding behavior and energy balance or may result in the clearance or degradation of OB protein. The identification of the choroid plexus as a brain binding site for OB protein will provide the basis for the construction of expression libraries and facilitate the rapid cloning of the choroid plexus OB receptor.

  17. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a concentration-depende

  18. Enthalpy/entropy compensation effects from cavity desolvation underpin broad ligand binding selectivity for rat odorant binding protein 3.

    Science.gov (United States)

    Portman, Katherine L; Long, Jed; Carr, Stephen; Briand, Loïc; Winzor, Donald J; Searle, Mark S; Scott, David J

    2014-04-15

    Evolution has produced proteins with exquisite ligand binding specificity, and manipulating this effect has been the basis for much of modern rational drug design. However, there are general classes of proteins with broader ligand selectivity linked to function, the origin of which is poorly understood. The odorant binding proteins (OBPs) sequester volatile molecules for transportation to the olfactory receptors. Rat OBP3, which we characterize by X-ray crystallography and NMR, binds a homologous series of aliphatic γ-lactones within its aromatic-rich hydrophobic pocket with remarkably little variation in affinity but extensive enthalpy/entropy compensation effects. We show that the binding energetics are modulated by two desolvation processes with quite different thermodynamic signatures. Ligand desolvation follows the classical hydrophobic effect; however, cavity desolvation is consistent with the liberation of "high energy" water molecules back into bulk solvent with a strong, but compensated, enthalpic contribution, which together underpin the origins of broad ligand binding selectivity.

  19. Enhanced expression of a calcium-dependent protein kinase from the moss Funaria hygrometrica under nutritional starvation

    Indian Academy of Sciences (India)

    Doyel Mitra; Man Mohan Johri

    2000-12-01

    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss Funaria hygrometrica, a polymerase chain reaction (PCR)-based approach was adopted to clone the gene. Using degenerate PCR primers against conserved regions of CDPKs, a 900 bp amplicon was obtained from the genomic DNA of Funaria. Southern hybridization under low stringency conditions indicated the presence of several CDPK related sequences in the Funaria genome. This observation is consistent with reports of multigene families of CDPKs in other plants. The 900 bp fragment was subsequently used to isolate a 2.2 kb partial genomic clone of the CDPK gene from Funaria. The genomic clone encodes an open reading frame (ORF) of 518 amino acids. Interestingly, unlike other CDPK genes from plants, the entire 1.5 kb ORF is not interrupted by introns. The deduced amino acid sequence of the Funaria gene shows extensive homology with CDPKs from higher plants, 73% identity with the Fragaria CDPK and 71% identity with CDPK isoform 7 of Arabidopsis. Phylogenetic analysis revealed that the Funaria CDPK is closer to the CDPKs from higher plants like strawberry and Arabidopsis as compared to those from lower plants such as the liverwort Marchantia, the green alga Chlamydomonas or another moss Tortula. Northern analysis shows enhanced expression of the CDPK transcript within 24–48 h of starvation for nitrogen, phosphorus or sulphur. So far the only other kinase which is known to be induced by nutrient starvation in plants is the wpk 4 which is a snf-1 related kinase (SnRKs). To our knowledge this is the first report that implicates a CDPK in the starvation response.

  20. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    Science.gov (United States)

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  1. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    OpenAIRE

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences ...

  2. Effect of Protein Binding on the Pharmacological Activity of Highly Bound Antibiotics▿

    OpenAIRE

    Schmidt, Stephan; Röck, Katharina; Sahre, Martina; Burkhardt, Olaf; Brunner, Martin; Lobmeyer, Maximilian T.; Derendorf, Hartmut

    2008-01-01

    During antibiotic drug development, media are frequently spiked with either serum/plasma or protein supplements to evaluate the effect of protein binding. Usually, previously reported serum or plasma protein binding values are applied in the analysis. The aim of this study was to evaluate this approach by experimentally measuring free, unbound concentrations for antibiotics with reportedly high protein binding and their corresponding antimicrobial activities in media containing commonly used ...

  3. Differential dissociation micromethod for the investigation of binding of metandrostenolone (Nerobol) to plasma proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bojadzsieva, M.; Kocsar, L. (Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary)); Kremmer, T. (Orszagos Onkologiai Intezet, Budapest (Hungary))

    1985-01-01

    A micromethod was developed to determine the binding of anabolic steroids to plasma proteins. The new procedure combines precipitation with ammonium sulphate and differential dissociation. The binding parameters (association constant, specific binding capacity) are calculated on the basis of dissociation curves of sup(3)H-metandrostenolone from the precipitated sexual binding globuline.

  4. Characterization of RNA-Protein Interactions: Lessons from Two RNA-Binding Proteins, SRSF1 and SRSF2.

    Science.gov (United States)

    Skrdlant, Lindsey; Lin, Ren-Jang

    2016-01-01

    SR proteins are a class of RNA-binding proteins whose RNA-binding ability is required for both constitutive and alternative splicing. While members of the SR protein family were once thought to have redundant functions, in-depth biochemical analysis of their RNA-binding abilities has revealed distinct binding profiles for each SR protein, that often lead to either synergistic or antagonistic functions. SR protein family members SRSF1 and SRSF2 are two of the most highly studied RNA-binding proteins. Here we examine the various methods used to differentiate SRSF1 and SRSF2 RNA-binding ability. We discuss the benefits and type of information that can be determined using each method.

  5. Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein.

    OpenAIRE

    Frattini, M G; Laimins, L A

    1994-01-01

    The papillomavirus E1 and E2 proteins form heteromeric complexes and individually bind specific sequences within the viral origin of replication. The mechanism by which these proteins are recruited to the origin and the role of the E1/E2 complex in replication remain undefined. To examine the interplay of these replication proteins, we have analyzed the binding of human papillomavirus (HPV) type 31b E1 and E2 proteins to the origin of replication. Bi